MAT332

Fall 2021

Final examination - December 2023

Unjustified answers will be automatically excluded.

The grading is only approximate.

1. *Questions about the lectures.*

- (*a*) Define the notion of convergence and absolute convergence of a series. Prove that an absolutely convergent series of real numbers is convergent.
- (b) State the Leibniz criterion for the convergence of an alternating series.
- (c) State the fundamental theorem of calculus for a continuous function.

Solution.

4pt

(a) Given a sequence $(a_n)_{n \in \mathbb{N}_0}$ of real numbers, the associated series $\sum_{n=0}^{+\infty} a_n$ is convergent if the sequence $(s_N)_{N \in \mathbb{N}_0}$ converges in \mathbb{R} , where $s_N = \sum_{n=0}^{N} a_n$ for all $N \in \mathbb{N}_0$. We say that the series $\sum_{n=0}^{+\infty} a_n$ is absolutely convergent if the series $\sum_{n=0}^{+\infty} |a_n|$ is convergent.

We will now prove that an absolutely convergent series $\sum_{n=0}^{+\infty} a_n$ is convergent. Due to the completeness of \mathbb{R} , it suffices to prove that $(s_N)_{N \in \mathbb{N}_0}$ is a Cauchy sequence. Let $(s_N^+)_{N \in \mathbb{N}_0}$ be the sequence given by $s_N^+ = \sum_{n=0}^{N} |a_n|$ for all $N \in \mathbb{N}_0$. Since $\sum_{n=0}^{+\infty} a_n$ is absolutely convergent, then $(s_N^+)_{N \in \mathbb{N}_0}$ is convergent, so in particular it is a Cauchy sequence, *i.e.* given $\epsilon > 0$, there exists $N_0 \in \mathbb{N}_0$ such that $|s_N^+ - s_M^+| \le \epsilon$ for all integers $N \ge M \ge n_0$. By the triangle inequality for the absolute value we have then

$$|s_N - s_M| = \left|\sum_{n=M+1}^N a_n\right| \le \sum_{n=M+1}^N |a_n| = s_N^+ - s_M^+ = |s_N^+ - s_M^+| \le \epsilon$$

for all integers $N \ge M \ge n_0$. This tells us that $(s_N)_{N \in \mathbb{N}_0}$ is a Cauchy sequence, as claimed.

- (b) The Leibniz criterion for the convergence of an alternating series states that, given a sequence $(a_n)_{n \in \mathbb{N}_0}$ of nonnegative real numbers that is decreasing and converges to zero, the series $\sum_{n=0}^{+\infty} (-1)^n a_n$ is convergent.
- (c) The fundamental theorem of calculus for a continuous function $f : [a, b] \to \mathbb{R}$, where a < b are real numbers, states that there exists a continuous function $F : [a, b] \to \mathbb{R}$ that is differentiable on]a, b[, called a **primitive** of f, and moreover, for any primitive F of f we have that

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

 $+\infty$

4pt

2. Determine if the following series are convergent or divergent :

(a)
$$\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n}\right),$$

(b) $\sum_{n=1}^{+\infty} (-1)^n \ln\left(1+\frac{1}{n}\right),$
(c) $\sum_{n=1}^{+\infty} \frac{\ln\left(1+\frac{1}{n}\right)}{n^{\alpha}}, \text{ for } \alpha > 0,$
(e) $\sum_{n=1}^{+\infty} \frac{n!}{n^n}.$

Solution.

n

(a) Note first that $\ln(1+1/n) > 0$ for all $n \in \mathbb{N}$. Moreover, notice that

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \ln'(1) = 1,$$

by definition of derivative, which implies that

$$\lim_{n \to +\infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = 1.$$
(1)

Hence $\ln(1+1/n) \sim 1/n$ as n goes to $+\infty$, and since $\sum_{n=1}^{+\infty} 1/n$ is divergent, $\sum_{n=1}^{+\infty} \ln(1+1/n)$ is also divergent.

