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MAT332
Fall 2021

Final examination - December 2023

Unjustified answers will be automatically excluded.

The grading is only approximate.

1. Questions about the lectures.4pt

(a) Define the notion of convergence and absolute convergence of a series.
Prove that an absolutely convergent series of real numbers is convergent.

(b) State the Leibniz criterion for the convergence of an alternating series.
(c) State the fundamental theorem of calculus for a continuous function.

Solution.
(a) Given a sequence (an)n∈N0

of real numbers, the associated series
∑+∞

n=0 an is

convergent if the sequence (sN )N∈N0
converges in R, where sN =

∑N
n=0 an for

all N ∈ N0. We say that the series
∑+∞

n=0 an is absolutely convergent if the series
∑+∞

n=0 |an| is convergent.
We will now prove that an absolutely convergent series

∑+∞
n=0 an is

convergent. Due to the completeness of R, it suffices to prove that (sN )N∈N0
is

a Cauchy sequence. Let (s+N )N∈N0
be the sequence given by s+N =

∑N
n=0 |an| for all

N ∈ N0. Since
∑+∞

n=0 an is absolutely convergent, then (s+N )N∈N0
is convergent, so

in particular it is a Cauchy sequence, i.e. given ε > 0, there exists N0 ∈ N0 such
that |s+N − s+M | ≤ ε for all integers N ≥ M ≥ n0. By the triangle inequality for the
absolute value we have then

|sN − sM |=
�

�

�

�

N
∑

n=M+1

an

�

�

�

�

≤
N
∑

n=M+1

|an|= s+N − s+M = |s
+
N − s+M | ≤ ε

for all integers N ≥ M ≥ n0. This tells us that (sN )N∈N0
is a Cauchy sequence, as

claimed.
(b) The Leibniz criterion for the convergence of an alternating series states that, given

a sequence (an)n∈N0
of nonnegative real numbers that is decreasing and converges

to zero, the series
∑+∞

n=0 (−1)nan is convergent.
(c) The fundamental theorem of calculus for a continuous function f : [a, b] → R,

where a < b are real numbers, states that there exists a continuous function F :
[a, b]→ R that is differentiable on ]a, b[, called a primitive of f , and moreover,
for any primitive F of f we have that
∫ b

a

f (x)d x = F(b)− F(a).
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2.4pt Determine if the following series are convergent or divergent :

(a)
+∞
∑

n=1
ln
�

1+ 1
n

�

,

(b)
+∞
∑

n=1
(−1)n ln
�

1+ 1
n

�

,

(c)
+∞
∑

n=1

ln
�

1+ 1
n

�

nα , for α > 0,

(d)
+∞
∑

n=1
2−n2

,

(e)
+∞
∑

n=1

n!
nn .

Solution.
(a) Note first that ln(1+ 1/n)> 0 for all n ∈ N. Moreover, notice that

lim
x→0

ln(1+ x)
x

= ln′(1) = 1,

by definition of derivative,which implies that

lim
n→+∞

ln
�

1+ 1
n

�

1
n

= 1. (1)

Hence ln(1 + 1/n) ∼ 1/n as n goes to +∞, and since
∑+∞

n=1 1/n is divergent,
∑+∞

n=1 ln(1+ 1/n) is also divergent.
(b) Since the logarithm function is increasing and (1/n)n∈N is a decreasing se-

quence, (ln(1+ 1/n))n∈N is a decreasing sequence. Fruthermore, since the loga-
rithm is continuous and (1/n)n∈N converges to zero, (ln(1+ 1/n))n∈N converges
to ln(1) = 0. By the Leibniz criterion recalled in the first exercise, the series
∑+∞

n=1 (−1)n ln(1+ 1/n) is convergent.
(c) Note first that ln(1+ 1/n)/nα > 0 for all n ∈ N. Using (1), we see that

lim
n→+∞

ln
�

1+ 1
n

�

nα

1
n1+α

= 1,

so ln(1+ 1/n)/nα ∼ 1/n1+α as n goes to +∞. Since
∑+∞

n=1 1/ns is convergent if
and only if s > 1,

∑+∞
n=1 ln(1+ 1/n)/nα is convergent for all α > 0.

(d) Note that 2−n2
> 0 for all n ∈ N. Moreover,

n
p

2−n2 = 2−
n2

n = 2−n

converges to 0 as n goes to +∞. The root test tells us then that the series
∑+∞

n=1 2−n2
converges.

(e) Note that n!/nn > 0 for all n ∈ N. Moreover,
(n+1)!
(n+1)n+1

n!
nn

=
�

n
n+ 1

�n

=
1
�

1+ 1
n

�n

converges to e−1 < 1 as n goes to +∞. The ratio test tells us then that the series
∑+∞

n=1 n!/nn converges.
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3.4pt Given n ∈ N0, set

an =

∫ 1

0

�

1+ x2

2

�n

d x .

