MAT332 - SERIES AND INTEGRATION
Fall term — 2022-2023

Exercise sheet 4: Riemann integrals

1. Riemann sums.
(@) Prove that the sequence (u,),ey, Whose general term is

Z n+k

u, =

n2 + k2

is a sequence of Riemann sums which converges and compute its limit.

(b) Compute the limit when n tends to +00 of Zk a1 1 /k.
(c) For which real number a is the sequence (v,),ey, With general term

1< ,
v, = F}(Zl:k“ sin(k/n)

a sequence of Riemann sums ? What is its limit ? What about the other values
ofain]—1,+00[?
(d) Using Riemann sums, prove the equivalences

n 2n
1
E k% ~ n*"! for a > 0, and E In(k) ~ nln(n)
Py a+1 P
= =n+1

when n tends to +00.

Solution.
(a) Itis clear that

= n+k 1 1+k/n
S = - = sl
=2 I

“Hn?+k? & 1+ (k/n)>

coincides with a Riemann sum associated with the map f : [0,1] — R given by
f(x)=(1+x)/(1+ x?) for the partition {x; =j/n:j €[0,n]} of the interval [0, 1].
In consequence,

! AN
lim sn=J- 1+de=[arctan(x)+|n(1+x)] _m+in@)
0 2 @

2 4
(b) Itis clear that

2n n
1 1 1 1
S = E — = E P —
" Lk k=1k+n —inl+k/n

is a Riemann sum of the map f : [0,1] — R given by f(x) = 1/x for the partition
{x;=1+j/n:j€{0,...,n}} of the interval [1, 2]. In consequence,

lim S, —f ldx=[|n(x)]2=In(2).
n—-+00 1 X 1

1/9



MAT332 - Series and integration — Fall term — 2022-2023 Exercise sheet 4

(©)

@

It is clear that

a

v, = %kz;:k“ sin(k/n) =n*" Zn: %(S) sin(k/n)

k=1

is the product of n®* by a Riemann sum of the map f : [0,1] — R given by
f(x) = x“sin(x) for the partition {x; = j/n : j € {0,...,n}} of the interval [0,1].
In consequence,

1
lim -2 :j x*sin(x)dx.
0

n—+oo pa—1

If @ > 1, we thus conclude that v, goes to +00 as n goes to +00. If a = 1, then

n—+o0o

lim v, = f xsin(x)dx = [sin(x) —xcos(x)]2 =sin(1)—cos(1).

Finally, if —1 > a < 1, then the integral f 01 x*sin(x)dx is finite and we thus conclude
that v, goes to 0 as n goes to +00.

Assume a > 0. Note that

1k
s=2(5)

is a Riemann sum of the map f : [0,1] — R given by f(x) = x* for the partition
{x;=j/n:j€{0,...,n}} of the interval [0, 1]. In consequence,

1
. xa+l 1 1
lim S, = x"‘dxz[ ] = ,
n—-+00 @ a+1 ] a+1

which immediately implies that »,_, k* ~ n**!/(a + 1) as n goes to +00.
On the other hand, note that

o 1 iy (5 InGi+n)—nin(n)
S":Z_ln(1+;): "
<

is a Riemann sum of the map f : [0,1] — R given by f (x) = In(1 + x) for the partition
{x;=j/n:j€{0,...,n}} of the interval [0, 1]. In consequence,

lim Sn:f In(1+x)dx:[(1+x)|n(1+x)—x] =In(4)—1.
n—+00 n 0

This implies that

lim —ii"“ InCk) —1= lim S _
n—>too  nln(n) " notooln(n)
which tells us that Ziirﬁl In(k) ~ nIn(n) as n goes to +00.

2. Primitives. Consider the following integrals :
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(@) fb t"dt, with n € N, @ fb Jide,

) f P(t)dt, with P a polynomial of (e) f 1/4/tdt,
degree d, " f Asde,

© fabeafdt’ with a € C, @ fa 1/(1 + t2)dt.

For each of them find [a, b] such that the function is Riemann integrable on
[a, b] and compute the integral on the interval.

Solution.