- (b) Since the logarithm function is increasing and (1/n)_{n∈N} is a decreasing sequence, (ln(1 + 1/n))_{n∈N} is a decreasing sequence. Fruthermore, since the logarithm is continuous and (1/n)_{n∈N} converges to zero, (ln(1 + 1/n))_{n∈N} converges to ln(1) = 0. By the Leibniz criterion recalled in the first exercise, the series ∑^{+∞}_{n=1}(-1)ⁿ ln(1 + 1/n) is convergent.
- (c) Note first that $\ln(1+1/n)/n^{\alpha} > 0$ for all $n \in \mathbb{N}$. Using (1), we see that

$$\lim_{n \to +\infty} \frac{\frac{\ln\left(1+\frac{1}{n}\right)}{n^{\alpha}}}{\frac{1}{n^{1+\alpha}}} = 1,$$

so $\ln(1+1/n)/n^{\alpha} \sim 1/n^{1+\alpha}$ as n goes to $+\infty$. Since $\sum_{n=1}^{+\infty} 1/n^s$ is convergent if and only if s > 1, $\sum_{n=1}^{+\infty} \ln(1+1/n)/n^{\alpha}$ is convergent for all $\alpha > 0$.

(*d*) Note that $2^{-n^2} > 0$ for all $n \in \mathbb{N}$. Moreover,

$$\sqrt[n]{2^{-n^2}} = 2^{-\frac{n^2}{n}} = 2^{-n}$$

converges to 0 as *n* goes to $+\infty$. The root test tells us then that the series $\sum_{n=1}^{+\infty} 2^{-n^2}$ converges.

(e) Note that $n!/n^n > 0$ for all $n \in \mathbb{N}$. Moreover,

$$\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(1+\frac{1}{n}\right)^n}$$

converges to $e^{-1} < 1$ as *n* goes to $+\infty$. The ratio test tells us then that the series $\sum_{n=1}^{+\infty} n!/n^n$ converges.

3. Given $n \in \mathbb{N}_0$, set

4pt

$$a_n = \int_0^1 \left(\frac{1+x^2}{2}\right)^n dx.$$

(*a*) Prove that

$$\int_{0}^{1} x \left(\frac{1+x^{2}}{2}\right)^{n} dx \le a_{n} \le \int_{0}^{1} \left(\frac{1+x}{2}\right)^{n} dx$$

for all $n \in \mathbb{N}_0$.

- (b) Determine the nature of $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} (-1)^n a_n$. (c) Compute the value $\sum_{n=0}^{\infty} (-1)^n a_n$.

Solution.

(a) Since $x^2 \le x \le 1$ for $x \in [0, 1]$, then

$$x\left(\frac{1+x^2}{2}\right)^n \le \left(\frac{1+x^2}{2}\right)^n \le \left(\frac{1+x}{2}\right)^n$$

for $x \in [0, 1]$ and $n \in \mathbb{N}_0$, so the monotonicity of the integral tells that

$$\int_{0}^{1} x \left(\frac{1+x^{2}}{2}\right)^{n} dx \leq \int_{0}^{1} \left(\frac{1+x^{2}}{2}\right)^{n} dx \leq \int_{0}^{1} \left(\frac{1+x}{2}\right)^{n} dx,$$

for all $n \in \mathbb{N}_0$, which gives the desired inequalities.

(*b*) Note that

$$\int_{0}^{1} x \left(\frac{1+x^{2}}{2}\right)^{n} dx = \int_{1/2}^{1} y^{n} dy = \left[\frac{y^{n+1}}{n+1}\right]_{1/2}^{1} = \frac{1-2^{-n-1}}{n+1},$$
(2)

for all $n \in \mathbb{N}_0$, where we used the change of variables $y = (1+x^2)/2$ for $x \in [0, 1]$. Moreover, the series

$$\sum_{n=0}^{+\infty} \frac{1 - 2^{-n-1}}{n+1}$$

is divergent, since the sequence of partial sums

$$\sum_{n=0}^{N} \frac{1 - 2^{-n-1}}{n+1} = \sum_{n=0}^{N} \frac{1}{n+1} - \sum_{n=0}^{N} \frac{1}{2^{n+1}(n+1)}$$

is given by the sum of a divergent sequence and a convergent sequence, as the sequence $(\sum_{m=1}^{M} m^{-1})_{M \in \mathbb{N}}$ is divergent and $(\sum_{m=1}^{M} m^{-1} 2^{-m})_{M \in \mathbb{N}}$ is convergent. The first inequality of the previous item tells us then that

