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Abstract: We describe diffraction for rapidly oscillating, periodically mod-
ulated nonlinear waves. This phenomenon arises for example when consid-
ering long-time propagation, or through perturbation of initial oscillations.
We show existence and stability of solutions to variable coefficient, nonlinear
hyperbolic systems, together with 3-scales multiphase infinite-order WKB
asymptotics: the fast scale is that of oscillations, the slow one describes the
modulation of the envelope, which is along rays for the oscillatory compo-
nents, and the intermediate one corresponds to transverse diffraction. It
gives rise to nonlinear Schrödinger equations on a torus for the profiles. The
main difficulty resides in the fact that the coefficients in the original equa-
tions are variable: thus, phases are nonlinear, and rays are not parallel lines.
This induces variable coefficients in the integro-differential system of pro-
file equations, which in general is not solvable. We give sufficient (and, in
general, necessary) geometrical coherence conditions on the phases for the
formal asymptotics to be rigorously justified. Small divisors assumptions are
also needed, which are generically satisfied.
MSC Classification: 34E20, 35B27, 35B40, 35L60, 35Q55.
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Introduction

We deal with quasilinear (symmetric) hyperbolic systems,

L(x, u, ∂)u = ∂tu+
d∑

j=1

Aj(x, u)∂ju =
d∑

j=0

Aj(x, u)∂ju = 0,
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before the formation of shocks. Semilinear systems could be addressed by
the same methods. Our smooth solution u takes the form of a highly oscillat-
ing (at frequency 1/ε) function, with 3-scales Wentzels-Krammers-Brillouin
asymptotics,

uε ∼
ε→0

εmU ε

(
x,
ψ(x)√
ε
,
φ(x)

ε

)
,

for some smooth profile U ε(x, ω, θ) periodic in ω and θ (ω ∈ Tp, θ ∈ Tq,
where T is the torus R/Z). The amplitude εm is chosen so that nonlinear
effects appear at leading order. The (nonlinear) vector-valued phases are
φ = (φ1, . . . , φq) and ψ = (ψ1, . . . , ψp). This Ansatz was introduced by J.K.
Hunter ([16]) for the formal study of “singular rays” (U ε is then a shock-type
profile in ω). Such a formalism describes the propagation of q interacting
waves which are diffracted in p directions.

Diffraction

In some cases, it is necessary to add corrections to the (linear or nonlinear)
geometric optics approximations. For example, one may have to take diffrac-
tive effects into account: diffraction is a linear phenomenon, corresponding to
variations of a wave packet in directions transverse to the rays of geometric
optics.

The first rigorous results within this framework are due to Donnat, Joly,
Métivier and Rauch ([9], [10]). They exhibit approximations of high fre-
quency (1/ε, and ε→ 0) oscillating waves over time scales much larger than
the ones for which geometric optics is valid. They consider initial-value prob-
lems associated with constant coefficient nonlinear hyperbolic systems:





L(uε, ∂)uε = F (uε)

uε|T=0
(Y ) = εmg

(
Y,
η · Y
ε

)
, Y ∈ Ω0 ⊂ Rd,

(0.1)

where L(u, ∂) = ∂T +
∑

j Aj(u)∂Yj (the space-time variable is X = (T, Y )),
and the N × N matrices Aj(u) are symmetric. The initial data oscillate at
frequency 1/ε according to a linear phase η · Y =

∑
ηjYj (g(Y, θ) is periodic

w.r.t. θ). The amplitude εm is chosen in order that nonlinearities have an
influence at leading order at the same time as diffraction, that is the Rayleigh
time, T ∼ 1/ε. Even if the family of initial data is unbounded (in any Sobolev
space Hs, s > 0) as ε goes to zero, the authors show the existence of a smooth
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solution to (0.1) for times T ∈ [0, T⋆/ε] for all ε ∈]0, 1] (and stability under
perturbation of the data). These results are obtained after introduction of a
new “variable” εX, and thanks to an approximate solution

uεapp(T, Y ) = εm
∑

n∈N
εnun

(
εX,X,

ξ ·X
ε

)
.

In [10], the profiles un(X̃,X, θ) ∈ CT
(
[0, T⋆/ε], CT̃ ([0, T⋆], Hs(Rd

Ỹ
× Rd

Y × Tθ))
)

are purely oscillating (
∫
T
undθ = 0, with T = R/Z the 1-d torus), and satisfy:

πu0 = u0, (0.2a)

V (∂X)u0 = 0, (0.2b)

V (∂X̃)u0 +R(∂Y )∂
−1
θ u0 + π[Φ(u0) + Λ(u0)∂θu0] = 0 (0.2c)

for n = 0. The equations for higher order profiles are linear, and have
the same structure. Equation (0.2a) expresses the polarization of u0, and
π is a (matrix) projector associated with L and η. The operator V (∂X) =
∂T + v ·∂Y is the transport field along rays, with group velocity v. These two
equations are similar to the ones of usual geometric optics. Finally, (0.2c)
–a nonlinear Schrödinger-type equation– represents transverse diffraction, at
the time scale T̃ , via the scalar second order operator R(∂y) =

∑
i,j ri,j∂Yi∂Yj ,

whose coefficients are related to the curvature of the characteristic variety of
L. The semilinear term Φ(u) and the quasilinear term Λ(u)∂θu arise from
the Taylor expansions (around 0) of F (u) and of the Aj(u)’s, respectively.

This kind of asymptotics has also been studied by Joly, Métivier, Rauch
in [23], when rectification effects are present, i.e. when interactions of oscil-
lating modes can generate non-oscillatory waves. Equations (0.2) are then
coupled with a hyperbolic system for the mean value (w.r.t. θ) of the profiles.
In [24], D. Lannes considers the case of dispersive systems, with rectification.
G. Schneider has treated the case of one equation, in space dimension one,
by means of normal forms (see [28]). In [8], T. Colin has studied systems
with a “transparency” property, allowing solutions with greater amplitude;
the profiles are then solutions of Davey-Stewartson systems (see also [25]).
Diffraction for pulses (i.e. when the profiles un(X̃,X, θ) have compact sup-
port in θ) leads to a somewhat different approximation, with a typical profile
equation 2∂T̃∂θun−∆Y un = ∂θf(un); see [2], [1], and [5] for an approach via
“continuous spectra’.
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Variable coefficients and periodic profiles

All the results above are restricted to systems with constant coefficients, and
involve a single plane phase. It seems a priori difficult to describe diffraction
ruled by nonplanar phases:
1- Rays are then no longer parallel lines, and either they focus in finite time,
leading to singularities of phases and profiles, or they spread out, and over
large time scales, local energy becomes so weak that nonlinear effects are
negligible (see [10]).
2- Systems with non-constant coefficients (heterogeneous media) generate
curved phases, and also induce profile equations (0.2a)–(0.2c) with non-
constant coefficients. Solvability of such a system is not at all obvious, since
the equations may not commute.

However, our aim is to deal with non-constant coefficients and several
nonplanar phases. We already know (from [15], [19], [21]) that in several
space dimensions, this requires coherence properties of the phases. We shall
see that coherence is also the key for solvability of the profile equations.
Concerning the problem of focusing or spreading out of the rays, we turn
the difficulty thanks to “weakly nonplanar” approximations (see Example
2 below). The rays are then order ε out of parallel (and for propagation
over 1/ε distance, this rules out all approximate solutions based on planar
phases).

Multiphase expansions allow one to consider resonant wave interactions.
The paper [11] generalizes the results of [10] and [23] to the case of systems
with variable coefficients; it also contains an attempt of rigorous justification
of Hunter’s approach to “singular rays” ([16]).

In the present paper, we are interested in asymptotics based on 3-scales
profiles un(x, ω, θ) periodic in ω and θ. The following examples motivate our
study and illustrate the main theorems 8.2.1 and 8.3.1.
Example 1. Phase perturbation

Here, we give a first reason for dealing with periodic profiles (in the in-
termediate variable ω). Consider the linear problem:





L(∂)uε = (∂t + A1∂y1 + A2∂y2) u
ε = 0

uε|t=0
(y) = g

(
y,
φε0(y)

ε

)
,
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where A1 =




0 −1 0
−1 0 0
0 0 0


 , A2 =




0 0 −1
0 0 0
−1 0 0


 , g ∈ C∞(Rd × T).

When φ0 is some phase (i.e. ∂yφ0 does not vanish) which does not depend
on ε, usual (linear) geometric optics yield existence of uε on some bounded
domain Ω ⊂ R1+d independent of ε, as well as approximation by an envelope
slowly modulated along rays ([26]).

Now, we assume that such a phase is perturbed by addition of a
√
ε term:

φε0(y) = φ0(y)+
√
εψ(y). Thus, 2-scales geometric optics fail in that context –

the perturbation introduces a third scale, which we can’t ignore. We propose
a systematic treatment of this kind of asymptotics in the following way: set
h(y, ω, θ) := g(y, θ + ω), so that h ∈ C∞(Rd × T2). Theorem 8.3.1 then
ensures existence of uε on a fixed domain Ω, thanks to an infinitely accurate
approximate solution

∑
n ε

n/2un(x, ψ/
√
ε, φ/ε).

In order to compute explicit profile equations, we can choose φ(t, y) =
t + y1, ψ(t, y) = t + y1 + ϕ(y2) for some smooth ϕ (these phases satisfy the
coherence assumptions needed). In this linear case, we can restrict to g of
the form g(y, θ) = h(y)eiθ –and there are some polarization conditions on the
vector-valued h, see Proposition 6.3.1. The oscillating part u⋆0 = U0(x, ω)e

iθ

of the first profile is then determined by a Schrödinger equation on the torus
Tω:

i(∂t − ∂y1)U0 −
1

2
(ϕ′(y2))

2∂2ωU0 = 0,

so that U0(x, ω) = eit(ϕ
′(y2))2/2h(y1 + t, y2)e

iω,

and the exact solution: uε(x) = eit(ϕ
′(y2))2/2h(y1 + t, y2)e

iψ/
√
εeiφ/ε +O(

√
ε).

Example 2. Long time propagation in heterogeneous media with initial pe-
riodic data

Now, we emphasize the difference between constant and variable coeffi-
cients in the equations. Consider a wave initially oscillating at frequency
1/ǫ, and slowly modulated, at scale 1; let this wave propagate in a (more
slowly varying) non-homogeneous medium (at scale 1/ǫ). This corresponds
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to a family (vǫ)ǫ∈]0,1] of solutions to





L(ǫX, vǫ, ∂)vǫ = ∂tv
ǫ +

d∑

j=1

Aj(ǫX, v
ǫ)∂Yjv

ǫ = 0

vǫ|T=0
(Y ) = ǫ2g

(
Y,
k · Y
ǫ

)
.

The Aj’s are symmetric matrices, k ∈ Rd \ {0} is a given wavevector, and
the smooth function g(Y, θ) is periodic in Y and θ.

For this quasilinear initial-value problem, we prove a long-time result of
the same kind as in [10], [23] mentioned above, i.e. existence (and uniqueness)
of each vǫ on a domain of the form Ω/ǫ, with Ω ⊂ R1+d independent of
ǫ. Since L has variable (but slowly varying) coefficients, the linear phases
analysis breaks down.

First, rescale the problem, setting x = ǫX (and ǫ = ε, in order to have
frequency 1/ε). Thus, we turn to





L(x, uε, ∂)uε = 0

uε|t=0
(y) = εg

(
y,
k · y
ε

)
.

We suppose that the coherence assumptions needed for the analysis are satis-
fied (see Remark 0.0.1 below). From Theorem 8.3.1, we get a unique solution
uε ∈ C1(Ω) for all ε ∈]0, 1], together with the infinite order asymptotics

∥∥∥∥∥(ε∂)
α

[
uε − ε

∑

n<M

εn/2un

(
x,

ψ√
ε
,
φ

ε

)]∥∥∥∥∥
L∞

= O(εM/2+1)

–provided that the data admit such an asymptotics, which imposes some
polarization conditions (see Proposition 6.3.1). The phases φ and ψ =
(ψ1, . . . , ψd) are defined by:{

∂tφ+ λ(x, ∂yφ) = 0
φ|t=0 = k · y ,

{
∂tψµ + ∂ηλ(x, ∂yφ) · ∂yψµ = 0
ψµ|t=0

= yµ
,

where λ(x, η) is an eigenvalue of the (symmetric) matrix
∑
ηjAj(x, 0). When

this matrix really depends on x, none of these phases is linear.

