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Résumé

Le but de ce manuscrit est de présenter une formulation complète et précise de la procédure de de renor-
malisation dans la théorie perturbative du champ quantique (pQFT) sur les espaces-temps courbes généraux,
introduite par R. Borcherds dans [10]. Plus précisément, nous donnons une preuve exhaustive sur l’action
simplement transitive du groupe de renormalisations sur l’ensemble des mesures de Feynman associées
à un propagateur du type coupe et sur l’existence des mesures de Feynman associées à tels propagateurs.
Même si nous avons suivi les principes généraux posés par Borcherds dans [10], nous avons souvent procédé
différemment pour prouver ses affirmations, et nous avons dû aussi ajouter quelques hypothèses pour pou-
voir prouver les assertions respectives.

Mots-clés: théorie quantique de champs, renormalisation, distributions, cogèbres.

Abstract

The aim of this manuscript is to provide a complete and precise formulation of the renormalization picture
for perturbative Quantum Field Theory (pQFT) on general curved spacetimes introduced by R. Borcherds
in [10]. More precisely, we give a full proof of the free and transitive action of the group of renormalizations
on the set of Feynman measures associated with a local precut propagator, and that such a set is nonempty
if the propagator is further assumed to be manageable and of cut type. Even though we follow the general
principles laid by Borcherds in [10], we have in many cases proceeded differently to prove his claims, and
we have also needed to add some hypotheses to be able to prove the corresponding statements.

Keywords: QFT, renormalization, distributions, coalgebras.

MSC2010: 16T10; 46N50; 46T30; 58D30; 81T15; 81T20.



ii



Contents

1 Preliminaries on algebra and functional analysis 1

1.1 Invariants and coinvariants in pre-abelian categories having images . . . . . . . . . . . . . . 1

1.2 Basics on locally convex spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Basic facts on symmetric monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Basics on bornological locally convex vector spaces . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Basic facts on (co)algebras and (co)modules in symmetric monoidal categories . . . . . . . . 18

1.6 Basics on locally m-convex algebras and their locally convex modules . . . . . . . . . . . . . 20

1.7 Basics on bornological algebras and their bornological locally convex modules . . . . . . . . 23

2 Preliminaries on vector bundles 31

2.1 The Serre-Swan theorem and its enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Sections of compacts support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Topologies on the spaces of sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Some results on tensor products 39

3.1 The tensor and symmetric coalgebra and the cofree comodule in a symmetric monoidal cat-
egory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 More on symmetric monoidal categories and bialgebras over them . . . . . . . . . . . . . . . 40

3.3 Some useful constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Some important morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Two caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 A particular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Two inverse limit constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 The symmetric bialgebra of X over A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Applications to the convenient tensor-symmetric coalgebra of X over k . . . . . . . . . . . . 55

3.10 The double tensor-symmetric coalgebra over A . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 More applications to the twisted tensor-symmetric convenient coalgebra over k . . . . . . . . 57

3.12 Comparing the tensor-symmetric coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Preliminaries on distributions on manifolds 59

4.1 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



4.2 External product and symmetric distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Pull-backs of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Push-forwards of Vol(M)-valued distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Internal product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Boundary values of complex holomorphic functions as distributions . . . . . . . . . . . . . . 75

5 Quantum field theory (after Borcherds) 81

5.1 The set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Some technical differences with the article of Borcherds . . . . . . . . . . . . . . . . . . . . . 85

5.3 The notion of support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Generalities on propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Propagators of cut type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Extensions of propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Feynman measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 Meromorphic families of propagators, Feynman measures and renormalizations . . . . . . . 103

6 The first main result: The simply transitive action of the group of renormalizations 105

7 The second main result: The existence of a Feynman measure associated with a manageable local
propagator of cut type 111

7.1 The Bernstein-Sato polynomial and extensions of distributions . . . . . . . . . . . . . . . . . 111

7.2 The existence of Feynman measures in the continuous case . . . . . . . . . . . . . . . . . . . 115

7.3 The meromorphic family of Feynman measures . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 The holomorphic family of Feynman measures . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 The existence of a Feynman measure for a manageable local propagator of cut type . . . . . 121

References 121

Index 128

iv



Introduction

General description

The aim of this work is twofold:

(i) To give a complete and precise formulation of the renormalization picture for perturbative Quantum
Field Theory (pQFT), following the point of view introduced by R. Borcherds in [10]. In particular, we
explain in full detail the different objects he introduces, together with their algebraic and topological
structures.

(ii) To give a complete proof of Theorems 15, 18, 20 and 21 in [10] about the free and transitive action
of the group of renormalizations on the set of Feynman measures associated with a local propagator
of cut type, as well as the existence of a Feynman measure associated with any such propagator. This
is done in Theorems 6.0.8, 7.3.10, 7.4.2 and 7.5.2. For the existence we were obliged to impose a
further condition on the propagator that does not appear in [10] and that we called manageability
(see Definition 7.3.4). Without it we were unable to construct the needed Feynman measure, and we
remark that this extra assumption is verified in the basic examples of scalar field theory or Dirac field
theory on Minkowski, de Sitter and anti-de Sitter spacetime (see Remark 7.3.5).

Let us explain our motivations. The article [10] is really beautiful and full of ideas. However, it is
very hard to read, because in many aspects it seems that the author has chosen to simplify or to avoid the
corresponding explanations, and in others there are several inaccuracies or potentially misleading state-
ments. For example, the author never gives a precise definition of the support of an element in SΓcωSJΦ
(where we follow the notation in [10]), and even if one may assume that the support of a homogeneous
element A ∈ SmΓcωSJΦ should be a subset of Mm, he talks about the intersection of supports of homoge-
neous elements of different degrees (e.g. see the proof of Thm. 15) or the causal comparison between both
(e.g. see Def. 9). Another example of such imprecision is when he states that SΓcωSJΦ is a comodule over
Γ SJΦ in Lemma 14, whereas the precise structure is never explained, or when he introduces the notion of
Feynman measure in his Def. 9, in which he claims that there is a map SmΓcωSJΦ→ SmΓcωSJΦ ⊗SmΓcSJΦ
induced by the coaction ωSJΦ → ωSJΦ ⊗ SJΦ . We claim that such structure does not exist in general,
and no induced map canonically exists, respectively (see Section 3.5). In order to circumvent this problem,
we had considered instead another comodule over the same coalgebra, which retains enough information
about the space SΓcωSJΦ (cf. Sections 3.7-3.12 and Lemma 5.8.7). We may also add that we have specified
some (minor) missing hypotheses in [10], such as the antisymmetric property for the causal relation on the
definition of spacetime in his Def. 1, and we have made more precise the definition of cut propagator given
in his Def. 7. See also Section 5.2 for some other technical differences with respect to the exposition of
Borcherds. Despite of all of these facts, it is clear to us that all the statements in [10] are essentially correct.
However, the technicality and the subtlety of the structures required to understand the objects presented
in [10] is so involved, that we believe that the gaps left there are far from being automatically filled. Our
humble intention is thus to clarify the technical details as well as the algebraic structures lurking behind
to provide the corresponding precise statements with their proofs.
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Let us also mention that even though our proofs are greatly inspired by those of [10], we have in many
cases proceeded in a different way. Compare for example the proofs of Lemma 14, and Thm. 15 in [10], and
those of Lemma 5.8.7 and Theorem 6.0.8. Concerning Thm. 18, 20 and 21 in [10], we follow the general
philosophy established there, but the actual proofs of those results, given in Theorems 7.3.10, 7.4.2 and
7.5.2 in this manuscript, respectively, are more involved.

Concerning the novelty of the results presented here, we believe that the contents of Chapter 1, 2, and 4
are mostly well-known to the specialists, but we provide them for the convenience of the reader, since they
come from rather scattered fields. We may only except Sections 2.2 and 2.3 from the previous list, because
they contain material that is new as far as we know. Corollaries 1.2.9 and 1.3.5, as well as Theorems
4.3.10 and 4.5.6, also seem to be new, even though the latter is an adaptation of a result of N. V. Dang in
[27]. Chapter 3 is a generalization of some well-known algebraic structures for vector spaces to a more
involved situation dealing with locally convex spaces (and in particular with sections of vector bundles),
so it is in our opinion somehow new. Chapter 5 is essentially based on the article [10] of Borcherds, but
we provide many explanations that are absent in the mentioned paper. In particular, Sections 5.3 and 5.9
are somehow implicit in [10], as well as many results concerning propagators in Sections 5.4, 5.5 and 5.6.
Moreover, since some of the results stated by Borcherds in [10] seem to be not completely correct or at least
unclear (e.g. the existence of a coaction of Γ SJΦ on the space of nonlocal Lagrangians SΓcωSJΦ stated in
his Lemma 14, or of the corresponding map SmΓcωSJΦ → SmΓcωSJΦ ⊗ SmΓcSJΦ induced by the coaction
ωSJΦ → ωSJΦ ⊗ SJΦ in his Def. 9 of Feynman measure), we deal in many situations with more involved
algebraic structures than those in his exposition. For instance, we are forced to work with the tensor algebra
instead of the symmetric algebra, and to show that (only) the final constructions of the theory depend on
the class in the symmetric algebra of the considered elements. As stated before, this is however different
from the considerations in [10], but also from previous expositions, e.g. [14], where the symmetric algebra
was considered from the very beginning. A particular place where this difference is noticeable is in Section
5.6, where we construct from the propagator a Laplace pairing on a certain tensor algebra (and not on a
symmetric algebra). The point that we cannot work with the symmetric algebra from the very beginning
and we have to work with the tensor algebra instead is a reflection of the fact that we are dealing with
two very different kind of tensors: one over k and another over C∞(M), and they are not compatible if we
intend to permute them. In algebraic terms, this is the shadow of the fact that the categories of modules
over certain required symmetric constructions do not form a 2-monoidal category, a notion recalled in
Definition 3.2.2, whereas the corresponding tensor algebras do fulfill the requirements of such definition
(see Section 3.5). We also prove some results claimed in [10], e.g. Lemma 5.7.14. Finally, the proof of Thm.
15 of [10] that we give in Chapter 6 is completely new, whereas the proof of Thms. 18, 20 and 21 of [10] that
we provide in Chapter 7 follows the general pattern established by Borcherds, even though we have added
several hypotheses –that are physically reasonable– and we have ascertained some other intermediate steps
that are not present in [10] in order to prove the mentioned results of [10].

As a final word, we would like to state that most of the results and ideas in this manuscript should not
be completely new, for they profit from many of the usual constructions in pQFT, specially those presented
by R. Brunetti and K. Fredenhagen in [19] (see also the work [52–54] of S. Hollands and R. Wald), which
are in turn based on previous work by E. Stueckelberg and A. Petermann in [101], O. Steinmann in [97],
and H. Epstein and V. Glaser in [35], to mention a few. The list of people who contributed to this field
to boost our understanding and are thus relevant is so vast that we unfortunately have no sufficient space
to mention them all. A modern and nice exposition on the subject that follows the previous lines may be
found in [90]. We believe however that the point of view presented by Borcherds is somehow new and
deserves attention, for it further extracts the algebraic features lurking behind. Furthermore, his point of
view is more general than the usual ones, mentioned previously, and in particular, it can be used even if
the spacetime is not assumed to be globally hyperbolic, e.g. for anti-de Sitter spacetime. Moreover, there is
also no need to suppose any homogeneity condition nor any finiteness of a scaling degree of any kind for
the distributions involved (see Remark 6.0.10).
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Structure of the book

In Chapter 1 we provide the basic results on invariants and coinvariants, with special emphasis on the
action of the symmetric group on a tensor product of locally convex spaces, either Hausdorff or not. We
will focus particularly on bornological locally convex spaces and on their local completion –called conve-
nient locally convex spaces– as well as on the bornological tensor product and its local complete version.
The reason for doing so is the fact that the latter two symmetric monoidal categories are better behaved,
and in particular, are closed and the (bornological or convenient) tensor products commutes with arbitrary
colimits, which is not necessarily the case for the (completed) projective tensor product. We also remind
the reader about some basic results on locally convex m-algebras and their locally convex modules, and of
bornological algebras and their bornological locally convex modules. The latter also share the nice cate-
gorical properties of the categories of bornological or convenient locally convex spaces stated previously.
Moreover, even though locally convex modules over Fréchet algebras are essentially enough to understand
the spaces of sections (of compact support or not) of vector bundles over a manifold, their continuous duals
(i.e. the spaces of distributions) are almost never locally convex modules but bornological locally convex
modules. We believe that most of these results should be well-known among the experts.

In Chapter 2 we recall the basic results on vector bundles over a smooth manifold, from an algebraic
point of view, but we also recall the natural topologies on the spaces of sections of such vector bundles.
The only possible new piece of information may be provided in Section 2.2, where we study the sections of
compact support, and the corresponding results in Section 2.3 concerning their topological properties (see
Corollaries 2.3.7 and 2.3.10).

Chapter 3 seems to contain new information that is somehow implicit in [10]. It can be regarded as
an extension to general manifolds of some of the algebraic structures studied by C. Brouder in [14] for the
case of a QFT of dimension zero. We also recall the notion of symmetric 2-monoidal category (see Definition
3.2.2), the reasonable theory of bialgebras relative to such objects and comodules over such bialgebras. We
introduce the new notion of framed symmetric 2-monoidal category, which is necessary for the definition
of Laplace pairing in the sequel, and we prove that the category of modules over a certain tensor algebra
construction on a commutative algebra A is a framed symmetric 2-monoidal category (see Proposition
3.3.9). The main pieces of information proved in this chapter and applied to the specific spaces we are
interested in may be summarized as follows. Let A be a unitary Fréchet algebra, X a finitely generated
projective Fréchet A-module, V a bornologically projective bornological locally convex A-module, Y =
V ⊗A SAX, Φ̃A = limm∈NA

⊗̃βm and Σ̃A = limm∈N Σ̃
mA be inverse limits in BLCSHD , and

˜
TA = ⊕m∈N0

A⊗̃βm

and
˜
ΣA = ⊕m∈N0

Σ̃mA be locally convex direct sum in BLCSHD . Then,

(a) SAX is a canonical cocommutative unitary and noncounitary bialgebra in Σ̃ABMod and in
˜
ΣABMod

(see Fact 3.8.2);

(b) Y is the cofree comodule over SAX in ABMod, so Y is a fortiori a comodule over SAX in Σ̃ABMod (see
Porism 1.7.14);

(c) T̃ +SAX has the induced structure of cocommutative noncounitary coalgebra in Φ̃ACMod, and there is
a morphism of noncounitary coalgebras from T̃ +SAX to SAX in Φ̃ACMod (see Corollary 3.9.4);

(d) T̃ SAX has the induced structure of cocommutative counitary coalgebra in
˜
TACMod for the tensor

product ⊗
˜
TA (see Corollary 3.9.2) and that structure forms also a cocommutative unitary and couni-

tary bialgebra on T̃ SAX relative to the symmetric 2-monoidal category
˜
TACMod (see Corollary 3.9.3);

(e) S+
AY has a canonical structure of cocommutative noncounitary coalgebra in SAX

Σ̃A
coBMod (see Lemma

3.10.4);

(f) T̃ +Y is a conilpotent cofree noncounitary coalgebra in CLCSHD with comodule structure over T̃ +SAX,
so a fortiori over SAX, in Φ̃ACMod (see Corollary 3.11.3);
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(g) the canonical map T̃ +Y → T +
AY given by (3.12.4) is a morphism of comodules over SAX in Φ̃AcoCMod

(see Proposition 3.12.2).

In Chapter 4 we recall the basic definitions and constructions of distributions on manifolds. Most of
the results are well-known but we provide them nonetheless for convenience of the reader and to establish
the notation we shall later use. The only possible novelties are given by Theorem 4.3.10, where we show
that the pull-back defined by L. Hörmander of distributions satisfying a certain wave front set condition
coincides with the usual pull-back of functions if the distributions are regular –i.e. it is given by integrating
against a continuous map– and by Theorem 4.5.6, where we show how to compute the wave front set of a
product of distributions given by integrating a test function against a continuous function. This last result
is however just a slight adaptation of one of N. V. Dang in [27], Thm. 3.1, which is in turn based on the
proof of G. Eskin in [36], Thm. 14.3. Proposition 4.2.2 seems to be somehow new, specially for it provides
an answer to a question posed in [64], Section I.5.8 (see Remark 4.2.4), even though it is based on already
well-known results.

Chapter 5 presents the basic definitions of quantum field theory, following the exposition of Borcherds
in [10] but also that of Brouder, B. Fauser, A. Frabetti, and R. Oeckl, where they explain the use of Laplace
pairings in QFT (see [17]). Our definition of Laplace pairing is however more general than theirs, since
we need to work with framed symmetric 2-monoidal categories, that we introduced in Definition 3.2.6:
indeed, with exception of the coalgebra whose automorphisms define the group of renormalizations (see
Definition 5.8.2) the algebraic objects constructed by Borcherds are not given by usual coalgebras, bial-
gebras or comodules over them in a symmetric monoidal category, but relative to framed symmetric 2-
monoidal categories. As an example, when extending the propagator ∆ to obtain a Laplace pairing in
Section 5.6, the cocommutative unitary and counitary bialgebra on which it is defined is T̃ SC∞(M)Γ (J iE)
(see Proposition 3.4.6), which is not a bialgebra in any symmetric monoidal category but relative to the
symmetric 2-monoidal category

˜
TC∞(M)CMod of convenient locally convex modules over the convenient

algebra
˜
TC∞(M) introduced in 3.6.5. Most of the statements appearing in this chapter are based on those

of Borcherds, but the underlying algebraic structures are fully explained by making use of the results of
Chapter 3, which are new. We have also stated and proved some implicit results of [10], such as Lemma
5.7.14, and we have completed some results of Borcherds, such as Lemma 5.8.7. Furthermore, we have
corrected some of (what we believe are) the weak points in [10]. More precisely, we recall that there are
several results in that reference that seem to be not completely right, such as the existence of a coaction
of Γ SJΦ on the space of nonlocal Lagrangians SΓcωSJΦ stated in his Lemma 14, or of the corresponding
map SmΓcωSJΦ → SmΓcωSJΦ ⊗ SmΓcSJΦ induced by the coaction ωSJΦ → ωSJΦ ⊗ SJΦ in his Def. 9 of
Feynman measure (see Section 3.5). In order to solve these problems, we work with more delicate algebraic
structures than those in [10]: the coaction of Γ SJΦ on the space of nonlocal Lagrangians SΓcωSJΦ men-
tioned by Borcherds is replaced by a coaction Γ SJΦ on the tensor construction T ΓcωSJΦ , whereas the group
of renormalizations is still given by automorphisms of the symmetric coalgebra considered by Borcherds.
Since automorphisms of the conilpotent cofree coalgebra TZ do not induce in general automorphisms
of the corresponding conilpotent cocommutative cofree coalgebra SZ, this implies that the compatibility
when dealing with both structures simultaneously is far from trivial. Moreover, one could guess that every
situation involving both tensor products over k and over C∞(M) forced to us to work with tensor construc-
tions: this is for instance also the case when dealing with Laplace pairings constructed from propagators
in Section 5.6,1 or even when introducing the notion of Feynman measure associated with a local precut
propagator in Definition 5.7.9. Fortunately, when combining all these structures, the final output of the
Feynman measure only depends on the equivalence class of the element on the symmetric algebra, which
is not the case for the intermediate steps. An example when this situation becomes really different from
the usual arguments given in [10] is the fact that the group of renormalizations (or ultraviolet group, as
called in [10]) acts on the sets of Feynman measures associated with a local precut propagator (compare the

1We recall that the results stated by Borcherds concerning the extension of propagators to Laplace pairings are in turn based on
those given by Brouder, Fauser, Frabetti, and Oeckl in [17]. Since they only deal with tensor products over k, because they explain
the main algebraic features of these particular part of pQFT in a somehow toy model, they can safely work with symmetric algebras
instead of with tensor algebras.

viii



proof of the first part of Thm. 15 in [10] and of the Proposition 6.0.5). The other possible completely new
piece of information in this chapter may be given in Section 5.3, where we introduce and study the notion
of support that is implicit in [10]. We have also provided in Section 5.9 the definitions of meromorphic
families of propagators, Feynman measures and renormalizations, which are implicit in [10].

Chapter 6 gives the complete proof of the free and transitive action of the group of renormalizations on
the set of Feynman measures associated with a local precut propagator. The proof of this result is decouple
into two statements: Proposition 6.0.5 and Theorem 6.0.8. Even though we prove the statements appearing
in [10], our methods are different.

Finally, in Chapter 7 we prove that the set of Feynman measures associated with a local propagator is
nonempty if the latter is further assumed to be manageable and of cut type. Our proof follows the general
yoga established in [10], but we have completed the gaps in that exposition, which also forced us to assume
further hypotheses on the propagator: the manageability assumption introduced in Definition 7.3.4. Grosso
modo, we have first proved that there is a meromorphic family of Feynman measures (see Theorem 7.3.10),
which can be made holomorphic around the point we are interested in by means of a meromorphic family
of renormalizations (see Theorem 7.4.2). The purported existence of a Feynman measure thus follows from
evaluating the holomorphic family of Feynman measures at the point of interest (see Theorem 7.5.2).

As a general indication, we have added some comments on the left margin to indicate the level of novelty
or difficulty of the results.

Prerequisites

As expected, the formulation of QFT makes intensive use of several branches of mathematics. Even though
all the definitions and results that we used within this manuscript are recalled or referenced along the
exposition, let us briefly mention the following suggested prerequisites, where we also provide a particular
bibliographical source or sources as a guide:

(i) Differential geometry: differential manifolds, vector bundles, and jet bundles (see [77]);

(ii) Categorical algebra: basic category theory, including monoidal categories (see [61, 68, 74]);

(iii) Functional analysis: locally convex spaces, Fréchet and nuclear spaces (see [84, 95, 104]);

(iv) Algebra: basic algebraic structures, e.g. (co)algebras, (co)modules over them (see [75]);

(v) Global analysis: distributions on manifolds (see [46, 55, 107]).
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Chapter 1

Preliminaries on algebra and functional analysis

1.0.1. Throughout the manuscript k will be the field R or C. We denote by N (resp., N0) the set of positive
integers (resp., nonnegative positive integers), and given any real vector x̄ = (x1, . . . ,xn) ∈ Rn, x̄� 0 means
that xi > 0 for all i = 1, . . . ,n. Given a nonunitary (also called nonunital) commutative k-algebra A –i.e. A
is not necessarily unitary–, a module (over A) (or an A-module) is a symmetric A-bimodule. We denote
the category they form by AMod. The A-dual HomA(X,A) of an A-module X will be denoted by X~, to
distinguish it from the usual k-dual X∗ = Homk(X,k). From now on, all unadorned tensor products and
homomorphisms spaces will be over k, unless otherwise stated.

1.0.2. We recall that a commutative k-algebra A is said to have enough idempotents if there is a set E ⊆ A
formed by idempotents (i.e. e2 = e for all e ∈ E) that are orthogonal (i.e. ee′ = 0 if e,e′ ∈ E satisfy that
e , e′) and that A = ⊕e∈EAe. On the other hand, we say that A has a set of local units if there is a set E ⊆ A
formed by idempotents such that, for every finite set of elements a1, . . . , am ∈ A, there exists e ∈ E such that
eam′ (= am′e) = am′ for all m′ = 1, . . . ,m (cf. [1], Def. 1.1). Note that any commutative k-algebra with enough
idempotents has a set of local units given by taking all the possible finite sums of the idempotents satisfying
the former condition. A particular case is when the set of local units consists of just one element, i.e. if A
is unitary. If the commutative k-algebra A has a set of local units E, any A-module X is further assumed to
satisfy that AX = X, i.e. the action morphism A⊗A X → X is surjective (see [1], Section 1). This coincides
with the property that, given any x ∈ X there is e ∈ E such that ex (= xe) = x (see [1], Section 1), and in
particular, it is equivalent to the usual unitary condition imposed on bimodules over a unitary algebra.

1.0.3. We remark that if A has a set of local units, then AMod is a symmetric monoidal category for the
tensor product over A, the unit given by the object A, the usual structure maps, and the twist giving by
the usual flip. Indeed, this holds because any module X (satisfying the previous unitary condition) over an
algebra A with a set of local units is firm in the sense of D. Quillen, i.e. the action morphism A⊗A X → X
(or X ⊗A A→ X) is bijective (see [70], Prop. 5.9, for an elementary proof). Note that, if A is nonunitary, the
category of all A-modules (not necessarily satisfying any kind of unitarity assumption) is in general only a
nonunitary symmetric monoidal category (see Section 3.1). If A has enough idempotents, the assumption
AX = X on a module over A is tantamount to the fact that X is given by the internal direct sum ⊕e∈EeX.

1.1 Invariants and coinvariants in pre-abelian categories having images

1.1.1. For the basics on category theory we refer the reader to [74], that we will follow. We remark that
we shall strictly utilize the categorical terminology in this manuscript, i.e. words such as monomorphism,
epimorphism, etc would always be used in the categorical sense. We recall that a pre-abelian k-linear category
A is a category enriched over the category of k-vector spaces, having all finite products and coproducts
(and they thus coincide, see [74], Cor. I.18.2), kernels and cokernes, and that this implies that A has finite
intersections (see [74], Prop. I.8.1). Let A be a pre-abelian k-linear category having images. For example,
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this is satisfied if A is abelian (see [74], Lemma I.14.4), or A is a locally small k-linear category that is
complete and cocomplete (see [74], I.10). We recall that a category is called complete (resp., cocomplete) if
all small limits (resp., colimits) exist (see [74], II.2), and that the image of a morphism f : A → B is the
smallest subobject i : I → B which f factors though, i.e. a monomorphism i : I → B for which there exists
f̄ : A → I such that f = i ◦ f̄ , and given any subobject j : J → B and any morphism g : A → J such that
f = j ◦ g, there is i′ : I → J satisfying that i = j ◦ i′ (see [74], I.10). This definition of image is in principle
different from Ker(Coker(f )), that we are going to call abelian image. The two notions coincide however
if one further assumes that A is normal, i.e. every monomorphism of A is the kernel of a map (see [74],
Lemma I.14.4). There is of course the dual result, concerning the coimage of a morphism f defined in
[74], I.10, and the abelian coimage Coker(Ker(f )). Given a diagram {(Xi , fi,j )i,j∈I } in a category A , where
fi,j : Xi → Xj is a morphism in A , for all i, j ∈ I , satisfying the usual compatibility assumption, we will
denote the corresponding limit (resp., colimit) by

A -lim
i∈I
Xi (resp., A -colim

i∈I
Xi),

or simply by
lim
i∈I
Xi (resp., colim

i∈I
Xi)

if the category A is clear from the context. We may omit the subscript i ∈ I if its is also clear.

We recall that the sum
∑
i∈I Ai of a family ji : Ai → A of subobjects of A is defined as the image of the

induced morphism j :
∐
i∈I Ai → A. Let A be an object of A , G a finite group and ρ : G→ AutA (A) a group

morphism. The space of invariants AG is defined as the intersection ∩g∈GKer(ρ(g) − idA) and the space of
coinvariants A/G is the cokernel of the subobject

∑
g∈G Im(ρ(g) − idA) of A. It is a trivial exercise to verify

that AG is an isomorphic subobject of A to the kernel of the map ρp : A→
∏
g∈GA whose g-th component is

ρ(g)− idA, and A/G is an isomorphic quotient object of A to the cokernel of the map ρc :
∐
g∈GA→ A whose

g-th component is ρ(g)− idA.
1.1.2 Fact. LetB be any category with images and f : A→ B be a morphism with decomposition f = v ◦u, where
v : I → B is the image of f . If i : A′→ A is a subobject of A, then the image of f ◦ i is a subobject of I .

Proof. This is a direct consequence of the definition. �

1.1.3. We remark that the following result, well-known for the case of the category of abelian groups, also
holds in this case. We show how to adapt the classical proof to apply for this situation (cf. [110], Prop.
6.1.10).
1.1.4 Proposition. Let A be a pre-abelian k-linear category having images, A an object of A , G a finite group,
and ρ : G → AutA (A) a morphism of groups. Then, the natural map AG → A/G, given by the composition of
the inclusion AG→ A and the canonical projection A→ A/G, is an isomorphism. Its inverse is given by the map
ē : A/G→ AG induced by the endomorphism e= (

∑
g∈G ρ(g))/#(G) ∈HomA (A,A).

Proof. Consider e= (
∑
g∈G ρ(g))/#(G) ∈HomA (A,A), which exists sinceA is k-linear (and k has characteris-

tic zero). It is clearly an idempotent, and the same holds for idA−e. Hence, Prop. I.18.5 in [74] tells us that
A is the coproduct of Ker(e) and Ker(idA − e). Moreover, Im(idA − e) ' Ker(e) and Im(e) ' Ker(idA − e) as
subobjects of A. Indeed, let us briefly show the first one. Since e◦(idA−e) = 0, there is a map p : A→ Ker(e)
such that the following diagram commutes and by the definition of image it then gives a monomorphism
Im(idA − e) ↪→ Ker(e) that further makes the diagram

Im(idA − e)� r

$$

o O

��

A

p $$

::

idA−e // A
e // A

Ker(e)
, �

u

::

0

77
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commutative, where u : Ker(e)→ A is the kernel monomorphism of e. Hence Im(idA − e) is a subobject
of Ker(e) inside of A. Note that u : Ker(e) → A satisfies that (idA − e) ◦ u = u. By Fact 1.1.2 we see
that Im(u) = Ker(e) is a subobject of Im(idA − e), which in turn implies the claim Im(idA − e) ' Ker(e).
Taking into account that the previous argument only depends on the idempotency of e, the isomorphism
Im(e) ' Ker(idA − e) of subojects of A follows by interchanging e and idA − e.

Since (ρ(g) − idA) ◦ e = 0, for all g ∈ G, then ρp ◦ e also vanishes, and by the definition of image, there
is a monomorphism Im(e) ↪→∩g∈GKer(ρ(g)− idA) of subobjects of A. On the other hand, from the identity
∇A ◦ ρp = #(G).(idA − e), where ∇A :

∐
g∈GA → A is the codiagonal morphism whose g-th component is

the identity map of A and we are using the canonical isomorphism
∐
g∈GA '

∏
g∈GA, we see that, if v :

∩g∈GKer(ρ(g)− idA)→ A is the kernel monomorphism of ρp, then (idA − e) ◦ v vanishes, so e◦ v = v. Using
again Fact 1.1.2, we conclude that Im(v) = ∩g∈GKer(ρ(g)− idA) is a subobject of Im(e) inside of A, which in
turn implies that they are isomorphic subobjects of A.

Finally, the obvious identity e ◦ (ρ(g) − idA) = 0 for all g ∈ G implies that e ◦ ρc = 0, which in turn
tells us that Im(ρc) is a subobject of Ker(e) inside of A. Since

∑
g∈G Im(ρ(g) − idA) is the image of the map

ρc :
∐
g∈GA→ A defined before and #(G).(idA − e) = ρc ◦∆A, where ∆A : A→

∏
g∈GA is the diagonal map

whose g-th component is the identity map of A and we are using the canonical isomorphism
∏
g∈GA '∐

g∈GA, Fact 1.6.6 implies that Im(idA − e) ' Ker(e) is a subobject of Im(ρc) inside A. As a consequence,∑
g∈G Im(ρ(g) − idA) and Ker(e) are isomorphic subobjects of A. The statement now follows from the easy

fact that A ' Ker(e)⊕Ker(idA − e) implies that AG ' Im(e) ' A/Ker(e) ' A/G. �

1.1.5.Remark. Note that the category A was not assumed to be abelian in the previous proposition, so that
the statement is not a “direct consequence” of the one given for modules.

We also want to caution the reader against automatically identifying invariants and coinvariants. Even
though this is essentially safe when dealing with modules of certain type over algebras (for they usually
form a category satisfying the assumptions of the previous proposition), it is not the case for algebras or
bornological algebras. Indeed, if G is a finite group acting by algebra automorphisms on an algebra A, AG

is naturally a subalgebra of A, whereas A/G has no canonical structure of quotient algebra of A. This is
the reason why the bornological algebras constructed in Chapter 3 are in terms of invariants, whereas the
modules over them are either given as invariants or coinvariants.

1.1.6. We are interested in applying the previous proposition to the case where G = Sm is the symmetric
group of m elements and A = X⊗m is the tensor product of an object X in a symmetric monoidal category.
The categories we would be interested in are given by (mostly complete) bornological locally convex vector
spaces, or by (mostly complete) bornological locally convex modules over a Fréchet algebra. We will first
examine the former case in Section 1.4, whereas the latter will be treated in Section 1.6.

1.2 Basics on locally convex spaces

1.2.1. For the basic definitions and results on topological vector spaces (TVS) and locally convex spaces
(LCS) we refer the reader to [95], Ch. I-IV, or to [104], and also to the very clear exposition [84], where in
particular all the results we need are nicely recalled, referenced and organized. Proposition 1.1.4 applies
to the k-linear category of Hausdorff locally convex spaces LCSHD as well to the category LCS of not nec-
essarily Hausdorff ones, for they are (locally small) complete and cocomplete (see [84], Prop. 2.1.3, 2.1.5,
2.1.8, 3.1.3, and 3.1.4). Moreover, the fully faithful inclusion functor iHD : LCSHD → LCS preserves limits
and coproducts. We remark that the colimits are in general not preserved, because this is already not the
case for cokernels. We caution the reader that that the terms image and coimage of a continuous linear
map in the literature concerning LCS (and in particular in [84]) are what we have called abelian image and
abelian coimage, resp. However, and despite the fact that the category LCS is neither normal nor conormal,
it easily follows from the explicit description of the abelian images and abelian coimages for LCS given in
[84], Prop.2.1.8, that they coincide with the definitions of image and coimage that we follow.
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1.2.2. On the other hand, it is clear to verify that the image of a morphism f in LCSHD coincides with its
image in LCS (i.e. the set-theoretic image), whereas the abelian image is the closure in the codomain of
the set-theoretic image with the induced topology of the codomain (see [84], Prop. 3.1.4). The coimage
of a morphism in LCSHD clearly coincides with the abelian coimage (see [84], Prop. 3.1.4). As an aside,
if X is a Hausdorff LCS endowed with an action of a finite group G, by the proof of Proposition 1.1.4,∑
g∈G Im(ρ(g)− idX ) coincides with the kernel of idX − e, so it must be closed.

1.2.3. We also recall that, given two LCS X and Y , the usual tensor product space X ⊗ Y has a natural
topology of LCS defined as the finest locally convex topology such that the bilinear map X × Y → X ⊗ Y is
continuous (see [95], III.6.1-2), and it is called the projective tensor product X ⊗π Y . It is Hausdorff if X and
Y are (see [95], III.6.2). Equivalently, X ⊗π Y is the unique object in LCS representing the covariant functor
LCS→ k Mod given by sending Z to the vector space B (X,Y ;Z) of continuous bilinear maps X × Y → Z
(see [95], III.6.2).

1.2.4. On the other hand, since the k-linear category LCScHD of complete locally convex spaces is also (lo-
cally small) complete and cocomplete (see [84], Prop. 4.1.6 and 4.1.8), Proposition 1.1.4 applies to it too.
We recall that a locally convex space is said to be complete if it is Hausdorff and every Cauchy net is con-
vergent (see [95], Prerequisites B.6, and I.1.4). The first of the previous references also tell us that the fully
faithful inclusion functor ic : LCScHD → LCSHD preserves limits and coproducts, but it does not necessar-
ily preserves cokernels. Moreover, the inclusion functor iHD ◦ ic has a left adjoint, called the completion
functor, and that is denoted by X 7→ X̂ (see [84], Prop. 4.1.5). The unit of the adjunction will be denoted
by iX : X → X̂, for all LCS X. We caution the reader that the adjective complete is used with two rather
different meanings: one for categories, and the other for locally convex spaces. It is trivial to verify that the
abelian image (resp., coimage) of a morphism of LCScHD described in [84], Prop. 4.1.8, satisfies as well the
definitions of image (resp., coimage) in [74], so they coincide. We also note that, even though the categories
LCSHD and LCS are quasi-abelian (see [84], Prop. 2.1.11 and 3.1.8), LCScHD is not, as proved in [84], Prop.
4.1.14. We have the following stronger result. We recall first that a category is said to be semi-abelian if it
is pre-abelian and the morphism Coker(Ker(f ))→ Ker(Coker(f )), induced by any morphism f : A→ B, is a
monomorphism and an epimorphism.

1.2.5 Lemma. The category LCScHD of complete (Hausdorff) LCS is not semi-abelian. In particular, it is not
quasi-abelian.

Proof. By [104], Ex. 5.3, there is an injective continuous linear map f : X → Y from a Hausdorff LCS X
to a complete LCS Y such that the completion f̂ : X̂ → Y is not injective. Replacing Y by the closure of
f (X) inside of Y , which is complete, we may even assume that f̂ is an epimorphism. Indeed, this follows
from the fact the completion functor is left adjoint to the inclusion functor LCScHD → LCS, so the former
preserves epimorphisms. By [30], Satz 9, there is also a complete LCS Z and a surjective continuous linear
map g : Z → X. Set h = f ◦ g : Z → Y . Then the induced morphism Coker(Ker(h)) → Ker(Coker(h)) is
precisely f̂ , so it is not injective, and thus not a monomorphism (see [84], Prop. 4.1.8 and 4.1.10, to see how
abelian images, abelian coimages, monomorphisms and epimorphisms in LCScHD are). �

1.2.6.Remark. Even though the category LCScHD is not semi-abelian, which is the usual property used in the
homological algebra of locally convex spaces, it is a pre-abelian k-linear category having images, and in
particular Proposition 1.1.4 holds for it.

1.2.7. Given two LCSX and Y , the completion of the projective tensor productX⊗πY is called the completed
projective tensor product, and it is denoted by X⊗̂πY (see [95], III.6.3). It is clear that X⊗̂πY is the unique
object in LCScHD representing the covariant functor LCScHD → k Mod given by sending Z to the vector space
B (X,Y ;Z) of continuous bilinear maps X ×Y → Z (see 1.2.3). It is easy to prove that the map

X⊗̂πY
∼→ X̂⊗̂πŶ , (1.2.1)

given by the completion of iX ⊗ iY , where iX : X → X̂ and iY : Y → Ŷ are the canonical morphisms, is an
isomorphism of LCS, for all LCS X and Y .
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1.2.8. We give the following application of Proposition 1.1.4. In particular it implies that the completion
of the invariant space is isomorphic to the invariant of the completion, which is not immediate in its own,
since, as recalled previously, the completion does not preserve monomorphisms.

1.2.9 Corollary. LetA = LCSHD be the k-linear category of Hausdorff locally convex spaces, and let ˆA = LCScHD
be the k-linear category of complete (Hausdorff) locally convex spaces. Suppose given an object X in A and an
action ρ : G → AutA (X) of a finite group G. Then, ρ induces to a (unique) group homomorphism ρ̂ : G →
Aut ˆA (X̂) on the completion X̂ of X such that ρ̂(g)|X = ρ(g) for all g ∈ G. Moreover, the canonical morphisms

X̂G→ X̂G and X̂/G→ X̂/G are isomorphisms in LCScHD .

Proof. Given g ∈ G, the universal property of the completion (see [104], Thm. 5.2) tells us immediately
that there exists unique linear maps ρ̂(g) : X̂ → X̂ satisfying that ρ̂(g)|X = ρ(g) for all g ∈ G. In fact, ρ̂(g)
is precisely the completion ρ̂(g) of ρ(g). The identity ρ̂(g) ◦ ρ̂(g ′)|X = ρ(g) ◦ ρ(g ′) = ρ(gg ′) = ρ̂(gg ′)|X and
the uniqueness of the family {ρ̂(g)}g∈G implies that ρ̂(g) ◦ ρ̂(g ′) = ρ̂(gg ′), for all g,g ′ ∈ G, so ρ̂ is a group
morphism. Note furthermore that the completion ρ̂c of the map ρc : ⊕g∈GX → X whose g-th coordinate is
ρ(g) − idX is the only morphism ρ̂c : ⊕g∈GX̂ → X̂ whose g-th coordinate is ρ̂(g) − idX̂ . Thus, the cokernel
of ρ̂c is precisely X̂/G, whereas ρ̂c is the completion of the morphism whose cokernel is X/G. By the
universal property of the completion, the functor it determines is the left adjoint to the inclusion functor
ic : LCScHD → LCSHD , so it preserves in particular cokernels (see [74], Prop. II.12.1), which in turn implies
that X̂/G→ X̂/G is an isomorphism.

We have now the commutative diagram

X̂G
∼ //

��

X̂/G

∼

��
X̂G

∼ // X̂/G

We have proved that the right vertical map is an isomorphism, and Proposition 1.1.4 tells us that the
horizontal morphisms are isomorphisms as well. We conclude that the canonical map X̂G → X̂G is an
isomorphism, and the corollary is proved. �

1.3 Basic facts on symmetric monoidal categories

1.3.1. Let C be a (locally small) complete and cocomplete k-linear symmetric monoidal category such that
the tensor product ⊗C commutes with countable colimits on each side. The unit of C will be typically
denoted by IC , the structure morphisms by aX,Y ,Z : (X ⊗C Y ) ⊗C Z → X ⊗C (Y ⊗C Z), lX : IC ⊗C X → X
and rX : X ⊗C IC → X, and the twist by τ(X,Y ) : X ⊗C Y → Y ⊗C X, for all objects X,Y ,Z of C . We refer
the reader to [68], VII.1 and VII.7, or [61], Def. XI.2.1 and XIII.1.1, and XIII.1.5, for the corresponding
axioms. If we do not impose the existence of a unit IC and of the corresponding structure maps lX and
rX , then we will say that C is nonunitary. This is called a semigroup category in [37], 13.1. We recall that
the usual definitions of non(co)unitary (co)algebra, nonunitary and noncounitary bialgebra, (co)module,
etc. done for the category of vector spaces make sense in any nonunitary monoidal category C , whereas
the unitary and counitary versions make sense for any monoidal category C (cf. [68], VII). They will be
called C -(co)algebra (or (co)algebra in C ), C -bialgebra, (co)module in C , etc., (decorated with adjectives
such as “(non)unitary” or “(non)counitary”) to emphasize the underlying (nonunitary) monoidal category.
The notions of (co)commutative (co)algebra –(co)unitary or not–, tensor product of (co)algebras, etc. need
however further structure on C , which is at least satisfied if C is symmetric. The category of nonuni-
tary C -algebras (resp., unitary C -algebras) provided with the usual morphisms of algebras (resp., unitary
algebras) will be denoted by Alg(C ) (resp., uAlg(C )), whereas that of noncounitary C -coalgebras (resp.,
counitary C -coalgebras) provided with the usual morphisms of coalgebras (resp., counitary coalgebras)
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will be denoted by Cog(C ) (resp., cCog(C )), to emphasize the monoidal category C . The corresponding
full subcategory of Alg(C ) (resp., uAlg(C )) formed by the commutative algebras will be be denoted by
cAlg(C ) (resp., cuAlg(C )), whereas the full subcategory of Cog(C ) (resp., cCog(C )) formed by cocommu-
tative coalgebras will be denoted by cCog(C ) (resp., c cCog(C )). Moreover, given (unitary or not)C -algebra
A, its category of (left) modules over A in C will be denoted by AMod(C ), where we assume that a mod-
ule satisfies the usual unitary condition in case the algebra is unitary. Analogously, if C is a (counitary or
not) C -coalgebra, its category of (left) comodules over C in C will be denoted by C coMod(C ), where we
assume that a comodule satisfies the usual counitary condition in case the coalgebra is counitary. We may
incidentally omit the category C if it is clear from the context, or in the case when C is the category of
vector spaces over k with the usual symmetric monoidal structure.

1.3.2.Remark. Note that the tensor product and direct sums of (co)commutative (co)unitary (co)algebras in
a symmetric monoidal category C whose tensor product commutes with colimits on each side is also a
(co)commutative (co)algebra in C (resp., (co)commutative (co)unitary (co)algebra in C ).

1.3.3. Some interesting examples of symmetric monoidal categories we may consider are LCS, LCSHD ,
LCScHD (see Section 1.2 for the definitions) or even the category AMod of modules over a commutative
algebra A, where the first two categories are endowed with the projective tensor product ⊗π (see 1.2.3), the
unit k and the twist is given by the usual flip, whereas the third one has the completed projective tensor
product ⊗̂π (see 1.2.7), the same unit, and the twist is the completion of that of LCSHD . However, one major
disadvantage of the first three categories is that the tensor product does not commute in general with direct
sums on each side. It is for this reason that we may instead deal with the categories of bornological and
of convenient vector spaces (see Section 1.4 for the definitions). Indeed, these categories are symmetric
monoidal, where the first two are endowed with the bornological tensor product ⊗β , the unit k and the
twists given by the usual flip, whereas the last one is endowed with the convenient tensor product ⊗̃β ,
the unit k and the twist defined as the unique continuous linear extension of the twist of BLCSHD . As
shown in (1.4.7) and (1.4.12), the tensor product of each of these category commutes with colimits on each
side. Another important example of symmetric monoidal categories where the tensor product commutes
with arbitrary colimits on each side is the category of (co)modules over a commutative and cocommutative
unitary and counitary bialgebra B in C , where the tensor product is given by the usual formula (see [75],
Def. 1.8.2), and the unit and twist are the ones induced by those of C .

1.3.4. Consider an object X in C . Given m ∈N0, X⊗C m has a natural action of the symmetric group Sm of
m elements (see [68], Thm. XI.1.1) so it makes sense to consider the spaces of invariants ΣmC X = (X⊗C m)Sm

and of coinvariants SmC X = X⊗C m/Sm. By Proposition 1.1.4 they are canonically isomorphic in C .

1.3.5 Corollary. Let LCSHD be the k-linear category of Hausdorff locally convex spaces, and let LCScHD be the
k-linear category of complete (Hausdorff) locally convex spaces. Suppose given an object Y in LCSHD . Then, the

canonical morphisms (Y ⊗πm)Sm
∧

→ (Ŷ ⊗̂πm)Sm and (Y ⊗πm)/Sm
∧

→ (Ŷ ⊗̂πm)/Sm are isomorphisms in LCScHD .

The proof is a direct application of Corollaries 1.2.9 together with property (1.2.1) of the completion of
the projective tensor product.

1.3.6. We recall that a k-linear functor F : C → C ′ between two k-linear symmetric monoidal categories
C and C ′ is called lax symmetric monoidal if it satisfies the same axioms as those given in [61], Def. XI.4.1
and XIII.3.6, except that the coherence maps (denoted there by ϕ0 : IC ′ → F(IC ), where IC is the unit of
C and IC ′ is the unit of C ′ , and by ϕ2(X,Y ) : F(X) ⊗C ′ F(Y )→ F(X ⊗C Y ), for all X,Y objects of C ) are
not required to be isomorphisms. We say that F is oplax symmetric monoidal if Fop : C op → C ′op is lax
symmetric monoidal. In this case, the coherence maps are morphisms in C ′ of the form ϕ0 : F(IC )→ IC ′ ,
where IC is the unit of C and IC ′ is the unit of C ′ , and by ϕ2(X,Y ) : F(X ⊗C Y )→ F(X)⊗C ′ F(Y ), for all
X,Y objects of C . Finally, a lax symmetric monoidal functor F is said to be strong symmetric monoidal (or
just symmetric monoidal) if ϕ0 and ϕ2(X,Y ) are isomorphisms of C ′ , for all X and Y objects of C . If C and
C ′ are nonunitary, a nonunitary lax (resp., oplax, strong) symmetric monoidal functor F :C →C ′ is given
by the same definition as before but without imposing any constraint regarding the units of C and of C ′ .

6



1.3.7 Lemma. Let (A ,⊗A , IA , τA ) and (B ,⊗B , IB , τB ) be two k-linear closed symmetric monoidal categories,
and let F : A → B and G : B → A be two k-linear functors such that F is oplax symmetric (with coherence
morphisms ϕ0 and ϕ2), and there is an adjunction for the pair (F,G) given by the k-linear natural isomorphisms

φX,Y : HomB
(
F(X),Y

) ∼→HomA
(
X,G(Y )

)
. (1.3.1)

We will denote the internal homomorphism spaces of A and ofB by HomA (−,−) and HomB (−,−), respectively.
Assume that the coherence map ϕ0 : F(IA )→ IB is an isomorphism. Then, the following are equivalent

(i) F is strong monoidal;

(ii) there are isomorphisms

ΦX,Y : G
(
HomB

(
F(X),Y

)) ∼→HomA (
X,G(Y )

)
(1.3.2)

in A , natural in all objects X in A and Y inB , such that the diagram

HomB
(
F(X)⊗B F(Z),Y

)
HomB

(
ϕ2(X,Z),Y

)
��

∼ // HomB
(
F(Z),HomB

(
F(X),Y

)) ∼ // HomA

(
Z,G

(
HomB

(
F(X),Y

)))
HomB (Z,ΦX,Y )

��

HomB
(
F
(
X ⊗A Z

)
,Y

)
∼ // HomA

(
X ⊗A Z,G(Y )

) ∼ // HomA
(
Z,HomA

(
X,G(Y )

))
(1.3.3)

commutes for all objects X and Z in A , and Y in B , where the upper left and lower right horizontal
isomorphisms are due to the adjunction between the tensor product and the internal homomorphism space,
whereas the upper right and lower left horizontal ones follow from the adjunction (1.3.1) between F and G.

Moreover, the morphisms (1.3.2) satisfy the following conditions. First, the diagram

G
(
HomB

(
F(IA ),Y

)) ΦIA ,Y //

G
(
HomB (φ−1

0 ,Y )
)

��

HomA
(
IA ,G(Y )

)
∼

��
G
(
HomB

(
IB ,Y

)) ∼ // G(Y )

(1.3.4)

commutes for all objects Y inB , where the right vertical isomorphism is induced by the adjunction between the
tensor product and the internal homomorphism spaces in A , and the lower horizontal isomorphism is given by
the image under G of the isomorphism induced by the adjunction between the tensor product and the internal
homomorphism spaces inB . Finally, the isomorphism given as the composition of

HomB
(
F(X),Y

) ∼→HomB
(
IB ,HomB

(
F(X),Y

)) ∼→HomB
(
F(IA ),HomB

(
F(X),Y

))
∼→HomA

(
IA ,G

(
HomB

(
F(X),Y

))) ∼→HomA
(
IA ,HomA

(
X,G(Y )

)) ∼→HomA
(
X,G(Y )

) (1.3.5)

coincides with φX,Y , where the first and last one are due to the adjunction between the tensor product and the
internal homomorphism space, the second isomorphism is induced by ϕ0, the third one is the adjunction φIA ,Z
between F and G, with Z =HomB (F(X),Y ), and the fourth one is HomA (IA ,ΦX,Y ).

Proof. Assume that condition in (i) holds. Then, diagram (1.3.3) determines ΦX,Y in terms of ϕ2(X,Z) :
F(X ⊗A Z)→ F(X)⊗B F(Z), and establishes that one is an isomorphism if and only the other is, because
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all the remaining arrows in diagram (1.3.3) are isomorphisms. The naturality of ΦX,Y follows from that
of the arrows in diagram (1.3.3), proving (ii). To prove the converse, note that diagram (1.3.3) implies
that HomB (ϕ2(X,Z),Y ) is a natural isomorphism in X, Y and Z, so, by the Yoneda Lemma, ϕ2(X,Z) is an
isomorphism, for all X and Z, as was to be shown. Finally, the fact that F is strong monoidal with respect
to the coherence morphism ϕ0 implies that ΦX,Y satisfies conditions (1.3.4) and (1.3.5). �

1.4 Basics on bornological locally convex vector spaces

1.4.1. For the basics on bornological LCS we refer the reader to [95], II.8. A nice unpublished exposition
on bornological spaces may be found in [85], whereas a more comprehensive one is given in [49, 50]. For
the basics on locally complete LCS, we refer the reader to the fundamental book [82]. See also [41], Ch. 2,
for a very nice source on such spaces, or the more recent and also very nice exposition [64], Ch. I. However,
since some of these notions are not so well-known, we will briefly summarize those we need.

1.4.2. For later use, we recall that, given two subsets A and B of a vector space X, A absorbs B if there exists
c0 ∈ k such that B ⊆ cA, for all c ∈ k such that |c| ≥ |c0|. A subset A of the vector space X is called radial
(absorbing) if it absorbs every finite subset of X, and it is called balanced (or circled) if cA ⊂ A for all c ∈ k
such that |c| ≤ 1. Given a balanced convex subset B ⊆ X, XB denotes the vector subspace of X spanned by
B provided with the seminorm µB defined as µB(x) = inf{λ ∈ R≥0 : x ∈ λ.B}. Note that if B ⊆ B′ , for two
balanced convex subsets of X, then the natural inclusion mapping XB→ XB′ is a continuous linear map for
the corresponding seminorms. This determines an inductive system {XB}B, where B runs over the balanced
convex subsets of X. On the other hand, we recall that a barrel of a LCS X is a radial, balanced, convex, and
closed subset of X. A LCS X is said to be barreled if every barrel is a (closed) neighborhood of the origin of
X. We recall that the inductive limit (in the category LCS) of a system of barreled LCS is barreled (see [95],
II.7.2, Cor. 2).

1.4.3. A LCS X is said to be Schwartz, if for every balanced, closed, convex neighborhood U of the origin of
X, there exists a neighborhood V of the origin of X such that for every c > 0, the set V can be covered by
finitely many translates of cU . We recall that the projective limit of a system of Schwartz LCS is Schwartz
(see [57], Prop. 3.15.6), the quotient of a Schwartz LCS by a subspace is Schwartz (see [57], Prop. 3.15.7),
and the strict inductive limit of a system of Schwartz LCS is Schwartz (see [57], Prop. 3.15.8).

1.4.4. A subset B ⊆ X of a LCS is said to be bounded if given any neighborhood U of zero in X, there exists
λ ∈ k such that B ⊆ λU . Note that if B is a bounded balanced convex subset of a LCS X, then the inclusion
map XB→ X is continuous, and if X is further assumed to be Hausdorff, then the seminorm µB of XB is in
fact a norm (see [95], II.8.3). A (not necessarily continuous nor linear) map f : X → Y between two LCS
is called bounded (or bornological) if the direct image f (B) of any bounded subset of X is bounded in Y .1

Note that any continuous linear map is bounded but the converse does not hold in general (see [95], I.5.4).
Let us recall that a LCS X is bornological if any bounded linear map f : X → Y from X to any LCS Y is
continuous. This is tantamount to say that every balanced convex subset of X that absorbs every bounded
set of X is a neighborhood of zero in X (see [95], II.8, II.8.3 and Exercise II.18). Given any LCS X, let BX
be the set of bounded sets of X. Then the set of locally convex topologies on X whose bounded sets are
precisely BX has a supremum (for the inclusion). The resulting structure of LCS on X it determines is
called the bornological LCS associated with X, and it is denoted by Xborn. Equivalently, Xborn is the colimit
in LCS of the inductive system {XB}B, where B runs over all bounded balanced convex sets of X, and the
morphisms as those explained in 1.4.2 (see [95], II.8.3). The identity map Xborn → X is clearly bounded,
and its inverse is continuous. In consequence, a LCS X is bornological if and only if X = Xborn. We will
denote the category of bornological LCS (resp., Hausdorff bornological LCS) provided with continuous (or,
equivalently, bounded) linear maps between them by BLCS (resp., BLCSHD ). We will regard it as a full
subcategory of the category LCS (resp., LCSHD ), and we will call the inclusion functor inc (resp., incHD ).
Note that the inclusion functor inc (resp., incHD ) does not preserve limits, or even subobjects, because the

1The former is not the terminology of [95], only the latter.
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subspace topology of vector subspace Y of a bornological LCS X is not necessarily bornological (see [95],
Exercise IV.20). We will denote the canonical inclusion functor BLCSHD → BLCS by ibHD . It is clear that
inc ◦ ibHD = iHD ◦ incHD , for the functor iHD defined in 1.2.1.

1.4.5. It will be useful to provide another description of bornological LCS (resp., Hausdorff bornological
LCS). We recall that a bornological space of convex type (resp., Hausdorff bornological space of convex type) is
a vector space X together with a family B of subsets of X that contains all singletons, it is closed under
finite unions, multiplication by positive scalars, convex hulls and descending inclusions (resp., and such
that XB is a normed space for all balanced convex B ∈B). See [85], Def. 1.1 (resp., and 4.1). The elements
of B are called the bounded subsets of bornological space of convex type X. The definition of bounded
(or bornological) linear map between bornological spaces of convex type is phrased in the same way as
before, i.e. it is a linear map sending bounded sets to bounded sets. We denote by Borno (resp., BornoHD )
the category of bornological spaces of convex type (resp., Hausdorff bornological spaces of convex type)
provided with bounded linear maps, and we denote by iborHD : BornoHD → Borno the inclusion functor.
The category Borno (resp., BornoHD ) is (locally small) quasi-abelian, complete and cocomplete (see [85],
Prop. 1.8, 1.9, 4.10, and 4.12), and the inclusion functor iborHD preserves limits and coproducts, but it does
not necessarily preserves cokernels (see [85], Prop. 1.2, 1.5, 4.5, and 4.6).

1.4.6. There is a canonical functor vN : LCS → Borno (resp., vNHD : LCSHD → BornoHD ) sending a
bornological LCS X (resp., Hausdorff bornological LCS) to the same vector space X provided with its fam-
ily of bounded sets BX . We denote the composition of the inclusion functor (resp., incHD ) inc given in
1.4.4 and vN (resp., vNHD ) by inb : BLCS → Borno (resp., inbHD : BLCSHD → BornoHD ). Note that inb
(resp., inbHD ) is a fully faithful functor by the definition of bornological LCS. Moreover, define a functor
b : Borno → LCS (resp., bHD : BornoHD → LCSHD ) sending the bornological space of convex type (resp.,
Hausdorff bornological space of convex type) X provided with the family B to the same vector space X
provided with the locally convex topology generated by the basis of neighborhoods of zero formed by the
balanced convex subsets U of X that absorb all elements B ∈B.

1.4.7 Lemma. The functors defined in 1.2.1, 1.4.4, 1.4.5, and 1.4.6 give the following commutative diagram

BornoHD
iborHD //

bHD

��

Borno

b

��

BLCSHD
ibHD

//

incHD &&

inbHD

88

BLCS

inc $$

inb

::

LCSHD
iHD

//

vNHD

WW

LCS

vN

XX (1.4.1)

where the functors that are not vertical are fully faithful, and the upward vertical functors are left adjoint to the
corresponding downward vertical ones. Furthermore, b◦vN (resp., bHD◦vNHD) factors through inc (resp., incHD),
the functor it determines is precisely X 7→ Xborn, which is the right adjoint of inc (resp., incHD). Analogously,
vN ◦ b (resp., vNHD ◦ bHD) factors through inb (resp., inbHD), and the functor it determines is the left adjoint of
inb (resp., inbHD).

Proof. The only remaining identities to check are given by b ◦ inb = inc and bHD ◦ inbHD = incHD . They
are a direct consequence of the fact that every balanced convex subset of a bornological LCS that absorbs
every bounded set is a neighborhood of zero (see 1.4.4). The mentioned adjunctions are a direct con-
sequence of the definition of bornological LCS, and the fact that the identity map X → vN(b(X)) (resp.,
X→ vNHD (bHD (X))) is bornological, for all bornological spaces of convex type (resp., Hausdorff bornolog-
ical spaces of convex type) X, and the identity map b(vN(Y )) → Y (resp., bHD (vNHD (Y )) → Y ) is clearly
continuous, for all LCS (resp., Hausdorff LCS) Y . The first part of the last two statement, concerning the
bornological LCS associated with a LCS, is immediate. For the last part, note first that, by definition, the
family of bounded sets of Xborn coincides with the family of bounded sets of X, so vN ◦ b ◦ vN = vN (resp.,
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vNHD ◦ bHD ◦ vNHD = vNHD ). Denote for the moment the functor on BLCS (resp., BLCSHD ) sending X to
Xborn by F, and defineG as F◦b (resp., F◦bHD ). We claim that vN◦b = inb◦G (resp., vNHD◦bHD = inbHD◦G).
Indeed, from the previous comments we have

inb ◦G = inb ◦F ◦ b = vN ◦ inc ◦F ◦ b = vN ◦ b ◦ vN ◦ b = vN ◦ b,

where we have used in the last equality that vN◦b◦vN = vN, and similarly for the Hausdorff case. The fact
that G is left adjoint of inb (resp., inbHD ) is easily verified. �

1.4.8 Corollary. The category BLCS (resp., BLCSHD) is (locally small) complete and cocomplete, and the inclu-
sion functor inc (resp., incHD) inside of LCS (resp., LCSHD) preserves colimits and countable products, whereas
the inclusion functor inb (resp., inbHD) inside of Borno (resp., BornoHD) preserves limits. As a consequence,
ibHD preserves limits and coproducts.

Proof. We prove the case for colimits, because the other is analogous. Since the inclusion functor inc (resp.,
incHD ) is a left adjoint it preserves colimits. Given an inductive system {Xj }j∈J in BLCS (resp., BLCSHD ),
the cocompleteness of LCS (resp., LCSHD ) tells us that the colimit X of the inductive system {inc(Xj )}j∈J
(resp., {incHD (Xj )}j∈J ) exists, and hence a simple diagrammatic argument shows that Xborn is the colimit
of {Xj }j∈J = {(inb(Xj ))born}j∈J (resp., {Xj }j∈J = {(inbHD (Xj ))born}j∈J ). As the latter is in BLCS (resp., BLCSHD ),
its cocompleteness follows. The last part follows from the fact that inc (resp., incHD ) is a left adjoint. The
statement concerning countable products follows from [82], Cor. 6.2.11. The corollary is thus proved. �

1.4.9. There is yet another equivalent description of bornological LCS (resp., Hausdorff bornological LCS)
in [41], Def. 2.4.2, (resp., Def. 2.4.2 and 2.5.3) under the name of preconvenient space (resp., separated
preconvenient space). For the equivalence between the definitions recalled here and those of the mentioned
reference, see [41], Thm. 2.4.3 and Thm. 2.5.2.

1.4.10 Lemma. Let X be a pseudometrizable LCS. Then it is bornological.

For a proof, see [95], II.8.1, which applies verbatim.

1.4.11. Let us first recall that a sequence {xn}n∈N in a Hausdorff LCS X is called locally convergent to x ∈ X
(resp., locally Cauchy) if there is a bounded balanced convex set B ⊆ X such that x ∈ XB, {xn}n∈N is included
in XB and it converges to x in (XB,µB) (resp., {xn}n∈N is included in XB and it is a Cauchy sequence in
(XB,µB)) (see [82], Def. 5.1.1), where (XB,µB) is the seminormed space recalled in 1.4.2. The point x ∈ X is
called the local limit of the locally convergent sequence {xn}n∈N. It is easy to see that any locally convergent
(resp., locally Cauchy) sequence is convergent (resp., Cauchy) (see [82], Prop. 5.1.3). A Hausdorff locally
convex space X is said to satisfy the Mackey convergence condition (resp., strict Mackey condition), or M.c.c.
(resp., s.M.c.) for short, if every convergent sequence in X is locally convergent (resp., for every bounded
set A ⊆ X there is a bounded balanced closed convex set B ⊆ X including A such that the topology on A
induced by X coincides with the topology induced by XB). It is clear that if X satisfies the s.M.c., then the
M.c.c. also holds, and that any metrizable LCS satisfies the s.M.c. (see [82], Obs. 5.1.30). The M.c.c. (resp.,
s.M.c.) is stable under taking subspaces, and forming countable products and countable coproducts (see
[82], Prop. 5.1.31), so in particular under countable limits. A subset A ⊆ X is called locally closed if every
local limit of a locally convergent sequence {xn}n∈N in A belongs to A, and the local closure of a subset A of
X is defined as the intersection of all the locally closed subsets of X including A (see [82], Def. 5.1.14 and
5.1.18). The local closure of A clearly includes all the local limits of locally convergent sequences included
in A, but the converse does not hold in general (see for instance [41], Example 6.3.1). We now recall that
a Hausdorff locally convex space X is called Mackey complete (or locally complete) if each locally Cauchy
sequence is locally convergent (see [82], Def. 5.1.5). Equivalently, X is locally complete if and only if given
any bounded balanced convex set B ⊆ X, there is another bounded balanced convex set B′ ⊆ X such that
B ⊆ B′ and the normed space (XB′ ,µB′ ) recalled in 1.4.2 is a Banach space. For the equivalence between
both definitions see [82], Prop. 5.1.6 (or [41], Thm. 2.6.2, for other equivalent descriptions). The last
definition immediately tells us that X is locally complete if and only if Xborn is so. For this reason, define
a convenient LCS to be a bornological locally complete LCS (see [41], Def. 2.6.3). Denote by CLCSHD the
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category of convenient LCS provided with continuous (or, equivalently, bounded) linear maps. It is a full
subcategory of BLCSHD via the inclusion functor ibc : CLCSHD → BLCSHD . Furthermore, for any LCS X
there is a locally complete LCS X̃ and a continuous linear map iX : X→ X̃ such that, given any continuous
linear map f : X→ Y into a locally complete LCS Y , there exists a unique continuous linear map f̃ : X̃→ Y
such that f = f̃ ◦ iX . We call (X̃, iX ) (or just X̃, for simplicity) the local completion of the LCS X. In more
concrete terms, if X → X̂ is the usual completion of X, then X̃ can be constructed as the local closure of
the image of X in X̂ under the previous map, and iX : X → X̃ is the corestriction of X → X̂ (see [82], Prop.
5.1.21). As the reader could have noticed, we shall denote without any harm both maps X→ X̂ and X→ X̃
by iX . For the fact that the previous construction fulfills the universal property of the local completion
mentioned previously, see [82], Prop. 5.1.25. Moreover, the local completion X̃ of a bornological LCS X is
also bornological (see [82], Prop. 6.2.8). This implies that the inclusion functor ibHD ◦ ibc has as left adjoint
the functor X 7→ X̃, which is called in this case the convenient completion (cf. [41], Thm. 2.6.5). Hence, given
a bornological LCS X and a convenient LCS Y , we have the isomorphism

Hom(X̃,Y )
∼→ Hom(X,Y ) (1.4.2)

of vector spaces given by φ 7→ φ ◦ iX , where iX : X→ X̃ is the canonical map.

