MAT332
Fall 2022

Midterm examination

Unjustified answers will be automatically excluded.

The grading is only approximative.

1. Let {z,},en be a sequence of complex numbers.

(a) Recall the definition of convergence for the series Z:j Zp-

(b) Recall the definition of absolute convergence for the series Z::T Z,.

(c) Prove that Z:ﬁf 2, is convergent if it is absolutely convergent.
Solution.
(@) LetSy= Zf;l 2, for N e N. If limy_,, 00 Sy = S for some S € C, we say that the

)

@)

. +00
series , | z, converges. .
o pe . (ee] . .
More specifically, the series anl 2, converges if there exists a complex num-
Py . N
ber S satisfying that for any e > 0, there exists Ny € Nsuch that |, _, z,—S| <e
for all N = N,.
We say that the series Z:j z, is absolutely convergent if the series Z:g |2,
converges.
More specifically, the series Z:j Z, is absolutely convergent if there exists
a real number S satisfying that for any e > 0, there exists N, € N such that
N
| D1 |2, =S| < € for all N > N.

Consider the sequence {sy }yey Of partial sums sy = .
Since Y. .y

given by Sy = Zfl[:l |z,| for N € N is a Cauchy sequence.
Given € > 0, there exists N, € N such that

I,Ll z, for N e N.

2, converges absolutely, the sequence {Sy}yey Of partial sums

M
D>l =lsy—Syl<e

n=N+1
for all M > N = N,
Using the triangle inequality we see that

M

2. 5
n=N+1
for all M > N = N,,.

This tells us that {sy}yey is @ Cauchy sequence of complex numbers.
Since any Cauchy sequence of complex numbers is convergent, then {sy }yex
is convergent, i.e. . _. 2z, converges.

M
< D Il =ISy—Syl<e
n=N+1

sy —snl=

neN
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2. Prove that the series

&En+1
Znn!

n=2

converges and compute the sum of the series.

Solution. Let u, = "HL,I for n = 2. Then u, > 0 and

n+2
Uppy ()l n+2

u, ”nLll (n+1)2

for n = 2. Since

2
. u : n+2 : 1+7
lm == fim — = jim 1=
n—+oo y no+oco n2+4+2n+1 n—+00 n_|.2_|.H

we obtain that the series Z::; u, converges by D’Alembert rule.

Note thate =)' % 4.
Then
= n! (n—1) — n!
So,
+00n+1 +00n +001 +001 +001
Y =t =
n=2 iz n=2n n=2 2 n=1n n=2n
+001 +o<>1
“—n! —In
=2e—3

3. Consider the sequences (u,) ey given by
. __ 2—cos(n) . 4t (1)1
(1) U, = T; (IV) U, = ﬁ,

(i) u,=sin(1+e™), (1"

w2 W) =5 e
(11 . —D"
(iii) u, = (1 ﬁ) : Vi) u, = n+(25ir1)(n3)’

for n € N, respectively. Determine if the series Z::f u, is absolutely convergent,
convergent or none of them.
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Solution. Note that absolutely convergence implies convergence, and divergence im-
plies absolutely divergence.

@

(ii)

(iii)

(@iv)

. +00o . .
The series anl u, is divergent.
Since cos(n) € [—1, 1], we have 2 — cos(n) € [1,3] for n € N. So, u, > 0 and

1
U, 2 —
"Toyn
. q +oo 1 . q .
for n € N. The Riemann series Zn=1 75 is divergent. We get that the series

11 Uy is divergent by comparison criteria.

The series Y ° u, is divergent.

We have that e™" tends to 0 when n tends to infinity. So, the general term u,
tends to sin(1) # 0 when n tends to infinity. Since the sequence of general terms
of a convergent series converges to 0, we get that the series Z::T u, is divergent.

