
MAT332 - SERIES AND INTEGRATION
Fall term — 2022-2023

Exercise sheet 5: Generalized integrals

1. Integration by parts. Find a primitive F of the function

f : R≥0→ R≥0

t 7→ t2e−t .

Deduce from the above that the generalized integral
∫ +∞

0 f (t)d t converges and
compute its value.

Solution. Note that F : R≥0 → R≥0 given by F(t) = −e−t(t2 + 2t + 2) is a continuous map
that is differentiable on R>0 and satisfies that F ′(t) = f (t) for all t > 0. Moreover, we have
that

∫ +∞

0

f (t)d t = lim
A→+∞

�

F(t)
�A

0
= lim

A→+∞

�

F(A)−F(0)
�

= lim
A→+∞

�

−e−A(A2+2A+2)+2
�

= 2.

2. A rational fraction.

(a) Given X > 0, define

I(X ) =

∫ X

1

d x
x(x + 1)(x + 2)

.

Compute an explicit expression of I(X ).
(b) What is its limit when X → +∞? What can we say about the generalized

integral
∫ +∞

1 d x/(x(x + 1)(x + 2))?

Solution.

(a) Since

1
x(x + 1)(x + 2)

=
1

2x
+

1
2(x + 2)

−
1

x + 1

for x ∈ R \ {0,−1,−2}, we get that

I(X ) =

∫ X

1

d x
x(x + 1)(x + 2)

=
�

ln(|x |)
2

+
ln(|x + 2|)

2
− ln(|x + 1|)

�X

1

=
ln(X )

2
+
ln(X + 2)

2
− ln(X + 1) + ln(2)−

ln(3)
2
= ln

�

2

√

√ X (X + 2)
3(X + 1)2

�

for X ≥ 1.
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(b) Note that

lim
X→+∞

I(X ) = lim
X→+∞

ln

�

2

√

√ X (X + 2)
3(X + 1)2

�

= lim
X→+∞

ln

�

2

√

√ (1+ 2/X )
3(1+ 1/X )2

�

= +∞,

which tells us that
∫ +∞

1
d x/(x(x + 1)(x + 2)) converges and it is equal to ln(2/

p
3).

3. Change of variables. Let X ∈ R≥0. Compute

I(X ) =

∫ X

0

d t
cosh(t)

and find its limit when X → +∞.

Solution. It is easy to see that
∫

d t
cosh(t)

=

∫

cosh(t)d t

1+ sinh2(t)
=

∫

du
1+ u2

= arctan(u) + C = arctan
�

sinh(t)
�

+ C ,

for any real constant C , where we used that cosh2(t) − sinh(t) = 1 for all t ∈ R, and the
change of variables u= sinh(t) (so du= cosh(t)d t). Hence,

I(X ) =

∫ X

0

d t
cosh(t)

=
�

arctan
�

sinh(t)
�

�X

0
= arctan

�

sinh(X )
�

,

for X ∈ R≥0, which tells us that

lim
X→+∞

I(X ) = lim
X→+∞

arctan
�

sinh(X )
�

=
π

2
.

4. Convergence and divergence of generalized integrals. Consider the following inte-
grals :

(a)
∫∞

1
ln(x)/(x + e−x )d x ,

(b)
∫ 1

0
ln(x)/(x + e−x )d x ,

(c)
∫∞

0
ln(x)/(x + e−x )d x ,

(d)
∫∞

1
| sin(x)|/(x2 + 1)d x ,

(e)
∫ +∞

0
e−
p

x/
p

xd x ,

(f)
∫∞

1
ln(x)x−1e−x d x ,

(g)
∫∞

0
(x + 2−

p
x2 + 4x + 1)d x ,

(h)
∫∞

1
( 3px3 + 1−

p
x2 + 1)d x ,

(i)
∫∞

1
e−
p

x2−x d x ,

(j)
∫∞

2

p
x/ ln3(x)d x ,

(k)
∫∞

1
(2+sin(x)+sin2(x))/ 3px4 + x2d x ,

(l)
∫∞
−∞ e−x2

d x ,

(m)
∫ 1

0
ln(x)/(1− x)d x .