1.4.12 Fact. Let X be a Hausdorff locally convex space, and let (X̂, iX ) be its completion. Assume that iX(X) is
sequentially dense in X̂ (i.e., every point of X̂ is the limit of a convergent sequence in iX(X)) and that X̂ satisfies
the M.c.c. Then, the local completion X̃ coincides with the completion X̂.

1.4.13.Remark. The main reason for using the local (or even the convenient) completion instead of the usual
one for LCS is the fact that the completion of a bornological LCS is not necessarily bornological (see [106]).
This can be regarded as somehow pathological because in all our situations of interest the bornological LCS
would be given by a finite bornological tensor product of either spaces of sections (sometimes of compact
support) of vector bundles, or of duals of them, for which the convenient completion coincides with the
usual completion (see Propositions 2.3.13 and 4.2.2). However, the convenient completion fits better in the
categorical picture presented here, justifying its treatment.

1.4.14. One says that a Hausdorff bornological space of convex type is bornologically complete if it fulfills
precisely the second statement of the definition for the local completeness given in 1.4.11. This is precisely
what is called a complete (convex) bornological space in [49], Ch. III, or a complete bornological space of
convex type in [85], Section 5. However, we will not follow this terminology in order to avoid any confusion
with the usual notion of completeness of LCS. Bornologically complete bornological spaces of convex type
form a full subcategoryBornobcHD ofBornoHD that is (locally small) quasi-abelian, complete and cocomplete
(see [85], Prop. 5.6). Denote the inclusion functor of BornobcHD inside of BornoHD by iborc. It preserves
limits and colimits (see [85], Prop. 5.5 and 5.6). Furthermore, the inclusion functor iborHD ◦ iborc has
a left adjoint, that we denote by X 7→ �X, and that it is called the bornological completion (see [85], Def.
5.10 and Prop. 5.11). In the previous reference, it is also showed that the bornological completion �X of
a bornologically complete bornological space of convex type X coincides with X, and �X is given by the
inductive limit in BornoHD of the system {vNHD (X̂B)}B, where B runs over all bounded balanced convex
subsets of X, X̂B denotes the Banach space defined as the usual completion of the seminormed vector space
XB, and the morphisms in the system are the image under vNHD of the completion of those described in
1.4.2 for {XB}B. As a consequence,

bHD (�X) = bHD
(
colimvNHD (X̂B)

)
' colimbHD

(
vNHD (X̂B)

)
= colim(X̂B)born = colim X̂B,

where we have used that bHD preserves colimits (by Lemma 1.4.7), that bHD (vNHD (X)) = Xborn for any
Hausdorff LCS, and that any Banach space is bornological (see Lemma 1.4.10).

1.4.15. By definition, it is immediate that the image of inbHD ◦ ibc is included in BornobcHD . Let us denote
the induced functor by inbc : CLCSHD →BornobcHD .
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1.4.16 Fact. The category CLCSHD is (locally small) complete and cocomplete. Furthermore, the inclusion functor
ibc : CLCSHD → BLCSHD preserves coproducts and limits, whereas the functor inbc : CLCSHD → BornobcHD
preserves limits.

Proof. For the statement concerning the completeness and the fact that ibc preserves limits, we proceed as
follows. By definition, a Hausdorff bornological LCS Y is convenient if and only if inbHD (Y ) is bornologi-
cally complete. Given a projective family {Xj }j∈J in CLCSHD , the limit X of {ibc(Xj )}j∈J in BLCSHD exists,
due to the completeness of the latter category (see Corollary 1.4.8). The fact that inbHD preserves limits
tells us that inbHD (X) is the limit of {inbHD (ibc(Xj ))}j∈J in BornoHD . Since inbHD (ibc(Xj )) is bornologically
complete and iborc preserves limits, we see that inbHD (X) is bornologically complete, which in turn implies
that X is convenient, and the limit of {Xj }j∈J . Moreover, ibc and iborc preserve limits.

Let us now prove the statement concerning the cocompleteness. Given an inductive family {Xj }j∈J , the
cocompleteness of BLCSHD tells us that X = colim ibc(Xj ) exists, and its convenient completion X̃ belongs
to CLCSHD . It is trivially verified that X̃ is the colimit of the family {Xj }j∈J in CLCSHD . Finally, it remains
to prove that ibc preserves coproducts. Taking into account that the coproduct in CLCSHD is given as the
convenient completion of the coproduct in BLCSHD , and the functor incHD in 1.4.4 preserves colimits, it
suffices to shows that a coproduct of convenient LCS (taken in LCSHD ) is convenient. As we already know
that a coproduct of bornological LCS is bornological, it suffices to show that the coproduct in LCSHD of
locally complete LCS is locally complete. This follows easily from the definition, taking into account that
the bounded subsets of a coproduct are precisely of the form described in [85], Prop. 1.2.(a). �

1.4.17 Fact. The coproduct of a family of objects in the category BLCS is convenient if and only if each member of
the family is so.

Proof. The if part was proved in Fact 1.4.16. For the converse, given a coproduct ⊕j∈JXj of objects in BLCS
that is convenient, and a fixed index j0 ∈ J , take the cokernel of the continuous linear map ⊕j∈JXj →⊕j∈JXj
induced by the the canonical inclusion Xj ′ →⊕j∈JXj for all j ′ ∈ J \{j0} and the zero morphism Xj0 →⊕j∈JXj .
This is precisely Xj0 , so the result follows. �

1.4.18. We may now complete the information conveyed in Lemma 1.4.7 and Corollary 1.4.8 by including
in the following diagram the different complete and cocomplete categories we have recalled previously,
together with the results stated in 1.4.14 and Fact 1.4.16,

BornobcHD
iborc // BornoHD

iborHD // Borno

�(−)

ss

b

��

CLCSHD
ibc //

inbc

88

BLCSHD
ibHD //

incHD &&

inbHD

88

BLCS

inc $$

inb

;;

(̃−)
kk

LCScHD ic

// LCSHD
iHD

//

vNHD

WW

��

bHD

LCS

vN

WW

(̂−)

kk

(1.4.3)

where all the subdiagrams not involving the different completion functors (̂−), (̃−) or �(−) are commutative,
and all the functors that are not vertical and are not the previously mentioned completion functors are
fully faithful. Moreover, all the horizontal functors preserve limits and coproducts, and iborc also preserves
colimits. We also recall that the downward vertical functors are left adjoint to the corresponding upward
vertical functors, and that the upward sloping functors preserve limits, whereas the downward sloping
functors preserve colimits and countable products.
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1.4.19 Lemma. Let X be a pseudometrizable (so bornological, by Lemma 1.4.10) LCS. Then, its convenient com-
pletion (or, equivalently, its local completion) X̃ is metrizable.

Proof. By the construction of the local completion in [82], Def. 5.1.21, there is a canonical injective contin-
uous map from the convenient completion of X to its usual completion. Furthermore, taking into account
that the completion of a pseudometrizable LCS is metrizable, we conclude that X̃ has a topology finer than
that of its image inside of X̂, which is metrizable. Hence X̃ is metrizable, and the lemma follows. �

1.4.20 Lemma. Let X be a pseudometrizable (so bornological, by Lemma 1.4.10) LCS. Then, X is convenient (or
equivalently, locally complete) if and only if it is complete.

For a proof, see [82], Prop. 5.1.4 and Obs. 5.1.22.

1.4.21 Corollary. Let X be a pseudometrizable (so bornological, by Lemma 1.4.10) LCS. Then, its convenient
completion (or, equivalently, its local completion) X̃ is isomorphic to its usual completion X̂.

This follows from Lemmas 1.4.19 and 1.4.20.

1.4.22. By Corollary 1.4.21 and [82], Prop. 5.1.25, we see that that a Hausdorff LCS X is locally complete
if and only if given any continuous linear map f : Y → X from a normed space Y , there exists a continuous
linear extension f̂ : Ŷ → X from the completion Ŷ of Y , i.e. f̂ ◦ iY = f , where iY : Y → Ŷ is the canonical
map. Indeed, the only if part is precisely [82], Cor. 5.1.26, whereas the converse follows directly from
taking Y = XB, for any B bounded balanced convex subset of X. In particular, we see that any complete LCS
is a fortiori locally complete.

1.4.23. Given two LCS X and Y , one defines the bornological (projective) tensor product X ⊗β Y as the LCS
whose underlying vector space is the algebraic tensor product X⊗Y provided with the finest locally convex
topology such that the canonical projection X ×Y → X ⊗Y is bounded, where X ×Y has the usual product
topology. Equivalently, X ⊗β Y is a representation of the covariant functor LCS→ k Mod sending Z to the
spaceBb(X,Y ;Z) of bounded bilinear maps X×Y → Z. It is clear that X⊗βY is bornological (see [64], I.5.7).
Moreover, it is easy to prove that the bornological tensor product X ⊗β Y is Hausdorff if both X and Y are
so (see [41], Prop. 3.8.3), and it satisfies the usual associativity relation (X ⊗β Y )⊗β Z ' X ⊗β (Y ⊗β Z), the
unit constraints k⊗βX ' X ' X⊗β k, and the commutativity X⊗β Y ' Y ⊗βX, for all LCS X,Y ,Z, and where
the previous isomorphisms are only bornological (see [64], Thm. I.5.7). We remark that the topology on
the bornological tensor product X ⊗β Y is in general finer than the usual projective tensor product X ⊗π Y ,
i.e. the identity map

eX,Y : X ⊗β Y → X ⊗π Y (1.4.4)

is continuous. It is further an isomorphism of LCS if both X and Y are pseudometrizable (see [64], Prop.
I.5.8).

1.4.24. Given two bornological LCS X and Y , we will endow the space of continuous morphisms Hom(X,Y )
from X to Y with the finest locally convex topology whose bounded sets are the equibounded sets of linear
maps, i.e. the subsets F of Hom(X,Y ) satisfying that for every bounded subset B ⊆ X, ∪f ∈F f (B) is a

bounded subset of Y . This bornological LCS will be denoted by Hom[(X,Y ). It is easy to prove that BLCS
(resp., BLCSHD ) is a closed symmetric monoidal category, or, equivalently, there is an internal homomorphism
space Hom[(−,−) for the symmetric monoidal category BLCS (resp., BLCSHD ), i.e. we have natural k-linear
isomorphisms

Hom
(
Y ,Hom[(X,Z)

) ∼← Hom(X ⊗β Y ,Z)
∼→ Hom

(
X,Hom[(Y ,Z)

)
, (1.4.5)

for all objects X, Y , and Z in BLCS (resp., BLCSHD ), where the left map takes f to the morphism sending
y ∈ Y to the mapping x 7→ f (x⊗y), and the right map takes g to the morphism sending x ∈ X to the mapping
y 7→ f (x ⊗ y) (see [41], Prop. 3.8.1 and 3.8.3, and the comments after). By a general categorical argument,
the isomorphisms in (1.4.5) are even of bornological LCS if all the homomorphisms spaces are internal.
Indeed, the proof of the isomorphism between the internal versions of the first two terms in (1.4.5) follows
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from the chain of isomorphisms of vector spaces given by

Hom

(
W,Hom[

(
Y ,Hom[(X,Z)

)) ∼← Hom
(
Y ⊗βW,Hom[(X,Z)

) ∼← Hom
(
X ⊗β (Y ⊗βW ),Z

)
∼→ Hom

(
(X ⊗β Y )⊗βW,Z

) ∼→ Hom
(
W,Hom[(X ⊗β Y ,Z)

)
,

(1.4.6)

for all W in BLCS (resp., BLCSHD ). By the adjunction between the bornological tensor functor ⊗β and the

internal homomorphism Hom[(−,−), we obtain the isomorphisms in BLCS (resp., BLCSHD ) of the form

colim
j∈J

(
X ⊗β Yj

)
' X ⊗β

(
colim
j∈J

Yj

)
, (1.4.7)

for any bornological LCS (resp., Hausdorff bornological LCS) X and any system {Yj : j ∈ J} of bornological
LCS (resp., Hausdorff bornological LCS) and bounded (or continuous) linear maps, where the previous
colimits are taken in the category BLCS (resp., BLCSHD ) of bornological LCS (resp., Hausdorff bornological
LCS). This shows that the category BLCS (resp., BLCSHD ) provided with the tensor product ⊗β , the unit k
and the usual flip is a symmetric monoidal category, such that the tensor product commutes with colimits
in that category. Moreover, the same adjunction gives the isomorphisms

Hom[(colimXj ,Y ) ' limHom[(Xj ,Y ) and Hom[(X, limYj ) ' limHom[(X,Yj ) (1.4.8)

in BLCS (resp., BLCSHD ), for all bornological LCS (resp., Hausdorff bornological LCS) X and Y , and all
systems {Xj }j∈J and {Yj }j∈J of bornological LCS (resp., Hausdorff bornological LCS) (cf. [41], Prop. 3.8.5).

1.4.25. Note that the LCS Hom[(X,Y ) does not necessarily coincide with the LCS Homb(X,Y ) given by the
vector space Hom(X,Y ) endowed with the topology of uniform convergence on bounded sets, i.e. the lo-
cally convex topology on the space Hom(X,Y ) generated by the local base formed by the sets FB,U = {f ∈
Hom(X,Y ) : f (B) ⊆ U }, for all B ⊆ X bounded and U neighborhood of zero in Y (see [95], III.3.1-2, for the
definition). The topology on Homb(X,Y ) in case Y = k is called the strong topology on the space of contin-
uous linear functionals on X (see [95], IV.5), and we shall denote it by X ′b, in order to distinguish it from
X ′ = Hom[(X,k). To avoid any possible ambiguity on the topology considered on the space of continuous
linear functionals of a bornological LCS X (and in particular to distinguish it from the strong topology), we
will call the former topology bornologically strong. For an example when X ′b is not bornological, so it does
not coincide with X ′ = Hom[(X,k), see [95], Exercise IV.13.

1.4.26. By definition of the topology of uniform convergence on bounded sets of Hom(X,Y ), we see that its
bounded sets are precisely the equibounded subsets of the vector space of continuous linear maps from X
to Y (see [95], III.3.3), i.e. the bounded sets of Hom[(X,Y ) and of Homb(X,Y ) coincide. As a consequence,
Hom[(X,Y ) is the bornological space associated with the LCS Homb(X,Y ), i.e. Hom[(X,Y ) = (Homb(X,Y ))born,
and, in particular, X ′ = (X ′b)born. Under the assumption that X is metrizable, X ′b is bornological if and only
if it is barreled, and in particular this holds for any normable space X, for any reflexive Fréchet LCS X
or for every metrizable LCS X whose strong dual is separable (see [95], IV.6.6). In all these situations we
have thus X ′ = X ′b, so we do not have to distinguish the two. Given any nuclear complete LCS X and any
complete LCS Y , then the canonical map

δ′X,Y : X⊗̂πY
∼→ Home(Y

′
τ ,X) (1.4.9)

induced by sending x⊗y to the continuous linear map δ′X,Y (x⊗y)(f ) = f (y)x, for all f ∈ Y ′ , x ∈ X and y ∈ Y , is
an isomorphism of LCS (see [104], Prop. 50.4), where Y ′τ denotes the continuous dual of Y provided with the
Mackey topology, i.e. the one given by uniform convergence on the convex balanced and weakly compact sets
of Y , and Home(Y ′ ,X) denotes the space Home(Y ′ ,X) provided with the topology of uniform convergence
on the equicontinuous subsets of Y ′ (see [104], Prop. 42.2 and the paragraph before it). Moreover, if X and
Y are two complete LCS such that X is barreled and X ′b is nuclear and complete, then the canonical map

dX,Y : X ′b⊗̂πY
∼→ Homb(X,Y ) (1.4.10)
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induced by sending λ⊗ y to x 7→ λ(x)y, for all x ∈ X, y ∈ Y and λ ∈ X ′b, is an isomorphism of LCS (see [104],
Prop. 50.5).

1.4.27 Lemma. Let X = colimXm be an (LF)-space, i.e. a strict inductive limit of a sequence of Fréchet LCS
{Xm}m∈N where Xm→ Xm+1 is an embedding of LCS (see [95], II.6.3). If, for all m ∈N, Xm is distinguished, i.e.
the strong dual (Xm)′b is barreled, then X ′b is barreled and bornological. In particular, X ′b coincides with X ′ .

Proof. For the first part, see [57], Thm. 3.16.2. The last part follows from the first one and the comments in
1.4.26. �

1.4.28. Finally, given two LCS X and Y , the convenient (projective) tensor product X⊗̃βY is defined as the
convenient completion of the bornological tensor product X ⊗β Y . By taking the convenient completion of
the identities satisfied by the bornological tensor product, we conclude that the category CLCSHD provided
with the tensor product ⊗̃β , the unit k and the convenient completion of the usual flip is a symmetric
monoidal category.

1.4.29. Let X be a bornological LCS X and Y be a convenient LCS Y . Then, the internal homomorphism
space Hom[(X, ibc(Y )) of BLCS is also convenient (see [41], Prop. 3.6.3). Hence, CLCSHD is a closed symmet-
ric monoidal category for the same internal homomorphism space as in BLCS, i.e. we have natural k-linear
isomorphisms

Hom
(
Y ,Hom[(X,Z)

) ∼← Hom(X⊗̃βY ,Z)
∼→ Hom

(
X,Hom[(Y ,Z)

)
, (1.4.11)

for all objects X, Y , and Z in CLCSHD , with the same morphisms as in (1.4.5) (see [41], Thm. 3.8.4). Using
the same proof as in (1.4.6), the isomorphisms in (1.4.11) are even of convenient LCS if all the homomor-
phisms spaces are internal. As in the case of bornological LCS described 1.4.24, the adjunction between the
convenient tensor functor ⊗̃β and the internal homomorphism Hom[(−,−) gives us the isomorphisms

colim
j∈J

(
X⊗̃βYj

)
' X⊗̃β

(
colim
j∈J

Yj

)
, (1.4.12)

as well as

Hom[(colimXj ,Y ) ' limHom[(Xj ,Y ) and Hom[(X, limYj ) ' limHom[(X,Yj ) (1.4.13)

of convenient LCS, for all convenient LCS X and Y , and all systems {Xj }j∈J and {Yj }j∈J of convenient LCS,
where the colimits and limits are computed in CLCSHD .

1.4.30. Since the convenient completion functor (̃−) : BLCS→ CLCSHD preserves colimits, which in partic-
ular means that the colimits in CLCSHD are given as the convenient completion of the colimits computed
in BLCS, by taking the convenient completion of (1.4.7) we see that the convenient tensor product also
commutes with colimits of that category, i.e.

CLCSHD -colim
j∈J

(
X⊗̃βYj

)
' X⊗̃β

(
BLCS-colim

j∈J
Yj

)
(
resp., CLCSHD -colim

j∈J

(
X⊗̃βYj

)
' X⊗̃β

(
BLCSHD -colim

j∈J
Yj

))
,

(1.4.14)

for any bornological LCS (resp., Hausdorff bornological LCS) X and any system {Yj : j ∈ J} of bornological
LCS (resp., Hausdorff bornological LCS).

1.4.31 Lemma. Let X and Y be two bornological LCS. Then, X⊗̃βY ' X̃⊗̃β Ỹ . In other words, the functor (̃−) :
BLCS→ CLCSHD is strong monoidal.

Proof. As X and Y are bornological, they are the colimit in LCS of {XB}B and {YB}B′ , where B and B′ run over
all bounded balanced convex subsets of X and Y , respectively (see 1.4.4). Since the functor inc preserves
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colimits, then one can equivalently take the previous colimits in BLCS. Hence,

X⊗̃βY '
(
BLCS-colim

B
XB

)
⊗β

(
BLCS-colim

B′
YB′

)∼
' BLCS-colim

B,B′

(
XB ⊗β YB′

)∼
' CLCSHD -colim

B,B′

(
XB ⊗β YB′

)∼
' CLCSHD -colim

B,B′

(
XB ⊗π YB′

)∧

' CLCSHD -colim
B,B′

(
X̂B⊗̂πŶB′

)
' CLCSHD -colim

B,B′

(
X̃B⊗̃β ỸB′

)
'

(
CLCSHD -colim

B
X̃B

)
⊗̃β

(
CLCSHD -colim

B′
ỸB′

)
'

(
BLCS-colim

B
XB

)∼
⊗̃β

(
BLCS-colim

B′
YB′

)∼
= X̃⊗̃β Ỹ ,

where we have used that the bornological tensor products commutes with colimits on each side in the sec-
ond isomorphism, that the convenient completion functor preserves colimits in the third and penultimate
isomorphisms, the fact that (1.4.4) is an isomorphism for pseudometrizable spaces and Corollary 1.4.21
in the fourth and sixth isomorphisms, the easy identity (1.2.1) for any pair of LCS X and Y in the fifth
isomorphism –which means that the functor (̂−) : LCS→ LCScHD is strong monoidal–, and that the conve-
nient tensor product commutes with colimits on each side in the seventh isomorphism. Hence, the functor
(̃−) : BLCS→ CLCSHD is strong monoidal, and the lemma is proved. �

1.4.32 Corollary. The isomorphism in (1.4.2) is in fact of convenient LCS, i.e. given any bornological LCS X and
any convenient convenient Y , (1.4.2) induces an isomorphism of the form

Hom[(X̃,Y )
∼→ Hom[(X,Y ). (1.4.15)

Proof. This is a direct consequence of the fact that the functor (̃−) : BLCS→ CLCSHD is strong monoidal
(see Lemma 1.4.31) and Lemma 1.3.7. �

1.4.33 Lemma. The inclusion functors inc and incHD in diagram (1.4.3) are oplax symmetric monoidal, whereas
ic and ibc are lax symmetric monoidal, and the inclusion functors iHD and ibHD are strong symmetric monoidal.
Moreover, the completion functors (̂−) and (̃−) are strong symmetric monoidal. The structure map ϕ0 is the
identity of k in all cases, whereas the structure map ϕ2(X,Y ) is given by (1.4.4) for the first two functors, by the
canonical map from X ⊗π Y to X⊗̂πY for the third, by the canonical map from X ⊗β Y to X⊗̃βY for the fourth, by
the identity for the fifth and sixth functors, and by a canonical isomorphism for the last two (see Lemma 1.4.31
and (1.2.1)).

This is easy to verify.

1.4.34. Since the completed projective tensor product X⊗̂πY is a complete LCS, it is locally complete by
1.4.22, so the continuous (and thus bounded) linear map X ⊗β Y → X⊗̂πY defined as the composition of
the continuous linear map (1.4.4) and the canonical map iX⊗πY from the projective tensor product to its
completion induces in turn a continuous linear map

ẽX,Y : X⊗̃βY → X⊗̂πY . (1.4.16)

By Corollary 1.4.21 and 1.4.23, it is an isomorphism if both X and Y are pseudometrizable.

1.4.35. We recall that, given two LCS X and Y their inductive tensor product X⊗i Y is the vector space X⊗Y
provided with the finest locally convex topology for which the canonical bilinear map X × Y → X ⊗ Y is
separately continuous (see [95], III.6.5). In other words, X ⊗i Y gives a representation of the covariant
functor from LCS to k Mod sending Z to the vector space B(X,Y ;Z) of separately continuous bilinear maps
X×Y → Z. It is clear that X⊗i Y is Hausdorff if X and Y are so. Its completion X⊗̂iY is called the completed
inductive tensor product. It is clear that X⊗̂iY is a representation of the covariant functor from LCScHD to
k Mod sending Z to the vector space B(X,Y ;Z) of separately continuous bilinear maps X ×Y → Z.

Suppose X and Y are bornological. Then, Bb(X,Y ;Z) ⊆B(X,Y ;Z), for any LCS Z, because any bounded
bilinear map X × Y → Z is separately bounded, so separately continuous, for X and Y are bornological.
Hence, the LCS topology on X ⊗i Y is finer than that of X ⊗β Y and the identity map

hX,Y : X ⊗i Y → X ⊗β Y (1.4.17)

is continuous.
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1.4.36. LetX, Y and Z be three LCS. DefineBh(X,Y ;Z) as the vector space of hypocontinuous bilinear maps
X × Y → Z. We recall that a bilinear map φ : X × Y → Z is said to be hypocontinuous if given any pair of
bounded sets B′ ⊆ X and B′′ ⊆ Y , the set of maps {xφ : Y → Z}x∈B′ and {φy : X→ Z}y∈B′′ are equicontinuous,
where xφ(y) = φ(x,y) = φy(x), for all (x,y) ∈ X × Y . It is clear that Bh(X,Y ;Z) is a subspace of B(X,Y ;Z).
Moreover,Bh(X,Y ;Z) is a subspace of the spaceBb(X,Y ;Z) of bounded bilinear maps. Indeed, let B ⊆ X×Y
be a bounded set. Hence, there exist B′ ⊆ X and B′′ ⊆ Y such that B ⊆ B′ × B′′ (see [95], I.5.5). Given any
hypocontinuous bilinear map φ : X ×Y → Z, the family of maps {xφ : Y → Z}x∈B′ is equicontinuous, so the
Cor. in [95], III.4.1, tells us that {xφ : Y → Z}x∈B′ is a bounded subset of the LCS Hom(Y ,Z) provided with
the topology of bounded convergence (see [95], III.3.2, Ex. d), which in turn means that ∪x∈B′ xφ(B′′) ⊆ Z is
bounded (see [95], III.3.3). As a consequence, φ(B) ⊆ Z is bounded, and φ ∈Bb(X,Y ;Z).

1.4.37 Fact. Let X, Y and Z be three LCS. We consider the LCS structure on Bh(X,Y ;Z) given by the topology
of uniform convergence on all sets of the form B′ ×B′′ , where B′ ⊆ X and B′′ ⊆ Y are bounded sets. Then, if Y is
barreled, there is an isomorphism

Bh(X,Y ;Z)→ Homb

(
X,Homb(Y ,Z

)
) (1.4.18)

of LCS sending φ to the map x 7→ xφ, where xφ(y) = φ(x,y), for all x ∈ X and y ∈ Y .

Proof. This follows from [65], §40.2(3) and §40.4(7). �

1.4.38 Lemma. Let us assume that X and Y are barreled bornological LCS. Then, given any LCS Z, we have the
identities B(X,Y ;Z) = Bh(X,Y ;Z) = Bb(X,Y ;Z) between the spaces of separately continuous, hypocontinuous
and bounded bilinear maps, respectively. In particular, hX,Y is an isomorphism of LCS. On the other hand, assume
that X and Y are given as strict inductive limits in LCS of sequences {Xj }j∈N and {Yj ′ }j ′∈N of nuclear Fréchet LCS,
respectively. Then, X and Y are clearly barreled and bornological, the convenient completion of X ⊗β Y coincides
with its completion, and the completion of hX,Y induces thus an isomorphism of LCS

ĥX,Y : X⊗̂iY → X⊗̃βY . (1.4.19)

Proof. We start with the first statement. Let Z be any LCS. Since X and Y are bornological we have the
inclusion Bb(X,Y ;Z) ⊆ Bb(X,Y ;Z) (see 1.4.35), whereas the inclusion Bh(X,Y ;Z) ⊆ Bb(X,Y ;Z) always
holds (see 1.4.36), which means that Bh(X,Y ;Z) ⊆ Bb(X,Y ;Z) ⊆ B(X,Y ;Z). The fact that X and Y are
barreled LCS implies moreover that the space B(X,Y ;Z) of separately continuous bilinear maps coincides
with the space Bh(X,Y ;Z) of hypocontinuous bilinear maps from X × Y to Z (see [95], III.5.2), so the first
part of the lemma follows.

Let us prove the second part of the lemma. Since the inductive limit of barreled (resp., bornological)
spaces is barreled (resp., bornological), and every Fréchet space is barreled and bornological, X and Y are
clearly barreled and bornological (see [95], II.7.2, Cor. 1, and II.7.2, Cor. 1). By the first part of the lemma
hX,Y is an isomorphism, so its completion

ĥX,Y : X⊗̂iY → (X ⊗β Y )
∧

(1.4.20)

is also an isomorphism of LCS. It suffices to show that the codomain is isomorphic to X⊗̃βY . Using that
the bornological tensor product commutes with inductive limits of BLCS on each side and the fact that the
inclusion functor inc : BLCS→ LCS preserves colimits, we see that X ⊗β Y is the inductive limit in LCS of
the sequence {Xj⊗βYj }j∈N. The LCS Xj and Yj being metrizable implies that Xj⊗βYj ' Xj⊗πYj , whereas the
fact that they are nuclear implies that Xj ⊗̂πYj → Xj+1⊗̂πYj+1 is a embedding, i.e. an injective continuous
linear map that induces an homeomorphism with its image regarded as a subspace ofXj+1⊗̂πYj+1 (see [104],
Prop. 43.7 and Thm. 50.1). Moreover, the commutativity of the diagram

Xj ⊗π Yj //
� _

��

Xj+1 ⊗π Yj+1� _

��
Xj ⊗̂πYj // Xj+1⊗̂πYj+1
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and the fact that the vertical maps are embeddings (see [95], II.4.1), as well as the lower horizontal map,
implies that the upper horizontal map is an embedding. As a consequence, X ⊗β Y is the strict inductive

limit in LCS (or BLCS) of the sequence {Xj ⊗πYj }j∈N. Since the convenient completion functor (̃−) : BLCS→
CLCSHD preserves colimits – which in particular means that the colimit in CLCSHD is given by the con-
venient completion of the colimit taken in BLCS– we have that X⊗̃βY is the convenient completion of the
strict inductive limit in LCS (or BLCS) of the sequence {Xj ⊗̃πYj }j∈N, or equivalently {Xj ⊗̂πYj }j∈N. Since the
strict inductive of a sequence of complete bornological LCS is complete and bornological, and every com-
plete bornological LCS is convenient, X⊗̃βY is the strict inductive limit in LCS (or BLCS) of the sequence
{Xj ⊗̂πYj }j∈N. Analogously, we have the isomorphisms

X ⊗β Y
∧

' LCS-colim
j∈N

(
Xj ⊗π Yj

)∧

' LCScHD -colim
j∈N

(
Xj ⊗π Yj ′

)∧

' LCS-colim
j∈N

(
Xj ⊗π Yj ′

)∧

' X⊗̃βY

of LCS, where we have used in the second isomorphism that the completion functor (̂−) : LCS→ LCScHD
preserves colimits, and in the third isomorphism that the strict inductive limit of a sequence of complete
LCS is complete. The last isomorphism follows from the comments in the previous paragraph. The lemma
is thus proved. �

1.4.39 Corollary. Let A = BLCSHD be the k-linear category of Hausdorff bornological locally convex spaces, and
let ˜A = CLCSHD be the k-linear category of convenient locally convex spaces. Suppose given an object X in
A and an action ρ : G → AutA (X) of a finite group G. Then, ρ induces to a (unique) group homomorphism
ρ̃ : G → Aut ˜A (X̃) on the convenient completion X̃ of X such ρ̃(g)|X = ρ(g) for all g ∈ G. Furthermore, the

canonical morphisms X̃G→ X̃G and �X/G→ X̃/G are isomorphisms in CLCSHD .

The proof is the same as that of Corollary 1.2.9 by changing LCSHD and LCScHD by BLCSHD and
CLCSHD , respectively, and completion by convenient completion, and taking into account Lemma 1.4.31.

1.4.40 Corollary. Let BLCSHD denote the k-linear category of Hausdorff bornological locally convex spaces, and
let CLCSHD be the k-linear category of (Hausdorff) convenient locally convex spaces. Suppose given an object Y

in BLCSHD . Then, the canonical morphisms (Y ⊗βm)Sm
∼

→ (Ỹ ⊗̃βm)Sm and (Y ⊗πm)/Sm
∼

→ (Ỹ ⊗̃βm)/Sm are isomor-
phisms in CLCSHD .

The proof is a direct application of Corollary 1.4.39, together with the property given in Lemma 1.4.31
for the convenient completion of bornological tensor products.

1.5 Basic facts on (co)algebras and (co)modules in symmetric monoidal categories

1.5.1. We present next some basic facts about (co)algebras and (co)modules over them in any k-linear sym-
metric monoidal category.

1.5.2 Fact. Let C and C ′ be two symmetric monoidal categories and let F : C → C ′ be an oplax symmetric
monoidal functor between them. Then,

(i) if (C,∆,η) is a counitary C -coalgebra, (F(C),ϕ2(C,C) ◦F(∆),ϕ0 ◦F(η)) is a counitary C ′-coalgebra;

(ii) if (C,∆,η) is a counitaryC -coalgebra and (V ,δ) is a right (resp., left)C -comodule over C, (F(V ),ϕ2(V ,C)◦
F(δ)) (resp., (F(V ),ϕ2(C,V ) ◦ F(δ))) is a right (resp., left) C ′-comodule over (F(C),ϕ2(C,C) ◦ F(∆),ϕ0 ◦
F(η)).

The analogous results hold for noncounitary coalgebras and comodules over them, if the functor F is only assumed
to be nonunitary oplax symmetric monoidal, and the categories C and C ′ are nonunitary.

The proof is immediate from the definitions, and well-known in the literature. Of course, we also have
the dual result involving lax symmetric monoidal functors, algebras and their modules.
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1.5.3. Let C be a k-linear complete and cocomplete symmetric monoidal category whose tensor product
⊗C commutes with colimits on each side. Following the indications for the category of vector spaces given
in 1.0.2 and 1.0.3, a (commutative) nonunitary algebra A in C has enough idempotents if there is a family
{Ae}e∈E of (commutative) unitary algebras in C , A is the coproduct of {Ae}e∈E in C , and the restriction of
the product of A to Ae⊗C Ae′ is the product of Ae if e = e′ , and zero else. We suppose that the decomposition
of A is part of the data. In this case, a right (resp., left) module over a commutative nonunitary A (in C ) with
enough idempotents E will always be an object X of C provided with a decomposition X = ⊕e∈EXe such
that Xe is a unitary module over Ae, and the restriction of the right (resp., left) action of A on X to Xe′ ⊗C Ae
(resp., Ae ⊗C Xe′ ) is that of Ae on Xe if e = e′ , and zero else. As usual, the term module over a commutative
algebra will always mean symmetric bimodule over that algebra.

1.5.4. For later use we state the following notation. If A is an not necessarily commutative and nonunitary
algebra in C with product µA, we denote by

µ
(m)
A : A⊗C m→ A (1.5.1)

the morphism defined recursively by µ(1)
A = idA, and µ(m+1)

A = µ(m)
A ◦ (µA ⊗C id⊗C (m−1)

A ) for all m ∈N.

1.5.5. Let B = ⊕e∈EBe be a (commutative) nonunitary algebra in C with enough idempotents E. Suppose
that A has also a counitary coalgebra structure given by ∆B and εB. We say that the counitary coalgebra
structure is compatible with the family of idempotents E, if there is monoid structure with product m and
unit 1 on E satisfying that me =m−1({e}) is finite for all e ∈ E, the restriction

∆B|Bm(e,e′ ) : Bm(e,e′)→ B⊗C B

of ∆B to Bm(e,e′) factors through the inclusion ⊕(f ,f ′)∈mm(e,e′ )Bf ⊗C Bf ′ → B⊗C B, and the restriction of εB to
Be vanishes for all e , 1. We see that ∆B is thus determined by a family of maps in C of the form

∆(e,e′) : Bm(e,e′)→ Be ⊗C Be′ . (1.5.2)

We shall suppose in this case that the monoid structure on E is part of the data. A (commutative) couni-
tary bialgebra B in C with enough idempotents (E,m,1) is a (commutative) nonunitary algebra in C with
enough idempotents E with a compatible structure of counitary coalgebra such that ε : B1→ IC and (1.5.2)
are morphisms of unitary algebras in C .
1.5.6.Remark. The definition of algebra with enough idempotents is (nonfunctorially) equivalent to the no-
tion of algebra in the symmetric monoidal Turaev category introduced by S. Caenepeel and M. De Lom-
baerde (see [20], 2.1), based on previous work of V. Turaev (see the late published book [105]). Furthermore,
our notion of compatible coalgebra and bialgebra can be regarded as a locally finite version of the coalge-
bras and bialgebras in the symmetric monoidal Turaev category. The definition of module we follow is
however rather different.
1.5.7 Lemma. Let C be a k-linear complete and cocomplete symmetric monoidal category whose tensor product
commutes with colimits on each side. Let A be a commutative nonunitary algebra A in C that has enough idem-
potents. Consider the category AMod(C ) of modules over A in C , and given two objects X and Y in AMod(C )
define X ⊗A Y as the cokernel of the map

X ⊗C A⊗C Y → X ⊗C Y (1.5.3)

given by ρX ⊗C idY − idX ⊗C ρ′Y , where ρX : X ⊗C A→ X and ρ′Y : A⊗C Y → Y are the corresponding actions.
We recall that we are assuming that ρX = ρ′X ◦ τ(X,A), for all X, i.e. the term module over a commutative algebra
means symmetric bimodule. The action of A on X ⊗A Y is defined by the map

A⊗C (X ⊗A Y )→ X ⊗A Y (1.5.4)

induced by ρ′X ⊗C idY . Then, AMod(C ) is a symmetric monoidal category for the tensor product X ⊗A Y , the
unit A and the twist induced by that of C . Moreover, the inclusion functor AMod(C )→ C preserves limits and
colimits, and, in particular, the tensor product ⊗A commutes with colimits in AMod(C ) on each side.
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Proof. We verify first that the action (1.5.4) is well-defined. Indeed, we have the diagram

A⊗C X ⊗C A⊗C Y
ρ′X⊗C idA⊗C Y//

idA⊗C (ρX⊗C idY −idX⊗C ρ′Y )
��

X ⊗C A⊗C Y

ρX⊗C idY −idX⊗C ρ′Y
��

A⊗C X ⊗C Y
ρ′X⊗C idY //

����

X ⊗C Y

����
A⊗C (X ⊗A Y )

ρ′X⊗AY // X ⊗A Y

and the commutativity of the upper square and the fact that the columns are cokernels tell us that the
dashed arrow exists and makes the lower square commute. This latter map is (1.5.4). The fact that the
twist of C induces a twist on AMod(C ) follows from a similar argument.

It remains to show that the structure morphisms l : A ⊗A X → X and r : X ⊗A A → X giving the left
and right units of AMod(C ) are isomorphisms, for the obvious structure maps are clear. Let E be the
fixed set of enough idempotents of A. The definition of AMod(C ), any of its object X is decomposed as
an internal direct sum (in C ) of the form ⊕e∈EXe, and analogously, any morphism f : X→ X ′ between two
objects X and X ′ is the direct sum (in C ) ⊕e∈Ef |Xe , where f |Xe : Xe → X ′e, for all e ∈ E. In particular, f is
an isomorphism in AMod(C ) if and only if f |Xe is an isomorphism in Ae Mod(C ). The result follows by
applying the previous remark to the structure morphisms land r in Ae Mod(C ), and the fact that l|Xe and
r|Xe are clearly isomorphisms, because Ae is unitary for all e ∈ E.

The fact that inclusion functor AMod(C )→ C preserves limits holds in general, without any hypoth-
esis on the tensor product of C , and we leave it to the reader as an easy exercise. The inclusion functor
AMod(C )→ C preserving colimits is a direct consequence of the fact that the tensor product of C com-
mutes with colimits on each side. Finally, given an inductive family {Xj }j∈J in AMod(C ) and an A-module
Y in C , we have(

colimXj
)
⊗A Y ' Coker

((
colimXj

)
⊗C A⊗C Y →

(
colimXj

)
⊗C Y

)
' Coker

(
colim

(
Xj ⊗C A⊗C Y

)
→ colim

(
Xj ⊗C Y

))
' colimCoker

((
Xj ⊗C A⊗C Y

)
→

(
Xj ⊗C Y

))
' colim

(
Xj ⊗A Y

)
,

where we have used that the inclusion functor AMod(C ) → C preserves colimits (so we have not dis-
tinguished the colimits for each category), taking cokernels (a particular type of colimit) commutes with
taking colimits, since colimits commute with colimits, and the tensor product ofC commutes with colimits
on each side. The lemma is thus proved. �

1.6 Basics on locally m-convex algebras and their locally convex modules

1.6.1. We recall that a locally m-convex algebra is a nonunitary k-algebra A provided with a Hausdorff topol-
ogy defined by an arbitrary family {qi}i∈I of submultiplicative real seminorms, i.e. qi : A → R≥0 satisfies
that qi(a+b) ≤ qi(a)+qi(b) and qi(λa) = |λ|qi(a), and qi(ab) ≤ qi(a)qi(b), for all i ∈ I , λ ∈ k and a,b ∈ A (see [72],
Def. 2.1). We say that a locally m-convex algebra is complete if its underlying LCS is complete. Notice that
a locally m-convex algebra A is a fortiori a nonunitary monoid in the symmetric monoidal category LCSHD ,
provided with the projective tensor product ⊗π, because the product A ×A→ A is (jointly) continuous. It
is clear that if A is a locally m-convex algebra, then the opposite algebra Aop is as well. If A is complete,
then it is naturally a monoid in the symmetric monoidal category LCScHD , provided with the completed
projective tensor product ⊗̂π. If A is a locally convex m-algebra, its completion Â (as a LCS) is a naturally
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complete locally m-convex algebra and the natural map A→ Â is a morphism of locally m–convex algebras.
Moreover, the identity Âop = Âop is an isomorphism of locally m-convex algebras and Â is commutative if
A is so. All of the locally m-convex algebras in this manuscript will be assumed to be commutative.

1.6.2. Following [76], we say that a locally m-convex algebra A is called a Fréchet algebra if the underlying
Hausdorff LCS is a Fréchet space. They are called F -algebras in [72] (see Def. 4.1). A morphism of locally
convex m-algebras (or of Fréchet algebras) is a morphism of algebras that is continuous for the underlying
topologies. A locally m-convex algebra is called unitary if there is a morphism of locally m-convex algebras
ηA : k→ A, where k has the usual locally m-convex algebra structure. More generally, we say that a locally
m-convex algebra A has enough idempotents if there is a set E of orthogonal idempotents such that A is the
internal direct sum (in the category LCSHD ) ⊕e∈EAe (see 1.5.3). Given unitary locally m-convex algebras A
and A′ , a morphism f : A→ A′ of locally m-convex algebras is called unitary if f ◦ ηA = ηA′ .

1.6.3. We recall that a left locally convex module X over a locally m-convex algebra A is a left module X over
A such that X is provided with a LCS structure satisfying that the left action map A×X→ X is continuous,
where A×X has the product topology.2 We remark that we do not assume the LCS to be Hausdorff in the
previous definition. As usual, if A has a unit, one assumes that it acts trivially on any left locally convex
A-module X. More generally, if A has a set of enough idempotents E, we assume that X is the internal
direct sum (in the category LCS) ⊕e∈EeX (see 1.5.3). A left locally convex module over a locally m-convex
algebra A is said to be a Fréchet left module if the underlying LCS is Fréchet (so in particular, it is Hausdorff).
A morphism of left locally convex modules over a locally m-convex algebra A is a morphism between the
underlying left modules over A that is continuous for the corresponding topologies. We denote the category
of left locally convex A-modules provided with the previous morphisms by AMod. Given X and Y two
left locally convex modules over A, we denote by HomA(X,Y ) the corresponding space of morphisms, in
order to distinguish it from HomA(X,Y ) where no topology is involved. We recall that AMod is complete
and cocomplete, where the limits and colimits are given by those in AMod endowed with the topologies
constructed in LCS. As noted in [76], 6.1, the completion X̂ of the underlying LCS of a left locally convex
module X is a left locally convex module over Â, so a fortiori over A, and it satisfies the usual property

HomÂ(X̂,Y )
∼→ HomA(X̂,Y )

∼→ HomA(X,Y ), (1.6.1)

for every complete left locally convex module Y over A, where the first map is the inclusion and the second
mapping is given by φ 7→ φ ◦ iX , where iX : X → X̂ is the canonical map. By changing A for Aop in the
previous definitions, we obtain the corresponding notions for right locally convex A-modules. As usual,
if A is commutative, by locally convex A-module we will mean a symmetric left and right locally convex
A-module. In this case, it is clear that AMod is naturally identified with the category of locally convex
A-modules.

1.6.4.Remark. Let A be a locally convex m-algebra and X be a left locally convex A-module. The usual dual
X∗ of the left A-module X has a natural structure of right A-module by means of (λ · a)(x) = λ(a · x), for all
x ∈ X, a ∈ A and λ ∈ X∗. Moreover, the vector subspace X ′ of X∗ given by the continuous linear functionals
is clearly a right A-submodule. It is however not necessarily a right locally convex A-module for the strong
topology. For example, the space of distributions C∞c (R)′ provided with the strong topology is not a locally
convex C∞(R)-module (see [60], 4.6). We will consider for this reason another structure on X ′ (see 1.7.4
and Corollary 1.7.8).

1.6.5. We first recall that the coproduct of a family {Xa}a∈A in the category LCS is the direct sum ⊕a∈AXa
provided with the final locally convex topology for the family of canonical inclusions Xa→⊕a∈AXa for all
a ∈ A (see [84], Prop. 2.1.5). The previous construction is Hausdorff if each member of the family {Xa}a∈A is,
giving the coproduct in the category LCSHD (see [84], Prop. 3.1.3, or [95], II.6.1) Moreover, the coproduct
in the category LCS of an arbitrary family of LCS is complete if and only if each summand is so (see [95],
II.6.2). It is an easy exercise to show that if the family is further assumed to be finite and its members
are Fréchet spaces, the coproduct is Fréchet as well. In particular, given a Fréchet algebra A and m ∈ N,

2This definition is not the weakest possible, and it coincides with the so-called left module with jointly continuous action.
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the left A-module Am with the coproduct topology in the category LCSHD is a Fréchet left module over
A. Moreover, a submodule (resp., closed submodule) of a left locally convex module (resp., Fréchet left
module) over A is also a left locally convex module (resp., Fréchet left module). For more details on these
properties see [22], Ch. 2, or [76], Ch. 6.

1.6.6 Fact. If X is a left locally convex module over a locally m-convex algebra A and {x1, . . . ,xs} is a finite set
of elements of X, then the map As → X given by (a1, . . . , as) 7→ a1x1 + · · · + asxs is continuous, where As has the
topology of the coproduct in the category LCSHD .

The proof immediately follows from the definition of left locally convex module.

1.6.7 Proposition (Automatic continuity). Let A be a unitary Fréchet algebra. Then, given r ∈ N, the left A-
module Ar has a unique structure of Fréchet left module. Moreover, if X is a finitely generated left A-module,
then any two structures of Fréchet left modules on X coincide. Given a left locally convex module Y over A, any
morphism f : X→ Y of the underlying left A-modules is continuous, so a morphism of left locally convex modules.

Proof. The first statement follows from the second, so it suffices to prove the latter. Assume that X has a
Fréchet left module structure over A. Consider any surjective morphism of left A-modules ρ : Ar → X for
some r ∈ N. Fact 1.6.6 tells us that the map ρ : Ar → X is in fact continuous, and we consider the final
locally convex topology on X given by this map. We denote by X] this Fréchet left module. Hence, we have
a morphism X]→ X of Fréchet left modules given by the identity map of the underlying vector spaces. By
the Open Mapping theorem (see [95], III.2.2), it is an isomorphism of Fréchet left modules. This proves the
required statement.

Let us now show the last part of the proposition. Since the topology of X coincides with the final locally
convex topology of the surjective map ρ : Ar → X, and thus a morphism of the underlying left A-modules
f : X→ Y is continuous if and only if f ◦ ρ is so, Fact 1.6.6 implies the result. �

1.6.8. We will say that a left locally convex A-module X over a locally m-convex algebra A is topologically
projective if it is a projective object in the category AMod (see [74], II.14). We recall that any direct summand
of a topologically projective left locally convexA-module is also topologically projective, and the direct sum
of topologically projective left locally convex A-modules is so (see [74], Prop. II.14.3), where we recall that
the previous constructions are done in the category AMod.

1.6.9 Fact. Let A be a unitary locally m-convex algebra and let X be a locally convex A-module. Then X is
topologically projective if and only if it is a direct summand of a coproduct A(J) in the category AMod, for some set
J . In particular, if A is further assumed to be Fréchet, then X is complete.

Proof. The proof follows the same pattern as the one given for usual left A-modules, with the only possible
exception of the existence of an epimorphism in AMod of the form A(J) → X for every left locally convex
A-module X. Since the epimorphisms of AMod are precisely its surjective morphisms, it suffices to show
that any (surjective) A-linear map f : A(J) → X is continuous, where A(J) has the locally convex coproduct
topology. The latter statement is immediate, because f is continuous if and only if f ◦ uj is so for all j ∈ J ,
where uj : A→ A(J) is the canonical j-th inclusion, and f ◦uj is continuous by Fact 1.6.6. �

1.6.10 Lemma. Let A be a unitary Fréchet algebra and let X be a finitely generated left locally convex A-module
that is projective as a left A-module. Then X is topologically projective. In particular, A is topologically projective.

Proof. Since the epimorphisms of AMod are exactly its surjective morphisms, and HomA(X,−) = HomA(X,−)
(due to Proposition 1.6.7), we see that X is topologically projective. �

1.6.11. Following [76], 6.2, we recall that if X and Y are a right and left locally convex modules over
a locally m-convex algebra A, resp., then the usual tensor product X ⊗A Y of the underlying right and
left A-modules, resp., has a structure of LCS given as the final locally convex topology for the canonical
surjective map X ⊗π Y → X ⊗A Y , where X ⊗π Y denotes the usual tensor product X ⊗ Y over k provided
with the projective tensor product topology. Equivalently, X ⊗A Y gives a representation of the covariant
functor LCS→ k Mod sending a LCS Z to the vector spaceBA(X,Y ;Z) of (jointly) continuous bilinear and
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A-balanced maps X × Y → Z (see [78], Prop. 1, (ii), for the Hausdorff case, the proof being the same for
the non Hausdorff one). We recall that a map φ : X × Y → Z is A-balanced if φ(xa,y) = φ(x,ay), for all
a ∈ A, If A is commutative, the tensor product X ⊗A Y also gives a representation of the covariant functor
AMod→ k Mod sending a locally convex A-module Z to the vector space of (jointly) continuous A-bilinear
and A-balanced maps X × Y → Z (see [78], Cor. 3, for the Hausdorff case, the proof being the same for the
non Hausdorff one). Recall that, if A is unitary and commutative, AMod is a symmetric monoidal category
with the projective tensor product ⊗A, the unit A, and the twist given by the usual flip. Note that X ⊗A Y
is not necessarily Hausdorff, even if X and Y are. In the case of the category AModHD of Hausdorff locally
convex A-modules, the (Hausdorff) tensor product X⊗HDA Y is defined as the (unique) Hausdorff quotient of
X⊗AY (see [22], proof of Thm. II.1.3). However, we will not need to consider the Hausdorff tensor product
in this manuscript. Analogously, the completion of X ⊗A Y will be denoted by X⊗̂AY . The complete LCS
X ⊗A Y gives a representation of the covariant functor LCScHD → k Mod sending a complete LCS Z to the
vector space of (jointly) continuous bilinear and A-balanced maps X × Y → Z (see [22], Thms. II.1.3 and
II.1.8). We have the canonical isomorphisms

X⊗̂AY
∼→ X̂⊗̂AŶ

∼→ X̂⊗̂ÂŶ (1.6.2)

of LCS, where the first map is the completion of iX ⊗ iY : X ⊗A Y → X̂ ⊗A Ŷ , with iX : X→ X̂ and iY : X→ Ŷ
the canonical maps, and the second map is the completion of the canonical projection X̂⊗A Ŷ → X̂⊗Â Ŷ (see
[76], Prop. 6.6). If A is commutative, then the previous isomorphisms are of locally convex A-modules (or
Â-modules). We denote by AMod

c the full subcategory of AMod given by the left locally convex A-modules
that are complete LCS. Again, if A is unitary and commutative, it is a symmetric monoidal category with
the completed tensor product ⊗̂A, the unit Â, and the twist given by the completion of the twist of AMod.

1.6.12. Let X be a finitely generated topologically projective left locally convex module over a unitary
locally m-convex algebra A. As a consequence, X is a direct summand of a direct sum of a finite number
number of copies of A in AMod. As the tensor product ⊗A in AMod commutes with finite coproducts, we
get that Â ⊗A X is a complete left locally convex Â-module and the map of complete left locally convex
Â-modules of the form

Â⊗A X
∼→ X̂ (1.6.3)

induced by the canonical map iX : X → X̂ and the left action of Â on X̂ is an isomorphism. Unfortunately,
the previous result cannot be expected for any topologically projective locally convex module. Indeed, one
main drawback of the tensor products ⊗A and ⊗̂A considered in this section is that they do not necessarily
commute with arbitrary direct sums, for this is already the case in the category LCS and LCScHD (see 1.3.3).
For this reason we are mostly going to consider the bornological (resp., convenient) version of the the-
ory, recalled in the next section, whereas the projective tensor product (resp., completed projective tensor
product) will only serve us to prove properties of the former.

1.7 Basics on bornological algebras and their bornological locally convex modules

1.7.1. As BLCSHD is a symmetric monoidal category, the notion of bornological algebra (resp., commutative,
unitary bornological algebra) is immediate. Indeed, such an object would be just a monoid (resp., commu-
tative, unitary monoid) in BLCSHD , where we recall that we are using the bornological tensor product ⊗β .
The definition of morphism of bornological algebras is standard, as well as the opposite bornological algebra
Aop of a bornological algebra A. Analogously, given two bornological algebras A and A′ , their bornological
tensor product A⊗β A′ has a structure of bornological algebra by means of (a1 ⊗ a′1)(a2 ⊗ a′2) = a1a2 ⊗ a′1a2,
for all ai ∈ A and a′i ∈ A

′ , with i = 1,2. The analogous definition of a convenient algebra (resp., commutative,
unitary convenient algebra) are immediately obtained, as well the notion of morphism of convenient alge-
bras, of opposite convenient algebra Aop of a convenient algebra A, or of convenient tensor product A⊗̃βA′
of convenient algebras, by considering instead the symmetric monoidal category CLCSHD , provided with
the convenient tensor product ⊗̃β . This is precisely the notion considered in [108], even though it is called
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bornological algebra there. By Lemma 1.4.31, we see that the convenient completion Ã of a bornological
algebra A gives a convenient algebra, and Ã is commutative if A is so. Moreover, the identity Ãop = Ãop is
an isomorphism of convenient algebras, and the isomorphism

A⊗̃βA′ ' Ã⊗̃βÃ′

of bornological LCS given in Lemma 1.4.31 is an isomorphism of convenient algebras. We remark that any
locally m-convex algebra structure on a bornological (resp., convenient) LCS A is naturally a bornological
(resp., convenient) algebra, by means of (1.4.4) (resp., (1.4.16)), because the functor incHD is lax symmetric
monoidal (see Lemma 1.4.33 and Fact 1.5.2). We shall call them bornological locally m-convex algebras (resp.,
convenient locally m-convex algebras).

1.7.2. Let A be a bornological algebra. A left bornological locally convex module X over A is a bornological
locally convex space X provided with a structure of a left A-module such that the action A × X → X is
bounded. This is tantamount to saying that the induced map A⊗β X → X is continuous. Note that we do
not assume the LCS X to be Hausdorff in the previous definition. A right bornological locally convex module
over A is a left bornological locally convex module over the opposite bornological algebra Aop. As usual,
if A is commutative, by bornological locally convex module over A we will mean a symmetric left and right
bornological locally convex A-module. If A has a unit, one assumes that it acts trivially on any left or right
bornological locally convex A-module X, and if A has a set of enough idempotents E, we assume that X is
the internal direct sum (in the category BLCS) ⊕e∈EeX (see 1.5.3). As in the previous section, a bornological
locally convex module over A is said to be Fréchet if the underlying LCS is Fréchet (so in particular, it is
Hausdorff). A morphism of left (resp., right) bornological locally convex modules over the bornological
algebra A is a morphism between the underlying modules over A that is bounded (or continuous) for the
corresponding topologies. Given two left bornological locally convex A-modules X and Y , we denote by
HomA(X,Y ) the corresponding space of morphisms. We denote the category of left bornological locally
convex A-modules provided with the previous morphisms by ABMod. If A is commutative, this category is
naturally identified with the category of bornological locally convex modules over A.

1.7.3. Given a right and a left bornological locally convex modules X and Y , resp., over a bornological
algebraA, then the usual tensor productX⊗AY of the underlyingA-modules has a structure of bornological
LCS defined as the final locally convex topology for the canonical surjective map X ⊗β Y → X ⊗A Y given
as the cokernel of the map X ⊗β A⊗β Y → X ⊗β Y sending x⊗ a⊗ y to xa⊗ y − x⊗ ay. Since the quotient of
a bornological space is bornological (cf. [95], II.8.2, Cor. 1), then the previous locally convex topology on
X ⊗A Y is bornological. Equivalently, X ⊗A Y gives a representation of the covariant functor BLCS→ k Mod
sending a bornological LCS Z to the vector space BA

b (X,Y ;Z) of bounded bilinear and A-balanced maps
X × Y → Z (see [64], Lemma I.5.21, (2), for the Hausdorff case, the proof being the same for the non
Hausdorff one). It is clear that, if X is a right A ⊗β Bop-module, and Y is a left A ⊗β Cop-module, where
A, B and C are bornological algebras, then X ⊗A Y has a canonical structure of left B ⊗β Cop-module via
a(x ⊗ y)c = (ax) ⊗ (yc), for a ∈ A, c ∈ C , x ∈ X and y ∈ Y (see [64], Lemma I.5.21, (3)). In particular, if
A is commutative, X ⊗A Y is naturally a bornological locally convex A-module, and the tensor product
X ⊗A Y also gives a representation of the covariant functor ABMod→ k Mod sending a locally convex A-
module Z to the vector space of bounded A-bilinear and A-balanced maps X × Y → Z (see [78], Cor. 3,
for the Hausdorff case, the proof being the same for the non Hausdorff one). Note that, if A is unitary and
commutative, ABMod is a symmetric monoidal category with the bornological tensor product ⊗A, the unit
A, and the twist given by the usual flip. Notice also that X ⊗A Y is not necessarily Hausdorff, even if X
and Y are. In the case of the category ABModHD of Hausdorff bornological locally convex A-modules, the
(Hausdorff) tensor product X⊗HDA Y is defined as the (unique) Hausdorff quotient of X⊗AY , which is clearly
bornological (see [78], Section 3). However, we will not need to consider the bornological Hausdorff tensor
product in this manuscript.

1.7.4. The category ABMod is (locally small) complete and cocomplete, where the limits and colimits are
given by those in AMod endowed with the bornological locally convex topologies constructed in BLCS. We
will endowHomA(X,Y ) with the bornological locally convex topology associated with the subspace topology
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of Hom[
A(X,Y ) inside of Hom[(X,Y ) where X and Y are regarded as bornological LCS (resp., Hausdorff

bornological LCS), and it will be denoted by Hom[
A(X,Y ). Assume furthermore that X is a left bornological

locally convex A⊗β Bop-module, and Y is a left bornological locally convex A⊗β Cop-module, where A, B

and C are bornological algebras. In this case, Hom[
A(X,Y ) has an obvious structure of B⊗β Cop-module, for

the usual action (b · f · c)(x) = f (xb)c, for all x ∈ X, f ∈ HomA(X,Y ), b ∈ B and c ∈ C.

1.7.5 Lemma. Let A, B and C be bornological algebras, and let X be a left bornological locally convex A⊗β Bop-
module, and Y a left bornological locally convex A⊗β Cop-module. Then, the usual space of continuous and A-
linear morphisms from X to Y with the bornological locally convex topology associated with the subspace topology
of Hom[

A(X,Y ) inside of Hom[(X,Y ) defined previously is a left bornological locally convex module over B⊗β Cop.

In particular, if A is a commutative bornological algebra, then Hom[
A(X,Y ) is a bornological locally convex A-

module.

Proof. The action of B on X and of C on Y are clearly continuous, so b · f · c is an element of Hom[
A(X,Y ).

The left action of B⊗β Cop on Hom[
A(X,Y ) is given by the map

B⊗β Cop ⊗β Hom[
A(X,Y )→ Hom[

A(X,Y ) (1.7.1)

sending b⊗ c⊗ f to the map (b · f · c)(x) = f (xb)c, for all x ∈ X, f ∈ HomA(X,Y ), b ∈ B and c ∈ C. It suffices to
show that (1.7.1) is continuous. In order to prove this, note that the map

X ⊗β B⊗β Cop ⊗β Hom[
A(X,Y )→ Y (1.7.2)

sending x⊗b⊗ c⊗ f to f (xb)c is a morphism of bornological LCS, for it is given as the composition of maps
involving the action of B on X, the action of C on Y and the evaluation map evX,Y : X ⊗β Hom[

A(X,Y )→ Y .
They are clearly bounded, so continuous, because all the involved LCS are bornological. By the adjunction
between the bornological tensor functor ⊗β and the internal homomorphism Hom[(−,−), (1.7.2) is tanta-
mount to the morphism

B⊗β Cop ⊗β Hom[
A(X,Y )→ Hom[(X,Y )

of bornological LCS and since its image is included in Hom[
A(X,Y ), we conclude that the latter space is a

bornological locally convex B⊗β Cop-module. If A is commutative, Hom[
A(X,Y ) is thus canonically a locally

convex A-module. The lemma is thus proved. �

1.7.6 Lemma. Let A, B and C be bornological algebras. Let X be a left bornological locally convex A ⊗β Bop-
module, Y be a left bornological locally convex B⊗βCop-module and Z a left bornological locally convex A⊗βCop-
module. Then, we have the isomorphisms

HomA(X ⊗B Y ,Z)
∼→ HomB

(
Y ,Hom[

A(X,Z)
)

and HomCop(X ⊗B Y ,Z)
∼→ HomBop

(
X,Hom[

Cop(Y ,Z)
)

(1.7.3)

of vector spaces, where the first map sends φ ∈ HomA(X ⊗B Y ,Z) to the mapping whose value at y ∈ Y is φy(x) =
φ(x⊗B y), whereas the second sends φ ∈ HomCop(X⊗B Y ,Z) to the map whose value at x ∈ X is xφ(y) = φ(x⊗B y).

Proof. We will prove the lemma for the first map in (1.7.3), since the proof for the other is analogous. Recall
that the first map in (1.7.3) is the restriction of the isomorphism

HomA(X ⊗B Y ,Z)
∼→HomB

(
Y ,HomA(X,Z)

)
(1.7.4)

given by the same expression (see [3], Prop. 20.6), and whose inverse sends ψ in the codomain of (1.7.4) to
the map x⊗B y 7→ ψ(y)(x), for all x ∈ X and y ∈ Y . If φ ∈ HomA(X⊗BY ,Z), then the map φy : X 7→ Z given by
φy(x) = φ(x⊗B y) is clearly bounded, because the associated bilinear map (x,y) 7→ φ(x⊗B y) is by definition
so and the bounded sets of X × Y are precisely the subsets of products B′ ×B′′ of bounded sets B′ ⊆ X and
B′′ ⊆ Y . Hence, (1.7.4) induces a mapping

HomA(X ⊗B Y ,Z)→HomB

(
Y ,HomA(X,Z)

)
. (1.7.5)
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Furthermore, the same argument as before tells us that the map Y → Hom[
A(X,Z) given by y 7→ φy is

bounded, so it induces the first map in (1.7.3). The fact that the inverse of (1.7.4) is also bounded (so
continuous) follows from the same argument. The lemma is thus proved. �

1.7.7. Let A be a commutative bornological algebra. A direct consequence of the Lemma 1.7.6 is that

ABMod is a closed symmetric monoidal category for the internal homomorphism space Hom[
A(−,−), i.e. we

have natural k-linear isomorphisms

HomA

(
Y ,Hom[

A(X,Z)
) ∼← HomA(X ⊗A Y ,Z)

∼→ HomA

(
X,Hom[

A(Y ,Z)
)
, (1.7.6)

for all objects X, Y , and Z in ABMod, where the left map takes f to the morphism sending y ∈ Y to
the mapping x 7→ f (x ⊗A y), and the right map takes g to the morphism sending x ∈ X to the mapping
y 7→ f (x ⊗A y) (see [78], Cor. 3). By a general categorical argument, the isomorphisms in (1.7.6) are even
of bornological LCS and also A-linear if all the homomorphisms spaces are internal (see (1.4.6)). By the
adjunction between the bornological tensor functor ⊗A and the internal homomorphism Hom[

A(−,−), we
obtain the isomorphisms in ABMod of the form

colim
j∈J

(
X ⊗A Yj

)
' X ⊗A

(
colim
j∈J

Yj

)
, (1.7.7)

for any bornological locally convex A-module X and any system {Yj : j ∈ J} of bornological locally convex A-
modules and bounded (or continuous) A-linear maps, where the previous colimits are taken in the category
ABMod. This shows that the category ABMod provided with the tensor product ⊗A, the unit A and the
usual flip is a symmetric monoidal category, such that the tensor product commutes with colimits in that
category. Moreover, the same adjunction gives the isomorphisms

Hom[
A(colimXj ,Y ) ' limHom[

A(Xj ,Y ) and Hom[
A(X, limYj ) ' limHom[

A(X,Yj ) (1.7.8)

in ABMod, for all bornological locally convex A-modules X and Y , and all systems {Xj }j∈J and {Yj }j∈J of
bornological locally convex A-modules.

