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Bloch equations give a quantum description of the coupling between atoms and a driving

electric force. It is commonly used in optics to describe the interaction of a laser beam

with a sample of atoms. In this article, we address the asymptotics of these equations for
a high frequency electric field, in a weak coupling regime. The electric forcing is taken

quasiperiodic in time.
We prove the convergence towards a rate equation, i.e. a linear Boltzmann equa-

tion, recovering in this way the physically relevant asymptotic model. It describes the

transitions amongst the various energy levels of the atoms, governed by the resonances
between the electric forcing and the atoms’ eigenfrequencies. We also give the explicit
value for the transition rates.

The present task has already been addressed in [BFCD03] in the case when the
energy levels are fixed, and for different classes of electric fields. Here, we extend the

study in two directions. First, we consider almost degenerate energy levels, a natural

situation in practice. In this case, almost resonances might occur. Technically, this implies
that the small divisor estimates needed in [BFCD03] are false, due to the fact that
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the Diophantine condition is unstable with respect to small perturbations. We use an
appropriate ultraviolet cutoff to restore the analysis and to sort out the asymptotically

relevant frequencies. Second, since the asymptotic rate equation may be singular in

time, we completely analyze the initial time-layer, as well as the associated convergence
towards an equilibrium state.

Keywords: density matrix, Bloch equations, rate equations, linear Boltzmann equation,

averaging theory, small divisor estimates, degenerate energy levels.

AMS Subject Classification: 34C27, 81V80

1. Introduction

Bloch equations are a basic model used to describe the coupling between light
and matter at the quantum level (see [Boy92], [NM92], [RV02]). Here, matter is
described through the associated density matrix, a quantum object. In the dipole
approximation, the electromagnetic wave enters through the electric field only. Bloch
equations are commonly used in optics when modelling the interaction between a
laser beam and a sample of atoms, whose optical properties are under study. This is
the typical example we have in mind. In this context, the atoms may be in gaseous
state (dry air, He, H2, water vapor, ...), in liquid state (CS2, CCl4, ethanol, water,
...), or in solid state (Silica, Lucite, ...). Another case of interest in practice is a
sample of independent, decoupled atoms with N energy levels (for some N = 2, 3,
or more). In all these situations, a standard value for the laser’s frequency is about
1014 − 1015s−1, to be compared with a typical unit time of the order of several ms:
this is a high-frequency regime.

The present paper analyzes the asymptotic behaviour of the Bloch equations in
the case of a high frequency electromagnetic forcing, when the coupling is weak,
and the energy levels are discrete (see below for the precise scalings): the resonances
between the field and the eigenvalues of the quantum mechanical system enforce
transitions between the various energy levels of the atoms. We prove that the latter
are asymptotically described by a rate equation, i.e. a linear Boltzmann equation.
We recover in this way the rate equations formally derived in the physics literature
(see e.g. [Lou91]). Mathematically, our analysis requires a precise understanding
of the resonances, so that small divisor estimates and averaging techniques for
Ordinary Differential Equations naturally play a key role.

A similar study has already been performed in a [BFCD03], for various high
frequency forcings, when the eigenfrequencies of the atomic system are fixed. In the
present paper, we extend in two ways the work done in [BFCD03].

First, the atoms’ energy levels are here allowed to be almost degenerate. There
are many examples of such almost degeneracies: this is the case of Zeemann hy-
perfine structures in complex molecules, or quantum dots submitted to an external
magnetic field; high levels of an atom are also almost degenerate, due to the accu-
mulation value at the ionisation energy. In this case, the wave’s frequencies might
resonate or “almost resonate” with the eigenfrequencies of the atomic system. Due



3

to these “almost resonances”, there appears the need for a new sorting out of the
frequencies. Mathematically, the small divisor estimates of [BFCD03] simply be-
come false in the almost degenerate case: the Diophantine estimates are unstable
under small perturbations. The tool we develop in this paper is an ultraviolet cutoff
procedure.

The second new point is the following: as in [BFCD03], the asymptotic rate
equation that describes the above mentioned resonances may be singular in time.
We completely analyze the initial time layer as well as the convergence towards an
equilibrium state induced by this singularity.