Determine if they converge or diverge.

Solution.
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(a) Note first that the integrand is a nonnegative function, so its integral converges if and
only if it is bounded above. It is easy to see that
∫ +∞

1

ln(x)
x + e−x

d x ≥
∫ +∞

1

ln(x)
2x

d x =
1
4

lim
M→+∞

�

ln2(|x |)
�M

1
,

where we used that e−x ≤ x , for all x ≥ 1. Since the last member goes to +∞ as M
goes to +∞, we conclude that the improper integral is divergent.

(b) Note first that the integrand is a nonpositive function. It is easy to see that
∫ 1

0

| ln(x)|
x + e−x

d x ≤ e

∫ 1

0

| ln(x)|d x = −e

∫ 1

0

ln(x)d x = −e lim
ε→0+

�

x
�

ln(|x |)− 1
�

�1

ε

= e lim
ε→0+

�

1− ε(ln(ε)− 1)
�

,

where we used that e−x + x ≥ e−1, for all x ∈ [0,1]. Since the last member goes to e as
ε goes to 0, we conclude that the improper integral is convergent.

(c) Since
∫ ∞

0

ln(x)
x + e−x

d x =

∫ 1

0

ln(x)
x + e−x

d x +

∫ +∞

1

ln(x)
x + e−x

d x ,

the first integral of the second member converges whereas the second one diverges, we
conclude that

∫∞
0

ln(x)/(x + e−x )d x diverges.
(d) We will prove that the required integral is absolutely convergent. In order to do so,

it suffices to show that the integral of the absolute value of the integrand is bounded
above. Since
∫ ∞

1

| sin(x)|
x2 + 1

d x ≤
∫ ∞

1

1
x2 + 1

d x = lim
M→+∞

�

arctan(x)
�M

1

= lim
M→+∞

arctan(M)−
π

4
=
π

2
−
π

4
=
π

4
,

we conclude that the improper integral is convergent.
(e) Note first that the integrand is a nonnegative function, so its integral converges if and

only if it is bounded above. Since
∫ ∞

1

e−
p

x

p
x

d x = lim
M→+∞

�

− 2e−
p

x
�M

1
= lim

M→+∞

�

2e−1 − 2e−
p

M
�

= 2e−1,

we conclude that the improper integral is convergent.
(f) Recall that

lim
x→+∞

ln(x)
x
= 0.

As a consequence, there is C > 1 such that ln(x)/x ≤ 1 for all x > C , and in particular
∫ ∞

1

ln(x)
x

e−x d x =

∫ C

1

ln(x)
x

e−x d x +

∫ ∞

C

ln(x)
x

e−x d x

≤
∫ C

1

ln(x)
x

e−x d x +

∫ ∞

C

e−x d x ≤
∫ C

1

ln(x)
x

e−x d x +

∫ ∞

C

e−x d x

=

∫ C

1

ln(x)
x

e−x d x + lim
M→+∞

�

− e−x
�M

C
=

∫ C

1

ln(x)
x

e−x d x + e−C .
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We also note that, since ln(x)x−1e−x is continuous over [1, C], the integral
∫ C

1
ln(x)x−1e−x d x exists. We recall that, since ln(x)x−1e−x is a positive function over

R≥1, its integral converges if and only if it is bounded above. As a consequence, the
given improper integral converges.

(g) It is easy to see that
∫ ∞

0

(x + 2−
p

x2 + 4x + 1)d x

=

∫ 1

0

(x + 2−
p

x2 + 4x + 1)d x +

∫ ∞

1

(x + 2−
p

x2 + 4x + 1)d x .