(a) For any interval [a, b] € R we have that

b
tndt=|: il ]b _ prtl g+l
. n+1 1, n+l °’

forn € N.
(b) Assume that P = Z?:o a;t!, with a; # 0. For any interval [a, b] € R we have that

d pitl — gitl

d b d fitl
P(t)dt = tidt =
Ja ()t l_oalJa Z():a[l+1] Zal i+1

1= i=|

(©) Ifa=0,e* =1 and this case is already included in the first item for n = 0. Assume
that a # 0. For any interval [a, b] C R we have that

b
wt eat b eab —e%a
efdt=—| =——.
a a g a

(d) For any interval [a, b] € R, we have that

2[‘3/2 b3/2_a /2
dt— =2 .
J‘/_ 3 ] 3

(e) For any interval [a, b] € R., we have that

[[&=[o] =2t~ va)

(f) For any interval [a, b] € R we have that

£4/3 b3 — g4/3
Viae=[s£2] =t
X ;

(g) For any interval [a, b] € R we have that

b b
1
L mdt = [arctan(t)] = arctan(b) — arctan(a).

a

3. Primitives of rational functions. Compute the following primitives
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@ [x/(x*+1)dx, (e [dx/(49—4x?),

b) [ dx/(x(1+x)2),
© [dx/(4x*—3x+2) " [Gx—12)/(x(x —4))dx,

@ [x?/(x*—-1)dx, © [(x—1)/(x*+x+1)dx.

Solution. In the following, C € R will denote a general real constant.
(a) Itis clear that

8! 2 2
fxdx —fxdx— xdx _x__ln(x +1)+C,

x2+1 x2+1 2 2

whose domain of definition is R.
(b) Itis clear that

dx 1 1 1 1
f = f (35~ g Jox =G =l + 10+ — +c,

whose domain of definition is R \ {0,—1}.
(¢) TItis clear that

8

+C,

8x—3
J« dx lf dx _2arctan( > )
(

4X2—3X+2=Z x_g)2+§_ /23

whose domain of definition is R.
(d) TItis clear that

x2dx 1 1 1
Jx“—l =J(2(x2+1)_4(x+1)+4(x—1))dx

= %( In(lx = 1) = In(]x + 1) + Zarctan(x)) +C,

whose domain of definition is R \ {£1}.
(e) Itis clear that

dx 1 1 1 1
—_— + dx=—1In
49—4x2 28 7+2x 7—2x 28

whose domain of definition is R \ {£7/2}.
(f) Itis clear that

M:f(ﬁJr 2 )dx=3|n(|x|)+2|n(|x—4|)+C,

x(x—4) x x—4

2x+7
2x—7

)+,

whose domain of definition is R \ {0,4}.
(g) Itisclear that

(x—1)dx _ ( 2x +1 _ 3 )dx
x2+x+1 2(x2+x+1) 2(x2+x+1)
_ 2x +1 6

_J(2(x2+x+1)_(2x+1)2+3)dx

1 2x +1
= —(In(x2+x+1)—2\/§arctan( ad ))+C,
2 V3

whose domain of definition is R.
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4. Change of variables. Give primitives for the functions vx2+1, vx2—1 and
+/1 — x2 using the change of variables x = sinh(u), x = cosh(u) or x = sin(u).

Solution. We just give the corresponding integrals and let the reader verify that they are
correct :

J V1+x2dx = %(xv 1+ x2 +argsinh(x)) +C,
J Vx2—1dx = %(x\/xz—l—ln(x+ xz—l))+C,
J V1—x2dx = %(x\/l—x2+arcsin(x))+c,

where C € R is a real general constant.

5. Primitives of fonctions of trigonametric functions. Compute the following primi-
tives

(a) fsins(x)dx, (@ fsin(x/Z)cos(x/S)dx,
®) [ sin(x)/(2+ cos*(x))dx, (e [ sin*(x)cos*(x)dx,
© [ dx/(1+sin*(x)), (") [ sin*(x)cos*(x)dx.

Solution. Assume that m is an odd positive integer of the form m = 2m’ + 1 with m’ € N,
Then,

J cos™(x)sin"(x)dx = J coszml(x) sin"(x) cos(x)dx = f (1 —sinz(x))m/ sin™(x) cos(x)dx

_ ! m’ o _ m’ il sinn+2k+1(x)
=20 (%) f S ) costa)dx = ) (1 (%) Szt
€y

In a similar way, if n is an odd positive integer of the form n = 2n’ + 1 with n’ € N, we have

J cos™(x)sin"(x)dx = f cos™(x) sinznl(x) sin(x)dx = f (1 — cosz(x))"/ cos™(x)sin(x)dx

_ z 1k n’ m+2k - _ S 1k n"\ cos™**1(x)
_kéo( 1) (k)fcos (x)sin(x)dx = k:EO( 1) (k)—m+2k+1 .
(2)

In the following, C € R will denote a general real constant.

