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Abstract
In this article we prove that the Tamarkin-Tsygan calculus of an Adams con-

nected augmented dg algebra and of its Koszul dual are dual to each other. This
uses the fact that the Hochschild cohomology and homology may be regarded
as a twisted convolution dg algebra and of some twisted tensor product, re-
spectively. As an immediate application of this latter point of view we also
show that the cup product on Hochschild cohomology and the cap product on
Hochschild homology of a Koszul algebra is directly computed from the coal-
gebra structure of TorA• (k,k) (the first of these results is proved differently in
[2]).
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1 Introduction

The aim of this work is to highlight some aspects of the relation between the
Hochschild (co)homology and the Koszul theory of Adams connected augmented
(dg) algebras. The main result we have proved is the following. Consider an
Adams connected dg algebra A over a field k, and denote by E(A) its Koszul dual
B+(A)# (where (−)# is the graded dual). Then, there are an isomorphism of Gersten-
haber algebras HH•(E(A)) ' HH•(A) (see Theorems 3.3 and 3.4) and an isomor-
phism of Gerstenhaber modulesHH•(E(A)) 'HH•(A)# overHH•(E(A)) 'HH•(A)
(see Theorems 3.3 and 3.6) such that the Connes’ map on HH•(E(A)) is minus the
dual of the Connes’ map on HH•(A) under the previous identification (see Propo-
sition 3.5). We say in this case that the Tamarkin-Tsygan calculus of A and of its
Koszul dual E(A) are dual (see Corollary 3.7).

We would like to remark that the results stated before follow from a description
of the Hochschild (co)homology of an augmented dg algebra given by a general
twisting procedure, which is recalled in Subsection 2.1. We would have supposed
that this twisting construction was widely known by the experts, but some articles
appearing in the literature could imply that this is not exactly the case. In fact,
the other interesting result of the article, included in Subsection 2.2, states that the
dg algebra C•(A,A) computing the Hochschild cohomology of any Koszul algebra
A is quasi-isomorphic to the twisted hom construction Homτ (C,A), where C is
the graded coalgebra TorA• (k,k) and τ : C → A is a particular twisting cochain.
As a consequence, H•(Homτ (C,A)) is isomorphic to HH•(A) as graded algebras.
This is in fact the main result of [2], stated at the introduction, p. 443, or after as
Theorem 2.3, which is based on the construction of a chain map ∆ : P• → P• ⊗A P•

*Institut Fourier, Université Grenoble Alpes, France. On leave of absence from Departamento de
Matemática, FCEyN, Universidad de Buenos Aires, Argentina, and CONICET (Argentina).

1



lifting the identity of A, where P• is the minimal projective resolution of the A-
bimodule A. Our proof is simpler, for we do not need to make any homological
computation, and exploits a different point of view: the twisted procedure we
mentioned previously. Moreover, using the same ideas we also show that, given
anA-bimoduleM, the dg bimoduleM⊗τC overHomτ (C,A) is quasi-isomorphic to
the dg bimoduleC•(A,M) overC•(A,A). This tells us thatH•(M⊗τC) is isomorphic
to H•(A,M) as graded bimodules over HH•(A) (see Proposition 2.2). This result
does not seem to have been known.

We now briefly discuss similar results that appeared in the literature stating
isomorphisms between the Hochschild (co)homology of a dg algebra A and of the
corresponding dual E(A). If A = T V /〈R〉 is a Koszul algebra and A! = T (V ∗)/〈R⊥〉,
where V ∗ is concentrated in cohomological degree 1 and R⊥ ⊆ (V ⊗2)∗ ' (V ∗)⊗2 is
the annihilator of R ⊆ V ⊗2, it was already observed by B. Feigin and B. Tsygan
that there is in fact a duality pair between the Hochschild homology groups of A
and A! (only regarded as graded vector spaces), and we remark that A! and E(A)
are quasi-isomorphic dg algebras. More precisely, the mentioned duality can be
directly deduced from (or following the lines of) the isomorphism between the
corresponding cyclic homology groups given in [4], Thm. 2.4.1, where the au-
thors further suppose that the base field k has characteristic zero, even though
this assumption is not strictly necessary if we are interested only in the Hochschild
homology groups (see [16] for a more detailed analysis on the corresponding grad-
ings). Furthermore, an isomorphism of graded algebras between the Hochschild
cohomology groups HH•(A!) and HH•(A) in case A is also a Koszul algebra was
announced by R.-O. Buchweitz in the Conference on Representation Theory held
at Canberra on July 2003. A more general result was proved by B. Keller in the
preprint [14], where he showed that there is in fact a quasi-isomorphism of B∞-
algebras between the corresponding Hochschild cohomology cochain complexes.
The isomorphism deduced by Keller is more general than ours, even though the
map we constructed is in principle different from the one he obtained, and he only
treated the case of cohomology and not of homology. On the other hand, Y. Félix,
L. Menichi and J.-C. Thomas proved in [7], Prop. 5.1 and 5.3, that given a sim-
ply connected coaugmented dg coalgebra C over a field, there is a isomorphism
of Gerstenhaber algebras between the Hochschild cohomology HH•(C#) of the
graded dual C# of C and the Hochschild cohomology HH•(Ω+(C)) of the cobar
construction of C. By specializing this result to the case A = C#, and using the ob-
vious result Ω+(C) ' E(A), we get that the Hochschild cohomology of A and E(A)
are isomorphic as Gerstenhaber algebras. The simply connectedness assumption
is however completely unusual in the realm of representation theory of algebras.
It is fair to say that our main results, Theorems 3.3, 3.4 and 3.6, get rid of the sim-
ply connectedness assumption but impose other grading hypotheses that are more
typical in representation theory. Moreover, we also study the case of Hochschild
homology, which was not considered in [7].

The article is organised as follows. In Section 2 we recall some basic tools. Sub-
section 2.1 is devoted to present the (supposedly well-known) relation between
Hochschild (co)homology theory and twists of augmented dg algebras (see Fact
2.1). In Subsection 2.2 we show a general result that allows to compute the mul-
tiplicative structure on the Hochschild cohomology of a Koszul algebra and the
corresponding module structure on the Hochschild homology, which in our situa-
tion is just a consequence of the way we presented the Hochschild (co)homology
complexes (see Proposition 2.2). We believe the experts should not be surprised by
the contents of these two subsections, but we have included them due to the simple
characterization of the previously referred multiplicative structures, that we were
unable to find in the literature: the proof of the piece of Proposition 2.2 considering
Hochschild cohomology is done “without computations” (and it is different from
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the one given in [2]), and the statement concerning Hochschild homology seems
to be new. Subsection 2.3 states the well-known duality between the bar and cobar
constructions, that was only included due to some inaccuracies in the literature,
and Subsection 2.4 recalls a resolution of the dg bimodule Ω+(C), where C is a
cocomplete coaugmented dg coalgebra, which is only present due to its later use.
The preliminaries conclude with Subsection 2.5, where we recall the Gerstenhaber
bracket on Hochschild cohomology of any augmented dg algebra, but we also in-
troduce the analogous bracket on the Cartier-Doi cohomology of a coaugmented
dg coalgebra. The existence of this last bracket is by no means unexpected but we
have included it because we utilize it in the sequel. The main reason for these last
three subsections is to establish the notation and basic constructions that will be
later used.

In Section 3 we use the tools appearing in the previous section in order to prove
the main result of the article: the Tamarkin-Tsygan calculus of an Adams connected
augmented dg algebra and of its Koszul dual are dual.

The author would like to express his deep gratitude to Professor Clas Löfwall
for his careful explanation of the results by Feigin and Tsygan mentioned before.

2 Preliminaries

We will fix throughout the article a field k. We shall follow the conventions on
dg (co)algebras and their dg (co)modules, the bar resolution of a dg algebra, the
bar and cobar constructions, and twisting of dg algebras and their dg modules
recalled in [11], to which we refer together with the references therein. In particular
these objects will be graded with respect to G = Z ×Z, where the first grading
is called (co)homological and the second one is called Adams. When applying the
Koszul sign rule, we will only take the cohomological degree into account (for
a nice exposition on basic homological algebra of dg modules over dg algebras
and a detailed account on the sign rule we refer to [1]). Given n0 ∈ Z and V =
⊕(n,m)∈Z2V (n,m) any graded object (decorated perhaps with further adjectives), we
shall denote by V [n0] the shift of V , defined as V [n0](n,m) = V (n+n0,m) for all n,m ∈Z,
and by sV ,n0 : V → V [n0] the morphism of cohomological degree −n0, called the
suspension on V of degree n0, whose underlying set-theoretic map is the identity. In
this work we shall never consider shifts of the Adams degree. If n0 = 1 we will just
write sV and call it the suspension on V . We shall say that a graded vector space V =
⊕(m,n)∈Z2V (m,n) over k is Adams connected if V (0,0) = k and V ∧ = ⊕(m,n)∈Z2\{(0,0)}V

(m,n)

is concentrated in either strictly positive or strictly negative Adams degrees, and
each homogeneous component of V ∧ of a fixed Adams degree d (but including all
cohomological degrees) is locally finite dimensional (cf. [18], Def. 2.1).