(a) Prove that
∫ 1

0

x
�

1+ x2

2

�n

d x ≤ an ≤
∫ 1

0

�

1+ x
2

�n

d x

for all n ∈ N0.
(b) Determine the nature of

∑∞
n=0 an and
∑∞

n=0(−1)nan.
(c) Compute the value

∑∞
n=0(−1)nan.

Solution.

(a) Since x2 ≤ x ≤ 1 for x ∈ [0, 1], then

x
�

1+ x2

2

�n

≤
�

1+ x2

2

�n

≤
�

1+ x
2

�n

for x ∈ [0, 1] and n ∈ N0, so the monotonicity of the integral tells that

∫ 1

0

x
�

1+ x2

2

�n

d x ≤
∫ 1

0

�

1+ x2

2

�n

d x ≤
∫ 1

0

�

1+ x
2

�n

d x ,

for all n ∈ N0, which gives the desired inequalities.
(b) Note that
∫ 1

0

x
�

1+ x2

2

�n

d x =

∫ 1

1/2

ynd y =
�

yn+1

n+ 1

�1

1/2
=

1− 2−n−1

n+ 1
, (2)

for all n ∈ N0, where we used the change of variables y = (1+x2)/2 for x ∈ [0, 1].
Moreover, the series

+∞
∑

n=0

1− 2−n−1

n+ 1

is divergent, since the sequence of partial sums

N
∑

n=0

1− 2−n−1

n+ 1
=

N
∑

n=0

1
n+ 1

−
N
∑

n=0

1
2n+1(n+ 1)

is given by the sum of a divergent sequence and a convergent sequence, as the se-
quence (
∑M

m=1 m−1)M∈N is divergent and (
∑M

m=1 m−12−m)M∈N is convergent. The
first inequality of the previous item tells us then that

N
∑

n=0

1− 2−n−1

n+ 1
≤

N
∑

n=0

an
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and since the first sum goes to +∞ as N goes to +∞, so does the second sum.
In consequence, the series

∑∞
n=0 an is divergent.

We will show that the series
∑∞

n=0(−1)nan is convergent. To prove this, it
suffices to show that (an)n∈N0

is a nonnegative decreasing sequence converging
to zero, since the Leibniz criterion tells us then that

∑∞
n=0(−1)nan is convergent. It

is clear that a0 ≥ 0 for all n ∈ N0, since an is given as the integral of a nonnegative
continuous function over a finite bounded interval. Moreover, since (1+x2)/2≤ 1
for x ∈ [0, 1], we have that
�

1+ x2

2

�n+1

≤
�

1+ x2

2

�n

for x ∈ [0, 1] and n ∈ N0. The monotonicity of the integral then implies that

an+1 =

∫ 1

0

�

1+ x2

2

�n+1

d x ≤
∫ 1

0

�

1+ x2

2

�n

d x = an

for all n ∈ N0, so the sequence (an)n∈N0
is decreasing. Finally, the fact that an ≥ 0

for all n ∈ N0 and the second inequality of the first item tells us that

0≤ an ≤
∫ 1

0

�

1+ x
2

�n

d x =
2− 2−n

n+ 1
,

for all n ∈ N0, so

0≤ lim
n→+∞

an ≤ lim
n→+∞

∫ 1

0

�

1+ x
2

�n

d x = lim
n→+∞

1− 2−n−1

n+ 1
= 0,

which says that (an)n∈N0
converges to zero, as was to be shown.

(c) It is clear that

N
∑

n=0

(−1)nan =

∫ 1

0

N
∑

n=0

�

−
1+ x2

2

�n

d x =

∫ 1

0

1−
�

− 1+x2

2

�N+1

1−
�

− 1+x2

2

� d x

=

∫ 1

0

1

1−
�

− 1+x2

2

�d x −
∫ 1

0

�

− 1+x2

2

�N+1

1−
�

− 1+x2

2

�d x

=

∫ 1

0

2
3+ x2

d x +
(−1)N

2N

∫ 1

0

(1+ x2)N+1

3+ x2
d x ,

for all N ∈ N0, where we used the usual identity
∑N

n=0 qn = (1−qN+1)/(1−q) for
all q ∈ R \ {1}. Using the change of variables y = x/

p
3 we get that

∫ 1

0

2
3+ x2

d x =
2
p

3

∫ 1/
p

3

0

1
1+ y2

d y =
2
p

3

�

arctan(y)
�1/
p

3

0

=
2
p

3
arctan

�

1
p

3

�

=
π

3
p

3
.
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On the other hand, note that