$$\sum_{n=0}^{N} \frac{1 - 2^{-n-1}}{n+1} \le \sum_{n=0}^{N} a_n$$

and since the first sum goes to $+\infty$ as N goes to $+\infty$, so does the second sum. In consequence, the series $\sum_{n=0}^{\infty} a_n$ is divergent. We will show that the series $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergent. To prove this, it suffices to show that $(a_n)_{n \in \mathbb{N}_0}$ is a nonnegative decreasing sequence converging to zero, since the Leibniz criterion tells us then that $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergent. It is clear that $a_0 \ge 0$ for all $n \in \mathbb{N}_0$, since a_n is given as the integral of a nonnegative continuous function over a finite bounded interval. Moreover, since $(1+x^2)/2 \le 1$ for $x \in [0, 1]$, we have that

$$\left(\frac{1+x^2}{2}\right)^{n+1} \le \left(\frac{1+x^2}{2}\right)^n$$

for $x \in [0, 1]$ and $n \in \mathbb{N}_0$. The monotonicity of the integral then implies that

$$a_{n+1} = \int_0^1 \left(\frac{1+x^2}{2}\right)^{n+1} dx \le \int_0^1 \left(\frac{1+x^2}{2}\right)^n dx = a_n$$

for all $n \in \mathbb{N}_0$, so the sequence $(a_n)_{n \in \mathbb{N}_0}$ is decreasing. Finally, the fact that $a_n \ge 0$ for all $n \in \mathbb{N}_0$ and the second inequality of the first item tells us that

$$0 \le a_n \le \int_0^1 \left(\frac{1+x}{2}\right)^n dx = \frac{2-2^{-n}}{n+1}$$

for all $n \in \mathbb{N}_0$, so

$$0 \le \lim_{n \to +\infty} a_n \le \lim_{n \to +\infty} \int_0^1 \left(\frac{1+x}{2}\right)^n dx = \lim_{n \to +\infty} \frac{1-2^{-n-1}}{n+1} = 0$$

which says that $(a_n)_{n \in \mathbb{N}_0}$ converges to zero, as was to be shown. (c) It is clear that

$$\sum_{n=0}^{N} (-1)^{n} a_{n} = \int_{0}^{1} \sum_{n=0}^{N} \left(-\frac{1+x^{2}}{2} \right)^{n} dx = \int_{0}^{1} \frac{1-\left(-\frac{1+x^{2}}{2}\right)^{N+1}}{1-\left(-\frac{1+x^{2}}{2}\right)} dx$$
$$= \int_{0}^{1} \frac{1}{1-\left(-\frac{1+x^{2}}{2}\right)} dx - \int_{0}^{1} \frac{\left(-\frac{1+x^{2}}{2}\right)^{N+1}}{1-\left(-\frac{1+x^{2}}{2}\right)} dx$$
$$= \int_{0}^{1} \frac{2}{3+x^{2}} dx + \frac{(-1)^{N}}{2^{N}} \int_{0}^{1} \frac{(1+x^{2})^{N+1}}{3+x^{2}} dx,$$

for all $N \in \mathbb{N}_0$, where we used the usual identity $\sum_{n=0}^{N} q^n = (1-q^{N+1})/(1-q)$ for all $q \in \mathbb{R} \setminus \{1\}$. Using the change of variables $y = x/\sqrt{3}$ we get that

3

$$\int_{0}^{1} \frac{2}{3+x^{2}} dx = \frac{2}{\sqrt{3}} \int_{0}^{1/\sqrt{3}} \frac{1}{1+y^{2}} dy = \frac{2}{\sqrt{3}} \left[\arctan(y) \right]_{0}^{1/\sqrt{3}}$$
$$= \frac{2}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{3\sqrt{3}}.$$

