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Estanislao Herscovich ∗

The aim of these notes to provide a simple exposition on the basic constructions
appearing in the theory of augmented dg algebras and coaugmented dg coalge-
bras, as well as A∞-algebras and A∞-coalgebras. In particular we explain the
(reduced and nonreduced) bar and cobar constructions associated to them, the
theory of twisting of dg and A∞-algebras, presenting our sign conventions in a
completely explicit manner, and the connection to Hochschild (co)homology of
aumented dg algebras, which is of interest to us.

1 Preliminaries on basic algebraic structures

We recall the following basic facts, which will also establish the notation. From
now on, k will denote a commutative ring with unit (which we also consider as
a unitary graded ring concentrated in degree zero). By module over k we will al-
ways mean a symmetric bimodule over k (although several constructions can be
clearly performed without this symmetry assumption, we shall suppose it in order
to simplify the exposition). We fix an abelian group G of the form Z × G′ (or also
Z/2.Z×G′ to which all these construction can be adapted straightforward), which
we write additively. The character map used in the Koszul sign rule will be just
given by the projection on the first component of G. A typical element of G will
be denoted by g, h, etc, and the corresponding first component ig , ih, etc. For an
object M , we will denote by idM the identity endomorphism of M . We also re-
mark that the expression map between to graded or dg modules over k (or maybe
provided with further structure) will always mean the mapping between (say) the
underlying modules or even the underlying sets, which comes from forgetting all
the extra structure. This might be sometimes useful if we want to stress just the
values of morphisms at elements of a graded or dg module over k.

1.1 Graded and differential graded modules over a fixed commu-
tative ring k

A (cohomological) graded module over k is a module over k provided with a decom-
position of k-modules of the form M = ⊕g∈GMg . If m is a nonzero homogeneous
element of a graded module M over k we define the degree degm ∈ Z of m and
the weight (internal degree, or Adams degree) w(m) ∈ G′ of m by m ∈ M (degm,w(m)).
We say in this case that the complete degree of m is (degm,w(m)) ∈ G. The com-
mutative ring k will be considered as a graded module with the grading given by
kg = 0 if g 6= 0G, and k0G = k. If M is a graded module and g ∈ G, define M [g]
to be the graded module over k with the same underlying structure of k-module
but with a complete degree shift given by M [g]g

′
= Mg+g′ , for all g′ ∈ G. We shall

usually write M [i], for i ∈ Z, instead of the more correct M [(i, 0G′)], for it causes
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no confusion. For any two graded modules M and N over k, homk(M,N) is the
space of k-linear maps of complete degree zero, i.e. f(Mg) ⊆ Ng for all g ∈ G.
The internal space of morphisms if given by Homk(M,N) = ⊕g∈G homk(M,N [g])
and it is obviously a graded k-module. The graded module Homk(M,k) will be
also denoted by M#. Note that in this case the g-th graded component of M# is
given by (M−g)∗, where (−)∗ denotes the usual dual for modules over k, and by
the previous comments we have that (M [g])# = (M#)[−g], for g ∈ G.

We remark that by very definition the graded module Homk(M [g], N [g′]) ex-
actly coincides with Homk(M,N)[g′ − g] for g, g′ ∈ G. In the same manner, the
graded modulesM [g]⊗N [g′] and (M ⊗N)[g+g′], for g, g′ ∈ G, are also exactly co-
incident. These “identities” are however misleading since they do not (in general)
respect the Koszul sign rule, and -in some sense more fundamentally- the men-
tioned phenomenon for the homomorphisms spaces is not in accordance with the
axioms of category theory. We will regard such coincidences only as a consequence
of the usual abuse of notation in the definitions of tensor product and morphisms
spaces: since we are interested in considering the Koszul sign rule, we should in
fact force them to be noncoincident. There is however an identification (and in fact
many of them, but in general different from the identity) between the correspond-
ing previous graded modules, which is compatible with the Koszul sign rule, and
that will be explained in the penultimate paragraph of this subsection.

Given M and N two graded modules over k, a morphism of graded modules of
complete degree g ∈ G is an element f ∈ Homk(M,N) of complete degree g. We
remark that the morphism sM,g : M → M [g] whose underlying map is given by
the identity is a morphism of graded modules of degree−g, and we shall typically
denote sM,(1,0G′ )

by sM , or simply s, if M is clear from the context. All along this
article, if we do not indicate the complete degree of a morphism (between graded
modules, or later on dg modules, etc), it means that it is of complete degree zero.
Also, forM andN two graded modules over k, the (usual) tensor productM ⊗kN
has the structure of graded module over k with (M ⊗kN)g = ⊕g′∈GMg′ ⊗kNg−g′ .
From now on, all unadorned tensor products ⊗ will mean ⊗k. For f : M → N
and f ′ : M ′ → N ′ two morphisms of graded modules over k of complete de-
grees g and g′, respectively, the map f ⊗ f ′ : M ⊗ M ′ → N ⊗ N ′ given by
(f ⊗ f ′)(m ⊗ m′) = (−1)deg f ′ degmf(m) ⊗ f ′(m′), for m ∈ M and m′ ∈ M ′ ho-
mogeneous, is a morphism of graded modules over k of complete degree g + g′.
Analogously, if f : M → N and f ′ : N ′ → M ′ are two morphisms of graded
modules over k of complete degrees g and g′, respectively, the map Homk(f, f ′) :

Homk(N ′, N) → Homk(M ′,M) given by φ 7→ (−1)deg f(deg φ+deg f ′)f ′ ◦ φ ◦ f , for
φ homogeneous, is a morphism of complete degree g + g′. We shall also denote
Homk(f,N) = Homk(f, idN ) and Homk(N ′, f ′) = Homk(idN ′ , f

′). Furthermore,
we will usually denoteHomk(f, k) by f#, which is of course has the same complete
degree as the one of f . As for the case of the tensor product we shall usually omit
the commutative ring k in the notation of the homomorphism groups introduced
before, and proceed to write Hom instead of Homk. The canonical map ιM : M →
(M#)# defined as ιM (m)(f) = (−1)degm deg ff(m), form ∈M and f ∈M# homo-
geneous, is a morphism of graded modules. Given M and N two graded modules
over k, we will occasionally consider the morphism ιM,N : M#⊗N# → (M⊗N)#

of graded modules defined as ιM,N (φ⊗ ψ)(m⊗ n) = (−1)degψ degmφ(m)ψ(n). We
also have the flip τM,N : M ⊗ N → N ⊗ M , which is the morphism of graded
modules defined as τM,N (m⊗ n) = (−1)degm degnn⊗m, for all m ∈M and n ∈ N
homogeneous elements.

A differential graded module (or dg module) over k is a graded k-module M =
⊕g∈GMg together with a homogeneous k-linear map dM : M → M of degree +1
and zero weight, i.e. dM (Mg) ⊆ Mg+(1,0G′ ) for all g ∈ G, such that it is a differ-
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ential, i.e. d2
M = 0. The graded module structure on k explained before can be

extended to a dg module by defining the differential dk = 0, and more generally,
any graded k-module M may be regarded as dg module with vanishing differen-
tial. For a dg module M over k, the cohomology H•(M) of M , given by the quotient
Ker(dM )/ Im(dM ), is in fact a graded module over k. A dg module M is called
acyclic if H•(M) vanishes. If M is a dg module and g ∈ G, M [g] is the dg module
over k with the same graded module structure as before and differential dM [g] =
(−1)igdM . For M and N two dg modules over k, the tensor product M ⊗ N has
the structure of dg module over k with the same underlying graded structure as
before and with differential dM⊗N = dM⊗idN+idM⊗dN . We endow the graded k-
moduleHom(M,N) with the differential dHom(M,N)(f) = dN ◦f−(−1)deg ff ◦dM ,
so it becomes a dg module over k. In this case, for M a dg module we will still
denote by M# the dg moduleHom(M,k). Note that dM# = −d#

M .
Given M and N two dg modules over k, f : M → N is a morphism of differential

graded modules over k of complete degree g if it is a morphism between the underlying
graded modules of complete degree g and satisfies that dN ◦ f = (−1)igf ◦ dM ,
i.e. it is cocycle of complete degree g of the dg module Hom(M,N). We stress
that, as before, if we do not specify the complete degree of a morphism, it will be
assumed to be zero. Note that sM,g : M → M [g] introduced previously is in fact a
morphism of dg modules of complete degree −g. This is in fact tantamount to the
definition of dg module structure over k on M [g]. We stress that if f : M → N and
f ′ : M ′ → N ′ are two morphisms of dg modules over k of complete degree g and
g′, respectively, then f ⊗ f ′ : M ⊗M ′ → N ⊗N ′ is a morphism of dg modules over
k of complete degree g + g′. Analogously, given f : M → N and f ′ : N ′ → M ′

two morphisms of dg modules over k of complete degrees g and g′, respectively,
the mapHom(f, f ′) : Hom(N ′, N)→ Hom(M ′,M) defined for graded modules is
moreover a morphism of dg modules over k of complete degree g + g′. Note that
given two dg k-modules M and N , the maps ιM , ιM,N and τM,N defined in the
third paragraph of this section are further morphisms of dg modules over k.

If f : M → N is a morphism of dg modules over k of complete degree g, then,
for each g′, g′′ ∈ G, the may consider the map

Hom(s−1
M,g′ , sN,g′′)(f) : M [g′]→ N [g′′],

which will be denoted by f
[g′′]
[g′] . It is trivial to see that f [g′′]

[g′] a morphism of dg
modules over k of complete degree g + g′ − g′′, i.e.

dN [g′] ◦ f = (−1)ig+g′−g′′ f ◦ dM [g′].

If f is a morphism of complete degree 0G, it is rather usual to allow the abuse
of notation given by denoting the map (−1)deg g′ deg g′′f

[g′′]
[g′] also by f . We shall

only follow this convention when we consider it is unambiguous. We also re-
mark that (unlike the case for graded modules) the dg modules Hom(M [g], N [g′])
and Hom(M,N)[g′ − g], for g, g′ ∈ G, are not the same, for the identity map be-
tween the underlying graded modules is not a morphism of dg modules over k.
Indeed, the corresponding isomorphism of dg modules fromHom(M,N)[g′−g] to
Hom(M [g], N [g′]), which we denote byHM,N,g,g′ , is given by sHom(M,N),g′−g(f) 7→
Hom(s−1

M,g, sN,g′)(f), for f ∈ Hom(M,N). The underlying map is thus the iden-
tity times a (−1)(deg f+ig′ )ig sign. In the same manner, the dg module structure
on the tensor product and M [g′] ⊗ N [g′] and (M ⊗ N)[g + g′], for g, g′ ∈ G, are
not same. There is though a (not completely canonical) isomorphism of dg mod-
ules M [g′] ⊗ N [g′] → (M ⊗ N)[g + g′] over k, denoted by TM,N,g,g′ , defined as
sM,g(m)⊗ sN,g′(n) 7→ (−1)ig′ degmsM⊗N,g+g′(m⊗n), for m ∈M and n ∈ N homo-
geneous elements.
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If f : M → N is a morphism of dg modules, the cone cone(f) is the dg module
whose underlying graded module is M [1] ⊕N and whose differential is given by
dcone(f)(m,n) = (−dM (m) + f(m), dN (n)). Given a morphism of dg modules f :
M → N of complete degree g, it directly induces a morphism of graded modules
H•(M) → H•(N) of the same complete degree, which we will denote by H•(f).
It is clear that H•(idM ) = idH•(M) and that H•(f ◦ f ′) = H•(f) ◦ H•(f ′), for any
two composable morphisms f and f ′ of dg modules of complete degrees g and g′,
resp. Furthermore, a morphism of dg modules f : M → N of complete degree 0G
is said to be a quasi-isomorphism if H•(f) is an isomorphism of graded modules. It
is well-known that f is a quasi-isomorphism if and only if cone(f) is acyclic (see
[23], Cor. 1.5.4).

1.2 Graded and differential graded algebras and coalgebras, and
modules over the former

A (nonunitary) graded algebra over k is just a (nonunitary) algebra over k together
with a decomposition of k-modules A = ⊕g∈GAg satisfying that AgAg

′ ⊆ Ag+g
′
,

for all g, g′ ∈ G. We will also sometimes denote the product ofA by (the morphism
of graded modules) µA : A ⊗ A → A. A morphism of graded algebras from a graded
algebra A to a graded algebra B is a morphism of graded modules f : A → B
such that f(aa′) = f(a)f(a′) for all a, a′ ∈ A. A unitary graded algebra over k is a
nonunitary one together with an element 1A ∈ A0G , called the unit of A, satisfying
the usual axiom 1Aa = a1A = a for all a ∈ A. We may also consider the unit of A
as a morphism of graded modules ηA : k → A which satisfies that µA ◦ (idA ⊗ ηA)
and µA ◦ (ηA ⊗ idA) coincide with the canonical isomorphisms A ⊗ k → A and
k ⊗ A → A, resp. Given two unitary graded algebras A and B, a morphism of
unitary graded algebras is a morphism of the underlying nonunitary graded algebras
f : A → B such that f(1A) = 1B . The opposite graded algebra Aop of a nonunitary
graded algebra A is given by the same graded module over k but with the product
a ·op b = (−1)deg a deg bba, for all a, b ∈ A homogeneous. In case A is unitary, Aop

also, with the same unit of A. If A and B are two nonunitary graded algebras,
the graded module structure over k of the tensor product A ⊗ B is also a graded
algebra with the product (a ⊗ a′)(b ⊗ b′) = (−1)deg a′ deg bab ⊗ a′b′. If A and B are
unitary with units 1A and 1B , resp., then A ⊗ B is also unitary with unit 1A ⊗ 1B .
We consider the graded algebraAe = A⊗Aop, which is called the enveloping algebra
of A.

We also have the dual definitions. A (noncounitary) graded coalgebra over k is a
graded module C = ⊕g∈GCg together with a morphism of graded modules ∆C :
C → C⊗C satisfying the coassociativity axiom (∆C⊗idC)◦∆C = (idC⊗∆C)◦∆C .
We define ∆

(n)
C : C → C⊗n as the composition (∆

(n−1)
C ⊗idC)◦∆C , for n ∈ N≥3, and

∆
(2)
C = ∆C . As usual, we may use the Sweedler notation ∆

(n)
C (c) = c(1) ⊗ · · · ⊗ c(n)

for the iterated coproduct of an element c ∈ C (by the coassociativity axiom this
notation is consistent). A morphism of graded coalgebras from a graded coalgebraC to
a graded algebraD is a morphism of graded modules f : C → D such that ∆D◦f =
(f ⊗ f) ◦ ∆C . A graded coalgebra C is called counitary if there is a morphism of
graded modules εC : C → k, called the counit of C, satisfying that (εC ⊗ idC) ◦∆C

and (idC ⊗ εC) ◦ ∆C coincide with the canonical isomorphisms C ' k ⊗ C and
C ' C ⊗ k, resp. Given two counitary graded coalgebras C and D, a morphism of
counitary graded coalgebras is a morphism of the underlying noncounitary graded
coalgebras f : C → D such that εD ◦ f = εC . The coopposite graded coalgebra Ccoop

of a noncounitary graded coalgebra C is given by the same graded module over k
but with coproduct ∆Ccoop = τC,C ◦ ∆C . If C is counitary, Ccoop is also, with the
same counit as the one of C. If C and D are two noncounitary graded coalgebras,
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the graded module structure over k of the tensor product C ⊗ D is also a graded
coalgebra with the coproduct ∆C⊗D = (idC ⊗ τC,D ⊗ idD) ◦ (∆C ⊗∆D). If C and
D are counitary with counits εC and εD, resp., then C ⊗ D is also counitary with
counit εC ⊗ εD. The graded coalgebra C⊗Ccoop is called the enveloping coalgebra of
C, and is denoted by Ce.

A left (resp., right) graded module over a nonunitary graded algebra A is just
a left (resp., right) module over A such that it is a graded module over k for the
action of k given by restriction (i.e. provided with a decomposition of k-modules of
the form M = ⊕g∈GMg) satisfying that Ag

′
Mg ⊆ Mg′+g (resp., MgAg

′ ⊆ Mg+g′ ),
for all g, g′ ∈ G. If A is unitary, we say that M is a left (resp., right) graded module
if we further assume that 1Am = m (resp., m1A = m) for all m ∈ M . A graded
bimodule over A will be just a left graded module over the enveloping algebra Ae.

In the rest of this subsection, unless further explanation is required, we shall
usually refer to the term graded algebra (resp., graded coalgebra), differential
graded algebra (resp., differential graded coalgebra), module over a graded al-
gebra (resp., comodule over a graded coalgebra), etc. without explicitly indicating
whether there is a unit (resp., counit) or not to indicate that the definitions and con-
structions apply to each possibility in the sense that either the adjective nonunitary
should be applied to them altogether, or else the adjective unitary.

If M is a left (resp., right) graded module and g ∈ G, define M [g] to be the left
(resp., right) graded module over A with the new action of A given by a · m =
(−1)ig deg aam (resp., with the same action) such that the complete degree shifts as
M [g]g

′
= Mg+g′ . Note that, if M is a left (resp., right) graded module over A, then

it is also a right (resp., left) graded module over Aop with the same structure of
graded module over k and right (resp., left) action ma = (−1)deg a degmam (resp.,
am = (−1)deg a degmma) over Aop. For any two left (resp., right) graded modules
M and N over A, homA(M,N) is the space of A-linear maps of complete degree
zero, and HomA(M,N) = ⊕g∈G homA(M,N [g]), which is obviously a graded k-
module. Note that, if M and N are left (resp., right) graded modules over A,
this implies that HomA(M,N) is the subspace of Hom(M,N) given by sums of
homogeneous maps satisfying that f(am) = (−1)deg f deg aaf(m) (resp., f(ma) =
f(m)a), for a ∈ A and m ∈ M homogeneous elements. These latter are called
morphisms of graded left (resp., right) A-modules (of some complete degree). Notice
that the graded left (resp., right) A-module structure on M [g] is tantamount to
requiring that the map sM,g : M →M [g] is a morphism graded left (resp., right)A-
modules. We may point out that there are similar definitions of graded comodules
over graded coalgebras, to which the previous constructions also apply mutatis
mutandi. Since we will not need these, we do not provide such definitions, but we
let the interested reader to elaborate on them.