2.1 Hochschild (co)homology as a twisted construction

In this subsection we recall the basic definitions of Hochschild cohomology and
homology of an augmented dg algebra. We refer the reader to [8] and [23] for
standard references.

The following constructions are standard (see [12], but also [15] and [21] for
further details). We recall that, given a Maurer-Cartan element a of an augmented
dg algebra (Λ,dΛ), i.e. a ∈ Λ(1,0) and dΛ(a) + a2 = 0, one may consider the twisted
augmented dg algebra (Λ,dΛ,a), where dΛ,a = dΛ + ad(a) and the remaining alge-
braic structure of Λ remains unchanged. If (M,dM ) is a dg Λ-bimodule, the twisted
dg bimodule (M,dM,a) over the twisting of Λ is defined analogously. Given an
augmented dg algebra A and a coaugmented dg coalgebra C, letΛ =Hom(C,A) be
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the augmented dg algebra provided with the convolution product and the obvi-
ous unit and augmentation defined from C and A. A twisting cochain τ is a Maurer-
Cartan element ofΛ satisfying that εA◦τ = τ◦ηC = 0, where εA is the augmentation
of A and ηC is the coaugmentation of C. We shall denote the twisted dg algebra of
Λ by Homτ (C,A), and call it the twisted convolution algebra. Moreover, if M is a dg
A-bimodule, M ⊗C is a dg bimodule over Λ for the action given by

φ · (m⊗ c) ·ψ = (−1)εφ(c(3)).m.ψ(c(1))⊗ c(2),

where m ∈M, c ∈ C, ∆(3)
C (c) = c(1) ⊗ c(2) ⊗ c(3) is the usual Sweedler notation for the

iterated application of the coproduct of C, φ,ψ ∈ Hom(C,A), and ε = degψdegc +
degc(3)(degm + degc(1) + degc(2) + degψ). The twist of the previous dg bimodule
will be denoted by M ⊗τ C, that will be called the twisted tensor product. Note that
it is a dg bimodule overHomτ (C,A).

Let A be an augmented dg algebra with unit ηA : k → A (and we define 1A =
ηA(A)), differential dA of cohomological degree 1 and Adams degree zero, and
augmentation εA, whose kernel is denoted by IA. Consider the augmented dg
algebra Hom(B+(A),A), where B+(A) denotes the reduced bar construction of A
(see for instance [17], Def. 8.1), provided with the convolution product and the
differential D0 induced by that of A and B+(A), i.e.

D0(f )([a1| . . . |an]) =dA(f ([a1| . . . |an])) +
n∑
i=1

(−1)ε̄i f ([a1| . . . |dA(ai)| . . . |an])

−
n∑
i=2

(−1)ε̄i f ([a1| . . . |ai−1ai | . . . |an]),
(2.1)

where ε̄i = degf +(
∑i−1
j=1degaj )−i+1. The unit and augmentation ofHom(B+(A),A)

are the obvious ones. Let us consider τA : B+(A)→ A the universal twisting cochain
of A whose restriction to IA[1]⊗n vanishes if n , 1 and such that its restriction to
IA[1] is given by the composition of minus the canonical inclusion IA[1] ⊆ A[1]
with s−1A . It is easy to check that the twist of the differential D0 ofHom(B+(A),A) by
τA gives precisely the differential of the complex HomAe (Bar(A),A) computing the
Hochschild cohomology of A, where Bar(A) denotes the reduced bar resolution of
A. Indeed, the map D1(f ) = ad(τA)(f ) coincides with

D1(f )([a1| . . . |an]) =− (−1)dega1degf −degf a1f ([a2| . . . |an])
+ (−1)ε̄nf ([a1| . . . |an−1])an.

(2.2)

Hence, HomτA(B+(A),A) is canonically identified with the complex computing the
Hochschild cohomology of A. It is also trivial to verify that the cup product on
HomτA(B+(A),A) (see [3], Ch. XI, §4 and 6) coincides with the convolution product
onHomτA(B+(A),A).

The Hochschild homology of A with coefficients in a dg A-bimodule (M,dM )
can be regarded in a similar fashion. The tensor productM⊗B+(A) has a differential
D ′0 induced by the ones of A and of B+(A) given by

D ′0(m⊗ [a1| . . . |an]) =dM (m)⊗ [a1| . . . |an]−
n∑
i=1

(−1)ε̃im⊗ [a1| . . . |dA(ai)| . . . |an]

+
n∑
i=2

(−1)ε̃im⊗ [a1| . . . |ai−1ai | . . . |an],
(2.3)
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where ε̃i = degm + (
∑i−1
j=1degaj ) − i + 1. It is a dg bimodule over Hom(B+(A),A).

The twist of the differential of M ⊗ B+(A) by τA gives precisely the differential of
M ⊗Ae Bar(A), since D ′1(m⊗ [a1| . . . |an]) = ad(τA)(m⊗ [a1| . . . |an]) is given by

D ′1(m⊗ [a1| . . . |an]) =(−1)
degmma1 ⊗ [a2| . . . |an]

− (−1)ε̃n(degan+1)anm⊗ [a1| . . . |an−1].
(2.4)

Thus, the complex M ⊗Ae Bar(A) computing the Hochschild homology of A with
coefficients in M is canonically identified with M ⊗τA B

+(A). It is also trivial to
verify that the left and right cap products on M ⊗Ae Bar(A) over HomAe (Bar(A),A)
(see [3], Ch. XI, §4 and 6) coincide with the left and right actions of the algebra
HomτA(B+(A),A) on M ⊗τA B

+(A).
We remark that, for M = A, the graded bimodule HH•(A) over HH•(A) is

graded symmetric, as one may easily deduce as follows. Indeed, as noted in the
literature (see for instance [19], (10)), given any dg bimodule N over A there are
obvious “cup” actions (on the left and on the right) of HH•(A) on H•(A,N ), which
coincide with the product of the subspaces HH•(A) and H•(A,N ) regarded inside
HH•(A[N ]) (where A[N ] is the dg algebra with underlying dg module given by
A⊕N , the usual product (a,n) · (a′ ,n′) = (aa′ , an′ + na′), unit (1A,0N ) and augmen-
tation (a,n) 7→ εA(a)). Since HH•(A[N ]) is a graded commutative algebra, we see
thatH•(A,N ) is a graded symmetric bimodule overHH•(A). Furthermore, there is
an isomorphism H•(A,A#) 'HH•(A)# of bimodules over HH•(A) (see for instance
[19], Lemma 16), so HH•(A) is graded symmetric.

We summarize our previous comments in the following result.

Fact 2.1. LetA be an augmented dg algebra over k, and let τA denote the universal twisting
cochain of A. Then,

(i) the complex HomAe (Bar(A),A) computing Hochschild cohomology is canonically
identified with HomτA(B+(A),A). Moreover, the cup product on the first complex
coincides exactly with the convolution product on the latter.

(ii) the complex M ⊗Ae Bar(A) computing the Hochschild homology of A with coeffi-
cients in M is canonically identified with the twisted tensor product M ⊗τA B

+(A).
Furthermore, the bimodule structure of the first complex over HomAe (Bar(A),A)
given by the cap products coincides exactly with the bimodule structure of the latter
complex overHomτA(B+(A),A).

We see that the previous description of Hochschild homology and cohomology
groups is by no means accidental. Indeed, it is a direct consequence of the defini-
tions as soon as one notes that the reduced bar resolution Bar(A) of A is canonically
identified (as complexes of vector spaces) with Ae ⊗τA B

+(A), where Ae is a dg A-
bimodule with the outer structure given by a(a′⊗b′)b = (aa′)⊗(b′b), for a,a′ ,b,b′ ∈ A.
The identification isomorphism is given by

(an+1 ⊗ a0)⊗ [a1| . . . |an] 7→ (−1)degan+1(dega0+ε)a0[a1| . . . |an]an+1, (2.5)

where ε = (
∑n
i=1degai)−n. Consider the dg A-bimodule structure on Ae ⊗τA B

+(A)
coming from the inner structure of Ae given by

a(a′ ⊗ b′)b = (−1)(dega
′ dega+degbdegb′+degadegb)(a′b)⊗ (ab′),

for a,a′ ,b,b′ ∈ A. This induces a structure of dg bimodule on the twisted tensor
product Ae⊗τA B

+(A) over the algebraHomτA(B+(A),A)⊗A. By means of this struc-
ture the previous identification gives in fact an isomorphism of dg bimodules over
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HomτA(B+(A),A) ⊗ A. If we apply the functors HomAe (−,A) and A ⊗Ae (−) to the
identification (2.5) we get precisely the description of the complexes computing
the Hochschild cohomology and homology described in the previous fact. We also
recall that, since k is a field, Bar(A) is a semifree resolution of the dg A-bimodule A
(see [5], Lemma 4.3).