On the other hand, note that

$$0 \le \left| \frac{(-1)^N}{2^N} \int_0^1 \frac{(1+x^2)^{N+1}}{3+x^2} dx \right| = \frac{1}{2^N} \int_0^1 \frac{(1+x^2)^{N+1}}{3+x^2} dx$$
$$\le \int_0^1 \frac{(1+x^2)^{N+1}}{2^{N+1}} dx \le \int_0^1 \frac{(1+x)^{N+1}}{2^{N+1}} dx = \frac{2-2^{-N-1}}{N+1}$$

for all $N \in \mathbb{N}_0$, where we used that $3 + x^2 \ge 2$ and the last inequality of the first item. Hence

$$\lim_{N \to +\infty} \frac{(-1)^N}{2^N} \int_0^1 \frac{(1+x^2)^{N+1}}{3+x^2} dx = 0$$

and

$$\sum_{n=0}^{+\infty} (-1)^n a_n = \lim_{N \to +\infty} \sum_{n=0}^{N} (-1)^n a_n = \int_0^1 \frac{2}{3+x^2} dx = \frac{\pi}{3\sqrt{3}}$$

4. Consider the function $f : \mathbb{R} \setminus \{0, -1\} \to \mathbb{R}$ given by

$$f(x) = \frac{1}{x(x+1)}$$

for $x \in \mathbb{R} \setminus \{0, -1\}$.

(a) Find A and B in \mathbb{R} such that

$$f(x) = \frac{A}{x} + \frac{B}{x+1}$$

for $x \in \mathbb{R} \setminus \{0, -1\}$.

- (b) Compute $\int_{1}^{2} f(x) dx$.
- (c) Compute

$$\int_{1}^{2} \frac{\ln(1+x)}{x^2} dx.$$

Solution.

(a) It is clear that

$$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$$

for $x \in \mathbb{R} \setminus \{0, -1\}$, *i.e.* $A = -B = 1$

(*b*) We have that

$$\int_{1}^{2} f(x)dx = \int_{1}^{2} \frac{1}{x}dx - \int_{1}^{2} \frac{1}{x+1}dx = \left[\ln\left(|x|\right)\right]_{1}^{2} - \left[\ln\left(|x+1|\right)\right]_{1}^{2}$$
$$= \ln(2) - \ln(3) + \ln(2) = \ln\left(\frac{4}{3}\right).$$

(c) By integrating by parts with $u = \ln(x + 1)$ and v = -1/x (so $v' = 1/x^2$) we see that

$$\int_{1}^{2} \frac{\ln(1+x)}{x^{2}} dx = \left[-\frac{\ln(1+x)}{x} \right]_{1}^{2} + \int_{1}^{2} \frac{1}{(x+1)x} dx$$
$$= -\frac{\ln(3)}{2} + \ln(2) + \ln\left(\frac{4}{3}\right) = \ln\left(\frac{8}{3\sqrt{3}}\right)$$

where we used the value computed in the previous item.

5. Compute the value of the following integrals :

(a)
$$\int_0^{\pi} \sin^2(x) \cos^2(x) dx$$
, (b) $\int_0^{\pi/2} \frac{\sin(x)}{\cos^2(x) + 2\cos(x) + 2} dx$.

Solution.

2pt

(a) Recall that, by using integration by parts twice, we have that

$$\int \sin^n(x)dx = -\frac{\cos(x)\sin^{n-1}(x)}{n} + \frac{n-1}{n}\int \sin^{n-2}(x)dx$$

for all integers $n \ge 2$. In particular, this identity implies that

$$\int_0^{\pi} \sin^2(x) = \left[-\frac{\cos(x)\sin(x)}{2} \right]_0^{\pi} + \frac{1}{2} \int_0^{\pi} dx = \frac{\pi}{2}$$

and

$$\int_0^{\pi} \sin^4(x) = \left[-\frac{\cos(x)\sin^3(x)}{4} \right]_0^{\pi} + \frac{3}{4} \int_0^{\pi} \sin^2(x) dx = \frac{3\pi}{8},$$

where we used the previous identity. Using these equalities together with the Pithagorean identity $\cos^2(x) = 1 - \sin^2(x)$, we see that

$$\int_0^{\pi} \sin^2(x) \cos^2(x) dx = \int_0^{\pi} \left(\sin^2(x) - \sin^4(x) \right) dx = \frac{\pi}{2} - \frac{3\pi}{8} = \frac{\pi}{8}.$$

(b) Note first that

$$\int \frac{\sin(x)}{\cos^2(x) + 2\cos(x) + 2} dx = -\int \frac{1}{y^2 + 2y + 2} dy = -\int \frac{1}{1 + (1 + y)^2} dy$$
$$= -\arctan(1 + y) + C$$
$$= -\arctan(1 + \cos(x)) + C,$$

where we used the change of variable y = cos(x). As a consequence,

$$\int_{0}^{\pi/2} \frac{\sin(x)}{\cos^{2}(x) + 2\cos(x) + 2} dx = \left[-\arctan\left(1 + \cos(x)\right)\right]_{0}^{\pi/2} = -\frac{\pi}{4} + \arctan(2).$$

6. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{1}{1 + x^4 \sin^2(x)}$$

for $x \in \mathbb{R}$.