A nonunitary (resp., unitary) differential graded algebra (or dg algebra) over k is a
nonunitary (resp., unitary) graded algebra over k together with a homogeneous k-
linear map dA : A → A of complete degree (1, 0G′) satisfying the Leibniz identity,
i.e. dA(ab) = dA(a)b + (−1)deg aadA(b), for all a, b ∈ A homogeneous, and d2

A = 0
(resp., dA(1A) = 0 and d2

A = 0). As in the case of unitary graded algebras, we
may also consider the unit of A as a morphism of dg modules ηA : k → A which
satisfies the same axioms as before. Note that the dg module structure on k stated
before is compatible with its structure of unitary algebra, turning k into a unitary
dg algebra. The graded k-module given by the cohomology H•(A) of A is in fact
a nonunitary (resp., unitary) graded algebra with the product induced by that of
A (resp., and the unit of H•(A) is the cohomology class of the unit of A). Note
that if A is a dg algebra over k, then the opposite graded algebra together with
the same differential dA is also a dg algebra over k. Analogously, for A and B two
dg algebras, the dg module structure over k of the tensor product A ⊗ B with the
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product (and unit if A and B are unitary) described above for graded algebras is
also a dg algebra. In this case, the enveloping algebra Ae of a dg algebra A is also
a dg algebra.

A noncounitary (resp., counitary) differential graded coalgebra (or dg coalgebra) over
k is a noncounitary (resp., counitary) graded coalgebra C over k provided with a
morphism of graded k-modules dC : C → C of complete degree (1, 0G′) satisfy-
ing that ∆C ◦ dC = (idC ⊗ dC + dC ⊗ idC) ◦ ∆C , and d2

C = 0 (resp., εC ◦ dC = 0
and d2

C = 0). Note also that the canonical isomorphism k → k ⊗ k turns the dg
module k into a dg coalgebra, which is further counitary by setting εk = idk. If k
is Von Neumann regular, the graded k-module given by the cohomology H•(C)
of C has a coproduct (resp., and a counit) induced by that of C, by the Künneth
formula, so it becomes a noncounitary (resp., counitary) graded coalgebra. If C
is a dg coalgebra over k, then the coopposite graded coalgebra together with the
same differential dC is also a dg coalgebra over k. Analogously, for C and D two
dg coalgebras, the dg module structure over k of the tensor product C⊗D with the
coproduct (and counit if C and D are counitary) described above for graded coal-
gebras is also a dg coalgebra. As for the case of algebras, the enveloping coalgebra
Ce of a dg coalgebra C is also a dg coalgebra.

A left (resp., right) differential graded module (or dg module) over a dg algebraA is
a left (resp., right) gradedA-moduleM = ⊕g∈GMg such that it is also a dg module
over k, for the action of k coming from restriction (i.e. together with a homoge-
neous k-linear map dM : M → M of complete degree (1, 0G′), such that d2

M = 0),
which satisfies the Leibniz identity, i.e. dM (am) = dA(a)m + (−1)deg aadM (m)
(resp., dM (ma) = dM (m)a + (−1)degmmdA(a)), for all a ∈ A and m ∈ M homo-
geneous. If M is a left (resp., right) dg module over A and g ∈ G, M [g] is the
left (resp., right) dg module over A with the same graded module structure over
A as defined previously and differential given by its structure of dg module over
k, i.e. dM [g] = (−1)igdM . Note that for any two left (resp., right) dg modules M
and N over a dg algebra A the spaceHomA(M,N) is obviously a dg k-module for
dHomA(M,N)(f) = dN ◦f − (−1)deg ff ◦dM . A morphism of differential graded modules
overA of complete degree g is an element f ∈ HomA(M,N) of degree d satisfying that
dN ◦ f = (−1)igf ◦ dM , i.e. it is cocycle of complete degree g of the dg k-module
HomA(M,N). Note that sM,g is a morphism of dg modules over A, for any dg
A-module M and g ∈ G. As in the case of dg modules over k, if f : M → N is a
morphism of dg modules over A of complete degree g, then, for each g′, g′′ ∈ Z,
we may consider

f
[g′′]
[g′] : M [g′]→ N [g′′],

which is a morphism of dg modules over A of degree g+ g′− g′′. Also, notice that,
if M is a left (resp., right) dg module over A, then it is also a right (resp., left) dg
module over Aop with the same structure of dg module over k and right (resp.,
left) action as in the case of graded modules over Aop. Indeed, it is trivial to check
that this satisfies the Leibniz identity, so it defines a structure of dg module over
A. A differential graded bimodule (or dg bimodule) over A is defined as a left dg mod-
ule over the enveloping algebra Ae. As before, we endow the graded k-module
HomA(M,N) with differential d(f) = dN ◦ f − (−1)deg ff ◦ dM , so it becomes a
dg module over k. Again, we notice that there are similar definitions of differ-
ential graded comodules over dg coalgebras, to which the previous constructions
also apply straightforward, but we will not give them for they are not going to be
required.

Let M be a dg module over a dg algebra A. It is called free if it is isomorphic
to a direct sum of dg modules over A of the form A[gi], for a family {gi : i ∈ I} of
elements of G, where I is a set of indices. We say that M is semi-free if there is an
increasing filtration {Mi}i∈N0

of dg submodules ofM overA such that thatM0 = 0
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(i.e. the filtration is Hausdorff ), ∪i∈N0
Mi = M (i.e. the filtration is exhaustive) and

Mi+1/Mi is a free dg module over A for all i ∈ N0 (see [1], Subsection 1.11, (4)).
Equivalently, M is semi-free if there exists a set B ⊆ M of homogeneous elements
which gives a basis of the underlying graded module of M over the underlying
graded algebra of A with the following property. For any S ⊆ B, let δ(S) ⊆ B be
the smallest subset among all of the subsets T of B such that d(S) is included in
the A-linear span of T . Then, the previously mentioned property is that for every
b ∈ B, there is n ∈ N such that δn({b}) = ∅ (see [2], Prop. 8.2.3). It is a very
simple exercise to prove that if M is provided with an increasing Hausdorff and
exhaustive filtration {Mi}i∈N0

of dg submodules of M over A such that Mi+1/Mi

is a semi-free dg module over A for all i ∈ N0, then M is also semi-free (see [2],
Cor. 8.2.4).

We say that a dg module M over a dg algebra A is homotopically projective if
given any acyclic dg module N over A (i.e. H•(N) = 0) and every morphism of
dg modules f : M → N , there is h ∈ homA(M,N [−1]) (called a homotopy between
f and 0) such that d(h) = f . As noticed by [2], any semi-free dg module is ho-
motopically projective. This follows directly from the easy fact that any homotopy
between f |Mi and the zero map can be extended to a homotopy between f |Mi+1

and the corresponding zero map. Indeed, this can be easily proved by diagram
chasing arguments applied to the following exact sequence of dg modules over k
provided with morphisms of complete degree zero

HomA(Mi+1/Mi, N)→ HomA(Mi+1, N)→ HomA(Mi, N)→ 0.

A semi-free resolution of M is a dg module F over A together with a morphism
of dg A-modules f : F → M of complete degree zero such that it is a quasi-
isomorphism. As noted in [1], Subsection 1.11, (6), a semi-free resolution always
exists, and the morphism f can be even choosen to be surjective (see [2], Thm.
8.3.2). The construction of the pair (F, f) is given by the direct limit of a recursive
contruction of pairs (Fi, fi)i∈N0

satisfying that {Fi}i∈N0
is an increasing sequence

of dg A-modules with F0 = 0 and Fi+1/Fi free, fi : Fi → M is a morphism of
dg A-modules of complete degree zero and fi+1|Mi

= fi for all i ∈ N0. The in-
ductive step is given as follows. Suppose we have constructed (Fj , fj)j=0,...,i as
before, for some i ∈ N0, then one takes a free dg A-module P together with a mor-
phism P → cone(fi)[−1] which induces a surjective morphism between cohomol-
ogy groups (this can be easily done by taking P the free dg A-module generated
by a set of cocycles, whose cohomology class generate the cohomology of the cone
cone(fi)[−1]). Set

Fi+1 = cone((p1)
[−1]
[−1] ◦ π),

where p1 : cone(fi)→ Fi[1] is the morphism of dg modules given by the canonical
projection, and define fi+1 : Fi+1 →M as

fi+1(p, e) = (p2 ◦ π[1]
[1])(p) + fi(e),

where (p, e) ∈ P [1] ⊕ Fi, p2 : cone(fi) → M is the morphism of graded modules
given by the canonical projection (it is not a morphism of dg modules!). It is easy
to check that fi+1 is a morphism of dg A-modules, there is a canonical inclusion of
dg A-modules Fi ⊆ Fi+1, fi+1|Fi

= fi and Fi+1/Fi ' P is a free dg A-module.
It is clear that F is semi-free and f is surjective. Let us see that it is a quasi-
isomorphism. It is easy to see that the inclusion Fi ⊆ Fi+1 of dgA-modules induce
in turn an inclusion cone(fi) → cone(fi+1) of dg A-modules, thanks to the prop-
erty fi+1|Fi = fi. We thus obtain an increasing Hausdorff and exhaustive filtration
{cone(fi)}i∈N0

of dg A-modules of cone(f). Since filtered colimits are exact (see
[23], Thm. 2.6.15), they commute with taking cohomology, so the cohomology of
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cone(f) is the direct limit of the system given by {H•(cone(fi))}i∈N0
together with

the cohomology classes of the maps cone(fi) → cone(fi+1), for i ∈ N0. The latter
morphismsH•(cone(fi))→ H•(cone(fi+1)) vanish by construction, which implies
thus that H•(cone(f)) = 0, which in turn implies that f is a quasi-isomorphism.

1.3 The bar resolution and Hochschild (co)homology of dg alge-
bras

We recall that, for A and B two unitary dg algebras over k, the free product A ∗k B
of A and B is given as a unitary graded algebra over k by

Tk(A⊕B)/〈1A − 1B , a⊗ a′ − aa′, b⊗ b′ − bb′ : for all a, a′ ∈ A and b, b′ ∈ B〉,

where Tk(V ) is the tensor algebra on a graded module V over k. Note that the
canonical inclusions iA : A → A ∗k B and iB : B → A ∗k B are morphisms of
graded k-algebras. Then A ∗k B has a natural structure of graded A-bimodule via
iA and of graded B-bimodule via iB . The differential dA of A can be extended as
the unique derivation dA∗kB|A of A ∗k B satisfying that dA∗kB|A ◦ iA = dA and
dA∗kB|A ◦ iB = 0. The same applies to the differential dB , providing a derivation
dA∗kB|B onA∗kB. Note that dA∗kB|AdA∗kB|B = −dA∗kB|BdA∗kB|A. The differential
dA∗kB of A∗kB is just the derivation dA∗kB|A+dA∗kB|B . Hence, we see that A∗kB
has in fact a natural structure of dg A-bimodule via iA and of dg B-bimodule via
iB . By abuse of notation, we usually write dA instead of dA∗kB|A and dB instead of
dA∗kB|B . Note that A ∗k B is just the coproduct of A and B in the category of the
dg algebras over k.

Let k[ε] be the differential graded algebra whose underlying k-module is the
usual polynomial algebra on the indeterminate ε, where the degree of ε is −1 and
the weight is zero, provided with the differential of complete degree (1, 0G′) given
by the derivation ∂/∂ε, i.e. the unique derivation satisfying that ∂/∂ε(ε) = 1. Con-
sider the differential graded algebra given by the free productA∗kk[ε], and the dif-
ferential induced by dA and ∂/∂ε. Following V. Drinfeld (cf. [12], Subsection 4.3),
the augmented (nonreduced or unnormalized) bar complex of A is just another “presen-
tation” of the differential graded algebra A ∗k k[ε] with the differential given by
dA + ∂/∂ε. We will explain what this means. Consider the graded A-bimodule
given by Bar(A) = ⊕n∈N0(A⊗A[1]⊗n⊗A). If n ∈ N we will typically denote an el-
ement a0⊗s(a1)⊗· · ·⊗s(an)⊗an+1 ∈ A⊗A[1]⊗n⊗A in the form a0[a1| . . . |an]an+1,
where a0, . . . , an+1 ∈ A and s : A → A[1] is the canonical morphism of degree −1
recalled in the third paragraph of Subsection 1.1. In the same manner, we may
usually denote a0 ⊗ a1 by a0[]a1. There is a canonical identification (as graded
A-bimodules, so the morphism is of complete degree zero) of Bar(A)[1] inside
A ∗k k[ε] given by sBar(A)(a0[a1| . . . |an]an+1) 7→ (−1)deg a0+···+deg an+na0ε . . . εan+1,
for n ≥ 0, where we have replaced each occurrence of the tensor on the left mem-
ber by ε and added a sign. Under this identification Bar(A) gets a differential b′

of complete degree (1, 0G′), such that Bar(A) is a differential graded A-bimodule
(if we forget about the map ∂/∂ε applied to elements a0εa1). Moreover, under the
previous identifications, and seeingA insideA∗kk[ε] via iA, the differential dA∗kk[ε]

ofA∗k k[ε] induces the map of gradedA-bimodules (of complete degree zero) from
Bar(A) to A whose restriction to A ⊗ A is given by the product of A, and the re-
striction to A ⊗ A[1]⊗n ⊗ A, for n 6= 0, vanishes. In fact, it is clear that using the
previous maps A ∗k k[ε] is identified (as a graded A-bimodule) with the cone of
the morphism of dg A-bimodules Bar(A) → A of complete degree 0G. That this
map Bar(A) → A is a quasi-isomorphism is tantamount to the fact that its cone is
acyclic, or, under the previous identification, thatA∗k k[ε] is acyclic. This last state-
ment follows easily from the fact that the cohomology H•(A ∗k k[ε]) is a unitary
algebra whose unit vanishes, since 1A∗kk[ε] = dA∗kk[ε](ε).
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The augmented reduced (or normalized) bar complex is just what becomes identi-
fied when we consider (A ∗k k[ε])/〈ε2〉 instead of A ∗k k[ε]. In this case, the un-
derlying graded A-bimodule will be given by Bar(A) = ⊕n∈N0

A ⊗ Ā[1]⊗n ⊗ A,
where Ā = A/k.1A (as graded k-modules). We will still denote an element a0 ⊗
s(ā1)⊗ · · · ⊗ s(ān)⊗ an+1 ∈ A⊗ Ā[1]⊗n ⊗ A in the form a0[a1| . . . |an]an+1, where
a0, . . . , an+1 ∈ A, thus omitting the bars for simplicity. This will mean in particular
that an element a0[a1| . . . |an]an+1 in the reduced bar complex ofA vanishes if there
is some index i ∈ {1, . . . , n} such that ai is scalar multiple of 1A. The previous iso-
morphisms now induce an identification of Bar(A)[1] inside (A ∗k k[ε])/〈ε2〉, and
by the same arguments it becomes a dg A-bimodule with differential b̄′, which is a
resolution of A, also by the map whose restriction to A⊗A is given by the product
of A, and whose restriction to A⊗ Ā[1]⊗n⊗A vanishes for n 6= 0. As for the case of
the bar complex, the dg A-bimodule (A ∗k k[ε])/〈ε2〉 is identified by the previous
map with the cone of the morphism of dg A-bimodules Bar(A) → A of complete
degree 0G. This last map is proved to be a quasi-isomorphism using the same ar-
guments as in the previous paragraph. This in turn implies that the morphism of
differential graded A-bimodules Bar(A) → Bar(A) given by taking quotients is
a quasi-isomorphism, for the latter is induced (using the previous identifications)
by the canonical quotient morphism A ∗k k[ε] → (A ∗k k[ε])/〈ε2〉 of differential
graded algebras. We remark that the previously defined differential b̄′ coincides
with the differential d0 +d1 defined in [9], Subsection 2.2, of the differential graded
A-bimodule B̄(A;A;A) considered there (which, as a graded A-bimodule, coin-
cides with Bar(A)). More explicitly, the previously referred maps are given by

d0(a0[a1| . . . |an]an+1) =dA(a0)[a1| . . . |an]an+1

−
n∑
i=1

(−1)εia0[a1| . . . |dA(ai)| . . . |an]an+1

+ (−1)εn+1a0[a1| . . . |an]dA(an+1),

and

d1(a0[a1| . . . |an]an+1) =(−1)deg a0a0a1[a2| . . . |an]an+1

+

n∑
i=2

(−1)εia0[a1| . . . |ai−1ai| . . . |an]an+1

− (−1)εna0[a1| . . . |an−1]anan+1,

where εi = deg a0 + (
∑i−1
j=1 deg aj)− i+ 1, and where it is assumed that the expres-

sion a0[a1| . . . |an]an+1 vanishes if ai = λ1A, for some λ ∈ k and i ∈ {1, . . . , n}. The
same expression of the differential hold for the nonreduced bar complex.

The following result justifies the relevance of the bar resolution. It was proved
for augmented dg algebras and the reduced bar resolution in [6], Lemma 4.3,
though exactly the same proof applies verbatim to this more general case. We
will provide it for completeness.

Lemma 1.1. Let A be a unitary differential graded algebra such that the underlying dg
k-module ofA is semi-free. Then the previously considered morphism of differential graded
A-bimodules Bar(A)→ A (or Bar(A)→ A) is in fact a semi-free resolution of A.

