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MAT332
Fall 2022

Midterm examination

Unjustified answers will be automatically excluded.

The grading is only approximative.

1.3pt Let {zn}n∈N be a sequence of complex numbers.

(a) Recall the definition of convergence for the series
∑+∞

n=1 zn.

(b) Recall the definition of absolute convergence for the series
∑+∞

n=1 zn.

(c) Prove that
∑+∞

n=1 zn is convergent if it is absolutely convergent.

Solution.
(a) Let SN =
∑N

n=1 zn for N ∈ N. If limN→+∞ SN = S for some S ∈ C, we say that the
series
∑+∞

n=1 zn converges.
More specifically, the series

∑+∞
n=1 zn converges if there exists a complex num-

ber S satisfying that for any ε > 0, there exists N0 ∈ N such that |
∑N

n=1 zn−S|< ε
for all N ⩾ N0.

(b) We say that the series
∑+∞

n=1 zn is absolutely convergent if the series
∑+∞

n=1 |zn|
converges.

More specifically, the series
∑+∞

n=1 zn is absolutely convergent if there exists
a real number S satisfying that for any ε > 0, there exists N0 ∈ N such that
|
∑N

n=1 |zn| − S|< ε for all N ⩾ N0.

(c) Consider the sequence {sN}N∈N of partial sums sN =
∑N

n=1 zn for N ∈ N.
Since
∑

n∈N zn converges absolutely, the sequence {SN}N∈N of partial sums
given by SN =
∑N

n=1 |zn| for N ∈ N is a Cauchy sequence.
Given ε > 0, there exists N0 ∈ N such that

M
∑

n=N+1

|zn|= |SM − SN |< ε

for all M > N ⩾ N0.
Using the triangle inequality we see that

|sM − sN |=
�

�

�

�

M
∑

n=N+1

zn

�

�

�

�

⩽
M
∑

n=N+1

|zn|= |SM − SN |< ε

for all M > N ⩾ N0.
This tells us that {sN}N∈N is a Cauchy sequence of complex numbers.
Since any Cauchy sequence of complex numbers is convergent, then {sN}N∈N

is convergent, i.e.
∑

n∈N zn converges.
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2.1,5pt Prove that the series

+∞
∑

n=2

n+ 1
n!

converges and compute the sum of the series.

Solution. Let un =
n+1
n! for n⩾ 2. Then un > 0 and

un+1

un
=

n+2
(n+1)!

n+1
n!

=
n+ 2
(n+ 1)2

for n⩾ 2. Since

lim
n→+∞

un+1

un
= lim

n→+∞

n+ 2
n2 + 2n+ 1

= lim
n→+∞

1+ 2
n

n+ 2+ 1
n

= 0,

we obtain that the series
∑+∞

n=2 un converges by D’Alembert rule.
Note that e =
∑+∞

n=0
1
n! .

Then

+∞
∑

n=2

n
n!
=
+∞
∑

n=2

1
(n− 1)!

=
+∞
∑

n=1

1
n!

.

So,

+∞
∑

n=2

n+ 1
n!
=
+∞
∑

n=2

n
n!
+
+∞
∑

n=2

1
n!
=
+∞
∑

n=1

1
n!
+
+∞
∑

n=2

1
n!

=
+∞
∑

n=0

1
n!
− 1+

+∞
∑

n=0

1
n!
− 1− 1

= 2e− 3.

3.9pt Consider the sequences (un)n∈N given by

(i) un =
2−cos(n)p

n ,

(ii) un = sin
�

1+ e−n
�

,

(iii) un =
�

1− 1p
n

�n3/2

,

(iv) un =
4n+1(n+1)!
(2n−1)! ,

(v) un =
(−1)n

5+
p

ln(n)
,

(vi) un =
(−1)n

n+2 sin(n3) ,

for n ∈ N, respectively. Determine if the series
∑+∞

n=1 un is absolutely convergent,
convergent or none of them.



MAT332 — Fall 2022

Solution. Note that absolutely convergence implies convergence, and divergence im-
plies absolutely divergence.

(i) The series
∑+∞

n=1 un is divergent.
Since cos(n) ∈ [−1, 1], we have 2− cos(n) ∈ [1, 3] for n ∈ N. So, un > 0 and

un ⩾
1
p

n

for n ∈ N. The Riemann series
∑+∞

n=1
1p
n is divergent. We get that the series

∑+∞
n=1 un is divergent by comparison criteria.

(ii) The series
∑+∞

n=1 un is divergent.
We have that e−n tends to 0 when n tends to infinity. So, the general term un

tends to sin(1) ̸= 0 when n tends to infinity. Since the sequence of general terms
of a convergent series converges to 0, we get that the series

∑+∞
n=1 un is divergent.

(iii) The series
∑+∞

n=1 un is absolutely convergent.