5pt

- (a) Show that $\int_{-\infty}^{+\infty} f(x) dx$ converges if and only if $\int_{0}^{+\infty} f(x) dx$ converges.
- (b) Given $n \in \mathbb{N}_0$, set

$$I_n = \int_{n\pi}^{(n+1)\pi} f(x) dx.$$

+\infty

Show that $\int_{0}^{+\infty} f(x) dx$ converges if and only if $\sum_{n=0}^{\infty} I_n$ converges.

(*c*) Prove that

$$I_n \le \int_0^{\pi} \frac{dx}{1 + n^4 \pi^4 \sin^2(x)} = 2 \int_0^{\pi/2} \frac{dx}{1 + n^4 \pi^4 \sin^2(x)}$$

for all $n \in \mathbb{N}_0$.

(d) Prove that $\sin(x) \ge 2x/\pi$ for all $x \in [0, \pi/2]$, and deduce that $I_n \le 1/n^2$ for all $n \in \mathbb{N}$. Conclude that $\int_{-\infty}^{+\infty} f(x) dx$ converges.

Solution.

(a) Define $I_A^+ = \int_0^A \frac{1}{1+x^4 \sin^2(x)} dx$ and $I_{-A,B} == \int_{-A}^B \frac{1}{1+x^4 \sin^2(x)} dx$ for all $A, B \in \mathbb{R}_{>0}$. Note that, by doing the change of variables y = -x, we get that

$$I_{A,0} = \int_{-A}^{0} f(x) dx = \int_{-A}^{0} \frac{1}{1 + x^4 \sin^2(x)} dx = \int_{0}^{A} \frac{1}{1 + y^4 \sin^2(y)} dy = I_A^+.$$

As a consequence,

$$I_{A,B} = I_A^+ + I_B^+ \tag{3}$$

for all $A, B \in \mathbb{R}_{>0}$. Recall that $\int_0^{+\infty} f(x) dx$ converges if and only if I_A^+ converges to a real value as A goes to $+\infty$, and $\int_{-\infty}^{+\infty} f(x) dx$ converges if and only if $I_{A,B}$ converges to a real value as A and B go to $+\infty$. It is then clear, by (3), that, if $\int_0^{+\infty} f(x) dx$ converges, then $\int_{-\infty}^{+\infty} f(x) dx$ also converges. Conversely, if $\int_{-\infty}^{+\infty} f(x) dx$ converges, then, since the parameters A and B are independent, the convergence of $I_{A,B}$ implies in particular that of $I_{A,A} = 2I_A^+$ converges as A goes to $+\infty$, so $\int_0^{+\infty} f(x) dx$ converges.

(b) Note first that

$$I_A^+ = I_{\lfloor A \rfloor}^+ + \int_{\lfloor A/\pi \rfloor \pi}^A f(x) dx$$
(4)

for all $A \in \mathbb{R}_{>0}$, where $\lfloor B \rfloor$ denotes the integer part of B > 0. Since f(x) > 0 and f(x) converges to zero as x goes to $+\infty$, we see that, given $\epsilon > 0$, there exists C > 0 such that $0 < f(x) \le \epsilon$ for all x > C. Then,

$$0 \leq \int_{\lfloor A/\pi \rfloor \pi}^{A} f(x) dx \leq \int_{\lfloor A/\pi \rfloor \pi}^{A} \frac{\epsilon}{\pi} dx \leq \epsilon_{2}$$

for all $A > C + \pi$, since $A - \lfloor A/\pi \rfloor \pi \le \pi$. As a consequence,

$$\lim_{A \to +\infty} \int_{\lfloor A/\pi \rfloor \pi}^{A} f(x) dx = 0$$

which tells us that the convergence of I_A as A goes to $+\infty$, *i.e.* the convergence of $\int_0^{+\infty} f(x)dx$, is equivalente to the convergence of $I_{N\pi}^+ = \sum_{n=0}^{N-1} I_n$ as N goes to $+\infty$, *i.e.* the convergence of the series $\sum_{n=0}^{+\infty} I_n$.