2.2 Application to the Hochschild (co)homology of Koszul alge-
bras

In this subsection we show that the description of Hochschild (co)homology given
by Fact 2.1 allows us to compute the augmented graded algebra structure on the
Hochschild cohomology HH•(A) of a (quadratic) Koszul algebra A and the corre-
sponding graded bimodule structure on the Hochschild homology H•(A,M) with
coefficients in any A-bimodule M. In particular, we give a simpler proof of the
main result of [2] (stated at the introduction, p. 443, or after as Theorem 2.3), where
they have computed the algebra structure of the Hochschild cohomology. Indeed,
the theorem of the mentioned article is just the (basis-dependent expression of the)
of the convolution product of Homτ (C,A), where C = TorA• (k,k). It seems that the
result concerning homology has not been observed so far.

Let A = T V /〈R〉 be a (quadratic) Koszul algebra over a field k, and consider
the coaugmented dg coalgebra TorA• (k,k) with zero differential, where the coho-
mological degree of the component TorAi (k,k) is −i (see for instance [20], Ch. 1,
Section 1, pp. 4–5). The structure of this coaugmented dg coalgebra and its quasi-
isomorphism to the bar construction B+(A), that we will briefly recall, is well-
known and lies in the heart of the Koszul property. We have the isomorphisms
of Adams graded vector spaces TorA0 (k,k) ' k, TorA1 (k,k) ' V , and

TorAi (k,k) '
i−2⋂
j=0

V ⊗j ⊗R⊗V ⊗(i−j),

for i ∈N≥2. Let us denote the latter intersection space byCi , if i ∈N≥2, and setC1 =
V and C0 = k. We identify C = ⊕i∈N0

Ci with TorA• (k,k). Under this identification
the coproduct ∆ is given as follows. The composition of the restriction of ∆ to
Ci with the canonical projection onto Ci′ ⊗ Ci′′ , where i = i′ + i′′ , is the canonical
inclusion Ci ⊆ Ci′ ⊗ Ci′′ of Adams graded vector subspaces of T V . The counit is
given by the canonical projection of C onto C0 = k, and the cougmentation by the
usual inclusion of k = C0 inside C. It is clear that C is cocomplete. We recall that
the canonical map f : C→ B+(A) induced by the inclusions

Ci ⊆ V ⊗i → IA[1]
⊗i ,

for i ∈N0, is a quasi-isomorphism of cocomplete coaugmented dg coalgebras (this
is in fact equivalent to the Koszul property on A). In this case it is trivial to verify
that the twisting cochain τ = τA ◦ f is given by the map whose restriction to V
is minus the canonical inclusion V → A, and the restriction to V ⊗i vanishes for
i ∈ N0 \ {1}. We have the following direct consequence of the description of the
Hochschild (co)homology given in the previous subsection.

Proposition 2.2. Let A be a Koszul algebra over a field k, M be an A-bimodule and C =
TorA• (k,k) be the Tor coalgebra recalled previously, provided with the quasi-isomorphism of
coaugmented dg coalgebras f : C→ B+(A). Set τ = τA◦f . Then, the mapHom(f ,A) gives
a quasi-isomorphism of augmented dg algebras from HomτA(B+(A),A) to Homτ (C,A),
and idM ⊗ f is a quasi-isomorphism of dg bimodules overHomτA(B+(A),A) from M ⊗τ C
to M ⊗τA B

+(A), where M ⊗τ C has a structure of dg bimodule over HomτA(B+(A),A) by
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means of the morphism of dg algebrasHom(f ,A). We have thus an isomorphism of graded
algebras HH•(A)→ H•(Homτ (C,A)) and an isomorphism H•(M ⊗τ C)→ H•(A,M) of
graded bimodules overHH•(A), whereH•(M⊗τ C) is a graded bimodule overHH•(A) by
means of the previous isomorphism of graded algebras.

Proof. We first note that Ae ⊗τ C together with the map Ae ⊗C0 = Ae → A given
by the product of A is a minimal projective resolution of the A-bimodule A. More-
over, the mapping idAe ⊗ f : Ae ⊗τ C → Ae ⊗τA B

+(A) is a morphism of resolutions,
so a homotopical equivalence. Since Hom(f ,A) coincides with the map given by
applying the functorHomAe (−,A) to idAe ⊗ f ,Hom(f ,A) is a quasi-isomorphism of
augmented dg algebras from HomτA(B+(A),A) to Homτ (C,A), so it induces an iso-
morphism of augmented graded algebras fromHH•(A) toH•(Homτ (C,A)). Analo-
gously, we have a quasi-isomorphism of dg bimodules overHomτA(B+(A),A) from
M⊗τC toM⊗τAB

+(A) defined by idM⊗f , whereM⊗τC has a structure of dg bimod-
ule over HomτA(B+(A),A) by means of the morphism of dg algebras Hom(f ,A).
The map idM ⊗ f is indeed a quasi-isomorphism, because it coincides with the
map given by applying the functor M ⊗Ae (−) to idAe ⊗ f . Hence, we get an isomor-
phism of graded bimodules over HH•(A) from H•(M ⊗τ C) to H•(A,M), where the
structure of graded bimodule over HH•(A) of H•(M⊗τ C) is given by the previous
isomorphism HH•(A)→H•(Homτ (C,A)). �

2.3 Usual duality between the bar and cobar construction

In this subsection we shall prove the usual duality relations between bar and cobar
constructions. We follow the sign conventions for the bar and cobar constructions
given in [17], Section 8, even though we denote the elements of the cobar construc-
tions following the notation of [7] or [8]. These results are well-known among the
experts but we prefer to give the precise statements since there are some minor
imprecisions in some parts of the literature.

A graded or dg vector space M is locally finite dimensional if each of the homo-
geneous components of M is finite dimensional. Note that in this case the graded
dual M# is also locally finite dimensional and the canonical map ιM :M → (M#)#

given by ιM (m)(f ) = (−1)degmdegf f (m), for m ∈M and f ∈M# homogeneous, is an
isomorphism of graded or dg vector spaces, respectively. Furthermore, ifM andN
are locally finite dimensional, then the map ιM,N :M# ⊗N#→ (M ⊗N )# defined as
ιM,N (φ⊗ψ)(m⊗ n) = (−1)degψdegmφ(m)ψ(n) is an isomorphism in the correspond-
ing category. Given p,p′ ∈ Z, we shall also use the isomorphism of dg modules
fromHom(M[p],N [p′]) toHom(M,N )[p′ −p], which we denote by HM,N,p,p′ , given
by f 7→ sHom(M,N ),p′−p(Hom(sM,p, s

−1
N,p′ )(f )), for f ∈ Hom(M[p],N [p′]) (cf. [1], Sub-

subsection 3.1.8). The underlying set-theoretic map is thus the identity times a
(−1)(degf +p′)p sign.

We now recall the well-known fact that ifD is a coaugmented dg coalgebra, the
graded dualD# has the structure of an augmented dg algebra, where the product is
given by∆#

D◦ιD,D , the unit is εD and the augmentation is defined asω 7→ω(ηD (1k)),
for ω ∈ D#. Conversely if Λ is a locally finite dimensional augmented dg alge-
bra, then the graded dual Λ# has the structure of a (locally finite dimensional)
coaugmented dg coalgebra, where the product is given by ι−1

Λ,Λ ◦ µ
#
Λ

, the counit
is ω 7→ ω(ηΛ(1k)), for ω ∈ Λ#, and the coaugmentation is defined as 1k 7→ εΛ.
Note that in this latter case the morphism ιΛ : Λ → (Λ#)# is an isomorphism of
augmented dg algebras. Analogously, if D is a locally finite dimensional coaug-
mented dg coalgebra, then ιD : D → (D#)# is an isomorphism of coaugmented dg
coalgebras.

The main duality properties we shall use between the bar and cobar construc-
tions are the following ones (see [6], Section 19, Ex. 3, p. 272, and [17], Lemma 8.6,
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(c). We remark however that in the last reference one should further impose that
ΩC and BA are locally finite dimensional, where we are using the notation of that
article. The same correction would apply to [18], Lemma 1.15).

Proposition 2.3. There is a natural isomorphism Ω+((−)#)→ B+(−)#, in the category of
augmented dg algebras Λ such that B+(Λ) is locally finite dimensional.

Analogously, there is a natural isomorphism B+((−)#) → Ω+(−)# in the category of
coaugmented dg coalgebras D such that Ω+(D) is locally finite dimensional.

