MAT332 - Series and integration Fall term — 2023-2024

Exercise sheet 4: Riemann integrals

1. Riemann sums.

(a) Prove that the sequence $(u_n)_{n \in \mathbb{N}_0}$ whose general term is

$$u_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}$$

is a sequence of Riemann sums which converges and compute its limit.

- (b) Compute the limit when *n* tends to $+\infty$ of $\sum_{k=n+1}^{2n} 1/k$.
- (c) For which real number α is the sequence $(v_n)_{n \in \mathbb{N}_0}$ with general term

$$v_n = \frac{1}{n^2} \sum_{k=1}^n k^\alpha \sin(k/n)$$

a sequence of Riemann sums? What is its limit? What about the other values of α in]-1,+ ∞ [?

(d) Using Riemann sums, prove the equivalences

$$\sum_{k=1}^{n} k^{\alpha} \sim \frac{1}{\alpha+1} n^{\alpha+1} \text{ for } \alpha > 0, \text{ and } \sum_{k=n+1}^{2n} \ln(k) \sim n \ln(n)$$

when *n* tends to $+\infty$.

2. Primitives. Consider the following integrals :

- (a) $\int_{a}^{b} t^{n} dt$, with $n \in \mathbb{N}_{0}$, (b) $\int_{a}^{b} P(t) dt$, with P a polynomial of degree d, (c) $\int_{a}^{b} e^{\alpha t} dt$, with $\alpha \in \mathbb{C}$, (d) $\int_{a}^{b} \sqrt{t} dt$, (e) $\int_{a}^{b} 1/\sqrt{t} dt$, (f) $\int_{a}^{b} t^{1/3} dt$, (g) $\int_{a}^{b} 1/(1+t^{2}) dt$.

For each of them find [a, b] such that the function is Riemann integrable on [*a*, *b*] and compute the integral on the interval.

3. Primitives of rational functions. Compute the following primitives

(a) $\int x^3/(x^2+1)dx$, (e) $\int dx/(49-4x^2)$, (b) $\int dx/(x(1+x)^2)$, (f) $\int (5x-12)/(x(x-4))dx$, (c) $\int dx/(4x^2-3x+2)$ (g) $\int (x-1)/(x^2+x+1)dx$. (d) $\int x^2/(x^4-1)dx$,

4. Change of variables. Give primitives for the functions $\sqrt{x^2+1}$, $\sqrt{x^2-1}$ and $\sqrt{1-x^2}$ using the change of variables $x = \sinh(u)$, $x = \cosh(u)$ or $x = \sin(u)$.

5. Primitives of trigonometric functions. Compute the following primitives

(a)	$\int \sin^3(x) dx$,	(d)	$\int \sin(x/2)\cos(x/3)dx,$
(b)	$\int \sin(x)/(2+\cos^2(x))dx,$	(e)	$\int \sin^2(x) \cos^3(x) dx$,
(c)	$\int dx/(1+\sin^2(x)),$	(<i>f</i>)	$\int \sin^2(x) \cos^4(x) dx.$

6. More primitives. Compute the primitives

$$\int x^3 \ln(x) dx \text{ and } \int e^{-x} \cos(x) dx.$$

7. *Integration and derivatives.* Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that the function g defined on \mathbb{R} by $g(x) = \int_{2x}^{x^2} f(t) dt$ is differentiable and compute its derivative.

- 8. A special case.
- (a) Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Give a necessary and sufficient condition on *f* such that $|\int_{a}^{b} f(x)dx| = \int_{a}^{b} |f(x)|dx$. (*b*) Same question for $f : [a, b] \to \mathbb{C}$.

9. Primitive of exponentials.

- (a) Prove that a primitive of the function defined on \mathbb{R} given by $x \mapsto P(x)e^{ax}$, where $P \in \mathbb{R}[X]$ is a polynomial and $a \in \mathbb{R}$ is of the form $x \mapsto Q(x)e^{ax} + C$ where $Q \in \mathbb{R}[X]$ is a polynomial and $C \in \mathbb{R}$ is a constant.
- (b) Prove that a primitive of the function defined on \mathbb{R} given by $x \mapsto P(x)\cos(\alpha x)$, where $P \in \mathbb{R}[X]$ is a polynomial and $\alpha \in \mathbb{R}$ is a real function of the form $x \mapsto Q_1(x)\cos(\alpha x) + Q_2(x)\sin(\alpha x) + C$ where $Q_1, Q_2 \in \mathbb{R}[X]$ are polynomials and $C \in \mathbb{R}$ is a constant.