Conclusion : Coming back to the original scales, we have on
1

ǫ
Ω: ∀α ∈
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N1+d,

∥∥∥∥(ε∂)
α

[
vǫ − ǫ2u0

(
ǫX,

ψ(ǫX)

ǫ
,
φ(ǫX)

ǫ2

)]∥∥∥∥
L∞( 1

ǫ
Ω)

= o(ǫ2).

Since the phases φ and ψ depend on ǫX instead of X, this approximation
is called weakly nonplanar (see [17]). Such a o(ǫ2) approximation cannot be
achieved using linear phases: ψ(ǫX)/ǫ and φ(ǫX)/ǫ2 differ from their linear
parts ∂xψµ(0) · X and ∂xφµ(0) · X/ǫ by O(ǫ|X|2) = O(1/ǫ) and O(|X|2) =
O(1/ǫ2) terms, respectively. The L∞ error in the approximation of vǫ by
ǫ2u0(ǫX, ∂xψµ(0) · X, ∂xφµ(0) · X/ǫ) then has size O(ǫ2) (100% error), since
u0(x, ω, θ) does not decay in ω and θ (furthermore, “errors” for the phases φ
and ψ are much bigger than the period of u0(x, ·, ·), and have no algrebraic
link with it, thus the error for the value of vǫ occurs at almost each point x,
randomly in ǫ).

Remark 0.0.1. In this example, in order to stress the qualitative difference
between the variable and constant coefficient case, we have not discussed the
validity of the coherence properties required on the phases. Checking Assump-
tion 3.0.4 is immediate, since there is only one rapid phase φ, which satisfies
an eikonal equation associated with L1; the same is true for Assumption 4.2.2,
since the characteristic variety of V is a hyperplane; without specifying more
the form of the operator L, we cannot check Assumption 4.2.1.

These coherence assumptions are needed to construct the profiles un of the
approximate solution. Once this infinite order approximate solution is given,
Theorem 8.3.1 shows the existence and stability of exact solutions having
the corresponding asymptotics with no additional assumption. But coherence
is not needed only to valid the WKB approach presented here: examples of
explosive exact solution in [21] show that without coherence, the situation is
qualitatively different.

Description of the paper

We begin (Paragraph 2) with the formal WKB expansion of Lu, setting the
coefficients of all powers of ε equal to zero. This provides us with an infinite
triangular system of equations, each involving three successive profiles un,
un+1, un+2. So as to separate them and get equations for each profile, we use
projections.
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The first step concerns the fast variable θ (Paragraph 3), since the phases
ψ don’t appear in the first equation. The analysis is the same as that of
geometric optics, mode by mode (α ∈ Zq) for Fourier series, which leads to
matrix operators L(x, 0, d(α ·φ(x)). Considering several phases φ (q > 1) and
in the multi-d case, in order to avoid catastrophic focusing of rays, we then
need a strong geometric assumption on the (real) vector space Φ generated by
the phases φ: this is L1-coherence (see Definition 3.0.4) introduced by Hunter,
Majda and Rosales ([15]) and developed by Joly, Métivier and Rauch ([18],
[19], [21]).

The next step (Paragraph 4.2) is the analogue, for the intermediate vari-
able ω. In addition to the L1-coherence of Ψ = VectR(ψ1, . . . , ψp), we have to
assume coherence of Ψ with respect to each transport field Vα·φ along the rays
of the linear combination α ·φ =

∑
αµφµ. In order to clarify the interplay of

our three assumptions, we give (Paragraph 5) a simpler sufficient condition
implying them all: L1-coherence of Φ+Ψ (Proposition 5.2.1); some examples
are also exhibited.

The profile equations obtained (Paragraph 6.3) are solvable on C∞ and
Hs only under Small Divisors assumptions on the phases (Assumption 6.2.1),
which are generically satisfied.

These profile equations consist in a Schrödinger equation (which is non-
linear for the first profile) for each oscillating mode (w.r.t. θ), with “time”
at scale x, measured along rays, and dispersion in the ω variable, these equa-
tions being coupled to a linear transport equation in ω. This first system for
the oscillating part is also coupled to a symmetric system (again, nonlinear
at first order) for the non-oscillating part, in variables x and ω.

We prove well-posedness for such nonlinear, non-constant coefficients sys-
tems (Paragraph 7) thanks to a standard Picard iterative scheme and en-
ergy estimates inherited from the hyperbolic structure of the original system.
Variable coefficients actually force the introduction of anisotropic (Sobolev)
spaces (with smoothness depending on the variable x, ω or θ considered).
Then, solvability requires commutation of equations, which is a consequence
of the coherence assumptions on phases.

Since, this way, we construct an infinite-order asymptotic solution to
Lu = 0, existence and stability of exact solutions (Paragraph 8) follow from
the “ε-derivatives” perturbative methods of O. Guès ([14]), for continuation
or initial-value problems.

Finally, Paragraph 9 is devoted to some explicit examples from fluid dy-
namics.
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1 The Ansatz

We study solutions of the following quasilinear hyperbolic system,

L(x, u, ∂)u = ∂tu+
d∑

j=1

Aj(x, u)∂ju =
d∑

j=0

Aj(x, u)∂ju = 0. (1.3)

We denote x = (t, y) space-time coordinates in Ω, a bounded connected open
subset of R1+d, for which:

Assumption 1.0.1. Each matrix Aj ∈ C∞(Ω × CN ,MN(C)) is Hermitian
symmetric.

Following [7], we look for solutions u, which are perturbations of a refer-
ence non-oscillating state u0 = u0(x). The perturbation is supposed to admit
WKB asymptotics,

uε ∼ ε

+∞∑

n=0

εn/2un

(
x,
ψ(x)√
ε
,
φ(x)

ε

)
, (1.4)

where the phases φ1, . . . , φq (‘rapid’ phases) and ψ1, . . . , ψp (‘slow’ phases)
are given, smooth on Ω. The profiles un = un(x, ω, θ) are periodic in ω ∈ Rp

and θ ∈ Rq, viewed as variables on Tp := (R/2πZ)p and Tq := (R/2πZ)q,
respectively. Finally, so as to ensure uniqueness of profile representations,
phases are assumed independent (see Lemma 8.2.1):

Assumption 1.0.2. The phases ψµ are Q-linearly independent (as func-
tions), as well as the phases φν.

Remark 1.0.2. The amplitude εm is chosen so that nonlinearities affect the
first term u0 in the asymptotics, in finite time. Here, m = 1 because we
implicitly assume that ∂uAj(x, 0) 6≡ 0 for some j (if not, it is always possible
to adjust the amplitude, matching the first non-vanishing terms in the Taylor
expansions of the Aj’s).
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2 WKB formal expansions

For the asymptotics of Lu to vanish, it is sufficient for the profiles to satisfy:

L1(dφ)∂θu0 = 0, (2.5)

L1(dφ)∂θu1 + L1(dψ)∂ωu0 = 0, (2.6)

L1(dφ)∂θu2 + L1(dψ)∂ωu1 + L1(∂x)u0 + B(u0, ∂θ)u0 = 0, (2.7)

...

L1(dφ)∂θun + L1(dψ)∂ωun−1 + L1(∂x)un−2 +B(u0, ∂θ)un−2

+ B(un−2, ∂θ)u0 + Fn(x, u0, ∂x,ω,θu0, . . . , un−3, ∂x,ω,θun−3) = 0,
(2.8)

where we have set:

Notation 2.0.1. L1(x, ξ) := L(x, 0, ξ),
L1(dφ)∂θ :=

∑q
ν=1 L1(x, dφν(x))∂θν ,

L1(dψ)∂ω :=
∑p

µ=1 L1(x, dψµ(x))∂ωµ ,

B(u, ∂θ)v :=
∑q

ν=1

∑d
j=0 ∂jφν(x)(∂uAj(x, 0) · u)∂θνv.

Furthermore, Fn is a smooth function of its arguments.

3 Analysis of L1(dφ)

Since our profiles are periodic in ω and θ, we use Fourier series. At a first
level, we consider formal series:

un =
∑

α∈Zq

∑

γ∈Zp
uα,γn (x)eiα·θeiγ·ω,

with coefficients uα,γn ∈ C∞(Ω). When the variable ω is considered as param-
eter, these expansions are also written:

un =
∑

α∈Zq
uαn(x, ω)e

iα·θ.

Thus, Equation (2.5) is equivalent to:

∀α ∈ Zq, L1(d(α · φ))uα0 = 0. (3.9)

So as to ensure geometric regularity, we assume that the characteristic
variety of L1 is indeed a differentiable manifold, away from the origin:

11



Assumption 3.0.3. The matrix A(x, η) :=
∑d

j=1 ηjAj(x, 0) has eigenvalues

λ1(x, η) < · · · < λZ(x, η) with constant multiplicity (on Ω× (Rd \ {0})).

The eigenvalues λk(x, η), as well as the associated spectral projectors,
πk(x, η), are then smooth (C∞ w.r.t. x and analytic w.r.t. η).

In addition, when the dimension N is greater than one, because of non-
linearities in Equation 2.7, resonances of phases may occur. Following the
coherence method from [15], [18], [19] and [21], we impose:

Assumption 3.0.4. The (real) vector space Φ, generated by the phases φµ,
is L1-coherent, i.e. :

∀ρ ∈ Φ \ {0}, - either: ∀x ∈ Ω, dρ(x) 6= 0 and detL1(x, dρ(x)) = 0,

- or: ∀x ∈ Ω, detL1(x, dρ(x)) 6= 0.

Example 3.0.1. Some coherent spaces:
i) When one phase φ is characteristic for L1 (i.e. detL1(x, dφ(x)) ≡ 0), the
line generated φ is L1-coherent.
ii) When Φ is a coherent space, every subspace of Φ is coherent.
iii) When L1 has constant coefficients constants, plane phases φµ(x) := ωµ ·x,
ωµ ∈ R1+d, generate a L1-coherent space.
iv) For the Euler equations (symbol L1(τ, η) = τ(τ 2 − |η|2)), phases φ+ :=
t + |y|, φ− := t − |y| and φ0 := |y| also generate a L1-coherent space: for
φ := α+φ++α−φ−+α0φ0, the value of the determinant detL1(x, dφ(x)) only
depends on the coefficients α+, α− and α0.

Under this assumption, we can really perform a Fourier analysis of Equa-
tions (2.5)-(2.8)n, since modes α ∈ Zq are now L1-characteristic or not, in-
dependently of x:

Proposition 3.0.1. Assume that Φ is L1-coherent, and let (ϕ1, . . . , ϕr) be a

(R−)basis. Define C̃ϕ := {(x, β) ∈ Ω×(Rr \{0}) / detL1(x, d(β ·ϕ)(x)) =
0}. Then,
i) The set C̃ϕ splits up into: C̃ϕ = Ω× Cϕ

= C̃ϕ1 ⊔ · · · ⊔ C̃ϕM
= (Ω× Cϕ1 ) ⊔ · · · ⊔ (Ω× CϕM),

where the cone Cϕk is given by the equation: β ·∂tϕ(x)+λk(x, β ·∂yϕ(x)) = 0.
ii) Let pϕ(x, β) be the orthogonal projector on kerL1(x, β · dϕ(x)). For all
β ∈ Rr, pϕ(., β) is C∞ on Ω, homogeneous w.r.t. β with degree zero, and
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takes the value − 0 if β /∈ Cϕ ∪ {0},
− πk(x, β · ∂yϕ(x)) if β ∈ Cϕk ,
− Id if β = 0.

iii) There exists a Hermitian matrix Qϕ(x, β) ∈ MN(C), homogeneous w.r.t.
β with degree −1, such that x 7→ Qϕ(x, β) is C∞ on Ω for all β ∈ Rr, and:

Qϕ(x, β)L1(x, β · dϕ(x)) = Id− pϕ(x, β), Qϕ(x, β)pϕ(x, β) = 0.

Remark 3.0.3. Pay attention to the difference between phases φ, space Φ,
and basis ϕ.