Proof. Let Λ be an augmented dg algebra such that B+(Λ) is locally finite dimen-
sional. Notice that Λ is a fortiori locally finite dimensional, and denote by IΛ its
augmentation ideal. Note that the graded dual of the inclusion IΛ ⊆ Λ induces
an isomorphism JΛ# ' I#

Λ
, where JΛ# denotes the cokernel of the coaugmentation

of Λ#. Define the isomorphism jΛ : Ω+(Λ#)→ B+(Λ)# as the unique one satisfy-
ing that its restriction to JΛ# [−1] ' (I#

Λ
)[−1] is the composition of the inverse of the

isomorphism HIΛ,k,1,0 : (IΛ[1])# → (I#
Λ
)[−1] with the graded dual of the canonical

projection B+(Λ)→ IΛ[1] (using the identification I#
Λ
' JΛ# explained before). We

remark that the choice of signs is exactly the one in order to make our map com-
mute with the differentials. We will provide an explicit expression of this isomor-
phism. The morphism jΛ sends 〈〉 ∈Ω+(Λ#) to the canonical projection B+(Λ)→ k,
and for n ∈N and ω1, . . . ,ωn ∈ I#Λ it sends 〈ω1| . . . |ωn〉 to the linear functional

[λ1| . . . |λm] 7→ (−1)εδn,mω1(λ1) . . .ωn(λn),

where λ1, . . . ,λm ∈Λ, δn,m is the Kronecker delta symbol, and

ε =degω1 + · · ·+degωn +n+ (degω2 +1)(degλ1 +1)

+ · · ·+ (degωn +1)(degλ1 + · · ·+degλn−1 +n− 1).

Analogously, let D be a coaugmented dg coalgebra such that Ω+(D) is locally
finite dimensional. Then D is also locally finite dimensional. Define the isomor-
phism jD : B+(D#) → Ω+(D)# as follows. It sends [] ∈ B+(D#) to the canonical
projection Ω+(D)→ k, and, for n ∈N and ρ1, . . . ,ρn ∈ ID# , it sends [ρ1| . . . |ρn] to the
linear functional

〈θ1| . . . |θm〉 7→ (−1)εδn,mρ1(θ1) . . .ρn(θn),
where θ1, . . . ,θm ∈D, δn,m is the Kronecker delta, and

ε =degρ1 + · · ·+degρn + (degρ2 +1)(degθ1 +1)

+ · · ·+ (degρn +1)(degθ1 + · · ·+degθn−1 +n− 1).

The naturality of the morphisms follows easily from the definitions. �

Let us consider an augmented dg algebra Λ. We denote by βΛ : Ω+(B+(Λ))→
Λ the canonical quasi-isomorphism of augmented dg algebras given by 〈〉 7→ 1Λ
and 〈ω1| . . . |ωn〉 7→ (−1)ns−1IΛ (π1(ω1)) . . . s

−1
IΛ
(π1(ωn)) if n ∈ N, where π1 : B+(Λ) →

IΛ[1] is the canonical projection and ω1, . . . ,ωn are elements in the coaugmentation
cokernel of B+(Λ) (see [6], Section 19, Ex. 2, or [12], Section II.4, Thm. II.4.4, or
[21], Th. 2.28). If D is a cocomplete coaugmented dg coalgebra we denote by
τD : D → Ω+(D) the couniversal twisting cochain of D given by the composition
of the canonical projection D → JD , s−1JD [−1] and the canonical inclusion of JD [−1]
inside Ω+(D), where JD is the cokernel of the coaugmentation of D, and we define
βD : D→ B+(Ω+(D)) as the unique morphism of coaugmented dg coalgebras such
that its composition with τΩ+(D) : B+(Ω+(D))→ Ω+(D) is τD . Hence βD sends 1D
to 1B+(Ω+(D)), and for d ∈ Ker(εD ), it satisfies that

βD (d) = −[〈d〉] +
∑
n∈N≥2

(−1)n[〈d−(1)〉| . . . |〈d
−
(n)〉],
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where ∆(n)
Ker(εD )

(d) = d−(1) ⊗ · · · ⊗ d
−
(n) is the iterated coproduct of the comultiplication

of Ker(εD ). It can be proved that βD is a filtered quasi-isomorphism, so a weak
equivalence, whereD is provided with the primitive filtration and B+(Ω+(D)) with
the C-primitive one (see [15], Lemme 1.3.2.3, (c), and the corresponding errata).

Proposition 2.4. Assume the same hypotheses as in the previous proposition. The previ-
ous natural isomorphisms satisfy that

jD =Ω+(ιD )
# ◦ (jD# )# ◦ ιB+(D#),

jΛ = B+(ιΛ)
# ◦ (jΛ

#
)# ◦ ιΩ+(Λ#),

(jD )# ◦ ιΩ+(D) = jD# ◦Ω+(ιD ),

(jΛ)
# ◦ ιB+(Λ) = jΛ

#
◦B+(ιD ).

(2.6)
Moreover, we have that

τD# = (τD )# ◦ jD ,

τ#Λ = jΛ ◦ τΛ
#
.

(2.7)

and

βD# = (βD )# ◦ jΩ+(D) ◦Ω+(jD ),

β#Λ = jB
+(Λ) ◦B+(jΛ) ◦ βΛ

#
.

(2.8)

Proof. The first set of four of displayed equations in (2.6) follow easily from the
explicit definitions of the natural isomorphisms. The same is true for (2.7). We will
only show how to prove the second one of (2.8), for the first one is analogous. We
first note that, since βΛ is the unique morphism of augmented dg algebras such
that the composition of τB

+(Λ) with it is τΛ, by taking duals β#
Λ

is the unique mor-
phism of coaugmented dg coalgebras such that its composition with (τB

+(Λ))# is
τ#
Λ

. It thus suffices to prove that the composition of the right member of the sec-
ond equation of (2.8) with (τB

+(Λ))# is τ#
Λ

. By the first identity of (2.7) forD = B+(Λ),
we get that this composition is τB+(Λ)# ◦B+(jΛ) ◦ βΛ

#
. Now, using the naturality of

the universal twisting cochains for the morphism f = jΛ, we get that the latter com-
position coincides with jΛ ◦ τΩ+(Λ#) ◦ βΛ

#
, which is equal to jΛ ◦ τΛ

#
. The second

identity of (2.7) gives the claim. �

We remark that a quasi-isomorphism f : C → D of cocomplete coaugmented
dg coalgebras whose cobar constructions are locally finite dimensional is a weak
equivalence (the converse is always true). Indeed, f induces a quasi-isomorphism
of augmented dg algebras f # : D# → C#, giving a quasi-isomorphisms B+(f #) :
B+(D#)→ B+(C#). The map (Ω+(f ))# : Ω+(D)# → Ω+(C)# is a quasi-isomorphism
of coaugmented dg coalgebras by Proposition 2.3. Hence, we obtain that Ω+(f ) :
Ω+(C)→Ω+(D) is a quasi-isomorphism of augmented dg algebras, which tells us
that f is a weak equivalence.

2.4 A smaller resolution

In this subsection we will recall a resolution of any augmented dg algebra of the
form Ω+(C), where C is a cocomplete coaugmented dg coalgebra, that is simpler
than the reduced bar resolution Ω+(C)e ⊗τΩ+(C)

B+(Ω+(C)).
Consider the dg Ω+(C)-bimodule Ω+(C)e ⊗τC C provided with the morphism

toΩ+(C) given by ω′⊗ω⊗c→ (−1)degω′ degωεC(c)ω.ω′ , where the twisting cochain
τC utilizes the outer structure of Ω+(C)e, and the Ω+(C)-bimodule Ω+(C)e ⊗τC
C is obtained from the inner structure. By the identification Ω+(C)e ⊗τC C →
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Ω+(C) ⊗ C ⊗ Ω+(C) of graded bimodules over Ω+(C) defined as ω′ ⊗ ω ⊗ c 7→
(−1)degω′(degω+degc)ω⊗ c⊗ω′ , the differential of the codomain becomes

ω⊗ c⊗ω′ 7→D(ω)⊗ c⊗ω′ + (−1)degωω⊗ dC(c)⊗ω′ + (−1)degω+degcω⊗ c⊗D(ω′)

+ (−1)degω+degc(1)ω⊗ c(1) ⊗ τC(c(2))ω′ − (−1)degωωτC(c(1))⊗ c(2) ⊗ω′ ,

where ∆C(c) = c(1) ⊗ c(2).
Note that the map

idΩ+(C)e ⊗ βC :Ω+(C)e ⊗τC C→Ω+(C)e ⊗τΩ+(C)
B+(Ω+(C))

is a morphism of resolutions of dg bimodules over Ω+(C). Consider also the map

γC : Bar(Ω+(C))→Ω+(C)⊗C ⊗Ω+(C) (2.9)

of graded Ω+(C)-bimodules satisfying that γC(ω0[]ω1) = ω0 ⊗ 1C ⊗ω1 and

γC(ω0[ω1| . . . |ωm]ωm+1) = δm,1
n∑
j=1

(−1)εj+1ω0〈c1| . . . |cj−1〉 ⊗ cj ⊗ 〈cj+1| . . . |cn〉ω2

ifm ∈N, whereω1 = 〈c1| . . . |cn〉 and εj = (
∑j−1
l=1degcl)+j−1. It is clearly a morphism

of resolutions of dg Ω+(C)-bimodules and a left inverse of idΩ+(C)e ⊗ βC (after us-
ing the canonical identifications explained before). We have further the following
result (cf. [23], Théo. 1.4).