0≤
�

�

�

�

(−1)N

2N

∫ 1

0

(1+ x2)N+1

3+ x2
d x

�

�

�

�

=
1

2N

∫ 1

0

(1+ x2)N+1

3+ x2
d x

≤
∫ 1

0

(1+ x2)N+1

2N+1
d x ≤
∫ 1

0

(1+ x)N+1

2N+1
d x =

2− 2−N−1

N + 1

for all N ∈ N0, where we used that 3+ x2 ≥ 2 and the last inequality of the first
item. Hence

lim
N→+∞

(−1)N

2N

∫ 1

0

(1+ x2)N+1

3+ x2
d x = 0

and

+∞
∑

n=0

(−1)nan = lim
N→+∞

N
∑

n=0

(−1)nan =

∫ 1

0

2
3+ x2

d x =
π

3
p

3
.

4.3pt Consider the function f : R \ {0,−1} → R given by

f (x) =
1

x(x + 1)

for x ∈ R \ {0,−1}.
(a) Find A and B in R such that

f (x) =
A
x
+

B
x + 1

for x ∈ R \ {0,−1}.
(b) Compute
∫ 2

1 f (x)d x .
(c) Compute

∫ 2

1

ln(1+ x)
x2

d x .

Solution.

(a) It is clear that

1
x(x + 1)

=
1
x
−

1
x + 1

for x ∈ R \ {0,−1}, i.e. A= −B = 1.
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(b) We have that

∫ 2

1

f (x)d x =

∫ 2

1

1
x

d x −
∫ 2

1

1
x + 1

d x =
�

ln
�

|x |
�

�2

1
−
�

ln
�

|x + 1|
�

�2

1

= ln(2)− ln(3) + ln(2) = ln

�

4
3

�

.

(c) By integrating by parts with u = ln(x + 1) and v = −1/x (so v′ = 1/x2) we see
that
∫ 2

1

ln(1+ x)
x2

d x =
�

−
ln(1+ x)

x

�2

1
+

∫ 2

1

1
(x + 1)x

d x

= −
ln(3)

2
+ ln(2) + ln

�

4
3

�

= ln

�

8

3
p

3

�

,

where we used the value computed in the previous item.

5.2pt Compute the value of the following integrals :

(a)
∫ π

0 sin2(x)cos2(x)d x , (b)
∫ π/2

0
sin(x)

cos2(x)+2cos(x)+2 d x .

Solution.

(a) Recall that, by using integration by parts twice, we have that
∫

sinn(x)d x = −
cos(x) sinn−1(x)

n
+

n− 1
n

∫

sinn−2(x)d x

for all integers n≥ 2. In particular, this identity implies that
∫ π

0

sin2(x) =
�

−
cos(x) sin(x)

2

�π

0
+

1
2

∫ π

0

d x =
π

2

and
∫ π

0

sin4(x) =
�

−
cos(x) sin3(x)

4

�π

0
+

3
4

∫ π

0

sin2(x)d x =
3π
8

,

where we used the previous identity. Using these equalities together with the
Pithagorean identity cos2(x) = 1− sin2(x), we see that
∫ π

0

sin2(x)cos2(x)d x =

∫ π

0

�

sin2(x)− sin4(x)
�

d x =
π

2
−

3π
8
=
π

8
.
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(b) Note first that
∫

sin(x)
cos2(x) + 2cos(x) + 2

d x = −
∫

1
y2 + 2y + 2

d y = −
∫

1
1+ (1+ y)2

d y

= −arctan(1+ y) + C

= −arctan
�

1+ cos(x)
�

+ C ,

where we used the change of variable y = cos(x). As a consequence,

∫ π/2

0

sin(x)
cos2(x) + 2cos(x) + 2

d x =
�

−arctan
�

1+cos(x)
�

�π/2

0
= −
π

4
+arctan(2).

6.5pt Consider the function f : R→ R given by

f (x) =
1

1+ x4 sin2(x)

for x ∈ R.

(a) Show that
+∞
∫

−∞
f (x)d x converges if and only if

+∞
∫

0
f (x)d x converges.

(b) Given n ∈ N0, set

In =

∫ (n+1)π

nπ
f (x)d x .

Show that
+∞
∫

0
f (x)d x converges if and only if

∞
∑

n=0
In converges.

(c) Prove that

In ≤
∫ π

0

d x

1+ n4π4 sin2(x)
= 2

∫ π/2

0

d x

1+ n4π4 sin2(x)

for all n ∈ N0.
(d) Prove that sin(x) ≥ 2x/π for all x ∈ [0,π/2], and deduce that In ≤ 1/n2

for all n ∈ N. Conclude that
+∞
∫

−∞
f (x)d x converges.

Solution.

(a) Define I+A =
∫ A

0
1

1+x4 sin2(x)
d x and I−A,B ==

∫ B

−A
1

1+x4 sin2(x)
d x for all A, B ∈ R>0.