Let f (x) = (1− x)
1
x for x ∈ R. Then

lim
x→0+

f (x) = lim
x→0+

e
1
x ln(1−x).

By L’Hospital rule,

lim
x→0+

ln(1− x)
x

= lim
x→0+

−1
1−x

1
= −1.

Then, limx→0+ f (x) = e−1. Take x = 1p
n , we obtain

lim
n→+∞

(1−
1
p

n
)
p

n = e−1.

Note that (1− 1p
n )
p

n is increasing. Then (1− 1p
n )
p

n ⩽ e−1 for n ∈ N. Hence,

0⩽ un = (1−
1
p

n
)n

3/2
=
�

(1−
1
p

n
)
p

n
�n

⩽
�1

e

�n

for n ∈ N. Since the geometric series
∑

n∈N e−n converges, the series
∑+∞

n=1 un is
absolutely convergent by comparison criteria.

(iv) The series
∑+∞

n=1 un is absolutely convergent.
We have un > 0 and

un+1

un
=

4n+2(n+2)!
(2n+1)!

4n+1(n+1)!
(2n−1)!

=
4n+2(n+ 2)!
(2n+ 1)!

(2n− 1)!
4n+1(n+ 1)!

=
2n+ 4
2n2 + n

for n ∈ N. Then limn→+∞
un+1
un
= 0. By D’Alembert rule, the series

∑+∞
n=1 un is

absolutely convergent.
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(v) The series
∑+∞

n=1 un is convergent, but absolutely divergent.
The series
∑+∞

n=1 un is an alternate series. Since 1

5+
p

ln(n)
> 0 is decreasing and

convergent to 0, the series
∑+∞

n=1 un is convergent by Leibniz criteria.
Note that ln(n)< n for n ∈ N. Then

|un|=
1

5+
p

ln(n)
>

1
5+
p

n

for n ∈ N. Since 1
5+
p

n ∼
1p
n when n tends to infinity, and the Riemann series

∑+∞
n=1

1p
n is divergent, we get that the series

∑+∞
n=1

1
5+
p

n is divergent. Hence, the

series
∑+∞

n=1 un is absolutely divergent by comparison criteria.

(vi) The series
∑+∞

n=1 un is convergent, but absolutely divergent.
Note that sin(x) ∈ [−1, 1] for x ∈ R. For n⩾ 3, we have

|un|=
1

n+ 2 sin(n3)
⩾

1
n+ 2

.

The series
∑

n⩾3
1

n+2 is divergent. By comparison criteria, the series
∑

n⩾3 |un| is
divergent, i.e. the series

∑

n∈N un is absolutely divergent.
Let vn = u2n−1 + un for n ∈ N. Note that limn→+∞ un = 0. By the technique

of block summation, the series
∑

n∈N un and
∑

n∈N vn simultaneously converge or
diverge. We have

vn = u2n−1 + u2n =
−1

2n− 1+ 2 sin
�

(2n− 1)3
� +

1

2n+ 2 sin
�

(2n)3
�

=
−1− 2 sin
�

(2n)3
�

+ 2 sin
�

(2n− 1)3
�

�

2n− 1+ 2 sin
�

(2n− 1)3
�

��

2n+ 2 sin
�

(2n)3
�

� .

Then for n⩾ 2,

|vn|⩽
| − 1|+ |2 sin
�

(2n)3
�

|+
�

�2 sin
�

(2n− 1)3
�

|
�

|2n− 1| − |2 sin
�

(2n− 1)3
�

|
��

|2n| − |2 sin
�

(2n)3
�

|
�

⩽
5

(2n− 3)(2n− 2)
.

Since 5
(2n−3)(2n−2) ∼

5
4n2 when n tends to infinity, the series

∑

n⩾2
5

(2n−3)(2n−2)
converges. Then the series

∑

n⩾2 |vn| converges by comparison criteria, i.e. the
series
∑

n∈N vn is absolutely convergent. This implies that the series
∑

n∈N vn is
convergent. Hence, the series

∑

n∈N un converges.

4.2pt Consider the sequence (un)n∈N given by

un =
(−1)n+1

p
n
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for n ∈ N.

(a) Define vk = u2k−1 + u2k for k ∈ N. Determine if the series

+∞
∑

k=1

vk

is convergent or divergent.
(b) Using the previous item, determine if the series

+∞
∑

n=1

un

is convergent or divergent.

Solution.

(a) The series
∑+∞

k=1 vk is convergent.
We have

vk = u2k−1 + u2k =
1

p
2k− 1

−
1
p

2k
=
p

2k−
p

2k− 1
p

2k(2k− 1)

=
(
p

2k−
p

2k− 1)(
p

2k+
p

2k− 1)
p

2k(2k− 1)(
p

2k+
p

2k− 1)
=

1
p

2k(2k− 1)(
p

2k+
p

2k− 1)

for k ∈ N.
Then vk > 0 and

lim
k→+∞

vk
1

4
p

2k3/2

= lim
k→+∞

4
p

2k3/2

p

2k(2k− 1)(
p

2k+
p

2k− 1)

= lim
k→+∞

4
p

2
q

4− 2
k

�p
2+
q

2− 1
k

� = 1.