Fact 2.5. The maps γC and idΩ+(C)e⊗βC are homotopy inverses to each other, soΩ+(C)⊗
C ⊗Ω+(C) is a homotopically projective resolution of the dg Ω+(C)-bimodule Ω+(C).

Proof. Since βC : C→ B+(Ω+(C)) is a quasi-isomorphism of coaugmented dg coal-
gebras which satisfies by definition that τΩ+(C) ◦ βC = τC , the map idΩ+(C)e ⊗ βC
is a quasi-isomorphism (see [15], Prop. 2.2.4.1). Combining this with the fact that
γC is a left inverse of idΩ+(C)e ⊗ βC , we get that the former map is also a quasi-
isomorphism. In order to prove our claim, it suffices to show that idBar(A) is ho-
motopic to (idΩ+(C)e ⊗ βC) ◦γC . As the latter is a quasi-isomorphism on a semifree
dg Ω+(C)-bimodule, it is an homotopy equivalence (see [1], Cor. 9.5.3). Let h be
its homotopy inverse. The statement follows from the next chain of homotopy
equivalences

(idΩ+(C)e ⊗ βC) ◦γC ∼ (idΩ+(C)e ⊗ βC) ◦γC ◦ (idΩ+(C)e ⊗ βC) ◦γC ◦ h

= (idΩ+(C)e ⊗ βC) ◦γC ◦ h ∼ idBar(A).

�

2.5 Gerstenhaber brackets

We recall that, given an augmented dg algebra A, there is a graded Lie algebra
structure onHomτA(B+(A),A)[1], provided with the Gerstenhaber bracket introduced
by M. Gerstenhaber in his article [9]. Consider the map

δA : Coder(B+(A))n (B+(A)#[1])→HomτA(B+(A),A)[1] (2.10)

given by δA(T ,sB+(A)#(λ)) = s(s−1IA ◦ π1 ◦ T + 1A.λ), where s is the suspenson on
HomτA(B+(A),A), π1 : B+(A)→ IA[1] is the canonical projection, T ∈ Coder(B+(A)),
λ ∈ B+(A)#. Its domain is a dg Lie algebra, where Coder(B+(A)) is provided with
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the graded commutator and acts in the abelian graded Lie algebra B+(A)#[1] by
the shift of the dual action, and the differential is the obvious one. The map δA is
a morphism of complexes and clearly bijective (cf. [15], Lemme 1.1.2.2). This in-
duces the structure of a dg Lie algebra on HomτA(B+(A),A)[1], that we mentioned
previously. An explicit expression of the Gerstenhaber bracket can be found in
[22], Subsection 2.2. This result is analogous to the one remarked by E. Getzler in
[10], Prop. 1.3, where he uses the nonreduced bar construction of A. However, the
one we stated does not seem to have been observed.

Analogously, given a coaugmented dg coalgebra C,HomτC (C,Ω+(C))[1] is a dg
Lie algebra as follows. We have the morphism

δC : Der(Ω+(C))n (Ω+(C)[1])→Homτ
C
(C,Ω+(C))[1] (2.11)

given by δC(T ,sΩ+(C)(ω)) = s((−1)degT T ◦s−1JC [−1]◦π+ω.εC), where s denotes the sus-
pension on the corresponding twisted convolution algebra , π : C→ JC = C/Im(ηC)
is the canonical projection, T ∈ Der(Ω+(C)) and ω ∈Ω+(C). Its domain is a dg Lie
algebra, where Der(Ω+(C)) has the graded commutator and acts in the abelian
graded Lie algebra Ω+(C)[1] by the shift of the regular action, and the differential
is the obvious one. It is clearly bijective (cf. [15], Lemme 1.1.2.1), and a morphism
of complexes of vector spaces. By means of δC we define a structure of dg Lie al-
gebra on HomτC (C,Ω+(C))[1]. We give an explicit expression of the bracket. Let
ψ ∈ Hom(C,JC[−1]⊗n) and ψ′ ∈ Hom(C,JC[−1]⊗m), for n,m ∈ N0. We will use the
notation

ψ(c) = 〈cψ(1)| . . . |c
ψ
(n)〉 and ψ′(c) = 〈cψ

′

(1)| . . . |c
ψ′

(m)〉,

for c ∈ C, where the sum is omitted for simplicity. Then, the bracket [ψ,ψ′] ∈
Hom(C,JC[−1]⊗(n+m−1)) sends c ∈ C to

m−1∑
i=0

(−1)(degψ−1)ε
′
i+1〈cψ

′

(1)| . . . |c
ψ′

(i)〉ψ(c
ψ′

(i+1))〈c
ψ′

(i+2)| . . . |c
ψ′

(m)〉

−
n−1∑
i=0

(−1)(degψ
′−1)(εi+1+degψ−1)〈cψ(1)| . . . |c

ψ
(i)〉ψ

′(cψ(i+1))〈c
ψ
(i+2)| . . . |c

ψ
(n)〉,

(2.12)

where εi+1 = (
∑i
j=1degc

ψ
(j))− i and ε′i+1 = (

∑i
j=1degc

ψ′

(j))− i.

3 Hochschild (co)homology of Koszul dual dg alge-
bras

3.1 Preparatory results

Before stating the following result we recall that given an augmented dg algebra
Λ and a dg bimodule M over Λ, the graded dual M# is also a dg bimodule over Λ
provided with the action

(λ · f ·λ′)(m) = (−1)degλ(degf +degλ
′+degm)f (λ′mλ),

where m ∈M, f ∈M# and λ,λ′ ∈Λ are homogeneous.
The following result is straightforward to prove but somehow tedious.

Proposition 3.1. Given a locally finite dimensional coaugmented dg coalgebra C and a
locally finite dimensional augmented dg algebra A, there is an isomorphism of augmented
dg algebras

Hom(C,A)→Hom(A#,C#)
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given by taking dual φ 7→ φ#, the inverse being defined as ψ 7→ ι−1A ◦ ψ
# ◦ ιC . Via this

isomorphism, the dgHom(A#,C#)-bimodule C#⊗A# becomes a dgHom(C,A)-bimodule.
Moreover, the canonical nondegenerate pairing

β : (C# ⊗A#)⊗ (A⊗C)→ k

given by (g ⊗ f )⊗ (a⊗ c)→ g(c)f (a), for a ∈ A, c ∈ C, g ∈ C# and f ∈ A# homogeneous,
is a morphism of dg vector spaces which is alsoHom(C,A)e-balanced, i.e.

β((g ⊗ f ).(φ⊗ψ)⊗ (a⊗ c)) = β((g ⊗ f )⊗ (φ⊗ψ).(a⊗ c)),

where φ⊗ψ ∈ Hom(C,A)e, and we are using the obvious equivalence between dg bimod-
ules and (either left or right) dg modules over the enveloping algebra. This further implies
that there is an isomorphism of dg Hom(C,A)-bimodules between C# ⊗A# and (A⊗C)#,
given explicitly by (g ⊗ f ) 7→ ((a⊗ c) 7→ f (a)g(c)).

We also twist the previous result by a twisting cochain τ ∈ Hom(C,A). This
implies that τ# is a twisting cochain of Hom(A#,C#) and that the map φ 7→ φ#

provides an isomorphism of augmented dg algebras

Homτ (C,A)→Homτ
#
(A#,C#).

Furthermore, the canonical pairing β considered before can be regarded as a pair-
ing on the underlying graded vector spaces

β : (C# ⊗τ# A#)⊗ (A⊗τ C)→ k,

which is still Hom(C,A)e-balanced, for the graded bimodule structures have not
changed. It is easily verified that it commutes with the new differentials, taking
into account the previous isomorphism of augmented dg algebras and that the
differential twists are given in terms of the bimodule structure. Hence β is in fact a
morphism of dg bimodules, which in turn implies that the previous isomorphism
of dgHom(C,A)-bimodules between C#⊗A# and (A⊗C)# induces an isomorphism
of dgHomτ (C,A)-bimodules between C# ⊗τ# A# and (A⊗τ C)#.

We collect the previous remarks in the following statement.