Since x+2−
p

x2 + 4x + 1 is a continuous function over [0, 1], the first integral exists,
which implies that the improper integral

∫∞
0
(x + 2 −

p
x2 + 4x + 1)d x converges if

and only if the improper integral
∫∞

1
(x+2−

p
x2 + 4x + 1)d x converges. On the other

hand,
∫ ∞

1

(x + 2−
p

x2 + 4x + 1)d x =

∫ ∞

1

(x + 2)2 − (x2 + 4x + 1)

x + 2+
p

x2 + 4x + 1
d x

=

∫ ∞

1

3

x + 2+
p

x2 + 4x + 1
d x ≥

∫ ∞

1

1
2x

d x = lim
M→+∞

�

3 ln(|x |)
2

�M

1
= +∞,

where we have used that

x + 2+
p

x2 + 4x + 1≤ x + 2+
p

x2 + 4x + 4≤ 2x + 4≤ 6x

for all x ≥ 1. In particular, since the integral
∫∞

1
(x+2−

p
x2 + 4x + 1)d x is divergent,

the integral
∫∞

0
(x + 2−

p
x2 + 4x + 1)d x is divergent.

(h) Applying that a6 − b6 = (a − b)(
∑5

k=0 ak b5−k) for a = 3px3 + 1 and b =
p

x2 + 1, we
have that

3
p

x3 + 1−
p

x2 + 1=
(x3 + 1)2 − (x2 + 1)3

f (x)
= −

3x4 − 2x3 + 3x2

f (x)
= −

x2(3x2 − 2x + 3)
f (x)

,

where f (x) =
∑5

k=0 ak b5−k for a = 3px3 + 1 and b =
p

x2 + 1. In particular,
3px3 + 1 −

p
x2 + 1 ≤ 0 for all x ∈ R, since 3x2 − 2x + 3 = 3(x − 1/3)2 + 8/3 > 0

and f (x)> 0 for all x ∈ R. Since

lim
x→+∞

f (x)
6x5

= 1,

we have that

lim
x→+∞

3x4−2x3+3x2

f (x)
1

2x

= 1,

which implies that
p

x2 + 1 − 3px3 + 1 ∼ 1/(2x) as x → +∞. Since the inte-
grals

∫ C

1
(
p

x2 + 1 − 3px3 + 1)d x and
∫ C

1
1/xd x exist for all C > 1, for the inte-

grands are continuous functions, then
∫ +∞

1
(
p

x2 + 1 − 3px3 + 1)d x converges if and

only if
∫ +∞

1
1/xd x converges. As the latter integral diverges, the same holds for

∫ +∞
1
(
p

x2 + 1− 3px3 + 1)d x = −
∫ +∞

1
( 3px3 + 1−

p
x2 + 1)d x .

4/14



MAT332 - Series and integration — Fall term — 2022-2023 Exercise sheet 5

(i) It is clear that

∫ +∞

1

e−
p

x2−x d x =

∫ 2

1

e−
p

x2−x d x +

∫ +∞

2

e−
p

x2−x d x .

Since the first integral of the right member converges, for e−
p

x2−x is a continuous func-
tion defined over a finite and closed interval, the integral in the left member converges

if and only if the second integral of the right member converges. Since e−
p

x2−x is a
positive function, it suffices to show that the integral is bounded above. In this case

∫ +∞

2

e−
p

x2−x d x ≤
∫ +∞

2

e−x/
p

2d x = lim
M→+∞

�

−
p

2e−x/
p

2
�M

2
=
p

2e−
p

2,

where we have used that x2 − x ≥ x2/2, for x ≥ 2. Since the last integral converges

(to 0 when M goes to +∞), we conclude that
∫∞

1
e−
p

x2−x d x converges.

(j) Since

lim
x→+∞

xα

ln(x)
= +∞

for all α > 0, we have that

lim
x→+∞

p
x

ln3(x)
= lim

x→+∞

� 6px
ln(x)

�3

= +∞,

which in term implies that the integral
∫∞

2

p
x/ ln3(x)d x diverges, by Exercise 5.