Back to the phases φ, with ϕ a R-basis of Vectφ, there is R ∈ Mq,r(R)
such that φ = Rϕ, and we have the equality L1(x, α · dφ(x)) = L1(x,

tRα ·
dϕ(x)) for all (x, α) ∈ Ω × Zq. Linear Q-independence of φ implies that tR
is injective on Zq. Since we are only interested in combinations of φν ’s with
integer coefficients, we transport the previous objects through:

Notation 3.0.2. Cφ := tR−1(Cϕ) ∩ Zq,

Cφk := tR−1(Cϕk ) ∩ Zq,
pφ(x, α) := pϕ(x, tRα),
Qφ(x, α) := Qϕ(x, tRα).

Hence, pφ(x, α) is the orthogonal projector on kerL1(x, α · dφ(x)). For
each Fourier mode, we express compatibility conditions on the equations,
projecting via pφ(x, α); then, applying Qφ(x, α) corresponds to solving the
equation. The set of equations (3.9) thus becomes:

∀α ∈ Zq, pφαu
α
0 = uα0 , (3.10)

which is the usual polarization condition of geometrical optics (cf. [26]).
Equation (2.6) is equivalent to:

∀α ∈ Zq, pφαL1(dψ)∂ωp
φ
αu

α
0 = 0, (3.11a)

∀α ∈ Zq, (1− pφα)u
α
1 = iQφ

αL1(dψ)∂ωu
α
0 . (3.11b)

For oscillating modes, new operators appear: pφαL1(dψ)∂ωp
φ
α in (3.11a),

pφαL1(∂x)p
φ
α and pφαL1(dψ)∂ωQ

φ
αL1(dψ)∂ωp

φ
α in (2.7), which becomes:

∀α ∈ Zq, pφαL1(dψ)∂ωp
φ
αu

α
1 + ipφαL1(dψ)∂ωQ

φ
αL1(dψ)∂ωp

φ
αu

α
0

+ pφαL1(∂x)p
φ
αu

α
0 + pφα(B(u0, ∂θ)u0)

α = 0.
(3.12)
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4 Analysis w.r.t. the intermediate variables

4.1 Reductions to a scalar form

The principal parts of the operators above can be diagonalized in the Fourier
β modes (for a proof, see [10]):

Proposition 4.1.1. Under Assumptions 3.0.3 and 3.0.4, for all β ∈ Cϕk ,
i) pϕβL1(∂x)p

ϕ
β = pϕβ [V

ϕ
β (x, ∂x) + Cϕ

β ] = pϕβ [(∂t + vϕβ (x) · ∂y) + Cϕ
β ],

where vϕβ (x) := ∂ηλk(x, β · ∂yϕ(x)), and Cϕ
β (x) :=

d∑

j=0

Aj(x, 0)(∂jp
ϕ
β)(x) ;

ii) ∀ρ ∈ C∞, pϕβL1(dρ)p
ϕ
β = pϕβV

ϕ
β (dρ) ;

iii) pϕβL1(dψ)∂ωQ
ϕ
βL1(dψ)∂ωp

ϕ
β = −1

2
pϕβ

d∑

j,l=1

∂2λk
∂ηj∂ηl

(β·∂yϕ)(∂jψ(x)·∂ω)(∂lψ(x)·

∂ω).

We write Dϕ
β (x, ∂ω) := −1

2

∑d
j,l=1

∂2λk
∂ηj∂ηl

(β · ∂yϕ)(∂jψ(x) · ∂ω)(∂lψ(x) · ∂ω).

We emphasize here the fact that Dϕ
β has real coefficients. This is a con-

sequence of hyperbolicity, crucial for the energy estimates in Paragraph 7.
Following the previous notations, the above objects are transported when

one uses the phases φ instead of the base ϕ:

Notation 4.1.1. When α ∈ Cφ, V φ
α := V ϕ

tRα, C
φ
α := Cϕ

tRα, D
φ
α := Dϕ

tRα.

4.2 Coherence, second step

We have to treat Equation (3.12) and possible resonances of Fourier modes
in ω. When considering only one slow phase ψ, in order for the oscillating
part of the profiles to depend effectively on the corresponding variable ω,
Equation (3.11a) forces ψ to be characteristic for pφαL1p

φ
α (i.e. V φ

α (x, dψ) = 0)
for some α 6= 0, which means that ψ is constant along the rays associated
with α · φ. In the case of several slow phases (possibly generated by non-
polarized initial data), this assumption is replaced by V-coherence of the
vector space Ψ. The non-oscillating modes require L1-coherence of Ψ (cf.
Equations (3.11a) and (3.12)).

Assumption 4.2.1. The vector space Ψ := VectR(ψ1, . . . , ψp) is L1-coherent.
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Assumption 4.2.2. The pair (Φ,Ψ) is V-coherent, i.e. :

∀ρ ∈ Ψ \ {0}, ∀β ∈ Cϕ, - either: ∀x ∈ Ω, dρ(x) 6= 0 and V ϕ
β (x, dρ(x)) = 0,

- or: ∀x ∈ Ω, V ϕ
β (x, dρ(x)) 6= 0.

Proposition 4.2.1. Suppose that all previous assumptions are satisfied. Let
(ϕ1, . . . , ϕr) be a (R−)basis of Φ, and (χ1, . . . , χs) a (R−)basis of Ψ.

Define D̃χ := {(x, δ) ∈ Ω× (Rs \ {0}) / detL1(x, d(δ · χ)(x)) = 0},
Ẽϕ,χ := {(x, β, δ) ∈ Ω× Cϕ × (Rs \ {0}) / V ϕ

β (x, d(δ · χ)(x)) = 0}.
Then,
i) The set D̃χ splits up into: D̃χ = Ω×Dχ

= D̃χ
1 ⊔ · · · ⊔ D̃χ

M ′

= (Ω×Dχ
1 ) ⊔ · · · ⊔ (Ω×Dχ

M ′),
where the cone Dχ

k is given by: δ · ∂tχ(x) + λk(x, δ · ∂yχ(x)) = 0.

Furthermore, Ẽϕ,χ = Ω× Eϕ,χ
= Ẽϕ,χ1 ⊔ · · · ⊔ Ẽϕ,χM

= (Ω× Eϕ,χ1 ) ⊔ · · · ⊔ (Ω× Eϕ,χM ),
with Eϕ,χk ∪{0} a family of hyperplanes (or Rs itself), parametrized by β ∈ Cϕk ,
given by the equation:

∑
µ V

ϕ
β (x, dχµ(x))δµ = 0.

ii) Let pχ(x, δ) be the orthogonal projector on kerL1(x, δ · dχ(x)). For all
δ ∈ Rs, pχ(·, δ) is C∞ on Ω, homogeneous w.r.t. δ with degree zero, and takes
value − 0 if δ /∈ Dχ ∪ {0},

− πk(x, δ · ∂yχ(x)) if δ ∈ Dχ
k ,

− Id if δ = 0.
iii) There exists a Hermitian matrix Sχ(x, δ) ∈ MN(C), homogeneous w.r.t.
δ with degree −1, such that x 7→ Sχ(x, δ) is C∞ on Ω for all δ ∈ Rs, and
such that:

Sχ(x, δ)L1(x, δ · dχ(x)) = Id− pχ(x, δ).

Remark 4.2.1. Again, take care of the distinction between phases ψ, space
Ψ, and base χ.

Getting rid of basis of Φ and Ψ (since there is a matrix R′ ∈ Mp,s(C)
such that ψ = R′χ):

Notation 4.2.1. Dψ := tR′−1(Dχ) ∩ Zp,
Eφ,ψ := (tR⊗ tR′)−1(Eϕ,χ) ∩ (Zq × Zp),
pψ(x, γ) := pχ(x, tR′γ),
Sψ(x, γ) := Sχ(x, tR′γ).
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Remark 4.2.2. The rectification phenomenon (see [10], [23], [24], [11])
corresponds to the interaction between oscillating and non-oscillating modes
uα (α 6= 0) and u0, allowing for example creation of a mean field, even if
there isn’t any in the initial data.

In our context, the absence of rectification effect is equivalent to vanishing
of all mean terms in nonlinearities (B(u0, ∂θ)u0) for Equations (3.12), as well
as in all Equations (2.8)n corresponding to the next profiles. In that case,
Assumption 4.2.1 (L1-coherence of Ψ) is not needed.

5 V -coherence and L1-coherence

A precise study of coherence can be found in [21], as well as numerous exam-
ples. The aim of this section is rather to show the link between L1-coherence
of Φ and Ψ and V-coherence of (Φ,Ψ). We first consider only one phase
φ, which is then L1-characteristic. Furthermore, the vector field V (∂x) no
longer depends on modes β or α (see Proposition 4.1.1)).

Set some notations: define Cx := {ξ/(x, ξ) ∈ C} and Ex := {ξ/(x, ξ) ∈ E},
projections of the characteristic varieties C := {(x, ξ) ∈ Ω×R1+d/ detL1(x, ξ) =
0} and E := {(x, ξ) ∈ Ω× R1+d/V (x, ξ) = 0}, respectively.

It is clear that Ex is the tangent plane to Cx at dφ(x). Now, coherence
says that the gradient of a function in the space considered must either stay
on the projected characteristic variety, or never touch it. That’s why the
link between Cx and Ex must induce a link between L1- and V-coherence. In
particular, when Cx is a hyperplane, Ex = Cx, and we have:

Proposition 5.0.2. If for all x ∈ Ω, Cx is a hyperplane, then V -coherence
of Ψ is equivalent to L1-coherence of Ψ (and of Φ +Ψ).

5.1 V-coherence without L1-coherence

Of course, V-coherence doesn’t imply L1-coherence: as an example, in space
dimension d = 2, choose C = Ω × {τ 2 = |η|2}, and phases φ(t, x) := t + x1,
ψ(t, x) := t + x1 + x22. Since ∇ψ belongs to the tangent plane to the cone,
the line generated by ψ is V-coherent. But if Ω∩ {x2 = 0} 6= ∅, Vectψ is not
L1-coherent.
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5.2 A stronger assumption

There are some cases where both L1- and V-coherence of Vectψ follow from
L1-coherence of the space generated by all phases:

Definition 5.2.1. The graph of a smooth function λ : Rd \{0} → R satisfies
the (convexity) condition (C) if it never crosses its tangent plane.

Example 5.2.1. The two sheets {τ = ±|ξ|} of the usual light cone fulfill
condition (C).

Proposition 5.2.1. Under Assumption 3.0.3 (smoothness of the character-
istic variety of L1), suppose that for all x ∈ Ω, the sheet of Cx on which
∇φ(x) lies satisfies condition (C). Then, L1-coherence of Vect(φ, ψ) implies
V-coherence of Vect(ψ).

Proof:
Write Gx for the graph of λ(x, .) (when ∂tφ + λ(∂yφ) ≡ 0). Hence, Gx

satisfies condition (C), and is ‘on one side’ of Ex, for all x. Suppose that
Vect(φ, ψ) is L1-coherent, and that there exist ρ ∈ Vect(φ, ψ), x, y ∈ Ω such
that ∇ρ(x) ∈ Ex and ∇ρ(y) /∈ Ey (see Figure 1).

The affine line ∇(φ + αρ)(x) (parameterized by α) is then contained in
Ex, and say, under Gx. On the contrary, for |α| small enough (and for the
right sign of α), ∇(φ + αρ)(y) is strictly above Gy (and does not belong to
any other part of Cy): since ∇ρ(y) 6= 0, the line (∇(φ+αρ)(y))α is transverse
to Ey, and to Gy, for α sufficiently small. This provides a z ∈ Ω such that
∇(φ + αρ)(z) belonging to Gz. We know that ∇(φ + αρ)(y) doesn’t belong
to Cy, so this contradicts L1-coherence of Vect(φ, ψ). �

In [16], we find the following example:

Example 5.2.2. (L1- and V-coherence for curved phases)
In space dimension d = 3, consider an operator (of ‘Euler’ type) with

symbol det(L1) ≡ τ 2(τ 2 − |η|2). In cylindrical coordinates (R, σ, x3), define
the phases:

φ(t, R, σ, x3) := R− t, ψ1(t, R, σ, x3) := σ, ψ2(t, R, σ, x3) := x3.