Proposition 3.2. Given a locally finite dimensional coaugmented dg coalgebraC, a locally
finite dimensional augmented dg algebra A and a twisting cochain τ ∈ Hom(C,A), then
τ# is also a twisting cochain and there is an isomorphism of augmented dg algebras

Homτ (C,A)→Homτ
#
(A#,C#)

given by taking dual φ 7→ φ#, with inverse defined as ψ 7→ ι−1A ◦ ψ
# ◦ ιC . Via this last

isomorphism, the dg Homτ#(A#,C#)-bimodule C# ⊗τ# A# becomes a dg Homτ (C,A)-
bimodule. Moreover, the canonical nondegenerate pairing

β : (C# ⊗τ# A#)⊗ (A⊗τ C)→ k

given by (g ⊗ f )⊗ (a⊗ c)→ g(c)f (a), for a ∈ A, c ∈ C, g ∈ C# and f ∈ A# homogeneous,
isHomτ (C,A)e-balanced, i.e.

β((g ⊗ f ).(φ⊗ψ)⊗ (a⊗ c)) = β((g ⊗ f )⊗ (φ⊗ψ).(a⊗ c)),

where φ⊗ψ ∈ Homτ (C,A)e, and we are using the obvious equivalence between dg bimod-
ules and (either left or right) dg modules over the enveloping algebra. This implies that
there is an isomorphism of dg Homτ (C,A)-bimodules between C# ⊗τ# A# and (A⊗τ C)#,
given explicitly by (g ⊗ f ) 7→ ((a⊗ c) 7→ f (a)g(c)).
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3.2 The relation between the cup and cap products of Koszul dual
algebras

We will apply the previous result to obtain the isomorphism statements for the
Hochschild homology and cohomology groups of Koszul dual pairs.

Following B. Keller, the Koszul dual of an augmented dg algebra A is defined as
the augmented dg algebra B+(A)# (see [13], Section 10.2), and shall be denoted by
E(A). We have the following result, which may be regarded as the Koszul duality
phenomenon for Hochschild (co)homology.

Theorem 3.3. LetA be an augmented dg algebra which is assumed to be Adams connected.
We have a quasi-isomorphism of augmented dg algebras

HomτE(A)(B+(E(A)),E(A))→HomτA(B+(A),A),

which yields an isomorphism of augmented graded algebras HH•(E(A))→ HH•(A). We
also have a quasi-isomorphism of dgHomτE(A)(B+(E(A)),E(A))-bimodules

(A⊗τA B
+(A))#→ E(A)⊗τE(A) B

+(E(A)),

where the domain has the structure of bimodule over HomτE(A)(B+(E(A)),E(A)) via the
first morphism of this proposition. We obtain an isomorphism HH•(A)#→HH•(E(A)) of
graded bimodules over HH•(E(A)), where the domain has the structure of bimodule given
by the isomorphism HH•(E(A))→HH•(A).

Proof. We first remark that, by [18], Lemma 2.2, any Adams connected augmented
dg algebra is also locally finite dimensional, and moreover, its Koszul dual E(A) is
locally finite dimensional and Adams connected. There is a quasi-isomorphism
β′A : E(E(A))→ A of augmented dg algebras given by βA ◦Ω+(ιB+(A))−1 ◦ j−1E(A). The
second identity of (2.6) with D = B+(A) tells us that

β′A = βA ◦ ι−1Ω+(B+(A)) ◦ ((j
B+(A))−1)#.

Also note that the first equation of (2.6) for D = B+(A) yields

ι−1B+(E(A)) ◦ (β
′
A)

# = (jB
+(A))−1 ◦ β#A. (3.1)

We have thus a quasi-isomorphism (β′A)
# : A#→ E(E(A))# of coaugmented dg coal-

gebras. Moreover, it can be easily checked that τE(A) ◦ ι−1B+(E(A)) ◦ (β
′
A)

# = τ#A. Indeed,
by (3.1) and the second identity of (2.8) with Λ = A, the equation we want to prove
is tantamount to

τE(A) ◦B+(jA) ◦ βA
#
= τ#A.

The naturality of the twisting cochain tells us that the last equation coincides with

jA ◦ τΩ+(A#) ◦ βA
#
= τ#A,

and by the second identity of (2.7) with Λ = A it further reduces to

τΩ+(A#) ◦ βA
#
= τA

#
,

which follows from the definition of βA
#
. This implies that we have a morphism of

augmented dg algebras

Hom(ι−1B+(E(A)) ◦ (β
′
A)

#,E(A)):HomτE(A)(B+(E(A)),E(A))→Homτ
#
A(A#,E(A)). (3.2)
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By Proposition 3.2 applied to C = B+(A) the latter augmented dg algebra is isomor-
phic to HomτA(B+(A),A), which implies thus we have a morphism of augmented
dg algebras of the form

HomτE(A)(B+(E(A)),E(A))→HomτA(B+(A),A). (3.3)

We would like to remark that the map (3.2) is in fact a quasi-isomorphism. Indeed,
the morphism

Hom(B+(j−1A ), jA) ◦HomΩ+(A#)e (γ
A#
,Ω+(A#)) ◦Hom(A#, j−1A ) (3.4)

is a quasi-inverse of (3.2), where γA
#

is given in (2.9). To prove this, consider the
composition of the maps Hom(B+(E(A)), jA), (3.2) and Hom(A#, j−1A ), which is just
Hom((jB

+(A))−1 ◦ β#A,Ω
+(A#)). Our claim is tantamount to prove that the latter is a

quasi-inverse of

Hom(B+(j−1A ),Ω+(A#)) ◦HomΩ+(A#)e (γ
A#
,Ω+(A#)),

which is in turn equivalent to the fact that

Hom(B+(j−1A ) ◦ (jB
+(A))−1 ◦ β#A,Ω

+(A#)) andHomΩ+(A#)e (γ
A#
,Ω+(A#)) (3.5)

are quasi-inverses to each other. By the second identity of (2.8) with Λ = A, the
first of these two last maps coincides with Hom(βA

#
,Ω+(A#)), which is clearly a

quasi-inverse of the second map of (3.5). This implies in particular that there is an
isomorphism of augmented graded algebras between the Hochschild cohomology
rings HH•(E(A))→HH•(A).

We may apply similar arguments to the tensor products. Indeed, by taking
C = B+(A) in the previous proposition, we see that there is an isomorphism of dg
bimodules over Homτ (B+(A),A) of the form E(A)⊗τ#A A

#→ (A⊗τA B
+(A))#. On the

other hand, the morphism of dg vector spaces

idE(A) ⊗ ((jB
+(A))−1 ◦ β#A) : E(A)⊗τ#A A

#→ E(A)⊗τE(A) B
+(E(A)) (3.6)

is a quasi-isomorphism. Indeed, the second identity of (2.8) with Λ = A and the
properties of γA

#
tell us that

(idE(A) ⊗E(A)e γA
#
) ◦ (idE(A) ⊗B+(j−1A ))

is a quasi-inverse of (3.6).
The composition of the inverse of the isomorphism E(A)⊗τ#AA

#→ (A⊗τAB
+(A))#

of Proposition 3.2 with the previous map (3.6) thus gives a quasi-isomorphism

(A⊗τA B
+(A))#→ E(A)⊗τE(A) B

+(E(A)). (3.7)

It is clear by the previous proposition that (3.7) is also a morphism of dg bimod-
ules over HomτE(A)(B+(E(A)),E(A)), where the domain of the map has a bimodule
structure given by the morphism of augmented dg algebras (3.3). Since homology
commutes with taking duals we obtain an isomorphism HH•(A)#→HH•(E(A)) of
graded bimodules over HH•(E(A)), where the Hochschild homology HH•(A) has
the structure of bimodule over the Hochschild cohomology of E(A) via the previ-
ously mentioned isomorphism HH•(E(A))→HH•(A). �
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3.3 Comparison to previous work in the literature

The isomorphism between the Hochschild homology groups of Koszul dual al-
gebras has not received much attention, although in case that A is a (quadratic)
Koszul algebra a linear isomorphism between HH•(E(A)) and HH•(A)# (i.e. as
graded modules over k) can be obtained from (or following the lines of) the iso-
morphism between the corresponding cyclic homology groups given in [4], Thm.
2.4.1. In that article the authors suppose k has characteristic zero, but this assump-
tion is not necessary if dealing only with Hochschild homology groups (see [16]
for a more detailed analysis on the corresponding gradings). An isomorphism of
graded algebras between HH•(E(A)) and HH•(A) in case A is a (quadratic) Koszul
algebra was already announced by R.-O. Buchweitz in the Conference on Repre-
sentation Theory, Canberra, in July 2003.