(k) We see that
∫ ∞

1

�

�

�

�

2+ sin(x) + sin2(x)
3px4 + x2

�

�

�

�

d x ≤
∫ ∞

1

4
3px4 + x2

d x ≤
∫ ∞

1

4
3px4

d x

= lim
M→+∞

�

−
12
3px

�M

1
= 12,

where we used that x4+ x2 ≥ x4. Since the integrand is a nonnegative function, its in-
tegral converges, for it is bounded above. Hence

∫∞
1
(2+sin(x)+sin2(x))/ 3px4 + x2d x

is absolutely convergent, so it is convergent.

(l) Since e−x2
is symmetric, i.e. e−x2

= e−(−x)2 for all x ∈ R, which implies that
∫∞
−∞ e−x2

d x

converges if and only if
∫∞

0
e−x2

d x converges. Furthermore, since e−x2
is continuous,

the integral
∫ 1

0
e−x2

d x exists, so
∫∞

0
e−x2

d x converges if and only if
∫∞

1
e−x2

d x

converges. Moreover, since e−x2
is a nonnegative function,

∫∞
1

e−x2
d x converges if

and only if it is bounded. Since e−x2 ≤ e−x for all x ≥ 1, we have that
∫ ∞

1

e−x2
d x ≤

∫ ∞

1

e−x d x = lim
M→+∞

�

− e−x
�M

1
= e−1,

so the integral converges.

(m) It is clear that ln(x)/(1 − x) is a continuous function over ] 0,1 [ . Moreover, the
Bernoulli-L’Hospital rule tells us that

lim
x→1

ln(x)
1− x

= lim
x→0

1/x
−1
= −1,
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which implies that ln(x)/(1 − x) has a continuous extension to ] 0,1]. In particu-

lar, the integral
∫ 1

0
ln(x)/(1 − x)d x converges if and only if

∫ 1/2

0
ln(x)/(1 − x)d x

converges. Moreover, since | ln(x)/(1 − x)| = − ln(x)/(1 − x) for x ∈ ] 0, 1 [ , we see

that
∫ 1/2

0
ln(x)/(1− x)d x converges if and only if it is bounded. We also note that

∫ 1/2

0

−
ln(x)
1− x

d x ≤ −2

∫ 1/2

0

ln(x)d x = −2 lim
ε→+∞

�

x ln(x)− x
�1/2

ε

= 1− ln(1/2),

since 1− x ≥ 1/2 and

lim
x→+∞

x ln(x) = lim
x→+∞

ln(x)
1/x

= lim
x→+∞

1/x
−1/x2

= 0

by the Bernoulli-L’Hospital rule. Hence, the integral
∫ 1

0
ln(x)/(1− x)d x converges.

5. Limit and convergence of the integral.

(a) Let f : R≥0 → R≥0 be a piecewise continuous function such that f (t) → `

when t → +∞, with ` > 0 or `= +∞. Prove that
∫ +∞

0 f (t)d t diverges.
(b) Give an example of a piecewise continuous function g : R≥0→ R≥0 such that

g(t) does not tend to 0 when t → +∞ but
∫ +∞

0 g(t)d t converges.

Solution.

(a) Since f (t)→ ` ∈ R>0 ∪ {+∞} when t → +∞, given ε > 0, there exists C > 0 such
that f (t)> ε for all t > C . As a consequence,

lim
M→+∞

∫ M

0

f (t)d t ≥ lim
M→+∞

∫ M

C

f (t)d t ≥ lim
M→+∞

ε(M − C) = +∞

for M ≥ C .

(b) Consider the map g : R≥0→ R≥0 given by

g(t) =

¨

1, if t ∈ [n− 2−n, n+ 2−n] for n ∈ N,

0, if t ∈ R \
⋃

n∈N[n− 2−n, n+ 2−n].

Then,

∫ N+2−N

0

g(t)d t =
N
∑

n=1

1
2n−1

≤ 2

for all N ∈ N. Since the function is nonnegative,
∫ +∞

0
g(t)d t converges.

6. Two equivalent descriptions.

(a) Decide whether the integrals
∫ 1

0 t−1e−t d t and
∫ +∞

1 t−1e−t d t converge or di-
verge.