The gradient of φ belongs to {τ + |η| = 0}, and so V (ξ) = (∂tφ,−∂yφ) ·
ξ = −τ − y · η

R
. Next, when ϕ is the sum ϕ = α0φ + α1ψ1 + α2ψ2, we
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Ex

∇(φ+ αρ)(y)

∇φ(x)

∇(φ+ αρ)(x)

∇φ(y)

Gx Ey
Gy

Figure 1: ∇(φ+ αρ)(y) is ‘on one side’ of Gy.

have det(L1(∇ϕ)) = −α2
0(
α2
1

R2 + α2
2). Vanishing of this determinant does

not depend on the point considered in Ω, so that Vect(φ, ψ) is L1-coherent.
Proposition 5.2.1 then ensures that Ψ is πL1π-coherent, since {τ + |η| = 0}
is convex.

5.3 The case of several fast phases

When there are several phases φµ, V-coherence of (Φ,Ψ) is equivalent to V φ
α -

coherence of Ψ for all α ∈ Cφ. This brings us back to the previous case, with
one fast phase α · φ.

Proposition 5.3.1. Under Assumption 3.0.3 (smoothness of the character-
istic variety of L1), suppose that for all x ∈ Ω, each sheet of Cx satisfies con-
dition (C). Then, L1-coherence of Vect(φ, ψ) implies V-coherence of Vect(ψ).

6 Profile equations and mean operators

Throughout this section, we need Assumptions 3.0.4, 4.2.1 and 4.2.2 to be
satisfied, for our definitions to make sense.
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6.1 Definitions in the context of formal series

The previous projections and algebraic resolutions of equations are equivalent
to the action, on formal series, of the following Fourier multipliers:

L1(∂θ)

(
∑

α∈Zq
uα(x, ω)eiα·θ

)
:= i

∑

α∈Zq
L1(x, d(α · φ)(x))uα(x, ω)eiα·θ,

E

(
∑

α∈Zq
uα(x, ω)eiα·θ

)
:=

∑

α∈Cφ∪{0}

pφα(x)u
α(x, ω)eiα·θ,

L1(∂θ)
(−1)

(
∑

α∈Zq
uα(x, ω)eiα·θ

)
:= −i

∑

α∈Zq\{0}
Qφ
α(x)u

α(x, ω)eiα·θ,

L1(∂ω)

(
∑

γ∈Zp
uγ(x, θ)eiγ·ω

)
:= i

∑

γ∈Zp
L1(x, d(γ · ψ)(x))uγ(x, θ)eiγ·ω,

F


 ∑

γ∈Zp∪{0}
uγ(x, θ)eiγ·ω


 :=

∑

γ∈Dψ∪{0}

pψγ (x)u
γ(x, θ)eiγ·ω,

L1(∂ω)
(−1)

(
∑

γ∈Zp
uγ(x, θ)eiγ·ω

)
:= −i

∑

γ∈Zp\{0}
Sψγ (x)u

γ(x, θ)eiγ·ω,

V(dψ)·∂ω
(
∑

α,γ

uα,γ(x)eiα·θeiγ·ω

)
:= i

∑

(α,γ)∈Cφ×Zp

V φ
α (x, d(γ·ψ)(x))uα,γ(x)eiα·θeiγ·ω,

G

(
∑

α,γ

uα,γ(x)eiα·θeiγ·ω

)
:=

∑

(α,γ)∈Eφ,ψ
uα,γ(x)eiα·θeiγ·ω,

(V(dψ) · ∂ω)(−1)

(
∑

α,γ

uα,γ(x)eiα·θeiγ·ω

)
:=

∑

(α,γ)/∈Eφ,ψ

−iuα,γ(x)eiα·θeiγ·ω
V φ
α (x, d(γ · ψ)(x))

,
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V(∂x)

(
∑

α∈Zq
uα(x, ω)eiα·θ

)
:=

(
∂t +

∑

j

vj(x) · ∂j
)
u

:=
∑

α∈Cφ
V φ
α (x, ∂x)u

α(x, ω)eiα·θ,

C

(
∑

α∈Zq
uα(x, ω)eiα·θ

)
:=
∑

α∈Cφ
Cφ
α(x)u

α(x, ω)eiα·θ,

D(∂ω)

(
∑

α,γ

uα,γeiα·θeiγ·ω

)
:= −

∑

(α,γ)∈Eφ,ψ
Dφ
α(d(γ · ψ))uα,γeiα·θeiγ·ω,

where we have set: Eφ,ψ := Eφ,ψ ∪ (Zq × {0}) ∪ ({0} × Zp).
Here, E, F and G are projectors on the kernels of L1(∂θ), L1(∂ω) and

EV(dψ) · ∂ω, which are extensions to formal series of the principal parts
of L1(dφ)∂θ, L1(dψ)∂ω and EL1(dψ)∂ωE, respectively. Next, L1(∂θ)

(−1),
L1(∂ω)

(−1) and (V(dψ) · ∂ω)(−1) provide pseudo-inverses of these operators.
We sum up these properties as (see also [19]):

Proposition 6.1.1.

i) The equation L1(∂θ)U = F has formal solutions if and only if EF = 0,
and they are U = L1(∂θ)

(−1)F +W , where EW = W .
ii) The equation L1(∂ω)U = F has formal solutions if and only if FF = 0,
and they are U = L1(∂ω)

(−1)F +W , where FW = W .
iii) The equation V(dψ) · ∂ωEU = EF has formal solutions (in the range of
E) if and only if GEF = 0, and they are EU = (V(dψ) · ∂ω)(−1)EF + EW ,
where GEW = EW .

Note also the following commutation properties:

Lemma 6.1.1.

i) G commutes with E and F.
ii) E, G, V(∂x), C and D(∂ω) commute with ∂θ; F and D(∂ω), with ∂ω.

Proof:
i) is immediate, since G simply ‘selects’ frequencies.

20



ii) follows from Proposition 4.1.1: for example, F and D(∂ω) are Fourier
multipliers in ∂ω –thanks to coherence !–, and hence commute with multipli-
cation by ∂ω. �

6.2 Small divisors

So as to obtain existence of smooth profiles, we have to make some assump-
tions on the phases (and not only on the vector spaces they generate), in order
to avoid ‘small divisors’ in the Fourier multipliers acting on our series (see
also [3], [19], [4] and [12]). We use matrices R and R′ from Notations 3.0.2
and 4.2.1.

Assumption 6.2.1. There are C > 0 and a ∈ R such that:
(i) | tRα| ≥ C|α|−a, ∀α ∈ Zq \ {0},
(ii) | detL1(x, α · dφ(x))| ≥ C|α|−a, ∀α /∈ Cφ ∪ {0}, ∀x ∈ Ω,
(iii) | tR′γ| ≥ C|γ|−a, ∀γ ∈ Zp \ {0},
(iv) | detL1(x, γ · dψ(x))| ≥ C|γ|−a, ∀γ /∈ Dψ ∪ {0}, ∀x ∈ Ω,

(v) |V φ
α (x, γ · dψ(x))| ≥ C|α|−a|γ|−a, ∀α ∈ Cφ, (α, γ) ∈

(
Cφ × Rp

)
\ Eφ,ψ, ∀x ∈ Ω.

Proposition 6.2.1. Under Assumption 6.2.1, the operators defined by (6.1)-
(6.1) are bounded on C∞(Ω×Tp×Tq), and Proposition 6.1.1 is valid on this
space.

Proof:
We give the justification for E and L1(∂θ)

(−1), for example. We must
prove that the action preserves the property of being rapidly decreasing, for
formal series in α, as well as for their derivatives w.r.t. x.

Concerning E, since pφα = pϕtRα, the following lemma gives the answer:

Lemma 6.2.1. The norms of pϕβ (as linear transformation on CN), and of

its derivatives ∂kx(p
ϕ
β), are bounded independently of x and β.

(This follows immediately from continuity w.r.t. x, which belongs to a
compact set, and from degree zero homogeneity and continuity w.r.t. β.)

Concerning L1(∂θ)
(−1), when β ∈ Cϕk , according to the notations of Propo-

sition 3.0.1,

Qϕ
β =

∑

l 6=k

1

ml(x, β)
πl(x, β).
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Here, ml is homogeneous with degree one, and Assumption 6.2.1(i) provides
the desired bound. On the other hand, when β /∈ Cϕk , writing

Qϕ
β = L1(x, d(β · ϕ))−1,

we have to bound terms as
|β|N−1

| detL1|
. This is achieved thanks to Assump-

tion 6.2.1(ii) (and (i)). Again, the same is valid for derivatives: one easily
sees that L1(∂θ)

(−1) maps Hs(Ω× Tp × Tq) to Hs(1−a)(Ω× Tp × Tq). �

In the case of ‘strong coherence’ (for example when a timelike phase
belongs to the coherent space; cf. [19]), we show that small divisors are
avoided with almost all choice of characteristic phases in Ψp × Φq:

Definition 6.2.1.

i) The space Φ is strongly L1-coherent if it is L1-coherent and if, in addition,
for all x ∈ Ω, there exist C, b > 0 such that ∀(x, α) ∈ Ω× (Zq \ {0}),

| detL1(x, d(α · φ)(x))| ≥ C (| detL1(x, d(α · φ)(x))|)b (1 + |α|)N(1−b).

ii) The pair (Φ,Ψ) is strongly V -coherent if it is V -coherent and if, in addi-
tion, for all x ∈ Ω, there exist C ′, b′ > 0 such that

∀(x, α, γ) ∈Ω× Cφ × (Zp \ {0}),
|V φ
α (x, d(γ · ψ)(x))| ≥ C ′ (|V φ

α (x, d(γ · ψ)(x))|
)b′

(1 + |α|+ |γ|)N(1−b′).

Remark 6.2.1.

i) Such properties depend on the spaces Φ and Ψ only (in particular, they are
independent of the numbers p and q).
ii) In the example 9.1, for Euler Equations, the spaces Φ (generated by the
phase R− c0t) and Ψ (generated by σ and y3) are strongly L1-coherent, and
the pair (Φ,Ψ) is strongly V -coherent.

The following Proposition is a direct application of [19], Section 7 –which
follows ideas from [3]:

Proposition 6.2.2. Assume that Φ and Ψ are strongly L1-coherent phase
spaces, and that (Φ,Ψ) is strongly V -coherent. Then, for almost all choice of
L1-characteristic phases φ ∈ Φq and L1- and V -characteristic phases ψ ∈ Ψp,
Assumption 6.2.1 is satisfied.
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This statement is rather vague, and a more precise one requires some
notations and explanations. Still denoting by ϕ a basis for Φ, each phase ρ ∈
Φ corresponds to a unique C ∈ Rr: ρ = C.ϕ. Hence, the set φ = (φ1, . . . , φq)
of L1-characteristic phases corresponds to the set C = (C1, . . . , Cq) ∈ Cq.
The measure in Proposition 6.2.2 is the (q(r − 1)-dimensional) Hausdorff
measure of C’s in Cq.

Similarly, when C = (C1, . . . , Cq) ∈ Cq and β ∈ Zq is such that β.C ∈ C,
we define Eβ.C := {D ∈ Rs \ {0}/V (β.C,D) = 0}. It is either a hyper-
plane (with the origin removed), or the whole Rs \ {0}. The corresponding
Hausdorff measure is either (s− 1)-, or s-dimensional, respectively.

When phases ψ = (ψ1, . . . , ψp) ∈ Ψp are such that for all µ ≤ p, there is
some βµ ∈ Zq making ψµ V

ϕ
βµ.C-characteristic, these phases ψ correspond to

D = (D1, . . . , Dp) ∈
∏

µ Eβµ.C .
The more precise statement is then:

Proposition 6.2.3. Let a > max{p, q − N + 1}. For almost all C =
(C1, . . . , Cq) ∈ Cq, when β = (β1, . . . , βp) ∈ (Zq)p is such that βµ.C ∈ C

for all µ, then for almost all D = (D1, . . . , Dp) ∈
p∏

µ=1

Eβµ.C, there is κ > 0

such that: ∀(α, γ) ∈ Zq × Zp / α.C ∈ C, either V (α.C, γ.D) = 0,
or |V (α.C, γ.D)| ≥ κ(|α||γ|)−a.

6.3 Profile equations, endgame

Notation 6.3.1. For a Fourier series u =
∑

α∈Zq
uα(x, ω)eiα·θ, write

u := u(x, ω) + u⋆(x, ω, θ) = 〈u〉(x, ω) + u⋆(x, ω, θ) = u0 +
∑

α 6=0

uαeiα·θ.

