
MAT332 - SERIES AND INTEGRATION
Fall term — 2022-2023

Exercise sheet 4: Riemann integrals

1. Riemann sums.
(a) Prove that the sequence (un)n∈N0

whose general term is

un =
n
∑

k=1

n+ k
n2 + k2

is a sequence of Riemann sums which converges and compute its limit.

(b) Compute the limit when n tends to +∞ of
∑2n

k=n+1 1/k.
(c) For which real number α is the sequence (vn)n∈N0

with general term

vn =
1
n2

n
∑

k=1

kα sin(k/n)

a sequence of Riemann sums? What is its limit ? What about the other values
of α in ]− 1,+∞[?

(d) Using Riemann sums, prove the equivalences

n
∑

k=1

kα ∼
1

α+ 1
nα+1 for α > 0, and

2n
∑

k=n+1

ln(k)∼ n ln(n)

when n tends to +∞.

Solution.

(a) It is clear that

Sn =
n
∑

k=1

n+ k
n2 + k2

=
n
∑

k=1

1
n

1+ k/n
1+ (k/n)2

coincides with a Riemann sum associated with the map f : [0,1] → R given by
f (x) = (1+ x)/(1+ x2) for the partition {x j = j/n : j ∈ ¹0, nº} of the interval [0, 1].
In consequence,

lim
n→+∞

Sn =

∫ 1

0

1+ x
1+ x2

d x =
�

arctan(x) +
ln(1+ x2)

2

�1

0
=
π+ ln(4)

4
.

(b) It is clear that

Sn =
2n
∑

k=n+1

1
k
=

n
∑

k=1

1
k+ n

=
n
∑

k=1

1
n

1
1+ k/n

is a Riemann sum of the map f : [0, 1] → R given by f (x) = 1/x for the partition
{x j = 1+ j/n : j ∈ {0, . . . , n}} of the interval [1,2]. In consequence,

lim
n→+∞

Sn =

∫ 2

1

1
x

d x =
�

ln(x)
�2

1
= ln(2).
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(c) It is clear that

vn =
1
n2

n
∑

k=1

kα sin(k/n) = nα−1
n
∑

k=1

1
n

�

k
n

�α

sin(k/n)

is the product of nα−1 by a Riemann sum of the map f : [0,1] → R given by
f (x) = xα sin(x) for the partition {x j = j/n : j ∈ {0, . . . , n}} of the interval [0, 1].
In consequence,

lim
n→+∞

vn

nα−1
=

∫ 1

0

xα sin(x)d x .

If α > 1, we thus conclude that vn goes to +∞ as n goes to +∞. If α= 1, then

lim
n→+∞

vn =

∫ 1

0

x sin(x)d x =
�

sin(x)− x cos(x)
�2

1
= sin(1)− cos(1).

Finally, if −1 ≥ α < 1, then the integral
∫ 1

0
xα sin(x)d x is finite and we thus conclude

that vn goes to 0 as n goes to +∞.

(d) Assume α > 0. Note that

Sn =
n
∑

k=1

1
n

�

k
n

�α

is a Riemann sum of the map f : [0,1] → R given by f (x) = xα for the partition
{x j = j/n : j ∈ {0, . . . , n}} of the interval [0,1]. In consequence,

lim
n→+∞

Sn =

∫ 1

0

xαd x =
�

xα+1

α+ 1

�1

0
=

1
α+ 1

,

which immediately implies that
∑n

k=1 kα ∼ nα+1/(α+ 1) as n goes to +∞.
On the other hand, note that

Sn =
n
∑

j=1

1
n
ln

�

1+
j
n

�

=

�∑n
j=1 ln( j + n)

�

− n ln(n)

n

is a Riemann sum of the map f : [0,1]→ R given by f (x) = ln(1+ x) for the partition
{x j = j/n : j ∈ {0, . . . , n}} of the interval [0,1]. In consequence,

lim
n→+∞

Sn =

∫ 1

0

ln(1+ x)d x =
�

(1+ x) ln(1+ x)− x
�1

0
= ln(4)− 1.

This implies that

lim
n→+∞

∑2n
k=n+1 ln(k)

n ln(n)
− 1= lim

n→+∞

Sn

ln(n)
= 0,

which tells us that
∑2n

k=n+1 ln(k)∼ n ln(n) as n goes to +∞.