On the other hand, the morphism (3.3) for Hochschild cohomology has already
appeared under somehow different assumptions. It is essentially the same as the
one appearing in [7], Prop. 5.1, even though the situation they considered is differ-
ent from ours as we now explain. Their construction uses two different versions
of both the bar and cobar constructions (whereas we use just one), and their hy-
potheses on the grading are also distinct, for they have just one grading: the coho-
mological one. However, they need to assume that the coalgebra C (whose dual
would be our algebra A) is not only connected but also simply connected, i.e. the
coaugmentation cokernel of C lies in positive (homological) degrees greater than
or equal to 2, which is a very harsh assumption for us, in order to obtain their
quasi-isomorphism result. This is required in order to ascertain that their map Θ
(the analogous of our morphism jC# ) given before Prop. 5.1 of that article is an iso-
morphism. Our Theorem 3.3 replaces the simply connectedness hypothesis by a
more typical one in representation theory: the Adams connectedness assumption.
In any case, if we further suppose that the coaugmented dg coalgebra C in their
article is Adams connected, the morphism they obtain is essentially given by

HomτΩ+(C)(B+(Ω+(C)),Ω+(C))→HomτC# (B+(C#),C#), (3.8)

which coincides (up to quasi-isomorphism) with the one given in (3.3) for A = C#

using the identification ofΩ+(C) with E(A) given by (jC)#◦ιΩ+(C). There is however
no analogous statement in [7] of the part in Theorem 3.3 concerning Hochschild
homology.

We want to remark that the authors of [7] have further proved in their Prop.
5.3 that the morphism (3.8) induces an isomorphism of graded Lie algebras for
the Gerstenhaber bracket on the Hochschild cohomology rings, obtaining thus an
isomorphism of Gerstenhaber algebras. We shall prove the same statement for our
situation (using a slightly different but similar proof), but we shall also include
Hochschild homology, which is not considered in [7].

3.4 The relation between the Gerstenhaber structures of Koszul
dual algebras

3.4.1 The statement on the Hochschild cohomology

We first recall that the opposite dg Lie algebra gop of a dg Lie algebra g with bracket
[ , ] has the same underlying dg k-module structure but the opposite bracket [ , ]op
given by [x,y]op = (−1)degxdegy[y,x](= −[x,y]), for x,y ∈ g homogeneous. Given
two dg Lie algebras g and h, a map φ : g → h of complexes of vector spaces is
said to be an anti-morphism of dg Lie algebras if the induced map g → hop, whose
set-theoretic assignment is the same as φ, is a morphism of dg Lie algebras. Note
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that φ : g→ h is an anti-morphism of dg Lie algebras if and only if −φ : g→ h is a
morphism of dg Lie algebras.

Theorem 3.4. LetA be an augmented dg algebra which is assumed to be Adams connected.
The quasi-isomorphism of augmented dg algebras

HomτE(A)(B+(E(A)),E(A))→HomτA(B+(A),A)

given in Theorem 3.3 yields an isomorphism of augmented graded algebras

HH•(E(A))→HH•(A),

which is compatible with the Gerstenhaber brackets, so an isomorphism of Gerstenhaber
algebras.

Proof. We shall prove that the isomorphismHH•(E(A))→HH•(A) of Theorem 3.3
respects the Gerstenhaber bracket. As explained before, the previous isomorphism
is induced by the map (3.3), which is the composition ofHom((jB

+(A))−1 ◦ β#A,E(A))
together with the inverse of the map

HomτA(B+(A),A)→Homτ
#
A(A#,E(A)) (3.9)

given by φ 7→ φ#. The proof consists in giving a quasi-inverse of (3.3) which is
a morphism of dg Lie algebras. In order to do so, consider first the following
commutative diagram of complexes of vector spaces

HomτA(B+(A),A)[1]

(−)#[1]
��

Coder(B+(A))n (B+(A)#[1])

(−)#×idB+(A)#[1]
��

δAoo

Homτ
#
A(A#,B+(A)#)[1] Der(B+(A)#)n (B+(A)#[1])δ′oo

HomτA
#
(A#,Ω+(A#))[1]

Hom(A#,jA)[1]

OO

Der(Ω+(A#))n (Ω+(A#)[1])

Hom(j−1A ,jA)×jA[1]

OO

δA
#

oo

where the map δ′ sends (T ,sE(A)(Λ)) to s((−1)degT+1T ◦π#
1 ◦ (s

#
IA
)−1 +ΛεA), s is the

suspension on the corresponding twisted convolution algebra, π1 : B+(A)→ IA[1]
is the canonical projection, T ∈ Der(E(A)) and Λ ∈ E(A). The commutativity of the
upper square implies that δ′ is bijective. Its domain is a dg Lie algebra, where
Der(E(A)) has the graded commutator and acts in the abelian graded Lie algebra
E(A)[1] by the shift of the regular action, and the differential is the obvious one. It is
clear that the upper right vertical map is an anti-isomorphism of dg Lie algebras,
and that the lower right vertical map is an isomorphism of dg Lie algebras. We
define thus a dg Lie algebra structure on Homτ

#
A(A#,B+(A)#)[1] as the unique one

such that the middle horizontal map is an isomorphism of dg Lie algebras, which
tells us that the upper left vertical map is an anti-isomorphism of Lie algebras, and
that the lower left vertical map is an isomorphism of dg Lie algebras.

Furthermore, we also have the commutative diagram

HomτA
#
(A#,Ω+(A#))[1]

γ[1]
��

HomτΩ+(A#)(B+(Ω+(A#)),Ω+(A#))[1]

Hom(B+(j−1A ),jA)[1]
��

Coder(B+(Ω+(A#)))n (B+(Ω+(A#))#[1])

Hom(B+(j−1A ),B+(jA))×B+(j−1A )#

��

δ
Ω+(A#)oo

HomτE(A)(B+(E(A)),E(A))[1] Coder(B+(E(A)))n (B+(E(A))#[1])
δE(A)

oo
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where the morphism γ is induced by HomΩ+(A#)e (γ
A#
,Ω+(A#)) by making use of

the identifications HomΛe (Λ ⊗ V ⊗Λ,Λ) ' Hom(V ,Λ) of graded modules over k
(for Λ an augmented dg algebra and V a graded module over k), which in our
case are also compatible with the differentials involved. The lower right vertical
map is clearly an isomorphism of dg Lie algebras, and the commutativity of the
square implies that that the lower left vertical map is also an isomorphism of dg
Lie algebras.

By the explicit expression of (2.9) and of the corresponding brackets it is a rather
long but straightforward to show that the upper vertical map γ[1] is in fact an
anti-morphism of dg Lie algebras. The proof can be organised as follows. Given
ψi ∈ Hom(A#, (A#)⊗pi ), for pi ∈ N0 and i = 0,1, then γ(ψi) ∈ Hom(k.1B+(Ω+(A#)) ⊕
Ω+(A#),Ω+(A#)), so the Gerstenhaber bracket of the elements γ(ψi), i = 0,1, is
given by computing the graded commutator of endomorphisms of Ω+(A#)[1] or
the evaluation of such an endomorphism. We shall explain the first case, for the
second is analogous. The graded commutator [s(γ(ψ0)), s(γ(ψ1))] applied to an
element [〈λ1, . . . ,λn〉], where λj ∈ A#, gives two kinds of terms:

1. for i = 0,1, ψi is applied to λji , with j0 , j1;

2. there is i ∈ {0,1} such that ψi is applied to some λji , but ψ1−i is applied to a
tensor factor of ψi(λji ).

A tedious but simple computation shows that all the elements of item 1 cancel,
whereas (2.9) together with (2.12) tell us that the terms of item 2 are precisely those
given by −s(γ([ψ1,ψ2])) which is what we wanted to show. Note that γ is a quasi-
isomorphism. Furthermore, the composition of the left vertical maps of the two
previous diagrams gives the quasi-inverse to the morphism (3.3) given by the com-
position of (3.9) with (3.4). This proves that the latter map induces a morphism of
graded Lie algebras on Hochschild cohomology, as claimed before. �

3.4.2 The statement on the Connes’ map

We recall the following standard facts. Given Λ any augmented dg algebra, the
Connes’ map BΛ is the endomorphism of the complex Λ⊗τΛ B

+(Λ) of cohomolog-
ical degree −1 given by

BΛ(λ0 ⊗ [λ1| . . . |λn]) =
n∑
i=0

(−1)εi+1ε
i
1Λ ⊗ [λi+1| . . . |λn|λ0| . . . |λi], (3.10)

where λj ∈ Λ, for j = 0, . . . ,n, εi = (
∑i−1
j=0degλj ) − i and εi = (

∑n
j=i+1degλj ) − n + i

(see [22], Section 2.1, (11)). Define the augmented dg algebra k[ε]/(ε2), where ε has
cohomological degree −1 and zero Adams degree, and the differential is trivial. It
is clearly a graded commutative algebra. The Connes map BΛ gives a left action of
k[ε]/(ε2) onΛ⊗τΛB

+(Λ) by ε·v = BΛ(v), and a right action by the usual expression v·
ε = (−1)degvε ·v, for v ∈Λ⊗τΛ B

+(Λ) homogeneous. This follows from the identities
B2
Λ
= 0 and BΛ ◦D ′ = −D ′ ◦ BΛ, where D ′ is the differential of Λ ⊗τΛ B

+(Λ) (see
[22], Prop 2.1). Moreover, these two actions clearly commute, so Λ⊗τΛ B

+(Λ) is a
dg bimodule over k[ε]/(ε2). As a consequence, HH•(Λ) is a graded bimodule over
k[ε]/(ε2). Finally, given a dg bimoduleM over k[ε]/(ε2), we shall use the following
convention (only of interest to us in the case M = Λ⊗τΛ B

+(Λ)) for the left action
(and thus right action by the usual Koszul sign rule) on the graded dual M#:

(ε · f )(m) = −(−1)degf f (εm). (3.11)
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Note the choice of sign: it naturally comes from regarding k[ε]/(ε2) as the universal
enveloping algebra of the abelian graded Lie algebra k.ε.