Equation (3.10) then rewrites as:

Eu⋆0 = u⋆0. (6.1)

Separating oscillations and mean value in Equation (3.11a), we get:

Fu0 = u0, (6.2)

Gu⋆0 = u⋆0. (6.3)
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This last condition allows one to solve the next equation, (2.6), rephrasing
Equation (3.11b):

(1− E)u⋆1 = −L1(∂θ)
(−1)L1(∂ω)u

⋆
0.

The average of Equation (2.7) is of the form ‘L1(∂ω)U = F ’. This imposes
the compatibility condition:

FL1(∂x)u0 + F〈B(u0, ∂θ)u0〉 = 0. (6.4)

Concerning the oscillating part (of the form L1(∂θ)u
⋆
2 = F ), one gets:

EV(dψ) · ∂ωu⋆1 + EL1(∂x)u
⋆
0 + EL1(∂ω)(1− E)u⋆1 + E(B(u0, ∂θ)u0)

⋆ = 0,

and, projecting via G and plugging the expression of (1− E)u⋆1 above,

GEL1(∂x)u
⋆
0 − iD(∂ω)u

⋆
0 +GE(B(u0, ∂θ)u0)

⋆ = 0. (6.5)

This set of conditions first determines u0, and then solves Equations (2.5),
(2.6) and (2.7), providing some parts of the other profiles:

(1− E)u⋆1 =− L1(∂θ)
(−1)L1(∂ω)u

⋆
0

:= G1,1(x, u0, ∂ωu0)
⋆,

(1− F)u1 =− L1(∂ω)
(−1) [L1(∂x)u0 + 〈B(u0, ∂θ)u0〉]

:= 〈G1,2(x, u0, ∂xu0, ∂θu0)〉,
(1−G)Eu⋆1 =− (V(dψ) · ∂ω)(−1)E [L1(∂x)u

⋆
0 − iD(∂ω)u

⋆
0 + (B(u0, ∂θ)u0)

⋆]

:= G1,3(x, u0, ∂xu0, ∂
2
ωu0, ∂θu0)

⋆,

(1− E)u⋆2 =− L1(∂θ)
(−1) [L1(∂ω)u

⋆
1 + L1(∂x)u

⋆
0 + (B(u0, ∂θ)u0)

⋆]

:= G2,1(x, u0, ∂xu0, ∂ωu0, ∂θu0, ∂ωu1)
⋆.

According to Propositions 6.1.1 and 6.2.1, Equations (6.1) to (6.3) are
equivalent to the three first terms of the expansion of L(u, ∂)u = 0, i.e.
Equations (2.5), (2.6) and (2.7).

Next, we decompose successively all equations in the same way, so as to
obtain a triangular integro-differential system. We put together the ‘solved’
part of the oscillations of Equations (2.8)n and (2.8)n+1, and the compatibility
conditions from Equations (2.8)n+1 and (2.8)n+2. This leads to the following
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system for the new unknowns (1 − E)u⋆n ((6.1) also writes ‘(1 − E)u⋆0 = 0’),
(1−G)Eu⋆n, GEu⋆n, Fun and (1− F)un:

(1− E)u⋆n =− L1(∂θ)
(−1)

[
L1(∂ω)u

⋆
n−1 + L1(∂x)u

⋆
n−2

+(B(un−2, ∂θ)u0)
⋆ + (B(u0, ∂θ)un−2)

⋆ + F⋆
n]

:= Gn,1(x, ∂2u0, . . . , ∂2un−1)
⋆,

(1− F)un =− L1(∂ω)
(−1)

[
L1(∂x)un−1

+〈B(un−1, ∂θ)u0〉+ 〈B(u0, ∂θ)un−1〉+ 〈Fn+1〉]
:= 〈Gn,2(x, ∂2u0, . . . , ∂2un−1)〉,

(1−G)Eu⋆n =− (V(dψ) · ∂ω)(−1)E
[
L1(∂x)u

⋆
n−1 −D(∂ω)u

⋆
n−1

+(B(un−1, ∂θ)u0)
⋆ + (B(u0, ∂θ)un−1)

⋆ + F⋆
n+1

]

:= Gn,3(x, ∂2u0, . . . , ∂2un−1)
⋆,

FL1(∂x)Fun + F〈B(un, ∂θ)u0〉+ F〈B(u0, ∂θ)un〉
= −F [L1(∂x)(1− F)un + 〈Fn+2〉] := 〈Gn,4(x, ∂2u0, . . . , ∂2un−1)〉,

GEL1(∂x)GEu⋆n − iGED(∂ω)u
⋆
n +GE(B(u0, ∂θ)un)

⋆ +GE(B(un, ∂θ)u0)
⋆

+GECu⋆n = −GE
[
L1(∂x)(1− E)u⋆n + L1(∂x)(1−G)Eu⋆n + F⋆

n+2

]

:= Gn,5(x, ∂2u0, . . . , ∂2un−1)
⋆.

(6.6)

The Fn’s are defined at 2, the Gn,i’s are also smooth functions, and we
set G0,i := 0 for i = 0, . . . , 5.

Hence, we have a system of equations equivalent to (2.5),...,(2.8)n,... Fur-
thermore, we only need to determine the Fun’s and GEu⋆n’s, since other terms
are explicit functions of them. Finally, we recognize, in Equations (6.5) and
(6.6), the operator GEL1(∂x)GE, and rewrite it GE(V(∂x) +C), thanks to
Proposition 4.1.1. These results are summarized in:
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Proposition 6.3.1. If the profiles un ∈ C∞(Ω × Tp × Tq) are solutions to
Equations (2.8)n for n ∈ N, then vn := Fun and wn := GEu⋆n are solutions
to:

Fv0 = v0 (6.7)

GEw⋆0 = w0 (6.8)

FL1(∂x)Fv0 + F〈B(v0 + w0, ∂θ)w0〉 = 0 (6.9)

GE [V(∂x)w0 − iD(∂ω)w0 +Cw0 + (B(v0 + w0, ∂θ)w0)
⋆] = 0,(6.10)

and for n ≥ 0,

Fvn = vn (6.11)

GEw⋆n = wn (6.12)

FL1(∂x)Fvn + F〈B(vn + wn, ∂θ)w0 + B(v0 + w0, ∂θ)wn〉 = 〈Hn〉(6.13)
GE[V(∂x)wn − iD(∂ω)wn +Cwn (6.14)

+(B(vn + wn, ∂θ)w0)
⋆ + (B(v0 + w0, ∂θ)wn)

⋆] = I⋆n,

where we have set, using the functions Gn,j above:

〈Hn〉(x, ∂2v0, ∂2w0, . . . , ∂
2vn−1, ∂

2wn−1) := 〈Gn,4(x, ∂2u0, . . . , ∂2un−1)〉,
I⋆n(x, ∂2v0, ∂2w0, . . . , ∂

2vn−1, ∂
2wn−1) := Gn,5(x, ∂2u0, . . . , ∂2un−1)

⋆.

Conversely, assume that the (vn, wn)’s solve this system. Then, we recur-
sively define solutions un to Equations (2.8)n by:

(1− E)u⋆n := G⋆n,1 (6.15)

(1−G)Eu⋆n := G⋆n,2 (6.16)

GEu⋆n := wn (6.17)

Fun := vn (6.18)

(1− F)un := 〈Gn,2〉. (6.19)

Remark 6.3.1.

i) The equations for v0 and w0 are nonlinear, but the equations for the other
profiles are linear.
ii) Each set of equations contains three parts: polarizations, transport equa-
tions and Schrödinger equations. Polarizations are given in Equations (6.7)
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and (6.8) (or (6.7) and (6.8)) by the projectors in E and F. The relation
Gwn = wn is better understood as a transport equation in the variables ω,
from Proposition 6.1.1, iii): V(dψ) · ∂ωwn = 0. As well, Equation (6.9)
(or (6.13)) constitutes a hyperbolic system, which can be viewed as a trans-
port equation in each ω-Fourier mode (the operator FL1(∂x)F, restricted at
one such mode, is scalar, according to Proposition 4.1.1). Finally, Equa-
tion (6.10) (or (6.14)) is a Schrödinger equation, with ‘time’ measured, for
each θ-Fourier mode α, along the ray associated with α ·φ. The second order
part is the operator D(∂ω).

7 Existence of profiles

In this section, we prove the –local in time and space– existence of smooth
profiles un, solutions to the Cauchy problem associated with Equations (2.8)n.
From Proposition 6.3.1, it is equivalent to prove existence of the pairs (vn, wn),
solutions to the Cauchy problem associated with Equations (6.11)n-(6.14)n.
The structure of these equations is explained in Remark 6.3.1; modulo polar-
ization conditions, they are: a hyperbolic system (in x) for the mean profile
vn, possibly coupled with a transport equation (in ω) and a Schrödinger
Equation (with time t = x0) for each mode of the oscillations wn.

Two remarks will be useful. First, if one wants the system to be solvable,
it is necessary that the equations for the oscillations wn commute. This is
the role of the ‘second coherence’ Assumptions 4.2.1 and 4.2.2, necessary for
the commutations (and definitions) in Lemma 6.1.1. Second, these equations
were derived from a hyperbolic system, and that is why energy estimates will
be available for them.

7.1 Function spaces

So as to take advantage of the finite propagation speed property of hyperbolic
systems, we fix Ω as the cone

Ω := {x = (t, y) ∈ R1+d/0 ≤ t ≤ t0, δt+ |y| ≤ ρ},

with ρ > 0 fixed, and δ big enough, so as to get on the whole Ω:

δId+
d∑

j=1

yj
|y|Aj(x, 0) positive definite, and

(
δ +

d∑

j=1

yj
|y|vj(x)

)
> 0. (7.1)
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We choose t0 small enough, so that δt0 < ρ (and suppose that all phases are
defined on the whole Ω). Set

ωt := {y ∈ Rd/(t, y) ∈ Ω}, Ωt1 := Ω ∩ {t ≤ t1} when 0 < t1 ≤ t0.

We work with function spaces of Sobolev type in the variables y, ω and
θ. Since the equations have non-constant coefficients, commutators appear
in energy estimates. In particular, the commutator between ∂x and D(∂ω)
is of order one in ∂ω. For example, seeking a L2-estimate for ∂y,ω,θwn, we
differentiate Equation (6.14)n with respect to y, ω and θ. From differentiation
w.r.t. y, we get for the linear part:

V(∂x)∂ywn− iD(∂ω)∂ywn+EC∂ywn+ [∂y,V(∂x) +EC]wn− i[∂y,D(∂ω)]wn,
(7.2)

and the last commutator has order two in ∂ω. Thus, taking the scalar product
of (7.2) with ∂ywn (and integrating in y, ω, θ) gives a term

∫
∂ywn.[∂y,D(∂ω)]wn,

which is not controlled by ‖wn‖H1 . In order to balance this loss of derivatives,
we consider ‘anisotropic’ regularities:

Notation 7.1.1. Consider a multi-index γ = (γy, γω, γθ) ∈ Nd+p+q. We call
‘length’ the usual quantity, |γ| :=∑j |γyj |+

∑
µ |γωµ |+

∑
ν |γθν |, and ‘weight’

the quantity, [γ] := |γy|+ |γω|/2 + |γθ|/2.
Definition 7.1.1. Let s ∈ N/2 and 0 < t1 ≤ t0. We define Es(t1) as the
space of functions u(x, ω, θ) on Ωt1 × Tp × Tq which derivatives ∂γu (w.r.t.
y, ω, θ), continued by zero outside Ωt1, belong to C0([0, t1], L

2(Rd×Tp×Tq)),
for all γ ∈ Nd+p+q such that [γ] ≤ s. When u ∈ Es(t1), and t fixed, u(t)
belongs to the Hilbert space Ks(ωt) equipped with the scalar product:

(u, v)s :=
∑

[γ]≤s
(∂γu, ∂γv)L2(ωt×Tp×Tq).

We denote by ‖ · ‖s the associated norm. We endow Es(t1) with the norm:
‖ u ‖Es(t1):= sup

t∈[0,t1]
‖ u(t) ‖s, so that it becomes a Banach space.