We stress the fact that the present paper deals with a linear situation: the elec-
tromagnetic forcing is given. A full description of the light/matter interaction would
require the analysis of the Maxwell-Bloch system, which has quadratic nonlinearity
([NM92]).

Let us come to quantitative statements.

The model and its scaling
According to the quantum theory, matter is described via a density matrix ρ,

whose diagonal entry

ρd(t, n) := ρ(t, n, n),

called the population, is –in the eigenstates basis– the occupation number of the
n-th energy level at time t, and the off-diagonal entries

ρod(t, n,m) := ρ(t, n,m) 1[n 6= m],

called the coherences, are linked to the transition probability from level n to level m

(conditioned by the corresponding populations). Throughout this article we assume
that the energy levels are discrete: we work below the ionisation energy of the
atomic system, and the number of atoms is typically “low” (absence of continuous
spectrum).

When sending the electromagnetic field through the matter, the evolution of the
system is described by the Bloch equations. We refer the reader to [Boh79, Boy92,
CTDRG88, Lou91, NM92, RP69, SSL77, Bid03] for textbooks about wave/matter
interaction issues, where Bloch equations occur. They read, in scaled, dimensionless
form (ε > 0 is the scaling parameter; the justification of the scaling follows),

ε2∂tρ(t, n,m) = −iωε(n, m)ρ(t, n,m) (1.1)

+ iε
∑

k

[
φ

(
t

ε2

)
V (n, k)ρ(t, k,m)− φ

(
t

ε2

)
V (k, m)ρ(t, n, k)

]
+ Qε(ρ)(n, m),

and the initial datum ρ(0, n,m) satisfies

ρ(0, n,m) = 0, if n 6= m, ρ(0, n, n) ≥ 0 and
∑

n

ρ(0, n, n) < ∞. (1.2)
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The first term on the right-hand-side of (1.1) is the free Hamiltonian of the atomic
system, the second term acounts for the interaction with the wave, and the last
term is a relaxation term. We now detail each of these.

The time dependent field φ(t) ∈ R is the electric field (up to rescaling), which
we assume to be quasi-periodic in time, i.e.

φ(t) =
∑

α∈Zr

φα exp(iα · ωt), where α · ω := α1ω1 + · · ·+ αrωr, (1.3)

for some frequency vector ω ∈ Rr (r is a given integer), and some Fourier coefficients
φα such that

∑
α |φα| < ∞. Such a field mimics a laser beam having a finite number

– r – of independent frequencies, and all of their harmonics.
The quantity

ωε(n, m) = ω(n, m) + δε(n, m) =
(
ω(n) + εp(n)δ(n)

)
−
(
ω(m) + εp(m)δ(m)

)
is the transition energy (or: transition frequency) between levels n and m, and for
all n, p(n) > 0 is some given exponent. The reader may safely think of the case
p(n) = const = p, but we keep track of the possible dependence of p(n) upon n for
sake of generality (see below on this point).

As in standard optics (see, e.g. [Boy92], page 149) the relaxation term reads

Qε(ρ)(n, m) =


−εµγ(n, m)ρ(t, n,m), if n 6= m,

ε2 (
∑

k [W (k, n)ρ(t, k, k)−W (n, k)ρ(t, n, n)]) , if n = m,

where 0 ≤ µ < 1/2 is some given exponent.
In all this analysis, the coefficients V (n, m), γ(n, m), W (n, m), ω(n, m), and

δ(n) are given. They are constants of the atomic system and satisfy definite sym-
metry and positivity properties. We also list at the beginning of section 2 the decay
assumptions satisfied by these numbers. The interaction coefficient V (n, m) ∈ C is
an entry in the dipole moment matrix, and it is Hermitian: V (m,n) = V (n, m)∗. It
characterizes the atom’s reaction to a given applied field. The ω(n)’s and δ(n)’s are
real and describe the eigenfrequencies of the atomic system. Finally, the relaxation
term acts as a linear Boltzmann term on the diagonal part, whereas on the off-
diagonal part, it acts as a pure damping term. In the optics literature, it describes
at a heuristic level the observed trend to equilibrium of the atomic samples under
consideration. The so-called Pauli coefficient W (n, m) is non-negative. The longitu-
dinal coefficient γ(n, m) is positive and symmetric: γ(n, m) = γ(m,n). To simplify
notations, we extend its definition to the case when n = m introducing γ(n, n) = 0.
On the more, the entries W (n, m) and W (m,n) are related by the standard relation
(see e.g. [BBR01, Bid03])