(a) Using (2) we see that
J sin®(x)dx = %(cos?’(x) —3cos(x))+C,

whose domain of definition is R.
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(b) Using the change of variables y = cos(x)/+v/2, so dy = —sin(x)dx/+/2, we see that
i d
f sin(x) dx = 1 y _arctan(cos(x)/«/i) +C

X=——= E)
2+ cos?(x) V2 | 1+ y2 V2

whose domain of definition is R.
() Using the change of variables y = tan(x), then sin’(x) = y?/(1 + y?) and
dx =dy/(1+ y?). This tells us that

1 1 1
dx = dy = — arctan(v2y) +C
f1+sin2(x) f1+2y2 Y= v2y)

= % arctan(v2tan(x)) + C,

whose domain of definitionis ] — /2, /2.
(d) Itis direct to see that

Js3)e5Ji= (sn(£Join ()2 =222

whose domain of definition is R, where we have used the identity
sin(a) cos(f) = (sin(a— B)+sin(a + [3’))/2.

(e) Using (1) we see immediately that

f sin®(x) cos®(x)dx = 1—15(5 sin®(x) —SSinS(x)) +C,

whose domain of definition is R.
(f) We note first that

fcosz(x)dx :f cos(2x) + 1dx _ sin(2x) + x tC= sin(x) cos(x) + x +C 3

2 4 2 %

where we used that 2 cos?(x) = cos(2x)+1 and sin(2x) = 2sin(x) cos(x) for all x € R.
Moreover, we also have that

J cos™(x)dx = sinxe) costFi(x) i ! J cos™2(x)dx,

m m

for all integers m > 2. This follows immediately from an integration by parts, by taking
u(x) = cos™1(x) and v/(x) = cos(x) (so v(x) = sin(x)) in the integral in the first
member. Hence, by applying this expression to m = 4 as well as (3) we get that

J cos*(x)dx = w + % f cos?(x)dx
_2 sin(x) cos®(x) + 3sin(x) cos(x) + 3x N
8

C’

Analogously, if m = 6 we get that
. 5 E
cos®(x)dx = inelicoibs) + = | cos*(x)dx
6 6
_8sin(x)cos®(x) + 10sin(x) cos®(x) + 15sin(x) cos(x) + 15x .
- 48

C’
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Finally, we conclude that

J sin?(x) cos*(x)dx = f ((cos*(x) — cos®(x))dx

_2 sin(x) cos®(x) + 3 sin(x) cos(x) + 3x
8
__ 8sin(x) cos®(x) + 10sin(x) cos*(x) + 15sin(x) cos(x) + 15x
48

+ C
_ 8 sin(x) cos®(x) + 2sin(x) cos®(x) + 3 sin(x) cos(x) + 3x
48

4 €.

The domain of definition is clearly R.

6. More primitives. Compute the primitives

f x3In(x)dx and J e~ cos(x)dx.

Solution. By doing an integration by parts with u = In(x) et v/ = x", i.e. v = x"/(n + 1),
we get that, if n # —1,

. . x™1((n+1)In(x)—1)
fx In(x)dx = CFSD +C

with domain of definition R.,. On the other hand, using the change of variables u = In(x)
we see that

f de = _Inz(x) +C
2 b

X

with domain of definition R..
Finally,

Je"‘ cos(x)dx = Re (J e"(_“i)dx)

R e(—1+i)x e .
= e( _H)+C—7(S|n(x)—cos(x))+c,

with domain of definition R.

7. Integration and derivatives. Let f : R — R be a continuous function. Prove that

2
the function g defined on R by g(x) = fzxx f(t)dt is differentiable and compute its
derivative.

Solution. Let F : R — R be a primitive of f, which exists since f is continuous. For instance,
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one could take
F(x)=f f(e)de,
0

for x € R. It is clear that g : R — R is given by g(x) = F(x?) — F(2x) for x € R, by Barrow’s
theorem. Since F is differentiable, g is also differentiable, being the sum of compositions
of differentiable functions. Using the chain rule we see that g’(x) = 2xf(x?) — 2f (2x) for
x €R.