1.7.8 Corollary. Let X be a bornological locally convex A-module over a bornological algebra A. Recall that X ′ is
the bornological LCS Hom[(X,k), which has a canonical structure of right A-module via (f · a)(x) = f (ax), for all
x ∈ X, f ∈ X ′ and a ∈ A. Then X ′ is a right bornological locally convex module over A.

Proof. This is a direct consequence of Lemma 1.7.5. �

1.7.9 Fact. Let A be a unitary bornological algebra and let X be a left bornological locally convex A-module. Then,
we have the isomorphisms

A⊗A X
∼→ X and Hom[

A(A,X)
∼→ X (1.7.9)

of left bornological locally convex A-modules, where the first map sends a ⊗ x to ax, whereas the second sends
φ ∈ HomA(A,X) to φ(1A).

Proof. The maps in (1.7.9) are clearly bounded, so continuous. The inverse maps are x 7→ 1A ⊗ x and
x 7→ (a 7→ ax), respectively, which are clearly well-defined. Moreover, they are also evidently bounded, and
the statement follows. �

1.7.10. LetA be a locally m-convex algebra whose underlying LCS is bornological. We denote the associated
bornological algebra also by A. A particular example of bornological module over the bornological algebra
A is obtained from any locally convex A-module X whose underlying LCS is bornological via the map
(1.4.4). The same holds for any morphism f : X → Y of locally convex A-modules whose underlying LCS
structure are bornological. This induces a functor

res : BLCS∩AMod→ ABMod, (1.7.10)
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where the intersection denotes the full subcategory of AMod formed by the objects whose underlying LCS is
bornological. The domain category is cocomplete, and the colimits are the same as those in AMod, because
the colimit in LCS of bornological LCS is bornological. Furthermore, the functor res preserves colimits, for
they are computed in precisely the same way on both sides of (1.7.10).

1.7.11. Analogously, a left (resp., right) convenient locally convex module X over a bornological A is a left
(resp., right) bornological locally convex module over Awhose underlying LCS is convenient. In particular,
the left (resp., right) action induces a continuous linear map A⊗̃βX→ X (resp., X⊗̃βA→ X). Let us denote
by ACMod the full subcategory of ABMod formed by the left convenient locally convex A-modules. As
usual, if A commutative, by convenient locally convex module over A we will always mean a symmetric left
and right convenient locally convex module. The category of convenient locally convex module over a
commutative convenient algebra A is thus naturally identified with ACMod. If A is a bornological algebra
and X is a left (resp., right) bornological locally convex module over A, Lemma 1.4.31 immediately tells us
that X̃ is a convenient locally convex module over the convenient algebra Ã. Moreover, by the same result,
if f : X→ Y is a morphism of left (resp., right) bornological locally convex modules over A, then f̃ : X̃→ Ỹ
is a morphism of left (resp., right) bornological locally convex modules over Ã. In other words, the functor
(̃−) : BLCS→ CLCSHD naturally induces a functor

(̃−) : ABMod→ ÃCMod. (1.7.11)

The latter is clearly a left adjoint to the inclusion ÃCMod → ABMod, i.e. we have the canonical isomor-
phisms

HomÃ(X̃,Y )
∼→ HomA(X̃,Y )

∼→ HomA(X,Y ) (1.7.12)

of vector spaces, for every left bornological locally convex module X over A and left convenient locally
convex module Y over A, where the first map is the inclusion and the second is given by φ 7→ φ ◦ iX , where
iX : X→ X̃ is the canonical map.

1.7.12. The category ACMod is complete and cocomplete, where the limits and colimits are given by
those in CLCSHD endowed with the clear A-module structures. Indeed, note that the functor ibHD ◦ ibc :
CLCSHD → BLCS preserves limits as well as the inclusion functor BLCS→ k Mod. It is easy to verify that
the usual A-module structure on the limit computed in kMod together with the bornological locally convex
topology computed in BLCS thus gives the limit of a system in ACMod. Analogously, for the result con-
cerning colimits, one notices that the colimit of a system in CLCSHD is given as the convenient completion
of the colimit in BLCS of the image of the system under the functor ibHD ◦ ibc. Since the forgetful functor
BLCS→ k Mod preserves colimits, and the colimit of a system of left A-modules has a natural structure of
left A-module, one notices that the colimit of a system in CLCSHD has a natural structure of convenient
locally convex module over Ã = A, due to (1.7.11).

1.7.13. Given X and Y a left and right bornological locally convex modules over a bornological algebra A,
resp., then the convenient completion of the bornological LCS X ⊗A Y will be denoted by X⊗̃AY . Equiva-
lently, X⊗̃AY is given as a representation of the covariant functor CLCSHD → k Mod sending a convenient
LCS Z to the vector space BA

b (X,Y ;Z) of bounded bilinear and A-balanced maps X × Y → Z (see [21],
Lemma 2.7). In case A is commutative, X⊗̃ :AY has a natural structure of convenient locally convex mod-
ule. It it is easy to show in this case that the convenient tensor product X⊗̃AY also gives a representation of
the covariant functor ACMod→ k Mod sending a locally convex A-module Z to the vector space of bounded
A-bilinear and A-balanced maps X × Y → Z (cf. 1.7.3). Again, if A is unitary and commutative, ACMod is
a symmetric monoidal category with the convenient tensor product ⊗̃A, the unit Ã, and the twist given by
the convenient completion of the twist of ABMod. Since the functor (1.7.11) is a left adjoint, it preserves
colimits. Hence, using that the tensor product ⊗A in ABMod preserves colimits, we get that

ACMod-colim
j∈J

(
X⊗̃βYj

)
' X⊗̃β

(
ABMod-colim

j∈J
Yj

)
. (1.7.13)
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1.7.14.Porism. A typical example we will use of lax symmetric monoidal functor is the following. LetA′ and
A be two commutative unitary bornological (resp., convenient) algebras and let f : A′ → A be a morphism
of bornological (resp., convenient) algebras (e.g., A′ = k and f is the unit map). Then, Fact 1.5.2 implies
that the functor from ABMod (resp., ACMod) to A′BMod (resp., A′CMod) given by restriction of scalars
for the symmetric monoidal structures recalled in 1.7.3 (resp., 1.7.13), and the obvious coherence maps, is
lax symmetric monoidal. In particular, the forgetful functor from ABMod (resp., ACMod) to BLCS (resp.,
CLCSHD ), where A is any commutative unitary bornological (resp., convenient) algebra, provided with the
obvious coherence maps, is lax symmetric monoidal.

If f is surjective, the restriction of previous scalars functor is further nonunitary symmetric monoidal.
As a consequence, Lemma 1.5.2 tells us that, if C is a nonunitary coalgebra in ABMod (resp., ACMod), and
V is a comodule over C in ABMod (resp., ACMod), then we may also regard C as a nonunitary coalgebra in
A′BMod (resp., A′CMod), and V as a comodule over C in A′BMod (resp., A′CMod).

1.7.15 Lemma. Let A be a bornological algebra, and let X and Y be a right and left bornological locally convex
A-modules. Then, we have the natural isomorphisms

X⊗̃AY
∼→ X̃⊗̃AỸ

∼→ X̃⊗̃ÃỸ (1.7.14)

of convenient LCS, where the first map is the convenient completion of iX⊗iY : X⊗AY → X̃⊗A Ỹ , with iX : X→ X̃
and iY : X → Ỹ the canonical maps, and the second map is the convenient completion of the canonical projection
X̃ ⊗A Ỹ → X̃ ⊗Ã Ỹ . These isomorphisms are even of convenient locally convex modules over A (or Ã) if A is
commutative, and as a consequence, the functor (1.7.11) is strong monoidal in that case.

Proof. It suffices to show that the induced maps

Hom(X̃⊗̃ÃỸ ,Z)→ Hom(X̃⊗̃AỸ ,Z)→ Hom(X⊗̃AY ,Z) (1.7.15)

are isomorphisms of vector spaces, for all convenient LCS Z. This is tantamount to proving that

Hom(X̃ ⊗Ã Ỹ ,Z)→ Hom(X̃ ⊗A Ỹ ,Z)→ Hom(X ⊗A Y ,Z)

are isomorphisms, for all convenient LCS Z, or that the maps

BÃ
b (X̃, Ỹ ;Z)→BA

b (X̃, Ỹ ;Z)→BA
b (X,Y ;Z) (1.7.16)

are isomorphisms of vector spaces, where the first mapping is the inclusion and the second is given by
restricting a bilinear form on X̃ × Ỹ to X ×Y . By Lemma 1.4.31, we know that the last map is the restriction
of the isomorphism

Bb(X̃, Ỹ ;Z)→Bb(X,Y ;Z),

also induced by the restriction. To prove that both mappings in (1.7.16) are isomorphisms, it suffices to
show that given any bilinear and A-balanced map φ : X × Y → Z, its unique extension to a bilinear map
φ̃ : X̃ × Ỹ → Z is Ã-balanced. We show first it is A-balanced. For any a ∈ A, the bilinear map ra : X̃ × Ỹ → Z
given by (x,y) 7→ φ̃(xa,y)−φ̃(x,ay) is clearly bounded, for it is obtained from φ̃ and the action of A on X and
Y . Its restriction to X × Y is given by (x,y) 7→ φ(xa,y) −φ(x,ay), which vanishes because φ is A-balanced,
so rA also vanishes, by Lemma 1.4.31, which means that φ̃ is A-balanced. We finally prove that φ̃ is Ã-
balanced. For any x ∈ X̃ and y ∈ Ỹ , consider the linear map sx,y : Ã→ Z given by a 7→ φ̃(xa,y) − φ̃(x,ay).
It is clearly bounded, for φ̃ is so as well as the action of Ã on X̃ and Ỹ . Its restriction to A is the zero
map, because φ is A-balanced, which in turn implies that sx,y also vanishes, by definition of the convenient
completion. Hence, φ̃ is Ã-balanced. The lemma is thus proved. �

1.7.16 Corollary. Let A be a commutative bornological algebra. The isomorphisms in (1.7.12) are in fact of
convenient locally convex A-modules, i.e. they induce isomorphisms of the form

Hom[
Ã

(X̃,Y )
∼→ Hom[

A(X̃,Y )
∼→ Hom[

A(X,Y ). (1.7.17)
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Proof. This is a direct consequence of the fact that (1.7.11) is strong monoidal (see Lemma 1.7.15) and
Lemma 1.3.7. �

1.7.17 Fact. Let A be a convenient algebra. Given a left bornological locally convex A-module X and a left conve-
nient locally convex A-module Y , the internal homomorphism space Hom[

A(X,Y ) of ABMod, where Y is regarded
as a bornological locally convex A-module, is a convenient LCS. If A is commutative, Hom[

A(X,Y ) is thus conve-
nient locally convex A-module.

Proof. We will modify the proof of [41], Prop. 3.6.3, that corresponds precisely to our statement for the
case A = k. Note that Hom[

A(X,Y ) is given by the intersection of the kernels of the maps evax−aevx :
Hom[(X,Y ) → Y , for all x ∈ X and a ∈ A, where evx : Hom[(X,Y ) → Y is the mapping sending f to f (x),
and aevx : Hom[(X,Y )→ Y sends f to af (x). They are continuous, so the kernels are locally closed, because
the inverse image of a locally closed set under a continuous linear map is locally closed (see [82], Lemma
5.1.23, (ii)) and the set formed by the origin of Y is clearly locally closed. The result follows from [82],
Prop. 5.1.20, (ii). �

1.7.18 Lemma. Let A, B and C be convenient algebras. Let X be a left convenient locally convex A⊗βBop-module,
Y be a left convenient locally convex B⊗β Cop-module and Z a left convenient locally convex A⊗β Cop-module.
Then, we have the isomorphisms

HomA(X⊗̃BY ,Z)
∼→ HomB

(
Y ,Hom[

Cop(X,Z)
)

and HomCop(X⊗̃BY ,Z)
∼→ HomBop

(
X,Hom[

Cop(Y ,Z)
)
,

(1.7.18)
of vector spaces, where the first map sends φ ∈ HomA(X⊗̃BY ,Z) to the mapping whose value at y ∈ Y is φy(x) =
φ(x⊗ y), whereas the second sends φ ∈ HomCop(X⊗̃BY ,Z) to the map whose value at x ∈ X is xφ(y) = φ(x⊗ y).

Proof. This is proved by the same argument as the one for Lemma 1.7.6, but using the universal property
of the convenient tensor product of convenient locally convex modules instead (see 1.7.13). �

1.7.19. Assume A is a commutative convenient algebra. Then, Lemma 1.7.18 tells us that the symmetric
monoidal category CLCSHD is closed for the same internal homomorphism space as in BLCS, i.e. we have
natural k-linear isomorphisms

HomA

(
Y ,Hom[(X,Z)

) ∼← HomA(X⊗̃AY ,Z)
∼→ Hom

(
X,Hom[

A(Y ,Z)
)
, (1.7.19)

for all objects X, Y , and Z in ACMod, with the same morphisms as in (1.4.5). Using the same proof as in
(1.4.6), the isomorphisms in (1.7.19) are even of convenient locally convex A-modules if all the homomor-
phisms spaces are internal. As in the case of bornological LCS described 1.4.24, the adjunction between the
convenient tensor functor ⊗̃A and the internal homomorphism Hom[

A(−,−) gives us the isomorphism

colim
j∈J

(
X⊗̃AYj

) ∼−→ X⊗̃A
(
colim
j∈J

Yj

)
(1.7.20)

as well as

Hom[
A(colimXj ,Y ) ' limHom[

A(Xj ,Y ) and Hom[
A(X, limYj ) ' limHom[

A(X,Yj ) (1.7.21)

of convenient locally convex A-modules, for all convenient locally convex A-modules X and Y , and all sys-
tems {Xj }j∈J and {Yj }j∈J of convenient locally convexA-modules, where the colimits and limits are computed
in ACMod.

1.7.20. We will say that a bornological locally convex module X over a bornological algebra A is bornolog-
ically projective if it is a projective object in the category ABMod. The properties mentioned in 1.6.8 for
topologically projectives modules over a locally m-convex algebra, as well as the first part of Fact 1.6.9,
clearly hold for bornologically projective modules over a bornological algebra.
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1.7.21 Fact. LetA be a bornological locally m-convex algebra and letX be a topologically projective over the locally
m-convex algebra A. Then, X is a bornological LCS and the induced bornological locally convex module structure
on X is bornologically projective.

Proof. The statement that X is bornological follows from the fact that X is a direct summand of a direct
sum of copies of A in AMod, so a fortiori in LCS, and the underlying LCS of A is bornological. To prove
the last part, note that the coproduct A(I) in AMod, which is clearly a bornological LCS since the functor
inc : BLCS → LCS preserves coproducts, coincides with the coproduct A(I) in ABMod, because the latter
coproduct is the image of the former one under the functor (1.7.10), which preserves colimits. Moreover,
sinceX is a direct summand ofA(I) in AMod, applying the functor (1.7.10) we get thatX is a direct summand
of A(I) inABMod. Since A is bornologically projective (as a bornological locally convex module over itself),
and direct summands of direct sums of bornologically projectives are bornologically projectives, the result
follows. �

1.7.22. Given two bornological locally convex modules X and Y over a commutative unitary bornological
algebra A that are bornologically projective, their bornological tensor product X⊗AY is also bornologically
projective. This follows directly from the fact X and Y are direct summands of a direct sum of copies of A
in ABMod, and the tensor product ⊗A in ABMod commutes with coproducts.

1.7.23. Let A be a unitary bornological algebra and let X be any left bornological locally convex A-module
that is bornologically projective. Then, the convenient completion of the action of A on X induces an
isomorphism

Ã⊗A X
∼→ X̃. (1.7.22)

Indeed, by (1.7.12), it suffices to show that the functor ABMod→ ÃCMod given by X 7→ Ã ⊗A X is a left
adjoint to the inclusion functor ÃCMod → ABMod. We first note that Ã ⊗A X is indeed convenient, for
X being a direct summand of a coproduct A(I) in ABMod implies that Ã ⊗A X is a direct summand of a
coproduct Ã⊗A A(I) ' Ã(I) in ÃCMod. Moreover, let Y be any convenient locally convex Ã-module. Then,
(1.7.22) follows from the chain of isomorphisms

HomÃ(Ã⊗A X,Y )
∼→ HomA

(
X,Hom[

Ã
(Ã,Y )

) ∼→ HomA(X,Y )

of vector spaces, where the first map is given by Lemma 1.7.6, and the second one is due to Fact 1.7.9.
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Chapter 2

Preliminaries on vector bundles

2.1 The Serre-Swan theorem and its enhancements

2.1.1. For the following definitions we refer the reader to basic texts on differential geometry, such as
[77], which we specially recommend. Throughout this manuscript M, N , . . . will denote finite dimensional
connected smooth manifolds (or smooth manifolds for short). They are assumed to be Hausdorff and to
satisfy the second axiom of countability, so they are in particular paracompact. We shall denote by C∞(M)
the k-algebra of smooth functions from M to the (real manifold) k. Let E be a smooth finite dimensional k-
vector bundle (or vector bundle for short) over M. Then the space of smooth global sections Γ (E) (or Γ (M,E)
if we want to emphasize the base space) of E over M is clearly a C∞(M)-module for the usual left and right
actions. We will also use the space of continuous global sections Γ 0(E) formed by the set of continuous
maps σ : M → E satisfying that σ (p) ∈ Ep, for all p ∈M. It is also a C∞(M)-module, with the same actions
as Γ (E).

2.1.2. We recall that given two vector bundles over M, there exist the tensor product bundle E ⊗k F and the
homomorphism vector bundle Homk(E,F) (see [77], 11.35 and 11.37). The fiber of the former is Ep ⊗k Fp
whereas the fiber of the latter is Homk(Ep,Fp), for all p ∈ M. Since the field k is fixed we shall usually
write in this situation unadorned tensor products of the form E⊗F and unadorned homomorphism spaces
Hom(E,F), as well as for the corresponding fibers Ep ⊗ Fp and Hom(Ep,Fp). This will not cause any harm
because the objects involved are only vector bundles. As usual, if F = M × k is the trivial line bundle, we
write E∗ instead of Hom(E,F).

2.1.3 Theorem (Serre-Swan theorem). Let VectM be the category of vector bundles over M. Consider the map

Γ : VectM → C∞(M) Mod

sending a vector bundle to its space of global sections. Then, the image of Γ lies inside the subcategory of finitely
generated projective C∞(M)-modules, i.e Γ (E) is a finitely generated projective C∞(M)-module for all vector bun-
dles E over M, and moreover Γ gives an equivalence between that subcategory and VectM .

See [77], Thm. 11.29 and 11.32, for the case k =R. The proof for k =C is identical.

2.1.4 Theorem. Let E and F be two vector bundles over M. Consider the canonical map of C∞(M)-modules

ξE,F : Γ (E)⊗C∞(M) Γ (F)→ Γ (E ⊗F)

induced by the mapping Γ (E)× Γ (F)→ Γ (E ⊗F) sending (σ,σ ′) to the section of E ⊗F given by p 7→ σ (p)⊗ σ ′(p),
for p ∈M. Then ξE,F is an isomorphism of C∞(M)-modules.

Furthermore, the natural map

χE,F : Γ
(
Hom(E,F)

)
→HomC∞(M)

(
Γ (E),Γ (F)

)
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defined as χE,F(λ)(σ )(p) = (λ(p))(σ (p)), where λ ∈ Γ (Hom(E,F)), σ ∈ Γ (E) and p ∈ M, is an isomorphism of
C∞(M)-modules.

The case k =R is given in [77], Thm. 11.39, and the statement for k =C is its clear consequence.

We recall that given a morphism f : M → N of smooth manifolds and a vector bundle F over N , there
exists the pull-back bundle f ∗F on M, and its fiber is f ∗Fp = Ff (p), for all p ∈M (see [77], 10.16). The relation
between the space of global sections of f ∗F and of F is given in the next result.

2.1.5 Theorem. Let f :M→N be a morphism of smooth manifolds and F a vector bundle overN . Then f induces
a morphism of k-algebras f ∗ : C∞(N )→ C∞(M) sending g to g ◦ f , for all g ∈ C∞(N ). Consider the canonical
map of C∞(M)-modules

θf ,F : C∞(M)⊗C∞(N ) Γ (F)→ Γ (f ∗F)

that sends h ⊗C∞(N ) σ to the section of Γ (f ∗F) given by p 7→ h(p)σ (f (p)), for all p ∈ M, where h ∈ C∞(M) and
σ ∈ Γ (F). Then θf ,F is an isomorphism of C∞(M)-modules.

The case k =R is given in [77], Thm. 11.54, and the case k =C follows directly from it.

2.1.6. Let M and N be two smooth manifolds and E and F be two vector bundles over M and N , respec-
tively. Recall that the external tensor product E � F of E and F is the vector bundle over M ×N given by the
tensor product π∗ME⊗π

∗
NF of vector bundles over M ×N , where πM :M ×N →M and πN :M ×N →N are

the canonical projections. Note that the fiber (E �F)p,q of E �F at a point (p,q) ∈M ×N is Ep ⊗Fq.
2.1.7 Corollary. Let M and N be two smooth manifolds and E and F be two vector bundles over M and N ,
respectively. Then, the canonical map of C∞(M ×N )-modules

Γ (E)⊗C∞(M) C
∞(M ×N )⊗C∞(N ) Γ (F)→ Γ (E �F)

sending σ⊗C∞(M)h⊗C∞(N )σ
′ to the section (p,q) 7→ h(p,q)(σ (p)⊗σ ′(q)), for all (p,q) ∈M×N , is an isomorphism.

This is a direct consequence of Theorem 2.1.5.

2.1.8. Consider two vector bundles E over M and F over N , and an isomorphism f : M → N of smooth
manifolds. We recall that a morphism t : E→ F of vector bundles over f induces a map of C∞(N )-modules

t∗ : Γ (M,E)→ Γ (N,F) (2.1.1)

of the form σ 7→ t ◦ σ ◦ f −1.

2.2 Sections of compacts support

2.2.1 Theorem. The ideal C∞c (M) of C∞(M) given by the functions of compact support is a projective C∞(M)-
module. Moreover, if K ⊆M is compact, the subset C∞K (M) of C∞c (M) formed by the functions whose support is
included in K , is a finitely generated projective C∞(M)-module.

Proof. See the Corollary in [38] for k = R. The proof for k = C is identical. The last statement is proved by
precisely the same argument as the one used for the first implication of the main Theorem in [38]. �

2.2.2. We will state some consequences of the previous result. Given a vector bundle E over M (resp., and
K ⊆M is a compact subset of M), denote by Γc(E) (resp., ΓK (E)) the space of smooth global sections (resp.,
whose support is included in K) of compact support of E. It will be denoted by Γc(M,E) (resp., ΓK (M,E)) if
we want to emphasize the base space. They are C∞(M)-submodules of Γ (E).

2.2.3 Corollary. Let E be a vector bundle over M (resp., and K ⊆M is a compact subset of M). Then Γc(E) (resp.,
ΓK (E)) is a projective C∞(M)-module (resp., finitely generated projective C∞(M)-module).

Proof. Since E be a vector bundle over M, Theorem 2.1.3 tells us that there exists another vector bundle E′

such that E ⊕E′ is isomorphic to a trivial vector bundle. Suppose that E ⊕E′ 'M × km for some m ∈N. In
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this case it is trivial to see that Γc(E ⊕E′) ' C∞c (M)m for the obvious isomorphism of C∞(M)-modules given
by σ 7→ π2 ◦ σ , for σ ∈ Γc(E) and π2 : M × km → km the canonical projection. Taking into account that the
functor Γc commutes with finite direct sums, we get that

Γc(E)⊕ Γc(E′) ' Γc(E ⊕E′) ' Γc(M × km) = C∞c (M)m.

Hence, Γc(E) is a direct summand of a projective C∞(M)-module, so a projective C∞(M)-module as well.
The proof for ΓK (E) is analogous. �

2.2.4 Proposition. Let E and F be two vector bundles over M. The canonical map ξE,F in Theorem 2.1.4 induces
an isomorphism of C∞(M)-modules

ξ̄E,F : Γ (E)⊗C∞(M) Γc(F)→ Γc(E ⊗F). (2.2.1)

On the other hand, ξE,F also induces the isomorphism of C∞(M)-modules

ξ̂E,F : Γc(E)⊗C∞(M) Γc(F)→ Γc(E ⊗F). (2.2.2)

Proof. We consider the first part of the statement. Let us start with the case where F is the trivial 1-
dimensional bundle M × k. By means of the isomorphism of vector bundles E ⊗F ' E, we see that (2.2.1) is
tantamount to prove that the map

ξ̄E : Γ (E)⊗C∞(M) C
∞
c (M)→ Γc(E)

induced by the right action on Γ (E) is an isomorphism of C∞(M)-modules. Moreover, ξ̄E is the corestriction
to Γc(E) of the map given by tensoring the inclusion map C∞c (M) → C∞(M) on the left with Γ (E) over
C∞(M). Since Γ (E) is a projective C∞(M)-module by Theorem 2.1.3, it is flat, so ξ̄E is injective. It is also
surjective. Indeed, given any section σ of compact support K of E, consider a smooth function of compact
support f ∈ C∞c (M) satisfying that f (p) = 1 for all p ∈ K . Such a function exists by a usual argument using
a partition of the unity (see [76], Lemma 1.5). Then ξ̄E(σ ⊗C∞(M) f ) = σ .

The fact that (2.2.1) is an isomorphism follows from the commutativity of the diagram

Γ (E)⊗C∞(M) Γ (F)⊗C∞(M) C
∞
c (M)

ξE,F⊗C∞(M)idC∞c (M)//

idΓ (E)⊗C∞(M)ξ̄F
��

Γ (E ⊗F)⊗C∞(M) C
∞
c (M)

ξ̄E⊗F
��

Γ (E)⊗C∞(M) Γc(F)
ξ̄E,F // Γc(E ⊗F)

To prove the second part of the statement we show first that the map

ξ̂F : C∞c (M)⊗C∞(M) Γc(F)→ Γc(F)

induced by the left action on Γc(F) is an isomorphism of C∞(M)-modules. Since ξ̂F is given by tensoring
the inclusion map C∞c (M) → C∞(M) with Γc(F) over C∞(M), and Γc(F) is a projective C∞(M)-module by
Corollary 2.2.3 (so flat), ξ̂F is injective. The surjectivity is proved by the same argument as the one given
for ξ̄F . The general situation follows from the commutative diagram

C∞c (M)⊗C∞(M) Γ (E)⊗C∞(M) Γc(F)
idC∞c (M)⊗C∞(M)ξ̄E,F//

(ξ̄E◦τ)⊗C∞(M)idΓc (F)

��

C∞c (M)⊗C∞(M) Γc(E ⊗F)

ξ̂E⊗F
��

Γc(E)⊗C∞(M) Γc(F)
ξ̂E,F // Γc(E ⊗F)

where τ : C∞c (M)⊗C∞(M) Γ (E)→ Γ (E)⊗C∞(M) C
∞
c (M) is the usual flip. The proposition is thus proved. �
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2.2.5 Proposition. Let E and F be two vector bundles over M. The canonical map χE,F in Theorem 2.1.4 induces
an isomorphisms of C∞(M)-modules

χ̄E,F : Γc
(
Hom(E,F)

)
→HomC∞(M)

(
Γ (E),Γc(F)

)
. (2.2.3)

On the other hand, the obvious inclusion

HomC∞(M)

(
Γc(E),Γc(F)

)
→HomC∞(M)

(
Γc(E),Γ (F)

)
(2.2.4)

is an isomorphism of C∞(M)-modules, and there is a canonical map of C∞(M)-modules

χ̂E,F : HomC∞(M)

(
Γ (E),Γ (F)

)
→HomC∞(M)

(
Γc(E),Γc(F)

)
(2.2.5)

induced by sending λ ∈HomC∞(M)(Γ (E),Γ (F)) to its restriction λ|Γc(E). Moreover, χ̂E,F is injective.

Proof. Given any pair of C∞(M)-modules X and Y , consider the canonical map

υX,Y : X~ ⊗C∞(M) Y →HomC∞(M)(X,Y ),

sending λ⊗C∞(M) y to the map x 7→ λ(x)y, for x ∈ X, y ∈ Y , and λ ∈ X~. It is an isomorphism if X is finitely
generated and projective (see [3], Prop. 20.10), which clearly holds for Γ (E). The statement for χ̄E,F now
follows from the fact that (2.2.3) is the composition of

ξ̄−1
Hom(E,F) : Γc

(
Hom(E,F)

)
→ Γ

(
Hom(E,F)

)
⊗C∞(M) C

∞
c (M),

the map

υ−1
Γ (E),Γ (F) ⊗C∞(M) idC∞c (M) : Γ

(
Hom(E,F)

)
⊗C∞(M) C

∞
c (M)→ Γ (E)~ ⊗C∞(M) Γ (F)⊗C∞(M) C

∞
c (M),

the mapping idΓ (E)~ ⊗C∞(M) ξ̄F and υΓ (E),Γc(F).

The fact that the inclusion (2.2.4) is surjective is clear. Indeed, given any λ ∈HomC∞(M)(Γc(E),Γ (F)) and
σ ∈ Γc(E), taking f ∈ C∞c (M) such that f (p) = 1 for all p in the support of σ we see that λ(σ ) = λ(f σ ) = f λ(σ ),
so λ(σ ) has compact support.

Finally, the canonical map χ̂E,F is also well-defined, since the previous argument also shows that given
any λ ∈ HomC∞(M)(Γ (E),Γ (F)) and σ ∈ Γc(E), then λ(σ ) has compact support. Let χ̂E : Γ (E)~ → Γc(E)~ be
the map given by λ 7→ λ|Γc(E). Then, χ̂E,F coincides with χ̂E ⊗C∞(M) idΓ (F). Since Γ (F) is projective (so
flat), it suffices to show that χ̂E is injective. If E = M × k is the trivial line bundle, then χ̂E gives the
map C∞(M) → C∞c (M)~ sending f to the functional g 7→ gf , for f ∈ C∞(M) and g ∈ C∞c (M). This map
is obviously injective, because f , 0, implies that there is p ∈ M such that f (p) , 0, so gf , 0 for any
function g ∈ C∞c (M) such that g(p) , 0. The case of a trivial bundle E = M × kr follows from the previous
considerations, because in this case χ̂E is the direct sum of the r copies of the morphisms χ̂M×k considered
for the case of the line bundle. Analogously, the case of a general vector bundle E holds, because if F is
another vector bundle such that E ⊕ F is a trivial vector bundle M × kr , then χ̂E ⊕ χ̂F coincides with χ̂M×kr .
�

2.2.6. We finally remark that, given an isomorphism t : E → F of vector bundles over an isomorphism
f :M→N of smooth manifolds, the morphism (2.1.1) restricts to a map of C∞(N )-modules

t∗ : Γc(M,E)→ Γc(N,F). (2.2.6)

2.3 Topologies on the spaces of sections

2.3.1. For any smooth manifoldM of dimension n, the k-algebra C∞(M) has a structure of locally m-convex
algebra given by the so-called usual topology defined as follows. Let {K`}`∈N0

be a countable collection of
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compact subsets of M such that M = ∪`∈N0
K◦` and K` is included in a chart (Ui` ,φi` ) of the atlas of M. For

`,m ∈N0, define

p`,m(f ) = sup
x∈φi` (K`)

sup
ā∈Nn

0,≤m

∣∣∣∣∣∣∣2m∂
α(f ◦φ−1

i`
)

∂xα
(x)

∣∣∣∣∣∣∣ , (2.3.1)

where Nn
0,≤m is the subset of Nn

0 formed by the elements ā = (a1, . . . , an) such that |ā| = a1 + · · ·+ an ≤m, and
f ∈ C∞(M). This family of real seminorms induces a structure of locally m-convex algebra on C∞(M) and it
is in fact a Fréchet algebra (see [69], IV.4.(2)). Furthermore, Eq. (4.19) in [69], IV.4, tells us that the family
{C∞(M)→ C∞(Ui` )}`∈N0

of maps given by restriction induces an isomorphism

C∞(M) ' lim
←
C∞(Ui` ) (2.3.2)

of locally m-convex algebras. The previous isomorphism together with [95], III.7.4, and [104], Cor. after
Thm. 51.5, imply that C∞(M) is a nuclear space. Moreover, C∞(M) is also a Schwartz space, for any nuclear
space is also a Schwartz space (see [51], Ch. III, Section 3:1-2, Rk. 4).

2.3.2 Theorem. Let M be a smooth manifold. Then, there exists a unique Fréchet algebra structure on C∞(M).

This is a direct consequence of [72], Thm. 14.2.

2.3.3. It can be verified directly from the previous family of seminorms that the map f ∗ : C∞(N )→ C∞(M)
induced by a morphism f :M→N of smooth manifolds is a morphism of Fréchet algebras.

2.3.4.Remark. Note that, in the case A = C∞(M), X = Γ (E), and Y = Γc(E), the dual space X~ has the unique
Fréchet topology coming from the identification Γ (E)~ ' Γ (E∗) (see Theorem 2.1.4), and Y ~ has the locally
convex topology coming from the identification Γc(E)~ ' Γc(E∗) (see Proposition 2.2.5).

2.3.5. Given any smooth manifold M of dimension n and a vector bundle E of rank r over M, the C∞(M)-
module Γ (E) has the structure of locally convex module for the usual topology, which we now recall. Choose
{K`}`∈N0

a countable collection of compact subsets of M such that M = ∪`∈N0
K◦` and K` is included in an

open set Ui` that is part of a chart (Ui` ,φi` ) of the atlas of M and of a trivialization (Ui` ,ψi` ) of the vector
bundle E. For `,m ∈N0, define

p`,m(σ ) = sup
x∈φi` (K`)

sup
ā∈Nn

0,≤m

sup
s=1,...,r

∣∣∣∣∣∣∣2m∂
α(πs ◦ψi` ◦ σ ◦φ

−1
i`

)

∂xα
(x)

∣∣∣∣∣∣∣ , (2.3.3)

where Nn
0,≤m was defined after equation (2.3.1), πs : Ui` × k

r → k is the canonical projection onto the s-th
component of kr , and σ ∈ Γ (E). The same proof as the one for the seminorms (2.3.1) can be used to prove
that this family gives a structure of locally convex module on Γ (E) over C∞(M) and it is furthermore a
Fréchet module. Note that Γ (E) is a nuclear space, because it is a direct summand of a finite direct sum of
copies of the nuclear space C∞(M) (see [95], III.7.4), and, as a consequence, a Schwartz space (see 2.3.1).

2.3.6 Corollary. LetM be a smooth manifold and consider the unique Fréchet algebra structure on C∞(M). Then,
given any vector bundle E over M, the space of global sections Γ (E) has a unique structure of Fréchet module over
C∞(M). Furthermore, if F is another vector bundle over M, any C∞(M)-linear map Γ (E)→ Γ (F) is a morphism
of Fréchet modules.

This is a direct consequence of Proposition 1.6.7, and it roughly states that more or less the topology on
the spaces of global sections is somehow redundant.

2.3.7 Corollary. Let M be a smooth manifold and consider the unique Fréchet algebra structure on C∞(M).
Then Γ (E) is a topologically projective Fréchet C∞(M)-module. If K ⊆ M is a compact subset, then ΓK (E) is a
topologically projective Fréchet C∞(M)-module as well.

This is a direct consequence of Lemma 1.6.10 together with Theorem 2.1.3, and Corollaries 2.2.3 and
2.3.6.
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2.3.8 Theorem. Let M be a smooth manifold. Then the structure sheaf OM of M is a sheaf of Fréchet algebras.
Moreover, the functor from the category of sheaves of Fréchet modules over OM to the category of Fréchet modules
over C∞(M) given by taking global sections is an equivalence. It is also a monoidal functor for the completed
tensor products on both sides.

This is a special case of [76], Thm. A.3, and whose last statement follows from the comments about
tensor products on p. 155. We refer the reader to [76], App. A, for the definition of sheaf of locally convex
(resp., Fréchet) modules over a sheaf of locally convex m-algebras.

2.3.9. Let E be a vector bundle over M. Given any compact K ⊆M, the definition of the seminorms (2.3.3)
imply that the vector subspace ΓK (E) of Γ (E) formed by the sections whose support is contained in K is
closed. It is also a C∞(M)-submodule of Γ (E), so a Fréchet module over C∞(M) as well. Furthermore, by
[95], III.7.4, it is a nuclear space, which, together with the completeness, imply that it is in particular semi-
reflexive by [95], III.7.2, Cor. 2, and IV.5.5. Since a Fréchet space is barreled (see [95], II.7.1, Cor.), [95],
Thm. IV.5.6, implies that ΓK (E) is reflexive. Furthermore, it is also bornological, because it is Fréchet (see
[95], II.8.1), and Schwartz, for it is a subspace of the Schwartz space Γ (E). All of the previous comments
in this paragraph apply to the Fréchet nuclear space Γ (E) to show that it is barreled, bornological and
reflexive. Note that Γc(E) is the union of all C∞(M)-modules ΓK (E), for all compact subsets K ⊆ M. We
define the final locally convex topology on Γc(E) for the family of inclusions{

ΓK (E)→ Γc(E) : K ⊆M compact
}
. (2.3.4)

It is clear that Γc(E) is a locally convex module over C∞(M), and by its very definition, Γc(E) is an (LF)-space,
so barreled (see [95], II.7.2, Cor. 2) and bornological (see [95], II.8.2, Cor. 2). It is complete and reflexive,
because each space ΓK (E) is so (see [95], II.6.6, and IV.5.8). As the manifold M satisfies the second axiom of
countability, the family of compacts K in (2.3.4) can be taken to be countable, and in particular Γc(E) is also
nuclear (see [95], III. 7.4, Cor.), so in particular it is a Schwartz space (see 2.3.1). Moreover, applying the
previous ideas to the trivial line bundle M × k tells us that C∞c (M) is a locally convex module over C∞(M)
satisfying the same conditions.

2.3.10 Corollary. Let M be a smooth manifold and consider the unique Fréchet algebra structure on C∞(M).
Given two vector bundles E and F over M, consider the locally convex C∞(M)-modules Γc(E) and Γc(F) defined
before, and let f : Γc(E)→ Γc(F) be any C∞(M)-linear map. Then f is continuous. Furthermore, Γc(E) is topologi-
cally projective.

Proof. Since any C∞(M)-linear map f : Γc(E)→ Γc(F) is continuous if and only if its restriction to ΓK (E) is
continuous, and the latter space is a finitely generated locally convex C∞(M)-module, Proposition 1.6.7
tells us that f |ΓK (E) is continuous.

To prove the last statement, recall that Γc(E) is a projective C∞(M)-module by Corollary 2.2.3. This
implies that there exists morphisms of C∞(M)-modules h : Γc(E)→ C∞(M)(J) and g : C∞(M)(J)→ Γc(E), for
some set J , where we remark that C∞(M)(J) has the locally convex coproduct topology, such that g ◦ h =
idΓc(E). By the arguments in 2.3.9, h is continuous if and only if h|ΓK (E) is continuous for all compact subsets
K ⊆ M. As ΓK (E) is a finitely generated Fréchet module over C∞(M), Proposition 1.6.7 implies h|ΓK (E)
is continuous. Moreover, by the definition of the locally convex coproduct topology g is continuous if and
only if g◦uj : C∞(M)→ Γc(E) is so for all j ∈ J , where uj : C∞(M)→ C∞(M)(J) is the canonical j-th inclusion.
By Proposition 1.6.7, the composition g ◦uj is also continuous, and the corollary follows. �

2.3.11 Lemma. Let M and N be two manifolds. Then, the canonical inclusions C∞(M)⊗π C∞(N )→ C∞(M ×
N ) induces an isomorphism of locally m-convex algebras C∞(M)⊗̂πC∞(N )→ C∞(M ×N ). Since both C∞(M)
and C∞(N ) are metrizable (and thus bornological) LCS, we also obtain an isomorphism of bornological algebras
C∞(M)⊗̃βC∞(N )→ C∞(M ×N ).

Proof. Let us start with the first isomorphism, and assume that M and N are are open subsets of Euclidean
spaces. The first isomorphism is in this case given by [104], Thm. 51.6, (51.4). Furthermore, the canonical
inclusion C∞(M)⊗π C∞(N )→ C∞(M ×N ) restricts to a morphism between the associated inverse systems
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of the form (2.3.2). Taking into account that the inverse limits are determined by taking any covering
of the involved manifolds, and the comparison morphisms between the systems are isomorphisms by the
previous comments, the general case follows.

For the last part, we first note that C∞(M)⊗π C∞(N ) ' C∞(M)⊗β C∞(N ) via the canonical morphism
(1.4.4), because the spaces are metrizable (see 1.4.23). Moreover, since the previous tensor product is also
metrizable, its completion and its convenient completion coincide by Corollary 1.4.21, and the last result
follows. �

2.3.12 Lemma. Let M and N be two manifolds. Then, the canonical inclusion C∞c (M)⊗β C∞c (N )→ C∞(M ×N )
induces an isomorphism of bornological algebras C∞c (M)⊗̃βC∞c (N )→ C∞c (M ×N ).

Proof. Recall that both C∞c (M) and C∞c (N ) are strict inductive limits in LCS (or BLCS) of sequences of
Fréchet bornological algebras of the form (2.3.4). By the arguments given in the proof of Lemma 1.4.38,
C∞c (M)⊗̃βC∞c (N ) is the strict inductive limit in LCS of a sequence of terms of the form C∞K (M)⊗̂πC∞K ′ (N ),
with K ⊆M and K ′ ⊆ N two compact subsets. The result now follows from [104], Thm. 51.6, (51.5), and
the definition of C∞c (M ×N ). �

2.3.13 Proposition. Let M and N be smooth manifolds, and E and F be two vector bundles over M and N ,
respectively. Then, there is a canonical isomorphism of bornological locally convex C∞(M ×N )-modules of the
form

κ : Γ (E)⊗̃βΓ (E)→ Γ (E �F) (2.3.5)

which restricts to an isomorphism
κ̄ : Γc(E)⊗̃βΓc(F)→ Γc(E �F). (2.3.6)

We suspect that this result should be well-known.

Proof. Corollary 2.1.7 tells us that Γ (E �F) is canonically isomorphic (as C∞(M ×N )-modules) to

Γ (E)⊗C∞(M) C
∞(M ×N )⊗C∞(N ) Γ (F), (2.3.7)

whereas Corollary 2.2.4 together with (2.3.7) imply that Γc(E�F) is canonically isomorphic (as C∞(M ×N )-
modules) to

Γ (E)⊗C∞(M) C
∞
c (M ×N )⊗C∞(N ) Γ (F). (2.3.8)

The inclusion mapping C∞(M) ⊗β C∞(N ) → C∞(M × N ) is in fact the convenient completion of its
domain by Lemma 2.3.11. Using (1.7.22) with A = C∞(M) ⊗C∞(N ) (so Ã ' C∞(M ×N )) and X given by
Γ (E) ⊗β Γ (F), we get that the bornological locally convex C∞(M ×N )-module (2.3.7) is isomorphic to the
convenient completion Γ (E)⊗̃βΓ (F). The isomorphism κ is the one induced by the map from Γ (E)⊗β Γ (F) to
(2.3.7) defined as

σ ⊗ σ ′ 7→ σ ⊗C∞(M) 1M×N ⊗C∞(N ) σ
′ , (2.3.9)

where 1M×N is the constant unit map on M ×N . Indeed, the map (2.3.9) is bilinear separately continuous
by Proposition 1.6.7, so it is jointly continuous (see [95], III.5.1), for Γ (E) and Γ (F) are Fréchet and then
barreled (see [95], II.7.2, Cor. 2), and thus extends to a morphism of locally convex C∞(M ×N )-modules
(2.3.5) by the universal property of the convenient completion. The proof for κ̄ is precisely the same using
that the inclusion mapping C∞c (M)⊗βC∞c (N )→ C∞c (M×N ) is also the convenient completion of its domain
by Lemma 2.3.12. �

2.3.14.Remark. Combining the isomorphisms (2.3.6) together with Lemma 1.4.38, we obtain the isomor-
phism

Γc(E)⊗̂iΓc(F)→ Γc(E �F). (2.3.10)

of LCS explained in [47], II.3.3, Example 4, pp. 82–85. Moreover, from the arguments appearing in pre-
cisely the same example of the previous reference (note that one can always construct a continuous norm
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on the space of sections of compact support of a vector bundle by using a Riemannian metric on it) we see
that the canonical continuous linear map

ẽΓc(E),Γc(F) : Γc(E)⊗̃βΓc(F)→ Γc(E)⊗̂πΓc(F) (2.3.11)

is bijective, but not an isomorphism of LCS unless the manifolds are compact. Using some results of
Grothendieck stated loc. cit., we will provide a proof of a slightly more general version of this result in
Lemma 4.2.3

2.3.15.Remark. Since the spaces of all sections of the vector bundles E and F over the manifoldM are finitely
generated topologically projective modules over the Fréchet algebra C∞(M), one may use (1.6.3) instead of
(1.7.22) in the previous proof, to obtain that the inclusion C∞(M) ⊗π C∞(N ) → C∞(M × N ) induces an
isomorphism

κ : Γ (E)⊗̂πΓ (E)→ Γ (E �F) (2.3.12)

of locally convex modules over the locally m-convex algebra C∞(M). This is precisely the same map as
(2.3.5), for the metrizability of the LCS Γ (E) and Γ (E) implies that the bornological (resp., convenient)
tensor product coincides with the projective tensor product (resp., completed projective tensor product)
(see 1.4.34).

2.3.16. Given σ ∈ Γ (E) and σ ′ ∈ Γ (F), we shall denote the image of σ ⊗ σ ′ under the previous map κ by
σ � σ ′ , and call it the external tensor product of the sections σ and σ ′ . The same applies to sections σ ∈ Γc(E)
and σ ′ ∈ Γc(F) by means of the map κ̄.

2.3.17. We summarize the topological information about the spaces of smooth sections. Let E and F be two
vector bundles (of finite rank) over smooth manifolds M and N , respectively. Then,

(a) C∞(M) has a unique structure of locally m-convex algebra that is Fréchet (see Theorem 2.3.2);

(b) the finitely generated projective C∞(M)-module Γ (E) has a unique structure of Fréchet locally con-
vex module over C∞(M) and any morphism of C∞(M)-modules from Γ (E) to Γ (F) is continuous (see
Corollary 2.3.6);

(c) the C∞(M)-module Γc(E) is projective and it is a strict countable inductive limit of the Fréchet locally
convex C∞(M)-modules ΓK (E), where K runs over the (a countable exhaustive collection of) compact
subsets of M, so an (LF)-space (see Corollary 2.3.7 and 2.3.9), and any morphism of C∞(M)-modules
from Γc(E) to Γc(F) is continuous (see Corollary 2.3.10);

(d) as LCS Γ (E) and ΓK (E) are Fréchet (so barreled and bornological), nuclear, thus reflexive (see 2.3.1,
2.3.5, and 2.3.9), and Schwartz; whereas Γc(E) is a strict countable inductive limit of spaces of the
form ΓK (E), for K running over a countable exhausting family of compacts subsets ofM, which in turn
implies that Γc(E) is an (LF)-space (so barreled, bornological, and complete) that is nuclear, reflexive
and Schwartz (see 2.3.9);

(e) C∞(M ×N ) ' C∞(M)⊗̃βC∞(N ) is an isomorphism of locally m-convex algebras (see Lemma 2.3.11);

(f) there are natural isomorphisms Γ (E � F) ' Γ (E)⊗̃βΓ (F) and Γc(E � F) ' Γc(E)⊗̃βΓc(F) of bornological
locally convex modules over C∞(M ×N ) (see Proposition 2.3.13).
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Chapter 3

Some results on tensor products

3.1 The tensor and symmetric coalgebra and the cofree comodule in a symmetric
monoidal category

3.1.1. Let C be a k-linear symmetric monoidal category that is complete and cocomplete and whose ten-
sor product commutes with colimits on each side. We recall that the subcoalgebra ΣC X = ⊕m∈N0

ΣmC X
(resp., Σ+

C X = ⊕m∈NΣmC X) of the tensor coalgebra TC X = ⊕m∈N0
X⊗C m (resp., T +

C X = ⊕m∈NX⊗C m) pro-
vided with the coproduct given by deconcatenation is cofree in the category of conilpotent cocommutative
coaugmented C -coalgebras (resp., conilpotent cocommutative noncounitary C -coalgebras). This holds for
any field k, not necessarily of characteristic zero. Analogously, the symmetric construction (resp., reduced
symmetric construction) SC X = ⊕m∈N0

SmC X (resp., S+
C X = ⊕m∈NSmC X) has a canonical structure of (resp.,

noncounitary) coaugmented C -coalgebra (resp., noncounitary C -coalgebra) given by

∆(x1 . . .xm) =
∑

(I,J)∈Par0(m,2)

xI ⊗ xJ
(
resp., ∆(x1 . . .xm) =

∑
(I,J)∈Par(m,2)

xI ⊗ xJ
)
, (3.1.1)

where Par0(m,2) is the set of pairs (I, J), where I, J ⊆ {1, . . . ,m}, I ∩ J = ∅ and I ∪ J = {1, . . . ,m} (resp., Par(m,2)
is the set of pairs (I, J), where I, J ⊆ {1, . . . ,m} are nonempty sets, I ∩ J = ∅ and I ∪ J = {1, . . . ,m}), and xI =
xi1 ⊗ · · · ⊗ xim′ for I = {i1 < · · · < im′ } (cf. [67], 1.2.9). We recall that S0

C X indicates the unit of the symmetric
monoidal category, and SC X is coaugmented by means of the trivial inclusion of the unity of the monoidal
category C into SC X. Of course the previous identities in (3.1.1) should be understood as indicating the
corresponding action of the symmetric group Sm on the tensor factors of SmC X, and not on elements of that
object, and x∅ indicates the coaugmentation of SC X.

3.1.2. Moreover, the coalgebra SC X (resp., S+
C X) is isomorphic to ΣC X (resp., Σ+

C X), with the isomor-
phism given by the map from SC X (resp., S+

C X) to ΣC X (resp., Σ+
C X) whosem-th component SmC X→ ΣmC X

is just m!ē, where ē : SmC X → ΣmC X is the morphism stated in Proposition 1.1.4 corresponding to the ob-
ject X⊗C m under the action of Sm. This means that, for any conilpotent cocommutative coaugmented C -
coalgebra (resp., conilpotent cocommutative noncounitary C -coalgebra) C, the map HomcCog•(C,SC X)→
HomC (C,X) (resp., HomcCog(C,S+

C X)→HomC (C,X)) given by composing with the projection p1 : SC X→
X (resp., p1 : S+

C X → X) is an isomorphism, where the first homomorphism space is in the category of co-
commutative coaugmented C -coalgebras (resp., cocommutative noncounitary C -coalgebras). The inverse
map sends g ∈HomC (C,X) to∑

m∈N0

1
m!
πX,m ◦ ḡ⊗C m ◦∆

(m)
C̄
◦π⊗C m

(
resp.,

∑
m∈N

1
m!
πX,m ◦ g⊗C m ◦∆

(m)
C

)
, (3.1.2)

where C̄ = C/Im(ηC) is the quotient of C by its coaugmentation ηC , π : C→ C̄ the canonical projection, ∆C̄
is the noncounitary coproduct of C̄ induced by that of C, ∆(m)

C̄
= (∆(m−1)

C̄
⊗C idC̄) ◦∆C̄ , for m ≥ 2, ∆(1)

C̄
= idC̄ ,
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ḡ : C̄ → S+
C X is the map induced by g, ∆(0)

C̄
◦ π⊗C 0 = εC , ḡ⊗C 0 is the coaugmentation of SC X, and πX,m :

X⊗C m → SmC X is the canonical projection. To shorten the notation in (3.1.2) we will write ∆̄(m)
C instead of

∆
(m)
C̄
◦ π⊗C m, and we will usually omit the morphism πX,m and the bars on the morphism g as well. For

a nice proof of the fact that (3.1.2) gives the purported inverse of the previous map HomcCog•(C,SC X)→
HomC (C,X) (resp., HomcCog(C,S+

C X)→HomC (C,X)) in the particular case of the category of super vector
spaces, we refer the reader to [4], Thm. III.2.1. The general proof is analogous.

3.1.3. It is direct to prove that, givenC = SC X (resp., C = S+
C X), an endomorphism f of the counitary (resp.,

noncounitary) C -coalgebra C is an isomorphism if and only if p1 ◦f ◦ i1 is an isomorphism in the monoidal
category, where i1 denotes the canonical monomorphism X → C. The only nontrivial implication of that
statement follows from writing down the expressions p1 ◦ f ◦ g ∈HomC (C,X) for any two endomorphisms
f and g of C, noticing that f ◦ g = idC if and only if p1 ◦ f ◦ g = p1, and realizing in this case that one of the
endomorphisms can be recursively written in terms of the other if the precomposition of the latter with i1
and its postcomposition with p1 is an isomorphism of C . Furthermore, SC X (resp., S+

C X) is a unitary and
counitary (resp., nonunitary and noncounitary) C -bialgebra for the usual commutative algebra structure.
The unit of SC X is given by the canonical inclusion of the unit of C , which is just S0

C X, inside of SC X.
We will refer to this unitary and counitary (resp., nonunitary and noncounitary) C -bialgebra structure on
SC X (resp., S+

C X) as canonical.

3.1.4. If C denotes a counitary C -coalgebra and Y is any object of the monoidal symmetric category of
C , the right comodule Cof(Y ,C) = Y ⊗C C in C provided with coaction induced by the coproduct of C is
cofree, i.e. for any right comodule Z over C in C , the map HomC(Z,Cof(Y ,C))→ HomC (Z,Y ) given by
composing with idY ⊗C εC is an isomorphism, where εC is the counit of C, and the first homomorphism
space is in the category of right C-comodules in C . The inverse is just given by sending f ∈HomC (Z,Y ) to
(f ⊗C idC) ◦ρZ , where ρZ : Z→ Z ⊗C C is the coaction of Z. Suppose that C is also coaugmented by means
of ηC . It is an direct to prove that, given Z = Cof(Y ,C), an endomorphism f of the C-comodule Z in C is an
isomorphism if and only if (idY ⊗C εC)◦ f ◦ (idY ⊗C ηC) is an isomorphism of Y in the underlying monoidal
category C . The proof is similar to the analogous property mentioned for symmetric coalgebras in C . The
same results hold for left comodules.

3.1.5. Let us introduce the following terminology. If {X` : ` ∈ L} is a finite family of (different) objects of C .
We denote byX`1

s C . . . s C X`q the image ofX`1
⊗C · · ·⊗C X`q under the canonical projection of (⊕`∈LX`)⊗C q

onto (⊕`∈LX`)⊗C q/Sq. By Proposition 1.1.4, the latter is isomorphic with the object given by the invariants
((⊕`∈LX`)⊗C q)Sq . Note that the tensor product X s C . . . s C X of q equal factors is just SqC X.

3.1.6. In general, we will omit the subscript C from the tensor products ⊗C and s C , the space of invari-
ants ΣmC X or the space of coinvariants SmC X, as well the from the tensor algebra, etc. if it is clear from the
context what symmetric monoidal category we are dealing with, and we will write thus ⊗, s , ΣmX, SmX,
etc. This will also be typically the case when C is the category of vector spaces over k. For the category of
modules over a commutative k-algebra A, we will usually add A as subscript, e.g. ⊗A, s A, SmAX, ΣmAX. On
the other hand, in many situations we will simultaneously consider several tensor products on the same
category C , e.g. ⊗ and �, for which we will prefer to use the symbol of the corresponding tensor product
as subscript of T , S or Σ to distinguish them.

3.2 More on symmetric monoidal categories and bialgebras over them

3.2.1. The following definition can be found in [2], 6.1.

3.2.2 Definition. A double monoidal category is a tuple (C ,⊗C , I⊗,�C , I�), where (C ,⊗C , I⊗) and (C ,�C , I�)
are monoidal categories. It will be called symmetric if it is further provided with a natural morphism τ such that
(C ,⊗C , I⊗, τ) is a symmetric monoidal category. A 2-monoidal category is a double monoidal category together
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with a natural morphism

shA,B,C,D : (A⊗C B)�C (C ⊗C D)→ (A�C C)⊗C (B�C D) (3.2.1)

in C and three morphisms

µ� : I⊗ �C I⊗→ I⊗, ∆⊗ : I�→ I� ⊗C I�, and ν : I�→ I⊗, (3.2.2)

in C such that the following conditions hold. We will denote the associativity isomorphism and the left and
right units of (C ,�C , I�) by a�X,Y ,Z , l�X and r�X , respectively, and those of (C ,⊗C , I⊗) by a⊗X,Y ,Z , l⊗X and r⊗X ,
respectively.

(i) Given X1,Y1,X2,Y2,X3,Y3 objects in C , the following diagrams

(X1 ⊗C Y1)�C
(
(X2 ⊗C Y2)�C (X3 ⊗C Y3)

)

(
(X1 ⊗C Y1)�C (X2 ⊗C Y2)

)
�C (X3 ⊗C Y3)

(
(X1 �C X2)⊗C (Y1 �C Y2)

)
�C (X3 ⊗C Y3)

(
(X1 �C X2)�C X3

)
⊗C

(
(Y1 �C Y2)�C Y3

)

(
X1 �C (X2 �C X3)

)
⊗C

(
Y1 �C (Y2 �C Y3)

)

(X1 ⊗C Y1)�C
(
(X2 �C X3)⊗C (Y2 �C Y3)

)

a�X1⊗C Y1 ,X2⊗C Y2 ,X3⊗C Y3

''

shX1 ,Y1 ,X2 ,Y2 �C idX3⊗C Y3

ww

shX1�C X2 ,Y1�C Y2 ,X3 ,Y3

��

a�X1 ,X2 ,X3
⊗C a�Y1 ,Y2 ,Y3

''
shX1 ,Y1 ,X2�C X3 ,Y2�C Y3

ww

idX1⊗C Y1�C shX2 ,Y2 ,X3 ,Y3

��

(3.2.3)

and

(X1 �C Y1)⊗C
(
(X2 �C Y2)⊗C (X3 �C Y3)

)

(
(X1 �C Y1)⊗C (X2 �C Y2)

)
⊗C (X3 �C Y3)

(
(X1 ⊗C X2)�C (Y1 ⊗C Y2)

)
⊗C (X3 �C Y3)

(
(X1 ⊗C X2)⊗C X3

)
�C

(
(Y1 ⊗C Y2)⊗C Y3

)

(
X1 ⊗C (X2 ⊗C X3)

)
�C

(
Y1 ⊗C (Y2 ⊗C Y3)

)

(X1 �C Y1)⊗C
(
(X2 ⊗C X3)�C (Y2 ⊗C Y3)

)

a⊗X1�C Y1 ,X2�C Y2 ,X3�C Y3

''

shX1 ,X2 ,Y1 ,Y2 ⊗C idX3�C Y3

77

shX1⊗C X2 ,X3 ,Y1⊗C Y2 ,Y3

OO

a⊗X1 ,X2 ,X3
�C a⊗Y1 ,Y2 ,Y3

''
shX1 ,X2⊗C X3 ,Y1 ,Y2⊗C Y3

77

idX1�C Y1⊗C shX2 ,X3 ,Y2 ,Y3

OO

(3.2.4)

commute.
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(ii) The triple (I⊗,µ�,ν) is a unitary algebra in the monoidal category (C ,�C , I�), and the triple (I�,∆⊗,ν) is a
counitary coalgebra in the monoidal category (C ,⊗C , I⊗).

(iii) For any pair of objects X and Y in C , the diagrams

I� �C (X ⊗C Y )

l�X⊗C Y∼

��

∆⊗�C idX⊗C Y// (I� ⊗C I�)�C (X ⊗C Y )

shI� ,I� ,X,Y
��

(X ⊗C Y )�C I�

r�X⊗C Y∼

��

idX⊗C Y�C ∆⊗// (X ⊗C Y )�C (I� ⊗C I�)

shX,Y ,I� ,I�
��

X ⊗C Y
(l�X⊗C l�Y )−1

∼
// (I� �C X)⊗C (I� �C Y ) X ⊗C Y

(r�X⊗C r�Y )−1

∼
// (X �C I�)⊗C (Y �C I�)

and

(I⊗ ⊗C X)�C (I⊗ ⊗C Y )

shI⊗ ,X,I⊗ ,Y
��

l⊗X�C l⊗Y
∼

// X �C Y

(l⊗X�C Y
)−1∼

��

(X ⊗C I⊗)�C (Y ⊗C I⊗)

shX,I⊗ ,Y ,I⊗
��

r⊗X�C r⊗Y
∼

// X �C Y

(r⊗X�C Y
)−1 ∼

��
(I⊗ �C I⊗)⊗C (X �C Y )

µ�⊗C idX�C Y// I⊗ ⊗C (X �C Y ) (X �C Y )⊗C (I⊗ �C I⊗)
idX�C Y⊗C µ�// (X �C Y )⊗C I⊗

commute.

Moreover, we call a 2-monoidal category (C ,⊗C , I⊗,�C , I�,sh) symmetric if the monoidal category (C ,⊗C , I⊗)
is provided with a symmetric braiding τ such that (C ,⊗C , I⊗, τ) is a symmetric monoidal category, (I�,∆⊗,ν) is a
cocommutative counitary coalgebra in (C ,⊗C , I⊗, τ), and for any objects A, B, C and D in C the diagram

(A⊗C B)�C (C ⊗C D)
shA,B,C,D//

τ(A,B)⊗τ(C,D)
��

(A�C C)⊗C (B�C D)

τ(A�C C,B�C D)
��

(B⊗C A)�C (D ⊗C C)
shB,A,D,C// (B�C D)⊗C (A�C C)

(3.2.5)

commutes.1

3.2.3.Remark. A double monoidal category (C ,⊗C , I⊗,�C , I�) with structure morphisms (3.2.1) and (3.2.2)
is 2-monoidal if either of the following equivalent conditions hold:

(a) the functors ⊗C : (C ,�C , I�)× (C ,�C , I�)→ (C ,�C , I�) and I⊗ : k→ (C ,�C , I�) are lax monoidal,

(b) the functors �C : (C ,⊗C , I⊗)× (C ,⊗C , I⊗)→ (C ,⊗C , I⊗) and I� : k→ (C ,⊗C , I⊗) are oplax monoidal,

where k indicates the k-linear monoidal category with one object whose space of endomorphisms is k. The
proof just follows from writing down the definitions (see [2], Prop. 6.4). We may equivalently rephrase (b)
(resp., (a)) as saying that a 2-monoidal category is a pseudomonoid in the monoidal 2-category opl(Cat)
(resp., l(Cat)) whose 0-cells are monoidal categories, whose 1-cells are oplax (resp., lax) monoidal functors,
and whose 2-cells are monoidal natural transformations (see [2], Prop. 6.73).
3.2.4.Remark. Let (C ,⊗C , I⊗, τ,�C , I�,sh) be a symmetric 2-monoidal category, and X1,Y1, . . . ,Xm,Ym a col-
lection of objects in C for m ∈N. We have the morphism

shX1,Y1,...,Xm,Ym : (X1 ⊗C Y1)�C · · ·�C (Xm ⊗C Ym)→ (X1 �C · · ·�C Xm)⊗C (Y1 �C · · ·�C Ym) (3.2.6)

in C given by shX1,Y1
= idX1⊗C Y1

, and

shX1,Y1,...,Xm,Ym = shX1,Y1,...,Xm−2,Ym−2,Xm−1�Xm,Ym−1�Ym ◦(id(X1⊗C Y1)�C ···�C (Xm−2⊗C Ym−2) �C shXm−1,Ym−1,Xm,Ym ),

for m ≥ 2. By item (i) in Definition 3.2.2 we may equivalently define (3.2.6) by applying successively (3.2.1)
in a different order, since all of them coincide (see [2], 6.2). We shall usually omit the subscripts of the map
(3.2.6), because they will be clear from the context.