W (n, m) = exp
(

ω(m,n)
T

)
W (m,n), (1.4)
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where T is a normalized temperature. This specific form is of great importance
when describing the equilibrium states. Finally, integers n ∈ N, m ∈ N, and k ∈ N
are labelling discrete energy levels, and time t belongs to R+. In the case of a
finite number of energy levels, we add the restriction n, m, k ≤ N and so on. The
dependence of the density matrix on the small parameter ε will always be implicit.

Let us comment on the scaling.
The electric field has high-frequency of size 1/ε2, and time t is rescaled by ε2

accordingly in (1.1): the atoms’ and wave’s frequencies have the same order of
magnitude. This is a realistic scaling, and it creates the possibility of a resonant
interaction between the wave and the atom. Also, the typical amplitude of the field
is taken of size ε. This is a standard weak coupling regime (see [Spo80, Spo91, vH55,
vH57]): as is well-known, the total effect of the wave on time scales 1/ε2 is then
of order 1 (= 1/ε2 × ε2 =time scale ×(amplitude of the field)2). In practice, the
amplitude of the wave is tuned so as to create an effect of the order 1 on the atomic
sample.

Concerning the free hamiltonian part of equation (1.1), a comment is in order. In
the non-degenerate framework ω(n, m) = ω(n)−ω(m) is the difference between the
frequencies of levels n and m respectively. It is either zero or an order one quantity.
Here we wish to tackle the case of almost degenerate levels, replacing the frequency
ω(n) by ω(n) + λδ(n) for some small adimensional parameter λ that measures the
almost-degeneracy. In general, the two small parameters λ and ε are independent.
A typical value of ω(n, m) is about 1014s−1 (corresponding to a gap in energy
around 100 meV), whereas the levels’ separation (λδ(n)) may be several orders of
magnitude smaller: the value 1010s−1 is not seldom. The experiments reported in
[HGV+99] show that in quantum dots (obtained by epitaxial growth of InAs on a
substrate of GaAs) submitted to an external magnetic field, the ground state and
first excited state are separated by an energy gap about 70-80 meV (≈ 1014s−1), and
the separation with the next level varies with the field intensity (thus, λ depends on
ε), down to values of the order 1 meV (≈ 1012s−1). Furthermore, the coefficient λ

may be in practice much larger, or much smaller, or comparable with ε, depending
on the atomic sample under consideration. Note finally that for a given system, the
ratio λδ(n)/ω(n) might actually vary by several orders of magnitude when index
n changes (hence making the exponent p vary with n). For these reasons, and in
order to describe all possible situations, we set

ωε(n) = ω(n) + εp(n)δ(n).

It leads to different regimes, depending on the sequence of exponents p(n). For
given, physical values of the constants, the one or the other regime may be relevant.

We finally comment the scaling of the relaxation term. In our scaling, we as-
sume that the diagonal relaxation has an influence on the same time scale as the
free Hamiltonian (due to the prefactor ε2). In practice, this term typically acts on
comparable or much larger time scales than the free Hamiltonian, so that a prefac-
tor εq for some q ≥ 2 would be natural. We choose the value q = 2 to fix the ideas,
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but our analysis anyhow extends straightforwardly for any value of q ≥ 2. More
importantly, our scaling makes the off-diagonal relaxation act on a much shorter
time scale than both the diagonal relaxation and the free Hamiltonian term. Again,
this is a standard polarization process in optics: we model this phenomenon upon
measuring the corresponding time scale by the parameter εµ for some 0 ≤ µ < 2,
and the constraint µ < 2 is physically relevant. As before, there is no theoretical
basis linking the off-diagonal relaxation with the parameter ε, and this is the reason
why we do not fix the value of the parameter µ. Technically, our analysis turns out
to need the strengthened restriction 0 ≤ µ < 1/2. This threshold value for µ arises
in the estimates and we do not know whether it is optimal or not. However it is no
wonder that there is a threshold value. Indeed, in the case when µ = 0, the initial
Bloch equation (1.1) is time-irreversible and the asymptotic equation that we de-
rive in this paper is also time-irreversible. On the other hand, in the opposite case
when every coefficient γ(n, m) is identically zero (which can also be interpreted as
µ = ∞), the initial Bloch equation is time-reversible and the nature of the problem
has changed.