Proof. The fact that Bar(A) → A (or Bar(A) → A) is a quasi-isomorphism of dg
A-bimodules was already shown at the end of the second and the beginning of the
third paragraphs of this section. It remains to prove that Bar(A) (or Bar(A)) is a
semi-free dg bimodule over A. Let us prove it for the nonreduced bar resolution,
the case of the reduced one being analogous. Since A is a semi-free dg k-module,
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the same applies to the dg k-module A[1], and to the tensor products A[1]⊗n. This
in turn implies that the dgA-bimoduleA⊗A[1]⊗n⊗A (provided only with the dif-
ferential induced by dA, i.e. d0 given before) is semi-free. The proof ends by using
the last property of semi-free modules given in the antepenultimate paragraph of
the previous subsection by noting that the previous dgA-bimoduleA⊗A[1]⊗n⊗A
is isomorphic to the quotient Tn/Tn−1, for the increasing Hausdorff and exhaus-
tive filtration {Tn}n∈N0

of Bar(A) given by the dg A-bimodules whose underlying
graded modules are Tn = ⊕ni=0A⊗A[1]⊗i ⊗A for all n ∈ N0. �

Let now M be a dg bimodule over A. The Hochschild homology H•(A,M) of
A with coefficients on M is just the homology of the complex M ⊗Ae Bar(A), or
equivalently, M ⊗Ae Bar(A), with differential dM ⊗Ae idB•(A) + idM ⊗Ae b′, or
dM ⊗Ae idB̄•(A) + idM ⊗Ae b̄′, respectively. We recall the canonical identification
ΦA,M : M ⊗Ae Bar(A) → M ⊗ T (s(Ā)) of the form m ⊗Ae a0[a1| . . . |an]an+1 7→
(−1)deg an+1(degm+(

∑n
i=0 deg ai)+n)an+1ma0 ⊗ [a1| . . . |an]. By means of the former

isomorphism we induce a differential of the form D′0 + D′1 on M ⊗ T (s(Ā)) given
by

D′0(m⊗ [a1| . . . |an]) =dM (m)⊗ [a1| . . . |an]

−
n∑
i=1

(−1)ε̃im⊗ [a1| . . . |dA(ai)| . . . |an]

+

n∑
i=2

(−1)ε̃im⊗ [a1| . . . |ai−1ai| . . . |an],

(1.1)

and

D′1(m⊗ [a1| . . . |an]) =(−1)degmma1 ⊗ [a2| . . . |an]

− (−1)ε̃n(deg an+1)anm⊗ [a1| . . . |an−1],
(1.2)

where ε̃i = degm + (
∑i−1
j=1 deg aj) − i + 1, and as usual the expression [a1| . . . |an]

vanishes if ai = λ1A, for some λ ∈ k and i ∈ {1, . . . , n}. The same expression of
the differential hold for the nonreduced bar complex. Note that our expression of
differential coincides with the corresponding one of [21], Subsection 2.1, if one un-
derstands in their equation before (10), and following their notation, that the sum
is indexed over i = 0, . . . , p, and

∑
k<i(|ak| + 1) + 1 (i.e.

∑i−1
k=0(|ak| + 1) + 1) is in

fact |a0| + (|a1 + 1|) + · · · + (|ai−1| + 1), so it vanishes if i = 0, by the principle of
summing over the empty set (here | | is our cohomological degree). Note that the
expressions written before to interpret

∑
k<i(|ak|+1)+1 coincide for i ≥ 1. Accord-

ingly, if we regard the convention of [19], Section 2, (2.2), and also following their
notation, ηj should be understood as ((|a0| − 1) + |a1|+ · · ·+ |ai−1|) + 1 (following
the interpretation consistent with their identity (2.1) and not with their definition
before (1.1)) and not as

∑j−1
k=0(|ak|) (here | | is our cohomological degree plus one).

The difference between the two expressions is only apparent when j = 0, for the
latter gives 0, being a sum indexed over an empty set. With this interpretation, our
differential would just be b− δ instead of b+ δ in the notation of that article.

Analogously, the Hochschild cohomology H•(A,M) of A with coefficients on M
is given by the cohomology of the complex HomAe(Bar(A),M), or equivalently,
HomAe(Bar(A),M), with differential f 7→ dM ◦ f − (−1)degff ◦ b′, or f 7→ dM ◦
f − (−1)degff ◦ b̄′, respectively. More explicitly, using the canonical identification
ΦA,M : HomAe(Bar(A),M)→ Hom(T (s(Ā)),M) given by ΦA,M (f)([a1| . . . |an]) =
f(1A[a1| . . . |an]1A), we get that the latter complex induces a differential given by a
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sum D0 +D1, whose value at f ∈ Hom(T (s(Ā)),M) is

D0(f)([a1| . . . |an]) =dM (f([a1| . . . |an]))

+

n∑
i=1

(−1)ε̄if([a1| . . . |dA(ai)| . . . |an])

−
n∑
i=2

(−1)ε̄if([a1| . . . |ai−1ai| . . . |an]),

(1.3)

and

D1(f)([a1| . . . |an]) =− (−1)deg a1 deg f−deg fa1f([a2| . . . |an])

+ (−1)ε̄nf([a1| . . . |an−1])an,
(1.4)

where ε̄i = deg f + (
∑i−1
j=1 deg aj) − i + 1, and as before it is supposed that the

expression [a1| . . . |an] vanishes if ai = λ1A, for some λ ∈ k and i ∈ {1, . . . , n}. The
same expression of the differential holds for the nonreduced bar complex. Notice
that our expression of differential does coincide with the corresponding one of [19],
Section 1, Definition 1.1, or [21], Subsection 2.2, p. 80.

1.4 The bar construction and Hochschild (co)homology of aug-
mented dg algebras

We are interested in the Hochschild (co)homology H•(A,A) of A with coefficients
on the same dg algebra A (also denoted by HH•(A)) under the slightly stronger
assumption of A being an augmented dg algebra. We recall that a unitary dg alge-
bra A is called augmented if there is a morphism εA : A→ k of unitary dg algebras.
In this case, IA = Ker(εA) is called the augmentation ideal of A. A morphism of
augmented dg algebras f : A→ A′ is a morphism of unitary dg algebras such that
εA′ ◦ f = εA. Analogously, a counitary dg coalgebra C is said to be coaugmented if
there exists a morphism of counitary dg coalgebras ηC : k → C. We will usually
denote the coaugmentation cokernel C/ Im(ηC) of C by JC , which is a (nonuni-
tary) dg coalgebra. As in the case of augmented dg algebras, JC is canonically
identified with Ker(εC), and under that identification the coproduct of Ker(εC) is
given by ∆C(c) − 1C ⊗ c − c ⊗ 1C , for c ∈ Ker(εC), where 1C = ηC(1k). We shall
denote such an element by ∆Ker(εC)(c), or c−(1)⊗ c

−
(2). A morphism of coaugmented

dg coalgebras f : C ′ → C is a morphism of counitary dg coalgebras such that
f ◦ ηC′ = ηC .

1.4.1 Twists of (augmented) dg algebras

One natural question is whether we may “perturb” the differential dA of an aug-
mented dg algebra A such that the resulting dg k-module is still an augmented dg
algebra for the previous product, unit and augmentation. We will be concerned
with the much simpler issue of finding a homogeneous element a ∈ A(1,0G′ ) such
that dA,a = dA+ad(a), where ad(a) : A→ A is the morphism of graded k-modules
of degree (1, 0G′) given by a′ 7→ [a, a′] = aa′ − (−1)deg a′a′a, is a differential, i.e.
d2
A,a = 0, and A is an augmented dg algebra for the same product, unit and aug-

mentation as before but new differential dA,a. It is clear that the map dA,a is a
differential if and only if dA(a) + aa = dA(a) + [a, a]/2 lies in the (graded) center
of A (the latter identity having meaning if the characteristic of k is different from
2), and in particular if dA(a) + aa = 0, which is called the Maurer-Cartan equation
for a (this can be done in fact for any dg Lie algebra if the characteristic is different
from 2). It is trivially verified that dA,a is always a derivation, that dA,a(1A) = 0
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and εA ◦ dA,a = 0, so A is an augmented algebra for dA,a if and only if the latter
is a differential. This is always the case if a satisfies the Maurer-Cartan equation.
The procedure of obtaining dA,a from dA and an element a satisfying the Maurer-
Cartan equation is usually called a twist of the differential, and the new augmented
dg algebra is called the twisted augmented dg algebra of (A, dA) by a. Moreover, we
see that this latter twisting construction is natural, in the sense that if f : A→ A′ is
a morphism of augmented dg algebras and a ∈ A(1,0G′ ) satisfies the Maurer-Cartan
equation, then f(a) ∈ (A′)(1,0G′ ) also satisfies the Maurer-Cartan equation and f
can be regarded as a morphism of augmented dg algebras for A and A′ provided
with the new differentials dA,a and dA′,f(a), respectively.

Suppose further that we are given a dg A-bimodule M of an augmented dg
algebra A. Let us consider an element a ∈ A(1,0G′ ) solution to the Maurer-Cartan
equation, so we may regard the new augmented dg algebra structure on A given
by only changing the differential by dA,a. One may wonder how to twist the dif-
ferential dM of M in order to still define a dg bimodule with the same action map
A ⊗M ⊗ A → M over the new augmented dg algebra A provided with the dif-
ferential dA,a. It is clear that the only condition one needs to verify for the new
differential on M is the Leibniz identity, for the others are automatic. Further-
more, it is easily verified that the new differential dM,a given by dM + ad(a), where
ad(a) : M → M is the morphism of graded k-modules of degree (1, 0G′) given by
m 7→ am − (−1)degmma, satisfies the Leibniz identity and thus defines on M the
structure of a dg bimodule over the augmented dg algebra A provided with the
differential dA,a. If M and N are two dg bimodules over the augmented dg alge-
bra A with differential dA, and g : M → N is a morphism of dg bimodules, then
it is also a morphism of dg bimodules over the augmented dg algebra A provided
with the differential dA,a, when we regard M and N with differentials dM,a and
dN,a, respectively.

1.4.2 The convolution algebra and the tensor product module

The following constructions are well-known (see [20], Lemme 1.35). Let C be a
coaugmented dg coalgebra a A an augmented dg algebra. Consider the dg k-
module given by Hom(C,A). It is in fact an augmented dg algebra with product
given by

φ ∗ ψ = µA ◦ (φ⊗ ψ) ◦∆C ,

unit ηA ◦ εC and augmentation φ 7→ (εA ◦ φ ◦ ηC)(1k). We remark that, using the
Sweedler notation, the coproduct can be written as

(φ ∗ ψ)(c) = (−1)degψ deg c(1)φ(c(1))ψ(c(2)),

for c ∈ C. Note that the previous construction is natural, i.e. if f ′ : C ′ → C is a mor-
phism of coaugmented dg coalgebras and f : A→ A′ is a morphism of augmented
dg algebras, then the morphism of dg k-modules Hom(f ′, f) : Hom(C,A) →
Hom(C ′, A′) given by φ 7→ f ◦ φ ◦ f ′ is in fact a morphism of augmented dg al-
gebras. If k is semisimple, it is clear that if f ′ and f are quasi-isomorphisms, then
Hom(f ′, f) is so (see [3], §5.2. Cor. 1, and §2.5, Ex. 4).

Moreover, givenM any dg bimodule overAwe see that the dg k-module given
by the tensor productM⊗C has a structure of a dg bimodule overHom(C,A). The
action is given by

φ · (m⊗ c) · ψ = (−1)εφ(c(3)).m.ψ(c(1))⊗ c(2),

where m ∈M , c ∈ C, φ, ψ ∈ Hom(C,A), and

ε = degψ deg c+ deg c(3)(degm+ deg c(1) + deg c(2) + degψ).
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If f ′ : C ′ → C is a morphism of coaugmented dg coalgebras and g : M ′ → M is a
morphism of dg bimodules overA, then g⊗f ′ is a morphism of dg bimodules over
Hom(C,A), whereM ′⊗C ′ has the structure of dg bimodule overHom(C,A) given
by the restriction of scalar throughHom(f ′, idA) : Hom(C,A)→ Hom(C ′, A). Pro-
vided k is Von Neumann regular (in particular, this holds if k is semisimple), if f ′

and g are quasi-isomorphisms, then g ⊗ f ′ is also (see [3], §4.7. Théo. 3).
Suppose that M has in fact two graded-commuting dg A-bimodule structures,

i.e. M is a dg Ae-bimodule (e.g. M = Ae). In this case one may use one of the
dg bimodule structures over A on M to induce the dg bimodule structure over
Hom(C,A) on M ⊗ C, whereas the second dg bimodule structure over A on M
gives in fact a dg A-bimodule structure on M ⊗ C by the formula

a(m⊗ c)a′ = (−1)deg a′ deg c(ama′)⊗ c,

where we remark that we are using the second dg A-bimodule structure on M .
Moreover, both structures are compatible, i.e. M ⊗ C has in fact a dg bimodule
overHom(C,A)⊗A.

1.4.3 The twisted convolution algebra and the twisted tensor product

A solution τ ∈ Hom(C,A) to the Maurer-Cartan equation on the augmented dg
algebra Hom(C,A) which also satisfies that εC ◦ τ = 0 and τ ◦ ηA = 0 is called a
twisting cochain (some authors call these admissible twisting cochains, because for
them the term twisting cochain is any solution of the Maurer-Cartan equation of
Hom(C,A). See for e.g. [14], Déf. 2.2.1.1). We will denote the augmented dg
algebra Hom(C,A) with the twisted differential dHom(C,A),τ by Homτ (C,A). By
the last paragraph of the two previous subsubsections, it is easy to see that the
twist construction is natural, i.e. given τ ∈ Hom(C,A) a twisting cochain, a mor-
phism of coaugmented dg coalgebras f ′ : C ′ → C and a morphism of augmented
dg algebras f : A → A′, Hom(f ′, f)(τ) ∈ Hom(C ′, A′) is a twisting cochain and
Hom(f ′, f) induces a morphism of augmented dg algebras from Homτ (C,A) to
Homf◦τ◦f ′(C ′, A′). Even for k semisimple and f and f ′ quasi-isomorphisms, the
latter map need not be a quasi-isomorphism. A typical example would be as fol-
lows. Consider the quasi-isomorphism Hom(B+(A+), A+) → Hom(k,A+) ' A+

of augmented dg algebras given by composition with the canonical injection k ⊆
B+(A+), whereA is a unitary algebra andA+ is the augmented algebra recalled in
the fifth paragraph of Subsubsection 1.4.5 (the fact that it is a quasi-isomorphism
follows from the comments in that paragraph). It is clear that the image of the
twisting cochain τA+ under the previous mapping is zero, so we get a morphism
HomτA+ (B+(A+), A+) → A+ of augmented dg algebras. Taking cohomology we
obtain the morphism HH•(A+) → A+ given by the composition of the canonical
projection HH•(A+) → HH0(A+) ' Z(A+) together with the inclusion of the
center Z(A+) of A+ inside A+. If A is noncommutative we see that the previous
map in cohomology is not an isomorphism.

Given M any dg bimodule over A, and a twisting cochain τ in Hom(C,A), we
see that we may twist the differential dM⊗C of the tensor product M ⊗ C, which
is a dg bimodule over the augmented dg algebra Hom(C,A), in order to obtain
the dg bimodule provided with the differential dM⊗C,τ over the augmented dg
algebra Homτ (C,A). We shall denote this new dg bimodule by M ⊗τ C. If f ′′ :
C ′ → C is a morphism of coaugmented dg coalgebras and g : M ′ → M ′ is a
morphism of dg bimodules overA, then g⊗f ′ is a morphism of dg bimodules over
Homτ (C,A) from M ′ ⊗τ◦f ′ C ′ to M ⊗τ C, where we regard M ′ ⊗τ◦f ′ C ′ as a dg
bimodule over Homτ (C,A) by means of the morphism of augmented dg algebras
Hom(f ′, idA) : Homτ (C,A) → Homτ◦f ′(C ′, A). If M has two graded-commuting
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dg A-bimodule structures, so M ⊗ C is a dg bimodule over Hom(C,A) ⊗ A, one
notices that the previous twisting construction implies that M ⊗τ C has in fact a
dg bimodule structure overHomτ (C,A)⊗A.

1.4.4 The bar constructions

We point out the well-known fact that the dg k-module given by k ⊗Ae Bar(A)
is further a coaugmented dg coalgebra, called the (reduced or normalized) bar con-
struction of A, and it is denoted by B+(A) (see [7], Section 19, but also [14], Nota-
tion 2.2.1.4, which we follow, though we do not use the same sign conventions).
Note that in this case the reduced bar resolution Bar(A) can be equivalently pre-
sented as the gradedA-bimodule⊕i∈N0

A⊗IA[1]⊗i⊗A provided with a differential
given by the same expression, the isomorphism being induced by the obvious map
IA → A/k. Moreover, using this identification we may construct an explicit quasi-
inverse to the canonical quasi-isomorphism Bar(A) → Bar(A) explained in the
third paragraph of Subsection 1.3. Indeed, it is easy to check that the map

⊕i∈N0
A⊗ IA[1]⊗i ⊗A→ ⊕i∈N0

A⊗A[1]⊗i ⊗A

induced by the inclusion IA[1] ⊆ A[1] is such a quasi-isomorphism. Now, using
the obvious isomorphism

k ⊗Ae Bar(A) '
⊕
i∈N0

IA[1]⊗i,

induced by the identification explained previously, the coproduct is given by the
usual deconcatenation

∆([a1| . . . |an]) =

n∑
i=0

[a1| . . . |ai]⊗ [ai+1| . . . |an],

where we set [ai| . . . |aj ] = 1B+(A) if i > j, for 1B+(A) the image of 1k under the
canonical inclusion k = A[1]⊗0 ⊆ B+(A). The differential, denoted by B, is triv-
ially seen to be of the form

B([a1| . . . |an]) =−
n∑
i=1

(−1)εi [a1| . . . |dA(ai)| . . . |an]

+

n∑
i=2

(−1)εi [a1| . . . |ai−1ai| . . . |an],

where εi = (
∑i−1
j=1 deg aj) − i + 1. One checks easily that it is a coderivation. The

counit is given by the canonical projection B+(A) → IA[1]⊗0 = k, and the coaug-
mentation is defined as the obvious inclusion k = IA[1]⊗0 ⊆ B+(A). Since B+(A)
is a coaugmented tensor graded coalgebra, it is cocomplete. The image of its dif-
ferential B lies inside the augmentation kernel Ker(εB+(A)) of B+(A), so B is thus
uniquely determined by π1 ◦ B, where π1 : B+(A) → IA[1] is the canonical pro-
jection (see [14], Lemme 1.1.2.2, Sections 2.1.1 and 2.1.2, and Notation 2.2.1.4). We
recall that a coaugmented graded coalgebra C is cocomplete (or sometimes de-
noted as conilpotent) if the (quotient) nonunitary graded coalgebra JC = C/ Im(ηC)
satisfies that its primitive filtration given by

Ker(∆JC ) ⊆ Ker(∆
(3)
JC

) ⊆ · · · ⊆ Ker(∆
(n)
JC

) ⊆ . . .

is exhausting, i.e. its union is JC . This composition map π1 ◦ B is written as the
sum of two terms b1 : IA[1] → IA[1] and b2 : IA[1]⊗2 → IA[1] given by sa 7→ −sda
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and sa⊗ sb 7→ (−1)deg a+1s(ab), for a, b ∈ A homogeneous, resp. We note thus that
b1 = −sIA ◦ dA ◦ s−1

IA
and b2 = −sIA ◦ µA ◦ (s⊗2

IA
)−1. We warn the reader that even

though we have set up our sign conventions for the differential of the bar con-
struction in order to agree with several in the literature (e.g. [7], Section 19, or [15],
Section 8), and in particular they coincide with the “universally” accepted conven-
tions in case our dg algebra is a plain algebra, they differ from others (e.g. those
in the thesis [14] of K. Lefèvre-Hasegawa, Ch. 1 and 2). By very definition, the
cohomology of B+(A) is the Tor group TorA• (k, k), where we recall that we should
switch from cohomological (upper) grading to homological (lower) grading by the
obvious relation V n = V−n, for n ∈ Z, and where the Adams degree does not
change. We also note that, under this identification a morphism of cohomological
degree n becomes a morphism of homological degree −n.