(b) For any x > 0, let f (x) =
∫ +∞

x t−1e−t d t. Compute its limit at +∞.
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(c) Show that

f (x)∼
e−x

x
,

when x tends to +∞.
(d) Prove that f (x)∼ ln(1/x) when x > 0 tends to 0.

Solution.

(a) Since the function t−1e−t is positive on R>0, the integral
∫ 1

0
t−1e−t d t (resp.,

∫ +∞
1

t−1e−t d t) converges if it is bounded. Since

∫ 1

0

t−1e−t d t ≥ e−1

∫ 1

0

t−1d t = e−1 lim
ε→0+

�

ln(x)
�1

ε

= +∞,

the integral
∫ 1

0
t−1e−t d t diverges. On the other hand,

∫ +∞

1

t−1e−t d t ≤
∫ +∞

1

e−t d t = lim
M→+∞

�

− e−x
�M

1
= 1,

so the integral
∫ +∞

1
t−1e−t d t converges.

(b) Since the integral
∫ +∞

1
t−1e−t d t converges, then

lim
x→+∞

∫ +∞

x

t−1e−t d t = 0.

(c) By the previous item we can use the Bernoulli-L’Hospital rule, which gives

lim
x→+∞

∫ +∞
x

t−1e−t d t

x−1e−x
= lim

x→+∞

x−1e−x

x−2e−x (x + 1)
= lim

x→+∞

x
x + 1

= 1,

so f (x)∼ e−x x−1 as x goes to +∞.

(d) Since the integral
∫ +∞

0
e−t t−1d t diverges, we can use the Bernoulli-L’Hospital rule,

which gives

lim
x→0+

∫ +∞
x

t−1e−t d t

ln(1/x)
= lim

x→0+

x−1e−x

1/x
= 1,

so f (x)∼ ln(x−1) as x goes to 0+.

7. Logarithmic derivative. Let f : R≥0 → R>0 be a continuous function. For any
x ∈ R≥0, we set F(x) =

∫ x

0 f (t)d t. Prove that the integrals

∫ +∞

1

f (t)d t and

∫ +∞

1

f (t)
F(t)

d t

simultaneously converge or diverge.
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Solution. Note that F ′(x) = f (x) for all x ∈ R>0. Hence,

lim
M→+∞

∫ M

1

f (t)
F(t)

d t = lim
M→+∞

∫ M

1

F ′(t)
F(t)

d t = lim
M→+∞

∫ M

1

ln
�

F(t)
�′

d t

= lim
M→+∞

�

ln
�

F(t)
�

�M

1
= lim

M→+∞
ln

�

F(M)
F(1)

�

.

It is then clear that the previous limit exist if and only if

lim
M→+∞

F(M) = lim
M→+∞

∫ M

0

f (t)d t =

∫ +∞

1

f (t)d t

exists. In consequence,
∫ +∞

1
f (t)d t converges if and only if

∫ +∞
1

f (t)/F(t)d t converges.

8. For any integer n ∈ N0, we set

un =

∫ (n+1)π

nπ

cos2(x)
1+ x

d x and vn =

∫ (n+1)π

nπ

sin2(x)
1+ x

d x .

(a) Compute an = un + vn and prove that
∑

n∈N0
an diverges.

(b) Using integration by parts, prove that we have the inequality

|un − vn|¶
1

2πn2
,

for all n ∈ N.
(c) Deduce that

∑

n∈N0
un and

∑

n∈N0
vn are divergent.

(d) Given α ∈ R and x ∈ R≥0, set

fα(x) =
sin2(x)
(1+ x)α

.

Find the values of α for which the function fα is integrable on R≥0.

Solution.