2. Primitives. Consider the following integrals :

2/9



MAT332 - Series and integration — Fall term — 2022-2023 Exercise sheet 4

(a)
∫ b

a tnd t, with n ∈ N0,

(b)
∫ b

a P(t)d t, with P a polynomial of
degree d,

(c)
∫ b

a eαt d t, with α ∈ C,

(d)
∫ b

a

p
td t,

(e)
∫ b

a 1/
p

td t,

(f)
∫ b

a t1/3d t,

(g)
∫ b

a 1/(1+ t2)d t.

For each of them find [a, b] such that the function is Riemann integrable on
[a, b] and compute the integral on the interval.

Solution.

(a) For any interval [a, b] ⊆ R we have that

∫ b

a

tnd t =
�

tn+1

n+ 1

�b

a
=

bn+1 − an+1

n+ 1
,

for n ∈ N.

(b) Assume that P =
∑d

i=0 ai t
i , with ad 6= 0. For any interval [a, b] ⊆ R we have that

∫ b

a

P(t)d t =
d
∑

i=0

ai

∫ b

a

t i d t =
d
∑

i=0

ai

�

t i+1

i + 1

�b

a
=

d
∑

i=0

ai
bi+1 − ai+1

i + 1
.

(c) If α = 0, eαt = 1 and this case is already included in the first item for n = 0. Assume
that α 6= 0. For any interval [a, b] ⊆ R we have that

∫ b

a

eαt d t =
�

eαt

α

�b

a
=

eαb − eαa

α
.

(d) For any interval [a, b] ⊆ R≥0 we have that

∫ b

a

p
td t =

�

2t3/2

3

�b

a
= 2

b3/2 − a3/2

3
.

(e) For any interval [a, b] ⊆ R>0 we have that

∫ b

a

d t
p

t
=
�

2
p

t
�b

a
= 2

�
p

b−
p

a
�

.

(f) For any interval [a, b] ⊆ R we have that

∫ b

a

3ptd t =
�

3
t4/3

4

�b

a
= 3

b4/3 − a4/3

4
.

(g) For any interval [a, b] ⊆ R we have that

∫ b

a

1
1+ t2

d t =
�

arctan(t)
�b

a
= arctan(b)− arctan(a).

3. Primitives of rational functions. Compute the following primitives
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(a)
∫

x3/(x2 + 1)d x ,

(b)
∫

d x/(x(1+ x)2),
(c)

∫

d x/(4x2 − 3x + 2)
(d)

∫

x2/(x4 − 1)d x ,

(e)
∫

d x/(49− 4x2),

(f)
∫

(5x − 12)/(x(x − 4))d x ,

(g)
∫

(x − 1)/(x2 + x + 1)d x .

Solution. In the following, C ∈ R will denote a general real constant.

(a) It is clear that
∫

x3d x
x2 + 1

=

∫

xd x −
xd x

x2 + 1
=

x2

2
−
ln(x2 + 1)

2
+ C ,

whose domain of definition is R.
(b) It is clear that

∫

d x
x(1+ x)2

=

∫

�

1
x
−

1
x + 1

−
1

(x + 1)2

�

d x = ln(|x |)− ln(|x + 1|) +
1

(x + 1)
+ C ,

whose domain of definition is R \ {0,−1}.
(c) It is clear that

∫

d x
4x2 − 3x + 2

=
1
4

∫

d x

(x − 3
8 )2 +

23
64

=
2arctan

�

8x−3p
23

�

p
23

+ C ,

whose domain of definition is R.
(d) It is clear that

∫

x2d x
x4 − 1

=

∫

�

1
2(x2 + 1)

−
1

4(x + 1)
+

1
4(x − 1)

�

d x

=
1
4

�

ln(|x − 1|)− ln(|x + 1|) + 2arctan(x)
�

+ C ,

whose domain of definition is R \ {±1}.
(e) It is clear that

∫

d x
49− 4x2

=
1

28

∫

�

1
7+ 2x

+
1

7− 2x

�

d x =
1

28
ln

�

�

�

�

�

2x + 7
2x − 7

�

�

�

�

�

+ C ,

whose domain of definition is R \ {±7/2}.
(f) It is clear that

∫

(5x − 12)d x
x(x − 4)