We remark that there is a nonreduced (or unnormalized) bar construction B̃+(A)
of A given as a dg module over k by k ⊗Ae Bar(A), which in turn is canonically
isomorphic to ⊕i∈N0A[1]⊗i as graded k-modules. It is also a coaugmented dg coal-
gebra, and the formulas for the coproduct, the counit and the coaugmentation are
the same as for the reduced bar construction. Its underlying coaugmented graded
coalgebra structure is thus the one of a coaugmented tensor graded coalgebra. The
explicit form of the differential, which we denote by B̃, is however different from
the reduced case, namely, B̃([]) = 0 and for n ∈ N we have that

B̃([a1| . . . |an]) =−
n∑
i=1

(−1)εi [a1| . . . |dA(ai)| . . . |an]

+

n∑
i=2

(−1)εi [a1| . . . |ai−1ai| . . . |an]

+ εA(a1)[a2| . . . |an]− (−1)εnε(an)[a1| . . . |an−1],

where εi = (
∑i−1
j=1 deg aj) − i + 1, and a1, . . . , an ∈ A. A rather long computation

shows it is in fact a coderivation. It is not difficult to verify that the image of
B̃ lies inside the augmentation kernel of B̃+(A), so it is uniquely determined by
its composition with the canonical projection p1 : B̃+(A) → A[1], which is just
the sum of two terms b̃1 : A[1] → A[1] and b̃2 : A[1]⊗2 → A[1] given by sa 7→
−sda and sa ⊗ sb 7→ (−1)deg a+1s(ab) + εA(a)sb − (−1)deg a+1εA(b)sa, for a, b ∈ A
homogeneous, resp. Note that the definition just given before does not coincide
with the one given in [8], for our differential is different (due to the last two terms
in the explicit expression of B̃). In particular, their definition of nonreduced bar
construction of a unitary dg algebra is always quasi-isomorphic to k, whereas in
our case it will be quasi-isomorphic to the reduced bar construction.

Moreover, the quasi-isomorphism Bar(A) → Bar(A) of dg A-bimodules given
by taking quotients and recalled in the third paragraph of Subsection 1.3 induces
a quasi-isomorphism B̃+(A) → B+(A) of dg modules over k also given by tak-
ing quotients. By the explicit expressions for the coproduct, the counit and the
coaugmentation for both bar constructions the previous map is in fact a quasi-
isomorphism of coaugmented dg coalgebras. Furthermore, the quasi-isomorphism
Bar(A) → Bar(A) of dg A-bimodules induced by the inclusion IA[1] ⊆ A[1] also
induces a quasi-isomorphism of coaugmented dg coalgebras B+(A) → B̃+(A),
which is the quasi-inverse to the map B̃+(A)→ B+(A).

We also want to stress the fact that the bar constructions are functorial. Indeed,
if f : A → A′ is a morphism of augmented dg algebras, the unique morphism
of coaugmented graded coalgebras B+(f) : B+(A) → B+(A′) whose composi-
tion with the canonical projection π′1 : B+(A′) → IA′ [1], where IA′ is the aug-
mentation kernel of A′, is given by the composition of the canonical projection
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π1 : B+(A)→ IA[1], where IA is the augmentation kernel of A, together with−f [1]
[1]

commutes with the differentials, so it gives a morphism of coaugmented dg coal-
gebras. It can be described explicitly as B+(f)([a1| . . . |an]) = [f(a1)| . . . |f(an)],
for n ∈ N0 and a1, . . . , an ∈ A. We remark that the minus sign in front of the f [1]

[1]

was not quite arbitrary: had we chosen the plus sign, then we should have added
a (−1)n sign to the previous expression of B+(f). This would imply in particu-
lar that B+(idA) would be different from idB+(A), so it would not be a functorial
choice. The explicit expression of the corresponding morphism of coaugmented dg
coalgebras B̃+(f) : B̃+(A) → B̃+(A′) for the nonreduced bar construction is the
same as for the reduced one. Moreover, the quasi-isomorphisms B̃+(A)→ B+(A)

and B+(A) → B̃+(A) of coaugmented dg coalgebras described in the previous
paragraph yield in fact natural transformations. It is not difficult to show that,
given a morphism of augmented dg algebras f : A → A′ over a Von Neumann
regular ring k, f is a quasi-isomorphism if and only if B+(f) (or B̃+(f)) is also a
quasi-isomorphism (see [7], Section 19, Ex. 1, p. 271, or [14], Lemme 1.3.2.2, and
Lemme 1.3.2.3, (a) and (b)).

If A is an augmented dg algebra and we consider its bar construction B+(A),
there is in fact a (normalized) universal twisting cochain τA : B+(A)→ A of A whose
restriction to IA[1]⊗n vanishes if n 6= 1 and such that its restriction to IA[1] is given
by minus the composition of canonical inclusion IA[1] ⊆ A[1] with s−1

A . Analo-
gously, we also have a a unnormalized universal twisting cochain τ̃A : B̃+(A) → A
of A whose restriction to A[1]⊗n vanishes if n 6= 1 and such that its restriction to
A[1] is given by the composition of minus s−1

A , the projection A → IA (which can
be described by the composition of the canonical projection A → A/k.1A with the
identification A/k.1A ' IA) and the inclusion IA → A. Note that, if f : A → A′ is
morphism of augmented dg algebras, then the morphism B+(f) satisfies that

f ◦ τA = τA′ ◦B+(f) (1.5)

and the same expression holds for the corresponding morphism B̃+(f) by consid-
ering the unnormalized universal twisting cochains.

1.4.5 The cobar constructions

Even though an analogous definition of the (un)reduced bar resolution for coaug-
mented dg coalgebras would be possible (e.g. following the lines of Drinfeld’s
idea), we would recall a more ad-hoc definition of the (un)reduced cobar con-
structions, without passing through the corresponding cobar resolutions. Given
a coaugmented dg coalgebra C, Ω+(C) denotes the augmented dg algebra called
the (reduced or normalized) cobar construction of C (see e.g. [7], Section 19, or [15],
Def. 8.4). Its underlying augmented graded algebra structure is given by the ten-
sor algebra on the graded vector space JC [−1] = C/ Im(ηC)[−1], with the product
defined by concatenation, unit given by the inclusion of k and the obvious aug-
mentation given by the canonical projection onto k. Since the algebra is free, a
differential D is uniquely determined by its restriction to JC [−1], which we take to
be the sum of two terms

−s−1
JC [−1] ◦ dC ◦ sJC [−1]

and
(s⊗2
JC [−1])

−1 ◦∆JC ◦ sJC [−1].

If n ∈ N, an element of the form s−1
JC [−1](c̄1) ⊗ · · · ⊗ s−1

JC [−1](c̄n) will be typically
denoted by 〈c1| . . . |cn〉, where c1, . . . , cn ∈ C. Analogously, we may denote by 〈〉
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the unit 1Ω+(C) of the algebra Ω+(C). We may now write the differential D more
explicitly as

D(〈c1| . . . |cn〉) =−
n∑
i=1

(−1)εi〈c1| . . . |ci−1|dC(ci)|ci+1| . . . |cn〉

+

n∑
i=1

(−1)
εi+deg c−

i,(1)
+1〈c1| . . . |ci−1|c−i,(1)|c

−
i,(2)|ci+1| . . . |cn〉,

where ∆JC (ci) = c−i,(1) ⊗ c
−
i,(2) and εi = (

∑i−1
j=1 deg cj)− i+ 1. Note the coincidence

with the sign in [15], Def. 8.4, but the difference with the one given in [8], Section
2.7. Notice that, using the identification between JC and Ker(εC) given in the
first paragraph of Subsection 1.4, we may have equivalently presented the reduced
cobar construction of C as the tensor algebra on the graded vector space Ker(εC),
with the product defined by concatenation, unit given by the inclusion of k and the
obvious augmentation given by the canonical projection onto k. The differential
given by the same expression as before, but one should use ∆Ker(εC), defined in
the first paragraph of Subsection 1.4, instead of ∆JC .

There is also a nonreduced (or unnormalized) cobar construction Ω̃+(C) ofC, whose
underlying augmented graded algebra structure is given by the tensor algebra on
the graded vector space C[−1], with the product defined by concatenation, unit
given by the inclusion of k and the obvious augmentation given by the canonical
projection onto k. As in the reduced case, an element of the form s−1

C[−1](c1) ⊗
· · · ⊗ s−1

C[−1](cn) will be usually denoted by 〈c1| . . . |cn〉, where c1, . . . , cn ∈ C. The
explicit expression of the differential is given by

D̃(〈c1| . . . |cn〉) =−
n∑
i=1

(−1)εi〈c1| . . . |ci−1|dC(ci)|ci+1| . . . |cn〉

+

n∑
i=1

(−1)εi+deg ci,(1)+1〈c1| . . . |ci−1|ci,(1)|ci,(2)|ci+1| . . . |cn〉

+ 〈1C |c1| . . . |cn〉 − (−1)εn〈c1| . . . |cn|1C〉,

where ∆C(ci) = ci,(1)⊗ ci,(2). One may easily check that it is a derivation of square
zero. As for the bar construction, there is a quasi-isomorphism of augmented dg al-
gebras Ω̃+(C)→ Ω+(C) given by the direct sum of the maps (−q[1]

[1])
⊗n, for n ∈ N0,

where q denotes the canonical projection C → C/ Im(ηC). Note that by conven-
tion, the underlying maps of −q[1]

[1] and of q coincide. Furthermore, the previous
quasi-isomorphism has a quasi-inverse given by the morphism of augmented dg
algebras Ω+(C) → Ω̃+(C) induced by the inclusion Ker(εC)[−1] ⊆ C[−1], where
we have also used the identification between JC and Ker(εC) given in the first
paragraph of this subsection. Notice again that our definition of nonreduced cobar
construction differs from the one given for instance in [8], Subsection 2.7.

If C is a coaugmented dg coalgebra and we consider its cobar construction
Ω+(C), there is in fact a universal (normalized) twisting cochain τC : C → Ω+(C) ofC,
given by the composition of the canonical projection C → C/ Im(ηC), s−1

C/ Im(ηC)[−1]

and the canonical inclusion of C/ Im(ηC)[−1] inside Ω+(C). Analogously, we also
have a a universal (unnormalized) twisting cochain τC : C → Ω̃+(C) of C given by
the composition of the projection C → Ker(εC) (given by the composition of the
canonical projection C → C/ Im(ηC) and the identification C/ Im(ηC) ' Ker(εC)),
the canonical inclusion Ker(εC) ⊆ C, s−1

C[−1] and the canonical inclusion of C[−1]

inside Ω̃+(C). The adjective for the twisting cochains τA and τC is justified. In-
deed, given an augmented dg algebra A and a coaugmented dg coalgebra C, if
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Tw(C,A) denote the set of twisting cochains from C to A, we have canonical maps

Homaug-dg-alg(Ω+(C), A)→ Tw(C,A)← Homcoaug-dg-coalg(C,B+(A)), (1.6)

where the left map is given by g 7→ g ◦ τC and the right one by f 7→ τA ◦ f , the first
space of homomorphism denotes the set of morphisms of augmented dg algebras
and the last one the set of morphisms of coaugmented dg coalgebras. It is clear
that left map is a bijection, and the same holds for the right one provided C is
cocomplete (see [14], Lemme 2.2.1.5). Moreover these maps are clearly seen to be
natural.

We also remark that the cobar constructions are functorial. Given f : C → C ′

a morphism of coaugmented dg coalgebras, the unique morphism of augmented
graded algebras Ω+(f) : Ω+(C) → Ω+(C ′) whose restriction to JC [−1], where JC
is the coaugmentation cokernel of C, is given by the composition of −f [−1]

[−1] with
the canonical inclusion JC′ [−1] → Ω+(C ′), where JC′ is the coaugmentation cok-
ernel of C ′, commutes with the differentials, so it gives a morphism of augmented
dg algebras. It is given explicitly by Ω+(f)(〈c1| . . . |cn〉) = 〈f(c1)| . . . |f(cn)〉, for
n ∈ N0 and c1, . . . , cn ∈ C. As for the bar construction we stress that the mi-
nus sign in front of the f

[−1]
[−1] was not really arbitrary, since a plus sign would

have added a (−1)n sign to the previous expression of Ω+(f), so in particular
Ω+(idC) would be different from idΩ+(C) and it would not be a functorial choice.
The explicit expression of the corresponding morphism of augmented dg algebras
Ω̃+(f) : Ω̃+(C) → Ω̃+(C ′) for the nonreduced cobar construction is the same as
for the reduced one. Moreover, the quasi-isomorphisms Ω̃+(C) → Ω+(C) and
Ω+(C) → Ω̃+(C) of augmented dg algebras described in the previous paragraph
yield in fact natural transformations. Note that, if f : C → C ′ is a morphism of
coaugmented dg coalgebras, then

τC ◦ f = Ω+(f) ◦ τC
′

(1.7)

and the same expression holds for the corresponding morphism Ω̃+(f) by consid-
ering the unnormalized universal twisting cochains.

We would like to note that, in contrast with the property of preservation of
quasi-isomorphisms of the bar construction(s) for augmented dg algebras, it may
occur that a morphism of coaugmented dg coalgebras f : C → C ′ is a quasi-
isomorphism such that Ω+(f) (or Ω̃+(f)) is not. A typical example of such a situ-
ation may be constructed as follows. We will also assume in the rest of this sub-
subsection that k is a semisimple. Take A a unitary dg algebra and consider the
augmented dg algebra A+ whose underlying dg k-module is given by A ⊕ k, and
with product (a, λ) · (a′, λ′) = (aa′ + aλ′ + λa, λλ′), unit ηA+ given the canonical
inclusion k ⊆ A+ of the form λ 7→ (0A, λ) and augmentation εA+ given by the
canonical projection A+ → k. It is easy to check that B+(ηA+

) and B+(εA+
) are

in fact quasi-isomorphisms of coaugmented dg coalgebras, for the underlying dg
k-module of B+(A+) is just k ⊕ Bar(A)[2], but Ω+(B+(ηA+

)) and Ω+(B+(εA+
))

are not, since Ω+(B+(A+)) is quasi-isomorphic to A+. We remark however that
if C and C ′ are cocomplete, and either Ω+(f) or Ω̃+(f) is a quasi-isomorphism,
then f is also (see for instance [14], Lemme 1.3.2.2, and Lemme 1.3.2.3, (a) and (c).
For this last item see also the corresponding errata). Following the terminology
of K. Lefèvre-Hasegawa (see [14], the definitions before Thm. 1.2.1.2), we will say
that morphism of cocomplete coaugmented dg coalgebras f : C → C ′ is a weak
equivalence if Ω+(f) (or, equivalently, Ω̃+(f)) is a quasi-isomorphism. There is a
standard criterion for a morphism f of cocomplete coaugmented dg coalgebras
to be a weak equivalence, which we now recall. In order to do so, we need to
introduce the following definitions. We say that a coaugmented dg coalgebra C
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has an admissible filtration (or that C is admissibly filtered), if there is an exhaustive
increasing sequence {Ci}i∈N0

of coaugmented dg subcoalgebras of C, such that
C0 = k.1C . The primitive filtration of a cocomplete coaugmented dg coalgebra C,
given by Ci = Ker(∆

(i+1)
JC

) ⊕ k.1C , if i ∈ N and C0 = k.1C , is admissible, by its
very definition. It is clear in this case that it is in fact a filtration of C by coaug-
mented dg coalgebras, which induces a filtration of augmented dg algebras on
Ω+(C), that induces in turn an admissible filtration onB+(Ω+(C)), which is called
the C-primitive filtration. Given a coaugmented dg coalgebra C with an admissible
filtration, we may construct the associated graded object,

GrC•(C) =
⊕
i∈N0

Ci/Ci−1,

that may be in principle regarded as a graded k-module over the grading group
G × Z, where the last factor comes from the index i of the filtration, that will be
called the filtration grading. Now, we further provide with the unique differential
induced by that of C which preserves the filtration grading, and it thus becomes a
dg module over k. Given two coaugmented dg coalgebras C and C ′ provided
with admissible filtrations {Ci}i∈N0 and {C ′i}i∈N0 , resp., a filtered morphism is a
morphism f : C → C ′ of coaugmented dg coalgebras such that f(Ci) ⊆ C ′i, for
all i ∈ N0. It further induces a unique morphism Gr(f) : GrC•(C) → GrC′•(C

′)
of dg k-modules preserving the filtration grading, called the associated graded mor-
phism. We say that f is a filtered quasi-isomorphism if the associated graded mor-
phism Gr(f) is a quasi-isomorphism. Given a filtered morphism f : C → C ′

of cocomplete coaugmented dg coalgebras provided with admissible filtrations, it
can be proved that f is a weak equivalence if it is a filtered quasi-isomorphism
(see [14], Lemme 1.3.2.2). Moreover, given a morphism f : A → A′ of augmented
dg algebras, B+(f) is a filtered morphism of coaugmented dg coalgebras, where
B+(A) and B+(A′) are provided with the primitive filtration (see [14], Lemme
1.3.2.3, (a)). Note that these filtrations are admissible, for both B+(A) and B+(A′)
are cocomplete. The same comments apply to the nonreduced bar construction,
and moreover the quasi-isomorphisms B̃+(A) → B+(A) and B+(A) → B̃+(A)
described in the previous subsection are filtered for the primitive filtrations of the
cocomplete dg coalgebras B̃+(A) and B+(A), so the former quasi-isomorphisms
are in fact weak equivalences.