(a) Note that

an =

∫ (n+1)π

nπ

cos2(x) + sin2(x)
1+ x

d x =

∫ (n+1)π

nπ

1
1+ x

d x ,

for all n ∈ N0, so

N
∑

n=0

an =

∫ (N+1)π

0

1
1+ x

d x = ln
�

1+ (N + 1)π
�

for all N ∈ N0, which implies that
∑

n∈N0
an diverges.
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(b) Note first that

un − vn =

∫ (n+1)π

nπ

cos2(x)− sin2(x)
1+ x

d x =

∫ (n+1)π

nπ

cos(2x)
1+ x

d x

=
�

sin(2x)
2(x + 1)

�(n+1)π

nπ
+

∫ (n+1)π

nπ

sin(2x)
2(1+ x)2

d x =

∫ (n+1)π

nπ

sin(2x)
2(1+ x)2

d x ,

where we did an integration by parts with u = 1/(1 + x) and v′ = cos(2x), so
v = sin(2x)/2, which implies that

|un − vn| ≤
∫ (n+1)π

nπ

�

�

�

�

sin(2x)
2(1+ x)2

�

�

�

�

d x ≤
π

2n2π2
=

1
2πn2

,

for all n ∈ N0, where we used that 1+ x ≥ nπ for x ∈ [nπ, (n+ 1)π].
(c) If

∑

n∈N0
un is convergent, then

N
∑

n=0

vn =
N
∑

n=0

un +
N
∑

n=0

(vn − un)

converges as N goes to +∞, since the series
∑

n∈N0
(vn − un) is absolutely convergent.

This in turn implies that

N
∑

n=0

an =
N
∑

n=0

un + vn =
N
∑

n=0

un +
N
∑

n=0

vn

converges as N goes to +∞, which is absurd due to the first item. The same argu-
ment shows that if

∑

n∈N0
vn is convergent, then

∑

n∈N0
an is also convergent, which is

a contradiction. As a consequence,
∑

n∈N0
un and and

∑

n∈N0
vn are divergent.

(d) Note that, if α > 1, then
∫ +∞

0

fα(x)d x =

∫ +∞

0

sin2(x)
(1+ x)α

d x ≤
∫ +∞

0

1
(1+ x)α

d x

= lim
M→+∞

�

1
(1−α)(1+ x)α−1

�M

0
=

1
α− 1

.

so the integral
∫ +∞

0
fα(x)d x converges for α > 1.

Moreover, since fα(x)≤ fα′(x) for all x ∈ R≥0 if α > α′, if
∫ +∞

0
fα(x)d x converges

then
∫ +∞

0
fα′(x)d x converges, since (1+ x)α

′ ≤ (1+ x)α for all x ∈ R≥0 if α′ < α. On

the other hand, we note that
∫ +∞

0
f1(x)d x diverges, since

lim
N→+∞

∫ (N+1)π

0

f1(x)d x = lim
N→+∞

N
∑

n=0

an

diverges. As a consequence,
∫ +∞

0
fα(x)d x diverges for all α ∈ [0,1].

9. Convergence and divergence of generalized integrals. Consider the following inte-
gral expressions :
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(a)
∫∞

2 cos(x)/ ln(x)d x ,

(b)
∫∞

1 sin(x − 1)/ ln(x)d x ,

(c)
∫ 1

0 sin(1/t)d t,

(d)
∫ 1

0 x−1 cos(2/x)d x .

Decide whether they are convergent or divergent.

Solution.

(a) Note that
�

�

�

�

∫ M

2

cos(x)d x

�

�

�

�

=

�

�

�

�

�

sin(x)
�M

2

�

�

�

�

≤ 2

for all M ≥ 2. Moreover, since 1/ ln(x) is a positive decreasing continuous function
whose limit is zero as x goes to +∞, then the Leibniz criterion for integrals tells us
that the integral

∫∞
2

cos(x)/ ln(x)d x converges.

(b) Note that
�

�

�

�

∫ M

1

sin(x − 1)d x

�

�

�

�

=

�

�

�

�

�

− cos(x − 1)
�M

1

�

�

�

�

≤ 2

for all M ≥ 1. Moreover, since 1/ ln(x) is a positive decreasing continuous function
whose limit is zero as x goes to +∞, then the Leibniz criterion for integrals tells us
that the integral

∫∞
1

sin(x − 1)/ ln(x)d x converges.