Since elements of Ks(ωt) are restrictions of Sobolev type functions on
Rd × Tp × Tq (see for example [6]), we have the classical properties:

Proposition 7.1.1 (Sobolev’s Injection). Let s ∈ N/2 and s > 2d+p+q
4

.
Then, Ks(ωt) is a subspace of L∞(Rd×Tp×Tq), and the norm of the injection
is bounded uniformly in t ∈ [0, t0].
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Proposition 7.1.2 (Gagliardo-Nirenberg’s Inequality). Let k, s ∈ N/2, α, β ∈
[1,+∞], and r ∈ [2,+∞], satisfy k ≤ s and (1− k

s
)
1

α
+
k

s

1

β
=

1

r
.

Then, there exists C > 0 such that, for all t ∈ [0, t0], all u ∈ S(ωt×Tp×Tq):

‖ ∂ku ‖Lr≤ C ‖ u ‖1−
k
s

Lα ‖ ∂su ‖
k
s

Lβ
.

Proof:
We won’t give a proof of the classical (isotropic) case of these inequalities

(see [29]), but see how one deduces the anisotropic case.
First, the case [γ] ≤ k and γy = 0 is similar to the isotropic case for

variables ω and θ, with derivations of length less than 2k.
When the multi-index γ involves y coordinates as well as ω or θ, we per-

mute derivations, and separate them as follows: set v := ∂
γy
y u (and suppose

γθ = 0). Then,

‖ ∂γu ‖Lr ≤ C ‖ v ‖1−
|γy |

s−|γω |/2

La ‖ ∂s−|γω |/2
y v ‖

|γy |

s−|γω |/2

Lb

≤ C ‖ v ‖1−
|γy |

s−|γω |/2

La ‖ ∂su ‖
|γy |

s−|γω |/2

Lb
,

for

(
1− 2|γy|

2s− |γω|

)
1

a
+

2|γy|
2s− |γω|

1

b
=

1

r
.

(7.3)

Furthermore, ‖ v ‖La is controlled in the same way:

‖ ∂γωu ‖La ≤ C ‖ u ‖1−
|γω |
2s

Lc ‖ ∂2sω u ‖
|γω |
2s

Ld
,

with

(
1− |γω|

2s

)
1

c
+

|γω|
2s

1

d
=

1

a
.

(7.4)

Choose b = d = β and c = α; this determines a, and the relation between 1/r,
1/a and 1/b, deduced from (7.3) and (7.4), exactly becomes the assumption
linking 1/r, 1/α and 1/β. �

Proposition 7.1.3 (Moser). When s > 2d+p+q
4

, Es(t1) is a Banach algebra,
on which C∞ functions act continuously, i.e. :
Let G : Ωt1 × Tp × Tq × CN → Cn be C∞. Then,

∀u, v ∈ Es(t1), G(x, ω, θ, u) ∈ Es(t1) and

‖ G(x, ω, θ, u+ v)−G(x, ω, θ, u) ‖Es(t1)≤ C(‖ u ‖Es(t1), ‖ v ‖L∞) ‖ v ‖Es(t1) .
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(See [29] for a proof.)

Proposition 7.1.4. Under Assumptions 3.0.4, 4.2.1 and 4.2.2:
i) For all t ∈ [0, t1[ and s ∈ N/2, E(t) and F(t) are projectors on Ks(ωt), and
they depend continuously on t. They are self-adjoint on K0(ωt) = L2(ωt).
The operator G is a self-adjoint projector on Ks(ωt) for all s.
ii) Adding Assumption 6.2.1 (no small divisors), C acts continuously on
Es(t1), and so do V(∂x) and D(∂ω) from Es(t1) to Es−1(t1).

Proof:
Proceed as for Proposition 6.2.1: use the Fourier expansion of u, and

Lemma 6.2.1, which says that the coefficients of E, F and G (and their
derivatives) are bounded uniformly in x, α and γ. Continuity with respect
to time follows from dominated convergence for series.

Proceed in the same way for C,V(∂x) et D(∂ω), taking into account
homogeneity of the coefficients. �

7.2 Solving the profile equations

Theorem 7.2.1. Under all previous (explicitly numbered) assumptions, con-
sider s > 2d+p+q

4
+ 1, g0, h0 ∈ Ks(ω0), and for all n ≥ 1, gn ∈ Ks(ω0) and

hn ∈ Ks(ω0) such that Fgn = gn et EGh⋆n = hn for all n ∈ N.
Then, there exist t⋆ ∈]0, t0] and unique (maximal) solutions v0, w0 ∈

Es(t), ∀t < t⋆, to Equations (6.7)- (6.10) with initial data v0|t=0
= gn and

w0|t=0
= hn. Furthermore, when s > 2d+p+q

4
+ n + 1, there exist unique so-

lutions vn, wn ∈ Es−n(t) (t < t⋆) to Equations (6.11)-(6.14) with initial data
gn et hn.

In addition, t⋆ is bounded from below independently from s: if gn ∈
∩s∈N/2Ks(ω0) and hn ∈ ∩s∈N/2Ks(ω0), setting t

⋆(s) := {t⋆ / ∀n, vn, wn ∈
Es(t⋆)}, then t⋆ is the same for all s > 2d+p+q

4
+ 1.

Sketch of the proof:
Existence of solutions to linear equations is classical, and based on en-

ergy estimates. Solutions are obtained in the nonlinear case via an iterative
scheme and a standard fixed-point argument. Thus, we consider the system:
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(L)





FL1(∂x)Fv + F〈B(v′ + w′, ∂θ)w〉 = F〈H〉
GE[V(∂x)w − iD(∂ω)w +Cw + (B(v′ + w′, ∂θ)w)

⋆] = GEI⋆
Fv = v
GEw⋆ = w
v|t=0 = v0

w|t=0 = w0

where v′, w′,H and I are given functions in Es(t1) (for some t1 ∈ [0, t0])
satisfying Fv′ = v′, GEw′⋆ = w′.

Proposition 7.2.1. Let v′, w′ ∈ Es(t1), s > 2d+p+q
4

+ 1, and H, I ∈ Es(t1).
If (v, w) ∈ Es(t1)2 is a solution to (L) with these data, then

‖ v(t) ‖2s + ‖ w(t) ‖2s≤ eCt
(
‖ v(0) ‖2s + ‖ w(0) ‖2s

)

+

∫ t

0

eC(t−t′)(‖ H(t′) ‖2s + ‖ I(t′) ‖2s)dt′.

The constant C depends only on the Aj’s and on ‖ v′ ‖s, ‖ w′ ‖s.

This is a consequence of easy L2 estimates, together with the following
properties of linear and nonlinear commutators:

Lemma 7.2.1. Let [γ] ≤ s.
i) The operators [∂γ , L1(∂x)], [∂

γ ,V(∂x)], [∂
γ ,D(∂ω)] map Es(t1) into E0(t1).

ii) The operators [∂γ,E], [∂γ ,F] and [∂γ ,G] map Es(t1) into E1(t1).
iii) Let w, v′, w′ ∈ Es(t1). Then, for all t ∈ [0, t1],

‖ [∂γ, B(v′ + w′, ∂θ)]w ‖K0(ωt)≤ C(‖ v′ + w′ ‖Es(t1)) ‖ w ‖Ks(ωt) .

Proof:
i),ii) Simply count the number of derivatives on the coefficients of the

Fourier multipliers, and use the bounds given in Proposition 7.1.4.
iii) Decompose first [∂γ, B(v′ +w′, ∂θ)] =

∑
ν [∂

γ , Bν(v
′ +w′)∂θν ], and for

each term [∂γ , Bν(v
′ + w′)∂θν ] =

∑
0<γ′≤γ ∂

γ′ (Bν(v
′ + w′)) ∂γ−γ

′
∂θν . Thus,

we now try to estimate ‖ ∂γ
′
(Bν(v

′ + w′)) ∂γ−γ
′
∂θνw ‖L2 . From Hölder’s

Inequality, for all p, q such that
1

p
+

1

q
=

1

2
,

‖ ∂γ′ (Bν(v
′ + w′)) ∂γ−γ

′

∂θνw ‖L2≤‖ ∂γ′ (Bν(v
′ + w′)) ‖Lp‖ ∂γ−γ

′

∂θνw ‖Lq .
(7.1)
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Moser’s Theorem implies that Bν(v
′ + w′) belongs to Es(t1), and

‖ Bν(v
′ + w′) ‖Es(t1)≤ C(‖ v′ + w′ ‖L∞) ‖ v′ + w′ ‖Es(t1) .

Hence, we bound each term in the right-hand side of (7.1) thanks to Gagliardo-
Nirenberg’s Inequality: since [γ′] > 0, with e < γ′ and |e| = 1,

‖ ∂γ′ (Bν(v
′ + w′)) ‖Lp≤C ‖ ∂e (Bν(v

′ + w′)) ‖1−
[γ′−e]
s−[e]

La ‖ (Bν(v
′ + w′)) ‖

[γ′−e]
s−[e]
s

≤C
(
‖ ∂e (Bν(v

′ + w′)) ‖1−
2
a

L∞ ‖ ∂e (Bν(v
′ + w′)) ‖

2
a

L2

)1− [γ′−e]
s−[e]

× ‖ (Bν(v
′ + w′)) ‖

[γ′−e]
s−[e]
s ,

where
s− [γ′]

a
+

[γ′ − e]

2
=
s− [e]

p
,

(7.2)

and : ‖ ∂γ−γ′∂θw ‖Lq≤C ‖ ∂θw ‖1−
[γ−γ′]
s−1/2

Lb
‖ w ‖

[γ−γ′]
s−1/2
s

≤C
(
‖ ∂θw ‖1−

2
b

L∞ ‖ ∂θw ‖
2
b

L2

)1− [γ−γ′]
s−1/2 ‖ w ‖

[γ−γ′]
s−1/2
s ,

where
s− 1/2− [γ − γ′]

b
+

[γ − γ′]

2
=
s− 1/2

q
.

(7.3)

Each norm involved in (7.2) and (7.3) is controlled by Ks-norms of v′ + w′

and w. Looking at exponents, we can adjust a and b in order for p and q to
satisfy the constraint from (7.1):

1

p
+

1

q
∈
[
1

2

(
[γ′ − e]

s− [e]
+

[γ − γ′]

s− 1/2

)
,+∞

[
, from (7.2) and (7.3).

But: for [e] =
1

2
,
[γ′ − e]

s− [e]
+

[γ − γ′]

s− 1/2
=

[γ − e]

s− 1/2
=

[γ]− 1/2

s− 1/2
< 1 ;

for [e] = 1,
[γ′ − e]

s− [e]
+

[γ − γ′]

s− 1/2
<

[γ]− [γ − γ′]− 1

s− 1
+

[γ − γ′]

s− 1
< 1.

�

Convergence of the iterative scheme is easily obtained in Es−1/2(t1) for
some t1 > 0 sufficiently small, and classical results show that the solution
has the same regularity as the initial data (see for example [13]).
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Finally, the existence time for maximal solutions only depends on the
existence in the space W1,∞ (and, naturally, on initial data). We make use
of an ‘ODE’ argument (following A. Majda, [27]), relying on estimates of the
same type as the previous ones:

Proposition 7.2.2. Suppose that the maximal existence time t⋆ of the solu-
tions v0 and w0 in Es (s > 2d+p+q

4
+1) to Equations (6.7)−(6.10), for smooth

initial data, is less than t0. Then,

lim sup
t→t⋆

(
‖ v0(t) ‖W1,∞(ωt×Tp×Tq) + ‖ w0(t) ‖W1,∞(ωt×Tp×Tq)

)
= +∞.

Here, W1,∞(ωt × Tp × Tq) is the space of functions u ∈ L∞(ωt × Tp × Tq)
which derivatives ∂γu w.r.t. y, ω and θ belong to L∞(ωt × Tp × Tq), when
[γ] ≤ 1.