Note that, by doing the change of variables y = −x , we get that

IA,0 =

∫ 0

−A

f (x)d x =

∫ 0

−A

1

1+ x4 sin2(x)
d x =

∫ A

0

1

1+ y4 sin2(y)
d y = I+A .
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As a consequence,

IA,B = I+A + I+B (3)

for all A, B ∈ R>0. Recall that
∫ +∞

0 f (x)d x converges if and only if I+A converges

to a real value as A goes to +∞, and
∫ +∞
−∞ f (x)d x converges if and only if

IA,B converges to a real value as A and B go to +∞. It is then clear, by (3),

that, if
∫ +∞

0 f (x)d x converges, then
∫ +∞
−∞ f (x)d x also converges. Conversely, if

∫ +∞
−∞ f (x)d x converges, then, since the parameters A and B are independent, the

convergence of IA,B implies in particular that of IA,A = 2I+A converges as A goes to

+∞, so
∫ +∞

0 f (x)d x converges.

(b) Note first that

I+A = I+⌊A⌋ +

∫ A

⌊A/π⌋π
f (x)d x (4)

for all A∈ R>0, where ⌊B⌋ denotes the integer part of B > 0. Since f (x) > 0 and
f (x) converges to zero as x goes to +∞, we see that, given ε > 0, there exists
C > 0 such that 0< f (x)≤ ε for all x > C . Then,

0≤
∫ A

⌊A/π⌋π
f (x)d x ≤
∫ A

⌊A/π⌋π

ε

π
d x ≤ ε,

for all A> C +π, since A− ⌊A/π⌋π≤ π. As a consequence,

lim
A→+∞

∫ A

⌊A/π⌋π
f (x)d x = 0,

which tells us that the convergence of IA as A goes to +∞, i.e. the convergence
of
∫ +∞

0 f (x)d x , is equivalente to the convergence of I+Nπ =
∑N−1

n=0 In as N goes to

+∞, i.e. the convergence of the series
∑+∞

n=0 In.

(c) Note first that

In =

∫ (n+1)π

nπ

d y

1+ y4 sin2(y)
≤
∫ (n+1)π

nπ

d y

1+ n4π4 sin2(y)

for all n ∈ N0, since y ≥ nπ for y ∈ [nπ, (n+ 1)π]. Moreover, using the change
of variables x = y + nπ with x ∈ [0,π], and the fact that sin(y + nπ) = sin(y)
for n ∈ N0, we get that

∫ (n+1)π

nπ

d y

1+ n4π4 sin2(y)
=

∫ π

0

d x

1+ n4π4 sin2(x)
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for all n ∈ N0. Finally, note that

∫ π

0

d x

1+ n4π4 sin2(x)
=

∫ π/2

0

d x

1+ n4π4 sin2(x)
+

∫ π

π/2

d x

1+ n4π4 sin2(x)

=

∫ π/2

0

d x

1+ n4π4 sin2(x)
+

∫ π/2

0

dz

1+ n4π4 sin2(z)

= 2

∫ π/2

0

d x

1+ n4π4 sin2(x)

for all n ∈ N0, where we used in the second equality the change of variables
z = π− x for the second integral. We have thus proved the required inequalities.

(d) To prove the inequality sin(x)≥ 2x/π for x ∈ [0,π/2], recall that the sine func-
tioin is concave on the interval [0,π], since its double derivative sin′′ = − sin is
positive on ]0,π[. By definition of concavity, we have that sin(tπ/2) = sin((1−
t)0+ tπ/2)≥ (1− t) sin(0)+ t sin(π/2) = t for all t ∈ [0, 1], which is tantamount
to sin(x)≥ 2x/π for x ∈ [0,π/2], by setting x = tπ/2. Using this inequality and
the monotonicity of the integral, we get that

In ≤ 2

∫ π/2

0

d x

1+ n4π4 sin2(x)
≤ 2

∫ π/2

0

d x

1+ n4π4
�

2x
π

�2 = 2

∫ π/2

0

d x
1+ 4n4π2 x2

for all n ∈ N0. Using the change of variables u= 2n2πx , we get that

2

∫ π/2

0

d x
1+ 4n4π2 x2

=
1

n2π

∫ n2π2

0

du
1+ u2

≤
1

n2π

∫ +∞

0

du
1+ u2

=
1

n2π

�

arctan(u)
�+∞

0
=

1
2n2
≤

1
n2

for all n ∈ N0. We also remark that, since f is positive, In ≥ 0 for all n ∈ N0.
Hence, 0≤ In ≤ n−2 for all n ∈ N0, which implies that

∑+∞
n=0 In converges, and by

the first two items, the integral
+∞
∫

−∞
f (x)d x converges.