We have the following result.

Proposition 3.5. Assume the same hypotheses as in the previous theorem. We assume that
HH•(A)# and HH•(E(A)) are graded bimodules over k[ε]/(ε2) as explained before. Then
the isomorphism HH•(A)# → HH•(E(A)) of Theorem 3.3 is of graded k[ε]/(ε2)-modules
on both sides.

Proof. Since the action on the right is obtained from the action on the left, it suffices
to proves the lemma for the left action. Moreover, by equation (3.11) the left action
of k[ε]/(ε2) on HH•(A)# is induced by minus the dual of the Connes’ map BA.
On the other hand, we recall that the quasi-isomorphism of dg bimodules over
HomτE(A)(B+(E(A),E(A)) stated in Theorem 3.3 is given by (idE(A) ⊗ (B+(jA) ◦βA

#
)) ◦

τA#,B+(A)# ◦ ι−1A,B+(A), that we shall denote by ρ, where τM,N : M ⊗ N → N ⊗M is

the flip morphism of dg modules defined as τM,N (m⊗ n) = (−1)degmdegnn⊗m, for
all m ∈ M and n ∈ N homogeneous elements. Our claim is tantamount to the
fact that the previous map ρ induces a morphism of left graded modules over
k[ε]/(ε2) between the Hochschild homology groups HH•(A)# and HH•(E(A)). We
shall prove this by showing that a particular quasi-inverse of ρ is a morphism of
left dg modules over k[ε]/(ε2). In order to do so, we consider

ιA,B+(A) ◦ τB+(A)#,A# ◦ (jA ⊗ idA# ) ◦ (idΩ+(A#) ⊗Ω+(A#)e γ
A#
) ◦ (j−1A ⊗B

+(j−1A )),

which we denote γ ′ . It is clear that γ ′ is a quasi-inverse of ρ, because the properties
of the map γA

#
stated in Subsection 2.4 imply that γ ′ ◦ ρ is the identity of (A⊗τA

B+(A))#. It thus suffices to prove that γ ′ is a morphism of left dg modules over
k[ε]/(ε2). This is equivalent to show that γ ′ ◦ BE(A) = −B#A ◦ γ

′ . By the explicit
expression of the Connes map (3.10), it is evident that (jA ⊗ B+(jA)) ◦ BΩ+(A#) =
BE(A) ◦ (jA ⊗B+(jA)), so it suffices to show that γ ′′ ◦BΩ+(A#) = −B#A ◦γ

′′ , where γ ′′ is
given by

ιA,B+(A) ◦ τB+(A)#,A# ◦ (jA ⊗ idA# ) ◦ (idΩ+(A#) ⊗Ω+(A#)e γ
A#
).

Using the left dg module structure of A⊗τA B
+(A) over k[ε]/(ε2) given by −B#A and

the bijection ιA,B+(A)◦τB+(A)#,A#◦(jA⊗idA# ), we obtain a unique left action of k[ε]/(ε2)
on Ω+(A#)⊗A# such that the previous bijective map is an isomorphism of left dg
modules over k[ε]/(ε2). It is explicitly given by

ε · (〈ω1| . . . |ωm〉 ⊗ω0) = ω0(1A)
m∑
i=1

(−1)ε̄i+1ε̄
i+ε̄m+1+degωi 〈ωi+1| . . . |ωm|ω1| . . . |ωi−1〉 ⊗ωi ,

(3.12)
where ωi ∈ A# are homogeneous, for j = 0, . . . ,m, ε̄i = (

∑i−1
j=1degωj ) + i − 1 and ε̄i =

(
∑m
j=i+1degωj ) +m− i. We shall denote by B′ the operator defined on Ω+(A#)⊗A#

given by left multiplication by ε. Hence, γ ′ is a morphism of left dg modules over
k[ε]/(ε2) if and only if

(idΩ+(A#) ⊗Ω+(A#)e γ
A#
) ◦BΩ+(A#) = B

′ ◦ (idΩ+(A#) ⊗Ω+(A#)e γ
A#
). (3.13)

This can be easily proved as follows. From equations (2.9) and (3.12), the only non-
trivial situation is when we evaluate (3.13) at an element of the form 〈ω1| . . . |ωm〉⊗[],
for some ωi ∈ A#, i = 1, . . . ,m. This latter case follows directly from the explicit ex-
pression of the maps given in (2.9), (3.10) and (3.12). �
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3.4.3 The statement on the Hochschild homology

We recall that the left and right Lie actions on the Hochschild homology group
HH•(Λ) over the graded Lie algebra HH•(Λ)[1], where Λ is any augmented dg
algebra, are induced by the graded commutators of the corresponding left or right
dg action of the augmented dg algebra HomτΛ(B+(Λ),Λ) on Λ ⊗τΛ B

+(Λ) with
the Connes map BΛ. Indeed, the left Lie action of φ ∈ HomτΛ(B+(Λ),Λ) on λ̄ ∈
Λ⊗τΛ B

+(Λ), which we denote by Lφ(λ̄) is given by the graded commutator of the
left action operator of k[ε]/(ε2) on Λ⊗τΛ B

+(Λ) with the left action operator of the
augmented dg algebra HomτΛ(B+(Λ),Λ) on the same space, i.e. Lφ(λ̄) = ε · (φ · λ̄)−
(−1)degφφ · (ε · λ̄). The action on the dual space (Λ⊗τΛ B

+(Λ))# is given by the usual
formula in representation theory of dg Lie algebras Lφ(λ̄′) = −(−1)deg λ̄

′ degφλ̄′ ◦Lφ,
where λ̄′ ∈ (Λ ⊗τΛ B

+(Λ))#. For more details on these definitions and the fact
that the usual dg bimodule structures together with the Lie module structures are
part (with the Gerstenhaber algebra structure on Hochschild cohomology) of a
Tamarkin-Tsygan (pre)calculus, we refer the reader to [22], Sections 2 and 4.

The following theorem is a direct consequence of the definitions recalled in the
previous paragraph, Theorem 3.3 and Proposition 3.5.

Theorem 3.6. LetA be an augmented dg algebra which is assumed to be Adams connected.
The quasi-isomorphism of dgHomτE(A)(B+(E(A)),E(A))-bimodules

(A⊗τA B
+(A))#→ E(A)⊗τE(A) B

+(E(A)),

stated in Theorem 3.3 gives an isomorphismHH•(A)#→HH•(E(A)) of graded bimodules
over HH•(E(A)) that is also compatible with the left actions of the graded Lie algebra
HH•(E(A))[1], where the domain has the structure of Lie module over HH•(E(A))[1] via
the isomorphism of graded Lie algebras HH•(E(A))[1]→ HH•(A)[1]. Furthermore, the
Connes’ map on HH•(E(A)) is minus the dual of the Connes’ map on HH•(A) under the
previous identification of Hochschild homologies.

3.5 The final result: the duality of Tamarkin-Tsygan calculi of
Koszul dual algebras

We can summarize the results in the previous subsections. In order to do so we
shall introduce the following definition about Tamarkin-Tsygan calculi. We refer
the reader to [22], Def. 4.3 and 4.4, for the basic definitions and notation. We will
say that a Tamarkin-Tsygan calculus (H̃•, H̃•, d̃) is dual to another Tamarkin-Tsygan
calculus (H•,H•,d) if there is a pair (f ,g) where f : H̃•→H• is an isomorphism of
Gerstenhaber algebras, g : H#

• → H̃• is an isomorphism of Gerstenhaber modules
over H̃• such that d̃ ◦ g = −g ◦ d#, where H• is a Gerstenhaber module over H̃• via
f . Note that the definition is clearly symmetric, since the previous duality implies
that (H•,H•,d) is dual to (H̃•, H̃•, d̃) via (f −1, ι−1H• ◦ g

#).

Corollary 3.7. Let A be an Adams connected augmented dg algebra. Then, the Tamarkin-
Tsygan calculus of E(A) is dual to the one of A.
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