Finally, we recall that the canonical map βA : Ω+(B+(A)) → A given by
〈〉 7→ 1A and 〈ω1| . . . |ωn〉 7→ (−1)ns−1

IA
(π1(ω1)) . . . s−1

IA
(π1(ωn)) if n ∈ N, where

π1 : B+(A) → IA[1] is the canonical projection and ω1, . . . , ωn are elements in the
coaugmentation cokernel ofB+(A), is a quasi-isomorphism of augmented dg alge-
bras (see [7], Section 19, Ex. 2, or [13], Section II.4, Thm. II.4.4, or [20], Th. 2.28). It
is the unique morphism of augmented dg algebras satisfying that the composition
of τB

+(A) with it is τA. We have also the morphism of coaugmented dg coalgebras
βC : C → B+(Ω+(C)) given by the unique such morphism that its composition
with τΩ+(C) : B+(Ω+(C)) → Ω+(C) is τC . Hence βC sends 1C to 1B+(Ω+(C)), and
for c ∈ Ker(εC), it satisfies that

βC(c) = −[〈c〉] +
∑
n∈N≥2

(−1)n[〈c−(1)〉| . . . |〈c
−
(n)〉],

where ∆
(n)
Ker(εC)(c) = c−(1) ⊗ · · · ⊗ c

−
(n) is the iterated coproduct of the comultipli-

cation indicated in the first paragraph of Subsection 1.4. If C is cocomplete, βC

is a filtered quasi-isomorphism, where C is provided with the primitive filtration
and B+(Ω+(C)) with the C-primitive one (see [14], Lemme 1.3.2.3, (c), and the
corresponding errata).
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The previous comments may be used in order to provide a simpler resolution
than the bar resolution of an augmented dg algebra A, when A = Ω+(C), where
C is a cocomplete coaugmented dg coalgebra. In this case, we already know that
the reduced bar resolution of Ω+(C) is isomorphic to Ω+(C)e ⊗τΩ+(C)

B+(Ω+(C)).
However, since βC : C → B+(Ω+(C)) is a quasi-isomorphism of coaugmented dg
coalgebras which satisfies by definition that τΩ+(C) ◦ βC = τC , then

idΩ+(C)e ⊗ βC : Ω+(C)e ⊗τC C → Ω+(C)e ⊗τΩ+(C)
B+(Ω+(C))

is a quasi-isomorphism (see [14], Prop. 2.2.4.1). Furthermore, the map is clearly a
morphism of dg bimodules over Ω+(C), where the action by the last tensor factor is
given by the inner structure of Ω+(C)e. Using the identification Ω+(C)e ⊗τC C →
Ω+(C) ⊗ C ⊗ Ω+(C) of graded bimodules over Ω+(C) given by ω′ ⊗ ω ⊗ c 7→
(−1)degω′(degω+deg c)ω ⊗ c⊗ ω′, the differential of the latter space becomes

ω ⊗ c⊗ ω′ 7→D(ω)⊗ c⊗ ω′ + (−1)degωω ⊗ dC(c)⊗ ω′

+ (−1)degω+deg cω ⊗ c⊗D(ω′)

+ (−1)degω+deg c(1)ω ⊗ c(1) ⊗ τC(c(2))ω
′

− (−1)degωωτC(c(1))⊗ c(2) ⊗ ω′,

where ∆C(c) = c(1) ⊗ c(2). Interestingly, a quasi-inverse for the previous map
idΩ+(C)e⊗βC can be easily constructed (see [22], Théo. 1.4). Indeed, the morphism

γC : Bar(Ω+(C))→ Ω+(C)⊗ C ⊗ Ω+(C)

of graded Ω+(C)-bimodules satisfying that γC(ω0[]ω1) = ω0 ⊗ 1C ⊗ ω1 and

γC(ω0[ω1| . . . |ωm]ωm+1) = δm,1

n∑
j=1

(−1)εj+1ω0〈c1| . . . |cj−1〉 ⊗ cj ⊗ 〈cj+1| . . . |cn〉ω2

if m ∈ N, where ω1 = 〈c1| . . . |cn〉 and εj = (
∑j−1
l=1 deg cl) + j − 1, is in fact a

morphism of dg bimodules over Ω+(C), and it satisfies that it is a left inverse of
idΩ+(C)e ⊗ βC (after using the canonical identifications explained before).

1.4.6 Usual duality between the bar and cobar construction

We will assume in this subsubsection that k is a field. A graded or dg vector space
M is locally finite dimensional if each of the homogeneous components of M is fi-
nite dimensional. Note that in this case the graded dual M# is also locally finite
dimensional and the canonical map ιM : M → (M#)# given by ιM (m)(f) =
(−1)degm deg ff(m), for m ∈ M and f ∈ M# homogeneous, is an isomorphism
of graded or dg vector spaces. Furthermore, if M and N are locally finite dimen-
sional, then ιM,N is an isomorphism in the corresponding category.

We now recall the well-known fact that if C is a coaugmented dg coalgebra,
the graded dual C# has a structure of augmented dg algebra, where the product
is given by ∆#

C ◦ ιC,C , unit εC and augmentation given by ω 7→ ω(ηC(1k)), for
ω ∈ C#. Conversely ifA is a locally finite dimensional augmented dg algebra, then
the graded dual A# has a structure of (locally finite dimensional) coaugmented dg
coalgebra, where the product is given by ι−1

A,A◦µ
#
A , counit given by ω 7→ ω(ηA(1k)),

for ω ∈ A#, and coaugmentation given by 1k 7→ εA. Note that in this latter case the
morphism ιA : A → (A#)# is in fact an isomorphism of augmented dg algebras.
Analogously, if C is a locally finite dimensional coaugmented dg coalgebra, then
ιC : C → (C#)# is also an isomorphism of coaugmented dg coalgebras.
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The main duality properties we shall use between the bar and cobar construc-
tions are the following ones. We shall state them for the reduced bar and cobar con-
struction, though the exact same results mutatis mutandi are obtained for the nonre-
duced ones. In particular, all the analogous morphisms for the nonreduced cases
will be denoted just adding a tilde over the corresponding nonreduced ones that
will be explicitly stated in the rest of the subsubsection. If Λ is locally finite dimen-
sional augmented dg algebra such that B+(Λ) is also locally finite dimensional,
then B+(Λ)# is canonically isomorphic to Ω+(Λ#), as augmented dg algebras (see
[15], Lemma 8.6, (c), where, using the notation of that article, one should further
impose that ΩC and BA are locally finite dimensional. The same correction would
apply to [16], Lemma 1.15. They are more or less a consequence of [7], Section 19,
Ex. 3, p. 272). The isomorphism jΛ : Ω+(Λ#)→ B+(Λ)# is the unique one satisfy-
ing that its restriction to the coaugmentation cokernel Jλ# ' I#

Λ of Λ# is minus the
graded dual of the canonical projection B+(Λ)→ IΛ[1], where IΛ is the augmenta-
tion ideal of Λ (using the identification I#

Λ ' Jλ# induced by the graded dual of the
inclusion IΛ ⊆ Λ, and the isomorphism HΛ,k,(1,0G′ ),0G

: (Λ#)[−1] → (Λ[1])# of dg
modules explained in the sixth paragraph of Subsection 1.1), and it may be explic-
itly given as follows. We remark that the choice of signs is exactly the one in order
to make our map commute with the differentials. We will provide an explicit ex-
pression of this isomorphism. For n ∈ N and ω1, . . . , ωn ∈ I#

Λ the morphism sends
〈ω1| . . . |ωn〉 to the linear functional

[λ1| . . . |λm] 7→ (−1)εδn,mω1(λ1) . . . ωn(λn),

where λ1, . . . , λm ∈ Λ, δn,m is the Dirac delta sign,

ε = degω1 + · · ·+ degωn + n+ (degω2 + 1)(deg λ1 + 1)

+ · · ·+ (degωn + 1)(deg λ1 + · · ·+ deg λn−1 + n− 1),

and it sends 1 ∈ Ω+(Λ#) to the canonical projection B+(Λ) → k. We remark
that the previous morphism is in fact a natural isomorphism between the functors
Ω+((−)#) and B+(−)#, i.e. if f : Λ → Λ′ is a morphism of augmented dg alge-
bras, then it can be directly verified from the explicit expression of the morphisms
involved that we have the commutative diagram

Ω+((Λ′)#)
jΛ′ //

Ω+(f#)

��

B+(Λ′)#

B+(f)#

��
Ω+(Λ#)

jΛ // B+(Λ)#

Analogously, if D is locally finite dimensional coaugmented dg coalgebra such
that Ω+(D) is also locally finite dimensional, then B+(D#) is canonically isomor-
phic to Ω+(D)#, as coaugmented dg coalgebras (see [15], Lemma 8.6, (c), where
the analogous corrections to the ones indicated before apply). Indeed, the isomor-
phism jD : B+(D#)→ Ω+(D)# may be explicitly given as follows. For n ∈ N and
ρ1, . . . , ρn ∈ ID# the morphism sends [ρ1| . . . |ρn] to the linear functional

〈θ1| . . . |θm〉 7→ (−1)εδn,mρ1(θ1) . . . ρn(θn),

where θ1, . . . , θm ∈ D, δn,m is the Dirac delta sign,

ε = deg ρ1 + · · ·+ deg ρn + (deg ρ2 + 1)(deg θ1 + 1)

+ · · ·+ (deg ρn + 1)(deg θ1 + · · ·+ deg θn−1 + n− 1),
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and it sends 1 ∈ B+(D#) to the canonical projection Ω+(D) → k. Again, if f :
D → D′ is a morphism of coaugmented dg coalgebras, then it can be directly
verified from the explicit expression of the morphisms involved that we have the
commutative diagram

B+((D′)#)
jD
′

//

B+(f#)

��

Ω+(D′)#

Ω+(f)#

��
B+(D#)

jD // Ω+(D)#

Moreover, a straighforward computation shows that

jD = Ω+(ιD)# ◦ (jD#)# ◦ ιB+(D#),

jΛ = B+(ιΛ)# ◦ (jΛ#

)# ◦ ιΩ+(Λ#).
(1.8)

Using the easy fact that ι#M ◦ ιM# = idM# , for any dg k-module M , these identities
imply that

(jD)# ◦ ιΩ+(D) = jD# ◦ Ω+(ιD),

(jΛ)# ◦ ιB+(Λ) = jΛ#

◦B+(ιD).
(1.9)

On the other hand, it is trivial to verify from the expressions of the morphisms
involved that

τD# = (τD)# ◦ jD,

τ#
Λ = jΛ ◦ τΛ#

.
(1.10)

These equations in turn imply the following identities

βD# = (βD)# ◦ jΩ+(D) ◦ Ω+(jD),

β#
Λ = jB

+(Λ) ◦B+(jΛ) ◦ βΛ#

.
(1.11)

Indeed, let us show how to prove the second one, for the first one is analogous. We
first note that, since βΛ is the unique morphism of augmented dg algebras such that
the composition of τB

+(Λ) with it is τΛ, by taking duals β#
Λ is the unique morphism

of coaugmented dg coalgebras such that its composition with (τB
+(Λ))# is τ#

Λ . It
thus suffices to prove that the composition of the right member with (τB

+(Λ))# is
τ#
Λ . By the first identity of (1.10) for D = B+(Λ) we get that this composition is
τB+(Λ)# ◦B+(jΛ) ◦ βΛ#

. Now, (1.5) for the morphism f = jΛ tells us that the latter
composition coincides with jΛ ◦ τΩ+(Λ#) ◦ βΛ#

, which is equal to jΛ ◦ τΛ#

. The
second identity of (1.10) gives the claim.

We remark that under these assumptions a quasi-isomorphism of cocomplete
coaugmented dg coalgebras is a weak equivalence (the converse is always true),
for a quasi-isomorphism C → D induces a quasi-isomorphism of augmented dg
algebras D# → C#, which induces a quasi-isomorphisms between the bar con-
structions B+(D#) → B+(C#), and by the previously recalled isomorphism we
get a quasi-isomorphism Ω+(D)# → Ω+(C)# of coaugmented dg coalgebras. Tak-
ing duals again we obtain a quasi-isomorphism Ω+(C) → Ω+(D) of augmented
dg algebras, so a weak equivalence C → D.
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1.4.7 Hochschild (co)homology as a twisted construction

Now, given an augmented dg algebra A, we may consider the augmented dg alge-
braHom(B+(A), A). It is easy to verify that its underlying graded k-module coin-
cides with the corresponding one computing the Hochschild cohomology, but the
underlying dg k-module is different. Indeed, the differential of Hom(B+(A), A)
is given by D0 in (1.3). However, a twist of the differential of Hom(B+(A), A)
will give us precisely the differential of HomAe(Bar(A), A): it is easy to check that
dHom(B+(A),A),τA coincides with the differential D0 +D1 of the dg k-module com-
puting the Hochschild cohomology of A given by (1.3) and (1.4), since it is clear
that D1(f) = ad(τA)(f). In other words, the dg k-module HomAe(Bar(A), A) is
canonically identified with HomτA(B+(A), A). The latter has further the structure
of a(n augmented) dg algebra, whose multiplication is usually called cup product
(see [4], Ch. XI, §4 and 6), so the Hochschild cohomology HH•(A) thus becomes
an augmented graded algebra. All the previous comments apply mutatis mutandi
as well to B̃+(A) instead of B+(A). Moreover, if k is semisimple, the canonical
quasi-isomorphisms B̃+(A) → B+(A) and B+(A) → B̃+(A) of coaugmented dg
coalgebras induce quasi-isomorphisms of augmented dg algebras

Hom(B+(A), A)→ Hom(B̃+(A), A) and Hom(B̃+(A), A)→ Hom(B+(A), A)

sending τA to τ̃A and τ̃A to τA, respectively. Moreover, they also induce quasi-
isomorphisms of augmented dg algebras

HomτA(B+(A), A)→ Homτ̃A(B̃+(A), A)

and
Homτ̃A(B̃+(A), A)→ HomτA(B+(A), A).

Indeed, the two maps are obtained by applying the functor HomAe(−, A) to the
quasi-isomorphisms Bar(A) → Bar(A) and Bar(A) → Bar(A), respectively, and
using the canonical identifications explained in the last paragraph of Subsection
1.3.

The Hochschild homology of an augmented dg algebra A can be regarded in
a similar fashion. The underlying graded k-module A ⊗Ae Bar(A) computing the
Hochschild homology of A coincides with A ⊗ B+(A), though the dg k-module
structure is different, for the differential of A ⊗ B+(A) the former coincides with
D′0 given in (1.1). However, the twist of the differential of A ⊗ B+(A) will give
us precisely the differential of A ⊗Ae Bar(A) as for the cohomology. We see that
dA⊗B+(A),τA coincides with the differential D′0 + D′1 of the dg k-module com-
puting the Hochschild homology of A given by (1.1) and (1.2), since it is eas-
ily verified that D′1 coincides with the action of ad(τA) on A ⊗ B+(A). Thus,
the dg k-module A ⊗Ae Bar(A) is canonically identified with A ⊗τA B+(A). By
the last paragraph of Subsubsection 1.4.3, the latter has further the structure of a
dg bimodule over HomτA(B+(A), A). Either the left or the right action (or both
of them together) may be called cap product (see [4], Ch. XI, §4 and 6), so the
Hochschild homology HH•(A) in turn becomes a graded bimodule over the aug-
mented graded algebra given by Hochschild cohomology HH•(A). Again, all
the previous comments apply mutatis mutandi to B̃+(A) instead of B+(A). If k is
Von Neumann regular, the canonical quasi-isomorphism B̃+(A) → B+(A) (resp.,
B+(A) → B̃+(A)) of coaugmented dg coalgebras induces a quasi-isomorphism
of dg bimodules A ⊗ B̃+(A) → A ⊗ B+(A) over Hom(B+(A), A) (resp., A ⊗
B+(A) → A ⊗ B̃+(A) over Hom(B̃+(A), A)), where the domain has a structure
of bimodule over Hom(B+(A), A) (resp., Hom(B̃+(A), A)) by Hom(B+(A), A) →
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Hom(B̃+(A), A) (resp., Hom(B̃+(A), A) → Hom(B+(A), A)), which is the mor-
phism of augmented dg algebras explained in the previous paragraph. Further-
more, we have a quasi-isomorphism of dg bimodulesA⊗τ̃A B̃+(A)→ A⊗τAB+(A)

(resp., A ⊗τA B+(A) → A ⊗τ̃A B̃+(A)) over the algebra HomτA(B+(A), A) (resp.,
Homτ̃A(B̃+(A), A)), where the domain has a structure of bimodule over the alge-
bra HomτA(B+(A), A) (resp., Homτ̃A(B̃+(A), A)) given by HomτA(B+(A), A) →
Homτ̃A(B̃+(A), A) (resp., given by Homτ̃A(B̃+(A), A) → HomτA(B+(A), A)) of
augmented dg algebras explained in the previous paragraph. Indeed, the previ-
ous maps follow by applying the functor A ⊗Ae (−) to the quasi-isomorphisms
Bar(A) → Bar(A) and Bar(A) → Bar(A), respectively, and using the canonical
identifications explained in the penultimate paragraph of Subsection 1.3.

We remark that in fact the graded bimodule HH•(A) over HH•(A) is (graded)
symmetric, as one may easily deduce as follows. Indeed, as noted in the literature
(see for instance [18], (10) and the proof of Lemma 16), H•(A,A#) is a symmetric
graded bimodule over HH•(A) (for the action in fact comes from the cup product
on HH•(A[M ]), where A[M ] is the dg algebra with underlying dg module given
by A⊕M , the usual product (a,m) · (a′,m′) = (aa′, am′ +ma′), unit (1A, 0M ) and
augmentation (a,m) 7→ εA(a)), which is isomorphic to HH•(A)#.

We summarize our previous comments in the following result.

Fact 1.2. LetA be an augmented dg algebra over k, and let τA denote the universal twisting
cochain of A. Then,

(i) the dg k-module HomAe(Bar(A), A) computing Hochschild cohomology is canon-
ically identified with HomτA(B+(A), A). Moreover, the cup product on the first
complex coincides exactly with the convolution product on the latter.