The vanishing of the off-diagonal entries means that we are dealing with “well
prepared” initial data. This is a standard assumption in the field (see e.g. [KL57,
LK58, Zwa66]).

Convergence results
Since rate equations play a central role in this paper, we introduce the following

useful

Notation. To coefficients A(n, k), n 6= k (which may possibly be time dependent:
A(t, n, k)) we associate the linear Boltzmann operator A] defined as

A] ρd(n) =
∑

k

[
A(k, n)ρd(k)−A(n, k)ρd(n)

]
. (1.5)

If A(n, k) ∈ l∞n l1k ∩ l∞k l1n, A] is a bounded operator on lp, 1 ≤ p ≤ ∞ (see Ap-
pendix 7.1).

With this notation, our first main result asserts that equation (1.1) behaves asymp-
totically like a rate equation acting on the diagonal part of ρ.

Theorem 1.1. (Averaging of the oscillations). We assume the Diophantine
condition Hypothesis 1 holds true, and the φα’s are decaying enough (Hypothesis 3).
(i) First approximate dynamics. Define the transition rate

〈Ψε〉(k, n) = 2|V (k, n)|2
∑
β∈Zr

εµγ(k, n)
ε2µγ(k, n)2 + |ω(k, n) + β · ω + δε(k, n)|2

|φβ |2. (1.6)

Define ρ
(1)
d = ρ

(1)
d (t, n) as the solution to the rate equation

∂tρ
(1)
d (t, n) = (W + 〈Ψε〉)] ρ

(1)
d (t, n) (1.7)
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with initial data ρ
(1)
d (0, n) = ρd(0, n). Then, for all T > 0, there exists C > 0 such

that

‖ρd − ρ
(1)
d ‖L∞([0,T ],l2) ≤ Cε1−2µ, and ‖ρod‖L∞([0,T ],l1) ≤ Cε1−µ.

(ii) Refined approximate dynamics. Define the dominant transition rate

〈Ψε〉dom(k, n) := 2|V (k, n)|2 εµγ(k, n)
ε2µγ(k, n)2 + δε(k, n)2

∑
β∈Zr; ω(k,n)+β·ω=0

|φβ |2. (1.8)

Let also ρ
(2)
d be the solution to

∂tρ
(2)
d (t, n) =

(
W + 〈Ψε〉dom

)
]

ρ
(2)
d (t, n) (1.9)

with initial data ρ
(2)
d (0, n) = ρd(0, n). Then, under the additional decay Hypothe-

ses 2, 4 and 5, for all T > 0, there exists C > 0 such that

‖ρd − ρ
(2)
d ‖L∞([0,T ],l2) ≤ C(εµ + ε1−2µ).

Part (i) of the Theorem is essentially contained in [BFCD03]. It states that the off-
diagonal part of ρ vanishes asymptotically, while the diagonal part tends to satisfy
a rate equation. The original transition rates W of equation (1.1) become W + 〈Ψε〉
in (1.9) after the averaging procedure. As in [BFCD03], this Theorem is obtained in
two steps: first, using manipulations on the density matrix, we prove that ρd tends
to satisfy a closed differential equation with rapidly oscillating coefficients; second,
we average the oscillations appropriately.