The series Z::T u,, is absolutely convergent.
Let f(x)=(1 —x)% for x € R. Then

. . 1 —
lim f(x)= lim ex"1—9,
x—0+ x—0+

By L'Hospital rule,
 In(l-x) . =
im ————= = |lim — =-1.
x—0+ X x—0+ 1

Then, lim,_,q, f(x) = e~ !. Take x = ‘/LH, we obtain

lim (1— %)ﬁ =e L.

n—+00

Note that (1 — %)ﬁ is increasing. Then (1 — ‘/LH)‘/H < e7! for n € N. Hence,

_ _inB/Z_ _iﬁn ln
0<u,=(1 ﬁ) —((1 ﬁ) )<(e)

. . . — q +00 .
for n € N. Since the geometric series >, e converges, the series >, " u, is
absolutely convergent by comparison criteria.

The series Z::f u, is absolutely convergent.
We have u,, > 0 and

42 (n+2)!

U ol 4" (n+2)! (2n—1)!  2n+4
u, % T (@2n+1) 4(n+1) 2n2+n
n—1)!

for n € N. Then lim,_,, o, =1 = 0. By D’Alembert rule, the series Z::; u, is
absolutely convergent.
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(v) The series Z:: u, is convergent, but absolutely divergent.
1

5+4/In(n)
convergent to 0, the series Z:j u, is convergent by Leibniz criteria.
Note that In(n) < n for n € N. Then

. +00 . . . . .
The series ), _| u,, is an alternate series. Since > 0 is decreasing and

1 1
5+ 1/In(n) = 5+vn

for n € N. Since

|| =

1 1 . .. . .
oy ey when n tends to infinity, and the Riemann series
+oc0o 1 . 9 . +00o 1
Yiney 7 is divergent, we get that the series >, ' ==

B +00o . . . B c
series anl u,, is absolutely divergent by comparison criteria.

is divergent. Hence, the

(vi) The series Z:: u, is convergent, but absolutely divergent.
Note that sin(x) € [—1,1] for x € R. For n = 3, we have

1 1
= - > .
n+2sin(n3) n+2

|uy

The series Y, -, nlﬁ is divergent. By comparison criteria, the series Y, -, |u,]| is
divergent, i.e. the series ZneN u, is absolutely divergent.

Let v, = Uy, +u, for n € N. Note that lim,_,, -, u,, = 0. By the technique
of block summation, the series Y. _u, and ), _ v, simultaneously converge or
diverge. We have

-1 1

. + .
2n—1+2sin((2n—1)3)  2n+ 2sin((2n)?)
—1—2sin((2n)%) + 2sin ((2n —1)%)

(Zn —1+2sin((2n— 1)3))(2n + 2sin ((2n)3)) '

Vn = Uzp—1 + Uppn =

Then for n = 2,
|— 1]+ [2sin((2n)%)| + [2sin ((2n— 1)°)]
(|2n —1|—]2sin ((2n — 1)3)|)(|2n| —|2sin ((2n)3)|)

S N—
(2n—3)(2n—2)

val <

Since m ~ 2 when n tends to infinity, the series >, (Zn_;m
converges. Then the series . ., |v,| converges by comparison criteria, i.e. the
series Y. v, is absolutely convergent. This implies that the series Y. is
convergent. Hence, the series Y. _. u, converges.

neN Vn

neN

4. Consider the sequence (u,),cy given by

_ (_1)n+1
u, = —\/ﬁ
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forneN.
(a) Define v; = uy_q + uy; for k € N. Determine if the series

+00

2

k=1

is convergent or divergent.
(b) Using the previous item, determine if the series

is convergent or divergent.