(ii) the dg k-moduleA⊗Ae Bar(A) computing Hochschild homology is canonically iden-
tified with the twisted tensor product A ⊗τA B+(A). Furthermore, the symmetric
bimodule structure of the first complex over HomAe(Bar(A), A) given by the cap
product coincides exactly with the symmetric bimodule structure of the latter com-
plex overHomτA(B+(A), A).

We see that the previous description of Hochschild homology and cohomol-
ogy groups is by no mean accidental. Indeed, it is a direct consequence of the
definitions once one notes that the reduced (resp., nonreduced) bar resolution of
A is canonically identified (as dg k-modules) with Ae ⊗τA B+(A) (resp., Ae ⊗τ̃A
B̃+(A)), where Ae is a dg A-bimodule with the outer structure of Ae given by
a(a′ ⊗ b′)b = (aa′) ⊗ (b′b), for a, a′, b, b′ ∈ A. The identification isomorphism is
given by (an+1⊗a0)⊗ [a1| . . . |an] 7→ (−1)deg an+1(deg a0+ε)a0[a1| . . . |an]an+1, where
ε = (

∑n
i=1 deg ai) − n. Consider the dg A-bimodule structure of Ae ⊗τA B+(A)

(resp., Ae ⊗τ̃A B̃+(A)) coming from the inner structure of Ae given by

a(a′ ⊗ b′)b = (−1)(deg a′ deg a+deg b deg b′+deg a deg b)(a′b)⊗ (ab′),

for a, a′, b, b′ ∈ A. By the last paragraphs of the Subsubsections 1.4.2 and 1.4.3, it
induces a structure of dg bimodule over the algebraHomτA(B+(A), A)⊗A (resp.,
Homτ̃A(B̃+(A), A)⊗A) on the twisted tensor productAe⊗τA B+(A) (resp., Ae⊗τ̃A
B̃+(A)). By means of this structure the previous identification gives in fact an iso-
morphism of dg bimodules overHomτA(B+(A), A)⊗A (resp.,Homτ̃A(B̃+(A), A)⊗
A). If we apply the functorsHomAe(−, A) andA⊗Ae (−) to the previous identifica-
tions of the bar constructions we get precisely the description of the dg k-modules
computing Hochschild cohomology and homology as described in the previous
two paragraphs.

24



1.4.8 Gerstenhaber brackets

We recall that given an augmented dg algebra A, the graded module Der(A) over
k of derivations of A is the graded submodule of Hom(A,A) given by sums of ho-
mogeneous maps d : A → A satisfying that µA ◦ (d⊗ idA + idA ⊗ d) = d ◦ µA and
d(1A) = 0. Analogously, given a coaugmented dg coalgebra C, the graded module
Coder(C) over k of coderivations of C is the graded submodule ofHom(C,C) given
by sums of homogeneous maps d : C → C satisfying that (d⊗ idC+idC⊗d)◦∆C =
∆C ◦ d and εC ◦ d = 0. Note that, by composing the first of the previous identities
with ηC , we get that d ◦ ηC(1k) is a primitive element of C, i.e. an element c ∈ C
satisfying that ∆C(C) = 1C ⊗ c+ c⊗ 1C , where we recall that 1C = ηC(1k). In the
particular case of a coaugmented dg coalgebra C whose underlying coaugmented
graded coalgebra structure is a coaugmented tensor coalgebra on a graded module
V , which is usually denoted by T cV , we note that the primitive elements are given
by V ⊆ T cV . Note that both Der(A) and Coder(C) are graded Lie algebras with
the bracket given by the graded commutator.

As noted by E. Getzler in [11], Prop. 1.3., for an augmented dg algebra A, the
graded module Hom(B̃+(A), A)[1] ' Hom(B̃+(A), A[1]) over k is isomorphic to
the graded module Coder(B̃+(A)) of coderivations of the coaugmented dg coal-
gebra B̃+(A). Indeed, the isomorphism δA sends sφ, where φ ∈ Hom(B̃+(A), A)
to the coderivation δA(sφ) satisfying that δA(sφ)(1B̃+(A)) = sA(φ(1B̃+(A))) and, for
n ∈ N, πj(δA(sφ)([a1| . . . |an])) is given by

j∑
i=1

(−1)(deg φ−1)εi [a1| . . . |ai−1|φ([ai| . . . |ai+n−j ])|ai+n−j+1| . . . |an], if 1 ≤ j ≤ n,

n+1∑
i=1

(−1)(deg φ−1)εi [a1| . . . |ai−1|φ(1B+(A))|ai| . . . |an], if j = n+ 1,

0, if j > n+ 1,

where εi = (
∑i−1
j=1 deg aj)− i+ 1 and πj : B̃+(A)→ A[1]⊗j is the canonical projec-

tion. It is rather usual to provide the explicit expression of πj(δA(φ)([a1| . . . |an]))
only by the first of the previous lines, for the others are easily obtained as a typ-
ical abuse of (or “extended”) notation. The inverse of δA is given by sending a
coderivation d ∈ Coder(B̃+(A)) to the morphism s−1

A ◦ π1 ◦ d.
Also, given a cocomplete coaugmented dg coalgebraC we have a canonical iso-

morphism between the graded module Hom(C, Ω̃+(C))[1] ' Hom(C[−1], Ω̃+(C))

over k and the graded module Der(Ω̃+(C)) of derivations of the augmented dg
algebra Ω̃+(C). Indeed, the isomorphism δC sends sψ, for ψ ∈ Homτ̃A(C, Ω̃+(C))
to the derivation δC(sψ) satisfying that δC(sψ)(1Ω̃+(C)) = ψ(1A) and, for n ∈ N, is
given by

δC(sψ)(〈c1| . . . |cn〉) =

n+1∑
i=1

(−1)(degψ−1)(ε̄i+1))〈c1| . . . |ci−1〉ψ(ci)〈ci+1| . . . |cn〉,

where ε̄i = (
∑i−1
j=1 deg cj) − i + 1. The inverse is given by sending a derivation

d ∈ Der(Ω̃+(C)) to the morphism (−1)deg dd|C[−1] ◦ s−1
C[−1].

From the previous identifications one obtains graded Lie algebra structures on
both Hom(B̃+(A), A)[1] and Hom(C, Ω̃+(C))[1]. These bracket will be called the
Gerstenhaber brackets, for the first of these was introduced by M. Gerstenhaber in
the seminal work [10]. For φ ∈ Hom(A[1]⊗n, A) and φ′ ∈ Hom(A[1]⊗m, A), with
n,m ∈ N0, the Gerstenhaber bracket is given by [φ, φ′] ∈ Hom(A[1]⊗(n+m−1), A),
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sending [a1| . . . |an+m−1] to

n−1∑
i=0

(−1)(deg φ′−1)εi+1φ([a1| . . . |ai|φ′([ai+1| . . . |ai+m])|ai+m+1| . . . |an+m−1])

−
m−1∑
i=0

(−1)ε
′
iφ′([a1| . . . |ai|φ([ai+1| . . . |ai+n])|ai+n+1| . . . |an+m−1]),

(1.12)

where εi+1 = (
∑i
j=1 deg aj) − i and ε′i = (deg φ − 1)(εi+1 + deg φ′ − 1) (see [21],

Subsection 2.2). Note that the notation implies that if n = 0 the left sum of the right
member vanishes and we should consider φ(1B̃+(A)) in the right one, whereas if
m = 0 the right sum is zero and we should have φ′(1B̃+(A)) in the left one. It is
straightforward to prove that the differential of Homτ̃A(B̃+(A), A) is in fact given
by φ 7→ [s−1

A ◦ π1 ◦ B̃, φ]. This in turn implies that Homτ̃A(B̃+(A), A)[1] is in fact a
dg Lie algebra. Moreover, the expression for the Gerstenhaber bracket (1.12) may
be also applied to elements of Hom(B+(A), A)[1], which also becomes a dg Lie al-
gebra such that the quasi-isomorphisms Homτ̃A(B̃+(A), A) → HomτA(B+(A), A)

andHomτA(B+(A), A)→ Homτ̃A(B̃+(A), A) recalled in the first paragraph of Sub-
subsection 1.4.7 induce in fact morphisms of dg Lie algebras.

Analogously, let ψ ∈ Hom(C,C[−1]⊗n) and ψ′ ∈ Hom(C,C[−1]⊗m), where
n,m ∈ N0. We will use the (Sweedler-alike) notation ψ(c) = 〈cψ(1)| . . . |c

ψ
(n)〉 and

ψ′(c) = 〈cψ
′

(1)| . . . |c
ψ′

(m)〉, for c ∈ C, where the sum is omitted for simplicity. Then,
the Gerstenhaber bracket is given by the element [ψ,ψ′] ∈ Hom(C,C[−1]⊗(n+m−1))
sending c ∈ C to

m−1∑
i=0

(−1)(degψ−1)ε′i+1〈cψ
′

(1)| . . . |c
ψ′

(i)〉ψ(cψ
′

(i+1))〈c
ψ′

(i+2)| . . . |c
ψ′

(m)〉

−
n−1∑
i=0

(−1)(degψ′−1)(εi+1+degψ−1)〈cψ(1)| . . . |c
ψ
(i)〉ψ

′(cψ(i+1))〈c
ψ
(i+2)| . . . |c

ψ
(n)〉,

(1.13)

where εi+1 = (
∑i
j=1 deg cψ(j)) − i and ε′i+1 = (

∑i
j=1 deg cψ

′

(j)) − i. It can be proved
along the same lines as for the case of algebras that this gives a dg Lie algebra
structure on Hom(C, Ω̃+(C))[1]. Moreover, the expression for the Gerstenhaber
bracket (1.13) may be also applied to elements of Hom(C,Ω+(C))[1], which also
becomes a dg Lie algebra such that the quasi-isomorphisms Homτ̃A

(C, Ω̃+(C))→
HomτC

(C,Ω+(C)) andHomτC

(C,Ω+(C))→ Homτ̃A

(C, Ω̃+(C)) induced by those
recalled in the second paragraph of Subsubsection 1.4.5 are in fact morphisms of
dg Lie algebras.

Let us assume that k is a field and C is a locally finite dimensional coaug-
mented dg coalgebra. By the comments of the previous subsubsection we know
that C# is a locally finite dimensional augmented dg algebra. Moreover, the map
Coder(C) → Der(C#)op given by φ 7→ (−1)deg φφ# is an isomorphism of graded
Lie algebras, where we recall that the opposite graded Lie algebra gop of a graded
Lie algebra g with bracket [ , ] has the same underlying graded k-module struc-
ture and opposite bracket [ , ]op given by [x, y]op = (−1)deg x deg y[y, x](= −[x, y]), for
x, y ∈ g homogeneous. In such situations we may usually say that the previous
map is an anti-isomorphism of dg Lie algebras. Analogously, if A is a locally finite
dimensional augmented dg algebra, then A# is a locally finite dimensional coaug-
mented dg coalgebra, and Der(A) → Coder(A#)op given by φ 7→ φ# is an iso-
morphism of graded Lie algebras. Since the map g → gop given by x 7→ −x is an
isomorphism of graded Lie algebras, we get in fact isomorphisms of graded Lie
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algebras Coder(C) → Der(C#) and Der(A) → Coder(A#) given by φ 7→ −φ#, for
φ ∈ Coder(C) or φ ∈ Der(A), respectively.

1.5 Generalities on A∞-(co)algebras

For the following definitions we refer to [20], Chapitre 3, Section 3.1 (or also [14],
Déf. 1.2.1.1, 1.2.1.8, using the obvious equivalences between non(co)unitary ob-
jects and (co)augmented ones), even though we do not follow the same sign con-
ventions and they do not consider any Adams grading (see for instance [17] for
several uses of Adams grading in A∞-algebra theory). We first recall that an aug-
mented A∞-algebra structure on a cohomological graded vector space A is the fol-
lowing data:

(i) a collection of maps mi : A⊗i → A for i ∈ N of cohomological degree 2 − i
and Adams degree zero satisfying the Stasheff identities given by∑

(r,s,t)∈In

(−1)r+stmr+1+t ◦ (id⊗rA ⊗ms ⊗ id⊗tA ) = 0, (1.14)

for n ∈ N, where In = {(r, s, t) ∈ N0 × N × N0 : r + s + t = n}. We shall
denote the (sum of) morphism(s) on the left by SIm•(n).

(ii) a map ηA : k → A of complete degree 0G such that

mi ◦ (id⊗rA ⊗ ηA ⊗ id⊗tA )

vanishes for all i 6= 2 and all r, t ≥ 0 such that r + 1 + t = i, and

m2 ◦ (idA ⊗ ηA) = idA = m2 ◦ (ηA ⊗ idA).

(iii) a map εA : A→ k of complete degree 0G such that εA ◦ηA = idk, ε◦m2 = ε⊗2
A ,

and εA ◦mi = 0, for all i ∈ N \ {2}.

It is further called minimal if m1 vanishes. If we do not assume the items (ii) and
(iii) in the definition, then A is called an A∞-algebra, to which we sometimes refer
as nonunitary, to stress the fact that it does not necessarily have a unit. If it also
satisfies (ii), the A∞-algebra is called (strictly) unitary.

We recall that a family of linear maps {fi : C → Ci}i∈N, where C and Ci, for
i ∈ N, are vector spaces, is called locally finite if, for all c ∈ C, there exists a finite
subset S ⊆ N, which depends on c, such that fi(c) vanishes for all i ∈ N \ S. An
coaugmented A∞-coalgebra structure on a homological graded vector space C is the
following data:

(i) a locally finite collection of maps ∆i : C → C⊗i for i ∈ N of homological
degree i− 2 and Adams degree zero satisfying the following identities∑

(r,s,t)∈In

(−1)rs+t(id⊗rC ⊗∆s ⊗ id⊗tC ) ◦∆r+1+t = 0, (1.15)

for n ∈ N.

(ii) a map εC : C → k of complete degree 0G such that

(id⊗rC ⊗ εC ⊗ id⊗tC ) ◦∆i

vanishes for all i 6= 2 and all r, t ≥ 0 such that r + 1 + t = i, and

(idC ⊗ ε) ◦∆2 = idC = (εC ⊗ idC) ◦∆2.
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(iii) a map ηC : k → C of complete degree 0G such that εC◦ηC = idk, ∆2◦ηC(1k) =
ηC(1k)⊗2, and ∆i ◦ ηC(1k) = 0, for all i ∈ N \ {2}.

We shall usually denote ηC(1k) by 1C . An Adams graded coaugmented A∞-
coalgebra C is called minimal if ∆1 = 0. Note that the condition that the family
{∆n}n∈N is locally finite follows from the other data if we further suppose that
Ker(ε) is positively graded for the Adams degree. Again, an A∞-coalgebra is de-
fined as the graded k-module C provided with the maps {∆i}i∈N satisfying the
identities of the first item, and it is called (strictly) counitary if it further satisfies
condition (ii).

Note that an A∞-algebra A is a fortiori a dg k-module where the differential is
given by m1. Analogously, a A∞-coalgebra C is also a dg k-module for the dif-
ferential ∆1. Moreover, an augmented dg algebra structure on A is tantamount to
an augmented A∞-algebra structure with vanishing higher multiplications mn for
n ≥ 3, where the differential is m1 and the multiplication is m2. In the same man-
ner, a coaugmented dg coalgebra structure on C is equivalent to a coaugmented
A∞-coalgebra structure with vanishing higher comultiplications ∆n for n ≥ 3, where
the differential is ∆1 and the coproduct is ∆2.

As for the case of augmented dg algebras, given an augmented A∞-algebra A
there exists a coaugmented dg coalgebra B+(A), called the (reduced) bar construc-
tion of A. Its underlying graded coalgebra structure is given by the tensor coal-
gebra ⊕i∈N0

IA[1]⊗i, where IA = Ker(εA). As before, if n ∈ N we will typically
denote an element s(ā1) ⊗ · · · ⊗ s(ān) ∈ IA[1]⊗n in the form [a1| . . . |an], where
a1, . . . , an ∈ A, ā ∈ A/k ' IA denotes the canonical projection of an element a ∈ A,
and s : IA → IA[1] is the canonical morphism of degree −1 recalled in the third
paragraph of Subsection 1.1. The coproduct is thus given by the usual deconcate-
nation

∆([a1| . . . |an]) =

n∑
i=0

[a1| . . . |ai]⊗ [ai+1| . . . |an],

where we set [ai| . . . |aj ] = 1B+(A) if i > j, for 1B+(A) the image of 1k under the
canonical inclusion k = IA[1]⊗0 ⊆ B+(A), which may be also denoted by []. The
counit is defined as the canonical projection B+(A)→ IA[1]⊗0 = k, and the coaug-
mentation is given by the obvious inclusion k = IA[1]⊗0 ⊆ B+(A). We recall that
since B+(A) is a coaugmented tensor graded coalgebra, it is cocomplete, and its
differential B is defined as follows. It is the unique coderivation whose image lies
inside the augmentation kernel Ker(εB+(A)) of B+(A), so B is thus uniquely de-
termined by π1 ◦ B, where π1 : B+(A) → IA[1] is the canonical projection (see
[14], Lemme 1.1.2.2, Sections 2.1.1 and 2.1.2, and Notation 2.2.1.4), such that this
composition map is given by the sum b =

∑
i∈N bi, where bi : IA[1]⊗i → IA[1] is

defined as bi = −sIA ◦mi◦(s⊗iIA)−1. In fact, equation (1.14) is precisely the condition
for this coderivation to be a differential. Our convention for the bar construction
clearly coincides with the one given for augmented dg algebras in the case the
higher multiplications vanish, but it differs from others in the literature (e.g. those
in the thesis [14] of K. Lefèvre-Hasegawa, Ch. 1 and 2).