=

∫

�

3
x
+

2
x − 4

�

d x = 3 ln(|x |) + 2 ln(|x − 4|) + C ,

whose domain of definition is R \ {0,4}.
(g) It is clear that

∫

(x − 1)d x
x2 + x + 1

=

∫

�

2x + 1
2(x2 + x + 1)

−
3

2(x2 + x + 1)

�

d x

=

∫

�

2x + 1
2(x2 + x + 1)

−
6

(2x + 1)2 + 3

�

d x

=
1
2

�

ln(x2 + x + 1)− 2
p

3arctan
�

2x + 1
p

3

��

+ C ,

whose domain of definition is R.
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4. Change of variables. Give primitives for the functions
p

x2 + 1,
p

x2 − 1 andp
1− x2 using the change of variables x = sinh(u), x = cosh(u) or x = sin(u).

Solution. We just give the corresponding integrals and let the reader verify that they are
correct :

∫

p

1+ x2d x =
1
2

�

x
p

1+ x2 + argsinh(x)
�

+ C ,

∫

p

x2 − 1d x =
1
2

�

x
p

x2 − 1− ln
�

x +
p

x2 − 1
�

�

+ C ,

∫

p

1− x2d x =
1
2

�

x
p

1− x2 + arcsin(x)
�

+ C ,

where C ∈ R is a real general constant.

5. Primitives of fonctions of trigonametric functions. Compute the following primi-
tives

(a)
∫

sin3(x)d x ,

(b)
∫

sin(x)/(2+ cos2(x))d x ,

(c)
∫

d x/(1+ sin2(x)),

(d)
∫

sin(x/2)cos(x/3)d x ,

(e)
∫

sin2(x)cos3(x)d x ,

(f)
∫

sin2(x)cos4(x)d x .

Solution. Assume that m is an odd positive integer of the form m = 2m′ + 1 with m′ ∈ N0.
Then,

∫

cosm(x) sinn(x)d x =

∫

cos2m′(x) sinn(x)cos(x)d x =

∫

�

1− sin2(x)
�m′

sinn(x)cos(x)d x

=
m′
∑

k=0

(−1)k
�

m′

k

�

∫

sinn+2k(x)cos(x)d x =
m′
∑

k=0

(−1)k
�

m′

k

�

sinn+2k+1(x)
n+ 2k+ 1

.

(1)

In a similar way, if n is an odd positive integer of the form n= 2n′ + 1 with n′ ∈ N, we have

∫

cosm(x) sinn(x)d x =

∫

cosm(x) sin2n′(x) sin(x)d x =

∫

�

1− cos2(x)
�n′

cosm(x) sin(x)d x

=
n′
∑

k=0

(−1)k
�

n′

k

�

∫

cosm+2k(x) sin(x)d x =
n′
∑

k=0

(−1)k+1
�

n′

k

�

cosm+2k+1(x)
m+ 2k+ 1

.

(2)

In the following, C ∈ R will denote a general real constant.

(a) Using (2) we see that
∫

sin3(x)d x =
1
3

�

cos3(x)− 3cos(x)
�

+ C ,

whose domain of definition is R.
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(b) Using the change of variables y = cos(x)/
p

2, so d y = − sin(x)d x/
p

2, we see that
∫

sin(x)
2+ cos2(x)

d x = −
1
p

2

∫

d y
1+ y2

= −
arctan(cos(x)/

p
2)

p
2

+ C ,

whose domain of definition is R.
(c) Using the change of variables y = tan(x), then sin2(x) = y2/(1 + y2) and

d x = d y/(1+ y2). This tells us that
∫

1

1+ sin2(x)
d x =

∫

1
1+ 2y2

d y =
1
p

2
arctan(

p
2y) + C

=
1
p

2
arctan

�p
2 tan(x)

�

+ C ,

whose domain of definition is ] −π/2,π/2 [ .
(d) It is direct to see that
∫

sin

�

x
2

�

cos

�

x
3

�

d x =

∫

�

sin

�

x
6

�

+sin
�

5x
6

��

d x
2
= −

3
5

�

5cos
�

x
6

�

+cos
�

5x
6

��

+C ,

whose domain of definition is R, where we have used the identity

sin(α)cos(β) =
�

sin(α− β) + sin(α+ β)
�

/2.