(c) Since the function | sin(1/t)| is continuous, positive and bounded for t ∈ ] 0,1], then
the integral

∫ 1

0

| sin(1/t)|d t = lim
ε→0+

∫ 1

ε

| sin(1/t)|d t

exists, since it is the limit of a bounded function that increases as ε decreases to 0.
Since the

∫ 1

0
sin(1/t)d t is absolutely convergent, it is convergent.

(d) Note first that

lim
ε→0+

∫ 1

ε

x−1 cos(2/x)d x = lim
ε→0+

−
∫ 1/ε

1

y−1 cos(2y)d y = −
∫ +∞

1

y−1 cos(2y)d y.

Note that
�

�

�

�

∫ M

1

cos(2y)d y

�

�

�

�

=

�

�

�

�

�

sin(2y)
2

�M

1

�

�

�

�

≤ 1

for all M ≥ 1. Moreover, since 1/y is a positive decreasing continuous function whose
limit is zero as y goes to +∞, then the Leibniz criterion for integrals tells us that the
integral

∫∞
1

y−1 cos(2y)d y converges, so
∫ 1

0
x−1 cos(2/x)d x converges.

10. (a) Prove that

sin2(t) =
tan2(t)

1+ tan2(t)

for all t ∈ [0,π/2].
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(b) Let a > −1. Using the change of variables x = tan(t), prove that

∫
π
2

0

d t

1+ a sin2(t)
=

π

2
p

1+ a
.

(c) Show that

∫ π

0

d t

1+ a sin2(t)
= 2

∫
π
2

0

d t

1+ a sin2(t)
.

(d) Given α ∈ R>0, define

un =

∫ π

0

d t

1+ (nπ)α sin2(t)

for n ∈ N0. Prove that the series with general term un converges if and only if
α > 2.

(e) Let

vn =

∫ (n+1)π

nπ

d t

1+ tα sin2(t)

for n ∈ N0. Study the convergence of the series with general term vn.
(f) Does the integral

∫ +∞

0

d t

1+ tα sin2(t)

converge or diverge?

Solution.

(a) It is clear that

tan2(t)
1+ tan2(t)

=
sin2(t)
cos2(t)

1+ sin2(t)
cos2(t)

=
sin2(t)

cos2(t) + sin2(t)
= sin2(t)

for all t ∈ [0,π/2].
(b) Using the change of variables x = tan(t), we see that

∫
π
2

0

d t

1+ a sin2(t)
=

∫ +∞

0

1

1+ ax2

1+x2

1
1+ x2

d x =

∫ +∞

0

1
1+ (a+ 1)x2

d x

= lim
M→+∞

�

arctan(
p

1+ ax)
p

1+ a

�M

0
=

π

2
p

1+ a
,

since d x = d t/cos2(t), or equivalently

d t =
�

1−
x2

1+ x2

�

d x =
d x

1+ x2
.
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(c) Note that Show that

∫ π

0

d t

1+ a sin2(t)
=

∫
π
2

0

d t

1+ a sin2(t)
+

∫ π

π
2

d t

1+ a sin2(t)

and using the change of variables s = π− t we have

∫ π

π
2

d t

1+ a sin2(t)
=

∫
π
2

0

ds

1+ a sin2(s)
,

which gives

∫ π

0

d t

1+ a sin2(t)
= 2

∫
π
2

0

d t

1+ a sin2(t)
.

(d) Note that

un =

∫ π

0

d t

1+ (nπ)α sin2(t)
= 2

∫
π
2

0

d t

1+ (nπ)α sin2(t)
=

π
p

1+ (nπ)α
,

for n ∈ N0, where we used the two previous items. Since un ∼ π/nα/2 as n goes to +∞
and the series

∑

n∈N 1/ns converges if and only if s > 1, we see that
∑

n∈N0
un converges

if and only if α > 2.

(e) Note that

un+1 =

∫ (n+1)π

nπ

d t

1+ ((n+ 1)π)α sin2(t)
≤ vn ≤

∫ (n+1)π

nπ

d t

1+ (nπ)α sin2(t)
= un

for n ∈ N0, since nπ≤ t ≤ (n+ 1)π and

∫ (n+1)π

nπ

d t

1+ (nπ)α sin2(t)
=

∫ π

0

d t

1+ (nπ)α sin2(t)
.