Dually, given a coaugmentedA∞-coalgebra C there exists an augmented dg al-
gebra Ω+(C), called (reduced) cobar construction ofC. Its underlying graded alge-
bra structure is given by the tensor algebra⊕i∈N0JC [−1]⊗i, where JC = Coker(ηC).
As before, if n ∈ N we will typically denote an element s−1(c̄1) ⊗ · · · ⊗ s(c̄n) ∈
JC [−1]⊗n in the form 〈c1| . . . |cn〉, where c1, . . . , cn ∈ C, c̄ ∈ JC denotes the canon-
ical projection of an element c ∈ C, and s : JC [−1] → JC is the canonical mor-
phism of degree −1 recalled in the third paragraph of Subsection 1.1. The unit
is given by the obvious inclusion k = JC [−1]⊗0 ⊆ Ω+(C), and we denote the
image of 1k under the previous map either by 1Ω+(C) or by 〈〉. The augmenta-
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tion is defined as the canonical projection Ω+(C) → JC [−1]⊗0 = k. The dif-
ferential D of Ω+(C) is defined as follows. Since Ω+(C) is graded free algebra,
it is the unique derivation D whose composition d with the canonical injection
JC [−1] → Ω+(C), where we define d =

∑
i∈N di for di : JC [−1] → JC [−1]⊗i given

by di = (−1)i(s⊗iJC [−1])
−1 ◦∆i ◦ sJC [−1]. Note again that (1.15) is exactly the condi-

tion for this derivation to be a differential. As before, our definition for the cobar
construction coincides with the one given for coaugmented dg coalgebras in the
case the higher comultiplications ∆i for i ≥ 3 vanish, but it differs from others in
the literature (e.g. those in the thesis [14] of K. Lefèvre-Hasegawa, Ch. 1 and 2).

We will also be particularly interested in the case that (co)augmented A∞-
(co)algebras are Adams connected, in the sense introduced in [16], Def. 2.1, i.e. a
(co)augmented A∞-(co)algebra A (resp., C) where the grading group G is Z × Z
such that its augmentation kernel IA (resp., JC) satisfies that ⊕n∈ZI(n,m)

A (resp.,
⊕n∈ZJ (n,m)

C ) is finite dimensional, for all m ∈ G′ = Z, and either I(n,m)
A (resp.,

J
(n,m)
C ) vanishes for all n ∈ Z and all m ≥ 0, or I(n,m)

A (resp., J (n,m)
C ) vanishes

for all n ∈ Z and all m ≤ 0. By the previously cited article, an Adams con-
nected augmented A∞-algebra is also locally finite dimensional, and its Koszul
dual E(A) = B+(A)# is also locally finite dimensional and also Adams connected
(see [16], Lemma 2.2).

A morphism of augmented A∞-algebras f• : A→ B between two augmented A∞-
algebrasA andB is a collection of morphisms of the underlying graded k-modules
fi : A⊗n → B of complete degree (1− i, 0G′) for i ∈ N such that∑
(r,s,t)∈In

(−1)r+stfr+1+t ◦(id⊗rA ⊗m
A
s ⊗ id⊗tA ) =

∑
q∈N

∑
ī∈Nq,n

(−1)wmB
q ◦(fi1⊗· · ·⊗fiq ),

(1.16)
where w =

∑q
j=1(q − j)(ij − 1) and Nq,n is the subset of Nq of elements ī =

(i1, . . . , iq) such that |̄i| = i1 + · · · + iq = n. We also assume that f1(1A) = 1B ,
for all i ≥ 2 we have that fi(a1, . . . , ai) vanishes if there exists j ∈ {1, . . . , i} such
that aj = 1A, and that εB ◦ f1 = εA and εB ◦ fi vanishes for i ≥ 2. If we do not
suppose this last collection of extra-assumptions the family of maps {fi}i∈N is only
called a morphism of A∞-algebras. We shall denote the (sum of) morphism(s) of the
left (resp., right) member of (1.16) by MIm•(n)l (resp., MIm•(n)r). Notice that f1

is a morphism of dg k-modules for the underlying structures on A and B. We say
that a morphism f• is strict if fi vanishes for i ≥ 2.

Dually, a morphism of coaugmented A∞-coalgebras f• : C → D between two
coaugmented A∞-coalgebras C and D is a locally finite collection of morphisms
of the underlying graded k-modules fi : C → D⊗i of homological degree i−1 and
Adams degree zero for i ∈ N such that∑
(r,s,t)∈In

(−1)rs+t(id⊗rD ⊗∆D
s ⊗ id⊗tD )◦fr+1+t =

∑
q∈N

∑
ī∈Nq,n

(−1)w
′
(fi1⊗· · ·⊗fiq )◦∆C

q ,

(1.17)
where w′ =

∑q
j=1(j − 1)(ij + 1). We also suppose that εD ◦ f1 = εD, for all i ≥ 2

and j ∈ {1, . . . , i} we have that (id
⊗(j−1)
D ⊗ εD ⊗ id

⊗(i−j)
D ) ◦ fi vanishes, and that

f1 ◦ηC = ηD and fi ◦ηC vanishes for i ≥ 2. If we do not suppose this last collection
of extra-assumptions the family of maps {fi}i∈N is only called a morphism of A∞-
coalgebras. Notice that f1 is also a morphism of dg k-modules for the underlying
structures on C and D. In this case we also say that a morphism f• is strict if fi
vanishes for i ≥ 2.

Given f• : A → B a morphism of augmented A∞-algebras, it induces a mor-
phism of coaugmented dg coalgebras B+(f•) : B+(A) → B+(B) between the bar
constructions as follows. We first note that the unitarity condition on f• implies
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that it is completely determined by the induced collection of morphism I⊗iA → IB ,
which we are going to denote also by fi, for i ∈ N. The morphism B+(f•) be-
ing of coaugmented graded coalgebras implies that it sends 1B+(A) to 1B+(B),
and the coaugmentation cokernel of B+(A) to the coaugmentation cokernel of
B+(B). Moreover, since B+(B) is a cocomplete graded coalgebra, such a mor-
phism of graded coalgebras is completely determined by the composition πB1 ◦
B+(f•) : B+(A) → IB [1], which vanishes on 1B+(A). The latter composition is
thus given by a sum

∑
i∈N Fi, where Fi : IA[1]⊗i → IB [1], which we define to be

Fi = sIB ◦ fi ◦ (s⊗iIA)−1, for i ∈ N. In fact, (1.16) is precisely the condition for this
morphism to commute with the differentials.

Dually, given f• : C → D a morphism of coaugmented A∞-coalgebras, it in-
duces a morphism of augmented dg algebras Ω+(f•) : Ω+(C) → Ω+(D) between
the cobar constructions as follows. We first note that the counitarity condition on
f• implies that it is completely detemined by the induced collection of morphism
JC → J⊗iD , which we are going to denote also by fi, for i ∈ N. We suppose that
it sends 1B+(A) to 1B+(B), and the augmentation kernel of Ω+(C) to the augmen-
tation kernel of Ω+(D). Moreover, since Ω+(C) is a free graded algebra, such a
morphism Ω+(f•) of graded algebras is completely determined by the composi-
tion of the canonical inclusion JC [−1] → Ω+(C) with it. Let us denote this latter
composition by F . Hence, F =

∑
i∈N Fi, where Fi : JC [−1]→ JD[−1]⊗i, which we

define to be Fi = (−1)i+1(s⊗iJD[−1])
−1 ◦ fi ◦ sJC [−1], for i ∈ N. As expected, (1.17) is

precisely the condition for this morphism to commute with the differentials. We re-
mark that our definition of B+(f•) (Ω+(f•)) agrees with the corresponding one for
(co)augmented dg (co)algebras in that case if the morphism f• is further assumed
to be strict.

A morphism of (co)augmented A∞-(co)algebras is called a quasi-isomorphism
if the map f1 is so. The same definition may be stated for the nonaugmented
case. We further say that a morphism f• of coaugmented A∞-coalgebras is a weak
equivalence provided its cobar Ω+(f•) is a quasi-isomorphism of augmented dg
algebras. This is not completely standard since we are not assuming that there
is any model structure, but it will be convenient for our purposes. Note that a
morphism of augmentedA∞-algebras is a quasi-isomorphism if and only ifB+(f•)
is also (see [20], Thm. 3.25). We refer to [20], Sections 3.2 and 3.3 (Déf. 3.3, 3.4, and
3.11), or [14], Sections 1.2 and 1.3 for more details on these definitions (though
we follow a different sign convention), and we remark that these morphisms are
supposed to preserve the Adams degree (cf. [17], Section 2).

Notice that if C is a coaugmented dg coalgebra and A is an augmented A∞-
algebra, the dg k-module Hom(C,A) has in fact a structure of augmented A∞-
algebra where m1 is given by the usual differential dHom(C,A)(φ) = mA

1 ◦ φ −
(−1)deg φφ ◦ dC . Indeed, if we further define

mn(φ1 ⊗ · · · ⊗ φn) = mA
n ◦ (φ1 ⊗ · · · ⊗ φn) ◦∆

(n)
C ,

for n ≥ 2, 1Hom(C,A) = ηA ◦ εC and εHom(C,A)(φ) = εA ◦ φ ◦ ηC(1k), it is easily
verified that they provide the structure of augmented A∞-algebra on Hom(C,A).
Furthermore, if f• : A → B is a morphism of augmented A∞-algebras, then the
collection of morphisms

f∗n : Hom(C,A)⊗n → Hom(C,B),

for n ∈ N, of graded k-modules of complete degree (1, 0G′) given by f∗1 (φ) = f1 ◦φ,
and

f∗n(φ1 ⊗ · · · ⊗ φn) = fn ◦ (φ1 ⊗ · · · ⊗ φn) ◦∆
(n)
C ,

for n ≥ 2, is a morphism of augmented A∞-algebras.
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Dually, if C is a coaugmented A∞-coalgebra and A is an augmented dg alge-
bra, the dg k-module Hom(C,A) has in fact a structure of augmented A∞-algebra
wherem1 is given by the usual differential dHom(C,A)(φ) = dA◦φ−(−1)deg φφ◦∆C

1 .
In this case the rest of the structure is given by

mn(φ1 ⊗ · · · ⊗ φn) = (−1)n(deg φ1+···+deg φn+1)µ
(n)
A ◦ (φ1 ⊗ · · · ⊗ φn) ◦∆C

n ,

for n ≥ 2, 1Hom(C,A) = ηA ◦ εC and εHom(C,A)(φ) = εA ◦ φ ◦ ηC(1k). Moreover, if
f• : C → D is a morphism of coaugmented A∞-coalgebras, then the collection of
morphisms

(fn)∗ : Hom(D,A)⊗n → Hom(C,A), (1.18)

for n ∈ N, of graded k-modules of complete degree (1, 0G′) given by (f1)∗(φ) =
φ ◦ f1, and

(fn)∗(φ1 ⊗ · · · ⊗ φn) = (−1)(n−1)(deg φ1+···+φn)µ
(n)
A ◦ (φ1 ⊗ · · · ⊗ φn) ◦ fn,

for n ≥ 2, is a morphism of augmented A∞-algebras.
If f• : A → A′ and g• : A′ → B are morphisms of augmented A∞-algebras,

the composition g• ◦ f• is the morphism of augmented A∞-algebras given by the
collection of maps {(g ◦ f)n : A⊗n → B}n∈N defined as

(g ◦ f)n =
∑
q∈N

∑
ī∈Nq,n

(−1)wgq ◦ (fi1 ⊗ · · · ⊗ fiq ), (1.19)

where w =
∑q
j=1(q − j)(ij − 1). Dually, if f• : C → C ′ and g• : C ′ → D are mor-

phisms of coaugmented A∞-coalgebras, the composition g• ◦ f• is the morphism
of coaugmented A∞-coalgebras given by the collection of maps {(g ◦ f)n : C →
D⊗n}n∈N of the form

(g ◦ f)n =
∑
q∈N

∑
ī∈Nq,n

(−1)w
′
(gi1 ⊗ · · · ⊗ giq ) ◦ fq, (1.20)

where w′ =
∑q
j=1(j − 1)(ij + 1).

We remark that the previous construction defines an augmented A∞-algebra
structure on the graded dual C# of C. If C is Adams connected, we see that
Ω+(C)# is isomorphic to B+(C#) (using the isomorphism jC defined in Subsub-
section 1.4.6). In this case we get that a quasi-isomorphism of Adams connected
coaugmented A∞-coalgebras is a weak equivalence (the converse is also true), for
a quasi-isomorphism C → D induces a quasi-isomorphism of augmented A∞-
algebras D# → C#, which induces a quasi-isomorphisms between the bar con-
structions B+(D#) → B+(C#), and by the previously recalled isomorphism we
get a quasi-isomorphism Ω+(D)# → Ω+(C)# of coaugmented dg coalgebras. Tak-
ing duals again we obtain a quasi-isomorphism Ω+(C) → Ω+(D) of augmented
dg algebras, so a weak equivalence C → D.

For the following definitions we refer to [14], Ch. 2, Section 5. Given an aug-
mented A∞-algebra A, an A∞-bimodule over A is a graded k-module M provided
with morphisms mM

p,q : A⊗p⊗M ⊗A⊗q →M of complete degree (1− (p+ q), 0G′),
for each p, q ∈ N0 satisfying the following identity on morphisms fromA⊗n

′⊗M⊗
A⊗n

′′
to M given by∑

(r,s,t)∈In′+n′′+1

(−1)r+stm̃M
r,t ◦ (id⊗r ⊗ m̃s ⊗ id⊗t) = 0, (1.21)

for all n′, n′′ ∈ N, where we recall that In = {(r, s, t) ∈ N0×N×N0 : r+ s+ t = n},
and where m̃s is interpreted as the corresponding multiplication map ms of A if

31



either r + s ≤ n′ or s + t ≤ n′′, or m̃s is understood as mM
n′−r,n′′−t else. In the first

case, m̃M
r,t is mM

n′−s+1,n′′ if r + s ≤ n′ or mM
n′,n′′−s+1 if s+ t ≤ n′′, and it is mM

r,t else.
We have omitted the subindex (A or M ) on the identity morphisms for it depends
on the indices r, s, t, and it is clearly deduced from the previous explanation. We
also assume that M satisfies that mM

p,q ◦ (id⊗r ⊗ ηA ⊗ id⊗t) vanishes for r 6= p and
(p, q) /∈ {(0, 1), (1, 0)}, and that mM

1,0 ◦ (ηA ⊗ idM ) = idM = mM
0,1 ◦ (idM ⊗ ηA). Note

that an augmented A∞-algebra is also an A∞-bimodule for the structure maps
mp,q = mp+q+1, where p, q ∈ N0. There are also obvious notions of left and right
A∞-modules but we will not need them.

Given an augmented A∞-algebra A and an A∞-bimodule over A, one can con-
struct the bar construction of M , which we shall denote by B+(A,M,A). Its un-
derlying graded vector space is B+(A) ⊗ M [1] ⊗ B+(A), regarded as a cofree
graded counitary bicomodule overB+(A), provided with a the unique bicoderiva-
tion BM satisfying the following condition. Since B+(A) ⊗ M [1] ⊗ B+(A) is a
cofree graded bicomodule, a bicoderivation is uniquely determined by its com-
position with εB+(A) ⊗ idM [1] ⊗ εB+(A), which is a sum of mappings of the form
bp,q : IA[1]⊗p⊗M [1]⊗ IA[1]⊗p →M [1], for p, q ∈ N0, each of degree (1−p− q, 0G′).
Define bp,q : IA[1]⊗p ⊗M [1] ⊗ IA[1]⊗q → M [1] as the unique map satisfying that
s−1
M ◦mp,q|I⊗p

A ⊗M⊗I
⊗q
A

= −bp,q ◦ (s⊗pIA ⊗ sM ⊗ s
⊗q
IA

), for all p, q ∈ N0. Note that the
unitarity conditions on the morphisms {mp,q}p,q∈N0

imply that they are uniquely
determined by their restrictions {mp,q|I⊗p

A ⊗M⊗I
⊗q
A
}p,q∈N0

. It is easy to see that the
equations (1.21) are equivalent to the fact thatBM is a differential, i.e. BM ◦BM = 0.

It is also convenient to recall the unshifted bar construction of M , which we shall
denote byBu(A,M,A). Its underlying graded vector space isB+(A)⊗M⊗B+(A),
regarded as a cofree graded counitary bicomodule over B+(A), provided with a
the unique bicoderivation BuM satisfying the following condition. Again, since
B+(A) ⊗M ⊗ B+(A) is a cofree graded bicomodule, a bicoderivation is uniquely
determined by its composition with εB+(A) ⊗ idM ⊗ εB+(A), which is a sum of
mappings of the form bup,q : IA[1]⊗p ⊗M ⊗ IA[1]⊗p → M , for p, q ∈ N0, each of
degree (1−p− q, 0G′). Define bup,q : IA[1]⊗p⊗M ⊗ IA[1]⊗q →M as the unique map
satisfying that (−1)pmp,q|I⊗p

A ⊗M⊗I
⊗q
A

= bup,q ◦ (s⊗pIA ⊗ idM ⊗ s⊗qIA ), for all p, q ∈ N0.
Again, the equations (1.21) are equivalent to the fact that BuM is a differential, i.e.
BuM ◦BuM = 0. Note that

sM ◦ bup,q = −bp,q ◦ (id⊗pIA ⊗ sM ⊗ id⊗qIA ),

for all p, q ∈ N0.
Given an A∞-bimodule (M,mM

•,•) over an A∞-algebra A, we define the shifted
A∞-bimodule M [1] as follows. The map m

M [1]
p,q : A⊗p ⊗ M [1] ⊗ A⊗q → M [1] is

uniquely defined by

mM [1]
p,q ◦ (id⊗pA ⊗ sM ⊗ id⊗qA ) = −(−1)p+qsM ◦mM

p,q,

for all p, q ∈ N0. It is easy to verify that the maps {mM [1]
p,q }p,q∈N0 satisfy the uni-

tarity condition and equations (1.21). Moreover, they obviously coincide with the
conventions we considered for the case of (differential) graded algebras. Note that
the previous definition is tantamount to set Bu(A,M [1], A) = B+(A,M,A).