1Note that our definition of symmetric 2-monoidal category coincides with the notion of ⊗C -symmetric 2-monoidal category in
[2], Def. 6.5. Since in all of our major examples �C will not be braided, we drop the explicit mention of the tensor product ⊗C for
simplicity.
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3.2.5. For simplicity, we will denote a symmetric 2-monoidal category by the data (C ,⊗C , I⊗, τ,�C , I�,sh),
omitting the other structure, because we will follow the notation of the previous definition.
3.2.6 Definition. A symmetric 2-monoidal category (C ,⊗C , I⊗, τ,�C , I�,sh) is called framed if there is a sym-
metric monoidal category (C ′ ,�C ′ , I ′�, τ

′) and a faithful functor F : C → C ′ that is symmetric lax monoidal for
the symmetric monoidal structure (C ,⊗C , I⊗, τ), with coherence morphisms ϕ0 and ϕ2, and it is strong monoidal
for (C ,�C , I�), with coherence isomorphisms ψ0 and ψ2, such that

F(A)�C ′ F(B)�C ′ F(C)�C ′ F(D)

idF(A)�C ′ τ
′
�(F(B),F(C))�C ′ idF(D)

��

ϕ2(A,B)�C ′ϕ2(C,D) // F(A⊗C B)�C ′ F(C ⊗C D)

ψ2(A⊗C B,C⊗C D) ∼

��
F(A)�C ′ F(C)�C ′ F(B)�C ′ F(D)

ψ2(A,C)�C ′ψ2(B,D)∼

��

F
(
(A⊗C B)�C (C ⊗C D)

)
F(shA,B,C,D )
��

F(A�C C)�C ′ F(B�C D)
ϕ2(A�C C,D�C D) // F

(
(A�C C)⊗C (B�C D)

)

(3.2.7)

commutes for all objects A, B, C, and D of C , as well as

I ′� �C ′ I
′
�

ϕ0�C ′ϕ0
��

l′
I ′�
∼

// I ′�

ϕ0

��

I ′�
ϕ0

$$
ψ0 ∼

��

I ′�
(l′
I ′�

)−1 ∼

��

ψ0

∼
// F(I�)

F(∆⊗)

��

F(I⊗)�C ′ F(I⊗)

ψ2(I⊗,I⊗) ∼

��

F(I⊗) I ′� �C ′ I
′
�

ψ0�C ′ψ0 ∼
��

F(I⊗ �C I⊗)
F(µ�) // F(I⊗) F(I�)

F(ν)

::

F(I�)�C ′ F(I�)
ϕ2(I� , I�)

// F(I� ⊗C I�)

(3.2.8)

where we denote the left and right unit isomorphisms of C ′ by l′Y and r′Y , respectively.
3.2.7.Examples. (a) Any symmetric monoidal category (C ,⊗,C , IC , τ) can be regarded as a symmetric 2-

monoidal category where both symmetric monoidal structures coincide, the unit IC has the obvious
unitary algebra and counitary coalgebra structures, and shA,B,C,D is given by idA ⊗C τ(B,C)⊗C idD .

(b) Let (C ′ ,⊗C ′ , IC ′ , τ ′) be a symmetric monoidal category that is complete and cocomplete and whose
tensor product commutes with colimits on each side, and let B be a commutative unitary and couni-
tary bialgebra. We denote its coproduct by ∆B. Then, the category of modules BMod(C ′) over B has
two natural structures of monoidal category:

(i) the first structure is the one described in Lemma 1.5.7, that we denote by X ⊗B Y . This is the
standard symmetric monoidal structure considered in commutative algebra.

(ii) given two objects X and Y in BMod(C ′) set X � Y = X ⊗C ′ Y , and the action of B on X � Y is
defined via ∆B, i.e. it is the map

B⊗C ′ (X �Y )→ X �Y

given by the composition of ∆B⊗C ′ idX ⊗C ′ idY , idB⊗C ′ τ ′(B,X)⊗C ′ idY and ρX ⊗C ′ ρY . The unit
is in this case IC ′ , which is a B-module via the counit of B. This category is also symmetric for
the twist of C ′ (i.e. the twist is a morphism of B-modules) if ∆B is cocommutative. This is the
standard monoidal structure considered in Hopf algebra theory.

The category BMod(C ′) is thus provided with the two previous monoidal structures, the first of which
is symmetric. This gives us another example of symmetric double monoidal category. It is however
not necessarily a 2-monoidal category, and we refer the reader to Section 3.3 for a case where it
is. Moreover, the inclusion functor BMod(C ′) → C ′ is lax symmetric monoidal for the structure
described in (i) (for the structure morphisms ϕ0 given by the unit of B and ϕ2(X,Y ) : X⊗C ′Y → X⊗BY
in C ′ defined as the cokernel of (1.5.3)), and it is strong monoidal for the structure defined in (ii).

43



(c) The previous example also works if B is only assumed to be a commutative counitary bialgebra with
enough idempotents (E,m,1) (as defined in 1.5.3 and 1.5.5), and the category of modules BMod(C ′)
over B is precisely the one recalled in 1.5.3. We recall that BMod(C ′) is a symmetric monoidal cat-
egory for the tensor product ⊗B (see Lemma 1.5.7). We only have to notice that the tensor products
given in (i) and (ii) are well-defined, i.e. they have a decomposition of the form ⊕e∈E(X ⊗B Y )e and
⊕e∈E(X �Y )e. This is indeed so by defining (X ⊗B Y )e = Xe ⊗B Ye and (X �Y )e = ⊕(e′ ,e′′)∈me

Xe′ ⊗C ′ Ye′′ .

3.2.8. The following definition can be found in [2], 6.5, under the name of bimonoid.

3.2.9 Definition. Consider a 2-monoidal category given by (C ,⊗C , I⊗,�C , I�,sh). A unitary and counitary
bialgebra relative to the 2-monoidal category is an object B of C with the following structure:

(i) a unitary algebra structure (B,µ,η) with respect to (C ,�C , I�);

(ii) a counitary coalgebra structure (B,∆,ε) with respect to (C ,⊗C , I⊗);

such that the following diagrams

B⊗C B

B

B�C B

(B⊗C B)�C (B⊗C B) (B�C B)⊗C (B�C B)

∆

%%
µ

99

∆�C ∆

��

shB,B,B,B

//

µ⊗C µ

II

and

B�C B
µ //

ε�C ε

��

B

ε

��

B

ε

��

B
∆ // B⊗C B

I⊗ �C I⊗
µ� // I⊗ I�

ν //

η
@@

I⊗ I�

η

OO

∆⊗ // I� ⊗C I�

η⊗C η
OO (3.2.9)

commute.

3.2.10.Remark. If the symmetric 2-monoidal category is that of Example 3.2.7, (a), a unitary and counitary
bialgebra relative to it coincides with the usual definition of unitary and counitary bialgebra in C .

3.2.11 Definition. Assume the same hypotheses of Definition 3.2.9, and let B be a unitary and counitary bialgebra
relative to the 2-monoidal category. A comodule over B is a comodule over the counitary coalgebra structure on
B in the symmetric monoidal category (C ,⊗C , I⊗). Given two right comodules X and Y over B with coactions ρX
and ρY , their tensor product X �C Y has a natural structure of comodule over B of the form

X �C Y → (X �C Y )⊗C B

defined as the composition of ρX�C ρY , shX,B,Y ,B and idX�C Y ⊗C µ. Moreover, I� has a structure of right B-module
given by (idI� ⊗C η) ◦∆⊗. There is a similar definition for left comodules.

3.2.12 Proposition ([2], Prop. 6.41). Assume the same hypotheses of Definition 3.2.9, and let B be a unitary and
counitary bialgebra relative to the 2-monoidal category. The category of right comodules over B is monoidal for
the tensor product given in Definition 3.2.11, and the unit I�. The same holds for the category of left B-comodules.
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Proof. We shall first show that the associativity isomorphism a�X,Y ,Z : (X �C Y )�C Z → X �C (Y �C Z) of
the monoidal category (C ,�C , I�) is a morphism of B-comodules. This follows from the commutativity of
the diagram

(X �C Y )�C Z

a�X,Y ,Z //

(ρX�C ρY )�C ρZ
��

X �C (Y �C Z)

ρX�C (ρY �C ρZ )

��(
(X ⊗C B)�C (Y ⊗C B)

)
�C (Z ⊗C B)

a�X⊗C B,Y⊗C B,Z⊗C B //

shX,B,Y ,B�C idZ⊗C B
��

(X ⊗C B)�C
(
(Y ⊗C B)�C (Z ⊗C B)

)
idX⊗C B�C shY ,B,Z,B

��(
(X �C Y )⊗C (B�C B)

)
�C (Z ⊗C B)

shX�C Y ,B�C B,Z,B//

(idX�C Y
⊗C µ)�C idZ⊗C B

��

(
(X �C Y )�C Z

)
⊗C

(
(B�C B)�C B

)a�X,Y ,Z ⊗C a�B,B,B
//

id(X�C Y )�C Z
⊗C (µ�C idB)

oo

(
X �C (Y �C Z)

)
⊗C

(
B�C (B�C B)

)

idX�C (Y�C Z)⊗C (idB�C µ)

//

(X ⊗C B)�C
(
(Y �C Z)⊗C (B�C B)

)shX,B,Y�C Z,B�C Boo

idX⊗C B�C (idY�C Z
⊗C µ)

��(
(X �C Y )⊗C B

)
�C (Z ⊗C B)

shX�C Y ,B,Z,B

��

(X ⊗C B)�C
(
(Y �C Z)⊗C B

)
shX,B,Y�C Z,B

��(
(X �C Y )�C Z

)
⊗C (B�C B)

id(X�C Y )�C Z
⊗C µ

��

(
X �C (Y �C Z)

)
⊗C (B�C B)

idX�C (Y�C Z)⊗C µ

��(
(X �C Y )�C Z

)
⊗C B

a�X,Y ,Z⊗C idB // (X �C (Y �C Z)
)
⊗C B

Indeed, the upper square commutes by the naturality of the associativity morphism, the second square
commutes by the naturality of the map sh, as well as the two lateral squares, and the lower subdiagram
commutes due to the associativity of µ. Since the composition of the morphisms of each of the external
columns is the corresponding coaction of its domain, the statement follows.

We will now prove that the multiplication by the left unit l�X : I� �C X → X of the category (C ,�C , I�)
is a morphism of B-modules. The case of the right unit is analogous. In order to prove it, note that the
following diagram

I� �C X

idI��C ρX
��

I� �C (X ⊗C B)

∆⊗�C idX⊗C B
��

(I� ⊗C I�)�C (X ⊗C B)

shI� ,I� ,X,B
��

(idI�⊗C η)�C idX⊗C B// (I� ⊗C B)�C (X ⊗C B)

shI� ,B,X,B
��

(I� �C X)⊗C (I� �C B)

idI��C X⊗C l�B
��

idI��C X⊗C (η�C idB)
// (I� �C X)⊗C (B�C B)

idI��C X⊗C µ
��

(I� �C X)⊗C B

l�X⊗C idB
��

(I� �C X)⊗C B

X ⊗C B

is commutative. Indeed, the upper square commutes by the naturality of sh, whereas the lower square
commutes by the fact that B is a unitary algebra. By the first diagram of condition (iii) in Definition 3.2.2,
the composition of the morphisms in the left vertical column is precisely lX⊗�C B

◦ (idI� �C ρX ), whereas the
composition of the morphisms of the rightmost path going from top to bottom gives (l�X ⊗C idB) ◦ ρI��C X .
This proves the claim. The proposition is thus proved. �
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3.3 Some useful constructions

3.3.1. For the next example, we will make use of the tensor construction TX and the symmetric construc-
tion ΣX recalled in 3.1.1, and we recall that we follow the conventions stated in 1.3.1. Let A be a commu-
tative unitary algebra in a k-linear complete and cocomplete symmetric monoidal category (C ,⊗C , IC , τ),
whose tensor product commutes with colimits on each side. Let TA = ⊕m∈N0

A⊗C m be the tensor construc-
tion and let ΣA = ⊕m∈N0

ΣmA be the symmetric construction, where the 0-th component is just IC (see the
notation in 1.3.4). As recalled in 3.1.1, TA has a canonical structure of counitary coalgebra in C , whose
coproduct is given by deconcatenation, and ΣA is a cocommutative counitary subcoalgebra of TA. To sim-
plify the treatment, we shall assume that C is concrete, but all the manipulations with elements can be
easily translated into operations on the corresponding objects that they belong to.

3.3.2. For any m ∈ N0, define the map im : ΣmA → ΣA (resp., hm : A⊗C m → TA) given by the canonical
inclusion, and the morphism pm : ΣA→ ΣmA (resp., sm : TA→ A⊗C m) given by the canonical projection.
The latter is the morphism inC induced by the collection of mapsp′m′ : Σm

′
A→ ΣmA (resp., s′m′ : A⊗C m

′ →
A⊗C m) defined as the identity if m =m′ and zero else.

3.3.3. Consider the following exceptional structure of commutative nonunitary algebra on TA defined as
follows. Given elements σ ∈ A⊗C m and σ ′ ∈ A⊗C m′ , their product is zero if m ,m′ , and it is the usual tensor-
wise product of the algebra A⊗C m induced by that of A if m =m′ , i.e. (a1| . . . |am)(a′1| . . . |a′m) = (a1a

′
1)| . . . |(ama′m),

where we have used bar symbols instead of tensors. This also defines a unitary algebra structure on A⊗C m

in the category C , for all m ∈ N0. When translating this definition in categorical nonsense, one should
notice that this notation is understood as applying a shuffle permutation and then a m-th tensor power of
the product of A.

We claim first that this algebra structure on TA is compatible with the coproduct given by deconcate-
nation and the counit s0, i.e. TA is a nonunitary and counitary bialgebra in C for those structures. Indeed,
given σ ∈ A⊗C m and σ ′ ∈ A⊗C m′ , their product vanishes if m , m′ , and one easily sees that the product of
∆(σ ) and ∆(σ ′) is also zero. Suppose thus that m = m′ , σ = a1| . . . |am, and σ ′ = a′1| . . . |a′m. A combinatorial
argument shows that

∆(σσ ′) = ∆
(
(a1a

′
1)| . . . |(ama′m)

)
=

m∑
j=0

(a1a
′
1)| . . . |(aja′j )⊗ (aj+1a

′
j+1)| . . . |(ama′m)

=
( m∑
j=0

(a1| . . . |aj )⊗ (aj+1| . . . |am)
)( m∑
j=0

(a′1| . . . |a
′
j )⊗ (a′j+1| . . . |a

′
m)

)
= ∆(σ )∆(σ ′).

The fact that the counit s0 is a morphism of algebras for the given product is trivial, so TA is a nonunitary
and counitary bialgebra. It is clearly commutative, for A is so. Since the action of the permutation group
Sm onm letters on A⊗C m is clearly by automorphisms of algebras (for the tensor-wise product of A⊗C m), the
invariant space ΣmA is a subalgebra of A⊗C m, and ΣA is thus a subalgebra of TA. Taking into account that
TA is a bialgebra and ΣA is a subcoalgebra of TA, ΣA is a fortiori a bialgebra as well. It is a commutative and
cocommutative nonunitary and counitary subbialgebra of TA. To stress this particular choice of bialgebra
structures, we shall denote the latter by µTA and the former by µΣA, and we will call them induced.

3.3.4 Lemma. The bialgebras µTA and µΣA defined before have enough idempotents {1⊗mA }m∈N0
(as defined in

1.5.5), where the latter form a monoid with unit for the obvious product 1⊗mA 1⊗m
′

A = 1⊗(m+m′)
A and the unit 1⊗0

A .
As a consequence, the respective categories of modules (in C ) over µTA and µΣA have a symmetric monoidal
structure for the usual tensor product over the corresponding algebra.

Proof. This is a straightforward verification. The last part follows from Lemma 1.5.7. �

3.3.5. It is easy to verify that im and pm (resp., hm and sm) are morphisms of nonunitary algebras for all
m ∈N0, and that im (resp., hm) is in fact a morphism of ΣA-modules (resp., TA-modules) in C , where ΣmA
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(resp., A⊗C m) has the structure of ΣA-module (resp., TA-module) in C by means of pm (resp., sm).

Given any m ∈ N0, the canonical projection sm of µTA onto A⊗C m induces an fully faithful functor

A⊗C m Mod(C )→ µTAMod(C ). The same holds for µΣA instead of µTA and ΣmA instead of A⊗C m. Moreover,
the inclusion of µΣA inside of µTA induces a functor µTAMod(C )→ µΣAMod(C ), and the same happens
for the inclusion of ΣmA inside of A⊗C m. They form the following commutative diagram of functors

A⊗C m Mod(C )

��

� � // µTAMod(C )

��

&&
C

ΣmAMod(C ) �
� // µΣAMod(C )

88

(3.3.1)

where the composition of any collection that arrives at C is the corresponding forgetful functor, the hori-
zontal functors are fully faithful and strong symmetric monoidal, where we consider the tensor products
over the corresponding algebras, and the left vertical functor is the identity if m = 1.

3.3.6. From now on we denote either the bialgebra µTA or µΣA simply by B, and Bm denotes A⊗C m or
ΣmA, respectively. Since µTA or µΣA are commutative counitary bialgebras with enough idempotents by
Lemma 3.3.4, Example 3.2.7, (c), tells us that the category BMod(C ) of B-modules inC (recalled in 1.5.3) is
naturally a symmetric double monoidal category. We shall show that it is also 2-monoidal in case B = µTA
(see Definition 3.2.9).

3.3.7. From now on, fix B = µTA. We will typically not write the (faithful) inclusion functor of BMod(C )
in C , so we will usually regard a B-module X = ⊕m∈N0

Xm, where Xm = 1⊗mA X, simply as an object of C .
Under this identification, the tensor functor ⊗C is precisely �. Consider the map

shX,X′ ,Y ,Y ′ : (X ⊗B X ′)� (Y ⊗B Y ′)→ (X �Y )⊗B (X ′ �Y ′) (3.3.2)

in C given as follows. Since each B-module is a direct sum in BMod(C ) of homogeneous components and
all the tensor products commute with colimits on each side (see Lemma 1.5.7), we may assume X = Xm,
X ′ = X ′m′ , Y = Ym′′ and Y ′ = Y ′m′′′ , for m,m′ ,m′′ ,m′′′ ∈ N0. As the tensor product ⊗B clearly satisfies that
Zm ⊗B Z ′m′ vanishes if m , m′ , for any pair of B-modules Z and Z ′ , we define (3.3.2) as zero if m , m′ or
m′′ ,m′′′ . Suppose now that m =m′ and m′′ =m′′′ , and define the morphism

(X ⊗C X ′)⊗C (Y ⊗C Y ′)→ (X ⊗C Y )⊗C (X ′ ⊗C Y ′) (3.3.3)

in C given by idX ⊗C τ(X ′ ,Y )⊗C idY ′ . Consider the following diagram

(X ⊗C Y )⊗C B⊗C (X ′ ⊗C Y ′)

idX⊗C Y⊗C ∆⊗C idX′⊗C Y ′

��(X ⊗C B⊗C X ′)⊗C (Y ⊗C Y ′)
⊕

(X ⊗C X ′)⊗C (Y ⊗C B⊗C Y ′)
(ρX ⊗C idX′ − idX ⊗C ρ′

X′ )⊗C idY⊗C Y ′
⊕

idX⊗C X′
⊗C (ρY ⊗C idY ′ − idY ⊗C ρ′

Y ′ ) ��

T

44

(X ⊗C Y )⊗C B⊗C B⊗C (X ′ ⊗C Y ′)

ρX⊗C Y⊗C idX′⊗C Y ′−idX⊗C Y⊗C ρ
′
X′⊗C Y ′

��
(X ⊗C X ′)⊗C (Y ⊗C Y ′)

idX⊗C τ(X′ ,Y )⊗C idY ′//

����

(X ⊗C Y )⊗C (X ′ ⊗C Y ′)

����
(X ⊗B X ′)� (Y ⊗B Y ′)

shX,X′ ,Y ,Y ′ // (X �Y )⊗B (X ′ �Y ′)
(3.3.4)
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where we leave to the reader the verification that the lower vertical arrows are the cokernels of the compo-
sition of the vertical morphisms above it, where the map T is the sum given by(

idX⊗C Y ⊗C xB,m′′ ⊗C idX′⊗C Y ′
)
◦
(
idX ⊗C τ(B,Y )⊗C idX′⊗C Y ′

)
◦
(
idX⊗C B ⊗C τ(X ′ ,Y )⊗C idY ′

)
⊕
(
idX⊗C Y ⊗C yB,m ⊗C idX′⊗C Y ′

)
◦
(
idX⊗C Y ⊗C τ(X ′ ,B)⊗C idY ′

)
◦
(
idX ⊗C τ(X ′ ,Y )⊗C idB⊗C Y ′

)
,

and the maps xB,m′′ : B→ B and yB,m : B→ B send b to b ⊗ 1⊗m
′′

A and to 1⊗mA ⊗ b, respectively. Moreover,
the upper part of the diagram is commutative, as the reader may easily check. Then, (3.3.2) is the dashed
line induced by (3.3.3). It is not difficult but rather lengthy to check that the previous map is of B-modules.
Furthermore, the naturality of (3.3.2) follows in turn from the naturality of the diagram (3.3.4). Since
in this case the coherence maps ϕ2 for the inclusion of (BMod,⊗B,B) inside of (C ,⊗C , IC ) are given by
epimorphisms, the commutativity of (3.2.3) and (3.2.4) follows from the axioms of the symmetric monoidal
category C (see [68], Thm. XI.1.1).

3.3.8. In this case the map ν of Definition 3.2.2, (3.2.2), is the canonical inclusion of IC inside of µTA
as the zeroeth component, the product µ� of µTA is the usual concatenation product, and the coproduct
∆⊗ of IC is the canonical isomorphism IC ' IC ⊗B IC . We leave to the reader the easy verification of the
commutativity of the remaining diagrams in that definition. Moreover, by definition, from the inclusion of
(BMod,⊗B,B) inside of (C ,⊗C , IC ) we see that the former symmetric 2-monoidal category is framed. The
conclusion of the two previous paragraph is the following result.

3.3.9 Proposition. Let A be a commutative unitary algebra in a k-linear complete and cocomplete symmetric
monoidal category (C ,⊗C , IC , τ), whose tensor product commutes with colimits on each side. Let B = µTA be the
commutative counitary bialgebra in C with enough idempotents defined in 3.3.3. Then, the double monoidal cat-
egory structure defined on BMod(C ) is framed symmetric 2-monoidal for the morphism (3.3.2), and the unitary
algebra structure on µTA and the counitary coalgebra structure on IC defined in 3.3.8 (see Definition 3.2.2).

3.4 Some important morphisms

3.4.1. Let (C ,⊗C , IC , τ) be a k-linear complete and cocomplete symmetric monoidal category whose tensor
product commutes with colimits on each side, and let A be a commutative unitary algebra in C . We
consider thus the induced bialgebras µTA and µΣA defined in the previous section, and we recall that
the symmetric monoidal category BMod(C ) is naturally a symmetric double monoidal category for the
morphism (3.3.2), where B is one of the two previous bialgebras. We will be mainly interested in the cases
C = BLCS, BLCS or CLCSHD . Given µTA-modules X1,Y1, . . . ,Xm,Ym (in C ), Remark 3.2.4 tells us that we
also have the morphism

sh : (X1 ⊗µTA Y1)� · · ·� (Xm ⊗µTA Ym)→ (X1 � · · ·�Xm)⊗µTA (Y1 � · · ·�Ym) (3.4.1)

of µTA-modules (in C ). This holds in particular if X1,Y1, . . . ,Xm,Ym are A-modules (in C ), since then they
may be regarded as µTA-modules via the canonical projection µTA→ A. Note also that, given µTA-modules
X1,Y1, . . . ,Xm,Ym (in C ), they may be regarded as µΣA-modules via the canonical inclusion µΣA→ µTA.

3.4.2 Fact. Let (C ,⊗C , IC , τ) be a k-linear complete and cocomplete symmetric monoidal category whose tensor
product commutes with colimits on each side, and let A be a commutative unitary algebra in C . Given any µTA-
module X (in C ) and m ∈ N, the subobject (X⊗C m)Sm of X⊗C m is naturally a submodule over µΣA, where we
regard the µTA-module X⊗C m = X�m as an µΣA-module via the inclusion µΣA → µTA (see (3.3.1)). We are
going to denote this µΣA-module by Σm�X.

This is a trivial verification.

3.4.3 Lemma. Let (C ,⊗C , IC , τ) be a k-linear complete and cocomplete symmetric monoidal category whose ten-
sor product commutes with colimits on each side, and let A be a commutative unitary algebra in C . Given any
A-module X (in C ) and m ∈N, the space of coinvariants SmX, i.e. the quotient object (X⊗C m)/Sm of X⊗C m in
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the symmetric monoidal category C , is a naturally module over µΣA (in C ), that we are going to denote by Sm� X.
Moreover, the canonical isomorphism map (X⊗C m)Sm → (X⊗C m)/Sm in the category C is also µΣA-linear, so it
gives an isomorphism Σm�X→ Sm� X of µΣA-modules.

Proof. Since SmX is the quotient of X⊗C m by the sum of the images Im(ς− idX⊗C m ) for all ς ∈ Sm, it suffices
to check that this subobject is a submodule of X⊗C m over µΣA. This follows from(

ς−1 · (x1 ⊗ · · · ⊗ xm)− x1 ⊗ · · · ⊗ xm
)( ∑
τ∈Sm

aτ(1) ⊗ · · · ⊗ aτ(m)

)
= (xς(1) ⊗ · · · ⊗ xς(m) − x1 ⊗ · · · ⊗ xm)

( ∑
τ∈Sm

aτ(1) ⊗ · · · ⊗ aτ(m)

)
=

∑
τ∈Sm

((
(xς(1)aτ(1))⊗ · · · ⊗ (xς(m)aτ(m))

)
−
(
(x1aτ(1))⊗ · · · ⊗ (xmaτ(m))

))
,

which coincides with∑
τ ′∈Sm

(
(xς(1)aτ ′ς(1))⊗ · · · ⊗ (xς(m)aτ ′ς(m))

)
−

∑
τ ′∈Sm

(
(x1aτ ′(1))⊗ · · · ⊗ (xmaτ ′(m))

)
= ς−1 ·

( ∑
τ ′∈Sm

(
(x1aτ ′(1))⊗ · · · ⊗ (xmaτ ′(m))

))
−

∑
τ ′∈Sm

(
(x1aτ ′(1))⊗ · · · ⊗ (xmaτ ′(m))

)
,

where we have defined τ ′ = τς−1 in the first sum, and τ ′ = τ in the second one. Finally, the last statement is
a direct consequence of the previous one. �

3.4.4. If X = X1 = · · · = Xm and Y = Y1 = · · · = Ym, the morphism (3.4.1) gives us a canonical morphism of
µTA-modules (in C )

shs : (X ⊗µTA Y )�m→ X�m ⊗µTA Y �m. (3.4.2)

Furthermore, suppose Y has a commutative product µY in the symmetric monoidal category µTAMod(C )
of µTA-modules inside the symmetric monoidal categoryC . Since the inclusion functor µTAMod(C ) inside
of C is lax symmetric monoidal, we may regard Y as a commutative algebra in C , so we will write µY :
Y �2→ Y . Then, there is a morphism µTA-modules (in C )

shc : (X ⊗µTA Y )�m→ X�m ⊗µTA Y (3.4.3)

given by the composition (3.4.2) and idX�m ⊗µTA µ
(n)
Y , where µ(n)

Y : Y �m→ Y was defined in (1.5.1).

3.4.5. The previous statements, namely Fact 3.4.2, and Lemma 3.4.3, as well the existence of the maps
(3.4.1), (3.4.2) and (3.4.3) also trivially hold in the case m = 0, because X⊗C m = ΣmC X = SmC X = IC .

3.4.6 Proposition. Let (C ,⊗C , I⊗, τ) be a k-linear complete and cocomplete symmetric monoidal category whose
tensor product commutes with colimits on each side, let A be a commutative unitary algebra in C and let (C,∆,ε)
be a counitary coalgebra in the symmetric monoidal category µTAMod(C ) of µTA-modules in C provided with
the tensor ⊗µTA (see Lemma 1.5.7). Recall the symmetric 2-monoidal category structure on µTAMod(C ) stated
in Proposition 3.3.9. Define ∆TC = ⊕m∈N0

C�m with

(i) a unitary algebra structure in the monoidal µTAMod(C ) provided with the tensor product �, for the usual
concatenation product using the tensor product � and the unit given by canonical inclusion of IC = C�0

inside of ∆TC;

(ii) a counitary coalgebra structure in the monoidal µTAMod(C ) provided with the tensor product ⊗µTA, for
the counit whose restriction to C�m is given by the composition of ε�m and the canonical inclusion hm
defined in 3.3.2, and for the coproduct whose restriction to C�m is the composition of ∆�m, the canonical
map (3.4.2), and the canonical map hm ⊗µTA hm.
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Then, ∆TC is a unitary and counitary bialgebra relative to the symmetric 2-monoidal category structure given on
µTAMod(C ). Moreover, ∆TC is cocommutative (with respect to τ) if C is so.

The proof is a trivial but lengthy verification.

3.4.7 Proposition. Let (C ,⊗C , I⊗, τ) be a k-linear complete and cocomplete symmetric monoidal category whose
tensor product commutes with colimits on each side, let A be a commutative unitary algebra in C , and let (C,∆,ε)
be a counitary coalgebra in the symmetric monoidal category µTAMod(C ) provided with the tensor ⊗µTA (see
Lemma 1.5.7). Recall the symmetric 2-monoidal category structure on µTAMod(C ) described in Proposition
3.3.9, and the bialgebra ∆TC = ⊕m∈N0

C�m relative to this symmetric 2-monoidal category (see Proposition 3.4.6).
Let Y be a (left) comodule over C with (left) coaction ρ in the symmetric monoidal category µTAMod(C ) provided
with the tensor ⊗µTA. Define ρT Y = ⊕n∈N0

Y �m. Then, ρT Y is a (left) comodule over the bialgebra ∆TC relative
to the symmetric 2-monoidal category mentioned previously for the coaction whose restriction to Y �m is given by
the composition of ρ�m, (3.4.2), and the canonical map from C�m ⊗µTA Y �m to ∆TC ⊗µTA ρT Y .

This is a direct consequence of Proposition 3.2.12 and the fact that the canonical inclusion C→ ∆TC is
a morphism of coalgebras in the symmetric monoidal category (µTAMod(C ),⊗µTA,µTA).

3.4.8.Remark. Note that the explicit expressions of the coproduct and counit of ∆TC, and of the coaction
of ρT Y , follow essentially the same pattern as the ones used for defining the coproduct and the counit of
a tensor product of counitary coalgebras over a fixed base field, and the coaction of a tensor product of
comodules over a unitary and counitary bialgebra over a fixed field, respectively.

3.5 Two caveats

3.5.1. Let (C ,⊗C , IC , τ) be a k-linear complete and cocomplete symmetric monoidal category whose tensor
product commutes with colimits on each side, and let A be a commutative unitary algebra in C . We want
to state the following two caveats. For simplicity, let us assume that C is the category of vector spaces
over the field k with the usual symmetric monoidal structure, but these comments apply to more general
situations as well.

3.5.2. First, contrary to what trivially occurs in the case if A = k, we are completely unable to induce a
morphism of the form

shs′ : Sm� (X ⊗A Y )→ Sm� (X)⊗µΣA Sm� (Y ) (3.5.1)

from (3.4.1) (form ≥ 2). Furthermore, we believe there is no canonical choice of such a morphism is possible
if ΣA , TA. Indeed, already the case m = 2 poses a challenge. For example, supposing that X and Y are
A-modules, (3.4.1) sends an element (x ⊗ y)|(x′ ⊗ y′) + (x′ ⊗ y′)|(x ⊗ y) to (x|x′)⊗ (y|y′) + (x′ |x)⊗ (y′ |y), where
the bars indicate tensor over k and ⊗ is the tensor product over A for the element of the domain and A⊗2

for the one of the image. Hence, (3.5.1) should send (x⊗y) s (x′⊗y′) to (x s x′)⊗ (y s y′), where s indicates
the symmetric tensor over k and ⊗ is the tensor product over A for the element of the domain and over
Σ2A for the one of the image. However, since (xa⊗ y) s (x′ ⊗ y′) = (x⊗ ay) s (x′ ⊗ y′) should be sent to both
(xa s x′)⊗ (y s y′) and (x s x′)⊗ (ay s y′), and these two elements do not coincide, because a|1 ∈ A�2 \Σ2A,
the previous expression for (3.5.1) is not well-defined. One would also be tempted to consider else a tensor
product over µTA on the codomain of (3.5.1), but this would not be defined either because Sm� (X) is not a
module over A�m. In particular, we do not see how the map alluded in the last paragraph of [10], Def. 9,
can exist.

3.5.3. Second, suppose further Y has a commutative product µY in the symmetric monoidal category AMod
of A-modules inside the symmetric monoidal category C . One would also be tempted to say that the map
(3.4.1) can be lifted to a morphism

shc′ : Sm� (X ⊗A Y )→ Sm� (X)⊗µΣA Y (3.5.2)

50



of µΣA-modules such that

Sm� (X ⊗A Y ) shc′ //

shs |Sm� (X⊗AY )

��

Sm� (X)⊗µΣA Y �e⊗µΣAidY
**
X�m ⊗µΣA Y

X�m ⊗µTA Y �m
idX�m⊗µΣAµ

(m)
Y// X�m ⊗µTA Y

can 44

commutes, where µ(n)
Y : Y �m→ Y was defined in (1.5.1), �e : Sm� X→ X�m is the canonical inclusion, and the

map can is the one induced by the identity of X�m �Y . In more concrete terms, shc′ would be given by

(x1 ⊗ y1) s . . . s (xm ⊗ ym) 7→ (x1 s . . . s xm)⊗ (y1 . . . ym),

where ⊗ indicates ⊗µΣA, and we denote the product of Y simply by juxtaposition. The existence of this
map is weaker than that of (3.5.1), for the good definition of the latter trivially would imply that of the
former. However, the map (3.5.2) is not well-defined either. Indeed, for m = 2, (x1a ⊗ y1) s (x2 ⊗ y2) =
(x1 ⊗ ay1) s (x2 ⊗ y2) should be sent to both (x1a s x2)⊗ (y1y2) and to

1
2

(x1a s x2 + x1 s x2a)⊗ (y1y2) = (x1 s x2)
1
2

(a|1 + 1|a)⊗ (y1y2) = (x1 s x2)⊗ (ay1y2),

which are clearly different.

3.5.4.Example. We will give a simple example showing that the previous image elements do not necessarily
coincide. Let us first note that they coincide if and only if

(x1a s x2 − x1 s x2a)⊗ y = 0, (3.5.3)

where x1,x2 ∈ X, a ∈ A and y ∈ Y . Suppose Y = A, and let X = A.e1 ⊕A.e2 be a free A-module with basis
{e1, e2}. As a consequence, S2X ' Σ2X ' Σ2A⊕Σ2A⊕ (A.e1 ⊗A.e2), as Σ2A-modules, and thus,

S2
�X ⊗µΣA Y = S2

�A⊗Σ2A Y '
(
Σ2A⊕Σ2A⊕ (A.e1 ⊗A.e2)

)
⊗Σ2A A ' A⊕A⊕

(
(A.e1 ⊗A.e2)⊗Σ2A A

)
.

Set xj = ej , for j = 1,2, and y = 1A in (3.5.3). Suppose further that A = k[x] is the polynomial algebra in one
indeterminate, and choose a = x. We will show that (3.5.3) does not hold in this case. Recall that Y = k[x] is
a module over A⊗2 = k[x1,x2] via the canonical projection onto A given by xj 7→ x, for j = 1,2. Moreover, a
classical result in invariant theory tells us that Σ2A = k[x1,x2]S2 = k[s1, s2], where s1 = x1 +x2, and s2 = x1x2.
Hence, Y = k[x] is isomorphic to k[s1, s2]/(s21 − 4s2) as k[s1, s2]-modules, so

(A.e1 ⊗A.e2)⊗Σ2A A = k[x1,x2]⊗k[s1,s2] k[x] ' k[x1,x2]⊗k[s1,s2] k[s1, s2]/(s21 − 4s2) ' k[x1,x2]/(x1 − x2)2,

so the element (e1x s e2−e1 s e2x)⊗1 given in (3.5.3) is identified under the previous chain of isomorphisms
to x1 − x2, which is clearly different from zero.

3.5.5. As a striking consequence of the previous paragraph, and following the notation of [10], we do
not understand how the author obtains a comodule structure on SΓcωSJΦ over Γ SJΦ (see Lemma 14 in
the mentioned reference), or, translated into our notation, a comodule structure on S+

�Y over SAX, where
Y = V ⊗A SAX, V = Γc(Vol(M)) is a bornologically projective bornological A-module, and X = Γ (J iE) is a
finitely generated projective Fréchet module over A = C∞(M) (see Definition 5.1.13). Indeed, the “natural”
candidate given by the previous expression (3.5.2) is unfortunately ill-defined in general, even though it
provides the correct expression if A = k. Note that SAX is a coalgebra in the symmetric monoidal category
ACMod, but has no canonical coalgebra structure in CLCSHD (because the inclusion functor of the former
inside of the latter is lax symmetric monoidal, not oplax), so the natural symmetric monoidal category to
regard the coalgebra structure SAX which may also allow to consider S+

�Y as a possible comodule in it
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over SAX could be thus
˜
TACMod or

˜
ΣACMod (for the tensor product ⊗

˜
TA or ⊗

˜
ΣA, respectively), where SAX

becomes a
˜
TA-module via the canonical projection map

˜
TA→ A, and analogously for

˜
ΣA. Even though the

category
˜
TACMod would be a nice choice, for it has a nice compatibility between the two tensor products

� and ⊗
˜
TA (precisely because this category can be endowed with the structure of a symmetric 2-monoidal

category), the symmetric construction S+
�Y does not belong to

˜
TACMod. The second choice of category to

work in, i.e.
˜
ΣACMod, does not work either, meaning that (3.5.2) is not well-defined. This is a shadow of

the fact that symmetric double monoidal category structure on
˜
ΣACMod is not 2-monoidal.

3.5.6. Of course, in order to avoid the problem raised by the lack of good definition of (3.5.2), the reader
may propose the possibility to refrain from considering altogether symmetric constructions of the form
S+
�Y , and to work instead with the better behaved objects T +

� Y , which are clearly comodules over the coal-
gebra SAX in the symmetric 2-monoidal category structure defined on

˜
TACMod. However, the symmetric

construction S+
�Y is not a real choice: it is imposed by physical motivations since this symmetric con-

struction represents time-ordered products, which are undoubtedly commutative. We will learn how to
circumvent this problem in the next chapters, but let us just mention that it would involve working with
the tensor construction T +

� Y when we need to consider such a well-defined coaction over SAX, and then
checking that at the end of the day the final result (which involves not only the coaction, but also several
other operations) is invariant under permutations, so inducing a well-defined map on S+

�Y .

3.6 A particular case

3.6.1. We now apply the rather general statements of Sections 3.3 and 3.4 to the more concrete case when
C = BLCS or C = CLCSHD . They will be handy in Section 3.9, and specially for its use in the extension
of propagators in Section 5.6 and the introduction of Feynman measures in Section 5.7 (see in particular
Definition 5.7.9, (3)).

3.6.2 Corollary. Let A be a bornological algebra, and let X1, . . . ,Xm be bornological locally convex A-modules, for
m ∈N. Then,

(i) A⊗βm is a bornological algebra for the usual tensor-wise product (a1⊗ · · · ⊗ am)(a′1⊗ · · · ⊗ a′m) = (a1a
′
1)⊗ · · · ⊗

(ama′m), and the same holds for its convenient completion A⊗̃βm;

(ii) X1⊗β · · ·⊗βXm is a bornological locally convex module over A⊗βm for the corresponding tensor-wise action
(a1 ⊗ · · · ⊗ am)(x1 ⊗ · · · ⊗ xm) = (a1x1)⊗ · · · ⊗ (amxm). By taking its convenient completion, X1⊗̃β . . . ⊗̃βXm is

a module over A⊗̃βm.

Proof. The part concerning bornological modules is a direct consequence of the comments in Section 3.3
for the case C = BLCS, whereas the case of convenient modules follows from the fact that the convenient
completion (̃−) is a strong symmetric monoidal functor (see Lemma 1.4.31), together with Corollary 1.3.5.
�

3.6.3 Corollary. We assume the same hypotheses of Corollary 3.6.2.

(i) The subalgebra (A⊗βm)Sm of (A⊗βm), which we denote by ΣmA, is a commutative bornological subalgebra of
A⊗βm, and thus X1 ⊗β · · · ⊗β Xm is a bornological locally convex module over ΣmA.

(ii) We denote by Σ̃mA the bornological algebra given as the convenient completion of ΣmA. There is an isomor-
phism of bornological algebras

(A⊗βm)Sm
∼

' (Ã⊗̃βm)Sm .

Moreover, X1⊗̃β . . . ⊗̃βXm is a bornological locally convex Σ̃mA-module.

(iii) (X⊗βm)Sm is a bornological locally convex submodule of X⊗βm over ΣmA, and by taking the convenient
completion (X⊗̃βm)Sm is a bornological locally convex submodule of X⊗̃βm over Σ̃mA.
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Proof. Again, the part concerning bornological modules is a direct consequence of the comments in Section
3.3 and Fact 3.4.2 for the case C = BLCS, whereas the case of convenient modules follows from the fact that
the convenient completion (̃−) is a strong symmetric monoidal functor (see Lemma 1.4.31), together with
Corollary 1.3.5. �

3.6.4 Corollary. Let A be a bornological algebra, X a bornological locally convex A-module, and m ∈ N. The
space of coinvariants SmX in the symmetric monoidal category BLCS is a naturally bornological locally convex
module over ΣmA. Furthermore, if X is convenient and we denote by S̃mX the space of coinvariants X⊗̃βm/Sm (in
the category CLCSHD), then S̃mX is a convenient locally convex module over Σ̃mA.

As a consequence, the canonical bijective map (X⊗βm)Sm → SmX in the category BLCS is also ΣmA-linear, and
the same result holds for the conveniently completed versions.

Proof. This is a direct consequence of Lemma 3.4.3, for C = BLCS or C = CLCSHD . �

3.6.5. In case C = CLCSHD , we will denote µTA by
˜
TA, µΣA by

˜
ΣA, and the previous morphisms (3.4.1)

and (3.4.2) by s̃h and s̃hs, respectively. Note that
˜
TA and

˜
ΣA are however never metrizable (see [95], Ch. I,

Exercise 9), so they are not a Fréchet algebra, even if A is.
3.6.6.Convention. Unless otherwise stated, each time we consider tensor products of bornological algebras
and bornological locally convex modules over them, we will mean the tensor-wise product and tensor-wise
action.

3.6.7. We want to study further the case A = C∞(M) and X = Γ (E), where M is a smooth manifold and E a
vector bundle over M. In this case, since both A and X are metrizable LCS, the bornological tensor product
⊗β coincides with the usual projective tensor product ⊗π (see 1.4.23), as well as the convenient tensor
product and the completed projective tensor product (see 1.4.34). Even though the geometric picture is
somehow lost when considering their symmetric convenient tensor products, because there is in general no
smooth manifold associated with Σ̃mA (see [109]), we may still consider the isomorphic convenient locally
convex Σ̃mA-module (X⊗̃βm)Sm , for the latter is a convenient locally convex Σ̃mA-submodule of X⊗̃βm, which
is isomorphic to Γ (E�m) by Proposition 2.3.13. This allows us to canonically consider elements of S̃mX as
sections of E�m over Mm. In particular, given an independent family {F` : ` ∈ L} of vector bundles over M
and a tuple ¯̀ = (`1, . . . , `q) of elements of L, the elements of Γ (F`1

) s . . . s Γ (F`q ) can be regarded as sections

of the bundle E( ¯̀)�q over Mq, where

E( ¯̀) = E(F`1
, . . . ,F`q ) =

⊕
l∈{`1,...,`q}

Fl (3.6.1)

is a vector bundle over M. Equivalently, the elements of Γ (F`1
) s . . . s Γ (F`q ) can be considered as sections

of E(`)�q that are invariant under the action of Sq given by sending a section σ to ς̃Mq ◦ σ ◦ ς−1
Mq , where

ς̃ : E( ¯̀)�q → E( ¯̀)�q is the natural morphism of vector bundles over the map ςMq : Mq → Mq defined as
(p1, . . . ,pq) 7→ (pς−1(1), . . . ,pς−1(q)). We have the analogous definition for the space of sections of compact
support.

3.6.8. The next algebraic structures appearing in the rest of the chapter are generalizations of those con-
sidered by C. Brouder for the case of QFT of dimension zero in [14] (see also [103]).

3.7 Two inverse limit constructions

3.7.1. Let A be a commutative unitary algebra in a symmetric monoidal category C that is complete and
cocomplete and whose tensor product commutes with colimits on each side. For every m ∈ N define the

morphism µ
(m)
A,sym : ΣmA → A in C as the restriction of (1.5.1) to ΣmA. Since A is unitary, (1.5.1) is an

epimorphism for allm ∈N. The commutativity of A tells that (1.5.1) is invariant under the symmetrization

map e introduced in Proposition 1.1.4. As a consequence, µ(m)
A,sym is an epimorphism for all m ∈N.
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3.7.2 Definition. Define Σ̃A (resp., Φ̃A) as the inverse limit in C of the system {µ(m)
A,sym : ΣmA→ A}m∈N (resp.,

{µ(m)
A : A⊗C m → A}m∈N) considered before. Given m ∈ N, we denote by qm : Σ̃A → ΣmA (resp., rm : Φ̃A →

A⊗C m) the associated morphisms. The very definition of inverse limit implies that it is a commutative algebra,

and that qm (resp., rm) is an epimorphism inC that is a morphism of algebras inC for allm ∈N, because µ(m)
A,sym

(resp., µ(m)
A ) is also. Furthermore, Σ̃A (resp., Φ̃A) is unitary.

We will need these constructions in Sections 3.9, 3.11 and 3.12, and specially for their use in renormal-
ization theory from Section 5.8 on.

3.7.3. Note that µ(m)
A,sym◦qm (resp., µ(m)

A ◦rm) is independent ofm ∈N, by definition of inverse limit. We shall
denote this morphism of unitary algebras in C by q (resp., r). Moreover, by definition of inverse limit, we
have a morphism of unitary algebras inC of the form Σ̃A→ Φ̃A, induced by the family of monomorphisms
of algebras {ΣmA→ A⊗C m}m∈N.

3.7.4. Given m ∈ N, the canonical projection qm : Σ̃A → ΣmA (resp., rm : Φ̃A → A⊗C m) induces a fully
faithful functor ΣmAMod(C )→ Σ̃AMod(C ) (resp., A⊗C m Mod(C )→ Φ̃AMod(C )). The morphism Σ̃A→ Φ̃A
of unitary algebras in C induces a functor Φ̃AMod(C )→ Σ̃AMod(C ). Combining these functors with those
considered in (3.3.1), we have the following commutative diagram

µTAMod(C )

))
��

A⊗C m Mod(C )
% � 22
� {

--

��

Φ̃AMod(C )

��

** C
µΣAMod(C )

11

ΣmAMod(C )
% � 22
� {

--
Σ̃AMod(C )

??

(3.7.1)

where the composition of any collection of functors arriving at C is the corresponding forgetful functor,
the hook-shaped functors are fully faithful and strong symmetric monoidal, for the tensor products over
the corresponding algebras, and the leftmost vertical functor is the identity if m = 1. In particular, we may
equivalently regard the symmetric monoidal category A⊗C m Mod(C ) inside of Φ̃AMod(C ) or µTAMod(C ),
and the analogous comments hold for ΣmAMod(C ).

3.7.5. In case C = BLCSHD , and taking into account that the inverse limit of a countable projective system
in BLCSHD of metrizable bornological LCS is the inverse limit of the same system computed in LCSHD , Σ̃A
(resp., Φ̃A) is metrizable if A is metrizable, for the index set of the projective family is countable. Moreover,
if C = CLCSHD , Σ̃A (resp., Φ̃A) is a unitary Fréchet algebra, if A is so (by Corollary 1.4.21).

3.7.6.Remark. In [14], Brouder considered essentially that M = {x1, . . . ,xN } is a finite set of N points, so
A = C∞(M) is just a finite product kN of copies of k (see Example 5.6.16). Hence, Σ̃mA ' kN as well, for
all m ∈ N, which in turn implies that Σ̃A ' kN . By standard arguments, one can in the end only deal
with tensor products over the base field k. Even though this is far from being possible in our more general
situation, we will see that the algebraic picture remains similar, despite being technically more involved.

3.8 The symmetric bialgebra of X over A

3.8.1. For the rest of the chapter we assume thatA is a commutative unitary locally m-convex algebra which
is further supposed to be Fréchet, and that X is a convenient locally convex module over the convenient
algebra structure induced on A that is Fréchet and finitely generated projective (as an A-module). By
Lemma 1.6.10, X is topologically projective, so bornologically projective as a bornological locally convex
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module over A, by Fact 1.7.21. To emphasize the fact that we are going to consider convenient tensor
products ⊗̃β of LCS, we shall denote the space of invariants (X⊗̃βm)Sm of a convenient LCSX simply by Σ̃mX,

whereas the corresponding space of coinvariants (X⊗̃βm)/Sm will be denoted by S̃mX. The corresponding
symmetric construction will be thus denoted by S̃X = ⊕m∈N0

S̃mX and S̃+X = ⊕m∈NS̃mX, and the tensor
constructions by T̃ X = ⊕m∈N0

X⊗̃βm and S̃+X = ⊕m∈NX⊗̃βm. On other hand, in order to distinguish the
symmetric and tensor construction in the category of A-modules, we shall denote (X⊗Am)/Sm by SmAX, for
m ∈N0, and their direct sum by SAX, whereas the corresponding direct sum of X⊗Am for m ∈N0 will be
denoted by TAX. Since X is a finitely generated projective module over a Fréchet algebra, the results in
Section 2.3 tells us that the previous symmetric construction SAX coincides with the one given by taking
convenient tensor products of bornological locally convex A-modules (or completed tensor products of
locally convex A-modules), as we now show.

3.8.2 Fact. The canonical unitary and counitary bialgebra structure in the symmetric monoidal category AMod of
the underlying object of SAX (see Section 3.1) is also a unitary and counitary bialgebra in the symmetric monoidal
category ACMod for the canonical topologies constructed in BLCSHD . As a consequence, SAX is a unitary and
noncounitary bialgebra in Σ̃ABMod and in

˜
ΣABMod. The same statement holds if we consider the previous

statements in the categories ACMod, CLCSHD , Σ̃ACMod and
˜
ΣACMod. Furthermore, we may also replace Σ̃A by

Φ̃A and
˜
ΣA by

˜
TA.

Proof. We recall that the last phrase concerning the topologies means that SAX has the coproduct topology
in the category BLCSHD , where each of the homogeneous components SmAX for m ∈ N0 has the quotient
topology of the bornological tensor product X⊗Am. Since X is bornologically projective and finitely gener-
ated, the same is true of X⊗Am and SmAX, so they are complete and thus Fréchet, so bornological as well. By
Proposition 1.6.7 this is the unique Fréchet module structure over A on them. As a consequence, SAX is
complete as well, and a fortiori convenient. By the definition of the bornological tensor product and the co-
product topologies, it is clear that SAX is a unitary bornological algebra. The latter mentioned proposition
also implies that the corresponding coproduct is continuous. The counit and coaugmentation are trivially
continuous. The last statement is immediate, for A is a quotient of Σ̃A, Φ̃A,

˜
ΣA and

˜
TA. �

3.8.3. Since the coalgebra SAX is cocommutative, we may turn any right comodule over SAX in ABMod

into a left one, and conversely, so it becomes a cosymmetric bicomodule. In order to shorten our termi-
nology we shall only call them comodules over SAX. On the other hand, taking into account that SAX is
a commutative unitary and counitary bialgebra, the bornological tensor product ⊗A endows the category
of SAX-comodules in ABMod with a structure of symmetric monoidal category (see [75], Def. 1.8.2). We
shall denote this category by SAX

A coBMod. The analogous version using conveniently completed tensor

products ⊗̃A defines the symmetric monoidal category SAX
A coCMod. Since A is a quotient of Σ̃A (resp.,

˜
ΣA),

the previous statements trivially apply to Σ̃A (resp.,
˜
ΣA) instead of A, but where we obtain only a nonuni-

tary symmetric monoidal category structures on SAX
Σ̃A
coBMod (resp., SAX

˜
ΣAcoBMod) and on SAX

Σ̃A
coCMod (resp.,

SAX

˜
ΣAcoCMod). We may also replace Σ̃A by Φ̃A and

˜
ΣA by

˜
TA.

3.9 Applications to the convenient tensor-symmetric coalgebra of X over k

3.9.1 Corollary. Given m ∈N, (SAX)⊗̃βm is a cocommutative coaugmented coalgebra in the symmetric monoidal
category of convenient locally convex modules over A⊗̃βm for the coproduct and the counits defined in Proposition
3.4.6 and the obvious coaugmentation. The previous statement also holds for the case m = 0, where (SAX)⊗̃β0 = k,
A⊗̃β0 = k, and the coproduct, counit and coaugmentation are the usual one of k.

The statement is a straightforward consequence of Proposition 3.4.6 and the remarks after diagram
(3.7.1).
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3.9.2 Corollary. Given m ∈ N0, (SAX)⊗̃βm is a cocommutative counitary coalgebra in the symmetric monoidal
category

˜
TACMod for the tensor product ⊗

˜
TA, whose counit is the composition of the counit of (SAX)⊗̃βm together

with the map hm defined in 3.3.2. Moreover, the direct sum of the previous coalgebras {(SAX)⊗̃βm}m∈N0
gives us a

structure of cocommutative counitary coalgebra on T̃ SAX in the symmetric monoidal category
˜
TACMod.

This is a direct consequence of Corollary 3.9.1 and the remarks after diagram (3.7.1).

3.9.3 Corollary. T̃ SAX is a unitary algebra in the symmetric monoidal category
˜
TACMod for the tensor product

� and the usual product. The unit is given by the canonical inclusion of k = (SAX)⊗̃β0 inside of T̃ SAX. Further-
more, this unitary algebra structure together with the cocommutative counitary coalgebra structure described in
Corollary 3.9.2 give us a structure of cocommutative unitary and counitary bialgebra on T̃ SAX relative to the
symmetric 2-monoidal category

˜
ΣACMod described in Proposition 3.3.9.

This is a direct consequence of Proposition 3.4.6.

3.9.4 Corollary. Given m ∈N, (SAX)⊗̃βm is a cocommutative noncounitary coalgebra in the symmetric monoidal
category Φ̃ACMod, and the product of SAX induces a morphism (SAX)⊗̃βm → SAX of noncounitary coalgebras
in Φ̃ACMod. Moreover, the direct sum of the previous coalgebras {(SAX)⊗̃βm}m∈N gives us a structure of cocom-
mutative noncounitary coalgebra on T̃ +SAX in the symmetric monoidal category of convenient locally convex
Φ̃A-modules, and the sum of the previous morphisms (SAX)⊗̃βm → SAX is a morphism T̃ +SAX → SAX of non-
counitary coalgebras in Φ̃ACMod. As a consequence, T̃ +SAX is also a (cosymmetric bi)comodule over SAX in the
symmetric monoidal category Φ̃ACMod.

This is a direct consequence of Corollary 3.9.1 and (3.4.3).

3.9.5.Remark. We also remark that T̃ +SAX is a nonunitary algebra in the symmetric monoidal category
CLCSHD for the usual product recalled in Section 3.1, and the latter is compatible with the coaction stated
in the previous corollary, in the sense that the diagram

T̃ +SAX⊗̃β T̃ +SAX
µT̃+SAX //

��

T̃ +SAX

��
T̃ +SAX⊗̃β T̃ +SAX ⊗Φ̃A SAX

µT̃+SAX
⊗Φ̃AidSAX// T̃ +SAX ⊗Φ̃A SAX

commutes, where the vertical maps are the coactions, and µT̃ +SAX
is the product of T̃ +SAX. The coaction

of T̃ +SAX⊗̃β T̃ +SAX exists due to Proposition 3.2.12, since the category
˜
TACMod has a natural structure of

symmetric 2-monoidal category, and to the comments after (3.7.1).

3.9.6 Fact. Note that S̃+SAX is also an object the symmetric monoidal category
˜
ΣACMod.

3.10 The double tensor-symmetric coalgebra over A

3.10.1. For the rest of this chapter Y = V ⊗ASAX will denote the cofree right comodule over SAX in ACMod

cogenerated by a bornological locally convex A-module V that is bornologically projective.

3.10.2.Example. If A = C∞(M) and X = Γ (J iE), the space Li,c(M,E) introduced in Definition 5.1.13 is natu-
rally endowed with a right comodule structure over SAX in the symmetric monoidal category of C∞(M)-
modules, cogenerated by V = Γc(Vol(M)) (see Corollary 2.2.4). The continuity of the coaction follows from
Corollary 2.3.10, as well as the bornological projectiveness of V .

3.10.3. Let us denote the coaction of Y by δr . Since SAX is cocommutative, then we may turn the right
coaction into a left one by applying the usual twist, and we thus obtain a structure of a cosymmetric
bicomodule over SAX on Y . As indicated in Section 3.8, we shall call it simply comodule over SAX in
ABMod. Denote the left comodule structure on Y by δl .
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3.10.4 Lemma. Let A be a unitary Fréchet algebra, X a Fréchet A-module that is finitely generated and projective,
and Y = V ⊗ASAX the cofree comodule over SAX in ABMod cogenerated by a bornologically projective bornologi-
cal locally convex A-module V . Then S+

AY and T +
AY are complete and bornological, so convenient, and comodules

over SAX in ABMod (and also in Σ̃ABMod and Φ̃ABMod, resp.). Furthermore, the conilpotent (resp., cocommuta-
tive) cofree noncounitary coalgebra (resp., conilpotent cocommutative cofree noncounitary coalgebra) T +

AY (resp.,
S+
AY ) in ABMod is a SAX-comodule noncounitary coalgebra (resp., SAX-comodule cocommutative noncounitary

coalgebra) in ABMod (and hence in Φ̃ABMod (resp., Σ̃ABMod) as well), i.e. a noncounitary coalgebra (resp., co-
commutative noncounitary coalgebra) in the symmetric monoidal category SAX

A coBMod (and SAX
Φ̃A
coBMod (resp.,

SAX
Σ̃A
coBMod)).

Proof. We will prove everything for the symmetric construction S+
AY , as the case of the tensor construction

T +
AY follows analogously. We first show that S+

AY is complete and bornological, so convenient. In order
to prove it, it suffices to show that Y ⊗Am is complete and bornological for all m ∈N, for this implies that
SmA Y is also complete (by Proposition 1.1.4) and bornological, and thus S+

AY is also. Since X is topologically
projective (by Lemma 1.6.10), X⊗Am is also by Fact 1.6.9. Hence, Proposition 1.1.4 tells us that SmAX is
bornologically projective for all m ∈N, and we conclude thus SAX is so. As V is bornologically projective,
Y = V ⊗A SAX is also, by 1.7.22. The same result tells us that Y ⊗Am is bornologically projective for all
m ∈N, and the same holds for SmA Y by Proposition 1.1.4. By 1.7.20, SmA Y is complete and bornological for
all m ∈N, so S+

AY is complete and bornological as well.

To prove the second part note that, since SAX is a bialgebra in ABMod, S
m
A Y is a comodule over SAX in

ABMod by the usual formula, and the same holds for S+
AY .

For the last part of the lemma, notice that the conilpotent cofree noncounitary coalgebra on the object
Y of the symmetric monoidal category SAX

A coBMod coincides precisely with the conilpotent cofree non-

counitary coalgebra on the underlying object of Y in ABMod, because the forgetful functor SAXA coBMod→
ABMod is strong symmetric monoidal.

The results concerning Σ̃A follow directly from Fact 1.5.2 and Porism 1.7.14, because A is a quotient of
Σ̃A. �

3.11 More applications to the twisted tensor-symmetric convenient coalgebra over k

3.11.1 Corollary. Assume the same hypotheses of Lemma 3.10.4. Given m ∈ N, Y ⊗̃βm is a comodule over the
counitary coalgebra (SAX)⊗̃βm in the symmetric monoidal category

A
⊗̃βmCMod for the coaction defined in Propo-

sition 3.4.7. The previous statement also holds for the case m = 0, where Y ⊗̃β0 = k, A⊗̃β0 = k, and the coaction is
the usual one of k.

This is a direct consequence of Proposition 3.4.7 and the comments after (3.7.1).

3.11.2 Corollary. Assume the same hypotheses of Lemma 3.10.4. Given m ∈ N0, Y ⊗̃βm is a comodule over the
counitary coalgebra (SAX)⊗̃βm in the symmetric monoidal category

˜
TACMod for the tensor product ⊗

˜
TA, that is

described in Corollary 3.9.2. Moreover, the direct sum of the previous comodules {Y ⊗̃βm}m∈N0
gives us a structure

of comodule on T̃ Y over the counitary coalgebra T̃ (SAX) in the symmetric monoidal category
˜
TACMod.

This follows easily from Corollary 3.11.1 and the remarks after diagram (3.7.1).

3.11.3 Corollary. Assume the same hypotheses of Lemma 3.10.4. Given m ∈ N, Y ⊗̃βm is a comodule over the
noncounitary coalgebra T̃ +SAX in Φ̃ACMod, and thus the same holds for T̃ +Y , whose comodule structure is that
of a direct sum of the comodules Y ⊗̃βm for m ∈ N. As a consequence, both Y ⊗̃βm for m ∈ N and T̃ +Y are also
comodules over the noncounitary coalgebra SAX in Φ̃ACMod.

This is just a consequence of Corollary 3.11.1, the remarks after diagram (3.7.1), and Corollary 3.9.4.
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3.12 Comparing the tensor-symmetric coalgebras

3.12.1. For completeness, we will now compare the several tensor constructions on Y . Assume the same
hypotheses of Lemma 3.10.4. We first remark that, given m ∈N, there is canonical mapping

SmY → SmA Y (3.12.1)

given as the obvious quotient. Analogously, for m ∈N, we have the canonical surjection

Y ⊗̃βm→ Y ⊗Am. (3.12.2)

Since S+
AY is convenient by Lemma 3.10.4, this defines a morphism of bornological locally convex Σ̃ACMod-

modules
S̃+Y → S+

AY . (3.12.3)

By the same reasons, we have the morphism of bornological locally convex Φ̃ACMod-modules

T̃ +Y → T +
AY . (3.12.4)

.

3.12.2 Proposition. Assume the same hypotheses of Lemma 3.10.4. The map (3.12.4) is a morphism of comodules
over the noncounitary coalgebra SAX in Φ̃ACMod.

Proof. Since the coproduct and the coaction of T̃ +Y are the convenient completion of those of T +Y (as an
object of BLCSHD ), it will suffice to prove the proposition for the latter. The statement is now immediate
from the explicit expression of the coaction of T +Y , and that of T +

AY , which is the same with the exception
that all tensor products are over A (or Φ̃A). �

3.12.3. We summarize the relevant information that we ascertained in the previous sections on the specific
spaces we are going to use in the sequel. Recall that A is a unitary Fréchet algebra, X is a finitely generated
projective Fréchet A-module, V is a bornologically projective bornological locally convex A-module, Y =
V ⊗A SAX, Φ̃A = limm∈NA

⊗̃βm and Σ̃A = limm∈N Σ̃
mA are inverse limits in BLCSHD , and

˜
TA = ⊕m∈N0

A⊗̃βm

and
˜
ΣA = ⊕m∈N0

Σ̃mA are locally convex direct sum in BLCSHD . Then,

(a) SAX is a canonical cocommutative unitary and noncounitary bialgebra in Σ̃ABMod and in
˜
ΣABMod

(see Fact 3.8.2);

(b) Y is the cofree comodule over SAX in ABMod, so Y is a fortiori a comodule over SAX in Σ̃ABMod (see
Porism 1.7.14);

(c) T̃ +SAX has the induced structure of cocommutative noncounitary coalgebra in Φ̃ACMod, and there is
a morphism of noncounitary coalgebras from T̃ +SAX to SAX in Φ̃ACMod (see Corollary 3.9.4);

(d) T̃ SAX has the induced structure of cocommutative counitary coalgebra in
˜
TACMod for the tensor

product ⊗
˜
TA (see Corollary 3.9.2) and that structure forms also a cocommutative unitary and couni-

tary bialgebra on T̃ SAX in the symmetric 2-monoidal category
˜
TACMod (see Corollary 3.9.3);

(e) S+
AY has a canonical structure of cocommutative noncounitary coalgebra in SAX

Σ̃A
coBMod (see Lemma

3.10.4);

(f) T̃ +Y is a conilpotent cofree noncounitary coalgebra in CLCSHD with comodule structure over T̃ +SAX,
so a fortiori over SAX, in Φ̃ACMod (see Corollary 3.11.3);

(g) the canonical map T̃ +Y → T +
AY given by (3.12.4) is a morphism of comodules over SAX in Φ̃AcoCMod

(see Proposition 3.12.2).
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Chapter 4

Preliminaries on distributions on manifolds

4.1 Basic results

4.1.1. Given a smooth manifold M of dimension n, we will denote by Vol(M) the density bundle (also called
the 1-volume bundle), which is the line bundle defined as the tensor product ΛnT ∗M ⊗ oM , where oM in-
dicates the orientation bundle of M (see [11], p. 84). A direct definition can be found in [46], Def. 3.1.1.
The global sections of Vol(M) are called densities. Note that Vol(M ×N ) ' Vol(M)�Vol(N ), for any pair of
manifolds M and N . Recall also that, if L is a line bundle over M, then L⊗ L∗ is isomorphic to the trivial
bundle (see e.g. [77], 11.38), so Vol(M)⊗Vol(M)∗ is isomorphic to the trivial line bundle as well. Moreover,
since any manifold has a nonvanishing global density θ (by a standard argument using a partition of unity),
the map C∞(M)→ Γ (Vol(M)) sending f to f θ is an isomorphism of C∞(M)-modules. This isomorphism is
however noncanonical.