(e) Using (1) we see immediately that
∫

sin2(x)cos3(x)d x =
1
15

�

5 sin3(x)− 3 sin5(x)
�

+ C ,

whose domain of definition is R.
(f) We note first that

∫

cos2(x)d x =

∫

cos(2x) + 1
2

d x =
sin(2x)

4
+

x
2
+ C =

sin(x)cos(x) + x
2

+ C , (3)

where we used that 2cos2(x) = cos(2x)+1 and sin(2x) = 2 sin(x)cos(x) for all x ∈ R.
Moreover, we also have that
∫

cosm(x)d x =
sin(x)cosm−1(x)

m
+

m− 1
m

∫

cosm−2(x)d x ,

for all integers m≥ 2. This follows immediately from an integration by parts, by taking
u(x) = cosm−1(x) and v′(x) = cos(x) (so v(x) = sin(x)) in the integral in the first
member. Hence, by applying this expression to m= 4 as well as (3) we get that
∫

cos4(x)d x =
sin(x)cos3(x)

4
+

3
4

∫

cos2(x)d x

=
2 sin(x)cos3(x) + 3 sin(x)cos(x) + 3x

8
+ C ,

Analogously, if m= 6 we get that
∫

cos6(x)d x =
sin(x)cos5(x)

6
+

5
6

∫

cos4(x)d x

=
8 sin(x)cos5(x) + 10 sin(x)cos3(x) + 15 sin(x)cos(x) + 15x

48
+ C ,
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Finally, we conclude that
∫

sin2(x)cos4(x)d x =

∫

�

cos4(x)− cos6(x)
�

d x

=
2 sin(x)cos3(x) + 3 sin(x)cos(x) + 3x

8

−
8 sin(x)cos5(x) + 10 sin(x)cos3(x) + 15 sin(x)cos(x) + 15x

48
+ C

=
−8 sin(x)cos5(x) + 2 sin(x)cos3(x) + 3 sin(x)cos(x) + 3x

48
+ C .

The domain of definition is clearly R.

6. More primitives. Compute the primitives
∫

x3 ln(x)d x and

∫

e−x cos(x)d x .

Solution. By doing an integration by parts with u = ln(x) et v′ = xn, i.e. v = xn+1/(n+ 1),
we get that, if n 6= −1,

∫

xn ln(x)d x =
xn+1

�

(n+ 1) ln(x)− 1
�

(n+ 1)2
+ C ,

with domain of definition R>0. On the other hand, using the change of variables u = ln(x)
we see that

∫

ln(x)
x

d x =
ln2(x)

2
+ C ,

with domain of definition R>0.
Finally,
∫

e−x cos(x)d x = Re

�

∫

ex(−1+i)d x
�

= Re

�

e(−1+i)x

−1+ i

�

+ C =
e−x

2

�

sin(x)− cos(x)
�

+ C ,

with domain of definition R.

7. Integration and derivatives. Let f : R→ R be a continuous function. Prove that

the function g defined on R by g(x) =
∫ x2

2x f (t)d t is differentiable and compute its
derivative.

Solution. Let F : R→ R be a primitive of f , which exists since f is continuous. For instance,
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one could take

F(x) =

∫ x

0

f (t)d t,

for x ∈ R. It is clear that g : R→ R is given by g(x) = F(x2)− F(2x) for x ∈ R, by Barrow’s
theorem. Since F is differentiable, g is also differentiable, being the sum of compositions
of differentiable functions. Using the chain rule we see that g ′(x) = 2x f (x2)− 2 f (2x) for
x ∈ R.

8. A special case.
(a) Let f : [a, b] → R be a continuous function. Give a necessary and sufficient

condition on f such that |
∫ b

a f (x)d x |=
∫ b

a | f (x)|d x .
(b) Same question for f : [a, b]→ C.

Solution.
(a) We have |

∫ b

a
f (x)d x | =

∫ b

a
| f (x)|d x if and only if f (x) ≥ 0 for all x ∈ [a, b] or

f (x) ≤ 0 for all x ∈ [a, b]. Indeed, it is clear that this condition is sufficient, since,
if f (x)≥ 0 for all x ∈ [a, b], then
�

�

�

�

∫ b

a

f (x)d x

�

�

�

�

=

∫ b

a

f (x)d x =

∫ b

a

�

� f (x)
�

�d x ,

where we used that the integral of a nonnegative function is nonnegative. The case for
nonpositive functions is analogous.