Now, part (ii) of the Theorem is the main part, both from the point of view of
modelisation and analysis. In the transition rate 〈Ψε〉(k, n) obtained in part (i), the
main contribution comes both from the exact resonances (when ω(k, n) + β · ω = 0
and δε(k, n) = 0), and from the “almost-resonances” (when ω(k, n) + β · ω = 0
and δε(k, n) 6= 0) between the wave and the atomic system: almost resonances
correspond, in other words, to the case when ωε(k, n)+β ·ω = ω(k, n)+β ·ω+δε(k, n)
is small, but non zero. On the other hand, in the transition rate 〈Ψε〉dom obtained in
part (ii), the system only retains those Fourier modes φβ for which ω(k, n)+β·ω = 0:
the almost resonances have been filtered out. To state the result in a different way,
part (ii) somehow establishes that the averaging procedure does not “see” the almost
resonance condition.

Analytically, the tool to prove (ii) is the ultraviolet cutoff procedure prepared
in Lemma 4.1 and developed in section 4.2 below. The idea is the following. The
Diophantine condition, which is the basic tool to estimate the small denominators
in (1.6) or (1.8), is not stable under the perturbation δε(k, n). There is no hope to
restore its validity in any uniform sense with respect to the perturbation. Lemma 4.1
provides an alternative way for the treatment of small denominators: it asserts that
those frequencies that violate the Diophantine condition are typically associated
with very large Fourier modes β (or large indices n, k). We use this to balance their
contribution thanks to the decay properties of the φβ coefficients (or of the V (n, k)
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coefficients). Despite its easy proof, we stress that this Lemma allows to circumvent
hard analytical difficulties related to small denominators.

Note that when µ = 0, part (ii) of the Theorem does not give a good approx-
imation of ρd, and we do not have a better description than the one from part
(i), where all (resonant and non-resonant) frequencies have a contribution to the
transition rates.

Our second result is the following.
Clearly, the coefficients 〈Ψε〉dom(k, n) may contain singular terms of size ε−µ or

εµ−2p(n), and so on, depending on the relative values of µ, p(k) and p(n). Using
the fact that the linear Boltzmann operator (W + 〈Ψε〉dom)] has a non-positive
spectrum, we completely analyze the underlying initial time layer, and behaviour
outside the layer, in the case of a finite number of levels.

Theorem 1.2. (True limit in ε, and equilibrium states). Assume N < ∞.
Then, the asymptotic evolution of ρd when ε → 0 can be summarized as follows.
(i) First case: µ = 0. Then, for any 0 ≤ t ≤ T , we have ‖ρd(t) − ρ

(3)
d (t)‖l2 ≤ Cε ,

where, denoting 〈Ψ0〉 = limε→0〈Ψε〉, we define ρ
(3)
d as the solution to

∂tρ
(3)
d (t) = (W + 〈Ψ0〉)] ρ

(3)
d (t) , ρ

(3)
d (0) = ρd(0) .

(ii) Second case: µ > 0. Then, there exists an explicit decomposition of the entries
〈Ψε〉dom(n, m) of the form

〈Ψε〉dom(n, m) =
I∑

j=0

ε−νj Bε
j (n, m) + Bε

I+1(n, m) +O(εν′) ,

such that ν′ > 0, the exponents νj are positive, decreasing (with ν0 = µ), and each
Bε

j is an ε-dependent matrix that satisfies

Bε
j −→

ε→0
B0

j , ∀ε ≥ 0 , KerBε
j = KerB0

j .

On the more, all linear Boltzmann operators (Bε
j )] define non-positive operators.

Let Π be the orthogonal projection (in l2) onto ∩j≤IKer(Bε
j )], and set ν = νI . Then

the following estimates hold true, for any 0 ≤ t ≤ T∥∥(1−Π)ρ(2)
d (t)

∥∥
l2
≤ C

(
εν + exp(−ctε−ν)

)
,∥∥∥Πρ

(2)
d (t)− ρ

(4)
d (t)

∥∥∥
l2
≤ C

(
εν + exp(−ctε−ν) + ‖Bε

I+1 −B0
I+1‖+ εν′

)
,

for some constants C > 0 and c > 0. Here, ρ
(4)
d is defined as the solution to

∂tρ
(4)
d (t) = Π (W + B0

I+1)] Πρ
(4)
d (t) , ρ

(4)
d (0) = Πρ

(2)
d (0) .