Since un+1 ≤ vn ≤ un for all n ∈ N0,

N+1
∑

n=1

un ≤
N
∑

n=0

vn ≤
N
∑

n=0

un

so the series
∑

n∈N0
vn converges precisely when

∑

n∈N0
un converges, i.e. α > 2.

(f) Recall that the integral

∫ +∞

0

d t

1+ tα sin2(t)

converges if and only if it is bounded, since the integrand is a positive function. Mo-
reover, since the series

∫ (N+1)π

0

d t

1+ tα sin2(t)
=

N
∑

n=0

vn

converges if and only if α > 2, the integral also converges if and only if α > 2.
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11. Given n ∈ N0, define

In =

∫ +∞

0

d x
(1+ x2)n+1

.

(a) Prove that In converges for all n ∈ N0.
(b) Prove that

In − In+1 =

∫ +∞

0

x
x

(1+ x2)n+2
d x

and use an integration by parts to show that

In+1 =
2n+ 1

2(n+ 1)
In.

(c) Set un =
p

nIn. Prove that

ln(un+1)− ln(un) = ln

�

1+
1

2n

�

−
1
2
ln

�

1+
1
n

�

.

(d) Using a Taylor polynomial of order 2 at 0 of ln(1 + x), prove that the series
with general term ln(un+1)− ln(un) converges.

(e) Deduce the existence of a constant C > 0 such that In ∼
Cp
n when n tends to

+∞.

Solution.

(a) Note that

1
(1+ x2)n+1

≤
1

1+ x2

for all n ∈ N0. Since the previous function is positive and the integral
∫ +∞

0
d x/(1+ x2)

converges,

In =

∫ +∞

0

d x
(1+ x2)n+1

≤
∫ +∞

0

d x
1+ x2

= I0

implies that In converges.

(b) Note that

In − In+1 =

∫ +∞

0

d x
(1+ x2)n+1

−
∫ +∞

0

d x
(1+ x2)n+2

=

∫ +∞

0

(1+ x2)− 1
(1+ x2)n+2

d x

=

∫ +∞

0

x
x

(1+ x2)n+2
d x .

By an integration by parts for the functions u = x and v′ = x/((1 + x2)n+2), so
v = (1+ x2)−n−1/(2(n+ 1)), we get

∫ +∞

0

x
x

(1+ x2)n+2
d x = lim

M→+∞

�

−
x

2(n+ 1)(1+ x2)n+1

�M

0
+

1
2(n+ 1)

∫ +∞

0

1
(1+ x2)n+2

d x ,
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which is tantamount to In+1 − In = In+1/(2(n+ 1)), i.e.

In+1 =
2n+ 1

2(n+ 1)
In,

for all n ∈ N0.

(c) It is clear that

ln(un+1)− ln(un) = ln

�

un+1

un

�

= ln

�

p
n+ 1In+1p

nIn

�

= ln

�

1+ 1/(2n)
p

1+ 1/n

�

= ln

�

1+
1

2n

�

−
1
2
ln

�

1+
1
n

�

.

(d) The Bernoulli-L’Hospital rule tells us that

lim
x→0

ln(1+ x/2)− ln(1+ x)/2
x2/4

= lim
x→0

x
2(2+x)(1+x)

x/2
= 1.

Applying the previous identity for x = 1/n and n ∈ N we get that
ln(un+1) − ln(un) ∼ 1/(2n)2 for n → +∞, so the series with general term
ln(un+1)− ln(un) converges.

(e) Since

N
∑

n=1

ln(un+1)− ln(un) = ln(uN+1)− ln(u1)

converges as N goes to +∞, then ln(uN+1) has a limit ln(C) as N goes to +∞. Mo-
reover, C > 0 since In > 0 for all n ∈ N0. This implies that IN ∼

Cp
N

when N tends to
+∞.
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