Proof:
Rewrite the estimates in the proof of Proposition 7.2.1, with v′ = v et

w′ = w. Simply, in (7.2) and (7.3), don’t control the L∞-norms by Ks-norms:

||v(t)||2s + ||w(t)||2s ≤ ||v(0)||2s + ||w(0)||2s

+ C(‖ v, w ‖W1,∞)

∫ t

0

(
‖ v(t′) ‖2s + ‖ w(t′) ‖2s

)
dt′,

and Gronwall’s Lemma gives the result. �

8 Approximation of exact solutions

8.1 Asymptotic solutions

We suppose that the profiles from Theorem 7.2.1 are given. We denote by
t⋆ ≤ t0 the maximal existence time (in K∞) for these profiles, fixing initial
data belonging to C∞. This provides asymptotic solutions to the hyperbolic
system (1.3) up to arbitrary orders: for all M ∈ N, set

uεM(x) := ε

M−1∑

n=0

εn/2un

(
x,
ψ(x)√
ε
,
φ(x)

ε

)
:= εU ε

M(x). (8.1)

We construct approximations of the same type as in [14], introducing:
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Definition 8.1.1. Let t1 ∈ [0, t0] and s ∈ N. We denote by Es(t1) the space
of functions u on Ωt1 such that, for |α| ≤ s, ∂αy u belongs to C0([0, t1], L

2(Rd)),

when continued by zero out of Ωt1. We endow Es(t1) with the family of

norms ‖ u ‖s,ε:= sup[0,t1]

(∑
|α|≤s ‖ (ε∂y)

αu ‖2L2

)1/2
and set, when ρ > 0:

Bs
ρ(t1) := {(uε)ε∈]0,1] / ∀ε, ‖ u ‖s,ε≤ ρ}.

As a consequence of the very construction of the profiles:

Proposition 8.1.1. Let s,M ∈ N, t < t⋆.
i) ∀α ∈ N1+d, sup[0,t] ‖ (ε∂x)

αU ε
M(t) ‖L∞<∞ ;

ii) There are ρ > 0 and rεM ∈ Bs
ρ(t) such that: L(uεM , ∂)u

ε
M = εM/2rεM .

Next, we follow Olivier Guès’ techniques: perturbation methods and
fixed-point arguments show the existence of an exact solution to (1.3) close
to the asymptotic solutions above.

8.2 The continuation problem

The easiest case is when an exact solution vε to (1.3) is given on Ωt, for
t < t0, admitting an asymptotic expansion:

Theorem 8.2.1. Consider phase spaces Φ and Ψ satisfying the previous L1-
and V -coherence Assumptions 3.0.4, 4.2.1 and 4.2.2 (phases are defined on
the whole Ω, up to time t0).

LetM/2 ≥ s > d/2+1, ρ > 0, t ∈]0, t0[, and f ε ∈ εM/2Bs−1
ρ (t0). Suppose

that vε ∈ Es(t) is an exact solution to the system

L(vε, ∂)vε = f ε on Ωt, (8.1)

and vε ∈ ε
M−1∑

n=0

εn/2vn

(
x,
ψ(x)√
ε
,
φ(x)

ε

)
+εM/2+1Bs

ρ(t), vn ∈ C∞(Ωt×Tp×Tq).

Then, there is a time t⋆ > t, independent of ε ≤ ερ, and a unique contin-
uation of vε on Ωt⋆ as a solution of (1.3) in Es(t⋆). Furthermore, this con-
tinuation admits an asymptotic expansion of the same type (with the same
phases, and with residual in εM/2+1Bs

σ(t⋆) for some σ ≥ ρ).

Proof:
1-We first prove that the profiles vn satisfy Equations (2.5)-(2.8)M−1 on Ωt.
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Plugging the asymptotic expansion of vε into Equation (8.1), we get:

f ε = L(vε, ∂)vε =
M−1∑

n=0

εn/2En(x, ψ/
√
ε, φ/ε) + εM/2Rε

M . (8.2)

Here, Rε
M ∈ Bs−1

ρ′ (t) and En = L1(dφ)∂θvn + L1(dψ)∂ωvn−1 + L1(∂x)vn−2 +
B(v0, ∂θ)vn−2 + B(vn−2, ∂θ)v0 + Fn, so that Equation (2.8) is equivalent to
En = 0.

Now, since f ε ∈ εM/2Bs−1
ρ (t) ⊂ L∞, a recursive argument shows that

En(x, ψ/
√
ε, φ/ε)−→

ε→0
0 in L∞, for all n < M . Applying the following lemma

gives the desired conclusion (Q-independence and coherence imply the as-
sumptions in the lemma):

Lemma 8.2.1. Consider phases φ such that the gradient of any non-vanishing
entire linear combination does not vanish on any open set. Consider phases
ψ with the same property.

If E ∈ C0(Ωt × Tp × Tq) and E(x, ψ/
√
ε, φ/ε)−→

ε→0
0 in L∞, then E = 0.

2-Proposition 6.3.1 then asserts that Fvn and GEv⋆n solve Equations (6.7)-
(6.14) on Ωt. This provides initial data required in Theorem 7.2.1, which in
turn ensures existence of a unique continuation for each of these functions
(and thus, for the profiles vn, thanks to Proposition 6.3.1). This continuation
is defined on Ωt⋆ , with t

⋆ > t. In order to obtain an asymptotic solution, with
residual in εM/2Bs

σ(t
⋆), make use of Proposition 8.1.1ii). Taking Estimate i)

into account, one can finally apply Theorem 1.1 from [14], and finish the
proof. �

Remark 8.2.1. As emphasized in [14], the exact solution is not defined on
a ‘small’ time interval: as long as the asymptotic solution uεM exists, so does
the exact one, vε, provided that ε is small enough. We give a simple proof of
this fact in the next paragraph.

Proof of Lemma 8.2.1:
Actually, we prove the following asymptotic equivalence:

For x in a dense open set, ‖E‖L∞ ≤ lim
ε→0

|E(x, ψ/√ε, φ/ε)| (8.3)

(the reversed inequality being obvious).
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To do so, we adapt the proof of Theorem 4.5.1 of [20]. In this paper,
Lemma 4.5.2 says that, for phases ϕ = (ϕ1, . . . , ϕr) satisfying our assump-
tions, there is a dense open subset of Ω such that, for any x in this set, l0 ∈ Z

and β1, . . . , βM ∈ Zr \ {0}, the set (l(βm · ϕ(x))m)l≥l0 is dense in TM . Here,
to show that for some sequence ε, for x in a dense open subset of Ω and for
all α1, . . . , αM ∈ Zq \ {0}, γ1, . . . , γN ∈ Zp \ {0}, the sequences (αj · φ/ε)j
and (γk · ψ/√ε)k are simultaneously dense in TM and TN (respectively), we
need a more precise (uniform w.r.t. l) statement; see iii) below.

First, remark that it is sufficient to restrict to a trigonometric polynomial:
given a challenging δ > 0, there is a trigonometric polynomial Eδ such that
‖E − Eδ‖L∞ < δ, so that ‖E‖L∞ ≤ ‖Eδ‖L∞ + δ, and |Eδ(x, ψ/

√
ε, φ/ε)| <

|E(x, ψ/√ε, φ/ε)|+ δ. Proving (8.3) for Eδ and letting δ go to zero gives the
result for E. Thus, in the sequel,

E(x, ω, θ) =
Z∑

j,k=1

cα
j ,γk=1ei(γ

k·ω+αj ·θ), (8.4)

and we show that for some sequence ε, for any ω and θ, and for x in a dense
open subset of Ω, the differences infk |αj · (θ−φ/ε) + 2kπ| and infk |γk · (ω−
ψ/

√
ε) + 2kπ| are less that δ.

A- Begin with some general properties for phases ϕ = (ϕ1, . . . , ϕr) (sat-
isfying the assumptions above).

i) The set {x ∈ Ω / ∀β ∈ Zr \ {0}, β · ϕ(x) 6= 0 mod 2π} is a dense
open subset of Ω. Indeed, its complementary set is the countable union of
{x ∈ Ω / β · ϕ(x) = 2kπ}, which (for each k and β) are closed and have
empty interior. Thus, Baire’s Theorem concludes.

ii) For any x in this set, and any trigonometric polynomial P (x, ζ),

1

L

∑

l0≤l<l0+L
P (x, lϕ(x)) −→

L→∞

∫

Tr
P (x, ζ) uniformly w.r.t. l0 ∈ Z.

This is shown by direct summation of geometric series.
iii) The desired uniform density result is: for any x in this set, β1, . . . , βM ∈

Zr \ {0} and ζ0 ∈ TM ,

inf l0≤l<l0+Ldist (l(β
m · ϕ(x))m, ζ0) −→

L→∞
0 uniformly w.r.t. l0 ∈ Z.

The proof of the case M = 1 suffices, since M is finite. Then, the character-
istic function of any smooth open set A in the torus can be approximated by
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a trigonometric polynomial. Step ii) and a Cantor diagonal argument finally
show that the averaged number of points l(βm · ϕ(x))m in A tends to the
measure of A, uniformly w.r.t. l0.

B- Now, apply these results to ϕ = φ and ϕ = ψ. The intersection of the
corresponding sets from i) is still a dense open subset of Ω. Choose an x in
this intersection, as well as ω0 ∈ Tp, θ0 ∈ Tq and δ > 0.

iv) The idea is that φ(x)/ε ‘turns faster’ as ψ(x)/
√
ε. Indeed, for all

l0 ∈ Z \ {0}, iii) shows that there are
√
ε = 1/l (for some l ∈ Z, l ≥ l0) and

nk ∈ Z such that:

∀k ∈ {1, . . . , Z}, |γk · (ω0 − ψ(x)/
√
ε) + 2nkπ| < δ,

where the γk are given in (8.4),
(8.5)

and in fact, the maximal interval Il containing l such that these inequalities
are satisfied for all 1/

√
ε ∈ Il has the form Il = [l/

√
ε0, l/

√
ε0 + e], with

length e > 0, depending on δ, ω0 and the integers nk only (not on l0 and l).
v) Finally, we apply iii) to φ: when 1/

√
ε ∈ Il, 1/ε runs over [1/ε0, 1/ε0+

e2+2e/ε0], whose length goes to infinity with l0. Thus, it contains an interval
of the form [l1, l1 + L[, with l1 and L going to infinity with l0. With ζ0 = θ0
and βj = αj , iii) says that for any l0, there is l such that some 1/ε ∈
[l1(l), l1(l) +L(l)[ (with l1(l) ≥ L0) satisfies infk |αj · (θ−φ/ε) + 2kπ| < δ for
all j. From iv), (8.5) is also satisfied. �

8.3 The initial-value problem

Before stating the theorem, we must understand the new difficulty arising
here. It mainly comes from compatibility conditions: as shown in Proposi-
tion 6.3.1, the polarized parts Fun and GEu⋆n determine the whole profile un.
Thus, in this setting, there are restrictions in the choice of initial data.

So as to avoid these restrictions, we could assume that our coherent
phase spaces contain ‘timelike phases’ φ1 and ψ1 (see [21] for a definition
and Remark 2.3.3 in this reference for the genericity of this assumption).
Then, we consider general initial data depending on ω′ = (ω2, . . . , ωp) and
θ′ = (θ2, . . . , θq), and construct profiles depending on ω = (ω1, ω

′) and
θ = (θ1, θ

′): from Proposition 6.1.1, the needed compatibility conditions,
e.g. EFn+1 = 0, are equivalent to equations of the type L1(∂θ)Un = Fn+1,
which can be seen as an evolution problem on the torus, with initial data
un|ω1=θ1=0

= v0n. They provide correct (polarized) initial data (at t = 0). But
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the corresponding profile u0, defined on Ωt⋆ × (R× Tp−1)× (R× Tq−1), is a
priori only almost periodic w.r.t. θ and ω (see [21], p 57).

For simplicity, we restrict to the periodic case, and thus, to polarized
data. So as to select the generated phases, polarization must be checked at
each step of the asymptotic expansion. That’s why our data are constructed
from the profiles: once solutions to (6.7)-(6.14) are constructed up to t < t⋆,
Borel’s Lemma ensures existence of a smooth asymptotic solution uεapp(x) to
(1.3): ∀M ∈ N, α ∈ N1+d,

∥∥∥∥∥(ε∂)
α

[
uεapp(x)− ε

∑

n<M

εn/2un

(
x,
ψ(x)√
ε
,
φ(x)

ε

)]∥∥∥∥∥
L∞

= O(εM/2+1).