Solution.
(a) The series Z::T V| is convergent.
We have

S SR _ V2k—+v2k—1
TSI k=1 V2R J2k(2k—1)

:(M—Jzk—l)(Jﬁ+¢2k—1)= 1
V2k(2k —1)(V2k + vV2k—1) V2k(2k —1)(V2k + v/2k—1)
for k e N.
Then v, > 0 and
lim Ve _ lim 42K
koo o koveo \/ok(2k— 1)(V2k + v2k— 1)
42

= lim =

This implies that the general terms of two positive series ZZ;’ v, and

1 +00 1 . . 9 . +oo 1
4_ﬁ Zk:l 0 are equ1valent. Since the Riemann series Zk:l 0o converges, we

. . + 00 .
obtain that the series /| v is convergent.
. ar . . . . .
The series Zn(—xf u, is convergent, since a summation by blocks of it gives the

)
g +00 . . . o
series Zk:l v, which is convergent by the previous item.
5. Consider the sequence (u,),cy given by

el/n

u, =
n nz

forn e N.
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(@)

®)
©

G

Show that the map f : R5; — R given by

el/x

fx)=

X2

for x € Ry is decreasing and compute

lim f(x).

X—+00

Determine if the series Z:ﬁf u, is convergent or divergent.
Show that

-1
q el/n q el/x q e1/n
E < dx < E
n2 ) x2 n2

n=p+1 n=p

for all p,q € N such that p < gq.

Given N €N, set Ry = Y. on

1—N+1 Un- Using the previous item, show that

e/ 1 <Ry <N -1,

1/N

and from this prove that Ry ~e*/* —1as N — +00.

Solution.

(@)

)

©

It is clear that f is differentiable, since it is obtained as the quotient with nonzero
denominator and composition of differentiable functions. Moreover, we also have

2x +1
f’(x)z——4 el/* <0
x

for all x € R.;, which in turn implies that f is strictly decreasing. Finally, since
1< el <efor all x € Ry, we see immediately that

1/x

lim f(x)= lim &

X—+00 x—+00 x2

=0.

Note that u, = f(n) for all n € N. It is clear that f is a nonnegrative function and
we have showed that f is decreasing with limit equal to zero at +00. Moreover,

+00 M
J f(x)dx=M|iT I:—el/"] =el/2— [im VM =¢l/a_1, (@D)]
—+00
a

a M—+o00

for alla € Ry;. Using the integral test and (1) for a = 1, we conclude that Z:S u,
converges.

Since f is decreasing, we have that f(n+ 1) < f(x) < f(n) for all x € [n,n+ 1]
and n € N. In consequence,

o1/(n+1) n+l el/(n+1) n+l el/x n+l el/n el/n
— = ———dx < dx < dx =—,
(n+1)2 . (n+1)2 n x2 n n2 n2
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for all n € N, which in turn implies that

4. ,l/n g1 el/(+1) g-1 pntl el/x g1 el/n
Z 2 Z 7 S g dx < Z 2
n=p+1 n n=p (n + 1) n=pJn 2 n=p n

q el/x
=[Ye—d
P x

for all p,q € N such that p < gq.
(d) Fixing p =N and letting g go to +00 in the previous item, we have that

190 1/(n+1) +00  9/x 100 1/(n+1)
e e e
Ry = E —< —dx < E ——— =Ry_1,
nwin (1) JN x? —(n+1)?
~—_————

—el/N—1
for all N € N, where we used (1). The first inequality tells us that
Ry <e/N -1,
for all N € N, whereas the second can be rewritten as
Ry_;=e/N -1,
for all N € N. Replacing N by N + 1, we have thus
Ry = eV/®+D 1
for all N € N, as was to be shown. Putting together these inequalities we get

el/(N+D) _ Ry

< <
N1 Sem_1>!

for all N € N, which implies that

Ry

im ——=1
N—o+ocoel/N — ] ?
since
1/(N+1 1/(xe+1 e/t
. el/(N+1) _ 1 . el/(x+1) _q _ i —GFIe
No+oo el/N_1 ~— xo+oo el/x—1  x—otoo _elx

XZ
e1/(x+1) 2

= el/x(x +1)2

>

where we have used the Bernoulli-I’Hospital in the second equality. In particular,
we conclude that Ry ~ e'/N —1 as N — +o0.