This implies that the general terms of two positive series
∑+∞

k=1 vk and
1

4
p

2

∑+∞
k=1

1
k3/2 are equivalent. Since the Riemann series

∑+∞
k=1

1
k3/2 converges, we

obtain that the series
∑+∞

k=1 vk is convergent.

(b) The series
∑+∞

n=1 un is convergent, since a summation by blocks of it gives the
series
∑+∞

k=1 vk, which is convergent by the previous item.

5.4,5pt Consider the sequence (un)n∈N given by

un =
e1/n

n2

for n ∈ N.
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(a) Show that the map f : R≥1→ R given by

f (x) =
e1/x

x2

for x ∈ R≥1 is decreasing and compute

lim
x→+∞

f (x).

(b) Determine if the series
∑+∞

n=1 un is convergent or divergent.
(c) Show that

q
∑

n=p+1

e1/n

n2
≤
∫ q

p

e1/x

x2
d x ≤

q−1
∑

n=p

e1/n

n2

for all p, q ∈ N such that p < q.
(d) Given N ∈ N, set RN =

∑+∞
n=N+1 un. Using the previous item, show that

e1/(N+1) − 1≤ RN ≤ e1/N − 1.

and from this prove that RN ∼ e1/N − 1 as N → +∞.

Solution.

(a) It is clear that f is differentiable, since it is obtained as the quotient with nonzero
denominator and composition of differentiable functions. Moreover, we also have

f ′(x) = −
2x + 1

x4
e1/x < 0

for all x ∈ R>1, which in turn implies that f is strictly decreasing. Finally, since
1≤ e1/x ≤ e for all x ∈ R≥1, we see immediately that

lim
x→+∞

f (x) = lim
x→+∞

e1/x

x2
= 0.

(b) Note that un = f (n) for all n ∈ N. It is clear that f is a nonnegrative function and
we have showed that f is decreasing with limit equal to zero at +∞. Moreover,

∫ +∞

a

f (x)d x = lim
M→+∞

�

− e1/x
�M

a
= e1/a − lim

M→+∞
e1/M = e1/a − 1, (1)

for all a ∈ R≥1. Using the integral test and (1) for a = 1, we conclude that
∑+∞

n=1 un
converges.

(c) Since f is decreasing, we have that f (n+ 1) ≤ f (x) ≤ f (n) for all x ∈ [n, n+ 1]
and n ∈ N. In consequence,

e1/(n+1)

(n+ 1)2
=

∫ n+1

n

e1/(n+1)

(n+ 1)2
d x ≤
∫ n+1

n

e1/x

x2
d x ≤
∫ n+1

n

e1/n

n2
d x =

e1/n

n2
,
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for all n ∈ N, which in turn implies that

q
∑

n=p+1

e1/n

n2
=

q−1
∑

n=p

e1/(n+1)

(n+ 1)2
≤

q−1
∑

n=p

∫ n+1

n

e1/x

x2
d x

︸ ︷︷ ︸

=
∫ q

p
e1/x

x2 d x

≤
q−1
∑

n=p

e1/n

n2

for all p, q ∈ N such that p < q.
(d) Fixing p = N and letting q go to +∞ in the previous item, we have that

RN =
+∞
∑

n=N+1

e1/(n+1)

(n+ 1)2
≤
∫ +∞

N

e1/x

x2
d x

︸ ︷︷ ︸

=e1/N−1

≤
+∞
∑

n=N

e1/(n+1)

(n+ 1)2
= RN−1,

for all N ∈ N, where we used (1). The first inequality tells us that

RN ≤ e1/N − 1,

for all N ∈ N, whereas the second can be rewritten as

RN−1 ≥ e1/N − 1,

for all N ∈ N. Replacing N by N + 1, we have thus

RN ≥ e1/(N+1) − 1,

for all N ∈ N, as was to be shown. Putting together these inequalities we get

e1/(N+1) − 1
e1/N − 1

≤
RN

e1/N − 1
≤ 1

for all N ∈ N, which implies that

lim
N→+∞

RN

e1/N − 1
= 1,

since

lim
N→+∞

e1/(N+1) − 1
e1/N − 1

= lim
x→+∞

e1/(x+1) − 1
e1/x − 1

= lim
x→+∞

− e1/(x+1)

(x+1)2

− e1/x

x2

= lim
x→+∞

e1/(x+1)x2

e1/x(x + 1)2
= 1,

where we have used the Bernoulli-L’Hospital in the second equality. In particular,
we conclude that RN ∼ e1/N − 1 as N → +∞.