Given two A∞-bimodules M and N , a morphism f•,• of A∞-bimodules from M to
N is a collection of morphisms of graded k-modules fp,q : A⊗p ⊗M ⊗ A⊗q → N
for p, q ∈ N0 of complete degree (−p − q, 0G′) satisfying the following identity on
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the space of morphisms from A⊗n
′ ⊗M ⊗A⊗n′′ to N given by∑

(r,s,t)∈In′+n′′+1

(−1)r+stfr′,t′ ◦ (id⊗r ⊗ m̃s ⊗ id⊗t)

=
∑

(a,k,l,b)∈N0,n′,n′′

(−1)b(−k−l)mN
a,b ◦ (id⊗aA ⊗ fk,l ⊗ id⊗bA ),

(1.22)

where N0,n′,n′′ is the subset of N4
0 of elements (a, k, l, b) such that a + k = n′ and

l + b = n′′, and where we should understand m̃s as mA
s if either r + s ≤ n′ or

s+t ≤ n′′, or asmM
n′−r,n′′−t else. The indices (r′, t′) are completely determined from

the previous cases. We also suppose that f•,• satisfies that fp,q ◦ (id⊗r ⊗ ηA ⊗ id⊗t)
vanishes for r 6= p and (p, q) /∈ {(0, 0)}. We say that it is strict if fp,q vanishes for all
(p, q) 6= (0, 0).

Analogously, given two A∞-bimodules M and N , it can be uniquely described
by a morphism between the corresponding bar constructions. More precisely, let
f•,• be a morphism of A∞-bimodules from M to N . It gives a morphism of couni-
tary dg bicomodules B+(f•,•) : B+(A,M,A) → B+(A,N,A) as follows. Since
B+(A)⊗M [1]⊗B+(A) is a cofree graded bicomodule, B+(f•,•) is uniquely deter-
mined by its composition with εB+(A) ⊗ idN [1] ⊗ εB+(A), which is a sum of maps
Fp,q : I⊗pA ⊗M [1] ⊗ IA[1]⊗q → N [1]. Define Fp,q : I⊗pA ⊗M [1] ⊗ IA[1]⊗q → N [1]

as the unique map satisfying that Fp,q ◦ (s⊗pIA ⊗ sM ⊗ s
⊗q
IA

) = sN ◦ fp,q|I⊗p
A ⊗M⊗I

⊗q
A

.
Note that the unitarity conditions on the morphisms {fp,q}p,q∈N0

imply that they
are uniquely determined by their restrictions {fp,q|I⊗p

A ⊗M⊗I
⊗q
A
}p,q∈N0

. It is easy to
see that the equations (1.22) are equivalent to the fact thatB+(f•,•) commutes with
the differentials, i.e. B+(f•,•) ◦ BM = BN ◦ B+(f•,•). If one wanted to consider
the unshifted bar constructions, then f•,• : M → N is equivalently defined by
the morphism Bu(f•,•) : Bu(A,M,A) → Bu(A,N,A) of dg bicomodules given
as follows. By the same arguments as before, Bu(f•,•) is uniquely determined
by its composition with εB+(A) ⊗ idN ⊗ εB+(A), which is also a sum of maps Fup,q :

I⊗pA ⊗M⊗IA[1]⊗q → N , for p, q ∈ N0. In this case, set Fup,q : I⊗pA ⊗M⊗IA[1]⊗q → N

as the unique map satisfying that Fup,q ◦ (s⊗pIA ⊗ idM ⊗ s⊗qIA ) = (−1)pfp,q|I⊗p
A ⊗M⊗I

⊗q
A

.
A similar argument as in the case for the usual bar construction shows that equa-
tions (1.22) are equivalent to the fact thatBu(f•,•) commutes with the differentials,
i.e. Bu(f•,•) ◦BuM = BuN ◦Bu(f•,•). Note that

sM ◦ Fup,q = Fp,q ◦ (id⊗pIA ⊗ sM ⊗ id⊗qIA ),

for all p, q ∈ N0.
The composition of two morphisms f•,• : M → N and g•,• : N → P is given by

the family of maps

(g ◦ f)p,q =
∑

(a,k,l,b)∈N0,p,q

(−1)b(−k−l)ga,b ◦ (id⊗aA ⊗ fk,l ⊗ id⊗bA ).

It is easy to verify that B+((g ◦ f)•,•) = B+(g•,•) ◦ B+(f•,•). If f• : A → B is
a morphism of augmented A∞-algebras and N is an A∞-bimodule over B with
structure maps m•,•, then it can be easily regarded as an A∞-bimodule over A via
the maps m′•,• given by

m′p,q

=
∑
r,s∈N0

∑
(̄i,j̄)∈Nr,p×Ns,q

(−1)εmr,s ◦ (fi1 ⊗ · · · ⊗ fir ⊗ idN ⊗ fj1 ⊗ · · · ⊗ fjs), (1.23)
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where we recall that Nm,n is the subset of Nm of elements ī = (i1, . . . , im) such that
|̄i| = i1 + · · ·+ im = n, and ε =

∑r
u=1(r+ s+ 1− u)(iu− 1) +

∑s
u=1(s− u)(ju− 1).

Given an A∞-bimodule M over an augmented A∞-algebra A, we define its
(graded) dual A∞-bimodule M#, as follows. The underlying graded space is given
by the usual graded dual M# of M . The multiplication maps #mp,q : A⊗p⊗M#⊗
A⊗q →M# are defined by

#mp,q(a1, . . . , ap, λ, a
′
1, . . . , a

′
q)(m) = −(−1)σ

′
λ
(
mq,p(a

′
1, . . . , a

′
q,m, a1, . . . , ap)

)
,

(1.24)
where

σ′ = (1 + p+ q) deg λ+ p+ q + pq +
( p∑
j=1

deg aj
)(

degm+ deg λ+

q∑
i=1

deg a′i
)
,

for all homogeneous m ∈ M , λ ∈ M# and a1, . . . , ap, a
′
1, . . . , a

′
q ∈ A. It is clear

that the maps {#mp,q}p,q∈N0 satisfy the required unitarity conditions, for the maps
{mp,q}p,q∈N0

do so. Indeed, note first that the previous choice is equivalently de-
scribed by the unshifted bar construction of M#, which is provided with the dif-
ferential induced by the maps #bup,q : IA[1]⊗p ⊗ M# ⊗ IA[1]⊗q → M# defined
by

#bup,q(sa1, . . . ,sap, λ, sa
′
1, . . . , sa

′
q)(m)

= −(−1)σ
′′
λ
(
buq,p(sa

′
1, . . . , sa

′
q,m, sa1, . . . , sap)

)
,

(1.25)

where

σ′′ = deg λ+
( p∑
j=1

1 + deg aj
)(

degm+ deg λ+

q∑
i=1

1 + deg a′i
)
,

for all homogeneous m ∈ M , λ ∈ M# and a1, . . . , ap, a
′
1, . . . , a

′
q ∈ IA, and we

have denoted sIA(a) by sa. It is easy to verify that, if we further denote by BuM#

the unique coderivation induced on Bu(A,M#, A) by the maps {#bup,q}p,q∈N0 and
#bu =

∑
p,q∈N0

#bup,q , and analogously for M , then

#bu ◦BuM#(sa1, . . . , sap, λ, sa
′
1, . . . , sa

′
q)(m) = 0

is precisely

−(−1)zλ(buM ◦BuM (sa′1, . . . , sa
′
q,m, sa1, . . . , sap)) = 0,

where z =
∑q
i=1 1 + deg a′i, for all p, q ∈ N0, and all homogeneous m ∈ M , λ ∈

M# and a1, . . . , ap, a
′
1, . . . , a

′
q ∈ IA. This proves that (1.24) indeed defines an A∞-

bimodule on M#. Note that (1.24) coincides with the convention we considered
for the case of (differential) graded bimodules over (differential) graded algebras.
We remark that the coderivation ofB(A,M#, A) is given by the maps {#bp,q}p,q∈N0

defined as

HM,k,−1,0(#bp,q(sa1, . . . , sap, sλ, sa
′
1, . . . , sa

′
q))(s

−1m)

= −(−1)σ
′′′
HM,k,1,0(s−1λ)

(
bq,p(sa

′
1, . . . , sa

′
q, sm, sa1, . . . , sap)

)
,

(1.26)

where

σ′′′ = (1 + deg λ) +
( p∑
j=1

1 + deg aj
)(

degm+ deg λ+

q∑
i=1

1 + deg a′i
)
,
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for all homogeneous m ∈M , λ ∈M# and a1, . . . , ap, a
′
1, . . . , a

′
q ∈ IA.

Moreover, the previous (graded) dual construction is in fact functorial. To wit,
if f•,• : M → N is a morphism of A∞-bimodules over the augmented A∞-algebra
A, then it defines a morphism f#

•,• : N# → M# of A∞-bimodules between the
corresponding graded duals, as follows. The maps f#

p,q : A⊗p ⊗N# ⊗A⊗q →M#

are defined by

f#
p,q(a1, . . . , ap, λ, a

′
1, . . . , a

′
q)(m) = (−1)ρ

′
λ
(
fq,p(a

′
1, . . . , a

′
q,m, a1, . . . , ap)

)
, (1.27)

where

ρ′ = (p+ q) deg λ+ p+ q + pq +
( p∑
j=1

deg aj
)(

degm+ deg λ+

q∑
i=1

deg a′i
)
,

for all homogeneous m ∈ M , λ ∈ N# and a1, . . . , ap, a
′
1, . . . , a

′
q ∈ A. It is clear

that the maps {f#
p,q}p,q∈N0 satisfy the required unitarity conditions, for the maps

{fp,q}p,q∈N0
do so. Indeed, note first that the previous choice is equivalently de-

scribed by the morphism #Fup,q : IA[1]⊗p ⊗ M# ⊗ IA[1]⊗q → M# between the
unshifted bar construction of M# and N#, defined by

#Fup,q(sa1, . . . ,sap, λ, sa
′
1, . . . , sa

′
q)(m)

= (−1)ρ
′′
λ
(
Fuq,p(sa

′
1, . . . , sa

′
q,m, sa1, . . . , sap)

)
,

(1.28)

where

ρ′′ =
( p∑
j=1

1 + deg aj
)(

degm+ deg λ+

q∑
i=1

1 + deg a′i
)
,

for all homogeneous m ∈ M , λ ∈ N# and a1, . . . , ap, a
′
1, . . . , a

′
q ∈ IA. Let Fu :

Bu(A,M,A) → Bu(A,N,A) and #Fu : Bu(A,N#, A) → Bu(A,M#, A) be the
morphisms of bicomodules induced by {Fup,q}p,q∈N0

and {#Fup,q}p,q∈N0
. Then, it is

easy to verify that

(BM# ◦ #Fu − #Fu ◦BN#)(ω)(m) = −(−1)K+deg λλ((Fu ◦BM −BN ◦ Fu)(ω′)),

where ω = sa1⊗· · ·⊗sap⊗λ⊗sa′1⊗· · ·⊗sa′q , ω′ = sa′1⊗· · ·⊗sa′q⊗m⊗sa1⊗· · ·⊗sap
and

K = (deg λ+

p∑
i=1

1 + deg ai)(degm+

q∑
j=1

1 + deg a′j).

Hence, #Fu commutes with the differentials, as was to be shown.
From the previous notion we can provide a short definition of d-cyclic aug-

mented A∞-algebra, for d ∈ Z. We define it as an augmented A∞-algebra pro-
vided with a strict isomorphism f : A → A#[d] of A∞-bimodules satisfying that
f(a)(b) = (−1)deg a deg bf(b)(a), i.e. f# = f , as morphisms of graded vector spaces
(see [5], Lemma 3.1). The more standard definition of d-cyclic (nonunitary, unitary,
or augmented) A∞-algebra can be recalled as follows. It is an A∞-algebra (A,m•)
provided with a nondegenerate bilinear form γ on A of degree d (i.e. a morphism
of graded vector spaces γ : A⊗A→ k of degree d) satisfying that γ ◦ τA,A = γ and

γ(mn(a1, . . . , an), a0) = (−1)n+(deg a0)(
∑n

i=1 deg ai)γ(mn(a0, . . . , an−1), an), (1.29)

for all homogeneous a0, . . . , an ∈ A. It is clear to see that this last definition co-
incides with the first one when A is augmented or even just (strictly) unitary, by
setting γ(a, b) = (s−d

A#f(a))(b), for all a, b ∈ A. Indeed, it is easy to see that (1.29) is
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tantamount to the fact that f is a strict morphism of A∞-bimodules, whereas the
nondegeneracy of γ is equivalent to f being bijective, and the symmetry property
of γ is tantamount to f# = f . Define Γ : A[1] ⊗ A[1] → k by Γ ◦ (sA ⊗ sA) = γ.
Note that Γ has degree d + 2. Then, the super symmetry of γ is equivalent to
Γ ◦ τA[1],A[1] = −Γ, and (1.29) is tantamount to

Γ(bn(sa1, . . . , san), sa0) = (−1)deg sa0(
∑n

i=1 deg sai)Γ(bn(sa0, . . . , san−1), san),
(1.30)

for all homogeneous a0, . . . , an ∈ A, where we have written sai instead of sA(ai)
to simplify.

Remark 1.3. Let A be a unitary A∞-algebra that is further assumed to be minimal, i.e.
m1 = 0, and let f•,• : A → A#[d] be a quasi-isomorphism of A∞-bimodules. Since
A is minimal, f0,0 is in fact an isomorphism of graded vector spaces. Moreover, by only
considering the underlying unitary (associative) graded algebra structure of A given by
m2 and ηA, f0,0 is in fact an isomorphism of graded bimodules, where A#[d] has the
underlying graded bimodule structure induced by its A∞-bimodule structure. Hence,

f0,0(a)(b) = (af0,0(1A))(b) = (−1)deg a deg bf0,0(1A)(ba)

= (−1)deg a deg b(f0,0(1A)b)(a) = (−1)deg a deg bf0,0(b)(a),

so f#
0,0 = f0,0. As a consequence, the symmetry condition in the definition of d-cyclic

unitary (or augmented) A∞-algebra A is superfluous if A is minimal.

If M is a dg A-bimodule over an augmented dg algebra A and C is a coaug-
mented A∞-coalgebra, then M ⊗ C is in fact an A∞-bimodule over Hom(C,A)
with the structure morphisms given by mM

0,0 = dM ⊗ idC + idM ⊗ ∆C
1 , and, for

p+ q ≥ 1,

mM⊗C
p,q (φ1 ⊗ · · · ⊗ φp ⊗ (m⊗ c)⊗ ψ1 ⊗ · · · ⊗ ψq)

= (−1)ε
′
(φ1(c(q+2)) . . . φp(c(q+p+1))).m.(ψ1(c(1)) . . . ψq(c(q)))⊗ c(q+1),

where ∆C
p+q+1(c) = c(1) ⊗ · · · ⊗ c(p+q+1), and

ε′ = pq+deg cdegm+(p+q+1)
( p∑
i=1

deg φi+

q∑
j=1

degψj
)

+
∑

1 ≤ i ≤ p

q + 2 ≤ i′ ≤ q + i

deg c(i′) deg φi

+
∑

1 ≤ j ≤ q

1 ≤ j′ < j

deg c(j′) degψj +
(

degm+

p∑
i=1

deg c(q+1+i) +

q∑
j=1

degψj
)( q+1∑

j=1

deg c(j)
)
.

This structure can be obtained as follows. First note that, given any dg bimodule
N over A, it is easy to verify that Hom(C,N) is an A∞-bimodule over Hom(C,A)

via mHom(C,N)
0,0 (ω) = dN ◦ ω − (−1)|ω|ω ◦∆C

1 , and

mHom(C,N)
p,q (φ1, . . . , φp, ω, φp+1, . . . , φp+q)

= (−1)(p+q+1)(1+degω+
∑p+q

i=1 deg φi)mp,q
N ◦(φ1⊗· · ·⊗φp⊗ω⊗φp+1⊗· · ·⊗φp+q)◦∆C

p+q+1,

for all p, q ∈ N0 such that p + q ≥ 1, where mp,q
N : A⊗p ⊗ N ⊗ A⊗q → N denotes

the successive application of the action of A on N , φ1, . . . , φp+q ∈ Hom(C,A) and
ω ∈ Hom(C,N). Consider now A∞-bimodule structure on T = Hom(C,M#),
and take the graded dual A∞-bimodule T # (over Hom(C,A)). The A∞-bimodule
structure on M ⊗ C over Hom(C,A) is obtained by pulling back the structure on
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T # via the canonical injection i : M⊗C → T # sendingm⊗c to the functional that
sends µ ∈ T to (−1)wµ(c)(m), where w = deg cdegm + deg cdegµ + degm degµ.
Indeed, it is easy to see that the A∞-bimodule M ⊗ C is the one obtained by im-
posing that i is a strict morphism of A∞-bimodules overHom(C,A).

If M is only a left (resp., right) dg module over A, we may regard it as a dg
A-bimodule by means of the augmentation εA, i.e. a.m.a′ = εA(a′)a.m (resp.,
a.m.a′ = εA(a)m.a′), so we may apply the previous construction. If f : M → N is a
morphism of dg A-bimodules over an augmented dg algebra A and C is an coaug-
mentedA∞-coalgebra, then the map f⊗ idC : M⊗C → N⊗C is a strict morphism
of A∞-bimodules over Hom(C,A). On the other hand, let f• : C → D be a mor-
phism of coaugmentedA∞-coalgebras and letA be an augmented dg algebra. This
induces a morphism of augmentedA∞-algebras (f•)∗ : Hom(D,A)→ Hom(C,A),
as seen in (1.18). In particular, given any dgA-bimoduleM , this allows to consider
M⊗C as anA∞-bimodule overHom(D,A) by means of (1.23). Then, the collection
of morphisms

Fp,q : Hom(D,A)⊗p ⊗ (M ⊗ C)⊗Hom(D,A)⊗q →M ⊗D

given by

Fp,q(φ1 ⊗ · · · ⊗ φp ⊗ (m⊗ c)⊗ ψ1 ⊗ · · · ⊗ ψq)

= (−1)ε
′
(φ1(d(q+2)) . . . φp(d(q+p+1))).m.(ψ1(d(1)) . . . ψq(d(q)))⊗ d(q+1),

where fp+q+1(c) = d(1) ⊗ · · · ⊗ d(p+q+1), and

ε′ = pq+deg cdegm+(p+q+1)
( p∑
i=1

deg φi+

q∑
j=1

degψj
)
+

∑
1 ≤ i ≤ p

q + 2 ≤ i′ ≤ q + i

deg d(i′) deg φi

+
∑

1 ≤ j ≤ q

1 ≤ j′ < j

deg d(j′) degψj +
(

degm+

p∑
i=1

deg d(q+1+i) +

q∑
j=1

degψj
)( q+1∑

j=1

deg d(j)

)
.

defines a morphism of A∞-bimodules overHom(D,A).
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