Finally, O. Guès’ stability theorem [14] leads to:

Theorem 8.3.1. Consider the approximate solution uεapp above on [0, t⋆[,

under Assumptions 3.0.4, 4.2.1 and 4.2.2. Let t < t⋆, f ε ∼ 0 in C∞(Ω), and

v0,ε(y) ∼ ∑
n∈N ε

n/2un|t=0

(
y, ψ0

|t=0
/
√
ε, φ0

|t=0
/ε
)
, ε ∈]0, 1]. Then, there is εt

such that the solution vε to the Cauchy problem
{
L(vε, ∂)vε = f ε

vε|t=0
(y) = εv0,ε(y)

(8.1)

exists on Ωt, for all ε ≤ εt. Furthermore, it admits an infinite-order asymp-
totic expansion: vε − uεapp ∼ 0.

9 Examples

9.1 Diffraction of a single wave, for slightly compress-

ible isentropic Euler equations

Presentation: The isentropic 3-d Euler equations for a compressible fluid
are: 




∂tρ+ divy(ρv) = 0

∂tv + (v · ∇y)v +
∇yp

ρ
= 0.

(9.1)

The space-time variables are x = (t, y) = (t, x1, x2, x3) ∈ R4, and the un-
knowns are the density ρ and the velocity v = (v1, v2, v3). In this isentropic
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case, the pressure p is a function of ρ. We set f(ρ) := p′(ρ)/ρ. Weak com-
pressibility means that ρ belongs to a neighbourhood of a constant state
ρ0 6= 0: ρ = ρ0 + ρ′, with ρ′ << 1. We assume p′(ρ0) > 0, and denote by
c =

√
p′(ρ0) the sound velocity.

We are interested in the Cauchy problem associated with (9.1) for initial
data of the form

(ρ′, v)|t=0 = εg

(
y,

y√
ε
,
R

ε

)
, with R = (y21 + y22)

1/2. (9.2)

As emphasized in the Introduction, this has two possible interpretations:
- Finite time diffraction: a highly oscillating wave, carried by the phase R±ct
(generating rays parallel to the horizontal plane y3 = 0), and slowly modu-
lated (y dependence), is diffracted transversally to the rays. We derive the
envelope equations, and prove validity of diffractive optics (on a space-time
domain independent of ε).
- Long time propagation (for simplicity, assume g(y, ω, θ) = g̃(ω, θ)): chang-
ing scales as in Example 2 (Introduction), we get initial data

(ρ′, v)|T=0
= ǫ2g̃

(
Y,

(Y 2
1 + Y 2

2 )
1/2

ǫ

)
,

which have ǫ2 amplitude, smaller than the one of usual weakly nonlinear
optics. We are then able to prove existence of the solution to the nonlinear
system of conservation laws (9.1) over times of order 1/ǫ.
WKB setting: We set ũ := (ρ′, v) = (ũ0, ũ1, ũ2, ũ3) ∈ R4 and symmetrize
(9.1), taking the product on the left with S(ũ) := Diag(f, ρ, ρ, ρ), so that it
becomes

L̃(ũ, ∂)ũ := S(ũ)∂tũ+
3∑

j=1

Ãj(ũ)∂jũ = 0, Ãj(ũ) =




fũj fρ

ρũj
...

fρ . . . ρũj . . .
... ρũj


 ,

where doted lines are the (j + 1)-th. Now, for ξ = (τ, η) ∈ R1+3, setting as a
new unknown u := S(0)1/2ũ, we conjugate by S(0)−1/2 the linearized operator
L̃1 (u = 0) to L1(ξ) := S(0)−1/2L̃1(ξ)S(0)

−1/2 = τId +
∑3

j=1 ηjAj(0), with

symbol detL1(ξ) = τ 2(τ 2 − c2|η|2).
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Initial data take a slightly more restrictive form than in (9.2):

u|t=0 = εhε
(
y,

σ√
ε
,
y3√
ε
,
R

ε

)
, (9.3)

with R = (y21 + y22)
1/2 the polar radius in the plane (y1, y2), and the y/

√
ε

dependence is only through the polar angle σ and the third coordinate y3.
The function hε(y, ω, θ) admits an asymptotic expansion

∑
n∈N ε

n/2hn in C∞,
with smooth hn, 2π-periodic w.r.t. the last three arguments:

hn(y, ω1, ω2, θ) =
∑

(α,γ)∈Z3

hα,γn (y)ei(αθ+γ·ω).

Since we are only interested in a qualitative comprehension of the evolu-
tion of such a wave, we write in the sequel only equations for the first term

u0 of the expansion uapp(x) = ε
∑

εn/2un

(
x,

ψ√
ε
,
φ

ε

)
.

Phases: So as to generate at first order a single wave, oscillating w.r.t. one
rapid phase φ− = R − ct, we consider purely oscillating, polarized initial
data:

π−(0, y)h
α
0 = hα0 , ∀α 6= 0. (9.4)

This writes: hα0 ∈ kerL1(d(αφ−)) = kerL1(dφ−) =




1
y1/R
y2/R
0


R.

The vector field determining the intermediate phases is (Proposition 4.1.1):

V (x, ∂) = ∂t + c
y′ · ∂y′
R

, with x = (t, y) = (t, y′, z) ∈ R× R2 × R.

Since ψ|t=0 = (σ, z), V -characteristic generated phases are independent of
t, and we set ψ = (σ, z).
Profile equations: For some polarized u = ar− (a scalar function , r− =
(1, y1/R, y2/R)/

√
2)), the nonlinear term B(x, u) =

∑
j ∂jφ−(x)(∂uAj(0).u)

in the profile equations is fully described by the self-interaction coefficient
c−:

B(ar−) · r− = c−a, where c− =
1 + h√

2
, h = (

√
p′)′|ρ=ρ0 . (9.5)

As quoted by P. Donnat in [9], this coefficient is the same as for usual weakly
nonlinear geometric optics. In particular, B(u, ∂θ)u is the derivative of a
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function, which corresponds to the fact that the system (9.1) is conservative
(this explains why only oscillations are propagated).

Consequently, the amplitude a0 of u0 satisfies:





∫ 2π

0

a0(x, ω, θ)dθ = 0 , a0|t=0
= g0 (h0 = g0r−)

(
∂t +

c

R
y′ · ∂y′

)
a0 +

c

2
(∂2ω1

+R2∂2ω2
)∂−1
θ a0 +

c

2R
a0 +

1 + h√
2
∂θ(a

2
0) = 0.

Theorem 7.2.1 ensures local existence of smooth profiles, on the cone
Ω := (0, y) + {x = (t, y) ∈ R4 / 0 ≤ t ≤ t0, δt + |y| ≤ ρ}, when y is chosen
‘sufficiently far’ from planes y1 = 0 and y2 = 0.
Conclusion: Theorem 8.3.1 shows existence on Ω (and uniqueness) of an
exact solution uε to (9.1) with initial value (9.3). The function uε ad-
mits infinite order asymptotics, whose first term is εu0(x, ψ/

√
ε, φ/ε). In

the long-time propagation setting (u|t=0 = ǫ2h(σ, y3, R/ǫ)), this reads uǫ ∼
ǫ2u0(ǫt, σ, y3, (R− ct)/ǫ) for t ∈ [0, t/ǫ].

The approximate solution oscillates at scale ε along rays sweeping out
of (and orthogonally to) the surfaces R − ct = cst, and the self-interaction
coefficient of this simple wave is exactly the one of usual nonlinear optics
(9.5). Finally, variations in the directions transverse to the rays are described,
at scale

√
ε, by the –variable coefficients– diffusion operator ∂2ω1

+ R2∂2ω2
:

initial data even slightly departing from constant in ω = (σ, y3)/
√
ε generate

in finite time solutions radically different from unperturbed ones.

9.2 Interactions of diffracted waves

We study in this paragraph the influence of diffraction on an example from
[15]. We consider two waves satisfying (9.1), propagating in a plane and
diffracting in the third space direction.

Initial data

uε|t=0
= εh⋆

(
y,
y3√
ε
,
−2 cos(σi)y1

ε
,
cos(σi)y1 + sin(σi)y2

ε

)

are polarized, so that the characteristic phases involved be exactly:

φ0 = −2 cos(σi)y1 and φi = cos(σi)y1 + sin(σi)y2 − ct.
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Precisely, h is periodic w.r.t. θ0 and θi (with the same period, say 2π), with
mean value zero:

h⋆(y, ω, θ0, θi) =
∑

Z2\{0}
hα(y, ω)eiα·θ,

with

hα = π0h
α when α ∈ Z0 = Z⋆ × {0},

hα = πih
α when α ∈ Zi = {0} × Z⋆,

hα = 0 else.

As before, π0 et πi are spectral projectors on the kernels of L1(dφ0) and
L1(dφi), respectively.

Hence, initial data have spectrum Z0 ∪ Zi. From nonlinear interactions,
the characteristic phases generated by φ0 and φi are only multiples of:

φr = φ0 + φi = cos(σr)y1 + sin(σr)y2 − ct, where σi + σr = π.

We can interpret this computation as the reflection of the incident sound
wave (oscillating according to φi) on the entropy wave (oscillating according
to φ0), which gives rise to a reflected wave.

This time, the first term of the Ansatz is:

u0 =
∑

α∈Z0∪Zi∪Zr

uα0 (x, ω)e
iα·θ

= u0,0(x, ω, θ0) + u0,i(x, ω, θi) + u0,r(x, ω, θ0 + θi),

where modes from the same vector line in Z2 are gathered together (setting
Zr = Z⋆(1, 1)). Each component u0,∗ is polarized:

u0,∗ = a∗r∗ for ∗ = i, r, with r∗ = (1, cos σ∗, sin σ∗, 0)/
√
2

u0,0 = a0,1r1 + a0,2r2, with r1 = (0, 0, 1, 0), r2 = (0, 0, 0, 1).

For each mode γ ∈ Z∗, the amplitude aγ (a∗ =
∑

γ∈Z∗
aγeiγ·θ) satisfies an

equation of the form

V∗(∂x)a
γ + ∂−1

θ∗
D∗(∂ω)a

γ + π∗(B(u0, ∂θ)u0)
γ = 0.

Transport operators V∗ and second order operators D∗ are defined at Para-
graph 9.1. We now compute nonlinear B terms.
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When γ ∈ Z∗:

(B(u0, ∂θ)u0)
γ =

∑

α+β=γ

i(β · φ)
d∑

j=0

(∂uAj(0) · uα)uβ.

The term π∗(B(u0, ∂θ)u0)
γ writes

π∗(B(u0, ∂θ)u0)
γ = π∗

(
∑

α+β=γ

i(β · φ)
d∑

j=0

(∂uAj(0) · rα)rβ
)
aαaβ

= i
∑

α+β=γ

Γα,βγ aαaβr∗,

where, as in [22], the coefficient Γα,βγ describes the creation of the mode γ from
interaction of modes α and β; the symmetric expression of this coefficient is:
cα,βγ := Γα,βγ + Γβ,αγ .

We finally get the system:

∂ta0 = 0, (9.1a)

(∂t + c cos σi∂y1 + c sin σi∂y2)ai +
c

2
∂−1
θ ∂2ωai +

1 + h√
2
∂θ(a

2
i ) (9.1b)

− 2 sin σi cos(2σi)∂θ(ar ∗θ a0,1) = 0,

(∂t − c cos σi∂y1 + c sin σi∂y2)ar +
c

2
∂−1
θ ∂2ωar +

1 + h√
2
∂θ(a

2
r) (9.1c)

− 2 sin σi cos(2σi)∂θ(ai ∗θ a0,1) = 0,

The amplitude a0,2 corresponds to the third component of the velocity
(for r0,2 = (0, 0, 0, 1)). Since it vanishes at time t = 0, it vanishes for every
time. Equation (9.1a) is particularly simple, and there are several reasons
to this fact. First, the absence of self -interaction terms comes from linear
degeneracy of the entropy mode. Vanishing of other coupling terms is due
to the particular form of nonlinearities (cf. [15]): two sound waves cannot
generate any entropy wave. Finally, the gradient of φ0 belongs to a flat part
of the characteristic variety, so that the corresponding diffraction coefficients
also vanish.

The two other equations are similar to the ones from nonlinear geometric
optics for 2-d Euler equations, with simply diffraction terms ∂−1

θ D(∂ω) added.
The interaction of these diffracted waves, the incident and the reflected one,
is thus obtained via linear coupling through the kernel a0,1 (independently
defined).
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