8. A special case.
(@) Let f :[a,b] — R be a continuous function. Give a necessary and sufficient

condition on f such that Ifabf(x)dxl = fab If (x)]dx.
(b) Same question for f : [a,b] — C.

Solution.

(a) We have Ifabf(x)dxl = fab |f(x)|dx if and only if f(x) = 0 for all x € [a,b] or
f(x) <0 for all x € [a,b]. Indeed, it is clear that this condition is sufficient, since,
if f(x) = 0 for all x € [a, b], then

b b b
f f)dx| = f f(x)dx=f | ()] dx,

where we used that the integral of a nonnegative function is nonnegative. The case for
nonpositive functions is analogous.

To prove the converse, recall first that if the integral of a continuous function
g : [a,b] — Ry, is zero, then g(x) = 0 for all x € [a, b]. Indeed, assume that there
exist ¢ in [a, b] such that f(c) > 0. Let m = f(c)/2 > 0. Since g is continuous, there
exists & > 0 such that f(x) > m > 0 for all x € [c—&,c + 6]. Then,

b c—6 c+6 b c+6
0= f g(x)dx = J g(x)dx+f g(x)dx+f g(x)dx > f g(x)dx =26m >0,

—& c—6
which is absurd.

Recall now that given any real (continuous) function f : [a,b] — R, there exist
(continuous) functions f. : [a,b] — Ry, such that f(x) = f.(x) — f_(x) for all
x € [a,b], and f.(x) = 0 if £f(x) < 0. Indeed, define f,(x) = max(f(x),0) and
f(x)=—¢€(f(x),0) for x € [a,b]. LetA, = fﬂb f+(x)dx. Note that A, > 0, since the
integral of a nonnegative function is nonnegative. Then,

b b b
f b f £ () J f ()dx
d

an
b b b b
f | ()| dx = f FLG)+ f(x))dx = f fulo)dx + f f0)dx =A, +A.,

b
= f (f+(x)_f7(x))dx = =|A,—A_|

since |f(x)] = f(x) + f_(x) for all x € [a,b]. The only possible solution to
A, —A_| =A, +A_with A, > 0isA, = 0 or A_ = 0. By the comment in the pre-
vious paragraph, this implies f, (x) =0 for all x € [a, b] or f_(x) =0 for all x € [a, b],
respectively, which is tantamount to f(x) = 0 for all x € [a,b] or f(x) < 0 for all
x €[a,b].

8/9



MAT332 - Series and integration — Fall term — 2022-2023 Exercise sheet 4

®)

Recall that given any (continuous) function f : [a,b] — C, there exist (continuous)
functions u, v : [a, b] — R such that f (x) = u(x) + iv(x) for all x € [a, b]. Moreover,

9. Primitive of exponentials.

(@)

)

Prove that a primitive of the function defined on R given by x — P(x)e®*,
where P € R[X] is a polynomial and a € R is of the form x — Q(x)e™ + C
where Q € R[X] is a polynomial and C € R is a constant.

Prove that a primitive of the function defined on R given by x — P(x) cos(ax),
where P € R[X] is a polynomial and a € R is a real function of the form
x = Qq(x)cos(ax)+Q,(x)sin(ax)+C where Q,Q, € R[X] are polynomials
and C € R is a constant.

Solution.

(@)

)

We can prove the result by induction on the degree of P. If deg(P) < 0,then P =c € R
and we set Q(x) = c/a. Assume the statement holds for every polynomial P of de-
gree strictly less than d € N. We will prove it for the case P has degree d. Since
(Q(x)e™ + C)Y = (Q'(x) + aQ(x))e®, it suffices to show that there exists a polyno-
mial Q € R[X] such that Q'(x) + aQ(x) = P(x). Let P = cx? + P, with ¢ # 0 and P of
degree strictly less than d. Set R = cx?/a. It is clear that R’ + aR — P is a polynomial
of degree strictly less than d. By the inductive assumption, there exists a polynomial T
such that T’ +aT =R’ + aR—P. Hence Q = R — T satisfies the required property.

The same argument as the one given in the previous item applies mutatis mutandi in
this case.
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