4.1.2. From now on, given a LCS X, X ′ denotes the vector space of (complex-valued) continuous linear
functionals on X.

4.1.3 Definition. Given a vector bundle E over M, the space D ′(M,E) of distributions with values on E (or
E-valued distributions) is the LCS Γc(E∗⊗Vol(M))′ of continuous linear functionals provided with the bornolog-
ically strong topology (see 1.4.25). They were defined by L. Hörmander in [55], Def. 6.3.3 and the paragraph after
Eq. (6.4.2). See also [46], Def. 3.1.4, where they are called E-valued distributions of density character 0, (or
section distributions of E). If E is the trivial line bundle we write D ′(M) instead of D ′(M,E), and call their
elements distributions.1

4.1.4.Remark. Recall that Γc(E∗ ⊗ Vol(M)) is an (LF)-space, so it is bornological (see [95], II.8.2, Cor. 2).
Moreover, each of the Fréchet spaces ΓK (E∗⊗Vol(M)) forming the system defining Γc(E∗⊗Vol(M)) is reflexive,
as noted in 2.3.9, so it is distinguished (see [95], IV.6.6). By Lemma 1.4.27, D ′(M,E) is barreled and
bornological. It is also complete (so convenient) for the strong topology (see [95], IV.6.1), which in turn
coincides with bornologically strong topology. Since Γc(E∗ ⊗Vol(M)) is reflexive (see 2.3.9), by [95], IV.5.6,
Cor. 1,D ′(M,E) is also reflexive. Moreover, sinceD ′(M,E) is the strong dual of Γc(E∗ ⊗Vol(M)), which is a
strict inductive limit of a countable system, then we have the canonical isomorphism

D ′(M,E) ' lim
K

(
ΓK

(
E∗ ⊗Vol(M)

))′
b

(4.1.1)

of LCS, where K runs over an exhausting sequence of M (see [8], Prop. 2.1). Since ΓK (E∗ ⊗ Vol(M)) is a
nuclear and Fréchet, its strong dual is also nuclear (see [95], IV.9.6, Thm.), so the inverse limit D ′(M,E) is
nuclear as well (see [95], III.7.4, Cor.). Moreover, since ΓK (E∗⊗Vol(M)) is Fréchet, so barreled, and Schwartz,

1We remark that other authors define (E-valued) distributions as elements of the space of continuous linear functionals Γc(E∗)′

(e.g. [29], XVII.3.1). We also stress that we consider a priori the bornologically strong topology on the spaces of distributions, but it
coincides with the usual strong topology by Lemma 1.4.27. They are in principle different from the weak? topology, which is more
common in the theory of PDE.
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its strong dual satisfies the M.c.c. Indeed, any barreled space is infrabarreled (see [57], Def. 3.6.2), any
Schwartz space is quasinormable (see [57], Exercise 3.15.6.(d)), and the strong dual of any infrabarreled
Schwartz satisfies the s.M.c (see [57], Exercise 3.15.6.(c)), and in particular the M.c.c. (see 1.4.11). Finally,
since the inverse limit of spaces satisfying the M.c.c. satisfies it as well (see 1.4.11), then D ′(M,E) satisfies
the M.c.c.

4.1.5. By Remark 1.6.4, D ′(M,E) is naturally a C∞(M)-module. Furthermore, it is a bornological locally
convex C∞(M)-module by Corollary 1.7.8. Note that usual definition of support supp(u) of a distribution
u also makes sense for a distribution on a manifold with values in a vector bundle.

4.1.6. Given an isomorphism t : E → F of vector bundles over an isomorphism f : M → N of smooth
manifolds, we will denote by

t∧ : Γc(M,E)′→ Γc(N,F)′ (4.1.2)

the map sending u ∈ Γc(M,E)′ to the distribution t∧(u)(σ ) = u((t−1)∗(σ )), for all σ ∈ Γc(N,F), where we are
using the morphism given in (2.2.6).

4.1.7 Proposition (see [46], Thm. 3.1.9). Let E be a vector bundle of rank r over a smooth manifold M, and let
{(Ua, τa)}a∈A be a trivialization of E whose underlying covering forms an atlas (Ua,φa) of M. Then, any element
u ∈D ′(M,E) is equivalent to a collection (ua)a∈A, where ua ∈D ′(φa(Ua), kr ) is a (usual) distribution with values
in kr and

ua|φa(Ua∩Ua′ ) = (τa ◦ τ−1
a′ )∧(ua′ |φa(Ua∩Ua′ )),

for all a,a′ ∈ A. The distribution ua coincides with τ∧a (u|Ua ).

This gives us an equivalent definition of distribution on a manifold as a collection of usual distributions
(also called Schwartz distributions) satisfying a compatibility condition. The latter definition is in fact the
original one introduced by Hörmander.

4.1.8. We recall that an E-valued distribution u ∈D ′(M,E) is called smooth if there is a (necessarily unique)
section σ ∈ Γ (E) such that u(λ) =

∫
M
〈λ,σ〉, for all λ ∈ Γc(E∗⊗Vol(M)), where 〈λ,σ〉 ∈ Γc(Vol(M)) is induced by

the usual evaluation map E∗ ⊗E→M × k of vector bundles. We recall that the singular support singsupp(u)
of u is defined as the complement of the maximal open set U of M such that the restriction of u to U is
smooth. More generally, an E-valued distribution u ∈D ′(M,E) is called regular if there exists a (necessarily
unique) continuous section σ ∈ Γ 0(E) such that u(λ) =

∫
M
〈λ,σ〉, for all λ ∈ Γc(E∗ ⊗Vol(M)), where we have

now 〈λ,σ〉 ∈ Γ 0
c (Vol(M)). The subspace of D ′(M,E) formed by the regular distributions will be denoted by

D ′reg(M,E). We will incidentally need to consider the space D ′lbc(M,E) of distributions given by sections
σ : M → E of the projection E → M that are locally bounded and continuous except for a set of measure
zero sections. 2

4.1.9 Fact. Let t : E → F be an isomorphism of vector bundles over an isomorphism f : M → N of smooth
manifolds, and let u ∈D ′reg(M,E) be induced by the continuous section σ ∈ Γ 0(E). Then t∧(u) defined in (4.1.2)
is the regular distribution induced by the continuous section t ◦ σ ◦ f −1 ∈ Γ 0(F).

This statement is a direct consequence of the definitions.

4.1.10 Proposition. Given a vector bundle E over a smooth manifold M, consider the canonical map

D ′(M)× Γ (E)→D ′(M,E) (4.1.3)

sending (u,σ ) to the linear functional λ⊗C∞(M) ω 7→ u(λ(σ ) ·ω), where u ∈D ′(M), σ ∈ Γ (E), λ ∈ Γ (E)~ ' Γ (E∗)
and ω ∈ Γc(Vol(M)), and λ(σ ) ·ω denotes the action of an element of C∞(M) on an element Γc(Vol(M)). Then, the
induced map of C∞(M)-modules

βE :D ′(M)⊗C∞(M) Γ (E)→D ′(M,E) (4.1.4)

2We recall that a set S ⊆M of a smooth manifoldM is called of measure zero if for all charts (U,φ) ofM, φ(S∩U ) has zero Lebesgue
measure.
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is an isomorphism, and its domain is canonically isomorphic to HomC∞(M)(Γ (E∗),D ′(M)), which coincides with
HomC∞(M)(Γ (E∗),D ′(M)). Furthermore, the map (4.1.4) is also an isomorphism of bornological locally convex
C∞(M)-modules if D ′(M)⊗C∞(M) Γ (E) has the topology given by the bornological tensor product, and D ′(M,E)
has the (bornologically) strong topology.

Proof. The bijectivity of βE is proved in [46], Thm. 3.1.12. The second statement follows immediately from
[3], Prop. 20.10, and the fact that Γ (E)~ = Γ (E∗) and that Γ (E) is a finitely generated and projective C∞(M)-
module. The penultimate statement is a direct consequence of Proposition 1.6.7. It also follows from
the announced results in [45] (see Thm. 4.1 there), which unfortunately remain without proof. Finally,
to prove the fact that (4.1.4) is also an isomorphism of bornological locally convex C∞(M)-modules we
proceed as follows. For another proof, see [78], Thm. 15. Consider the functor G (resp., F) defined on the
category of vector bundles over M to the category of bornological locally convex C∞(M)-modules sending
E to the right (resp., left) member of (4.1.4), provided with the strong topology (resp., topology of the
bornological tensor product). Recall that the strong topology coincides with the bornologically strong
topology, by Lemma 1.4.27. By the definition of the involved topologies, it is clear that (4.1.3) is bounded
(see [78], Lemma 16), so it defines a natural transformation from F to G. Moreover, by definition, (4.1.4)
induces an isomorphism F(C∞(M)) ' G(C∞(M)) of bornological locally convex C∞(M)-modules. The fact
that the bornologically strong dual of a locally convex direct sum of bornological LCS is the product of
the corresponding bornologically strong duals (see (1.4.8)), that finite products and finite coproducts in
all the involved categories coincide because they are k-linear, bornological tensor products commute with
coproducts on each side, and that the functor Γ preserves finite coproducts imply that F(E) ' G(E) (as
bornological locally convex C∞(M)-modules), for all trivial vector bundles E over M. Since any vector
bundle is a direct summand of a trivial vector bundle, the claim follows. �

4.1.11. By the previous result we will usually identify any E-valued distribution u ∈ D ′(M,E) with the
tensor product β−1

E (u) ∈D ′(M)⊗C∞(M) Γ (E), or with the corresponding element in HomC∞(M)(Γ (E∗),D ′(M)).
In particular, for any e ∈ Γ (E∗), we shall denote by 〈u,e〉 ∈ D ′(M) the distribution given by evaluating the
map in HomC∞(M)(Γ (E∗),D ′(M)) corresponding to u at e.

4.1.12 Lemma. Let E be a vector bundle of rank r over a manifoldM of dimension n, u ∈D ′(M,E) be an E-valued
distribution with support K ⊆M, and σ ∈ Γc(E∗⊗Vol(M)) be a section of compact support. Consider a trivializing
covering (Ua, τa)a∈A of E satisfying the assumptions of Proposition 4.1.7, and follow the notation there. If for any
a ∈ A the morphism σa = π2 ◦ τa ◦ σ ◦φ−1

a : φa(Ua)→ kr satisfies that all the partial derivatives ∂ασa vanish on
φa(Ua ∩K), for all α ∈Nn

0 then u(σ ) vanishes as well.

Let us stress that we are not assuming that K is compact. We are almost convinced that this result
should be well-known among the experts, but we were not able to find a reference.

Proof. By the local descriptions of u given in Proposition 4.1.7, it suffices to show that the associated distri-
butions ua vanish, for all a ∈ A. In order to do so, we will prove the same statement for usual distributions,
i.e. for those distributions defined on open subsets of the Euclidean space. Let us first note that the support
of ua is clearly included in φa(Ua ∩ K), for all a ∈ A. We will need thus to prove that if u ∈ D ′(U ) is a
usual distribution on an open set U ⊆Rn having support K ′ ⊆U and σ ∈ C∞c (U ) satisfies that all the partial
derivatives ∂ασ vanish on K ′ , then u(σ ) = 0. We remark that K ′ is not assumed to be compact. Consider an
increasing set {Kj }j∈N of compact subsets of U such that Kj ⊆ K◦j+1 and the union of all of them is U , and a

collection of functions {fj }j∈N ∈ C∞c (U )N such that fj |Kj ≡ 1, and supp(fj ) ⊆ K◦j+1 (see [33], Cor. 2.16). The
inclusion supp(fju) ⊆ supp(fj ) ∩ supp(u) tells us that the distribution fju has compact support included
in K ′ . It is easy to verify that (fju)(σ ) converges to u(σ ), since the sequence (fju)(σ ) = u(fjσ ) is eventually
constant, because there exists j0 ∈N such that supp(σ ) ⊆ Kj0 . Finally, as the partial derivatives of all orders
of σ vanish on the compact support of the distribution fju, [55], Thm. 2.3.3, tells us that (fju)(σ ) = 0 for all
j ∈N, and the result follows. �
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4.2 External product and symmetric distributions

4.2.1. Let M and N be smooth manifolds, and E and F be two vector bundles over M and N , respectively.
Let u ∈D ′(M,E) and v ∈D ′(N,F). Recall that Γc(Vol(M ×N )⊗ (E � F)∗) ' Γc(Vol(M)⊗E∗)⊗̃βΓc(Vol(N )⊗ F∗),
by Proposition 2.3.13. Then, the canonical continuous map

Γc

(
Vol(M)⊗E∗

)′
⊗β Γc

(
Vol(N )⊗F∗

)′
→

(
Γc

(
Vol(M)⊗E∗

)
⊗β Γc

(
Vol(N )⊗F∗

))′
sends the tensor product u⊗v to a continuous linear functional on Γc(Vol(M)⊗E∗)⊗β Γc(Vol(N )⊗F∗). By the
universal property of the convenient completion, the latter functional defines a unique continuous linear
map u � v ∈ Γc(Vol(M ×N )⊗ (E � F)∗)′ =D ′(M ×N,E � F) called the external tensor product u � v ∈ of u and
v. This gives a continuous linear map

D ′(M,E)⊗βD ′(N,F)→D ′(M ×N,E �F) (4.2.1)

sending u ⊗ v to u � v. It is easy to verify that this product is associative and distributive.
4.2.2 Proposition. Let M and N be smooth manifolds, and E and F be two vector bundles over M and N ,
respectively. Then, the map (4.2.1) induces an isomorphism of bornological locally convex C∞(M ×N )-modules

ι :D ′(M,E)⊗̃βD ′(N,F) −→D ′(M ×N,E �F). (4.2.2)

Moreover, the previous tensor product ⊗̃β on the domain of ι may be equivalently replaced by the completed
projective tensor product or the completed injective tensor product. 3

Proof. Since the map (4.2.1) is continuous, its convenient completion is the morphism (4.2.2) of bornolog-
ical LCS, for its codomain is convenient. Furthermore, taking into account that the mapping (4.2.1) is
a morphism of bornological locally convex C∞(M) ⊗β C∞(N ), its convenient completion (4.2.2) is a mor-
phism of bornological locally convex modules over C∞(M)⊗̃βC∞(N ) ' C∞(M ×N ), by (1.7.12) and Lemma
2.3.11.

On the other hand, the map (4.2.1) clearly factorizes as the composition of (1.4.4) and

D ′(M,E)⊗πD ′(N,F) −→D ′(M ×N,E �F), (4.2.3)

so in particular it factors through (1.4.16) and

ι :D ′(M,E)⊗̂πD ′(N,F) −→D ′(M ×N,E �F). (4.2.4)

Furthermore, (4.2.4) is an isomorphism of LCS by exactly the same steps as in the proof given in [104],
Thm. 51.7, for the local case.

We will now prove that D ′(M,E)⊗̂πD ′(N,F) coincides with D ′(M,E)⊗̂iD ′(N,F). In order to do so,
it suffices to show that, given any complete LCS Z, the space B (D ′(M,E),D ′(N,F);Z) of (jointly) con-
tinuous bilinear maps coincides with the space B(D ′(M,E),D ′(N,F);Z) of separately continuous bilinear
maps. Since D ′(M,E) and D ′(N,F) are barreled and bornological, Lemma 1.4.38 tells us that the space
B(D ′(M,E),D ′(N,F);Z) coincides with the space Bb(D ′(M,E),D ′(N,F);Z) of bounded bilinear maps.

Let us write X = Γc(Vol(M)⊗E∗), Y = Γc(Vol(N )⊗F∗) and W = Γc(Vol(M ×N )⊗ (E �F)∗). Recall that X, Y
and W as well as their strong duals are bornological, barreled, complete, nuclear, and reflexive (see 2.3.9
and Remark 4.1.4). In particular, X ′b = X ′ and X ' (X ′b)

′
b = (X ′b)

′ = X ′′ = (X ′)′b, and the same holds for Y and
W . Let Z be any complete LCS, and consider the continuous linear map ΛZ given as the composition of

Homb

(
W ′ ,Z

) ∼→W ′′⊗̂πZ
∼→W ⊗̂πZ

∼→ (X⊗̃βY )⊗̂πZ→ X⊗̂πY ⊗̂πZ
∼→ X ′′⊗̂πY ′′⊗̂πZ

∼→ Homb

(
X ′ ,Y ′′⊗̂πZ

) ∼→ Homb

(
X ′ ,Homb

(
Y ′ ,Z

)) ∼→Bh

(
X ′ ,Y ′ ;Z

)
=Bb

(
X ′ ,Y ′ ;Z

)
,

(4.2.5)

3The only reason we believe this result is new is because we specifically asked several experts about it and they replied that they
were not aware of it.
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where the first map is the inverse of the isomorphism dW ′ ,Z of LCS defined in (1.4.10), the second one is
ι−1
W ⊗̂πidZ , with ιW : W →W ′′ the canonical isomorphism, the third is κ̄⊗̂πidZ where κ̄ is the isomorphism

(2.3.6) of LCS given in Proposition 2.3.13, the fourth is continuous linear map ẽX,Y ⊗̂πidZ where ẽX,Y is the
bijective continuous linear map (1.4.16) (see Remark 2.3.14), the fifth one is ιX⊗̂πιY ⊗̂πidZ , with ιX : X→ X ′′

and ιY : Y → Y ′′ the canonical isomorphisms, the antepenultimate is the isomorphism dX′ ,Y ′′⊗̂πZ of LCS
defined in (1.4.10) whereas the penultimate maps is the isomorphism Hom(X ′ ,dY ′ ,Z ) of LCS also obtained
from (1.4.10), the last isomorphism is the inverse of the one given in Fact 1.4.37, and the last equality
follows from Lemma 1.4.38. We remark that we have also used the associativity of the completed projective
tensor product.

We will need the following result.
4.2.3 Lemma. Let Z be any complete LCS. Then the continuous linear map ΛZ defined in (4.2.5) is bijective.

Proof. The proof is just an adaptation of that given in [47], II.3.3, Lemme 8 and Thm. 13. By definition of
ΛZ , it is bijective if and only if the continuous linear map ẽX,Y ⊗̂πidZ from (X⊗̃βY )⊗̂πZ→ (X⊗̂πY )⊗̂πZ is so.
Since ẽX,Y : X⊗̃βY → X⊗̂πY is a bijective continuous linear map (1.4.16), we can identify X⊗̂πY with a LCS
(U,τ1) and X⊗̃βY with a LCS (U,τ0) on the same vector space U , where τ1 is weaker than τ0. Due to the
isomorphism κ̄ : X⊗̃βY →W of LCS, we can takeU as the space of sections of compact support of the vector
bundle Vol(M×N )⊗(E�F)∗ over the spaceM×N , and τ0 is its usual topology (see 2.3.9). To abbreviate, will
write Uj instead of (U,τj ), for j = 0,1. We remark that they are both nuclear and complete (U0 is clearly
so, for it is isomorphic to Γc(Vol(M ×N ) ⊗ (E � F)∗), whereas U1 satisfies both properties because it is the
completed projective tensor products of the two nuclear spaces X = Γc(Vol(M)⊗E∗) and Y = Γc(Vol(N )⊗F∗)),
so semi-reflexive (see [95], III.7.2, Cor. 2 and IV.5.5). 4 Moreover, note that U0 is an (LF)-space, whereas U1
has a weaker topology than that of an (LF)-space (e.g. that of U0).

Choose an inclusion i of the bundle Vol(M×N )⊗(E�F)∗ inside of a trivial bundle of the form (M×N )×kR.
This induces inclusions of vector spaces ofU0 andU1 inside of the vector space of vector functions onM×N
(with values on kR) of compact support. This even respects the topologies in the case of U0, if we regard
C∞c (M ×N,kR) with its usual topology (see 2.3.9), whereas U1 has a weaker topology than the usual one for
C∞c (M ×N,kR).

From now, we will regard each Uj , with j = 0,1, as vector spaces of vector functions on M ×N (with
values on kR), with their respective LCS topologies. As stated before, the underlying vector space of both
U0 and U1 will be denoted by U , and the underlying vector space mapping of the continuous linear map
ẽX,Y : U0 → U1 is just the identity of U . By definition, it is clear that U0 has a finer topology than that of
pointwise convergence of vector functions on M ×N (with values on kR). Furthermore, the same is true for
U1, as it follows from the explicit description of the corresponding topology (see [96], p. 116, or [34], (3)).

Let us define FU (M ×N,Z) as the vector space of maps f = (f1, . . . , fR) from M ×N to ZR, where fj :
M×N → Z, satisfying that the associated map (p,p′) 7→ (λ(f1(p,p′)), . . . ,λ(fR(p,p′))) fromM×N to kR belongs
to U , for all λ ∈ Z ′ . Note that FU (M ×N,Z) depends on the structure of LCS of Z, but it does not depend
on any locally convex topology of the vector space U , and we have omitted the index R for simplicity.

We recall that, if X is a LCS, then Xσ denotes the LCS given by the same underlying vector space
provided with the weak topology, i.e. the topology of uniform convergence on finite subsets of X ′ , whereas
X ′σ denotes the weak? topology, i.e. the topology of pointwise convergence. For every j = 0,1, consider the
linear map

Hom(Z ′σ , (Uj )σ )→FU (M ×N,Z) (4.2.6)

that sends u ∈ Hom(Z ′σ , (Uj )σ ) to the map Fu given as follows. For every (p,p′) ∈M×N , define Fu(p,p′) as the
unique element (z1, . . . , zR) of ZR such that (λ(z1), . . . ,λ(zR)) = u(λ)(p,p′) ∈ kR, for all λ ∈ Z ′ . We remark that
the map from Z ′σ to kR given by λ 7→ u(λ)(p,p′) is continuous, since it is the composition of the continuous
map u and the evaluation map (Uj )σ → kR at a fixed point (p,p′), which is continuous since ((Uj )σ )′ = U ′j
and the topology on Uj is finer than that of pointwise convergence. Hence, (z1, . . . , zR) in the definition of

4We remark that a semi-reflexive space is called reflexive in [47] (see Introduction, III, p. 6)
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Fu exists because the canonical map from Z into the continuous dual of Z ′σ is an isomorphism of vector
spaces (see [104], Prop. 35.1), and it is unique by the Hahn-Banach theorem. By [47], II.3.3, Lemme 8, the
linear map (4.2.6) is bijective, since the spaces U0 and U1 are semi-reflexive and have topologies weaker
than that of an (LF)-space but stronger than that of pointwise convergence. 5 The inverse map is given
by sending f = (f1, . . . , fR) ∈ FU (M ×N,Z) to the continuous linear map Gf ∈ Hom(Z ′σ , (Uj )σ ) satisfying that
Gf (λ)(p,p′) = (λ(f1(p,p′)), . . . ,λ(fR(p,p′))), for all λ ∈ Z ′ and (p,p′) ∈M ×N . Moreover, by [104], Prop. 42.2,
(1), the vector spaces Hom(Z ′σ , (Uj )σ ) and Hom(Z ′τ ,Uj ) coincide, so (4.2.6) gives a linear bijection between
Hom(Z ′τ ,U0) and Hom(Z ′τ ,U1). By (1.4.9), we have the commutative diagram

Home(Z ′τ ,U0)
Home(Z ′τ ,ẽX,Y ) // Home(Z ′τ ,U1)

U0⊗̂πZ
ẽX,Y ⊗̂πidZ //

d′U0 ,Z ∼

OO

U1⊗̂πZ

d′U1 ,Z ∼

OO

where the vertical maps are isomorphisms of LCS, and the upper horizontal map is a linear bijection by the
previous comments. As a consequence, ẽX,Y ⊗̂πidZ is a linear bijection. The lemma is thus proved. �

Putting all the previous information together, we obtain thus a chain of isomorphisms of k-linear vector
spaces

Hom
(
D ′(M,E)⊗̂iD ′(N,F),Z

)
'B

(
D ′(M,E),D ′(N,F);Z

)
=Bb

(
D ′(M,E),D ′(N,F);Z

)
' Hom

(
D ′(M ×N,E �F),Z

)
' Hom

(
D ′(M,E)⊗̂πD ′(M,F),Z

)
,

(4.2.7)

for all complete LCS Z, where we have used Lemma 4.2.3 in the penultimate isomorphism, and isomor-
phism (4.2.4) in the last step. The equality follows from Lemma 1.4.38. This implies thus that the canonical
map fromD ′(M,E)⊗̂iD ′(N,F) toD ′(M,E)⊗̂πD ′(N,F) is an isomorphism of LCS.

Finally, sinceD ′(M,E)⊗̂πD ′(N,F) 'D ′(M ×N,E�F), and any space of distributions satisfies the M.c.c.
(see Remark 4.1.4), we see that D ′(M,E)⊗̂iD ′(N,F) satisfies the M.c.c. Furthermore, since D ′(M,E) and
D ′(N,F) are barreled and bornological, soD ′(M,E)⊗i D ′(N,F) 'D ′(M,E)⊗βD ′(N,F), the completion of
D ′(M,E)⊗βD ′(N,F) satisfies the M.c.c. SinceD ′(M,E)⊗D ′(N,F) is sequentially dense inD ′(M×N,E�F),
because even Γc(E) ⊗ Γc(F) is sequentially dense in D ′(M × N,E � F) (see [104], Thm. 28.2 and its Cor.,
and Thm. 39.2, for the local case, where the global case follows from an argument using partitions of
unity), Fact 1.4.12 tells us that the convenient completion D ′(M,E)⊗̃βD ′(N,F) of D ′(M,E)⊗β D ′(N,F) '
D ′(M,E)⊗iD ′(N,F) coincides with its completionD ′(M,E)⊗̂iD ′(N,F). The proposition is thus proved. �

4.2.4.Remark. Note that Proposition 4.2.2 gives an example of a class of LCS which are not Fréchet and for
which the completed projective tensor product coincides with the convenient tensor product, and also with
the usual completion of the bornological tensor product. Furthermore, this implies that

eD ′(M,E),D ′(N,F) :D ′(M,E)⊗βD ′(N,F)→D ′(M,E)⊗πD ′(N,F), (4.2.8)

whose underlying set-theoretic map is the identity, is an isomorphism of LCS. Indeed, the fact that the
completion of (4.2.8) is an isomorphism tells us that Bb(X,Y ;Z ′) = B (X,Y ;Z ′), for all complete LCS Z ′ ,
where X = D ′(M,E) and Y = D ′(N,F). To prove that (4.2.8) is an isomorphism it suffices to show that
B (X,Y ;Z) ⊆Bb(X,Y ;Z) is in fact an equality, for all Hausdorff LCS Z. Given φ ∈Bb(X,Y ;Z), we consider
iZ ◦φ ∈Bb(X,Y ; Ẑ) =B (X,Y ; Ẑ), where iZ : Z→ Ẑ is the canonical inclusion. Since the image of the jointly
continuous bilinear map iZ ◦φ is included in Z, and Z has the subspace topology of Ẑ under iZ : Z→ Ẑ (see
[95], II.4.1), then φ is jointly continuous, i.e. φ ∈B (X,Y ;Z), as was to be proved. This provides examples
of spaces, beyond the class of Fréchet spaces, for which the bornological tensor product, or equivalently,
the inductive tensor product (by Lemma 1.4.38), coincides with the projective tensor product, answering a
question posed at the end of Section I.5.8 of [64].

5In [47], II.3.3, Lemme 8, the author deals with the case R = 1, but the case for any R ∈N follows verbatim.
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4.2.5. If the distributions u and v are regular, their external tensor product u � v is also regular, and if u
is induced by f ∈ Γ 0(E) and v is induced by g ∈ Γ 0(F), then u � v is induced by the external tensor product
f � g, defined as in the case of smooth functions, i.e. the map (p,p′) 7→ f (p) ⊗ g(p′). Given a sequence
u1 ∈D ′(M1,E1), . . . , um ∈D ′(Mm,Em), we will also denote their ordered external product u1 � · · ·�um by

m∏
j=1

�uj . (4.2.9)

4.2.6. Since D ′(Mm,E�m) is the continuous dual of Γc((Vol(M) ⊗ E∗)�m), which has an obvious action of
the group of permutations Sm, the former is also acted on by Sm. To simplify, we shall usually denote
D ′(Mm,E�m) simply by D ′m(M,E), and if the vector bundle E is trivial by D ′m(M). On the other hand, the
surjective morphism Γc(Vol(M)⊗E∗)⊗̃βm→ Γc(Vol(M)⊗E∗)⊗̃βm/Sm of bornological locally convex Σ̃mC∞(M)-
modules induces in turn an injective morphism of bornological locally convex Σ̃mC∞(M)-modules(

Γc(Vol(M)⊗E∗)⊗̃βm/Sm
)′
→D ′(Mm,E�m). (4.2.10)

4.2.7 Definition. We call the domain of this map the space of symmetric E-valued distributions of rank m,
and denote it byD ′sym,m(M,E). If E is the trivial bundle, we will just writeD ′sym,m(M).

4.2.8. By Proposition 1.1.4,D ′sym,m(M,E) is canonically identified with the continuous dual of the space of

invariants of Γc(Vol(M)⊗E∗)⊗̃βm under the action of Sm (as bornological locally convex Σ̃mC∞(M)-modules).
Given a distribution u ∈D ′(Mm,E�m), we define the symmetrization symm(u) of u as the dual of the action
of the idempotent e recalled in the proof of Proposition 1.1.4, i.e. symm(u)([σ ]) = u(ē.[σ ]), where σ ∈
Γc(Vol(M)⊗ E∗)⊗̃βm and the brackets denote its class in the associated space of invariants under Sm. It is a
just a continuous section of (4.2.10).

4.2.9. Moreover, given u ∈ D ′(Mm,E�m) and v ∈ D ′(Mm′ ,E�m
′
), we define the symmetrized external tensor

product u �S v ∈ D ′sym,m+m′ (M,E) as the symmetrization of u � v. The associativity of the usual external
product of distributions implies that �S is associative as well, and it is clearly seen to be commutative.
Given a sequence u1 ∈D ′(M,E), . . . , um ∈D ′(M,E), we will also denote their symmetrized external product
u1 �S · · ·�S um by

m∏
j=1

�Suj . (4.2.11)

4.2.10. We also note that the support of a symmetric E-valued distributions of rank m, regarded as an
E�m-valued distribution of Mm via (4.2.10), is a symmetric subset S ⊆Mm, i.e. ς(S) ⊆ S, for all ς ∈ Sm.

4.3 Pull-backs of distributions

4.3.1. For the definition of wave front set WF(u) ⊆ T ∗M of an E-valued distribution u we refer the reader
to [55], Def. 8.1.2 and the two paragraphs before Example 8.2.5. A very nice coordinate-independent but
equivalent definition is given in [32], Def. 1.3.1 (see also [102], §1). We will write WFp(u) = T ∗pM ∩WF(u)
and recall that WFp(u) ⊆ T ∗pM \ {0}, where 0 denotes the origin of the vector space T ∗pM. We remark that
the image of WF(u) under the canonical projection T ∗M→M coincides with the singular support of u (see
[55], (8.1.5) and Def. 8.1.2), and that

WF(Du) ⊆WF(u), (4.3.1)

for any E-valued distribution u, and any differential operator D acting on the sections of E (see [55],
(8.1.11)).
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4.3.2 Fact. Let M be a manifold, and E a vector bundle over M. Given any E-valued distribution u ∈D ′(M,E),
if we write β−1

E (u) =
∑
j∈J uj ⊗C∞(M) σj , with uj ∈D ′(M) and σj ∈ Γ (E), where βE is defined in (4.1.4), and where

we recall that the sum is finite, then
WF(u) ⊆

⋃
j∈J

WF(uj ).

As a consequence, if F is another vector bundle over M and t : E→ F is a morphism of vector bundles over M, we
have

WF
(
βF ◦

(
idD ′(M) ⊗C∞(M) Γ (t)

)
◦ β−1

E (u)
)
⊆WF(u),

where Γ (t) : Γ (E)→ Γ (F) denotes the morphism induced by t.

This result is just a direct consequence of the definition, but we stated it to emphasize the properties of
the wave front set.

4.3.3. We recall that a cone (resp., convex cone) P in a finite dimensional real (Euclidean) vector space V
is a subset satisfying that λv ∈ P (resp., λv + λ′v′ ∈ P ) for all λ ∈ R>0 and v ∈ P (resp., λ,λ ∈ R>0 and
v,v′ ∈P ). A coneP is called blunt (resp., blunt convex) if the origin 0 of the vector space V does not belong
to P (resp., and P ∪ {0} is a convex cone). We say that a cone P is proper if P ∩ (−P ) ⊆ {0}. Since all the
cones we will consider are going to be blunt, we shall usually omit to mention it. Moreover, we say that P
is closed (resp., open, a neighborhood) if the intersection P ∩S(V ) is a closed subset (resp., an open subset,
a neighborhood) in the unit sphere S(V ) of V , where S(V ) is endowed of the subspace topology. Finally,
we say that a subset P of a vector bundle E over a smooth manifold M is conic if P ∩Ep is a cone of Ep for
all p ∈M. The other properties of a cone also apply to a conic subspace, and they mean that the involved
condition holds over all the points p ∈M.

4.3.4. Let f : M → N be a C∞ map between smooth manifolds, and F a vector bundle over N . Define the
normal bundle

Nf =
{
(q,λ) ∈ T ∗N : such that q = f (p) and λ

(
Im(dfp)

)
= 0

}
.

Given a closed conic subspace P ⊆ T ∗N satisfying that P ∩Nf = ∅, define the vector spaceD ′(N,F) formed
by the distributions u ∈ D ′(N,F) whose wave front set WF(u) ⊆ P . This is indeed a vector space (even a
C∞(N )-module), because WF(gu + v) ⊆ WF(u) ∪WF(v) for any pair of F-valued distributions u and v on
N and any g ∈ C∞(N ) (see [107], Thm. 2.31). If (V ,ψ) is a chart of N , we denote by τ∗ψ the corresponding

trivialization of T ∗N . Then, given (V ,ψ) a chart of N , m ∈N0, g ∈ C∞c (RdimN ) whose support is included in
ψ(V ), and C a closed cone in RdimN such that τ∗ψ(P )∩ (supp(g)×C) = ∅, set

pm(V ,ψ),g,C(u) = sup
y∈C
|y|m

∣∣∣g(τ∗ψ)∧(u|V )
∧

(y)
∣∣∣,

where the hat indicates the Fourier transform, and we are using the notation of Proposition 4.1.7 (see [55],
Def. 8.2.2, or [107], (2.41)). This defines a family of seminorms {pm(V ,ψ),g,C} in D ′P (N,F), which, together
with the usual seminorms given as the restriction to the latter space of the family of seminorms ofD ′(N,F)
defining the strong topology, endow D ′P (N,F) with a locally convex structure that is finer than the usual
subspace topology of its inclusion inside ofD ′(N,F). This is called the normal topology ofD ′P (N,F) in [15],
in contrast with the Hörmander topology of D ′P (N,F), which is given by replacing the family of seminorms
of D ′(N,F) defining the strong topology by those of the weak? topology. We recall that D ′P (N,F) is se-
quentially complete for the Hörmander topology (see [107], Thm. 2.51, for a proof where the manifold N
is an open subset of the Euclidean space. The general case follows in the same fashion), and the subspace
formed by F-valued smooth distributions is sequentially dense in D ′P (N,F) (see [55], Thm. 8.2.3, for the
case where N is an open subset of the Euclidean space. The general case is a direct consequence). It is even
nuclear and quasi-complete (see [15], Prop. 14 and Prop. 29). On the other hand, D ′P (N,F) is nuclear and
complete for the normal topology (see [15], Prop. 12 and Cor. 25).
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4.3.5 Theorem. Let f :M→N be a C∞ map between smooth manifolds, F a vector bundle over N , and P ⊆ T ∗N
be a closed conic subset satisfying that P ∩Nf = ∅. Then, there exists a unique sequentially continuous linear map

f ∗ :D ′P (N,F)→D ′df ∗(P )(M,f
∗F) (4.3.2)

for the Hörmander topologies, called the pull-back, extending the usual pull-back of smooth sections given by
σ 7→ σ ◦ f , and we remark that df ∗(P ) is the closed conic subset of T ∗M defined as the direct image of P under
df ∗ : T ∗N → T ∗M, the dual of the differential df : TM→ TN . The previous pull-back is even continuous for the
normal topologies.

For a proof of the first part in the case of distributions on the Euclidean space see [55], Thm. 8.2.4.
The construction of this map in the case of general manifolds is explained in detail in [107], Thm. 2.150,
to which we refer. For the proof of the last statement in the case of distributions on the Euclidean space
see [16], Prop. 5.1, whereas the case for general manifolds follows from a standard argument. We remark
that, if f is an isomorphism of smooth manifolds, and we also denote by f the morphism f ∗F→ F of vector
bundles, f ∗ coincides with f ∧ given in (4.1.2).

4.3.6. More generally, define the subspaceD ′(N,F)⊥f ofD ′(N,F) formed by the distributions u satisfying
that WF(u)∩Nf = ∅. It is a C∞(N )-submodule of D ′(N,F) by the same arguments as those given in 4.3.4
forD ′P (N,F). Then, Theorem 4.3.5 tells us that there exists a unique linear map

f ∗ :D ′(N,F)⊥f →D ′(M,f ∗F) (4.3.3)

extending the pull-back of smooth sections and satisfying a particular continuity condition. Furthermore,
Theorem 4.3.5 also says that

WF(f ∗u) ⊆ df ∗WF(u). (4.3.4)

The very definition of the pull-back of F-valued distributions on manifolds and the uniqueness of the
pull-back of distributions on the Euclidean space under the sequential continuity condition imply that
(f ◦ g)∗(u) = g∗ ◦ f ∗(u), for any C∞ maps f : M → N and g : N ′ → M, and any u ∈ (f ∗)−1(D ′(M,f ∗F)⊥g )∩
D ′(N,F)⊥f ◦g .

4.3.7 Fact. Let u be an E-valued distribution on a manifold M and t : E → E an isomorphism of the bundle E
over the smooth isomorphism f : M → M such that t∧(u) = u. Then, WF(u) is invariant under f as well, i.e.
df ∗WF(u) = WF(u). In particular, if u ∈D ′sym,m(M,E) is a symmetric E-valued distribution on M, then WF(u)
is invariant under the action of Sm.

This is an immediate consequence of (4.3.4).

4.3.8. We will also consider another definition of pull-back on the space of regular distributions. More
precisely, let f :M→N be a C∞ map between smooth manifolds, and F a vector bundle over N , as before.
Then, there exists a linear map

f ∗ :D ′reg(N,F)→D ′reg(M,f ∗F) (4.3.5)

sending a regular distribution induced by the continuous section σ ′ ∈ Γ 0(F) to the regular distribution
induced by the continuous section σ ′ ◦ f ∈ Γ 0(f ∗F). This is the usual pull-back of continuous maps, and, in
particular, no wave front set condition is involved.

4.3.9. We claim that the maps (4.3.3) and (4.3.5) coincide on the intersection of their domains, as stated in
the next result. This seems not to have been observed before, but we surmise that the experts should be fully
aware of it. The proof is essentially an adaptation of that of [55], Thm. 8.2.4. An interesting consequence
of the theorem is that the notation f ∗ for the pull-back of distributions satisfying the Hörmander wave
front set condition and that for the usual pull-back of regular distributions induced by that of functions
are compatible, which is an essential ingredient for the construction of a Feynman measure associated with
a continuous local propagator of cut type in Section 7.2.
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4.3.10 Theorem. Let f : M → N be a C∞ map between smooth manifolds of dimension n and m, respectively,
and F a vector bundle over N . Given u ∈ D ′(N,F)⊥f ∩D ′reg(N,F), then the image of u under (4.3.3) coincides
with the image of u under (4.3.5).

Proof. In order to distinguish (4.3.3) and (4.3.5) in this proof, we shall still denote the former by f ∗, whereas
the second will be denoted by f ? . We first note that, by construction of f ∗, f ∗(u) = f ?(u) if u is smooth.

Suppose that u is the regular distribution induced by the continuous section σ ′ ∈ Γ 0(F), and define the
closed conic subset P = WF(u) of T ∗N . Consider an open covering {Vb}b∈B of N by charts (Vb,ψb) that also
trivialize the vector bundle F by means of the trivialization τb, and an open covering {Ua}a∈A ofM by charts
(Ua,φa) satisfying that for any a ∈ A there is an index ba ∈ B such that f (Ua) ⊆ Vba . We shall denote the
trivialization of f ∗F over Ua by ζa. By [107], Thm. 2.144, we have that

ζ∧a (f ∗u|Ua ) = (ψba ◦ f ◦φ
−1
a )∗

(
τ∧ba(u|Vba )

)
,

for all a ∈ A, whereas Fact 4.1.9 yields that

ζ∧a (f ?u|Ua ) = (ψba ◦ f ◦φ
−1
a )?

(
τ∧ba(u|Vba )

)
,

for all a ∈ A. Since any distribution –in particular f ∗u or f ?u– is determined by its restrictions to any open
covering by Proposition 4.1.7, it suffices to prove the theorem for the case thatM andN are open subsets of
Euclidean spacesRn andRm, respectively. We suppose that the rank of F is r ∈N. We may thus assume that
we are in the same situation as [55], Thm. 8.2.4. In particular, we will consider that P = WF(u) is a closed
conic subspace N × (Rm \ {0}). We recall D ′P (N,F) is the subspace of D ′(N,F) formed by the distributions
v satisfying that WF(v) ⊆ P , and it has a natural locally convex topology given by a family of seminorms in
4.3.4. By [55], Thm. 8.2.3, there is a sequence {uj }j∈N ∈ Γc(N,F) = C∞c (N )r such that uj → u inD ′P (N,F). We
now follow and tailor the proof of [55], Thm. 8.2.4 (see also [107], Thm. 2.61) to suit our requirements.

Consider any point p0 ∈ M, and set q0 = f (p0) ∈ N . Choose a closed conic neighborhood C of Pq0
in

R
m \ {0} such that f ′(p0)(η) , 0 for all η ∈ C; a compact neighborhood F of q0 such that Pq ⊆ C for all q ∈ F;

and a compact neighborhood G of p0 such that f (G) is included in the interior F◦ of F and f ′(p)(η) , 0 for
all p ∈ G and η ∈ C. Take any function φ ∈ C∞c (N ) such that φ|f (G) ≡ 1 and supp(φ) ⊆ F. In the proof of the
mentioned theorem, Hörmander shows that

f ∗(uj )(ξ) =
1

(2π)m

∫
R
m
φ̂uj (η)Iξ (η)dη (4.3.6)

converges for all ξ ∈ C∞c (G◦), where

Iξ (η) =
∫
R
n
ξ(x)ei〈f (x),η〉dx, and φ̂uj (η) =

∫
R
m
φ(y)uj (y)e−i〈y,η〉dy,

and 〈 ,〉 denotes the Euclidean scalar product of Rm. As a consequence, the Banach-Steinhaus theorem
implies that the limit of (4.3.6) defines a distribution in D ′(G◦, f ∗F|G◦ ). We recall that the distributions
(4.3.6) coincide on each of the intersections G◦` ∩G

◦
`′ , where {G`}`∈N is a covering M by such sets, because

given any two such sets G` and G`′ the sequence {f ∗(uj )(ξ)}j∈N in (4.3.6) is independent of G` or G`′ , for all
ξ ∈ C∞c (G◦` )∩C∞c (G◦`′ ). The element inD ′(M,f ∗F) obtained from them is by definition f ∗u.

It thus suffices to prove that (4.3.6) also converges to f ?u|G◦ inD ′(G◦, f ∗F|G◦ ). We first claim that

f ?(u)(ξ) =
1

(2π)m

∫
R
m
φ̂u(η)Iξ (η)dη, (4.3.7)

for all ξ ∈ C∞c (G◦), and we remark that we are assuming the same notation and hypotheses as for (4.3.6).
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Indeed,

1
(2π)m

∫
R
m
φ̂u(η)Iξ (η)dη =

1
(2π)m

∫
R
m

∫
R
m

∫
R
n
φ(y)u(y)e−i〈y,η〉ξ(x)ei〈f (x),η〉dxdydη

=
∫
R
n
ξ(x)

1
(2π)m

∫
R
m

∫
R
m
φ(y)u(y)e−i〈(y−f (x)),η〉dηdydx

=
∫
R
n
ξ(x)φ(f (x))u(f (x))dx =

∫
R
n
ξ(x)u(f (x))dx = f ?(u)(ξ),

where we have used Fubini’s theorem, the reciprocity relation

φ(y′)u(y′) =
1

(2π)m

∫
R
m

∫
R
m
φ(y)u(y)e−i〈(y−y

′),η〉dηdy

for the Fourier transform in the space of tempered distributions (because φu is a distribution of compact
support), and the fact that φ(f (x)) = 1 for all x ∈ G. This proves (4.3.7).

We will now prove that the sequence (4.3.6) converges to (4.3.7). As noted in [55], Eq. (8.2.6), we have∣∣∣Iξ (η)
∣∣∣ ≤ Ch,ξ(1 + |η|

)−h
, (4.3.8)

for all h ∈N and η ∈ C, where Ch,ξ > 0 is a constant depending on h and ξ, but not on η ∈ C.

On the other hand, the definition of the convergence uj → u inD ′P (N,F) implies that∣∣∣φ̂uj (η)− φ̂u(η)
∣∣∣ ≤ C′h(1 + |η|

)−h
, (4.3.9)

for all h ∈N and η < C, where C′h > 0 is a constant depending on h, but not on η < C.

By the Banach-Steinhaus theorem, there is a constant C > 0 and a positive integer h′ ∈N such that∣∣∣φ̂uj (η)
∣∣∣ =

∣∣∣uj (φe−i〈η,(−)〉)
∣∣∣ ≤ C sup

|α| ≤ h′
y ∈ supp(φ)

∣∣∣∂αφ(y)e−i〈η,y〉
∣∣∣ ≤ C′(1 + |η|

)h′
, (4.3.10)

for all η ∈Rm and all j ∈N, where C′ > 0 is a new constant, also independent of η and j. By definition of u,
we have that ∣∣∣φ̂u(η)

∣∣∣ ≤ C′′ ,
for all η ∈ Rm and where C′′ is a constant independent of η, since it is an integral of a uniformly bounded
(with respect to η) continuous function over a compact set. We combine the two previous inequalities to
get ∣∣∣φ̂uj (η)− φ̂u(η)

∣∣∣ ≤ C̄(
1 + |η|

)h′
, (4.3.11)

for all η ∈Rm, where C̄ > 0 is a constant independent of η, and h′ ∈N was given in (4.3.10).

By (4.3.7), we have

f ?(u)(ξ) =
1

(2π)m

∫
C
φ̂u(η)Iξ (η)dη +

1
(2π)m

∫
R
m\C

φ̂u(η)Iξ (η)dη. (4.3.12)

The dominated convergence theorem together with (4.3.8), (4.3.9), (4.3.10) and (4.3.11) imply that the
sequence (4.3.6) converges to (4.3.12), and the proposition follows. �

4.3.11 Theorem. Let M and N be two manifolds, E and F be two vector bundles over M and N , respectively, and
P ⊆ T ∗M and P ′ ⊆ T ∗N be two closed conic subspaces satisfying that 0 < Pp for all p ∈ M and 0 < P ′p′ for all
p′ ∈N . Define P ′′ ⊆ T ∗(M ×N ) ' T ∗M × T ∗N by

P ′′ = (P ×P ′)∪
(
P × (N × {0})

)
∪

(
(M × {0})×P ′

)
,
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where we regard (M × {0}) inside of T ∗M, and the same for (N × {0}). Then, P ′′ is a closed conic subspace of
T ∗(M ×N ) and the external tensor product map (4.2.1) restricts to a sequentially continuous bilinear map

D ′P (M,E)×D ′P ′ (N,F)→D ′P ′′ (M ×N,E �F) (4.3.13)

for the Hörmander topologies. Moreover, the previous bilinear map is hypocontinuous for the normal topologies.

For a proof of the first part, see [24], Thm. 8.2.4 and Rk. 8.2.5. For a proof of the last part in the case of
open sets of Euclidean spaces, see [16], Thm. 4.6. The general case follows from the same argument.

4.4 Push-forwards of Vol(M)-valued distributions

4.4.1. Let f :M→ N be a C∞ map between smooth manifolds. Assume further that f is proper, i.e. f −1(K)
is compact for all compact subsets K ⊆ N . That is equivalent to the fact that the pull-back f ∗ : C∞(N )→
C∞(M) restricts to a map C∞c (N )→ C∞c (M) (see [55], Thm. 6.1.1). One defines the push-forward map as the
continuous dual f∗ : C∞c (M)′→ C∞c (N )′ of the previous mapping. In terms of distributions, this is precisely
a continuous map f∗ :D ′(M,Vol(M))→D ′(N,Vol(N )).

4.4.2 Theorem. Let M and N be two manifolds and f :M→N be a proper smooth map. Given any closed conic
subspace P ⊆ T ∗M satisfying that 0 < Pp for all p ∈M, define P ′ as

P ′ =
(
T ∗N \

{
(p′ ,0) : p′ ∈N

})
∩ (df ∗)−1

(
P ∪

{
(p,0) : p ∈M

})
=

{
(p′ ,w) ∈ T ∗N : such that there exists p ∈M satisfying that p′ = f (p) and (p,w ◦ dfp) ∈ Pp ∪ {0}

}
.

Then, P ′ is a closed conic subspace of T ∗N , and the push-forward f∗ :D ′(M,Vol(M))→D ′(N,Vol(N )) restricts
to sequentially continuous linear map fromD ′P (M,Vol(M)) toD ′P ′ (N,Vol(N )).

For a proof of the first statement, see [24], Thm. 8.3.5.

4.4.3. As a consequence, if u ∈D ′(M,Vol(M)) is a Vol(M)-valued distribution, then

WF(f∗(u)) ⊆
{
(p′ ,w) : ∃p ∈ supp(u) such that f (p) = p′ and either df ∗p (w) = 0 or (p,df ∗p (w)) ∈WF(u)

}
.

(4.4.1)

For a direct proof of the previous inclusion, see [40], Prop. 11.3.3.

4.5 Internal product

4.5.1. We refer the reader to [80] for a nice discussion of the different definitions of (internal) products of
distributions and their relations. Given distributions u1, . . . ,um with values in vector bundles E1, . . . , Em
overM, resp., we say that they satisfy the Hörmander wave front set condition if for every point p ∈M and any
subset {j1 < · · · < j`} ⊆ {1, . . . ,m}, the space WFp(uj1 ) + · · ·+ WFp(uj` ) ⊆ T

∗
pM does not include the null vector.

In this case, we will also say that the product u1 . . .um is defined in the sense of Hörmander.6 It is given by the
pull-back (4.3.3) of u1 � · · ·� um under the diagonal map diagm :M →Mm. The Hörmander wave front set
condition implies that u1 � · · ·�um is in the domain of diag∗m, so the distribution u1 . . .um = diag∗m(u1 � · · ·�
um) ∈D ′(M,E1⊗· · ·⊗Em) exists. This product is clearly distributive and commutative, where the last means
that if ς ∈ Sm and we denote by ς̄ : E1⊗· · ·⊗Em→ Eς−1(1)⊗· · ·⊗Eς−1(m) the naturally associated morphism of

6We remark that we want our definition of product of distributions to imply associativity. This is a condition usually discarded
in the theory of distributions, for already some basic examples are not associative, e.g. 0 = (δ.x).vp(1/x) , δ.(x.vp(1/x)) = δ for
distributions on R (see [46], 1.1.1, (i)). This also shows that unfortunately the associativity property stated in [89], Thm. IX.43, (c),
cannot hold.
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vector bundles, then ς̄∗(uς−1(1) . . .uς−1(m)) = u1 . . .um. Moreover, using the functoriality of the pull-back and
the fact that it commutes with direct products, we conclude that, if the product u1 . . .um is defined, then
the product of the distributions of any subset of {u1, . . . ,um} is also defined, and they are all associative: the
Cm−1 possible ways of fully parenthesizing the string u1 . . .um of m symbols via m − 1 applications of the
binary product are defined and they coincide. We recall that these ways of parenthesizing are parametrized
by binary rooted trees with m leaves, and that Cm indicates the m-th Catalan number.

4.5.2. By, Theorem 4.3.11 (see also [55], Thm. 8.2.9), given u ∈D ′(M,E) and v ∈D ′(M,F), the wave front
set of their external product u � v satisfies that

WF(u � v) ⊆
((

supp(u)× {0}
)
×WF(v)

)
∪

(
WF(u)×WF(v)

)
∪

(
WF(u)×

(
supp(v)× {0}

))
. (4.5.1)

This last inclusion together with WF(f ∗u) ⊆ df ∗WF(u) applied to the diagonal map imply that, if the prod-
uct of u and v is defined, then

WFp(uv) ⊆WFp(u)∪
(
WFp(u) + WFp(v)

)
∪WFp(v), (4.5.2)

for all p ∈ M (see [55], Thm. 8.2.10). In particular, if P ⊆ T ∗M is a closed conic subspace satisfying that
(P +P )∩ (M × {0}) = ∅, then Theorems 4.3.5 and 4.3.11 tells us that the internal product map

D ′P (M,E)×D ′P (M,F)→D ′P (M,E ⊗F) (4.5.3)

sending (u,v) to uv is a hypocontinuous bilinear map for the normal topologies, as the composition of a
hypocontinuous bilinear map and a continuous map is hypocontinuous (see for instance [16], Lemma 5.6).

4.5.3. We will also consider the product of regular distributions u1, . . . ,um with values in vector bundles E1,
. . . , Em over M, resp. It is also defined as the pull-back (4.3.5) of external tensor product u1� · · ·�um under
the diagonal map diagm : M → Mm. Since u1 � · · ·� um is a regular distribution with values in the vector
bundle E1 � · · ·�Em, the pull-back (4.3.5) exists. The product will also be denoted by u1 . . .um. Taking into
account that the external tensor products of sections of vector bundles is distributive and associative, the
same holds for the product of regular distributions. It is also commutative in the sense explained in the
two previous paragraphs. The compatibility of this definition of product of distributions with the previous
one in the case that a tuple of regular distributions u1, . . . ,um also satisfies the Hörmander wave front set
condition is a consequence of Theorem 4.3.10.

4.5.4. We will also need the following result concerning the wave front of the usual product of regular
distributions. It is similar to the results obtained in the work of D. Iagolnitzer for analytic wave front sets
(see [59]). In order to do so, given two closed conic sets P and P ′ of a vector bundle E of rank m over M,
define P +̂iP ′ as the conic set of E such that, for any p ∈M, (P +̂iP ′)∩Ep is{

v ∈ Ep \ {0} : there exist a trivialization (U,τ) of E with (U,φ) a chart of M

around p and sequences (pj ,vj ) ∈ (EU ∩P )N, (qj ,wj ) ∈ (EU ∩P ′)N

such that (pj ,qj )→ (p,p) and (π2 ◦ τ)(vj ) + (π2 ◦ τ)(wj )→ v
}
,

(4.5.4)

where EU = tq∈UEq, and π2 : U × km→ km is the canonical projection. We note that by definition P +̂iP ′ is
a closed conic subset of E, and WF(u) ⊆WF(u)+̂i WF(v) (and the same for v).

4.5.5 Fact. The previous definition of P +̂iP ′ depends on P and P ′ only locally, i.e. for any p ∈M, any open set
V including p, and any pair closed conic subsets Q and Q′ such that Pq = Qq and P ′q = Q′q for all q ∈ V , then
(P +̂iP ′)p = (Q+̂iQ′)p.

This follows immediately from the definition.
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4.5.6 Theorem. Let u1,u2 ∈D ′lbc(M,Vol(M)) be two Vol(M)-valued distributions over a manifold of dimension
n, that are represented by functions f1, f2 : M → k that are locally bounded and continuous except for a set
of measure zero, respectively. Then, the wave front set of the Vol(M)-valued distribution u1u2 induced by the
function f1.f2 :M→ k satisfies that

WF(u1u2) ⊆WF(u1)+̂i WF(u2). (4.5.5)

This result (and the proof) is essentially an adaptation of the one given by N. V. Dang in [27], Thm. 3.1,
which is in turn based on a proof of G. Eskin in [36], Thm. 14.3 (see also [26], 4.2.2).

Proof. It suffices to prove (4.5.5) at every point p ∈ M. Since the wave front set of u1, u2 and u1u2 is
determined locally, without loss of generality and by multiplying by a smooth function φ ∈ C∞c (M) such
that φ(p) , 0, we may assume that u1 and u2 are Schwartz distributions on Rn represented by continuous
functions f1 and f2 onM =Rn of compact support, respectively. From now on, we assume thatM =Rn, and
we identify the distributions of compact support u1 and u2 with f1 and f2, resp., to reduce our notation.

Consider (p,w) ∈ ({p} × (Rn)∗) \ (WF(u1)+̂i WF(u2)). We recall that WF(u1) and WF(u2) are now regarded
as conic subsets ofRn×(Rn)∗ (with respect to the second variable). We have to prove that (p,w) <WFp(u1u2).
By definition of wave front set, this is tantamount to prove that there exists an open cone C ⊆ (Rn)∗ and a
function ψ ∈ C∞c (Rn) such that ψ(p) , 0, w ∈ C, and for all j ∈N we have that

sup
w′∈C

∣∣∣ψu1u2

∧
(w′)

∣∣∣(1 + |w′ |
)j
<∞, (4.5.6)

where |w′ | denotes the Euclidean norm of w′ . The proof of this theorem is separated in several steps. Notice
first that we may further assume without loss of generality that w ∈ S((Rn)∗), where S((Rn)∗) denotes the
unit sphere of (Rn)∗ for the Euclidean norm. We will now prove the next result.

4.5.7 Lemma. Let u1,u2 be two Schwartz distributions of compact support defined on Rn, p ∈ Rn a fixed point,
and (p,w) ∈ {p}×S((Rn)∗)\ (WF(u1)+̂i WF(u2)), where S((Rn)∗) denotes the unit sphere of (Rn)∗ for the Euclidean
norm. Then, there exists a closed conic neighborhood W ⊆ (Rn)∗ of w and an open set V ⊆ Rn with p ∈ V such
that for all h ∈ C∞c (V ) we have that((

Σ(hu1)∪ {0}
)

+
(
Σ(hu2)∪ {0}

))
∩W = ∅, (4.5.7)

where Σ(u) ⊆ (Rn)∗ denotes the frequency set of a distribution u (see [40], Def. 11.1.2).

Proof. Suppose (4.5.7) is not true. We will show it produces an absurd. Indeed, if (4.5.7) does not hold,
then, for any closed conic neighborhoods W ⊆ (Rn)∗ of w and any open neighborhood V ⊆ Rn of p, there is
h ∈ C∞c (V ) and there are elements w′ ∈ Σ(hu1)∪{0} and w′′ ∈ Σ(hu2)∪{0} such that w′+w′′ ∈W . Since P +̂iP ′
is a closed conic set and w < π2((WF(u1)+̂i WF(u2)) ∩ ({p} × (Rn)∗)), there is a closed conic neighborhood
W0 ⊆ (Rn)∗ of w such that W0 ∩π2((WF(u1)+̂i WF(u2))∩ ({p} × (Rn)∗)) = ∅, where π2 : Rn × (Rn)∗ → (Rn)∗ is
the canonical projection. For every j ∈N, take Wj ⊆ (Rn)∗ a closed conic neighborhood of w included in W0
such that Wj ∩S((Rn)∗) has diameter less than or equal to 1/j. Furthermore, take Vj equal to the ball of Rn

centered at p of radius 1/j. By hypothesis, there exist hj ∈ C∞c (Vj ), w′j ∈ Σ(hju1)∪ {0} and w′′j ∈ Σ(hju2)∪ {0}
such that w′j +w′′j ∈Wj ⊆W0. As Wj does not include the zero element, w′j and w′′j are not both zero.

If there exists a subsequence of (w′j ,w
′′
j ) such that one of the components always vanishes (say the second

one), then we may assume we have a subsequence of the form (w′j ,0), where w′j , 0 for all j ∈ J ⊆N, where
J is an infinite subset of N. By [55], Prop. 8.1.3 and (8.1.9),

Σ(hju1) = π2

(
WF(hju1)

)
⊆ π2

(
WF(u1)

)
, (4.5.8)

where π2 : Rn × (Rn)∗ → (Rn)∗ denotes the canonical projection. As a consequence, there is pj ∈ Vj such
that (pj ,w′j ) ∈WF(u1)∩ (Vj ×Wj ) for all j ∈ J ⊆N. Then, the sequence (pj ,w′j / |w

′
j |)j∈J satisfies that w′j / |w

′
j | ∈
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Wj ∩ S((Rn)∗), so the compactness of S((Rn)∗) tells us that by taking a subsequent (pj ,w′j / |w
′
j |)j∈J ′ , where

J ′ ⊆ J is an infinite subset, (pj ,w′j / |w
′
j |)j∈J ′ is convergent. By construction (pj ,w′j / |w

′
j |)j∈J ′ ∈WF(u1)J

′
and it

converges to (p,w), which implies that (p,w) ∈WF(u1), for the latter is a closed conic set. However, since
WF(u1) ⊆WF(u1)+̂i WF(u2), we conclude that (p,w) ∈WF(u1)+̂i WF(u2), which is absurd.

It remains to consider the case that for both w′j and w′′j are different from zero for all but a finite number
of indices j ∈ N. There exists thus an infinite subset J ⊆ N such that w′j and w′′j are different zero for all
j ∈ J . Using again (4.5.8), there exist p′j ,p

′′
j ∈ Vj such that (p′j ,w

′
j ) ∈WF(u1)∩(Vj×Wj ) and (p′′j ,w

′′
j ) ∈WF(u2)∩

(Vj ×Wj ) for all j ∈ J . Consider the sequences (p′j ,w
′
j / |w

′
j +w′′j |) ∈WF(u1)∩ (Vj ×Wj ) and (p′′j ,w

′′
j / |w

′
j +w′′j |) ∈

WF(u2)∩ (Vj ×Wj ) for all j ∈ J . Since w̃j = w′j / |w
′
j +w′′j |+w

′′
j / |w

′
j +w′′j | ∈ S((Rn)∗), there is an infinite subset

J ′ ⊆ J such that w̃j converges. By construction w̃j converges to w, and p′j and p′′j converge to p. Moreover, by
definition of WF(u1)+̂i WF(u2) we conclude that (p,w) ∈WF(u1)+̂i WF(u2), which contradicts the hypothesis
of the lemma. �

By Lemma 4.5.7, there is a closed conic neighborhood W of w and a smooth function h of compact
support such that h(p) , 0 satisfying that((

Σ(hu1) +Σ(hu2)
)
∪Σ(hu1)∪Σ(hu2)

)
∩W =

((
Σ(hu1)∪ {0}

)
+
(
Σ(hu2)∪ {0}

))
∩W = ∅. (4.5.9)

Note that the set intersecting W in the first member of the previous expression is a closed cone, for it is
the union of three closed conic sets. Indeed, Σ(hu1) and Σ(hu2) are closed conic sets by definition, whereas
Σ(hu1)+Σ(hu2) is a closed conic set, because its intersection with S((Rn)∗) is the image under the continuous
map S((Rn)∗) × S((Rn)∗)→ S((Rn)∗) defined as (w′ ,w′′) 7→ (w′ +w′′)/ |w′ +w′′ | of the compact set (Σ(hu1)∩
S((Rn)∗))×(Σ(hu2)∩S((Rn)∗)). Pick nonzero homogeneous functions h1,h2 on (Rn)∗ of degree zero satisfying
that h1(w),h2(w) ∈ [0,1] for all w ∈ (Rn)∗, h1|(Rn)∗\{0},h2|(Rn)∗\{0} ∈ C∞((Rn)∗ \{0}), h1(w) = 1 for all w in a conic
neighborhood of Σ(hu1), h2(w) = 1 for all w in a conic neighborhood of Σ(hu2), and (supp(h1) + supp(h2))∩
W = ∅. Since 0 ∈ supp(hj ) for j = 1,2, we also see that supp(hj )∩W = ∅, for j = 1,2.

Hence, the absolute convergent integral defining the Fourier transform of h2u1u2 can be decomposed as

h2u1u2

∧

(w′) = (ĥu1 ∗ ĥu2)(w′) = I1(w′) + I2(w′) + I3(w′) + I4(w′),

where w′ ∈ (Rn)∗, and

I1(w′) =
∫

(Rn)∗
h1(w′ −w′′)ĥu1(w′ −w′′)h2(w′′)ĥu2(w′′)dw′′ ,

I2(w′) =
∫

(Rn)∗

(
1− h1(w′ −w′′)

)
ĥu1(w′ −w′′)h2(w′′)ĥu2(w′′)dw′′ ,

I3(w′) =
∫

(Rn)∗

(
1− h2(w′ −w′′)

)
ĥu2(w′ −w′′)h1(w′′)ĥu1(w′′)dw′′ ,

I4(w′) =
∫

(Rn)∗

(
1− h1(w′ −w′′)

)
ĥu1(w′ −w′′)

(
1− h2(w′′)

)
ĥu2(w′′)dw′′ .