(c) Note first that

$$I_n = \int_{n\pi}^{(n+1)\pi} \frac{dy}{1 + y^4 \sin^2(y)} \le \int_{n\pi}^{(n+1)\pi} \frac{dy}{1 + n^4 \pi^4 \sin^2(y)}$$

for all $n \in \mathbb{N}_0$, since $y \ge n\pi$ for $y \in [n\pi, (n+1)\pi]$. Moreover, using the change of variables $x = y + n\pi$ with $x \in [0, \pi]$, and the fact that $\sin(y + n\pi) = \sin(y)$ for $n \in \mathbb{N}_0$, we get that

$$\int_{n\pi}^{(n+1)\pi} \frac{dy}{1 + n^4 \pi^4 \sin^2(y)} = \int_0^{\pi} \frac{dx}{1 + n^4 \pi^4 \sin^2(x)}$$

for all $n \in \mathbb{N}_0$. Finally, note that

$$\int_{0}^{\pi} \frac{dx}{1 + n^{4} \pi^{4} \sin^{2}(x)} = \int_{0}^{\pi/2} \frac{dx}{1 + n^{4} \pi^{4} \sin^{2}(x)} + \int_{\pi/2}^{\pi} \frac{dx}{1 + n^{4} \pi^{4} \sin^{2}(x)}$$
$$= \int_{0}^{\pi/2} \frac{dx}{1 + n^{4} \pi^{4} \sin^{2}(x)} + \int_{0}^{\pi/2} \frac{dz}{1 + n^{4} \pi^{4} \sin^{2}(z)}$$
$$= 2 \int_{0}^{\pi/2} \frac{dx}{1 + n^{4} \pi^{4} \sin^{2}(x)}$$

for all $n \in \mathbb{N}_0$, where we used in the second equality the change of variables $z = \pi - x$ for the second integral. We have thus proved the required inequalities.

(d) To prove the inequality $\sin(x) \ge 2x/\pi$ for $x \in [0, \pi/2]$, recall that the sine function is concave on the interval $[0, \pi]$, since its double derivative $\sin'' = -\sin$ is positive on $]0, \pi[$. By definition of concavity, we have that $\sin(t\pi/2) = \sin((1-t)0+t\pi/2) \ge (1-t)\sin(0)+t\sin(\pi/2) = t$ for all $t \in [0, 1]$, which is tantamount to $\sin(x) \ge 2x/\pi$ for $x \in [0, \pi/2]$, by setting $x = t\pi/2$. Using this inequality and the monotonicity of the integral, we get that

$$I_n \le 2 \int_0^{\pi/2} \frac{dx}{1 + n^4 \pi^4 \sin^2(x)} \le 2 \int_0^{\pi/2} \frac{dx}{1 + n^4 \pi^4 \left(\frac{2x}{\pi}\right)^2} = 2 \int_0^{\pi/2} \frac{dx}{1 + 4n^4 \pi^2 x^2}$$

for all $n \in \mathbb{N}_0$. Using the change of variables $u = 2n^2 \pi x$, we get that

$$2\int_{0}^{\pi/2} \frac{dx}{1+4n^{4}\pi^{2}x^{2}} = \frac{1}{n^{2}\pi} \int_{0}^{n^{2}\pi^{2}} \frac{du}{1+u^{2}} \le \frac{1}{n^{2}\pi} \int_{0}^{+\infty} \frac{du}{1+u^{2}}$$
$$= \frac{1}{n^{2}\pi} \left[\arctan(u) \right]_{0}^{+\infty} = \frac{1}{2n^{2}} \le \frac{1}{n^{2}}$$

for all $n \in \mathbb{N}_0$. We also remark that, since f is positive, $I_n \ge 0$ for all $n \in \mathbb{N}_0$. Hence, $0 \le I_n \le n^{-2}$ for all $n \in \mathbb{N}_0$, which implies that $\sum_{n=0}^{+\infty} I_n$ converges, and by the first two items, the integral $\int_{-\infty}^{+\infty} f(x) dx$ converges.