To prove the converse, recall first that if the integral of a continuous function
g : [a, b] → R≥0 is zero, then g(x) = 0 for all x ∈ [a, b]. Indeed, assume that there
exist c in [a, b] such that f (c) > 0. Let m = f (c)/2 > 0. Since g is continuous, there
exists δ > 0 such that f (x)≥ m> 0 for all x ∈ [c −δ, c +δ]. Then,

0=

∫ b

a

g(x)d x =

∫ c−δ

a

g(x)d x+

∫ c+δ

c−δ
g(x)d x+

∫ b

c

g(x)d x ≥
∫ c+δ

c−δ
g(x)d x ≥ 2δm> 0,

which is absurd.
Recall now that given any real (continuous) function f : [a, b] → R, there exist

(continuous) functions f± : [a, b] → R≥0 such that f (x) = f+(x) − f−(x) for all
x ∈ [a, b], and f±(x) = 0 if ± f (x) ≤ 0. Indeed, define f+(x) = max( f (x), 0) and

f−(x) = − ∈ ( f (x), 0) for x ∈ [a, b]. Let A± =
∫ b

a
f±(x)d x . Note that A± ≥ 0, since the

integral of a nonnegative function is nonnegative. Then,
�

�

�

�

∫ b

a

f (x)d x

�

�

�

�

=

�

�

�

�

∫ b

a

�

f+(x)− f−(x)
�

d x

�

�

�

�

=

�

�

�

�

∫ b

a

f+(x)d x −
∫ b

a

f−(x)d x

�

�

�

�

= |A+ − A−|

and
∫ b

a

�

� f (x)
�

�d x =

∫ b

a

f
�

+(x) + f−(x)
�

d x =

∫ b

a

f+(x)d x +

∫ b

a

f−(x)d x = A+ + A−,

since | f (x)| = fx (x) + f−(x) for all x ∈ [a, b]. The only possible solution to
|A+ − A−| = A+ + A− with A± ≥ 0 is A+ = 0 or A− = 0. By the comment in the pre-
vious paragraph, this implies f+(x) = 0 for all x ∈ [a, b] or f−(x) = 0 for all x ∈ [a, b],
respectively, which is tantamount to f (x) ≥ 0 for all x ∈ [a, b] or f (x) ≤ 0 for all
x ∈ [a, b].
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(b) Recall that given any (continuous) function f : [a, b] → C, there exist (continuous)
functions u, v : [a, b]→ R such that f (x) = u(x) + iv(x) for all x ∈ [a, b]. Moreover,

9. Primitive of exponentials.

(a) Prove that a primitive of the function defined on R given by x 7→ P(x)eax ,
where P ∈ R[X ] is a polynomial and a ∈ R is of the form x 7→ Q(x)eax + C
where Q ∈ R[X ] is a polynomial and C ∈ R is a constant.

(b) Prove that a primitive of the function defined onR given by x 7→ P(x)cos(αx),
where P ∈ R[X ] is a polynomial and α ∈ R is a real function of the form
x 7→Q1(x)cos(αx)+Q2(x) sin(αx)+C where Q1,Q2 ∈ R[X ] are polynomials
and C ∈ R is a constant.

Solution.

(a) We can prove the result by induction on the degree of P. If deg(P)≤ 0, then P = c ∈ R
and we set Q(x) = c/a. Assume the statement holds for every polynomial P of de-
gree strictly less than d ∈ N. We will prove it for the case P has degree d. Since
(Q(x)eax + C)′ = (Q′(x) + aQ(x))eax , it suffices to show that there exists a polyno-
mial Q ∈ R[X ] such that Q′(x) + aQ(x) = P(x). Let P = cx d + P̄, with c 6= 0 and P̄ of
degree strictly less than d. Set R = cx d/a. It is clear that R′ + aR− P is a polynomial
of degree strictly less than d. By the inductive assumption, there exists a polynomial T
such that T ′ + aT = R′ + aR− P. Hence Q = R− T satisfies the required property.

(b) The same argument as the one given in the previous item applies mutatis mutandi in
this case.
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