The condition (supp(h1) + supp(h2))∩W = ∅ implies that I1(w′) = 0 for all w′ ∈W . Furthermore, since hu1

and hu2 are bounded of compact support, their Fourier transforms ĥu1 and ĥu2 satisfy that

sup
w′∈(Rn)∗

∣∣∣ĥuj (w′)∣∣∣ < Cj , (4.5.10)

for j = 1,2 and some C1,C2 > 0. The fact that supp(1− hj )∩Σ(huj ) = ∅ for all j = 1,2, tells us that

sup
w′∈(Rn)∗

(
1− hj (w′)

)∣∣∣ĥuj (w′)∣∣∣(1 + |w′ |
)m
< C′m,j , (4.5.11)
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for all m ∈N0 and j = 1,2, and some C′m,1,C
′
m,2 > 0.

Let g1 be the nowhere vanishing continuous function (w′ ,w′′) 7→ |w′ −w′′ |, where w′ ∈W ∩S((Rn)∗) and
w′′ ∈ supp(h1) ∪ supp(h2); and let g2 be the nowhere vanishing continuous function (w′ ,w′′) 7→ |w′ −w′′ |,
where w′ ∈W and w′′ ∈ (supp(h1)∪ supp(h2))∩S((Rn)∗. An easy argument taking a compact neighborhood
of (W ∩S((Rn)∗))× ((supp(h1)∪supp(h2))∩S((Rn)∗)) implies that each function gj has a minimum dj > 0 for
j = 1,2. Set d > 0 as the minimum of d1 and d2. This implies that

|w′ −w′′ | ≥ d|w′ | and |w′ −w′′ | ≥ d|w′′ |, (4.5.12)

for all w′ ∈W and w′′ ∈ supp(h1)∪ supp(h2). Hence, for j = 1,2 and w′ ∈W we have(
1 + |w′ |

)m∣∣∣I1+j (w
′)
∣∣∣ ≤ C′2m,jC3−j

∫
(Rn)∗

(
1 + |w′ |

)m(
1 + |w′ −w′′ |

)2m dw
′′ ≤ C′2m,jC3−j

∫
(Rn)∗

(
1 + |w′ |

)m(
1 + d|w′ |

)m(
1 + d|w′′ |

)m dw′′
≤ C′2m,jC3−jC

∫
(Rn)∗

1(
1 + d|w′′ |

)m dw′′ ,
(4.5.13)

where m ∈ N0, we have used (4.5.12) in the second inequality, and that w′′ 7→ (1 + |w′′ |)/(1 + d|w′′ |) is a
bounded function on (Rn)∗ by a constant C > 0. The last integral in (4.5.13) converges if m > n/2. As a
consequence,

sup
w′∈W

(
1 + |w′ |

)m∣∣∣Ij (w′)∣∣∣ <∞,
for j = 2,3 and all m ∈N0 such that m > n/2. Since the function w′ 7→ (1 + |w′ |)m/(1 + |w′ |)1+n/2 on (Rn)∗ is
bounded for m ≤ n/2, we conclude that

sup
w′∈W

(
1 + |w′ |

)m∣∣∣Ij (w′)∣∣∣ <∞,
for j = 2,3 and all m ∈N0.

Finally, (
1 + |w′ |

)m∣∣∣I4(w′)
∣∣∣ ≤ C′2m,1C′m,2 ∫

(Rn)∗

(
1 + |w′ |

)m(
1 + |w′ −w′′ |

)2m(
1 + |w′′ |

)m dw′′
≤ C′2m,1C

′
m,2

∫
(Rn)∗

1(
1 + |w′ −w′′ |

)m dw′′ ,
(4.5.14)

where we have used the inequality
1 + (a+ b)

(1 + a)(1 + b)
≤ 1

for all a,b ≥ 0 in the last step. The last integral in (4.5.14) converges for m > n/2. Hence,

sup
w′∈W

(
1 + |w′ |

)m∣∣∣I4(w′)
∣∣∣ <∞,

for all m > n/2. Taking into account that the function w′ 7→ (1 + |w′ |)m/(1 + |w′ |)1+n/2 on (Rn)∗ is bounded for
m ≤ n/2, we conclude that

sup
w′∈W

(
1 + |w′ |

)m∣∣∣I4(w′)
∣∣∣ <∞,

for all m ∈N0. As a consequence, for all m ∈N0 we have that

sup
w′∈W

(
1 + |w′ |

)m∣∣∣∣h2u1u2

∧

(w′)
∣∣∣∣ <∞,

which proves (4.5.6) for the open conic set C given by the interior of W and ψ = h2. The theorem is proved.
�
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4.5.8. Let M and N be two manifolds and f : M → N be a proper smooth map that is an embedding, i.e.
it is an immersion that is homeomorphic to the subspace of N given by its image. Consider u ∈ D ′(N )
and v ∈D ′(M,Vol(M)) such that WF(u)∩Nf = ∅, and the product of f ∗(u) and v is defined in the sense of
Hörmander (see 4.5.1). Then, an easy application of (4.4.1) tells us that the product of u and f∗(v) is defined
in the sense of Hörmander as well. Moreover, we have the identity

u.f∗(v) = f∗
(
f ∗(u).v

)
. (4.5.15)

Indeed, the previous identity trivially holds if u and v are smooth, since in that case the left member of
(4.5.15) sends g ∈ C∞(N ) to (u.f∗(v))(g) = f∗(v)(u.g) = v((u◦f ).(g◦f )), and the right member sends g ∈ C∞(N )
to f∗(f ∗(u).v)(g) = (f ∗(u).v)(g◦f ) = ((u◦f ).v)(g◦f ), which trivially coincides with the previous computation.
Finally, the identity (4.5.15) follows from the sequential continuity of the pull-back (see Theorem 4.3.5), of
the push-forward (see Theorem 4.4.2) and of the external product (see Theorem 4.3.11).

4.6 Boundary values of complex holomorphic functions as distributions

4.6.1. LetU ⊆RN be an open set. Let C̄ ⊆ S(RN ) ⊆RN be an open subset of the (N −1)-dimensional sphere,
and let C ⊆RN be an open convex cone given by

C = {y = (y1, . . . , yn) ∈RN : y = cŷ,0 < c < r, ȳ ∈ C̄}, (4.6.1)

for some r > 0. Consider the open subset

W =U +C
√
−1 ⊆CN ,

where
√
−1 denotes the imaginary unit. It is called the local tube of base U and profile C. Given z =

(z1, . . . , zN ) ∈ CN , we shall denote by Im(z) the vector (Im(z1), . . . , Im(zN )). Given a complex holomor-
phic function f : W → C

r , it defines a family of smooth functions on U of the form {fy : y ∈ C}, where
fy(x) = f (x+y

√
−1) for all x ∈U . We will regard fy as a regular distribution on U with values in Cr . Follow-

ing [71], we recall that f has a distributional boundary value on U from W if, for any closed cone C′ ⊆ C, the
limit of the net of distributions

lim
y→ 0
y ∈ C′

fy (4.6.2)

exists (for the strong topology). The limit distribution f0 will be called the distributional boundary value of
f , and it will be also denoted by bv(f ).

4.6.2 Theorem. Let U , C, W and f be as before. Then, given any bounded open subset U ′ such that Ū ′ ⊆U and
any closed cone C′ ⊆ C, the following conditions are equivalent:

(i) the net of distributions fy |U ′ in the space C∞c (U ′ ,Cr )′ , endowed with the weak? topology, converges to a
distribution f0 ∈ C∞c (U ′ ,Cr )′ , for y ∈ C′ and y→ 0;

(ii) there is ε > 0 such that the set of distributions {fy |U ′ }||y||∞<ε is a bounded set in the space C∞c (U ′ ,Cr )′ ,
endowed with the weak? topology, where ||y||∞ denotes the sup norm of y;

(iii) f is of moderate growth near the reals, i.e. there exist positive numbersD,ε > 0 and a nonnegative integer
m ∈N0 such that ∥∥∥f (x+ y

√
−1)

∥∥∥∞ ≤D ||y||−m∞ , (4.6.3)

for all x ∈U ′ and for all y ∈ C′ satisfying that ||y||∞ < ε.

Moreover, if m ∈N0 is the nonnegative integer in condition (iii), then the limit distribution f0 has order less than
or equal to m+ 1.
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This result is due to Martineau in [71], V.2.

Proof. For the equivalence between (i), (ii) and (iii), see [79], Thm. 2.2. The last statement can be found in
[55], Thm. 3.1.15. �

4.6.3.Remark. We want to stress first that, for any closed cone C′ ⊆ C, the net given in (4.6.2) converges for
the weak? topology C∞c (U,Cr )′ if and only if for any open bounded subset U ′ whose closure is included
in U the net fy |U ′ weakly? converges in C∞c (U ′ ,Cr )′ for y ∈ C′ and y → 0. This follows directly from the
definition of the weak? topology.

On the other hand, we remark that in the definition of boundary value of a holomorphic function we
may have equivalently imposed that the limit (4.6.2) is considered with respect to the weak? topology of the
space of distributionsC∞c (U,Cr )′ . Indeed, letC′ be a closed coneC′ ⊆ C and suppose that the net fy weakly?

converges for y ∈ C′ and y→ 0. By the previous theorem, there is some ε > 0 such that the set {fy}y∈C,||y||∞<s is
bounded for the weak? topology of C∞c (U,Cr )′ . Since C∞c (U,Cr ) is barreled, any bounded set for the weak?

topology is also bounded for the strong topology of C∞c (U,Cr )′ (see [95], IV.5.2). Furthermore, as C∞c (U,Cr )
is a Montel space (see [104], Prop. 34.4), [104], Prop. 34.6, tells us that any bounded net converges for the
weak? topology if and only if it converges for the strong topology. Hence, the net fy strongly converges for
y ∈ C′ and y→ 0, as claimed.

4.6.4 Proposition. Let U , C, W and f be as in the beginning of this section, and let

C∨ =
{
y′ ∈ (Rn)∗ \ {0} : y′(y) ≥ 0 for all y ∈ C

}
be the (blunt) dual cone of C. Then C∨ is a proper closed convex cone in (Rn)∗ and WF(bv(f )) ⊆U ×C∨.

For a proof, see [55], Thm. 8.1.6, and the comments after it.

4.6.5.Remark. The previous result characterizes the wave front set of a boundary value of a holomorphic
function (see also [55], Thm. 8.4.15, for the converse).

4.6.6. We shall now recall how to adapt the previous results to smooth manifolds, essentially following
[13], Appendix A. We note however that we are not going to make use of the following results in this book.
We first remark that given any smooth manifold M, it has a compatible structure of real analytic manifold
(see [111], Thm. 1). Furthermore, given two structures of real analytic manifolds on M that are compatible
with the smooth structure, then there is an analytic isomorphism between the two. Indeed, as indicated
by M. Hirsch in [48], Thm. 2.5.1, it follows from [44], Prop 8, that the space of analytic maps from a real
analytic manifold M to another real analytic manifold N is dense in the space of smooth maps from the
underlying smooth structure of M to that of N for the strong topology defined in [48], Chapter 2, Section
1. Moreover, the space of smooth isomorphisms from the underlying smooth structure of M to that of N is
also an open subset on the space of all smooth maps for the strong topology (see [48], Thm. 2.1.7). Hence,
ifM is a smooth manifold with two compatible real analytic structures that we denote byM ′ andM ′′ , then,
by the previous results there is an analytic morphism φ :M ′ →M ′′ such that the underlying map between
the smooth structures is an isomorphism. In particular, φ is bijective and regular (i.e. the differential is
everywhere invertible). Since a bijective regular analytic map between real analytic manifolds of the same
dimension is an analytic isomorphism by the Inverse mapping theorem for analytic functions, we conclude
that φ is an analytic isomorphism. This implies in particular that any smooth manifold has a compatible
analytic structure, that is unique up to analytic isomorphism.

4.6.7. Let M be any real N -dimensional analytic manifold, and let M
C

be a complexification of M, i.e. M
C

is a complex N -dimensional manifold provided with an isomorphism φ of real analytic manifolds from
M onto a real analytic submanifold of the underlying real analytic manifold of M

C
such that for every

point p ∈M
C

there is an open set U ⊆M
C

containing p and an biholomorphic isomorphism ψ from U to
an open subset V of CN such that ψ(φ(M) ∩U ) = V ∩RN . It is known that any real analytic manifold
M admits a complexification, and even though there is in general no uniqueness of complexication, there
is a local uniqueness result: given any two complexifications (M

C
,φ) and (M ′

C
,φ′) of M, there are open
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neighborhoods U and U ′ of φ(M) and of φ′(M) in (M
C
,φ) and (M ′

C
,φ′), respectively, and a biholomorphic

isomorphism φ′′ :U →U ′ such that φ′′ ◦φ = φ′ (see [112], Prop. 1). From now on we fix a complexification
M
C

of M and we identify M with the image of M under the isomorphism φ of real analytic manifolds from
M onto a real analytic submanifold of the underlying real analytic manifold of M

C
. We also recall that

TM stands for the tangent bundle of M. We will also use the following notation. If (U,φ) is an analytic
chart of M around p ∈ M, we pick (U

C
,φ

C
) a holomorphic chart of M

C
around p such that U

C
∩M = U

and φ
C
|U = φ. Moreover, if (TU,Tφ) is the canonical chart of TM induced by (U,φ), we will denote by

(TlocU,Tlocφ) the subchart where TlocU = Tφ−1(φ(U )×V ), for some open set V ⊆RN containing the origin,
and Tlocφ = Tφ|TlocU .

4.6.8 Definition. Let M be a real N -dimensional analytic manifold and let M
C

be a complexification of M as
before. An admissible local diffeomorphism around p ∈ M is a smooth isomorphism ψ : TlocU → U

C
, where

(U,φ) is an analytic chart around p and we regard the underlying structures of smooth manifolds of TlocU and
U
C

, satisfying that

(i) for all q ∈U , ψ(q,0) = q, where 0 denotes the origin of TqM;

(ii) for all (q,v) ∈ TqM such that (q, tv) ∈ TlocU for all 0 < t ≤ 1, the map t 7→ ψ(q, tv) is such that

d
dt
ψ(q, tv)|t=0 =

√
−1cv, (4.6.4)

for some c > 0.

4.6.9. It is clear that the previous definition is invariant under any change of analytic charts (TlocU,Tlocφ)→
(TlocU

′ ,Tlocφ
′) of TM induced by a change of analytic charts (U,φ)→ (U ′ ,φ′) of M, and and any change

of biholomorphic charts f : (U
C
,φ

C
)→ (U ′

C
,φ′

C
) restricting to a change of analytic charts (U,φ)→ (U ′ ,φ′).

On the other hand, a generalized local tube in CN is a subset of the form ψ(W ), where W ⊆ CN ' TRN is a
local tube and ψ is an admissible local diffeomorphism at the origin of RN .

4.6.10 Lemma. LetW ′ = ψ(U ×C) be a generalized local tube in CN , where C is the open convex cone determined
by C̄ according to (4.6.1), and let ȳ0 ∈ C̄. Then,

(i) there exist a neighborhood U0 × C̄0 of (0, ȳ0) in RN ×S(RN ) and r0 > 0 such that x + cȳ
√
−1 ∈W ′ , for all

x ∈U0, 0 < c < r0 and ȳ ∈ C̄0;

(ii) for every admissible local diffeomorphism ψ′ , there exist a neighborhood U ′0 × C̄
′
0 of (0, ȳ0) in RN ×S(RN )

such that ψ′(U ′0 × C̄
′
0) ⊆W ′ .

For a proof, see [13], Lemma A.1.

4.6.11 Definition. Assume the same hypotheses as in Definition 4.6.8. A profile above M is an open subset
C ⊆ TM of the form C = tp∈MCp, where Cp ⊆ TpM is a nonempty open (blunt) convex cone.

4.6.12. Given the tangent bundle TM over M, define SpM = (TpM \ {0})/R>0, for the obvious action of R>0,
and the sphere bundle SM = tp∈MSpM. There is a canonical map πS : TM \ 0M → SM, where 0M is the
image of the zero section M→ TM, given by the canonical projection (TpM \ {0})→ (TpM \ {0})/R>0, for all
p ∈M. It can be equivalently defined using a Riemannian metric on TM, and it has the structure of a fiber
bundle over M (see [11], Section 11). Given a profile C above M, let S(C) be the open subset of SM given
by πS (C). Let S(Cc) be the complement in SM of the closure of S(C). Note that S(Cc)∩SpM is included in
the complement in in SpM of the closure of S(C)∩SpM, for all p ∈M.

4.6.13 Definition. Assume the same hypotheses as in Definition 4.6.8. A subset T ⊆M
C

is called a tuboid with
profile C above M if for every p ∈ M there is an admissible local diffeomorphism ψ : TlocU → U

C
around p

satisfying that

(i) for any (q, v̄) ∈ S(C) there is a compact neighborhood K ⊆ S(C) such that ψ(π−1
S (K) ∩ T ′locU ) ⊆ T , where

T ′locU ⊆ TlocU is a sufficiently small neighborhood;
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(ii) for any (q, v̄) ∈ S(Cc) there is a compact neighborhood K ′ ⊆ S(Cc) such that ψ(π−1
S (K ′)∩ T ′′locU )∩ T = ∅,

where T ′′locU ⊆ TlocU is a sufficiently small neighborhood.

4.6.14. Since the previous definition only relies on that of admissible local diffeomorphism, the notion of
tuboid is independent of the changes of charts as those explained in 4.6.9. Moreover, in the previous defini-
tion one may equivalently state properties (i) and (ii) with respect to any admissible local diffeomorphism
(see [13], Prop. A.1). The importance of this result is to fix the possible admissible local diffeomorphisms
we are going to handle, as follows. Let U ⊆ RN be an open set and let U

C
= U +V

√
−1 ⊆ CN be a complex-

ification of U , where V ⊆ RN is an open subset containing the origin of RN . We say that a tuboid T in U
C

with profile C ⊆ TU above U is standardly described if for all p ∈ U , the conditions (i) and (ii) in Definition
4.6.13 are fulfilled for the admissible local diffeomorphism given by the restriction of ψ0 : TlocU → U

C

sending (p′ ,v) to p′ +
√
−1v. Let U,U ′ ⊆ RN be an open sets as before together with their corresponding

complexifications U
C

and U ′
C

, and let T and T ′ be two tuboids in U
C

and U ′
C

with profiles C ⊆ TU and
C′ ⊆ TU ′ above U and U ′ , respectively. Given a biholomorphic isomorphism f : U

C
→ U ′

C
restricting to

an analytic isomorphism from U onto U ′ , we say it induces an isomorphism of tuboids if f (T ) = T ′ and
Df |U (C) = C′ .

4.6.15. Assume the same hypotheses as in Definition 4.6.8. Let T ⊆M
C

be a tuboid with profile C above
M, and let f : T → C be a holomorphic function. Given any point p ∈M, choose an analytic chart (U,φ)
around p, together with the complex chart (U

C
,φ

C
). Consider the tuboid T(U,φ) = T ∩U

C
in U

C
with profile

(U ,φ) = C∩TU above U . Using the chart φ
C

we can transfer this structure to a tuboid Tφ(U ) in φ
C

(U
C

) with
profile Cφ(U ) = Dφ(C)∩ Tφ(U ) above φ(U ). By Definition 4.6.13 and the comments on 4.6.14, Tφ(U ) can be
standardly described as

Tφ(U ) ⊇
⋃

(x,ȳ)∈S(Cφ(U ))

Tφ(U )(x, ȳ), (4.6.5)

for some local tube T (x, ȳ) = U(x,ȳ) +
√
−1C(x,ȳ), where U(x,ȳ) is an open neighborhood of x, C(x,ȳ) is a cone

induced by the open set C̄(x,ȳ) ⊆ S(RN ) according to (4.6.1) and C̄(x,ȳ) is a neighborhood of ȳ.

4.6.16 Definition. Assume the same hypotheses as in the previous paragraph. We say that f admits a distri-
butional boundary value on M from T if f ◦φ

C
has a distributional boundary value bv(f ◦φ

C
) ∈ D ′(U(x,ȳ))

on U(x,ȳ) from U(x,ȳ) +C(x,ȳ)
√
−1 in the sense of Theorem 4.6.2, for all (x, ȳ) ∈ S(Cφ(U )). We also say that f has

moderate growth near M if the map f ◦φ
C

defined on U(x,ȳ) +C(x,ȳ)
√
−1 has moderate growth near the reals, for

all (x, ȳ) ∈ S(Cφ(U )).

4.6.17. It can be shown that the previous definitions of distributional boundary value and of moderate
growth are independent of the choice of local tubes made in (4.6.5) and of the holomorphic charts on the
complexification M

C
of M, so the previous notions are well-defined, and in fact equivalent (see [13], Thm.

A.2). Moreover, it is not complicated to verify that, given any chart (U,φ), the locally defined distribu-
tional boundary values bv(f ◦ φ

C
) ∈ D ′(U(x,ȳ)) for every (x, ȳ) ∈ S(Cφ(U )) coincide on the intersections of

their domains, so they define a unique distribution bv(U,φ)(f ) ∈ D ′(U ). Furthermore, the distributions
bv(U,φ)(f ) ∈ D ′(U ) satisfy the coherence condition given in Proposition 4.1.7 when we change analytic
charts, so they define a distribution on M, called the boundary value of f from the tuboid T , and it denoted
by bv(f ) (see [13], Appendix A.2). Moreover, since the notion of moderate growth, or equivalently of dis-
tributional boundary value, only depend on a neighborhood of M inside of M

C
, we see that the previous

definitions are also independent of the chosen complexification M
C

of M.

4.6.18 Proposition. Assume the same hypotheses as in Definition 4.6.8. Let T ⊆M
C

be a tuboid with profile C
above M, and let f : T → C

r be a holomorphic function. Define the subset C∨ ⊆ T ∗M given by

C∨ ∩ T ∗pM =
{
y′ ∈ T ∗pM \ {0} : y′(y) ≥ 0 for all y ∈ Cp

}
,

for all p ∈ M. It is called the (blunt) dual conic subset of C. Then C∨ is a proper closed convex conic set and
WF(bv(f )) ⊆ C∨.
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The proof follows from that of Proposition 4.6.4.
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Chapter 5

Quantum field theory (after Borcherds)

5.1 The set-up

5.1.1. Following [10], Def. 1, a spacetime will be a smooth manifold M provided with a (partial) order
�⊆M ×M (i.e. a reflexive, antisymmetric and transitive relation) that is closed (i.e. � is a closed subset of
M×M). The fact � is closed means precisely that if p,p′ ∈M satisfy that p � p′ , then there exist open subsets
U,U ′ ⊆M such that p ∈U , p′ ∈U ′ , and (U ×U ′)∩ �= ∅. In contrast to [10], Def. 1, we have assumed that �
is also antisymmetric. The order � is called the causal relation of the spacetime, and two subsets Z,Z ′ ⊆M
are called spacelike-separated if ((Z × Z ′) ∪ (Z ′ × Z))∩ �= ∅. As usual, ≺=� \Diag2, where Diagm ⊆ Mm

denotes the diagonal of Mm for all m ∈N≥2.

5.1.2.Example. This definition of spacetime given previously is weaker than the notion of causally simple
classical spacetime considered in physics, i.e. a connected time-oriented four-dimensional Lorentzian man-
ifold (see [81], p. 163). More generally, a classical spacetime (M,g) is any connected Lorentzian manifold,
that is time-oriented (see [81], p. 145, for the definition). Define the classical causal order p � p′ if either
p = p′ or there is a causal (i.e. non-spacelike) and future-pointing continuous and piecewise smooth curve
from p to p′ (see [81], pp. 146 and 163). It is clear to see that � is a preorder. Recall that J+(p) ⊆ M is
defined by {p} × J+(p) = ({p} ×M)∩ �. The classical spacetime (M,g) is called causal if the previous preorder
satisfies the antisymmetry condition (see [73], Def. 3.7), and causally simple if moreover the sets J+(p) ⊆M
are closed for all p ∈ M (see [73], Def. 3.63). Hence, if M is a causally simple classical spacetime, then
�⊆M ×M is a partial order that is closed (see [73], Prop. 3.68). We remark that any globally hyperbolic
classical spacetime is causally simple (see [73], Prop. 3.71). There are however interesting causally sim-
ple classical spacetimes that are not globally hyperbolic, such as the (universal cover of the) anti-de Sitter
spacetime (see [81], Def. 4.23, Examples 8.27 and 14.41).

5.1.3. The following definitions are somehow implicit in [10], even though they do not appear explicitly
there. Given m ∈N≥2, recall that Par(m,2) is the set of ordered pairs (J ′ , J ′′) of nonempty disjoint subsets
J ′ , J ′′ ⊆ {1, . . . ,m} such that J ′ ∪ J ′′ = {1, . . . ,m}. For any (J ′ , J ′′) ∈ Par(m,2), set

UJ ′ ,J ′′ =
{
p̄ = (p1, . . . ,pm) ∈Mm : pj ′ � pj ′′ , for all j ′ ∈ J ′ and j ′′ ∈ J ′′

}
. (5.1.1)

It is clearly an open subset of Mm, for � is closed. We also have that

Mm \Diagm =
⋃

(J ′ ,J ′′)∈Par(m,2)

UJ ′ ,J ′′ . (5.1.2)

Indeed, if p̄ <Diagm, then there are two different indices j ′0, j
′′
0 such that pj ′0 , pj ′′0 . Since � is antisymmetric,

we may assume without loss of generality that pj ′0 � pj ′′0 . Define J ′ as the subset of {1, . . . ,m} formed by the
elements j ′ such that pj ′ � pj ′′0 , and let J ′′ = {1, . . . ,m} \ J ′ . Note that j ′0 ∈ J ′ and j ′′0 ∈ J ′′ , so J ′ and J ′′ are
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nonempty. Moreover, pj ′′ � pj ′′0 , for all j ′′ ∈ J ′′ , and so p̄ ∈ UJ ′ ,J ′′ , as was to be shown.1 The identity (5.1.2)
already appears in the Diplomarbeit of C. Bergbauer (see [6]), but it is usually attributed to C. Popineau
and R. Stora (see [83], Section 3, which is the published version of a very old preprint of them, but also [19],
Lemma 4.1, for the case of a globally hyperbolic spacetime).

Given any m′ ∈N strictly less than m, define

Um′<m =
⋃

UJ ′ ,J ′′ , (5.1.3)

where the union is indexed over all (J ′ , J ′′) ∈ Par(m,2) satisfying that #(J ′) = m′ . It is clearly a symmetric
open subset of Mm.

5.1.4 Lemma. Let M be a spacetime of dimension n ≥ 2. Then U{1},{2} ∩ U{2},{1} , ∅. Furthermore, Diag2 ⊆
U{1},{2} ∩U{2},{1}.

Proof. Let us prove the first statement. By considering any connected componentM ′ ofM andM ′∩U{1},{2}∩
U{2},{1} instead of U{1},{2} ∩U{2},{1} it suffices to assume that M is connected. This implies that M ×M is
connected, or equivalently, arcwise connected. We will prove that (M ×M) \Diag2 is arcwise connected. In
order to do so, consider a tubular neighborhood ζ : E→M×M of the inclusion diag2 :M→M×M sending
p to (p,p), i.e. ζ is a smooth isomorphism from a vector bundle E of rank n over M to an open subset of
M ×M including the image of diag2 such that ζ ◦ζ0 = diag2, where ζ0 :M→ E is the zero section. A simple
argument shows that (M ×M) \Diag2 is connected if E \ Im(ζ0) ' Im(ζ) \Diag2 is so. Indeed, from the
Mayer-Vietoris sequence for the covering Im(ζ)∪ ((M ×M) \Diag2) of M ×M, we get the exact sequence

H1(M ×M,k)→H0

(
Im(ζ) \Diag2, k

)
→H0

(
Im(ζ), k

)
⊕H0

(
(M ×M) \Diag2, k

)
→H0(M ×M,k)→ 0.

Using that H0(M ×M,k) ' k ' H0(Im(ζ), k), we see that (M ×M) \Diag2 is connected if Im(ζ) \Diag2 is
so, proving the claim. It suffices to show now that E \ Im(ζ0) is connected. We first note that the rank
of E being strictly greater than 1 tells us that given any point p ∈ M and nonzero v,w ∈ Ep, there is a
continuous path γ : [0,1] → Ep such that γ(0) = v, γ(1) = w with w , 0 and γ(t) never vanishes. It thus
suffices to show that given p,q ∈M and any nonzero v ∈ Ep, there is a continuous path γ : [0,1]→ E such
that γ(0) = (p,v) and γ(1) = (q,w) with w , 0. In order to do so just pick a Riemannian metric on E, the
Levi-Civita connection associated to it, any continuous path α : [0,1]→M such that α(0) = p and α(1) = q,
and consider the parallel transport γ of α with respect to the Levi-Civita connection. Since the parallel
transport preserves the metric we see that the vector component of γ never vanishes, as was to be shown.
Finally, since (M ×M)\Diag2 =U{1},{2}∪U{2},{1}, the connectedness property of (M ×M)\Diag2 implies that
U{1},{2} ∩U{2},{1} , ∅.

It remains to prove that Diag2 ⊆ U{1},{2} ∩U{2},{1}, i.e. for every p ∈ M and every open set V ⊆ M such
that p ∈ V , (V × V )∩U{1},{2} ∩U{2},{1} , ∅. This last inequality follows from the first part of the lemma by
replacing M by V , U{1},{2} by U{1},{2} ∩ (V ×V ) and U{2},{1} by U{2},{1} ∩ (V ×V ). The lemma is thus proved. �

5.1.5 Definition. We will say that the spacetime M of dimension n, provided with the causal order �, is admissi-
ble if for every p ∈M, there is an open chart (U,φ) ofM around p and an hyperplane H ⊆Rn×Rn containing the
image of the diagonal mapRn→R

n×Rn such that (φ×φ)(� ∩(U ×U )) is included in one of the closed half-spaces
determined by H .

5.1.6.Remark. It is easy to construct nonadmissible causal orders on a manifold M by choosing � to be the
union of Diag2 and a reasonable set of finite points.

5.1.7.Example. Let (M,g) be a causally simple classical spacetime provided with the usual causal order (see
Example 5.1.2). Then, M satisfies the admissibility condition in Definition 5.1.5. Indeed, for any classical

1The antisymmetry condition is not imposed in [10], producing a minor gap in that exposition. Indeed, if � is not antisymmetric
the set of elements p̄ ∈ Mm \ Diagm satisfying that pj′ � pj′′ for all j′ , j′′ = 1, . . . ,m is nonempty, i.e. (5.1.2) does not hold. As a
consequence, the so-called “Gaussian condition” in Def. 9 of that article does not recursively determine the Feynman measure outside
of the diagonal, contrary to what is stated in the last paragraph of the proof of Thm. 15 there.
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spacetime (M,g) and any point p ∈M, consider a (geodesically) convex open neighborhood U ⊆M of p (see
[81], Ch. 5, Def. 5) and the normal chart φ induced by the exponential map. Then, (φ×φ)(�) is the same as
the restriction to (φ×φ)(U ×U ) of the classical causal order of the Minkowski spaceR1,n−1 (see [81], Ch. 14,
Lemma 2), which is simply given by p � q if and only if q − p ∈ J+(0), where 0 denotes the origin of R1,n−1.
Take v0 ∈ R1,n−1 such that 〈v0,v〉 ≥ 0 for all v ∈ J+(0) (e.g. v0 = (1,0, . . . ,0)). Define now L ⊆ R1,n−1 ×R1,n−1

to be the hyperplane given by the vectors (v,w) ∈ R1,n−1 ×R1,n−1 such that 〈v,v0〉 = 〈w,v0〉, where 〈 ,〉 is the
usual nondegenerate bilinear form of signature (1,n−1). It is clear thatH contains the image of the diagonal
map Rn→R

n ×Rn and that (φ×φ)(�) is included in the closed half-space determined by H formed by the
vectors (v,w) ∈R1,n−1 ×R1,n−1 such that 〈v,v0〉 ≤ 〈w,v0〉.

5.1.8. We will also need the following notation. Given positive integers m ≥ m′ , define Par(m,m′) as the
set of all tuples T = (T1, . . . ,Tm′ ), where ∅ , Tj ⊆ {1, . . . ,m} for all j = 1, . . . ,m′ , Tj ∩ Tj ′ = ∅ for all j , j ′ , and
∪m′j=1Tj = {1, . . . ,m}. For any convenient LCS X and T = (T1, . . . ,Tm′ ) ∈ Par(m,m′), define

µTX : X⊗βm→ S |T1 |X⊗̃β . . . ⊗̃βS |Tm′ |X (5.1.4)

as the unique continuous linear map satisfying

x1 ⊗ · · · ⊗ xm 7→ xT1
⊗ · · · ⊗ xTm′ ,

for all x1, . . . ,xm ∈ X, where xJ = xj1 s . . . s xjm′′ , for J = {j1 < · · · < jm′′ } ⊆ {1, . . . ,m}. Its convenient completion
will be denoted by µ̃TX .
5.1.9 Lemma. Let m ≥ m′ be two positive integers, and T = (T1, . . . ,Tm′ ) ∈ Par(m,m′). Let A be a commutative
bornological locally m-convex algebra that is Fréchet, and X a bornological locally convex A-module. Then µ̃TX is a
morphism of bornological locally convex Σ̃mA-modules, where Σ̃mA acts by the tensor-wise action on the domain
and the codomain of µ̃TX .

Proof. By continuity of µ̃TX , it is enough to prove that

µ̃TX(xa) = µ̃TX(x)a

for x = x1 ⊗ · · · ⊗ xm and a =
∑
ς∈Sm aς(1) ⊗ · · · ⊗ aς(m). We suppose even that the tuple ā = (a1, . . . , am) ∈ Am is

fixed. Set y = xa =
∑
ς∈Sm x1aς(1)⊗· · ·⊗xmaς(m). Let us denote xjaς(j) by yj,ς, for j = 1, . . . ,m, and yς = x1aς(1)⊗

· · ·⊗xmaς(m). Moreover, given any tuple b̄ = (b1, . . . , bm) ∈ Am and any set J = {j1 < · · · < jm′′ } ⊆ {1, . . . ,m}, define
b′ = b1 ⊗ · · · ⊗ bm and

J ⇀ b′ =
1
m′′!

∑
ς∈Sm′′

bjς(1)
⊗ · · · ⊗ bjς(m′′ ) ∈ Σ̃

m′′A.

Then,

µ̃TX(xa) =
∑
ς∈Sm

µ̃TX(y1,ς ⊗ · · · ⊗ ym,ς) =
∑
ς∈Sm

(yς)T1
⊗ · · · ⊗ (yς)Tm′

=
∑
ς∈Sm

(xT1
⊗ · · · ⊗ xTm′ )

(
(T1 ⇀aς)⊗ · · · ⊗ (Tm′ ⇀aς)

)
= µ̃TX(x)

∑
ς∈Sm

(
(T1 ⇀aς)⊗ · · · ⊗ (Tm′ ⇀aς)

)
= µ̃TX(x)a,

where aς = aς(1) ⊗ · · · ⊗ aς(m). �

5.1.10. Let A be a commutative bornological locally m-convex algebra that is Fréchet. Define

µ̃TA,pro : A⊗̃βm→ A⊗̃βm
′

(5.1.5)

by (µ(|T1 |)
A ⊗̃β . . . ⊗̃βµ

(|Tm |)
A )◦ µ̃TA, where µ(m′)

A was defined in (1.5.1). It is clearly well-defined, because the prod-
uct of A is commutative, and continuous, so a morphism of LCS.
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5.1.11. We will now consider a geometric construction dual to the previous algebraic one. Let m′ ≤ m be
two positive integers. For any T ∈ Par(m,m′), define the map tT : {1, . . . ,m} → {1, . . . ,m′} sending j ∈ {1, . . . ,m}
to the unique index j ′ ∈ {1, . . . ,m′} such that j ∈ Tj ′ . Consider now the smooth map

diagT :Mm′ →Mm (5.1.6)

given by sending p̄ = (p1, . . . ,pm′ ) to the element diagT (p̄) whose j-th component is ptT (j), for j ∈ {1, . . . ,m}. It
is fairly straightforward to show that diagT is a proper map for all T ∈ Par(m,m′) and all positive integers
m ≥ m′ . Note that the diagonal map diagm : M →Mm coincides with diagT , for the partition T consisting
of the only one entry {1, . . . ,m}.
5.1.12 Lemma. Let m ≥ m′ be two positive integers, and T = (T1, . . . ,Tm′ ) ∈ Par(m,m′). Then the pull-back
(diagT )∗ : C∞(Mm) → C∞(Mm′ ) of the map diagT given in (5.1.6) is µ̃TC∞(M),pro under the identifications of
Lemma 2.3.11.

Proof. It suffices to prove the lemma for a function f ∈ C∞(Mm) of the form f1⊗ · · ·⊗ fm, where fj ∈ C∞(M).
Then, given p̄ ∈Mm′ we have

(diagT )∗(f )(p̄) = (f ◦diagT )(p̄) = f1(ptT (1)) . . . fm(ptT (m)) =
m′∏
j=1

( ∏
j∈Tj′

fj (pj ′ )
)
.

On the other hand,

µ̃TC∞(M),pro(f )(p̄) =
((∏
j∈T1

fj
)
⊗ · · · ⊗

( ∏
j∈Tm′

fj
))

(p̄) =
(∏
j∈T1

fj (p1)
)
. . .

( ∏
j∈Tm′

fj (pm′ )
)

=
m′∏
j=1

( ∏
j∈Tj′

fj (pj ′ )
)
,

so both expressions agree and the lemma follows. �

5.1.13 Definition. A quantum field theory (QFT) background of order i ∈ N0 is the data of a spacetime M
and a vector bundle E over M. We will denote by J iE the bundle of jets of order i of E (see [77], 11.59).
From the QFT background one defines the space of classical fields Γ (E), the space of derivatives of classical
fields (of order i) Γ (J iE), the space of Lagrangians (of order i) SC∞(M)Γ (J iE) and the space of Lagrangian
densities (of order i) Γ (Vol(M))⊗C∞(M) SC∞(M)Γ (J iE). We remark that, given any C∞(M)-module X, SC∞(M)X
denotes the symmetric algebra of X in the symmetric monoidal category of C∞(M)-modules. We shall denote
Γ (Vol(M))⊗C∞(M) SC∞(M)Γ (J iE) byLi(M,E), and Γc(Vol(M))⊗C∞(M) SC∞(M)Γ (J iE) byLi,c(M,E).

Finally, the space of (nonlocal) actions is the symmetric algebra S̃Li(M,E) of the underlying convenient space
ofLi(M,E) in the symmetric monoidal category CLCSHD for the convenient tensor product ⊗̃β . Its topology is the
that of the coproduct in the category BLCSHD of the homogeneous components Γ (Vol(M))⊗C∞(M) S

m
C∞(M)Γ (J iE),

whose topologies were described in Section 2.3. The same comments apply to the space of (nonlocal) actions of
compact support S̃Li,c(M,E).

The previous definitions are based on [10], Def. 2-6 (see however Section 5.2 for a discussion of the
differences between these definitions and those of Borcherds). Notice that S̃Li,c(M,E) is a convenient LCS,
and it will be regarded as a quotient of the convenient locally convex Σ̃C∞(M)-module T̃Li,c(M,E) (see
Corollary 3.11.3).

5.1.14.Remark. Taking the symmetric algebra in the symmetric monoidal category CLCSHD is equivalent to
Borcherds’ definition, because we want to study the continuous linear functionals on S̃Li,c(M,E). Indeed,
as the direct sum of convenient LCS is convenient, the only difference is in the tensor product, which has
now been conveniently completed. However, the Hahn-Banach theorem and (1.7.12) tell us that the contin-
uous linear functionals on the homogeneous piece S̃mLi,c(M,E) coincide with the continuous functionals
on the usual symmetric product SmLi,c(M,E) in the category BLCSHD .
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5.1.15.Notation. To avoid confusion we will denote the unit element of S̃Li(M,E) (or SLi(M,E)) by 1S ,
whereas the unit element of T̃Li(M,E) (or TLi(M,E)) will be denoted by by 1T . Given m ∈N, an elemen-
tary symmetric tensor of SmLi,c(M,E) (resp., SmLi(M,E)) will be typically denoted by `1 s . . . s `m, where
`1, . . . , `m ∈ Li,c(M,E) (resp., `1, . . . , `m ∈ Li(M,E)). Analogously, an elementary tensor of Li,c(M,E)⊗βm

(resp., Li(M,E)⊗βm) shall be denoted by `1| . . . |`m, for the same choice of elements `1, . . . , `m, and we are
replacing the symmetric bornological tensor product ⊗β by a bar. The elements of the previous tensor al-
gebras will be usually denoted by the capital letter L, whereas their class in the corresponding symmetric
algebra will be denoted by [L]. For m ∈N, any elementary symmetric tensor element of SmC∞(M)Γ (J iE) will

be denoted by σ̄ = σ1 . . .σm, where σ1, . . . ,σm ∈ Γ (J iE), where we are omitting the tensor products ⊗C∞(M).
Hence, any element of Li,c(M,E) (resp., Li(M,E)) can be written as a finite sum of terms of the form
θσ̄ = θσ1 . . .σm, where θ ∈ Γc(Vol(M)) (resp., θ ∈ Γ (Vol(M))) and we are also omitting the tensor product
⊗C∞(M).

5.2 Some technical differences with the article of Borcherds

5.2.1. In his article [10], R. Borcherds works in the general category of sheaves of OM-modules, where OM
is the sheaf of rings of the manifold M, without any topology, whereas we work within the category of
bornological locally convex C∞(M)-modules. Moreover, the direct sums and tensor products he considers
for the symmetric algebras in his Definitions 4 and 6 are not in the completed sense, as he remarks in the
paragraphs following each of the mentioned definitions. The only topology he considers are on the spaces
of global sections (of compact support or not). As a consequence, the topology on the symmetric algebra
he considers in his Definition 6 is that of a coproduct in the category of LCS (see the second paragraph of
p. 631), which in this case is never metrizable (see [95], Ch. II, Ex. 7). In particular, he does not work with
the category of sheaves recalled in Theorem 2.3.8.

We also want to observe that, if the underlying manifoldM is noncompact, the space of global sections of
the symmetric algebra construction SOME of a sheaf of OM-modules E does not coincide with the symmetric
algebra SC∞(M)Γ (E ) in the category of C∞(M)-modules, where we remark that the direct sums and tensor
products in the definition of SOME are considered in the category of sheaves of OM-modules. This is a
straightforward consequence of the fact that the global section functor does not preserve nontrivial infinite
direct sums if the base space is noncompact. Indeed, consider a family of pairwise disjoint open sets
{Un}n∈N, and let {σn}n∈N be such that σn is a section of SnOME having support on a compact set included in
Un. Then, the sheaf property on SOME tells us that {σn}n∈N defines a unique section of the former, whereas
it does not give any element of SC∞(M)Γ (E ). We believe in particular that the statement before Lemma 14
in [10] is somehow misleading.

5.3 The notion of support

5.3.1. The following definitions and discussions seem to be somehow implicit in [10].

Given m ∈N0, defineL m
i,c (M,E) as Γc(Vol(M))⊗C∞(M) S

m
C∞(M)Γ (J iE). Then,

Li,c(M,E) = Γc
(
Vol(M)

)
⊗C∞(M) SC∞(M)Γ (J iE) =

⊕
m∈N0

L m
i,c (M,E). (5.3.1)

Note that L m
i,c (M,E) is the space of sections of compact support of the vector bundle Vol(M)⊗ SmJ iE, so it

has a natural bornological locally convex topology, which is complete, nuclear and reflexive by the com-
ments in 2.3.9. The spaceLi,c(M,E) is endowed thus with the coproduct topology in the category of LCS. By
[95], II.6.6, and IV.5.8, we see that Li,c(M,E) is also complete and reflexive. Furthermore, since the direct
sum is countable, by [95], III.7.4, Thm., Li,c(M,E) is a nuclear space. We consider the convenient tensor
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product topology on eachLi,c(M,E)⊗̃βm and so S̃mLi,c(M,E) has the corresponding convenient locally con-
vex quotient topology. By (1.4.14), (5.3.1), and isomorphism (2.3.6) in Proposition 2.3.13 we conclude that
Li,c(M,E)⊗̃βm is also a countable direct sum of spaces of sections of compact support of vector bundles,
so by the previous argument Li,c(M,E)⊗̃βm is bornological, complete (so convenient), nuclear and reflex-
ive. Taking into account that S̃mLi,c(M,E) is a direct summand of the bornological complete nuclear space
Li,c(M,E)⊗̃βm in the category BLCSHD , the former is also bornological, complete and nuclear (see [95],
II.6.2, II.8.2, and III.7.4, Thm.). Since Li,c(M,E)⊗̃βm is reflexive, it is barreled (see [95], IV.5.6, Thm.), so its
quotient S̃mLi,c(M,E) is also barreled (see [95], II.7.2, Cor. 1). Taking into account that a barreled complete
nuclear space is always reflexive (see [95], Ch. IV, Exercise 19, (b)), we see that S̃mLi,c(M,E) is reflexive.
Finally, S̃+Li,c(M,E) is endowed with the coproduct topology in the category BLCSHD . We remark that it
is bornological, complete, nuclear and reflexive by the same arguments stated above. They also show that
T̃ +Li,c(M,E) is bornological, complete, nuclear and reflexive.

5.3.2. We note that S̃+Li(M,E) (resp., S̃+Li,c(M,E)) can be decomposed as a direct sum of subspaces

L
m1
i (M,E) s̃ β . . . s̃ βL

mq
i (M,E)

(
resp.,L m1

i,c (M,E) s̃ β . . . s̃ βL
mq
i,c (M,E)

)
, (5.3.2)

indexed by q ∈N and m̄ = (m1, . . . ,mq) ∈N
q
0. According to 3.6.7, any element [L] in (5.3.2) can be canonically

regarded as a section (resp., of compact support) of the vector bundle F�qm̄ over Mq, where

Fm̄ =
⊕

m∈{m1,...,mq}
SmJ iE.

In particular, its support is defined. Moreover, given [L] in S̃+Li(M,E) (resp., S̃+Li,c(M,E)), we define its
total support Supp([L]) as the sequence (suppq([L]))q∈N where suppq([L]) is the union of the supports of all
the components of [L] that are sections of vector bundles over Mq. Since [L] has only a finite number of
nonzero such components, the union is also finite, and thus a closed subset of Mq. It is a compact set if
[L] ∈ S̃+Li,c(M,E). Furthermore, notice that the sequence Supp([L]) vanishes almost always.

5.3.3. Given a compact K ⊆ M, define L m
i,K (M,E) as the subspace of elements [L] of L m

i,c (M,E) such that
supp1([L]) ⊆ K . We recall that, by the comments in 2.3.9, the subspace of sections of a vector bundle
with support contained in a fixed compact set is a closed subset (so complete) of the space of all sections (of
compact support of that vector bundle, and it is bornological, because it is Fréchet. In particular,L m

i,K (M,E)
is bornological, complete and a closed subspace ofL m

i (M,E). We note that the tensor product

L
m1
i,K (M,E) s β . . . s βL

mq
i,K (M,E) (5.3.3)

has the initial topology of its inclusion inside of (5.3.2) for any q ∈N and m̄ = (m1, . . . ,mq) ∈N
q
0. Indeed, by

the same arguments as those in Lemma 1.4.38, we may equivalently replace the convenient completions of
the tensor products in (5.3.2) by usual completions, and the result follows from the fact a Hausdorff LCS
has the initial topology of its inclusion inside of its completion. This also implies that the usual completion
of the inclusion map of (5.3.3) inside of (5.3.2) is an injection (see [104], Exercise 5.3). Corollary 1.4.21
and the comments in 1.4.23 tell us that we may equivalently replace the usual completion of (5.3.3) by its
convenient completion in the previous statement. By Proposition 2.3.13 and the previous arguments, the
image of the previous injection is included in the subset of elements of

L
m1
i (M,E) s̃ β . . . s̃ βL

mq
i (M,E) (5.3.4)

whose support is contained in Kq. This implies that there is a continuous canonical injective map of the
symmetric construction S̃+Li,K (M,E) of Li,K (M,E) into S̃+Li,c(M,E), and the image is included in the
subspace formed by the elements [L] ∈ S̃+Li,c(M,E) satisfying that suppm([L]) ⊆ Km for all m ∈ N. By
construction, S̃+Li,K (M,E) is complete and S+Li,K (M,E) = S̃+Li,K (M,E)∩S+Li(M,E) is dense in it, where
we recall that S+Li(M,E) is the symmetric construction in the category BLCSHD (i.e. where the tensor
products are not conveniently completed).
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5.3.4 Fact. Let K ⊆M be a compact subset and let [L] ∈ S̃+Li,c(M,E) be an element such that πj (suppm([L])) ⊆ K
for all m ∈N and j ∈ {1, . . . ,m}. Then [L] ∈ S̃Li,K (M,E).

This result is a direct consequence of the previous comments.

5.4 Generalities on propagators

5.4.1. In this section we will convey the basic definitions of propagators. They will essentially include both
Feynman propagators and two-point functions. From now on, we fix a QFT background of order i given by
a spacetime M and a vector bundle E.

5.4.2 Definition. Following [10], Def. 7, a propagator associated with that QFT background of order i is a
separately continuous bilinear map

∆ : Γc
(
Vol(M)⊗ J iE

)
× Γc

(
Vol(M)⊗ J iE

)
→C.

By the very definition of the inductive tensor product ⊗i (see 1.4.35) and the Hahn-Banach theorem, the previous
morphism is equivalent to a continuous linear map

∆̄ : Γc
(
Vol(M)⊗ J iE

)
⊗̂iΓc

(
Vol(M)⊗ J iE

)
→C.

Lemma 1.4.38 together with the fact that the LCS appearing in the previous map are (LF)-spaces (see 2.3.9) tell
us that ∆̄ is can be regarded as a continuous linear map

∆̄ : Γc
(
Vol(M)⊗ J iE

)
⊗̃βΓc

(
Vol(M)⊗ J iE

)
→C.

We denote by Propi(M,E) the C∞(M ×M)-module of propagators. A propagator ∆ is said to be local if ∆(σ,σ ′) =
∆(σ ′ ,σ ), for all σ,σ ′ ∈ Γc(Vol(M) ⊗ J iE) whose supports are spacelike-separated. It is said to be Feynman if
∆(σ,σ ′) = ∆(σ ′ ,σ ), for all σ,σ ′ ∈ Γc(Vol(M)⊗ J iE).
5.4.3 Lemma. There is a canonical bijective C∞(M ×M)-linear map

ῑ :D ′
(
M ×M, (J iE � J iE)∗

)
→ Propi(M,E). (5.4.1)

Moreover, there is a canonical isomorphism of C∞(M ×M)-modules

D ′
(
M ×M, (J iE � J iE)∗

)
'HomC∞(M)⊗C∞(M)

(
Γ (J iE)⊗ Γ (J iE),D ′(M ×M)

)
, (5.4.2)

where the codomain also coincides with the space

HomC∞(M)⊗βC∞(M)

(
Γ (J iE)⊗β Γ (J iE),D ′(M ×M)

)
.

This result is implicit in the exposition of Borcherds, and it gives different incarnations of what a prop-
agator is.

Proof. The first isomorphism is a particular case of Proposition 4.2.2. Finally, the isomorphism (5.4.2) is
a direct consequence of Corollary 2.1.7 and Proposition 4.1.10. The last statement is proved as follows.
Let F be in the codomain of (5.4.2). By Proposition 1.6.7 it is a separately continuous bilinear map, so
it is jointly continuous, for Γ (J iE) is Fréchet and then barreled (see [95], II.7.2, Cor. 2, and III.5.1, Cor.
1)). Since the bornological (resp., convenient) tensor product coincides with the projective tensor product
(resp., completed projective tensor product) of metrizable LCS coincide (by 1.4.23 and 1.4.34), the result
follows. The lemma is thus proved. �

From now on we will use the identifications of the previous lemma without further explanation, and so
we will usually say that ∆ is a (J iE � J iE)∗-valued distribution.
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5.4.4.Remark. Note that all the isomorphisms of Lemma 5.4.3 preserve regular distributions, i.e. they re-
strict to isomorphisms of the same form if we replaceD ′ byD ′reg in all the occurrences there.

5.4.5 Definition. Based on [10], Def. 7, we will say that a propagator ∆ ∈ Propi(M,E) is precut with family of
proper closed convex cones {Pp}p∈M , where Pp ⊆ T ∗pM, if

(i) if (v,w) ∈WF(p,q)(∆), for any point (p,q) ∈M ×M, then −v ∈Pp and w ∈Pq;

(ii) if (v,w) ∈WF(p,p)(∆), for any point p ∈M, then w = −v.

This definition essentially tries to capture the notion of two-point function in the physics literature.

5.4.6.Example. Let (M,g) be a classical spacetime and consider the family of proper closed convex cones
{Pp}p∈M , where Pp is the image of the forward closed light cone V +

p ⊆ TpM at p, i.e. the one formed by all
future-pointing causal vectors, under the isomorphism TpM ' T ∗pM induced by gp (see [88], Sections 2 and
4). Then, condition (i) in Definition 5.4.5 is precisely the one given in [88], Def. 4.1. Moreover, consider the
usual construction of scalar field theory on a globally hyperbolic classical spacetime (M,g) (see e.g. [86]),
and assume that the Wightman propagator ∆ satisfies the usual global Hadamard assumption, as well as
the so-called (KG) and (Com) mod C∞ assumptions, in pp. 532–533 of [87]. Then, ∆ satisfies conditions
(i) and (ii) in Definition 5.4.5, i.e. ∆ is precut. This is a direct consequence of [87], Thm. 5.1, 3 (see also
[100], 4.3.4 and 4.5). We also refer the reader to the nice exposition [100], where the wave front sets of the
most typical examples of propagators are presented. We also note that the Wightman function of the Klein-
Gordon scalar field in the anti-de Sitter space is also precut, as one can easily deduce from [12], Section 6,
together with Prop. 4.6.4.

5.4.7. Another definition we will utilize in the sequel is the following. Assume that the (J iE � J iE)∗-valued
distribution associated to a propagator ∆ ∈ Propi(M,E) by means of (5.4.1) is regular, i.e. it is induced by a
continuous section of (J iE � J iE)∗. We will say in this case that ∆ is continuous.

5.4.8 Lemma. Let ∆ ∈ Propi(M,E) be a local precut propagator. Then the restriction of ∆ to the open set U{1},{2}∩
U{2},{1} ⊆M ×M defined in (5.1.1) is smooth, i.e. the intersection of the latter set and the singular support of ∆ is
empty.

This result is not mentioned in [10], but it is somehow implicit.

Proof. Consider the map fl from U{1},{2} ∩U{2},{1} to itself given by (p,p′) 7→ (p′ ,p). Since ∆ is local, the pull-
back fl∗(∆|U{1},{2}∩U{2},{1} ) coincides with itself. We first note that the definition of (4.3.3) and the fact that
fl is an isomorphism imply that for all (p,p′) ∈ U{1},{2} ∩U{2},{1}, (v,v′) ∈ WF(p,p′)(∆) if and only if (v′ ,v) ∈
WF(p′ ,p)(∆). Assume there is an element (v,v′) ∈WF(p,p′)(∆), where (p,p′) ∈ U{1},{2} ∩U{2},{1}. Condition (ii)
of the definition of precut propagator now tells us that (v,v′) ∈ (−Pp)×Pp′ and (v′ ,v) ∈ (−Pp′ )×Pp, which
gives v ∈ (−Pp)∩Pp and v′ ∈ (−Pp′ )∩Pp′ , both of which are empty conditions. Taking into account that
the image of WF(∆) under the canonical projection T ∗(M ×M)→M ×M is the singular support of ∆, the
lemma follows. �

5.4.9 Fact. Let ∆1, . . . ,∆m ∈ Propi(M,E) be any family of precut propagators satisfying conditions (i) and (ii) in
the previous definition for the same collection of cones {Pp}p∈M . Then the product ∆1 . . .∆m ∈D ′

(
M ×M, ((J iE �

J iE)∗)⊗m
)

is defined.

This is a direct consequence of the Hörmander wave front set condition recalled in Section 4.5, (4.5.1)
and (4.5.2).

5.5 Propagators of cut type

5.5.1. Based on [10], Def. 7, we will now present the definition of propagator of cut type. Since the condi-
tion stated in [10] is somehow ambiguous, because the author does not state how the limit of the boundary
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value is precisely defined, we prefer to use a slightly changed terminology, for we are not sure it com-
pletely coincides with the idea of Borcherds. We also remark that this condition is only needed to prove the
existence of Feynman measures (see Chapter 7).

5.5.2 Definition. Let ∆ be a precut propagator with family of proper closed convex cones {Pp}p∈M . It is called of
cut type with respect to that family of cones if there a collection U = {(Ua, τa,φa)}a∈A satisfying that

(a) (Ua, τa) is a trivialization of (J iE � J iE)∗ and (Ua,φa) is a chart of M ×M, for all a ∈ A, and {Ua : a ∈ A} is a
locally finite covering of M ×M;

(b) there is an involution invd : A → A such that invd(a) = a if and only if Ua ∩Diag2 , ∅, and it satisfies
that (Uinvd(a), τinvd(a),φinvd(a)) = (fl(Ua),fl◦τa ◦fl,fl◦φa ◦fl), for all a ∈ A, where fl stands for the usual flip
(p,q) 7→ (q,p), for p,q in M or in Rn, or for the flip v ⊗w 7→ w⊗ v, for v ∈ (J iE)∗p and w ∈ (J iE)∗q;

(c) there is a finite set J such that, for every a ∈ A,

τ∧a (∆|Ua ) =
∑
j∈J
σa,j bv

(
Ga,j

)
, (5.5.1)

where σa,j is a smooth vector function on φa(Ua), and bv(−) indicates the boundary value of a holomorphic
function Ga,j :Wa,j →C with

Wa,j =
{
z = (z1, . . . , z2n) ∈ φa(Ua) +Ca,j

√
−1 :

∣∣∣Im(zj )
∣∣∣ < r for all j = 1, . . . ,n

}
⊆C2n, (5.5.2)

where
√
−1 denotes the imaginary unit, Ca,j ⊆R2n is an open convex cone, and

Ga,j =
(

log(pj,0)
∏
`∈Lj

p
s`
`

)∣∣∣∣∣
Wa,j

, (5.5.3)

where Lj is a finite set, pj,0,p` ∈ R[x1, . . . ,xn, y1, . . . , yn] are real polynomial which are (uniquely) regarded
as holomorphic functions, and in (5.5.3) we are considering the usual definition of the logarithm on C \√
−1R≤0;

(d) for all j ∈ J , the polynomials pj,0,p` ∈R[x1, . . . ,xn, y1, . . . , yn] in (5.5.3) are symmetric under the interchange
between (x1, . . . ,xn) and (y1, . . . , yn);

(e) for all j ∈ J and all a ∈ A, σinvd(a),j = σa,j ◦fl, where fl denotes the usual flip (p,q) 7→ (q,p), for p,q in M;

(f) for every a ∈ A, j ∈ J and (p,p′) ∈Ua, (dφa)∗(p,p′)(C
∨
a,j ) is included in the cone (−Pp)×Pp′ , where we identify

canonically TUa and Ua +
√
−1R2n, and if we further assume that a = invd(a), then it is is included in the

cone {(v,−v) : v ∈ T ∗pM} ∩ ((−Pp)×Pp).

We remark that the polynomials {pj,0,p` : ` ∈ Lj } given in (5.5.3) are in principle different for every j ∈ J .
We also note that the conditions (a) and (b) for the collection U are of topological nature and can always be
satisfied.

5.5.3.Remark. The condition given by 5.5.1 and 5.5.3 in the definition of propagator of cut type is very
similar to the Hadamard parametrix expansion proposed by B. Kay and R. Wald in [62], Section 3.3, for the
case of the scalar fields satisfying the Klein-Gordon on a (four dimensional) globally hyperbolic classical
spacetime (M,g), called the global Hadamard condition, which was in turn a more precise version of the old
Hadamard condition (see [86], Def. 1.18), that was prevalent in the literature. However, the condition of
being of cut type is a priori stronger, because the expression (5.5.1) is valid on the whole M ×M, whereas
the global Hadamard condition only expresses the propagator as a boundary value over a set of the form
N ×N , where N is a causal normal neighborhood of a Cauchy hypersurface of M (see [86], Def. 1.12, for
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the definition). Hence, it would remain to know if the condition of being of cut type is implied by the
global Hadamard condition for the case of scalar fields satisfying the Klein-Gordon on a (four dimensional)
globally hyperbolic classical spacetime (M,g). Borcherds claims that the cut condition is “satisfied by
almost any reasonable example” (see [10], p. 630, l. 8), however it seems that the precise expression of the
two-point functions is known in only a few examples of general globally hyperbolic spacetimes.

For further details on the scalar theory on globally hyperbolic classical spacetimes, we refer the reader
to the article [87] by M. Radzikowski, who proved that a state satisfies the global Hadamard condition,
the Klein-Gordon equation and a commutator condition modulo C∞ if and only if the associated Feynman
propagator is a distinguished parametrix of the Klein-Gordon operator modulo C∞, and if and only if
the former state satisfies the so-called wave front set spectrum condition and the commutator condition
modulo C∞ (see [87], Thm. 5.1). For a nice exposition on the Hadamard parametrix expansion we refer the
reader to [56], Section 17.4, or [94], Section 4.

We finally remark that item (f) provide only a compatibility between the condition on the wave front
sets of the propagator coming from the precut assumption and the wave front set that is obtained from the
boundary value operation.

5.5.4.Example. Assume the same hypotheses of Example 5.4.6. We consider the case where (M,g) is the
Minkowski spacetime, and let ∆ be the usual Wightman 2-point function of the scalar field theory. Then ∆
is of cut type. Indeed, it is clearly of precut by Example 5.4.6. Moreover, by taking a global chart in that
case, conditions 5.5.1 and 5.5.3 follow from the expression of the Wightman 2-point function given in [9],
Ch. 8, App. F, (F.8b), (see also [87], (12)). We recall that in this case the tuboid is given by M2 + C

√
−1,

where C ⊆M2 is the set formed by the pairs (p,p′) such that p′−p is in the forward light cone V + recalled in
Example 5.4.6 (see [99], (3.4.5)). It is easy to verify thatC∨ ⊆ ((−V +)×V +)∩{(−v,v) : v ∈M}, so item (f) holds.
Moreover, using the explicit description of the wave front set of ∆ given in [100], 4.3.4, we see that it is in
fact included in C∨. Conditions (d) and (e) follow from the symmetry property of the analytic extension
of the Wightman functions (see e.g. [99], (3.4.11)). A nice and detailed explanation of the holomorphic
extension of the Wightman functions on Minkowski space can be found in [98] (see Sections 2-4, and
Thms. 3-5 and 3-6), and [99], Section 3.4. Moreover, since the components of the propagators for the Dirac
theory on the Minkowski spacetime are given by the corresponding propagators of the scalar theory on
the Minkowski spacetime (see [9], Ch. 8, App. F, (F.21)), we also see that propagators for the Dirac theory
on the Minkowski spacetime are of cut type. On the other hand, let (M,g) be the de Sitter spacetime and
∆ be the usual 2-point function of the Klein-Gordon scalar field theory, as explained in [13]. By using
the usual embedding of the de Sitter spacetime into the Minkowski spacetime we can see that ∆ is also
of cut type. Indeed, conditions 5.5.1 and 5.5.3 follow from [13], Cor. 4.1, specially eq. (4.21) and (4.22),
whereas conditions (d) and (e) follows from the symmetry property of the Wightman function (see the
comments before Section 3.1 in [13] and those in Section 3.4). Item (f) also holds in this case by a simple
computation similar to that of the Minkowski case. Analogously, the two-point Wightman function ∆ of
the Klein-Gordon scalar theory on the anti-de Sitter spacetime is also of cut type (see [12], Section 6).

5.6 Extensions of propagators

5.6.1. In this section we shall construct a Laplace pairing from a given propagator∆ that is either continuous
or precut. This follows the general philosophy introduced by C. Brouder, B. Fauser, A. Frabetti and R. Oeckl
in [17], to which we refer for a very nice and detailed discussion about the use of Laplace pairings in QFT.
The notion of Laplace pairing was introduced by P. Doubilet, G.-C. Rota and J. Stein in [31], Section 7,
(1) (see also [91]). Our definition is however an extension of the one considered by them, for they have
(essentially) dealt with symmetric monoidal categories, whereas we work with more general ones.
5.6.2 Definition. Let (C ,⊗C , I⊗, τ,�C , I�,sh) be a k-linear framed symmetric 2-monoidal category inside of
(C ′ ,�C ′ , I ′�, τ

′) via the faithful functor F (see Definitions 3.2.2 and 3.2.6). Given a unitary and counitary bial-
gebra (C,µC ,ηC ,∆C ,εC) relative to the previous k-linear symmetric 2-monoidal category and a unitary algebra
(A,µA,l,ηA,l) in C with respect to ⊗C and I⊗, a left Laplace pairing on C relative to the previous k-linear
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symmetric 2-monoidal category and with values on A is a morphism 〈 ,〉 : C �C C → A of C satisfying that the
diagrams

F(C)�C ′ F(C)�C ′ F(C)
idF(C)�C ′ψ2(C,C)

∼
//

F(∆C )�C ′ idF(C)�C ′ idF(C)
��

F(C)�C ′ F(C �C C)
idF(C)�C ′F(µC )

// F(C)�C ′ F(C)
ψ2(C,C)
∼

// F(C �C C)

F(〈 ,〉)
��

F(C ⊗C C)�C ′ F(C)�C ′ F(C)

idF(C⊗C C)�C ′ϕ2(C,C)

��

F(A)

F(C ⊗C C)�C ′ F(C ⊗C C)
ψ2(C ⊗C C,C ⊗C C)

∼
// F

(
(C ⊗C C)�C (C ⊗C C)

)F(shC,C,C,C )
// F

(
(C �C C)⊗C (C �C C)

)F(〈 ,〉 ⊗C 〈 ,〉)// F(A⊗C A)

F(µA,l)

OO

(5.6.1)
commutes in C ′ and

C �C I�
idC�C ηC //

r�C
��

C �C C

〈 ,〉
��

C
εC // I⊗

ηA,l // A

(5.6.2)

commutes in C . Analogously, given the same unitary and counitary bialgebra as before and a unitary algebra
(A,µA,r,ηA,r) in C with respect to ⊗C and I⊗, a right Laplace pairing on C relative to the previous k-linear
symmetric 2-monoidal category and with values on A is a morphism 〈 ,〉 : C �C C → A of C satisfying that the
diagrams

F(C)�C ′ F(C)�C ′ F(C)
ψ2(C,C)�C ′ idF(C)

∼
//

idF(C)�C ′ idF(C)�C ′F(∆C )
��

F(C �C C)�C ′ F(C)
F(µC )�C ′ idF(C) // F(C)�C ′ F(C)

ψ2(C,C)
∼

// F(C �C C)

F(〈 ,〉)
��

F(C)�C ′ F(C)�C ′ F(C ⊗C C)

ϕ2(C,C)�C ′ idF(C⊗C C)

��

F(A)

F(C ⊗C C)�C ′ F(C ⊗C C)
ψ2(C ⊗C C,C ⊗C C)

∼
// F

(
(C ⊗C C)�C (C ⊗C C)

)F(shC,C,C,C )
// F

(
(C �C C)⊗C (C �C C)

)F(〈 ,〉 ⊗C 〈 ,〉)// F(A⊗C A)

F(µA,r)

OO

(5.6.3)
commutes in C ′ and

I� �C C
ηC�C idC //

l�C
��

C �C C

〈 ,〉
��

C
εC // I⊗

ηA,r // A

(5.6.4)

commutes in C .

5.6.3.Remark. Note that we need the symmetric 2-monoidal category to be framed in order to be able to
define a left or right Laplace pairing. By abuse of notation concerning the two diagrams (5.6.1) and (5.6.3),
we will write the previous identities (5.6.3) and (5.6.4) (resp., (5.6.1) and (5.6.2)) in the following form

〈cc′ ,d〉 = 〈c,d(1)〉 ·r 〈c′ ,d(2)〉
(
resp., 〈c,dd′〉 = 〈c(1),d〉 ·l 〈c(2),d

′〉
)
,

〈 ,〉 ◦ (ηC �C idC) = ηA,r ◦ εC
(
resp., 〈 ,〉 ◦ (idC �C ηC) = ηA,l◦ εC

)
,

(5.6.5)

for all c,c′ ,d,d′ ∈ C, where we write a comma instead of a tensor product symbol, ·l and ·r instead of µl and
µr, respectively, and where we use the usual Sweedler convention∆C(c) = c(1)⊗C c(2) and∆C(d) = d(1)⊗C d(2)
for the coproduct of C.
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5.6.4. Consider a propagator ∆ ∈ Propi(M,E) that is either precut or continuous. By (5.4.1) and (5.4.2), it
has a unique element ∆̄ ∈HomC∞(M)⊗C∞(M)(Γ (J iE)⊗ Γ (J iE),D ′(M ×M)) associated to it. Following [10] (see
the paragraph before Def. 9), ∆̄ induces a unique map

∆̃ ∈HomC∞(M)⊗C∞(M)

(
SC∞(M)Γ (J iE)⊗ SC∞(M)Γ (J iE),D ′(M ×M)

)
given by ∆̃(1M ,1M ) = 1M2 , where 1M ∈ C∞(M) is the constant unit function on M and analogously for 1M2 ,
∆̃(1M ,σ1 . . .σn) = 0 for all σ1, . . . ,σn ∈ Γ (J iE) and n ∈N, and

∆̃(σ1 . . .σn, τ1 . . . τm) =


∑
ς∈Sn

∆̄(σ1, τς(1)) . . . ∆̄(σn, τς(n)), if n =m ∈N,

0, else,
(5.6.6)

for all σ1, . . . ,σn, τ1, . . . , τm ∈ Γ (J iE) and n,m ∈ N, where we use commas instead of tensor products over k.
Note that Fact 5.4.9 implies that the products appearing in (5.6.6) are defined if ∆ is precut. They are also
clearly defined in the case ∆ is continuous. Furthermore, Theorem 4.3.10 implies that both definitions
agree if ∆ is precut and continuous.

The argument in the proof of Lemma 5.4.3 says that the restriction of ∆̃ to SmC∞(M)Γ (J iE)⊗π Sm
′

C∞(M)Γ (J iE)
is continuous for allm,m′ ∈N0. Since it is a finitely generated locally convex module over C∞(M)⊗πC∞(M)
for allm,m′ ∈N0, its completion SmC∞(M)Γ (J iE)⊗̂πSm

′

C∞(M)Γ (J iE) is a finitely generated locally convex module
over the Fréchet algebra C∞(M)⊗̂πC∞(M) ' C∞(M ×M). Moreover, the fact that D ′(M ×M) is complete
(see Remark 4.1.4) implies that ∆̃ uniquely extends to an element

∆̌ ∈ HomC∞(M)⊗̂πC∞(M)

(
SC∞(M)Γ (J iE)⊗̂πSC∞(M)Γ (J iE),D ′(M ×M)

)
.

As the LCS involving tensor products are metrizable, the previous mapping may be regarded as a morphism

∆̌ ∈ HomC∞(M)⊗̃βC∞(M)

(
SC∞(M)Γ (J iE)⊗̃βSC∞(M)Γ (J iE),D ′(M ×M)

)
.

5.6.5. Inspired by the work of Borcherds, we consider a map ∆̂ =
∑
m,m′∈N0

∆̂m,m
′
, where ∆̂m,m

′
is a morphism

of bornological locally convex C∞(M)⊗̃βm⊗̃βC∞(M)⊗̃βm
′
-modules

∆̂m,m
′

:
(
SC∞(M)Γ (J iE)

)⊗̃βm⊗̃β(SC∞(M)Γ (J iE)
)⊗̃βm′ −→D ′m(M)⊗̃βD ′m′ (M) (5.6.7)

satisfying the next conditions. Note that the codomain of ∆̂m,m
′

is isomorphic to D ′(M)⊗̃βm⊗̃βD ′(M)⊗̃βm
′

by Proposition 4.2.2.

Recall that C∞(M)⊗̂π0 = k, so we may identify the Fréchet algebras C∞(M)⊗̂πm⊗̂πC∞(M)⊗̂π0, C∞(M)⊗̂πm

and C∞(M)⊗̂π0⊗̂πC∞(M)⊗̂πm. Since the involved spaces are metrizable, we may replace the completed
projective tensor products by convenient tensor products, and the usual completions by convenient com-
pletions. Furthermore, setting D ′0(M) = k, we have the isomorphisms of LCS between D ′m(M)⊗̃βD ′0(M),

D ′,m(M) and D ′0(M)⊗̃βD ′m(M). Recall also that (SC∞(M)Γ (J iE))⊗̃β0 = k. Let us define ∆̂m,0 and ∆̂0,m as the

morphisms of bornological locally convex C∞(M)⊗̃βm⊗̃βC∞(M)⊗̃β0-modules and C∞(M)⊗̃β0⊗̃βC∞(M)⊗̃βm-
modules, respectively,

∆̂m,0 :
(
SC∞(M)Γ (J iE)

)⊗̃βm⊗̃β(SC∞(M)Γ (J iE)
)⊗̃β0
−→D ′m(M)⊗̃βD ′0(M)

∆̂0,m :
(
SC∞(M)Γ (J iE)

)⊗̃β0
⊗̃β

(
SC∞(M)Γ (J iE)

)⊗̃βm −→D ′0(M)⊗̃βD ′m(M)
(5.6.8)

given as follows. Using the previous identifications, ∆̂m,0 and ∆̂0,m are defined as the composition of the
counit of (SC∞(M)Γ (J iE))⊗̃βm stated in Corollary 3.9.1, and the canonical inclusion of C∞(M)⊗̃βm inside of
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D ′m(M) as the smooth distributions of Mm. However, we will need later to keep track whether the zero
index appears on the right or the left.

Let us now assume that m,m′ ∈N, and let us define ∆̂m,m
′
. We first note that (1.7.12) and (1.7.14) tell us

that any morphism of the form (5.6.7) is equivalent to a morphism of C∞(M)⊗̃βm ⊗C∞(M)⊗̃βm-modules(
SC∞(M)Γ (J iE)

)⊗̃βm ⊗β (
SC∞(M)Γ (J iE)

)⊗̃βm′ −→D ′m(M)⊗̃βD ′m′ (M), (5.6.9)

which is just the restriction of ∆̂m,m
′

to the domain of (5.6.9). We recall that any morphism of C∞(M)⊗̃βm ⊗
C∞(M)⊗̃βm

′
-modules of the form (5.6.9) is automatically continuous by Proposition 1.6.7. Set now

ddiagm,m′ :Mm ×Mm′ −→
∏

(j,j ′)∈N≤m×N≤m′
(M ×M)

to be the morphism of smooth manifolds given by (ddiagm,m′ (p̄, p̄
′))(j,j ′) = (pj ,p′j ′ ), for all j, j ′ , where p̄ =

(p1, . . . ,pm) ∈Mm and p̄′ = (p′1, . . . ,p
′
m′ ) ∈M

m′ . Define then

∆̂m,m
′
(σ̄1| . . . |σ̄m, τ̄1| . . . |τ̄m

′
) = ddiag∗m,m′

( m∏
j=1

�
m′∏
j ′=1

�∆̃
(
σ̄
j
(j ′), τ̄

j ′

(j)

))
, (5.6.10)

where σ̄1, . . . , σ̄m, τ̄1, . . . , τ̄m
′ ∈ SC∞(M)Γ (J iE), we have replaced tensor products by bars as indicated in No-

tation 5.1.15, the products indexed by j and j ′ are external products of distributions, and we use the

Sweedler notation ∆
(m′′)
SC∞(M)Γ (J iE)

(σ̄ ) = σ̄(1) ⊗C∞(M) · · · ⊗C∞(M) σ̄(m′′) for the coproduct of any element of the

form σ̄ ∈ SC∞(M)Γ (J iE) (see Section 3.1). We will come to the question of the good definition of the previous
expression in 5.6.8.

5.6.6 Fact. Let ∆ ∈ Propi(M,E) be an either continuous or precut propagator. If (v1, . . . , vm,v
′
1, . . . , v

′
m′ ) is in the

wave front set at p̄ of the distribution ∆̂(U ) given in (5.6.7) forU ∈ (SC∞(M)Γ (J iE))⊗̃βm⊗̃β(SC∞(M)Γ (J iE))⊗̃βm
′

and
p̄ = (p1, . . . ,pm,p

′
1, . . . ,p

′
m′ ) ∈M

m+m′ , then −vi ∈Ppi ∪ {0} and v′j ∈Pp′j ∪ {0}, for all i = 1, . . . ,m and j = 1, . . . ,m′ ;
and there exists one pair (i, j) such that −vi ∈Ppi and v′j ∈Pp′j .

The proof of this result is easy, which is somehow an extension of Fact 5.4.9.

5.6.7 Proposition. Let m,m′ ∈ N0. The map ∆̂m,m
′

of bornological locally convex C∞(M)⊗̃βm⊗̃βC∞(M)⊗̃βm
′
-

modules given in (5.6.7) is Sm ×Sm′ -equivariant, where the domain and the codomain have the obvious action of
Sm ×Sm′ by permuting the corresponding tensors.

The proof is a direct consequence of expressions (5.6.8) and (5.6.10), together with the cocommutativity
of the coproduct of (SC∞(M)Γ (J iE))⊗̃βm⊗̃β(SC∞(M)Γ (J iE))⊗̃βm

′
.

5.6.8. Note that the pull-back in (5.6.10) exists due to condition (ii) in the definition of precut propagator,
if ∆ is precut. The pull-back clearly exists if ∆ is continuous, and both definitions agree if ∆ is continuous
and precut by Theorem 4.3.10. We leave to the reader the verification that (5.6.10) is well-defined, i.e. the
expression in the right member of (5.6.10) is independent of the choice of representatives in SΓ (J iE) for
σ̄(1) ⊗C∞(M) · · · ⊗C∞(M) σ̄(m′′). We only indicate that this involves showing that (5.6.10) is C∞(M)-balanced

with respect to the tensor appearing within the elements σ̄(1) ⊗ · · · ⊗ σ̄(m′′) ∈ SΓ (J iE) lifting ∆(m′′)
SC∞(M)Γ (J iE)

(σ̄ ),

and this latter fact follows from the pull-back by ddiagm,m′ .

5.6.9.Remark. Notice that the right hand side of (5.6.10) is a form of “mixed” product: we are taking the
internal product of distributions on some variables and the external product on others. For example,

∆̂1,2(σ̄1, τ̄1|τ̄2) = ddiag∗1,2

(
∆̃(σ̄1

(1), τ̄
1)� ∆̃(σ̄1

(2), τ̄
2)
)
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involves an internal product of the distribution tensor factors corresponding to the first argument of the
propagators and a external product of the distribution tensor factors corresponding to the second argu-
ment.

5.6.10. Note that since each LCS D ′m(M) is a bornological locally convex module over C∞(M)⊗̃βm, for all
m ∈N0, then it is a fortiori a bornological locally convex module over

˜
TC∞(M), by means of the canonical

projection sm considered in 3.3.2. As a consequence,⊕
m,m′∈N0

D ′m(M)⊗̃βD ′m′ (M) =
( ⊕
m∈N0

D ′m(M)
)�2

(5.6.11)

is also a bornological locally convex module over
˜
TC∞(M), by means of the second monoidal structure �

defined in the symmetric 2-monoidal category of modules over
˜
TC∞(M) (see Proposition 3.3.9). We remark

that the action is given by the usual tensor-wise product.

5.6.11. In order to state the next results we introduce the following notation. We recall that δm,m′ is the
Kronecker delta of m,m′ ∈N0. Given m1,m2,m

′ ∈N, let

ddiagm1,m2;m′ :Mm1+m2 ×Mm′ → (Mm1 ×Mm′ )× (Mm2 ×Mm′ )

be the map (p̄, p̄′) 7→ (p̄1, p̄
′ , p̄2, p̄

′), where p̄ = (p̄1, p̄2) with p̄j ∈Mmj and p̄′ ∈Mm′ . The map ddiagm;m′1,m2
:

Mm ×Mm′1+m′2 → (Mm ×Mm′1 )× (Mm ×Mm′2 ) is defined analogously.

Using these two maps we introduce the following partially defined operations ·l and ·r on the object
⊕m,m′∈N0

D ′m(M)⊗̃βD ′m′ (M) regarded in the monoidal category BLCSHD as follows:

(i) the element 1 ∈ k ' k⊗̃βk =D ′0(M)⊗̃βD ′0(M) satisfies that

1 ·lυ = υ ·l1 = δ0,mυ, and 1 ·r υ = υ ·r 1 = δ0,m′υ,

if υ ∈D ′m(M)⊗̃βD ′m′ (M), for m,m′ ∈N0;

(ii) given u ∈D ′m(M)⊗̃βD ′0(M) and v ∈D ′0(M)⊗̃βD ′m′ (M), withm,m′ ∈N, we set u ·lv = v ·lu = 0 = u ·rv =
v ·r u;

(iii) for elements u ∈ D ′0(M)⊗̃βD ′m(M) and v ∈ D ′0(M)⊗̃βD ′m′ (M) (resp., u ∈ D ′m(M)⊗̃βD ′0(M) and v ∈
D ′m′ (M)⊗̃βD ′0(M)), with m,m′ ∈ N, then the partially defined product is given by the expression
(whenever it is defined)

u ·r v = δm,m′uv ∈D ′m(M) 'D ′0(M)⊗̃βD ′m(M)
(
resp., u ·lv = δm,m′uv ∈D ′m(M) 'D ′m(M)⊗̃βD ′0(M)

)
,

whereas u ·lv (resp., u ·r v) is the external product

u � v ∈D ′m+m′ (M) 'D ′0(M)⊗̃βD ′m+m′ (M)
(
resp., u � v ∈D ′m+m′ (M) 'D ′m+m′ (M)⊗̃βD ′0(M)

)
;

(iv) for m1,m2,m
′
1,m

′
2 ∈N, u ∈D ′m1

(M)⊗̃βD ′m′1(M) and v ∈D ′m2
(M)⊗̃βD ′m′2(M), set

u ·lv = δm1,m2
ddiag∗m1;m′1,m

′
2
(u � v), (5.6.12)

and
u ·r v = δm′1,m′2 ddiag∗m1,m2;m′1

(u � v). (5.6.13)

Note that (5.6.12) and (5.6.13) are well-defined whenever the corresponding pull-backs exist.
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We remark that these products ·l and ·r are however not
˜
TC∞(M)-linear for the structure of convenient

locally convex module over
˜
TC∞(M) referred to in (5.6.11).

5.6.12 Definition. Let ∆ ∈ Propi(M,E) be a precut or continuous propagator. Consider the convenient locally
convex

˜
TC∞(M)-module ⊕m,m′∈N0

D ′m(M)⊗̃βD ′m′ (M) mentioned in (5.6.11). Define DA (M) to be the conve-
nient locally convex

˜
TC∞(M)-submodule of ⊕m,m′∈N0

D ′m(M)⊗̃βD ′m′ (M) generated by a finite iteration of appli-
cation of the products ·l and ·r to elements in the image of the maps {∆̂m,m′ }m,m′∈N0

. These products exist by Fact
5.6.6.

Set two structures of convenient locally convex
˜
TC∞(M)-module on ⊕m,m′∈N0

D ′m(M)⊗̃βD ′m′ (M), and thus on
its subspace DA (M), by means of the standard module structures of each of the two tensor factors of the former
space. More precisely,

(i) the left structure of convenient locally convex
˜
TC∞(M)-module is defined as the only one such that, given

υ1 ∈D ′m1
(M), υ2 ∈D ′m2

(M), and f = f1 ⊗ f2 ∈ ˜
TC∞(M) with f1 ∈ C∞(M)⊗̃βm1 ,

(f1 ⊗ f2) · (υ1 ⊗υ2) =
(
f1υ1

)
⊗
(
s0(f2)υ2

)
;

(ii) the right structure of convenient locally convex
˜
TC∞(M)-module is the unique one satisfying that, given

υ1 ∈D ′m1
(M), υ2 ∈D ′m2

(M), and f = f1 ⊗ f2 ∈ ˜
TC∞(M) with f2 ∈ C∞(M)⊗̃βm2 ,

(f1 ⊗ f2) · (υ1 ⊗υ2) =
(
s0(f1)υ1

)
⊗
(
f2υ2

)
.

We recall that the morphism s0 was introduced in 3.3.2.

This definition makes sense as a direct consequence of Fact 5.6.6.

5.6.13. Let j :
˜
TC∞(M)→⊕m∈N0

D ′m(M) be the direct sum of the maps {jm}m∈N0
,

jm : C∞(M)⊗̃βm→D ′m(M),

where j0 is the identity map of k, and, for m ∈N, jm is the canonical inclusion of smooth functions inside
the space of distributions on Mm. It is clear that each jm is continuous (due to Proposition 1.6.7), so j is
also continuous by the universal property of the coproduct, and a morphism of convenient LCS.
5.6.14 Lemma. Let DA (M) be the LCS introduced in Definition 5.6.12. We regard it with the right (resp.,
left) structure of bornological locally convex module over

˜
TC∞(M), in which case we will denote it by DA r(M)

(resp.,DA l(M)). Then,DA r(M) (resp.,DA l(M)) is a unitary algebra in the symmetric monoidal category of
convenient locally convex

˜
TC∞(M)-modules for the tensor product ⊗

˜
TC∞(M), with the product given by ·r (resp.,

·l), and the unit by s0⊗̃βj (resp., j⊗̃βs0), where s0 is defined in 3.3.2.

This result is straightforward to check, and left to the reader
5.6.15 Proposition. The map ∆̂ given in (5.6.10) is a right (resp., left) Laplace pairing on the cocommutative
unitary and counitary bialgebra T̃ SC∞(M)Γ (J iE) defined in Proposition 3.4.6 relative to the framed symmetric 2-
monoidal category

˜
TC∞(M)CMod (see Proposition 3.3.9) and with values on the unitary algebraDA r(M) (resp.,

DA l(M)) introduced in Fact 5.6.14. In particular, we have

∆̂m,m
′
1+m′2(u,v1v2) =

∑
∆̂m,m

′
1(u(1),v1) ·l ∆̂m,m

′
2(u(2),v2), (5.6.14)

and
∆̂m1+m2,m

′
(u1u2,v) =

∑
∆̂m1,m

′
(u1,v(1)) ·r ∆̂m2,m

′
(u2,v(2)), (5.6.15)

for all m,m′ ,m1,m2,m
′
1,m

′
2 ∈ N0, where the sums are indexed as in the following coproducts of the counitary

coalgebras (SC∞(M)Γ (J iE))⊗̃βm
′

and (SC∞(M)Γ (J iE))⊗̃βm, respectively, given by

∆
(SC∞(M)Γ (J iE))⊗̃βm

′ (v) =
∑

v(1) ⊗ v(2) and ∆
(SC∞(M)Γ (J iE))⊗̃βm

(u) =
∑

u(1) ⊗u(2)

(see Corollary 3.9.1).
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The proof is lengthy but straightforward, and it is proved by induction.

5.6.16.Example. To illustrate the previous definition, consider the case referred to in Remark 3.7.6, whereM
is a finite set {x1, . . . ,xN } of N points, E is the trivial line bundle over M and i = 0. Then, A = C∞(M) = X =
Γ (J0E) = kN and D ′(M) = A∗. We denote by ej the N -tuple having zeros except in position j, where it is 1.
Moreover, we fix the linear isomorphism C∞(M) = A ' A∗ =D ′(M) sending ej to the functional ej ′ 7→ δj,j ′ ,
which identifies smooth maps with their corresponding smooth distributions (see 4.1.8). The previous
isomorphism identifies the algebra structure on D ′(M) (for the internal product) with A, which we shall
use from now on. A propagator is just a bilinear map ∆ : A ⊗ A → C or, equivalently, ∆ ∈ HomA⊗A(A ⊗
A,A∗⊗A∗) 'HomA⊗A(A⊗A,A⊗A). Then, SAΓ (J0E) ' SAA ' A⊗k[φ], where φ is an indeterminate and k[φ]
is the polynomial algebra on φ. Note that SAA has the basis {φn(xj ) : n ∈ N0, j ∈ {1, . . . ,N }} over k, where
we write φn(xj ) instead of ej ⊗ φn. This has the counitary coalgebra structure over A for the coproduct
∆SAA : SAA→ SAA⊗A SAA given by

∆SAA

(
φn(xj )

)
=

n∑
`=0

(
n
`

)
φ`(xj )⊗A φn−`(xj ),

and the counit ε : SAA→ A defined as ε(φn(xj )) = δn,0ej (cf. [14], Section 2.1, where SAA is denoted by C,
but it is only regarded as a counitary coalgebra over k). It is a fortiori a counitary coalgebra in the symmetric
monoidal category of modules over µTA in the symmetric monoidal category of vector spaces over k. As
explained in the Proposition 3.4.6, the previous structure induces a unitary and counitary bialgebra on
∆SAA

T (SAA) relative to the framed symmetric 2-monoidal category of modules over T µA (cf. [14], Section
2.1, where the author considers the symmetric construction S(C), which is a subalgebra of T (C)). The
expression (5.6.6) for ∆̃ : SAA⊗ SAA→ A⊗A gives precisely

∆̃
(
φn(xj ),φ

n′ (xj ′ )
)

= δn,n′n!∆
(
φ(xj ),φ(xj ′ )

)
,

which coincides with the one given in [14], Lemma 2.4, and the expression (5.6.10) for ∆̂ : T (SAA) ⊗
T (SAA) → T (A) ⊗ T (A) coincides essentially with the formula appearing in [14], Lemma 2.3. The differ-
ence between our expression and the latter formula is the meaning of the products: in [14], Lemma 2.3, the
author uses the product of k, whereas we use the product of A for the first (resp., second) tensor factors of
expressions of the form ∆(φ(xj ),φ(x`))∆(φ(xj ),φ(xm)) (resp., ∆(φ(x`),φ(xj ))∆(φ(xm),φ(xj ))), and the prod-
uct of T (A) for the second (resp., first) tensor factors. This is compatible with the points on the fields inside
of the propagators.

5.7 Feynman measures

5.7.1 Definition. Following [10], Def. 9, we define a Feynman measure ω as a continuous linear functional
ω : S̃Li,c(M,E)→C satisfying that ω(1S ) = 1.

5.7.2.Remark. Note that the definition means thatω is a continuous linear functional on T̃Li,c(M,E) sending
the unit 1T to 1 and whose restriction toLi,c(M,E)⊗̃βm is invariant under the permutation group Sm, for all
m ∈N. In other words, we may equivalently regard ω as an element of∏

m∈N

(
Hom

(
Li,c(M,E)⊗̃βm,C

))Sm
,

where the homomorphism space is taken in the category CLCSHD .

We also want to stress that, the space of invariants under the action of the group Sm on the space of
morphisms from X⊗C m to Y ⊗C m, where X and Y are objects in a symmetric monoidal categoryC , coincides
precisely with the space of morphisms in C that are also Sm-equivariant between the mentioned tensor
products.
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5.7.3 Definition. Following [10], p. 633, the Feynman propagator ∆ω,F associated with a Feynman measure ω is
given by ∆ω,F =ω|S̃2Li,c(M,E) ◦proj, where proj is the composition of the canonical projection

Γc

(
Vol(M)⊗ J iE

)
⊗̃βΓc

(
Vol(M)⊗ J iE

)
→ S̃2Γc

(
Vol(M)⊗ J iE

)
and the canonical inclusion of the codomain of the previous map inside of S̃2Li,c(M,E), and where we are using
the comments in Definition 5.4.2.

5.7.4. Given a Feynman measure ω, its restriction to (5.3.2) is denoted by ωq,m̄. By (4.2.10) ωq,m̄ is a sym-
metric Fm̄-valued distribution of rank q. More generally, for q ∈ N and a vector bundle F over M con-
structed as a finite direct sum of some of the bundles {SmJ iE}m∈N0

, ω induces an F�q-valued distribution
ωq,F given by applying ω to the sections of F�q. It is easy to see that ωq,F is a sum of certain ωq,m̄. An-
other way to regard these distributions ωq,m̄ or ωq,F associated to the Feynman measure ω is given in the
following result.

5.7.5 Proposition. The convenient vector space of Feynman measures is isomorphic to

Hom
(
S̃+Li,c(M,E),C

)
' Hom

˜
ΣC∞(M)

(
S̃+Li,c(M,E),Hom[

(
˜
ΣC∞(M),C

))
'

∏
m∈N

(
Hom

(
Li,c(M,E)⊗̃βm,C

))Sm
'

∏
m∈N

[
Hom

C∞(M)⊗̃βm

(
Li,c(M,E)⊗̃βm,Hom[

(
C∞(M)⊗̃βm,C

))]Sm
.

(5.7.1)

Proof. Let m ∈ N. Using that S̃mLi,c(M,E) is a unitary convenient locally convex Σ̃mC∞(M)-module, we
obtain the isomorphism

Hom
(
S̃mLi,c(M,E),C

)
' Hom

(
S̃mLi,c(M,E)⊗̃Σ̃mC∞(M)Σ̃

mC∞(M),C
)

' HomΣ̃mC∞(M)

(
S̃mLi,c(M,E),Hom[

(
Σ̃mC∞(M),C

))
,

(5.7.2)

where we have used the adjunction between the convenient tensor product over Σ̃mC∞(M) and the space
of internal homomorphisms. This proves the first isomorphism in (5.7.1).

The second isomorphism was already observed in Remark 5.7.2. Finally, to prove the last isomorphism,
noteLi,c(M,E)⊗̃βm is a unitary convenient locally convexC∞(M)⊗̃βm-module, so the same argument proving
(5.7.2) shows that

Hom
(
Li,c(M,E)⊗̃βm,C

)
' Hom

C∞(M)⊗̃βm

(
Li,c(M,E)⊗̃βm,Hom[

(
C∞(M)⊗̃βm,C

))
, (5.7.3)

for all m ∈N, which in turn implies(
Hom

(
Li,c(M,E)⊗̃βm,C

))Sm
'

[
Hom

C∞(M)⊗̃βm

(
Li,c(M,E)⊗̃βm,Hom[

(
C∞(M)⊗̃βm,C

))]Sm
. (5.7.4)

This proves the proposition. �

5.7.6. We shall denote the S-equivariant (this is usual terminology in the theory of operads) continuous
linear map

T̃ +Li,c(M,E)→
⊕
m∈N

(
C∞(M)⊗̃βm

)′
(5.7.5)

corresponding to a Feynman measure ω under the isomorphism in (5.7.1) by ρω. It is clear that, if L ∈
Li,c(M,E)⊗̃βm, then ρω(L)(f ) = ω(f L), for f ∈ C∞(M)⊗̃βm ' C∞(Mm). Moreover, the continuous linear map

S̃+Li,c(M,E)→
⊕
m∈N

(
Σ̃mC∞(M)

)′
(5.7.6)
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equivalent to a Feynman measure ω under (5.7.1) will be denoted by ρ̄ω. It is clear that ρ̄ω is the linear
map induced by sending L ∈ Li,c(M,E)⊗̃βm to the restriction of ρω(L) to Σ̃mC∞(M). Conversely, ω([L]) =
ρω(L)(1Mm ) if L ∈Li,c(M,E)⊗̃βm, where 1Mm denotes the constant unit function on Mm.

5.7.7. Note that ρω(L)(f ) has compact support included in the support suppm(L) ⊆Mm of L ∈Li,c(M,E)⊗̃βm.
Recall thatC∞(Mm)′ is identified (in the category C∞(Mm)BMod) to the spaceD ′(Mm,Vol(Mm)) of Vol(M)�m-
valued distributions on Mm, and furthermore, by the comments in 4.2.8, the image of the restriction of
(5.7.5) to Σ̃mLi,c(M,E) is included in the space D ′sym,m(M,Vol(M)) of Vol(M)-valued symmetric distribu-

tions on M of rank m. We also remark that, given L ∈Li,c(M,E)⊗̃βm, the support supp(ρω(L)) of ρω(L) is a
symmetric subset of Mm.

5.7.8.Remark. We may canonically extend the map ρω defined in (5.7.5) to a linear map

T̃Li,c(M,E)→
⊕
m∈N0

(
C∞(Mm)

)′
(5.7.7)

that we are also going to denote by ρω, sending 1T ∈Li,c(M,E)⊗̃β0 to the identity map in k′ = (Σ̃0C∞(M))′ ,
and analogously for ρ̄ω. Note that ρω does not factor through S̃Li,c(M,E).

5.7.9 Definition. Following [10], Def. 9, a Feynman measure ω is said to be associated with a precut propaga-
tor ∆ if it satisfies the following conditions:

(1) given any q ∈ N and m̄ = (m1, . . . ,mq) ∈ N
q
0, if (v1, . . . , vq) ∈ WF(p,...,p)(ι(ωq,m̄)) for some p ∈ M, then

v1 + · · ·+ vq = 0;

(2) there is a nowhere vanishing function f ∈ C∞(M) satisfying that ω(θ) =
∫
M
f θ, for all θ ∈ L 0

i,c(M,E) =
Γc(Vol(M));

(3) given any m′ ,m′′ ∈N, L′ ∈Li,c(M,E)⊗βm
′

and L′′ ∈Li,c(M,E)⊗βm
′′
, whose quotients in Sm

′
Li,c(M,E) and

in Sm
′′
Li,c(M,E) are denoted by [L′] and [L′′] respectively, such that(

πj ′
(
suppm′ ([L

′])
)
×πj ′′

(
suppm′′ ([L

′′])
))
∩ �= ∅

for all j ′ ∈ {1, . . . ,m′} and j ′′ ∈ {1, . . . ,m′′}, where πj ′ : Mm′ → M denotes the canonical projection and
analogously for πj ′′ :Mm′′ →M, then the products of distributions on Mm′+m′′ appearing in the sum below
are defined and they give

ρω(L′L′′) =
∑(

ρω(L′(0))� ρω(L′′(0))
)
∆̂m

′ ,m′′ (L′(1),L
′′
(1)), (5.7.8)

where ∆̂ is the extension of ∆ in (5.6.7), T̃ m′δr (L′) = L′(0)⊗C∞(M)⊗̃βm
′ L′(1) and T̃ m′′δr (L′′) = L′′(0)⊗C∞(M)⊗̃βm

′′

L′′(1) are the expressions of the right coactions described in Proposition 3.4.7. The right member of (5.7.8)
is clearly independent of the choice of L′ and L′′ , for fixed [L′] and [L′′] (see Remark 5.7.12). We note that
∆̂m

′ ,m′′ (L′(1),L
′′
(1)) is inD ′m(M)⊗̃βD ′m′ (M), whereas ρω(L′(0))� ρω(L′′(0)) is a Vol(M)�(m′+m′′)-valued distribu-

tion on Mm′+m′′ .

We will denote by F∆ the set of Feynman measures associated with a precut propagator ∆. The good definition
of the products of distribution appearing in (5.7.8) is given by Lemma 5.7.14.

5.7.10.Remark. By Proposition 4.1.10 and Fact 4.3.2, we see that condition (1) is tantamount to the fact that,
if (v1, . . . , vq) ∈WF(p,...,p)(ρω(L)) = WF(p,...,p)(ρ̄ω([L])) for some p ∈M and L ∈ Li,c(M,E)⊗̃βq, with q ∈N, then
v1 + · · ·+ vq = 0.
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5.7.11.Remark. Note that the use of Sweedler’s notation on the right member of (5.7.8) makes sense because
∆̂m

′ ,m′′ is C∞(M)⊗̃βm
′
⊗C∞(M)⊗̃βm

′′
-linear (see (5.6.7)), ρω |Li,c(M,E)⊗̃βm

is C∞(M)⊗̃βm-linear, and the product

of distributions appearing in the right member of (5.7.8) is C∞(M)⊗̃βm-balanced.

5.7.12.Remark. To prove the independence of the right member of (5.7.8) with respect to the choice of L′ and
L′′ , Remark 5.7.2 implies that it suffices to check that the right member of (5.7.8) is Sm′ ×Sm′′ -equivariant.
The claim follows from the explicit expression of the coaction of L′ and L′′ described in Proposition 3.4.7,
which is equivariant with respect to permutations, the fact that ρω |Li,c(M,E)⊗̃βq

is Sq-equivariant for all q ∈N

(see Proposition 5.7.5), and that ∆̂m
′ ,m′′ is Sm′ ×Sm′′ -equivariant (see Proposition 5.6.7).

5.7.13.Remark. Recall the canonical extension of ρω explained in Remark 5.7.8. We see that the condi-
tion given in item (3) of Definition 5.7.9 is equivalent to the same expression where we further allow
m′ ,m′′ ∈ N0. Indeed, if either m′ = 0 or m′′ = 0, then any pair of elements [L′] ∈ S̃m′Li,c(M,E) and
[L′′] ∈ S̃m′′Li,c(M,E) satisfy the condition about the supports, and (5.7.8) is trivially verified, as we now
show. Suppose m′ = 0 and thus [L′] = 1S without loss of generality. Hence, the coaction on it is trivial, so
T̃ m′δr (L′) = L′(0) ⊗C∞(Mm′ ) L

′
(1) = 1S ⊗ 1, using that C∞(M)⊗̃β0 = k and (SC∞(M)Γ (J iE))⊗̃β0 = k. Then,∑(

ρω(1S )� ρω(L′′(0))
)
∆̂0,m′′ (1,L′′(1)) =

∑
ρω(L′′(0))εΣ̃m′′C∞(M)(L

′′
(1)) = ρω(L′′) = ρω(L′L′′), (5.7.9)

where we have used the definition of ∆̂0,m′′ given in (5.6.8).

5.7.14 Lemma. Let ω be a Feynman measure associated with a precut propagator ∆ with family of proper closed
convex cones {Pp}p∈M , [L] ∈ SmLi,c(M,E) with m ∈N, p̄ = (p1, . . . ,pm) ∈Mm and v̄ = (v1, . . . , vm) ∈ T ∗p̄Mm. If
v̄ ∈WFp̄(ρω(L)), then

v̄ <
( m∏
i=1

(
−Ppi ∪ {0}

))
∪

( m∏
i=1

(
Ppi ∪ {0}

))
. (5.7.10)

As a consequence, the products of distributions appearing in (5.7.8) are defined.

This result is claimed in the first paragraph of p. 633 in [10], without proof.

Proof. We prove the last part first. Assume thus that (5.7.10) holds. We will prove that the products
appearing in (5.7.8) are defined, so assume the notation of that equation. We suppose first that [L′] ∈
Sm

′
Li,c(M,E) and [L′′] ∈ Sm′′Li,c(M,E). By (4.5.1), any vector v̄ = (v1, . . . , vm′+m′′ ) of the wave front set of

the symmetrized external tensor product ρω(L′(0)) �S ρω(L′′(0)) in (5.7.8) satisfies also (5.7.10). Fact 5.6.6
together with (4.5.2) tell us in turn that the products of distributions in (5.7.8) are defined. Finally, since
SmLi,c(M,E) is dense in S̃mLi,c(M,E) for all m ∈N, the good definition of (5.7.8) follows directly from the
obvious continuity of the left and right expressions there.

We will now prove the first statement of the lemma by induction on m. If m = 1 then the wave front set
of ρω(L) is empty (by Definition 5.7.9, (1)), and the claim is immediate. We suppose now that the lemma
has been proved for all positive integers strictly less than m ≥ 2. If p̄ lies in the diagonal of Mm, then
the statement follows from Definition 5.7.9, (1), applied to ρω(L), taking into account that v̄ ∈WFp̄(ρω(L))
implies that v̄ , 0. If p̄ does not lie in the diagonal of Mm, then (5.1.2) implies that there exists (J ′ , J ′′) ∈
Par(m,2) such that p̄ ∈ UJ ′ ,J ′′ . Let m′ = #(J ′). We may assume without loss of generality that J ′ = {1, . . . ,m′}
and J ′′ = {m′ + 1, . . . ,m}. Since UJ ′ ,J ′′ is open, there exist open sets U ′ ⊆ Mm′ and U ′′ ⊆ Mm′′ such that
p̄ ∈ U ′ ×U ′′ ⊆ UJ ′ ,J ′′ . By multiplying if necessary by a symmetric function f ∈ C∞(Mm) such that f (p̄) ,
0 and whose support is included in ∪ς∈Smς(U ′ × U ′′) –because this does not change the wave front set
of ρω(L) at p̄– we may assume that [L] has support included in ∪ς∈Smς(U ′ ×U ′′). As the canonical map
Sm

′
Li,c(M,E) ⊗ Sm′′Li,c(M,E) → SmLi,c(M,E) is surjective, we may even assume that L is a finite sum∑

j∈J L
′
jL
′′
j , with [L′j ] ∈ S

m′Li,c(M,E) and [L′′j ] ∈ Sm′′Li,c(M,E) such that the support of [L′j ] is included in U ′

and that of [L′′j ] is included inU ′′ . Hence, [L′j ] and [L′′j ] satisfy the hypotheses of Definition 5.7.9, (3). By the
inductive hypothesis applied to ρω(L′j ) and ρω(L′′j ), any vector in the wave front set of any of them satisfies
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(5.7.10). As explained at the beginning of the proof, this implies that the expression (5.7.8) is defined for
Lj = L′jL

′′
j . This latter expression of ρω(L) in terms of ρω(L′j ) and ρω(L′′j ) together with (4.5.2) and Fact 5.6.6

yield that the elements of the wave front set of ρω(Lj ) also satisfy (5.7.10), for all j ∈ J . Since the wave front
set of a finite sum is included in the union of the wave front sets of the summands, the wave front set of
ρω(L) also satisfies (5.7.10). The lemma is thus proved. �

5.7.15.Remark. We note that the previous condition (5.7.8) is a form of Wick’s theorem, where one computes
the S-matrix in terms of Feynman diagrams. Indeed, consider the situation analyzed in Example 5.6.16.
From [14], Lemma 2.11 and Prop. 2.13 and the nice explanations in Section 2.7 of that article, combined
with our description of ∆̂ given in the previous example, we see that (5.7.8) is precisely the expansion of
the S-matrix in terms of Feynman diagrams.

5.8 Renormalization

5.8.1. We recall that SC∞(M)Γ (J iE) is a canonical commutative and cocommutative unitary and counitary
bialgebra in the symmetric monoidal category C∞(M)BMod (see Section 3.1). Given any bornological locally
convexC∞(M)-moduleX, then Y = X⊗C∞(M)SC∞(M)Γ (J iE) is a (cosymmetric bi)comodule over SC∞(M)Γ (J iE)
for the regular coaction(s), in the symmetric monoidal category of bornological locally convex C∞(M)-
modules. Since SC∞(M)Γ (J iE) is a bialgebra, the (symmetric or not) tensor products of Y over C∞(M)
are also (cosymmetric bi)comodules over SC∞(M)Γ (J iE) and thus S+

C∞(M)Y (or SC∞(M)Y ) is a (cosymmetric
bi)comodule as well. This applies in particular to X given by Γ (Vol(M)) or Γc(Vol(M)).
5.8.2 Definition. Following [10], Def. 10, we introduce the following notions. For a QFT background (M,E) of
order i, the group of renormalizations (resp., of compact support) Gi(M,E) (resp., Gi,c(M,E)) is the group of
automorphisms of the conilpotent cofree noncounitary coalgebra S+

C∞(M)Li(M,E) (resp., S+
C∞(M)Li,c(M,E)) in the

symmetric monoidal category C∞(M)BMod that are also morphisms of comodules over the coaugmented coalgebra
SC∞(M)Γ (J iE) in C∞(M)BMod.
5.8.3.Remark. Using the usual equivalence between coaugmented coalgebras and noncounitary coalgebras
(see [66], 2.1.2), it is clear that Gi(M,E) (resp., Gi,c(M,E)) is the group of automorphisms of the conilpo-
tent cofree coaugmented coalgebra SC∞(M)Li(M,E) (resp., SC∞(M)Li,c(M,E)) in the symmetric monoidal
category C∞(M)BMod whose restriction to S+

C∞(M)Li(M,E) (resp., S+
C∞(M)Li,c(M,E)) are also morphisms of

comodules over the coaugmented coalgebra SC∞(M)Γ (J iE) in C∞(M)BMod. We will use this identification
without further explanation.
5.8.4.Remark. Note that what we have called group of renormalizations is what Borcherds calls the ultra-
violet group in [10], Def. 10, even though he also refers to it there as “the group of renormalizations”. As
it is remarked in the third paragraph of p. 633 of [10], this group does not coincide with the usual def-
inition of “renormalization group” in physics, even though it is (essentially) what other authors call the
“Stückelberg-Petermann renormalization group” (see for instance [18], pp. 19–20). We also remark that
the previous definition of group of renormalizations is of local nature, since it is used in the typical process
in Quantum Field Theory of introducing local counterterms in the Lagrangian.
5.8.5 Proposition. The morphism

Gi(M,E)→HomC∞(M)

(
S+
C∞(M)Li(M,E),Γ

(
Vol(M)

))
(5.8.1)

sending g ∈ Gi(M,E) to (idΓ (Vol(M)) ⊗C∞(M) εSC∞(M)Γ (J iE)) ◦ p1 ◦ g, where p1 : S+
C∞(M)Li(M,E)→Li(M,E) is the

canonical projection, is a bijection onto the subset of the codomain of (5.8.1) formed by the elements θ satisfying
that their restriction to Γ (Vol(M)) ⊗C∞(M) S

0
C∞(M)Γ (J iE) ' Γ (Vol(M)) is an isomorphism. The analogous result

holds for Gi,c(M,E), where one should considerLi,c(M,E) and Γc(Vol(M)) instead.

This result is a special case of the general theory of conilpotent cofree coaugmented coalgebras and
cofree counitary comodules recalled in Section 3.1.
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5.8.6. An easy and useful consequence of the previous result together with (3.1.2) is that any element
g ∈ Gi(M,E) satisfies that, given any m ∈N,

g
(
SmC∞(M)Li(M,E)

)
⊆

m⊕
m′=1

Sm
′

C∞(M)Li(M,E). (5.8.2)

Note that SC∞(M)Li(M,E) (resp., SC∞(M)Li,c(M,E)) can be decomposed as the direct sum of the spaces
of sections (resp., of compact support) of the vector bundles over M given by(

Vol(M)⊗ Sm1J iE
)

s . . . s
(
Vol(M)⊗ Smq J iE

)
, (5.8.3)

indexed by q ∈ N0 and m̄ = (m1, . . . ,mq) ∈ N
q
0. Define the support of σ ∈ SC∞(M)Li(M,E) (resp., σ ∈

SC∞(M)Li,c(M,E)) to be the subset of M given as the union of the supports of its finite components in
(5.8.3).

By 3.12.1, we have the following maps

S̃+Li(M,E)→ S+
C∞(M)Li(M,E) (5.8.4)

and
S̃+Li,c(M,E)→ S+

C∞(M)Li,c(M,E). (5.8.5)

They are compatible in the sense that

S̃+Li,c(M,E) //

��

S+
C∞(M)Li,c(M,E)

��
S̃+Li(M,E) // S+

C∞(M)Li(M,E)

is commutative, where the left vertical map is the convenient completion of the inclusion S+Li,c(M,E)→
S+Li(M,E) and the right vertical map is the canonical inclusion. Notice that S̃+Li(M,E) and S̃+Li,c(M,E)
are bornological locally convex Σ̃C∞(M)-modules (see Fact 3.9.6), and the definition of Σ̃C∞(M) tells us that
same holds for S+

C∞(M)Li(M,E) and S+
C∞(M)Li,c(M,E). Moreover, the maps (5.8.4) and (5.8.5) are morphisms

of bornological locally convex Σ̃C∞(M)-modules.

Also note that the restriction to S+
C∞(M)Li,c(M,E) induces a canonical morphism of groups

Gi(M,E)→ Gi,c(M,E). (5.8.6)

Indeed, if A ∈ S+
C∞(M)Li,c(M,E), choose f ∈ C∞c (M) such that f |supp(A) ≡ 1. Hence, given any g ∈ Gi(M,E),

we have that g(A) = g(f A) = f g(A), which has compact support (included in the support of f ). Using
Proposition 2.2.5 and Proposition 5.8.5, we see that (5.8.6) is injective.

5.8.7 Lemma. There is a morphism of groups

η : Gi,c(M,E)→ AutCog(CLCSHD )

(
S̃+Li,c(M,E)

)
, (5.8.7)

where the codomain is the set of automorphisms of the conilpotent cofree noncounitary coalgebra S̃+Li,c(M,E) in
the symmetric monoidal category CLCSHD . Furthermore, η(g)(S̃+Li,K (M,E)) ⊆ S̃+Li,K (M,E), for all compact
subsets K ⊆M, and η(g)(L′L′′) = η(g)(L′)η(g)(L′′), if L′ ∈ S̃+Li,K ′ (M,E) and L′′ ∈ S̃+Li,K ′′ (M,E) with K ′∩K ′′ =
∅.
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This result is stated in [10] as Lemma 14, but the proof there does not seem clear to us. We refer to
Chapter 3 for the structures appearing in it. Moreover, the author of the mentioned reference states that
η(g) should be a morphism of comodules over SC∞(M)Γ (J iE), but as explained in Section 3.5 we cannot
understand this condition in any sensible way. On the other hand, we have also added the fact that the
group of renormalizations “preserves the support”, which was somehow implicit in [10].

Proof. The mapping (5.8.7) is defined as follows. Given g ∈ Gi,c(M,E), consider p1 ◦ g : S+
C∞(M)Li,c(M,E)→

Li,c(M,E), where p1 : S+
C∞(M)Li,c(M,E)→ Li,c(M,E) is the canonical projection. Note that p1 ◦ g is a mor-

phism of C∞(M)-modules, so in particular it is k-linear. The composition of (5.8.5) with p1 ◦ g gives a
k-linear map g̃ : S̃+Li,c(M,E)→ Li,c(M,E), which is continuous by the same reason as the one for (5.8.5).
Set η(g) as the unique endomorphism of the conilpotent cofree noncounitary coalgebra S̃+Li,c(M,E) (in the
symmetric monoidal category LCScHD ) such that p̃1 ◦ η(g) = g̃, where p̃1 : S̃+Li,c(M,E)→ Li,c(M,E) is the
canonical projection. Taking into account that g̃ |Li,c(M,E) = (p1 ◦ g)|Li,c(M,E) is an isomorphism of C∞(M)-
modules, it is a fortiori one of vector spaces. Since it is continuous and Li,c(M,E) is an (LF)-space, then it
is an isomorphism of LCS spaces (see [95], III.2.2), which, by the properties of the conilpotent coalgebra
recalled in Section 3.1, implies that η(g) is an isomorphism as well. The fact that η(g ◦ g ′) = η(g) ◦ η(g ′), for
all g,g ′ ∈ Gi,c(M,E), follows directly from the (3.1.2).

The part concerning the support follows directly from the fact that map (5.8.5) is of Σ̃C∞(M)-modules
and from (3.1.2). In order to prove the last statement it suffices to show it under the additional assumption
that [L′] ∈ S+Li,K ′ (M,E) and [L′′] ∈ S+Li,K ′′ (M,E) with K ′ ∩ K ′′ = ∅, because η(g) is a continuous map
and the product of S̃+Li,c(M,E) is (jointly) continuous. We may further assume that [L′] = `′1 s . . . s `′q′
and [L′′] = `′′1 s . . . s `′′q′′ are elementary tensor expressions belonging to spaces of the form (5.3.3), where
q,q′ ∈N, supp1(`′j ′ ) ⊆ K

′ for all j ′ = 1, . . . , q′ and supp1(`′′j ′′ ) ⊆ K
′′ for all j ′′ = 1, . . . , q′′ . By (3.1.2) and using

the notation explained there, we can write

η(g)
(
[L′][L′′]

)
=

∑
m∈N

1
m!
g̃⊗m ◦∆(m)

S+Li,c(M,E)

(
[L′][L′′]

)
︸                             ︷︷                             ︸

tm

.

The hypothesis K ′ ∩K ′′ = ∅ implies that g̃ vanishes on any product containing factors `′j ′ and `′′j ′′ , for some
j ′ and j ′′ , which in particular implies that t1 = 0. Using this and the explicit expression of the coproduct of
S+Li,c(M,E) we see that

tm =
m−1∑
m′=1

(
m
m′

)
t′m′ t

′′
m−m′ , (5.8.8)

where

t′m′ = g̃⊗m
′
◦∆(m′)

S+Li,c(M,E)

(
[L′]

)
and t′′m′′ = g̃⊗m

′′
◦∆(m′′)

S+Li,c(M,E)

(
[L′′]

)
, (5.8.9)

and we recall that we are omitting in (5.8.8) and (5.8.9) the canonical projection of the tensor algebra onto
the symmetric algebra, according to the conventions explained in 3.1.2. Hence,

η(g)
(
[L′][L′′]

)
=

∑
m∈N

1
m!

m−1∑
m′=1

(
m
m′

)
t′m′ t

′′
m−m′

=
( ∑
m′∈N

1
m′!

g̃⊗m
′
◦∆(m′)

S+Li,c(M,E)

(
[L′]

))( ∑
m′′∈N

1
m′′!

g̃⊗m
′′
◦∆(m′′)

S+Li,c(M,E)

(
[L′′]

))
= η(g)

(
[L′]

)
η(g)

(
[L′′]

)
,

(5.8.10)

as was to be shown. The proposition is thus proved. �
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5.8.8. Following [10], Section 2, given m ∈N0 define Gi,≥m(M,E) as the subset formed by the elements g ∈
Gi(M,E) satisfying that g |S̃m′C∞(M)Li,c(M,E) = idS̃m′C∞(M)Li,c(M,E) for allm′ = 1, . . . ,m. It is clear that Gi,≥m+1(M,E) ⊆
Gi,≥m(M,E) and that Gi,≥m(M,E) is a subgroup of Gi(M,E) for allm ∈N0. Notice that Gi,≥0(M,E) = Gi(M,E).
Using Proposition 5.8.5 it is fairly straightforward (but rather lengthy) to prove that Gi,≥m(M,E) is a normal
subgroup of Gi(M,E) and that the linear topology on it defined by {Gi,≥m(M,E)}m∈N0

is complete, but we
will not need it. Instead we will use the two following simpler results (cf. [10], Lemma 13).

5.8.9 Lemma. Consider (g−m)m∈N0
, where g−m ∈ Gi,≥m(M,E). Then, for any element σ ∈ S+

C∞(M)Li(M,E), the
sequence ((g−m ◦ · · · ◦ g0)(σ ))m∈N0

is eventually constant and it defines an element of S+
C∞(M)Li(M,E), denoted by

g(σ ). Moreover, the map σ 7→ g(σ ) belongs to Gi(M,E).

Proof. Property (5.8.2) tells us that ((g−m ◦ · · · ◦g0)(σ ))m∈N0
is constant for all m ≥m′ , if σ ∈ Sm′C∞(M)Li(M,E).

Since Sm
′

C∞(M)Li(M,E) is a subcoalgebra of S+
C∞(M)Li(M,E) and g−m ◦ · · · ◦ g0 is a morphism of coalgebras

in C∞(M)BMod, its restriction to Sm
′

C∞(M)Li(M,E) is a morphism of coalgebras in C∞(M)BMod, which in

turn implies the same holds for g. Similarly, using that Sm
′

C∞(M)Li(M,E) is a SC∞(M)Γ (J iE)-subcomodule
of S+

C∞(M)Li(M,E) in the symmetric monoidal category C∞(M)BMod and that g−m ◦ · · · ◦ g0 is a morphism

of SC∞(M)Γ (J iE)-comodules in C∞(M)BMod, we see that g is a morphism of SC∞(M)Γ (J iE)-comodules in
C∞(M)BMod as well.

Finally, g is an element of Gi(M,E). Indeed, this follows from Proposition 5.8.5 taking into account
that (5.8.2) tells us that (idΓ (Vol(M)) ⊗C∞(M) εSC∞(M)Γ (J iE)) ◦ p1 ◦ g |Γ (Vol(M)) coincides with the isomorphism
(idΓ (Vol(M))⊗C∞(M)εSC∞(M)Γ (J iE))◦p1◦g0|Γ (Vol(M)), where p1 : S+

C∞(M)Li(M,E)→Li(M,E) denotes the canonical
projection. �

5.8.10. The element g constructed in the previous result is called the infinite product of (g−m)m∈N0
, and it is

denoted by
0∏

m=−∞
gm.

Given m ∈ N0, define Gi,m(M,E) as the subset formed by the elements g of Gi,≥m(M,E) such that the re-
striction of (idΓ (Vol(M)) ⊗C∞(M) εSC∞(M)Γ (J iE)) ◦ p1 ◦ g to Sm

′

C∞(M)Li(M,E) vanishes if m′ ∈ N≥2 \ {m + 1}, and
its restriction to Li(M,E) is idΓ (Vol(M)) ⊗C∞(M) εSC∞(M)Γ (J iE) if m ∈N. Using Proposition 5.8.5 we see easily
that Gi,0(M,E) is the subgroup of Gi(M,E) formed by the elements g satisfying that g(SmC∞(M)Li,c(M,E)) ⊆
SmC∞(M)Li,c(M,E) for all m ∈N. However, Gi,m(M,E) is not a subgroup of Gi(M,E) for all m ∈N (cf. para-
graph before Lemma 13 in [10]), because even the composition of two elements of Gi,m(M,E) is not in
Gi,m(M,E). Moreover, by Proposition 5.8.5 it is clear that, for all m ∈ N0, any element g ∈ Gi,≥m(M,E) is
uniquely written as g ′ ◦ g ′′ with g ′ ∈ Gi,≥m+1(M,E) and g ′′ ∈ Gi,m(M,E). A direct consequence of Lemma
5.8.9 and the previous statement is the following result.

5.8.11 Lemma. Given g ∈ Gi(M,E), there exists a unique sequence (g−m)m∈N0
, with g−m ∈ Gi,m(M,E), such that

g =
0∏

m=−∞
gm.

5.9 Meromorphic families of propagators, Feynman measures and renormalizations

5.9.1. In this section we shall introduce the notion of meromorphic family of Feynman measures, and
meromorphic family of renormalizations, that will be used in the sequel. They are implicit in [10].
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5.9.2. We recall that, if X is a complex complete reflexive LCS and Ω ⊆ Cm is an open subset, an X-valued
function f : Ω ⊆ C→ X is called holomorphic if for all λ ∈ X ′ the induced map 〈λ,f 〉 : Ω→ C defined as
z 7→ λ(f (z)) is holomorphic (see [58], 1.1). If m = 1, and given any point z0 ∈ C such that B(z0, r) \ {z0} ⊆Ω
for some r > 0, we say that z0 is a pole of f if there is m ∈ N0 such that (z − z0)m〈λ,f 〉 has a removable
singularity at z0 for all λ ∈ X ′ . Finally, f is called meromorphic if, for all λ ∈ X ′ , 〈λ,f 〉 is meromorphic,
and any pole z0 of 〈λ,f 〉 is also a pole of f (see [58], 1.4). In case X = Γc(E∗ ⊗Vol(M))′ we say that f is a
distribution valued meromorphic function on Ω. If X = (Γc(Vol(M)⊗ J iE)⊗̃βΓc(Vol(M)⊗ J iE))′ , we will say that
we have a meromorphic family of propagators on Ω.

5.9.3 Definition. Let r 7→ ωr be a map defined on an open set Ω ⊆ C, where ωr : S̃Li,c(M,E)→ C is a Feynman
measure, for all r ∈ Ω. We say that it is holomorphic (resp., meromorphic) if, given any m ∈ N, the map
r 7→ωr |S̃mLi,c(M,E) is holomorphic (resp., meromorphic) on Ω.

We say that meromorphic family of Feynman measures r 7→ωr defined on an open setΩ ⊆C is associated with
a meromorphic family of propagators r 7→ ∆r also defined on Ω, if is ωr associated with ∆r for all r ∈Ω.

5.9.4 Definition. Let r 7→ gr be a map defined on an open set Ω ⊆ C, where gr ∈ Gi(M,E) is a renormalization,
for all r ∈ Ω. We say that it is holomorphic (resp., meromorphic) if, given any m ∈ N, the induced map
(idΓ (Vol(M)) ⊗C∞(M) εSC∞(M)Γ (J iE)) ◦ p1 ◦ gr |SmC∞(M)Li (M,E) stated in Proposition 5.8.5, regarded as a map from Ω to

X = SmC∞(M)Li(M,E)~ ⊗C∞(M) Γ (Vol(M)), is holomorphic (resp., meromorphic) on Ω.

5.9.5 Fact. Given an open set Ω ⊆ C, the set formed by the holomorphic (resp., meromorphic) families of renor-
malizations r 7→ gr ∈ Gi(M,E) defined on Ω forms a group for the pointwise composition r 7→ gr1 ◦ g

r
2 of r 7→ gr1

and r 7→ gr2.

This result is a direct consequence of the explicit expression of the product and the inverse of elements
of Gi(M,E) deduced from the results recalled in Section 3.1.

5.9.6 Fact. Given a sequence (gr−m)m∈N0
, where r 7→ gr−m is a meromorphic family of renormalizations defined on

the open set Ω with gr−m ∈ Gi,m(M,E) for all m ∈N0, then the element

gr =
0∏

m=−∞
grm

defined for every fixed r ∈Ω is a meromorphic family of renormalizations on Ω.

Proof. The fact that gr is uniquely defined for every r ∈ Ω follows from Lemma 5.8.9. To prove the re-
maining statements we will use the notation of Definition 5.9.4. Since, given any m ∈N, the induced map
(idΓ (Vol(M))⊗C∞(M)εSC∞(M)Γ (J iE))◦p1◦gr |SmC∞(M)Li (M,E) clearly coincides with the composition of the restriction

to SmC∞(M)Li(M,E) of the finite product
∏0
m′=−m g

r
m′ and (idΓ (Vol(M))⊗C∞(M)εSC∞(M)Γ (J iE))◦p1, the meromorphic

property follows from the previous Fact 5.9.5. �
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Chapter 6

The first main result: The simply transitive action of the
group of renormalizations

6.0.1. The composition of (5.8.6) and (5.8.7) gives an action (by coalgebra automorphisms in the category
CLCSHD ) of the group of renormalizations Gi(M,E) on the space S̃+Li,c(M,E), which we denote by g · [L],
where g ∈ Gi(M,E) and [L] ∈ S̃+Li,c(M,E). By Remark 5.8.3, this action of Gi(M,E) can be canonically
extended to S̃Li,c(M,E), and we will also denote it by g · [L]. This induces the dual action on the space of
its unitary continuous functionals, i.e. on the space of Feynman measures. We shall denote the action of
g ∈ Gi(M,E) on ω ∈ (S̃Li,c(M,E))′ simply by g ·ω, i.e. (g ·ω)([L]) = ω(g−1 · [L]).
6.0.2 Lemma. Let [L] ∈ S̃mLi,c(M,E), with m ∈N, f ∈ Σ̃mC∞(M), and g ∈ Gi(M,E). Assume the conventions
and notation in the proof of Lemma 5.8.7, and to shorten the notation set g= g−1. We have the identity

ρ̄g·ω
(
[L]

)
(f ) =

m∑
m′=1

∑
T ∈Par(m,m′)

ρω

[
g̃⊗̃βm

′
(
µ̃TLi,c(M,E)

(
[L]

))](
µ̃TC∞(M),pro(f )

)
=

m∑
m′=1

∑
T ∈Par(m,m′)

(diagT )∗
{
ρω

[
g̃⊗̃βm

′
(
µ̃TLi,c(M,E)

(
[L]

))]}
(f ),

(6.0.1)

where diagT : Mm′ →Mm is given by (5.1.6), g̃j is the restriction of g̃ to S̃jLi,c(M,E), µ̃TLi,c(M,E) is defined in

5.1.8, and the map µ̃TC∞(M),pro : C∞(M)⊗̃βm→ C∞(M)⊗̃βm
′

is given in 5.1.10.

Proof. By continuity of the expressions in (6.0.1), it suffices to prove them for L given by an elementary
tensor `1| . . . |`m, where `1, . . . , `m ∈Li,c(M,E), and f =

∑
ς∈Sm fς(1)| . . . |fς(m), with f1, . . . , fm ∈ C∞(M). We have

ρ̄g·ω
(
[L]

)
(f ) = (g ·ω)

(
[L]f

)
=ω

(
g−1 ·

(
[L]f

))
=ω

( m∑
m′=1

1
m′!

g̃⊗̃βm
′
◦∆(m′)

S̃+Li,c(M,E)

(
[L]f

))
=ω

( m∑
m′=1

∑
T ∈Par(m,m′)

g̃⊗̃βm
′
◦ µ̃TLi,c(M,E)

(
[L]f

))
=ω

[ m∑
m′=1

∑
T ∈Par(m,m′)

g̃⊗̃βm
′
(
µ̃TLi,c(M,E)

(
[L]

)
f
)]

=ω
[ m∑
m′=1

∑
T ∈Par(m,m′)

g̃⊗̃βm
′
(
µ̃TLi,c(M,E)

(
[L]

))
µ̃TC∞(M),pro(f )

]

=
m∑

m′=1

∑
T ∈Par(m,m′)

ρω

[
g̃⊗̃βm

′
(
µ̃TLi,c(M,E)

(
[L]

))](
µ̃TC∞(M),pro(f )

)
,

(6.0.2)

where we have used Lemma 5.1.9 in the fifth identity, and the definition of g̃ in the sixth equality. This
proves the first identity of (6.0.1), whereas the second follow from the definition of push-forward and
Lemma 5.1.12. The lemma is thus proved. �

105



6.0.3.Remark. We stress that the hypothesis in (6.0.1) stating that f ∈ Σ̃mC∞(M) is essential. Indeed, our
inability to find a similar expression as in (6.0.1) for general f ∈ C∞(M)⊗̃βm is a shadow of the fact that we
cannot express [Lf ] in terms of [L] and f , and we cannot regard the action of the group of renormalizations
at the level of the tensor algebra T̃Li,c(M,E).

6.0.4. The following result is the first part of [10], Thm. 15, which we have decided to decouple into two
for clarity. We give a complete proof of it, which seems very different from that of Borcherds.
6.0.5 Proposition. Let∆ be a local precut propagator. Then the action of the group Gi(M,E) on the set of Feynman
measures restricts to an action on the set F∆ of Feynman measures associated with ∆.

Proof. We have to show that the action of Gi(M,E) leaves the subsetF∆ fixed inside of the set of all Feynman
measures. Let g ∈ Gi(M,E) and ω ∈ F∆. We will first prove that g respects condition (2) of Definition 5.7.9.
Since the restriction of (idΓ (Vol(M)) ⊗C∞(M) εSC∞(M)Γ (J iE)) ◦p1 ◦ g−1 to Γ (Vol(M)) is an isomorphism of C∞(M)-
modules (see Proposition 5.8.5) and Γ (Vol(M)) is isomorphic to C∞(M) as C∞(M)-modules (see 4.1.1), the
former restriction is given by multiplying with a nonvanishing function h ∈ C∞(M). Hence, the condition
ω(θ) =

∫
M
f θ, for θ ∈ Γc(Vol(M)) implies that (g ·ω)(θ) =

∫
M
hf θ, so (g ·ω) satisfies condition (2) of Definition

5.7.9.

We will prove that g ·ω satisfies condition (1) of Definition 5.7.9. Assume the conventions and notation
in the proof of Lemma 5.8.7. By Remark 5.7.10, it suffices to show that if (v1, . . . , vm) ∈WF(p,...,p)(ρ̄g·ω([L]))
for some p ∈M and [L] ∈ S̃mLi,c(M,E), with m ∈N, then v1 + · · ·+ vm = 0. Let f ∈ Σ̃mC∞(M). To shorten the
notation set g= g−1. By Lemma 6.0.2, we have

ρ̄g·ω
(
[L]

)
(f ) =

m∑
m′=1

∑
T ∈Par(m,m′)

(diagT )∗
{
ρω

[
g̃⊗̃βm

′
(
µ̃TLi,c(M,E)

(
[L]

))]}
(f ). (6.0.3)

Using this, the wave front set condition (1) of Definition 5.7.9 for ω and the inclusion (4.4.1), we conclude
that the mentioned wave front set condition is also fulfilled by g ·ω.

We will now show that g ·ω satisfies the condition (3) of Definition 5.7.9. Let L′ and L′′ be as in (3), and
set L = L′L′′ . Recall the notation LJ = `j1 s . . . s `jm′′ for J = {j1 < · · · < jm′′ } ⊆ {1, . . . ,m} (see 5.1.8). On the one
hand, we have

ρg·ω(L′L′′) =
m′+m′′∑
j=1

1
j!

∑
T ∈Par(m′+m′′ ,j)

(diagT )∗
(
ρω

(
g̃|T1 |(LT1

)| . . . |g̃|Tj |(LTj )
))

=
m′∑
j ′=1

m′′∑
j ′′=1

1
j ′!

1
j ′′!

∑
T ′ ∈ Par(m′ , j′ )
T ′′ ∈ Par(m′′ , j′′ )

(diag(T ′ ,T ′′))∗
(
ρω

(
g̃|T ′1 |(L

′
T ′1

)| . . . |g̃|T ′
j′ |

(L′T ′
j′

)|g̃|T ′′1 |(L
′′
T ′′1

)| . . . |g̃|T ′′
j′′ |

(L′′T ′′
j′′

)
))

︸                                                                    ︷︷                                                                    ︸
wT ′ ,T ′′

,
(6.0.4)

where we have used Lemma 6.0.2 in the first equality, (5.8.8) in the second one, and we denote by (T ′ ,T ′′)
the element T of Par(m′+m′′ , j ′+j ′′) satisfying that Tj = T ′j for j = 1, . . . , j ′ , and Tj = T ′′j−j ′ for j = j ′+1, . . . , j ′+j ′ .

By the hypothesis (3) of Definition 5.7.9 for ω and the explicit expression of the coactions in that defini-
tion (described in Proposition 3.4.7) in terms of the coaction of SC∞(M)Γ (J iE) onLi(M,E) in the symmetric
monoidal category of C∞(M)-modules, we may write wT ′ ,T ′′ in the last member of (6.0.4) as∑(

ρω
(
g̃|T ′1 |(L

′
T ′1

)(0)| . . . |g̃|T ′
j′ |

(L′T ′
j′

)(0)

)
� ρω

(
g̃|T ′′1 |(L

′′
T ′′1

)(0)| . . . |g̃|T ′′
j′′ |

(L′′T ′′
j′′

)(0)

))
∆̂j
′ ,j ′′

(
g̃|T ′1 |(L

′
T ′1

)(1)| . . . |g̃|T ′
j′ |

(L′T ′
j′

)(1), g̃|T ′′1 |(L
′′
T ′′1

)(1)| . . . |g̃|T ′′
j′′ |

(L′′T ′′
j′′

)(1)

)
=

∑[
ρω

(
g|T ′1 |

(
(L̄′T ′1

)(0)

)
| . . . |g|T ′

j′ |
(
(L̄′T ′

j′
)(0)

))
� ρω

(
g|T ′′1 |

(
(L̄′′T ′′1

)(0)

)
| . . . |g|T ′′

j′′ |
(
(L̄′′T ′′

j′′
)(0)

))]
∆̂j
′ ,j ′′

(
(L̄′T ′1

)(1)| . . . |(L̄′T ′
j′

)(1), (L̄
′′
T ′′1

)(1)| . . . |(L̄′′T ′′
j′′

)(1)

)
,

(6.0.5)

106



where all the subscripts of coactions are those of the coaction of SC∞(M)Γ (J iE) on SC∞(M)Li(M,E) in the
symmetric monoidal category of C∞(M)-modules, L̄′J is the image under the map (5.8.5) of L′J and the same
for L̄′′J , we have used that

g̃|J |(LJ ) = g|
S |J |C∞(M)Li (M,E)

(L̄J ),

and that g is a morphism of comodules over SC∞(M)Γ (J iE) in the symmetric monoidal category of C∞(M)-
modules.

On the other hand,

(
ρg·ω(L′(0))� ρg·ω(L′′(0))

)
∆̂m

′ ,m′′ (L′(1),L
′′
(1)) =

m′∑
j ′=1

m′′∑
j ′′=1

1
j ′!

1
j ′′!

∑
T ′ ∈ Par(m′ , j′ )
T ′′ ∈ Par(m′′ , j′′ )

w′′T ′ ,T ′′ ∆̂
m′ ,m′′ (L′(1),L

′′
(1))︸                       ︷︷                       ︸

w′
T ′ ,T ′′

,
(6.0.6)

where w′′T ′ ,T ′′ is given by

(diagT ′ )∗ρω
(
g̃|T ′1 |((L

′
(0))T ′1 )| . . . |g̃|T ′

j′ |
((L′(0))T ′j′ )

)
� (diagT ′′ )∗ρω

(
g̃|T ′′1 |((L

′′
(0))T ′′1 )| . . . |g̃|T ′′

j′′ |
((L′′(0))T ′′j′′ )

)
. (6.0.7)

Notice that w′T ′ ,T ′′ is given by

(diag(T ′ ,T ′′))∗
[
ρω

(
g̃|T ′1 |

(
(L′(0))T ′1

)
| . . . |g̃|T ′

j′ |
(
(L′(0))T ′j′

))
� ρω

(
g̃|T ′′1 |

(
(L′′(0))T ′′1

)
| . . . |g̃|T ′′

j′′ |
(
(L′′(0))T ′′j′′

))]
∆̂m

′ ,m′′ (L′(1),L
′′
(1)).

(6.0.8)
Note also that for any L ∈Li(M,E)⊗̃βm and m ∈N,

g̃|J |
(
(L(0))J

)
= g|

S |J |C∞(M)Li (M,E)

(
(L̄J )(0)

)
, (6.0.9)

where the first 0 subscript comes from the coaction on an element ofLi(M,E)⊗̃βm as described in Definition
5.7.9, (3), whereas the second subscript 0 comes the coaction of the coalgebra SC∞(M)Γ (J iE) on an element

of Li(M,E)⊗̃C∞(M)m in the symmetric monoidal category of C∞(M)-modules. Analogously, the reader can
check that

∆̂j
′ ,j ′′

(
(L̄T ′1 )(1)| . . . |(L̄T ′

j′
)(1), (L̄T ′′1 )(1)| . . . |(L̄T ′′

j′′
)(1)

)
= (diag(T ′ ,T ′′))

∗
(
∆̂m

′ ,m′′ (L′(1),L
′′
(1))

)
, (6.0.10)

where similar comments concerning the subscripts indicating the coactions apply.

Hence, by (4.5.15), together with (6.0.9) and (6.0.10), we conclude that (6.0.8) coincides with (6.0.5),
which in turn implies that the equality between (6.0.6) and (6.0.4), as was to be shown. The proposition is
thus proved. �

6.0.6 Proposition. Let r 7→ ∆r be a meromorphic family of local precut propagators on an open set Ω ⊆ C,
r 7→ ωr a meromorphic family of Feynman measures associated with r 7→ ∆r , and r 7→ gr a meromorphic family
of renormalizations also defined on Ω. Then, the map r 7→ gr ·ωr is a meromorphic family of Feynman measures
associated with r 7→ ∆r .

Proof. By the previous proposition, it suffices to show that r 7→ gr ·ωr is a meromorphic family of Feynman
measures. Taking into account that the inverse operation of Gi(M,E) sends meromorphic family of renor-
malizations to meromorphic families of renormalization by Fact 5.9.6, and using the explicit expression of
the composition of the maps (5.8.6) and (5.8.7), we clearly see that r 7→ gr ·ωr is a meromorphic family of
Feynman measures. The proposition is thus proved. �
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6.0.7. We now prove the first main result of this manuscript, which is precisely (the second part of) [10],
Thm. 15. The proof there is however not completely clear to us (in particular the construction of the
element of the group of renormalizations done in the last paragraph), so we prove it completely. Even
though our methods are inspired by the proof in [10], there are several steps that are rather different, or at
least that have not been mentioned by Borcherds.

6.0.8 Theorem. Let ∆ be a local precut propagator. The action of the group Gi(M,E) on the set F∆ is free and
transitive.

Proof. Let ω,ω′ ∈ F∆. We will show that there exists a unique g ∈ Gi(M,E) such that g−1 ·ω = ω′ . Since
ω|S̃0Li,c(M,E) =ω′ |S̃0Li,c(M,E) by definition of Feynman measure, we assume thatω|S̃m′Li,c(M,E) =ω′ |S̃m′Li,c(M,E),
for all m′ = 0, . . . ,m− 1 and some m ∈N. We will thus prove that there exists a unique g−m+1 ∈ Gi,m−1(M,E)
such that g−m+1 ·ω and ω′ coincide on S̃m

′
Li,c(M,E) for all m′ = 0, . . . ,m. The theorem clearly follows from

this statement together with Lemmas 5.8.9 and 5.8.11. Define the map ω̃ = (ω−ω′)|S̃mLi,c(M,E) if m > 1, and
ω̃ =ω′ |Li,c(M,E), if m = 1.

We claim that the hypothesis ω|S̃m′Li,c(M,E) = ω′ |S̃m′Li,c(M,E), for all m′ = 0, . . . ,m− 1, tells us that ρω̃(L) =

ρω(L) − ρω′ (L) vanishes for any L ∈ S̃mLi,c(M,E) whose support has trivial intersection with the diagonal
of Mm if m > 1. We first note that it suffices to prove the previous statement for L ∈ SmLi,c(M,E), because
SmLi,c(M,E) is dense in S̃mLi,c(M,E). Now, given any point p̄ = (p1, . . . ,pm) ∈ supp(L) ⊆ Mm \ Diagm,
(5.1.2) tells us that there exists (J ′ , J ′′) ∈ Par(m,2) such that p̄ ∈ UJ ′ ,J ′′ . We assume without loss of generality
that J ′ = {1, . . . ,m′} and J ′′ = {m′ + 1, . . . ,m} for some m′ ∈ N satisfying that m′ < m. Let m′′ = m −m′ . By
the definition of the product topology and the fact that UJ ′ ,J ′′ is open, there exist open sets U ′ ⊆ Mm′

and U ′′ ⊆ Mm′′ such that p̄ ∈ U ′ ×U ′′ ⊆ UJ ′ ,J ′′ . Furthermore, by choosing a refinement of the covering of
Mm \Diagm given in (5.1.3) by open sets of the form ∪ς∈Smς(U ′ ×U ′′) where U ′ and U ′′ are as before, and
a partition of unity subordinate to it formed by smooth symmetric functions fU ′ ,U ′′ ∈ Σ̃mC∞(M), we may
assume that the support of L is included in ∪ς∈Smς(U ′ × U ′′), for some open sets U ′ and U ′′ as before.
Moreover, since the canonical map Sm

′
Li,c(M,E) ⊗ Sm′′Li,c(M,E) → SmLi,c(M,E) is surjective, we may

even assume that L =
∑
j∈J ′′ L

′
jL
′′
j , with J ′′ a finite set of indices, L′j ∈ S̃

m′Li,c(M,E) and L′′j ∈ S̃
m′′Li,c(M,E)

such that L′j and L′′j have support included in U ′ and U ′′ , respectively, and they satisfy the hypotheses of
Definition 5.7.9, (3). By inductive hypothesis, ρω̃(L′j ) and ρω̃(L′′j ) vanish for all j ∈ J ′′ , so (5.7.8) tells us that
ρω̃(L) = 0, as was to be shown. We have in particular thus proved that the support of the distribution ρω̃(L)
is included in the diagonal Diagm of Mm for all L ∈ S̃mLi,c(M,E), if m > 1.

The theorem is now a consequence of the following lemma. Since we shall use the following result in
the sequel, we will present it separately. �

6.0.9 Lemma. Let ω be a Feynman measure associated with the local precut propagator ∆. Let m ∈ N be a
positive integer, and let ω̃ : S̃mLi,c(M,E)→ k be a continuous linear map such that the support of the associated
distribution ρω̃(L) is included in the diagonal Diagm of Mm for all L ∈ S̃mLi,c(M,E) and it satisfies conditions
(1) and (2) of Definition 5.7.9. Set ω′ = ω̃ if m = 1, and ω′ = ω − ω̃ if m ≥ 2. Then there is a unique element
g−m+1 ∈ Gi,m(M,E) such that g−m+1 ·ω and ω′ coincide on S̃m

′
Li,c(M,E) for all m′ = 0, . . . ,m.

Proof. We first claim that ω̃ factors through the canonical projection S̃mLi,c(M,E)→ SmC∞(M)Li,c(M,E), i.e.
we have the commutative diagram

SmC∞(M)Li,c(M,E)
ω̄

&&
k

S̃mLi,c(M,E)

OO

ω̃

88
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This is trivial if m = 1, so we will assume that m > 1. In order to prove so, it suffices to show that ω̃
vanishes on any element of the form L = `1g s `2 s . . . s `m − `1 s g`2 s . . . s `m, where `j ∈ Li,c(M,E) and
g ∈ C∞(M). We may assume that all the elements `j are in fact sections of the same vector bundle F over
M, constructed as a finite direct sum of some of the bundles {S`J iE}`∈N0

. It is a straightforward but rather
tedious computation that the restrictions to the diagonal Diagm of all partial derivatives of L with respect
to a trivializing covering of the bundle F�m vanish. By Lemma 4.1.12, the F�m-valued distribution ω̃m,F
associated to ω̃ and introduced in 5.7.4 vanish on L, so ω̃(L) = 0 as was to be shown.

We now prove that there is a unique C∞(M)-linear map ω̂ : SmC∞(M)Li,c(M,E)→ Γc(Vol(M)) making the
diagram

SmC∞(M)Li,c(M,E) ω̂ //

ω̄

''

Γc

(
Vol(M)

)
ω|Γc (Vol(M))=

∫
M
f .(−)

��
S̃mLi,c(M,E)

OO

ω̃
// k

(6.0.11)

commute, where f ∈ C∞(M) is the nonvanishing function of the condition (2) of Definition 5.7.9 for ω (or
ω′). This is trivially achieved by taking into account that SmC∞(M)Li,c(M,E) is a projective C∞(M)-module
(by Corollary 2.2.3), so a direct summand of a free C∞(M)-module X with basis {xj }j∈J . Indeed, extend
ω̄ to a linear map τ : X → k, and then define a unique morphism τ ′ : X → Γc(Vol(M)) of C∞(M)-modules
sending xj to an inverse image under the right vertical map of the previous diagram of τ(xj ). This is possible
because the mentioned right vertical map is clearly surjective. The map ω̂ is defined as the restriction of τ ′

to SmC∞(M)Li,c(M,E). To prove the uniqueness of ω̂, suppose that two possible ω̂′ and ω̂′′ make the previous
diagram commute. The image of the difference ω̂′ − ω̂′′ , which is a C∞(M)-submodule of Γc(Vol(M)), is
thus in the kernel of the integration map given by ω|Γc(Vol(M)). If this image is nontrivial, there is a nonzero
element θ ∈ Γc(Vol(M)) such that ω(θ) =

∫
M
f θ = 0. Since there is p ∈M such that θ(p) , 0, we may choose

a small chart (U,φ) of M such that p ∈U and θ|U is a nonvanishing function on U times the absolute value
of the canonical top form associated to φ. Choose any nonnegative function g ∈ C∞(M) such that g(p) , 0
and supp(g) ⊆ U . Hence, gθ , 0 is an element of the image of ω̂′ − ω̂′′ , so we must have ω(gθ) = 0, but
on the other hand ω(gθ) =

∫
M
f gθ , 0, which is a contradiction. By Corollary 2.3.10, ω̂ is automatically a

morphism of bornological locally convex C∞(M)-modules.

We will now show that ω̂ is the image under (5.8.6) of a C∞(M)-linear map �ω : SmC∞(M)Li(M,E) →
Γ (Vol(M)). The injectivity of (5.8.6) (see Proposition 2.2.5) tells us that this element is unique. By the
Hahn-Banach theorem, we can consider continuous linear functionals ω̄# : SmC∞(M)Li(M,E)→ k and ω# :
Γ (Vol(M))→ k extending ω̄ and ω|Γc(Vol(M)), respectively. Since SmC∞(M)Li(M,E) is also a projective C∞(M)-
module (due to Theorem 2.1.3), by the same argument as the one given in the previous paragraph for
SmC∞(M)Li,c(M,E) and Γc(Vol(M)) we see that there is C∞(M)-linear map �ω : SmC∞(M)Li(M,E)→ Γ (Vol(M))

such that ω# ◦ �ω = ω̄#. This implies that the diagram

SmC∞(M)Li(M,E) �ω //

ω̄#

**

Γ
(
Vol(M)

)

ω#

��

SmC∞(M)Li,c(M,E)
ω̂

//

ω̄

,,

?�

OO

Γc

(
Vol(M)

)
ω|Γc (Vol(M))

''

?�

OO

S̃mLi,c(M,E)
((

ω̃
// k

(6.0.12)

commutes with the possible exception of the back vertical square, where the upward vertical maps are the
canonical inclusions. Let us prove that this square also commutes. This is tantamount to the fact that the
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image of �ω under (5.8.6) is ω̂. Consider the restriction ω̂′ = �ω|SmC∞(M)Li,c(M,E). By the fact that (2.2.4) is an

isomorphism, we see that the image of ω̂′ lies inside of Γc(Vol(M)). Furthermore, if we replace ω̂ by ω̂′ in in
(6.0.12), the back vertical square commutes by definition. Since the vertical triangles are commutative, we
see also that ω|Γc(Vol(M)) ◦ ω̂′ = ω̄. Taking into account that ω̂ was the unique morphism of C∞(M)-modules
satisfying this property, we conclude that ω̂ = ω̂′ , and the diagram (6.0.12) is commutative. By Corollary
2.3.6, �ω is automatically a morphism of bornological locally convex C∞(M)-modules.

Using Proposition 5.8.5, set g−m+1 as the unique element of Gi,m(M,E) whose image under (5.8.1) is

(idΓ (Vol(M)) ⊗C∞(M) εSC∞(M)Γ (J iE)) ◦π1 + �ω ◦πm,
if m > 1, and whose inverse is given by �ω ◦π1, if m = 1, where πm : SC∞(M)Li,c(M,E)→ SmC∞(M)Li,c(M,E) is

the canonical projection. It is clear that g−m+1 ·ω and ω′ coincide on S̃m
′
Li,c(M,E) for all m′ = 0, . . . ,m− 1.

Finally, the commutativity of the diagram (6.0.11) is equivalent to the fact that g−m+1 ·ω and ω′ coincide on
S̃mLi,c(M,E). The lemma is thus proved. �

6.0.10.Remark. Note that the previous theorem does not need to assume any kind of homogeneity on the
distributions involved nor any finiteness condition with respect to any scaling degree, in contrast to what
is typically the case in pQFT (cf. [19, 97]).

6.0.11 Lemma. Let r 7→ωr be a meromorphic family of Feynman measures associated with a meromorphic family
of local precut propagator r 7→ ∆r defined on an open set Ω ⊆ C. Let m ∈ N be a positive integer, and let
r 7→ ω̃r be a meromorphic function defined on Ω such that ω̃r : S̃mLi,c(M,E) → k, the associated distribution
ρω̃r (L) is included in the diagonal Diagm of Mm for all L ∈ S̃mLi,c(M,E) and it satisfies conditions (1) and
(2) of Definition 5.7.9, for all r ∈ Ω. Set (ω′)r = ω̃r if m = 1, and (ω′)r = ωr − ω̃r if m ≥ 2. Then the map
r 7→ gr−m+1 ∈ Gi,m(M,E), where gr−m+1 is the unique element constructed in Lemma 6.0.9 such that gr−m+1 ·ωr and
(ω′)r coincide on S̃m

′
Li,c(M,E) for all m′ = 0, . . . ,m, is a meromorphic family of renormalizations.

The proof follows by noting that each step in the proof of Lemma 6.0.9 clearly preserves the correspond-
ing meromorphic property.
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Chapter 7

The second main result: The existence of a Feynman mea-
sure associated with a manageable local propagator of cut
type

7.1 The Bernstein-Sato polynomial and extensions of distributions

7.1.1. For this section we refer the reader to the nice exposition [43], and the references therein. We only
recall that the N -th Weyl algebra AN (k) over the field k is the ring of polynomial differential operators
with coefficients in k[x1, . . . ,xN ], i.e. any element of AN (k) is a finite sum of the form

∑
α∈Nn

0
fα∂

α , where
fα ∈ k[x1, . . . ,xN ] and we are using a similar notation to that in (2.3.1) for the partial derivatives. We refer
the reader to [63], Ch. 8, for more details.

7.1.2 Theorem. Let f1, . . . , fm be m ∈ N elements in the ring k[x1, . . . ,xN ] of polynomials in N indeterminates.
Then, given any j = 1, . . . ,m, there exist a nonzero polynomial bj (s1, . . . , sm) ∈ k[s1, . . . , sm] in m indeterminates
and a polynomial Pj (s1, . . . , sm) ∈ AN (k)[s1, . . . , sm] such that

bj (s1, . . . , sm)f s11 . . . f smm = Pj (s1, . . . , sm)fjf
s1

1 . . . f smm . (7.1.1)

Proof. The proof given by I. Bernšteı̆n in [7], Ch. I, can be adapted to this cover case as well, as stated in
[10], Lemma 16. More precisely, one first proves that the module k(s1, . . . , sm)[x1, . . . ,xm, f

−1]f s11 . . . f smm over
the Weyl algebra AN (k(s1, . . . , sm)) is of finite length (and, even, holonomic), where f = f1 . . . fm. The proof
of [63], Lemma 8.10, applies almost verbatim to show this, using the same definition of filtration with f
in that reference equal to our previously defined polynomial f . Finally, to prove (7.1.1), one considers the
decreasing filtration {AN (k(s1, . . . , sm))f `j f

s1
1 . . . f smm }`∈N0

of submodules of k(s1, . . . , sm)[x1, . . . ,xm, f
−1]f s11 . . . f smm

over the Weyl algebra AN (k(s1, . . . , sm)) and follows the argument given in the proof of [25], Thm. 10.3.3. �

7.1.3. Given any j = 1, . . . ,m, the set of polynomials bj (s1, . . . , sm) ∈ k[s1, . . . , sm] satisfying that there exists
another polynomial Pj (s1, . . . , sm) ∈ AN (k)[s1, . . . , sm] such that (7.1.1) holds is clearly an ideal of k[s1, . . . , sm],

called the j-th Bernstein-Sato ideal Bjf1,...,fm of f1, . . . , fm. If m = 1 and we write f = f1, the ideal Bf ⊆ k[s] has a
unique monic generator (for k[s] is a principal ideal domain), which is denoted by bf (s) and it is called the
Bernstein-Sato polynomial of f .

7.1.4. More generally, let O be the ring of germs of analytic functions at the origin of kN and let f1, . . . , fm ∈
O. One may wonder if, given any j = 1, . . . ,m, (7.1.1) is satisfied for a nonzero polynomial bj (s1, . . . , sm) ∈
k[s1, . . . , sm] and a polynomial Pj (s1, . . . , sm) ∈ D[s1, . . . , sm], where D is the ring of differential operators with
coefficients in O. This is also true (at least if m = 1), but the proof is highly nontrivial (see [43], Sec-
tion 5). Given analytic functions f1, . . . , fm defined on the same open set, we will say that they have global
Bernstein-Sato polynomials if, for each j = 1, . . . ,m, (7.1.1) is fulfilled by the same polynomials bj (s1, . . . , sm)
and Pj (s1, . . . , sm).
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7.1.5. We will need the following variation of the well-known result by I. Bernšteı̆n on the extension of
distributions given by the existence of Bernstein-Sato polynomials (see for instance [43], Prop. 3.1 and Cor.
3.2).

7.1.6 Proposition. Let g : W → C be a nonzero holomorphic function defined on W = U +
√
−1C, where U ⊆

R
N is an open set and C ⊆ RN is an open convex cone, such that g(W ) ∩

√
−1R≤0 = ∅, and suppose that the

distributional boundary value g0 = bv(g) exists. Assume that g admits a global Bernstein-Sato polynomial bg (s),
and let P (s) =

∑
α∈Nn

0
pα(s)fα∂α be the differential operator fulfilling (7.1.1) together with bg (s). Consider here

the unique logarithm defined on the set C \
√
−1R≤0. Then,

(a) given any s ∈ C, the map gs : W → C sending p ∈W to exp(s log(g(p))) is well-defined and holomorphic,
and its boundary value gs0 = bv(gs) also exists for all s ∈C such that Re(s) ≥ 0;

(b) the map s 7→ gs0 is a holomorphic function from {s ∈C : Re(s) > 0} to C∞c (U )′ , and the derivative of gs0 at s is
the boundary value of gs log(g);

(c) the distribution gs0 = bv(gs) satisfies the functional equation

bg (s)gs0 = P (s)|Ugs+1
0 (7.1.2)

for all s ∈C such that Re(s) > 0, where P (s)|U =
∑
α∈Nn

0
pα(s)fα |U∂|αU , and ∂|U is the real part of ∂.

Hence, there is a unique distribution valued meromorphic function ḡs : C \Z → C∞c (U )′ that extends gs, where
Z is included in A−N0, and A is a finite subset of Q<0 given by the zeros of the Bernstein-Sato polynomial of g.
Moreover, the order of each pole s0 ∈ Z of gs is equal to the number N (bg , s0) of roots a ∈ A of bg (s) such that s0
lies in the set A−N0, and it is thus less than or equal to the degree of bg .

Proof. The fact that the map gs : W → C is holomorphic and well-defined is immediate. The existence of
gs0 = bv(gs) is a direct consequence of Theorem 4.6.2. Indeed, by item (iii) of that result and the existence of
g0 = bv(g), there exist positive numbers D,ε > 0 and a nonnegative integer m ∈N0 such that∣∣∣g(x+ y

√
−1)

∣∣∣ ≤D ||y||−m∞ ,

for all x ∈ U ′ and for all y ∈ C′ satisfying that ||y||∞ < ε, where U ′ is an open bounded set whose closure is
included in U and C′ ⊆ C is a closed cone. Hence, given any fixed s ∈C such that Re(s) ≥ 0, we have that∣∣∣gs(x+ y

√
−1)

∣∣∣ ≤DRe(s)e2π|Im(s)|||y||−mRe(s)
∞ ,

for all x ∈U ′ and for all y ∈ C′ satisfying that ||y||∞ < ε, and the existence of gs0 = bv(gs) follows.

For the proof of item (b), note first that, given any y ∈ C, the derivative of the map s 7→ gs((−) +
√
−1y)

from {s ∈ C : Re(s) > 0} to C∞c (U )′ is just gs((−) +
√
−1y) log(g((−) +

√
−1y)), which trivially satisfies the

inequality of (iii) in Theorem 4.6.2. Indeed, for s > 0, take 0 < s′ < s, and re-write the previous map as
gs−s

′
((−) +

√
−1y)gs

′
((−) +

√
−1y) log(g((−) +

√
−1y)), for which inequality (4.6.3) clearly holds. Hence, its

boundary value exists. Let s0 ∈ C such that Re(s) > 0 is a fixed complex. Since the map gs((−) +
√
−1y) is

uniformly bounded on a neighborhood of s0, the limit

lim
y→ 0
y ∈ C′

gs
(
(−) +

√
−1y

)
exists uniformly (for the strong topology) on a neighborhood of s0. By the Moore-Osgood theorem we have

112



thus

lim
s→s0

lim
y→ 0
y ∈ C′

gs
(
(−) +

√
−1y

)
− gs0

(
(−) +

√
−1y

)
s − s0

= lim
y→ 0
y ∈ C′

lim
s→s0

gs
(
(−) +

√
−1y

)
− gs0

(
(−) +

√
−1y

)
s − s0

= bv
(
gs log(g)

)
,

as was to be shown.

The proof of item (c), is immediate, for (7.1.2) is the boundary value of the corresponding functional
equation (7.1.1) for the complex map gs, and the corresponding derivatives commute with taking boundary
value (see [33], Problem 12.14.(viii)). The last statement is a direct consequence of (7.1.2), as in the proof
of the classical theorem of Bernstein explained in [43], Prop. 3.1 and Cor. 3.2. �

7.1.7. We will finally state the next result, whose proof is similar to that of the previous proposition (see
else [27], Thm. 1.2, for a proof based on a clever procedure established by M. Atiyah for the analytic
continuation of distributions using Hironaka’s resolution of singularities), and that will be used in the
construction of a Feynman measure. We will first explain the elements needed in the statement.

7.1.8. Let g1, . . . , gm : U → C be nonzero real polynomial maps defined on an open set U ⊆ RN . Let
g̃1, . . . , g̃m : CN → C be the unique polynomials extending them, respectively. Given any ε > 0, define the
open subset

Wε =
m⋂
j=1

(g̃j +
√
−1ε)−1(C \

√
−1R≤0)

of CN . For s1, . . . , sm ∈ C, the function
∏m
j=1(gj +

√
−1ε)sj : Wε → C is well-defined and holomorphic. Note

that Wε contains U and also the open subset

W =
m⋂
j=1

g̃−1
j (C \

√
−1R≤0)

of CN . Denote by
m∏
j=1

(gj +
√
−10)sj (7.1.3)

the distribution defined as the distributional limit of
m∏
j=1

(gj +
√
−1ε)sj (7.1.4)

as ε → 0+, for s1, . . . , sm ∈ C such that Re(s1), . . . ,Re(sm) > 0. Note that the previous limit exists, because
(7.1.3) is the regular distribution given by the function G(s1, . . . , sm) on U defined by

m∏
j=1

g
sj
j (7.1.5)

on the open subset Ũ ofU where all the factors are nonvanishing, and zero else (cf. [33], Problem 12.14.(x)).
Let bj (s1, . . . , sm) be the j-th Bernstein-Sato polynomial of g1, . . . , gm, and Pj (s1, . . . , sm) the differential operator∑
α∈Nn

0
pj,α(s1, . . . , sm)fj,α∂α fulfilling (7.1.1). This implies that, given j = 1, . . . ,m, the function (7.1.5) satisfies

the functional equation

bj (s1, . . . , sm)
m∏
j ′=1

g
sj′

j ′ = Pj (s1, . . . , sm)
m∏
j ′=1

g
sj′+δj,j′
j ′ (7.1.6)
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on Ũ , for all s1, . . . , sm ∈ C such that Re(s1), . . . ,Re(sm) > max{ord(Pj ) : j = 1, . . . ,m}. Since the subset of U
where one of the factors of (7.1.5) vanishes has zero measure, for the set of zeros of any nonzero polyno-
mial has zero measure (see [23]), (7.1.6) is valid for the corresponding regular distributions on U for all
s1, . . . , sm ∈ C such that Re(s1), . . . ,Re(sm) > max{ord(Pj ) : j = 1, . . . ,m}, i.e. it holds for (7.1.3). The case for
all s1, . . . , sm ∈C such that Re(s1), . . . ,Re(sm) > 0 follows from analytic continuation. Incidentally, this proves
item (b) of the following statement, provided item (a) holds.
7.1.9 Proposition. Let g1, . . . , gm : U → C be nonzero real polynomials defined on an open set U ⊆ Rn. Let
bj (s1, . . . , sm) be the j-th Bernstein-Sato polynomial of g1, . . . , gm, and Pj (s1, . . . , sm) be the differential operator∑
α∈Nn

0
pj,α(s1, . . . , sm)fj,α∂α fulfilling (7.1.1). Consider here the unique logarithm defined on the set C \

√
−1R≤0.

Then,

(a) the map (s1, . . . , sm) 7→
∏m
j=1(gj +

√
−10)sj gives a holomorphic function from {(s1, . . . , sm) ∈ Cm : Re(sj ) >

0,∀j} to C∞c (U )′ , and

dk1

dsk1
1

. . .
dkm

dskmm

( m∏
j=1

(gj +
√
−10)sj

)
=

m∏
j=1

logkj (gj +
√
−10)(gj +

√
−10)sj , (7.1.7)

where the right member denotes the limit of the sequence of distributions
m∏
j=1

logkj (gj +
√
−1ε)(gj +

√
−1ε)sj

as ε→ 0+;

(b) given j = 1, . . . ,m, the distribution (7.1.3) satisfies the functional equation

bj (s1, . . . , sm)
m∏
j ′=1

(gj ′ +
√
−10)sj′ = Pj (s1, . . . , sm)

m∏
j ′=1

(gj ′ +
√
−10)sj′+δj,j′ , (7.1.8)

for all s1, . . . , sm ∈C such that Re(s1), . . . ,Re(sm) > 0.

Hence, there is a unique distribution valued holomorphic function
m∏
j=1

(gj +
√
−10)sj :

m∏
j=1

(C \Zj )→ C∞c (U )′ (7.1.9)

that extends
∏m
j=1(gj +

√
−10)sj , where Zj is included in Aj −N0, and Aj is a finite subset of Q<0 given by the

zeros of the j-th Bernstein-Sato polynomial of g1, . . . , gm. The same holds for (7.1.7).

7.1.10. We will generically call the distribution valued holomorphic extension of (7.1.3) the almost boundary
value of the product powers of g1, . . . , gm.
7.1.11 Corollary. Assume the same hypotheses of the previous proposition. Consider the extension of the distri-
bution valued function (7.1.7), with the same domain as (7.1.9), and let (s01, . . . , s

0
m) ∈ Z1 × · · · × Zm. Define the

distribution valued function
m∏
j=1

logkj (gj +
√
−10)(gj +

√
−10)s

0
j +s :C \Z→ C∞c (U )′ , (7.1.10)

where Z is the subset of C formed by the elements s such that (s01 + s, . . . , s0m + s) < Z1 × · · · × Zm. Then (7.1.10)
is holomorphic on C \ Z, Z is discrete, and every element of Z is a pole. Moreover, the order of each pole s0 of
(7.1.10) is less than or equal to a fixed number that depends only on (s01, . . . , s

0
m), s0 and each of the j-th Bernstein-

Sato polynomial of g1, . . . , gm for all j = 1, . . . ,m.

This result is a clear consequence of Proposition 7.1.9 and in particular of the functional equations
(7.1.8).
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7.2 The existence of Feynman measures in the continuous case

7.2.1. The contents of this section are somehow implicit in the exposition [10], and we surmise that they
are essentially well-known in the physics community, even though probably not in this form. We provide
them for completeness.

7.2.2. We recall that a propagator ∆ ∈ Propi(M,E) is said to be continuous (resp., smooth) if the (J iE �
J iE)∗-valued distribution associated to it by means of (5.4.1) is regular (resp., smooth), i.e. it is induced
by a continuous (resp., smooth) section of J iE � J iE. Analogously, we say that a Feynman measure ω :
S̃Li,c(M,E)→ k is continuous (resp., smooth) if for all m ∈ N and [L] ∈ S̃mLi,c(M,E), the Vol(Mm)-valued
distribution ρω(L) is continuous (resp., smooth).

7.2.3. Given m ∈N, define the morphism of smooth manifolds

ddiagm :Mm→
∏

1≤j<j ′≤m
(M ×M) (7.2.1)

sending p̄ = (p1, . . . ,pm) to the tuple satisfying that ddiagm(p̄)(j,j ′) = (pj ,pj ′ ) for all 1 ≤ j < j ′ ≤ m. We will
also use the terminology explained in Notation 5.1.15.
7.2.4 Definition. Following [10], p. 633, we say that a continuous Feynman measure ω is said to be constructed
from a continuous Feynman propagator ∆F if the following conditions hold:

(1) there is a nowhere vanishing function f ∈ C∞(M) such that the restriction of ω to Li,c(M,E) is the linear
mapping induced by

(θ,σ ) 7→
∫
M
εSC∞(M)Γ (J iE)(σ )f θ, (7.2.2)

where θ ∈ Vol(M) and σ ∈ SC∞(M)Γ (J iE);

(2) for all m ∈N, θ1, . . . ,θm ∈ Γc(Vol(M)) and σ̄1, . . . , σ̄m ∈ SC∞(M)Γ (J iE) we have

ρω(θ1σ̄
1| . . . |θmσ̄m) =

∑( m∏
j=1

�ρω(θj σ̄
j
(1))

)
ddiag∗m

( ∏
�

1≤j<j ′≤m
∆̃F

(
σ̄
j
(j ′−j+1), σ̄

j ′

(m−j+1)

))
, (7.2.3)

where the sum is indexed over the different summands in the coproducts of σ̄1, . . . , σ̄m ∈ SC∞(M)Γ (J iE), and
the product between the two factors enclosed by parentheses is one of distributions on Mm.

7.2.5. Note that ∆̃F (and also ∆̂F) is a well-defined regular distribution, because ∆F is, as well as the pull-
backs appearing in (7.2.3). Furthermore, the product appearing in (7.2.3) is well-defined, for the left factor
of the right member is a smooth distribution by (1), so in particular it is regular. Finally, the complete
expression (7.2.3) is Sm-equivariant, because ∆F is symmetric and the coproduct of SC∞(M)Γ (J iE) is cocom-
mutative, so it defines a Feynman measure by Proposition 5.7.5.
7.2.6.Remark. It is easy to see that each of the expressions

ddiag∗m

( ∏
�

1≤j<j ′≤m
∆̃F

(
σ̄
j
(j ′−j+1), σ̄

j ′

(m−j+1)

))
(7.2.4)

in (7.2.3) are in fact given by the internal product of Vol(Mm)-valued distributions, each of whose factors is

the pull-back of ∆̃F(σ̄ j(j ′−j+1), σ̄
j ′

(m−j+1)) under the obvious projection Mm→M2 sending (p1, . . . ,pm) ∈Mm to
(pj ,pj ′ ).
7.2.7 Lemma. Let ∆F be a continuous Feynman propagator satisfying that

WF(p,p)(∆F) ⊆
{
(λ,−λ) : λ ∈ T ∗pM \ {0}

}
, (7.2.5)

for all p ∈M. Then the Feynman measure ω constructed from ∆F satisfies condition (1) of Definition 5.7.9.
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Proof. By Remark 7.2.6, the terms (7.2.4) in (7.2.3) are internal products of Vol(Mm)-valued distributions,

each of whose factors is the pull-back of ∆̃F(σ̄ j(j ′−j+1), σ̄
j ′

(m−j+1)) under the obvious projection Mm→M2. By
(4.3.4), the wave front set at a point (p, . . . ,p) ∈Diagm of each of these pull-backs is included in{

(λ1, . . . ,λm) : λ ∈ (T ∗pM \ {0})m and λ1 + · · ·+λm = 0
}
. (7.2.6)

Hence, by Theorem 4.5.6 we conclude that the wave front set at a point (p, . . . ,p) ∈ Diagm of (7.2.4) is
included in (7.2.6), so the same holds for ρω(θ1σ̄

1| . . . |θmσ̄m) given in (7.2.3). The lemma is thus proved. �

7.2.8 Lemma. Let ∆ be a local propagator that is continuous, i.e. its associated (J iE � J iE)∗-valued distribution
by means of (5.4.1) is regular. Then, there is a unique continuous Feynman propagator ∆F such that ∆F |U{1},{2} =
∆|U{1},{2} .

Proof. Since ∆ is regular there is a continuous section Σ ∈ Γ 0((J iE�J iE)∗) such that ∆(σ,σ ′) =
∫
M2 〈Σ,σ � σ ′〉,

for all σ,σ ′ ∈ Γc(Vol(M) ⊗ J iE). As ∆ is local, Σ|U{1},{2}∩U{2},{1} is symmetric, i.e. Σ(p,p′) = Σ(p′ ,p), for all

(p,p′) ∈U{1},{2} ∩U{2},{1}. Let ΣF ∈ Γ 0((J iE � J iE)∗)S2 be the continuous section given by

ΣF(p,p′) =

Σ(p,p′), if (p,p′) ∈U{1},{2} ∪Diag2,
Σ(p′ ,p), if (p,p′) ∈U{2},{1} ∪Diag2.

(7.2.7)

This is clearly a well-defined symmetric continuous section of (J iE � J iE)∗. Define the propagator ∆F by
∆F(σ,σ ′) =

∫
M2 〈ΣF ,σ � σ ′〉, for all σ,σ ′ ∈ Γc(Vol(M)⊗ J iE). It is direct that ∆F is symmetric, so a Feynman

propagator. Moreover, it is continuous, and by definition ∆F(σ,σ ′) = ∆(σ,σ ′) if (supp(σ ) × supp(σ ′)) ⊆
U{1},{2}. The lemma is proved. �

7.2.9. Given a continuous local propagator ∆, the unique continuous Feynman propagator ∆F satisfying
that ∆F |U{1},{2} = ∆|U{1},{2} will be called the continuous Feynman propagator associated with ∆. It always exists
by Lemma 7.2.8.

7.2.10 Definition. We say that a continuous local propagator ∆ is admissible if the continuous Feynman propa-
gator ∆F associated with ∆ satisfies that

WF(p,p)(∆F) ⊆
{
(λ,−λ) : λ ∈ T ∗pM \ {0}

}
, (7.2.8)

for all p ∈M. This hypothesis does not appear in [10].

7.2.11 Lemma. Assume that the n-dimensional spacetime M is admissible (see Definition 5.1.5), and let ∆ be a
continuous local propagator with associated continuous Feynman propagator ∆F . Then, ∆ is admissible.

Proof. Given any p ∈M, consider a chart (U,φ) around p and multiply∆ (and thus∆F) by a smooth function
f of compact support included in U ×U such that f (p,p) , 0. Since this does not change the wave front
of ∆F , we may equivalently work with the regular distributions (φ−1 × φ−1)∧(f ∆) and (φ−1 × φ−1)∧(f ∆F)
on φ(U ) ×φ(U ) ⊆ R2n, that we will denote by ∆U and ∆UF , respectively. Moreover, since M is admissible,
we may even take the previous chart (U,φ) around p satisfying the conditions in Definition 5.1.5. Let
H ⊆ R2n be the hyperplane there and let H+ be the closed half-space including (φ ×φ)(� ∩(U ×U )). Let
χ+ be the characteristic function of H+, and χ− be the characteristic function of the complement of H+.
Then, ∆UF = χ+∆

U +χ−∆U ◦fl, where fl :U ×U →U ×U is the usual flip map. The result now follows from
Theorem 4.5.6. �

7.2.12.Remark. The admissibility condition can also be immediately deduced from other assumptions in
many situations of interest. For instance, in the case where M is the Minkowski space and the Feynman
propagator ∆F at a point (p,q) ∈M2 is assumed to depend only on the difference p − q, i.e. ∆F is the pull-
back of a (vector valued) distribution on M under the submersion (p,q) 7→ p − q, then condition (7.2.8) is a
direct consequence of (4.3.4).
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7.2.13. We have the following statement, which is one of the main results of this section.

7.2.14 Theorem. Consider a local precut propagator ∆ ∈ Propi(M,E) that is continuous, i.e. its associated (J iE�
J iE)∗-valued distribution by means of (5.4.1) is regular, and admissible, i.e. its associated Feynman propagator
∆F ∈ Propi(M,E) satisfies (7.2.8). Then, there is a Feynman measure ω associated with ∆ given explicitly by
(7.2.3).

Proof. Taking into account that ω(1S ) = 1, we have to define ω(L), for [L] ∈ S̃mLi,c(M,E) andm ∈N. Choose
any nowhere vanishing function f ∈ C∞(M), and define τ ′ : Vol(M) → k to be the map θ 7→

∫
M
θf . Set

τ :Li,c(M,E)→ k as the linear mapping induced by

(θ,σ ) 7→
∫
M
εSC∞(M)Γ (J iE)(σ )f θ, (7.2.9)

where θ ∈ Vol(M) and σ ∈ SC∞(M)Γ (J iE). It is clearly continuous, and it satisfies conditions (1), (2) and (3) of
Definition 5.7.9, for all L ∈ k⊕Li,c(M,E). Furthermore, (7.2.9) implies that the map ρτ (`) given by sending
f ∈ C∞(M) to τ(f `) is a smooth Vol(M)-valued distribution for all ` ∈Li,c(M,E).

We recall that ∆F is the Feynman propagator defined in Lemma 7.2.8. Let ω : S̃Li,c(M,E)→ k be the
unique continuous linear map satisfying that

ρω(θ1σ̄
1| . . . |θmσ̄m) =

∑( m∏
j=1

�ρτ (θj σ̄
j
(1))

)
ddiag∗m

( ∏
�

1≤j<j ′≤m
∆̃F

(
σ̄
j
(j ′−j+1), σ̄

j ′

(m−j+1)

))
, (7.2.10)

where we are using the same conventions as in (7.2.3). By definition, it is a Feynman measure constructed
from the continuous Feynman propagator ∆F . Since ∆F(σ,σ ′) = ∆(σ,σ ′) if (supp(σ )× supp(σ ′)) ⊆U{1},{2}, an
easy inductive argument tells us that condition (5.7.8) for ω and ∆ holds. Hence, ω verifies condition (3)
of Definition 5.7.9, and (7.2.9) implies that the same occurs with condition (2) of the mentioned definition.
Condition (1) of Definition 5.7.9 is a direct consequence of Lemmas 7.2.7. The theorem is proved. �

7.3 The meromorphic family of Feynman measures

7.3.1. Let {(Ua, τa,φa)}a∈A be a family satisfying the conditions (a) and (b) in Definition 5.5.2. Since {Ua}a∈A
is locally finite, let {fa}a∈A be a partition of unity such that fa ∈ C∞(M ×M) whose support is included in Ua
for all a ∈ A. Denote by ∆a the restriction of ∆ to Γc(Ua, (Vol(M)⊗ J iE)� (Vol(M)⊗ J iE)). Hence,

∆ =
∑
a∈A

fa∆ =
∑
a∈A

fa∆a. (7.3.1)

7.3.2. By the hypothesis on ∆, τ∧a (∆a) can be written as a finite sum∑
j∈J
σa,jbv

(
Ga,j

)
︸    ︷︷    ︸

G′a,j

, (7.3.2)

where σa,j is a smooth vector function on Ua (see (5.5.1)). Define

H r̄ ′
a,j = pr0j,0

∏
`∈Lj

(p`)
r` , (7.3.3)

for r̄ ′ the complex vector composed of r0 and (r`)`∈Lj , and where the polynomials pj,0 and p` for ` ∈ Lj are

those of (5.5.3). We should in principle write (r̄ ′)j instead of just r̄ ′ , to emphasize the dependence on the

117



index j, but, as we will now see, this omission is justified. We may regard H r̄ ′
a,j as a holomorphic function

on an open subset Wa,j ⊆ Ctj+1. By choosing if necessary in the expression of Ga,j powers of the identity
polynomial 1 to new complex variables r, we may assume without loss of generality that the size tj of the
vector s̄ indicated there does not depend on j (or on a), so we will denote it just by t. By Theorem 4.6.2
and the dominated convergence theorem, it is easy to see that the distributional boundary value of H r̄ ′

a,j

exists and it is a distribution valued holomorphic function of r̄ ′ . The derivative of H r̄ ′
a,j with respect to r0

at r̄ = (0, s̄) is precisely Ga,j , and the same holds for the corresponding boundary values. It is clear that
the distributional limit of H r̄ ′

a,j is regular, i.e. it is given by a continuous function, for r̄ ′ satisfying that
Re(r̄ ′)� 0.

7.3.3. On the other hand, by Proposition 7.1.6, each of the boundary values bv(H r̄ ′
a,j ) can be extended to a

distribution valued holomorphic function defined for r̄ ′ ∈ W ′ = (C \Z)t+1, where Z is included in A −N0
and A is a finite subset of Q<0. Set

∆r̄
′

=
∑
a∈A

fa
∑
j∈J

(τ−1
a )∧

(
σa,jbv

(
H r̄ ′
a,j

)
︸    ︷︷    ︸

(G′a,j )
r̄′

)
, (7.3.4)

for all r̄ ′ ∈ W ′ = (C \ Z)t+1. It is clearly a distribution valued holomorphic function on W ′ = (C \ Z)t+1.
Define ∆r̄ as the derivative of ∆r̄

′
with respect to r0 at r̄ ′ = (r0, r̄) with r0 = 0. We note that ∆r̄ is thus defined

for r̄ ∈W = (C\Z)t , for we have fixed the value of r0 to be 0. Furthermore, since the domains of definition of
the holomorphic functions H r̄ ′

a,j do not change when r̄ ′ varies, Proposition 4.6.4 implies that the wave front
set of the corresponding boundary values satisfies the assumptions stated in item (f) of Definition 5.5.2, so
both ∆r̄

′
and ∆r̄ fulfill all the conditions of a propagator of cut type with the same family of cones as ∆,

for all r̄ ′ ∈W ′ = (C \Z)t+1 and r̄ ∈W = (C \Z)t , respectively, for the sum in (7.3.4) is locally finite. By the
symmetry assumptions in Definition 5.5.2 (see (d)), both ∆r̄

′
and ∆r̄ are also local. We have thus obtained a

holomorphic family of propagators on the open set W ′ = (C \Z)t+1 and another on W = (C \Z)t .

7.3.4 Definition. We will say that a local propagator of cut type ∆ is manageable if the continuous propagator of
cut type ∆r̄

′
defined after (7.3.4) is admissible (see Definition 7.2.10) for all r̄ ′ such that Re(r̄ ′)� 0, and moreover

for all r̄ ′ such that Re(r̄ ′)� 0, the associated Feynman propagator ∆r̄
′
F satisfies that

τ∧a
(
∆r̄
′
F

)
=

∑
j∈J
σa,j

(
(pj,0 +

√
−10)r0

∏
`∈Lj

(p` +
√
−10)s`+r`

)
, (7.3.5)

for all a ∈ A, where σa,j are the smooth functions in (7.3.2).

7.3.5.Remark. The manageability condition seems in our opinion to be a reasonable one to link the starting
propagator of cut type ∆ and its associated Feynman propagator. Even though it seems to be a strong
restriction on the propagator ∆, it only involves a limit of continuous functions, which is in general easy
to check, and that depend more on the tubes appearing in the expression (5.5.1) for ∆ than its actual
functional form. More precisely, the manageability condition is immediately satisfied for ∆ if, for all r̄ ′

such that Re(r̄ ′)� 0, the limits of continuous functions

lim
ε→0+

∑
j∈J
σa,j

(
(pj,0(x̄0) +

√
−1ε)r0

∏
`∈Lj

(p`(x̄) +
√
−1ε)s`+r`

)
and

lim
ε→0+

∑
j∈J
σa,j

(
(pj,0(x̄+

√
−1ȳjε))r0

∏
`∈Lj

(p`(x̄+
√
−1ȳjε))s`+r`

)
coincide, for all a ∈ A, x̄ ∈ φa(Ua ∩U{1},{2}) and ȳj ∈ Ca,j (see Definition 5.5.2).
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Let us remark that the manageability condition essentially expresses that the holomorphic family of
continuous propagators extending the given local propagator of cut type and the associated Feynman prop-
agators should be related in some manner. This relation is needed in order to control the forthcoming holo-
morphic extension. As for the admissibility condition, the hypothesis of manageability does not appear in
[10]. We would also like to stress that if the spacetime M is admissible, then the admissibility condition of
the continuous propagator of cut type ∆r̄

′
appearing in Definition 7.3.4 is automatic (see Lemma 7.2.11).

7.3.6.Example. The manageability condition is satisfied in all the situations we have mentioned in Example
5.5.4. Indeed, it is satisfied by the Klein-Gordon scalar field theory on Minkowski spacetime. This follows
from comparing the expression of the Wightman 2-point function given in [9], Ch. 8, App. F, (F.8b), (see
also [87], (12)), and the expression of the Feynman propagator obtained by combining [39], 6.5, (6.48), and
[28], (5.11) and (5.14). These formulas even show that the analytic continuation of the Feynman propagator
∆r̄
′
F in Definition 7.3.4 associated to the usual Wightman 2-point function is in fact the usual Feynman

propagator considered in scalar field theory. Furthermore, since the components of the propagators for the
Dirac theory on the Minkowski spacetime are given by the corresponding propagators of the scalar theory
on the Minkowski spacetime (see [9], Ch. 8, App. F, (F.21)), we also see that propagators for the Dirac
theory on the Minkowski spacetime are manageable. We also remark that the manageability condition is
clearly fulfilled in the case of Klein Gordon scalar on de Sitter or anti-de Sitter spacetime mentioned in
Example 5.5.4.

Concerning the scalar field theory on a globally hyperbolic classical spacetime, it seems that a weaker
version of the manageability condition is assumed in several articles in the physical literature, were they
suppose that (7.3.5) holds at least for open sets of the form U ×U , where U is a geodesically convex open
set of M (see e.g. [42], item 1 on p. 14). It remains to be seen if the manageability condition is satisfied for
other classical spacetimes.

7.3.7. Let us assume that the local propagator of cut type ∆ is manageable, and denote by ∆r̄
′
F and ∆r̄F the

Feynman propagators associated with the continuous local propagator of cut type ∆r̄
′

and ∆r̄ , respectively,
for all r̄ ′ and r̄ such that Re(r̄ ′),Re(r̄)� 0. Since∆r̄ is the derivative of∆r̄

′
with respect to r0 at r̄ ′ = (r0, r̄) with

r0 = 0, and the space of distributions with wave front set included in a fixed closed conic set is sequentially
complete, we conclude that ∆r̄ is also admissible for all r̄ such that Re(r̄)� 0. By Theorem 7.2.14, there are
Feynman measuresωr̄

′
andωr̄ constructed from ∆r̄

′
F and ∆r̄F , respectively. Moreover, the same result tells us

that ωr̄
′

and ωr̄ are associated with the local propagator of cut type ∆r̄
′

and ∆r̄ , respectively, for all r̄ ′ and r̄
such that Re(r̄ ′),Re(r̄)� 0. It is also trivial to verify that, given any [L] ∈ S̃Li,c(M,E), the map r̄ ′ 7→ ωr̄

′
([L])

is a holomorphic function for all r̄ ′ such that Re(r̄ ′)� 0, and the same holds for ωr̄ .
7.3.8 Theorem. Let ∆ be a manageable local propagator of cut type and let r̄ 7→ ωr̄ be the holomorphic family
of Feynman measures defined for all r̄ such that Re(r̄) � 0 in the previous paragraph. It can be extended to a
holomorphic family of Feynman measures for all r̄ ∈W = (C \Z)t , where Z is included in A−N0 and A is a finite
subset of Q<0, such that, given any [L] ∈ S̃Li,c(M,E), the map r̄ 7→ ωr̄ ([L]) is holomorphic on W . Furthermore,
ωr̄ is a Feynman measure associated with ∆r̄ for all r̄ ∈W = (C \Z)t .

This is the first main result of this section, which is parallel to [10], Thm. 18.

Proof. Define ωr̄ (1S ) = 1, for all r̄ ∈Ct . Moreover, by definition of the Feynman measure in Theorem 7.2.14,
given ` ∈Li,c(M,E), the value ωr̄ (`) for all r̄ ∈Ct such that Re(r̄)� 0, is independent of r̄. This defines thus
ωr̄ (`) for all r̄ ∈ Ct and ` ∈Li,c(M,E). Conditions (1) for ωr̄ |Li,c(M,E) and (2) of Definition 5.7.9 are satisfied
by construction.

Let [L] ∈ S̃mLi,c(M,E) be a fixed element, form ∈N≥2. Since (7.2.1) is a morphism of smooth manifolds,
there exists a collection of charts {(Vma , τma )}a∈Am ofMm such thatMm = ∪a∈AmV

m
a is a locally finite covering,

and that ddiagm(Vma ) is included in a chart of
∏

1≤j<j ′≤m(M ×M) of the form
∏

1≤j<j ′≤mUaj,j′ , for some aj,j ′ ∈
A, for all 1 ≤ j < j ′ ≤m. By taking a partition of unity subordinated to {Vma }a∈Am , we can assume whitout loss
of generality that the support of L is included in some Vma . Consider the distribution valued holomorphic
function r̄ 7→ ωr̄ ([L]) for all r̄ such that Re(r̄)� 0. Since ∆ is manageable, the explicit expression of ωr̄ ([L])
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given in (7.2.3) is also a product of the almost boundary values of the logarithms and powers of the same
real polynomials we considered for the propagator of cut type. By Proposition 7.1.9, the map r̄ 7→ ωr̄ ([L])
can be thus extended to a meromorphic map onW = (C\Z)t , for some discrete set Z included in A−N0 and
A is a finite subset of Q<0. Furthermore, Theorem 7.2.14 tells us that ωr̄ satisfies the identity (5.7.8) given
in Definition 5.7.9, (3), with respect to the local propagator of cut type ∆r̄ for all r̄ such that Re(r̄) � 0.
By analytic continuation, it holds for all r̄ ∈ W = (C \ Z)t . On the other hand, for any [L] ∈ S̃Li,c(M,E),
Proposition 7.1.9 tells us that the distribution valued map r̄ 7→ ωr̄ ([L]) at a particular fixed value r̄0 ∈W is
given as the successive application of a differential operator on ωr̄ ([L]) for some r̄ such that Re(r̄)� 0. The
fact that the wave front set of the latter satisfies condition (1) of Definition 5.7.9 together with property
(4.3.1) tell us that that ωr̄ ([L]) also satisfies the mentioned condition. The theorem is thus proved. �

7.3.9.Remark. The proof of the previous theorem also extends to the more general situation in which one
assumes that the functions pj,0 and p` appearing in the local expression (5.5.3) of the manageable local
propagator ∆ of cut type (and also in (7.3.5)) are analytic, not only polynomials. In this case, the ana-
lytic continuation process is based on a more general version of the Bernstein-Sato theorem for analytic
functions, due to C. Sabbah and R. Bahloul (see [92, 93] and [5]).

7.3.10 Theorem. We follow the same notations as in Theorem 7.3.8. Let ∆ be a manageable local propagator of
cut type, and s̄ be the tuple formed by the exponents appearing in (5.5.1). Define the family of propagators r 7→ ∆r

by ∆r = ∆(r,...,r)+s̄, and the family of Feynman measures r 7→ ωr given by ωr = ω(r,...,r)+s̄, where r ∈ C \Z ′ , with
Z ′ = {r ∈C : r + s` < Z,∀`}. Then

(1) Z ′ is discrete;

(2) r 7→ ∆r is a meromorphic family of local propagators of cut type that can extended to a holomorphic function
on an open set containing 0;

(3) r 7→ωr is a meromorphic family of Feynman measures associated with ∆r for all r ∈C \Z ′ .

This is a direct consequence of Theorem 7.3.8 and of Corollary 7.1.11.

7.4 The holomorphic family of Feynman measures

7.4.1. Consider the family of Feynman measuresωr , where r ∈C\Z ′ , and ωr ([L]) is a holomorphic function
on r, for all [L] ∈ S̃Li,c(M,E). We have the main result of this section, which is parallel to [10], Thm. 20.
The proof is essentially an expansion of the one sketched there.

7.4.2 Theorem. Let r 7→ ωr be the meromorphic family of Feynman measures associated with the family of prop-
agators ∆r given in Theorem 7.3.10 for all r ∈ C \Z ′ . Then, there is a meromorphic family of renormalizations
r 7→ gr for all r ∈ C \Z ′ , such that the meromorphic family of Feynman measures r 7→ (gr ·ωr ) associated with
the family of propagators ∆r and defined for r ∈ C \ Z ′ can be (uniquely) extended to a meromorphic family of
Feynman measures r 7→ ω̃r associated with the family of propagators ∆r but defined for all r ∈ (C \Z ′)∪ {0}.

Proof. By the construction of ωr , we see that ρωr |Li,c(M,E) is a smooth Vol(M)-valued distribution for all
r ∈C. By Theorem 7.3.10, (2), the family of propagators r 7→ ∆r can be uniquely extended to a holomorphic
function on an open set including 0 (and C \Z ′).

Given m ≥ 2, let us denote the restriction operation of a Vol(Mm)-valued distribution u to Mm \Diagm
by resm(u). For m ≥ 2, assume that we have constructed holomorphic families of renormalizations r 7→ gr−2,
. . . , r 7→ gr−m+1, with gr−j ∈ Gi,j (M,E) for all j = 2, . . . ,m − 1, such that the restriction of (gr−m+1 . . . g

r
−2) · ωr

to S̃m
′
Li,c(M,E) can be (uniquely) extended to a holomorphic function on r = 0, for m′ = 0, . . . ,m − 1.

We shall prove it for m. Let us denote (gr−m+1 . . . g
r
−2) · ωr by ωrm−1. By condition (3) of Definition 5.7.9,

we see that the restriction resm(ρωrm−1
|S̃mLi,c(M,E)) of the Vol(Mm)-valued distribution ρωrm−1

|S̃mLi,c(M,E) to
Mm \Diagm is uniquely determined by ∆r and ρωrm−1

|S̃m′Li,c(M,E), for m′ = 0, . . . ,m − 1. As a consequence,
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resm(ρωrm−1
|S̃mLi,c(M,E)) is holomorphic for all r ∈ (C \ Z ′) ∪ {0}. Indeed, the holomorphicity follows from

[47], §2, Rk. 4 (a), together with the fact that the internal product map (4.5.3) is a hypocontinuous bilinear
map defined between complete locally convex spaces, so a fortiori a separately continuous between spaces
satisfying the condition (a) stated by the author (see [95], II.4.3, Cor.). Since the map r 7→ ρωrm−1

|S̃mLi,c(M,E) is
holomorphic on an open set of the form B(0,δ) \ {0}, and 0 is a pole, it has a Laurent expansion of the form

∞∑
j=−jm

umj r
j , (7.4.1)

where umj is a Vol(Mm)-valued distribution. Applying the restriction operator resm to it we get

∞∑
j=−jm

resm(umj )rj , (7.4.2)

which by the comments above is a holomorphic function at 0. Hence, the Vol(Mm)-valued distribution

Um =
−1∑

j=−jm

umj r
j , (7.4.3)

has support in the diagonal Diagm. It clearly satisfies condition (1) of Definition 5.7.9, because ωrm−1 does
and the space of distributions with wave front set in a fixed closed conic set is sequentially complete. By
Lemma 6.0.11, there is a meromorphic family of renormalizations r 7→ gr−m, with gr−m ∈ Gi,m(M,E) such
that gr−m ·ωrm−1 and ωrm−1 −Um coincide on S̃m

′
Li,c(M,E) for m′ = 0, . . . ,m. Since the expansion of ωrm−1 −

Um around r = 0 has no singular terms, it is uniquely extended to a holomorphic map 0, so we obtain a
holomorphic for all r ∈ (C\Z ′)∪{0}. By Lemma 5.8.9, given any fixed r ∈C\Z ′ , the infinite product element

gr =
−2∏

m=−∞
grm

defines a unique element of Gi(M,E). By Fact 5.9.6, it is meromorphic on C \ Z ′ . The theorem is thus
proved. �

7.5 The existence of a Feynman measure for a manageable local propagator of cut
type

7.5.1. We have now the main result of this chapter, which is parallel to [10], Thm. 21.

7.5.2 Theorem. Let∆ be a manageable local propagator of cut type. Then there is a Feynman measureω associated
with ∆.

Proof. Let r 7→ ω̃r be the meromorphic family of Feynman measures associated with the family of propa-
gators ∆r given in Theorem 7.4.2 for all r ∈ (C \Z ′)∪ {0}, and let ω be the value of r 7→ ω̃r at r = 0. Then ω
satisfies the required properties. �
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Compos. Math. 141 (2005), no. 1, 175–191 (French, with English summary). ↑7.3.9

[6] C. Bergbauer, Epstein-Glaser renormalization, the Hopf algebra of rooted trees, and the Fulton-MacPherson compactification of config-
uration spaces, 2004. Diplomarbeit, Freie Universität Berlin. ↑5.1.3
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↑1.4.1, 1.4.14
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