The precise value of matrices Bε
j is given in section 5.

Theorem 1.2 completely describes the asymptotic dynamics satisfied by ρ
(2)
d : the

density matrix ρ
(2)
d immediately relaxes to some equilibrium space (after a time of
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size εν). This is a polarization process. Past this time, there only remains a “shadow
dynamics” on the relevant space. It is described by the equations of part (i) or (ii),
depending on the regime. The latter are linear Boltzmann equations.

In this second part of our analysis, the perturbation δ(n, m) has a true effect,
as is seen in Table 1 below (where q is the minimum value of the exponent q(n, m)
such that δε(n, m) ∼ δ(n, m)εq(n,m) with δ(n, m) 6= 0; see also the formulae we give
in section 5): the perturbation does affect the exponent ν, as well as the asymptotic
value of the transition rates.

For an infinite number of levels, Theorem 1.2 cannot be proved. However, we
give two results that go in direction of extending Theorem 1.2 to this case. First we
prove that the dynamics of infinitely many levels (N = +∞) can be approximated
by the dynamics of the conveniently truncated N -level system (< ∞), uniformly
in time, upon chosing N large enough. Second, for some values of the exponents µ

and ν, an equivalent to Table 1 can be given. We refer to Section 6.

µ/q ν difference with the unperturbed case
δε(n, m) ≡ 0

0 ≤ µ/q < 1 µ none

µ/q = 1 µ value of the transition rates

1 < µ/q < 2 2q − µ value of the transition rates, and size of the
time-layer

2 ≤ µ/q < ∞ 0 < ν ≤ µ value of the transition rates, size of the time-
layer, value of the projector and limit rates

Table 1. Consequences of the perturbation for a finite number of levels.

Bibliographical remarks
Apart from [BFCD03], in the past few years an extensive attention has been paid

on the rigourous derivation of Boltzmann type equations from dynamical models of
(classical or quantum) particles or models for the interaction of waves with random
media. Convergence results in the case of an electron in a periodic box may be found
in [Cas99, Cas02, Cas01]. We also mention the non-convergence result established
in [CP02, CP03] in a particular, periodic situation. For the case when an electron is
weakly coupled to random obstacles, the reader may refer to [EY00, Spo77, Spo80,
Spo91] and [KPR96]. The computation of the relevant cross-sections is performed
in [Nie96]. All these results address the case of a linear Boltzmann equation. A
nonlinear case is studied in [BCEP04].
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Outline
The article is organized as follows:
• Section 2 is devoted to the introduction of the precise notations and assump-

tions needed in the sequel.
• In Section 3, we completely prove Theorem 1.1-(i). Our proof uses, in a first

step, classical arguments for the Bloch equation in the weak coupling regime (see
[Cas99, Cas02, Cas01] and also [KL57, LK58, Kre83, Zwa66] for this point). Then,
to perform the averaging procedure that leads to Theorem 1.1-(i), we use techniques
of the averaging theory for ordinary differential equations (see [LM88, SV85]).

• Section 4 is devoted to the proof of Theorem 1.1-(ii). First, we state and prove
Lemma 4.1: it ensures that although the Diophantine condition is not stable with
respect to small perturbations, violations of the condition only occur for large values
of the indices. Then, we use this fact to compensate small denominators by extra
smoothness assumptions.

• Section 5 is devoted to the proof of Theorem 1.2, i.e. to the analysis of the
limit process ε → 0 in equation (1.9), in the case of finitely many energy levels.

• Section 6 is devoted to partial extensions of Theorem 1.2 in the case of an
infinite number of levels.

• Finally, we give in Section 7 the proofs of several lemmas, concerning continuity
and non-positiveness of the relaxation operators first, then about existence and
uniqueness of the associated equilibrium state (this is a light version of the Perron-
Frobenius Theorem). We also show the genericity of the Diophantine condition 1.

2. Functional setting

In this section, we list the assumptions needed in our analysis, together with some
basic properties of the solution to the Bloch equations. The main information is
Lemma 2.1 below.

Basic decay assumptions on the various coefficients
The energy levels are assumed bounded:

(ω(n))n∈N ∈ l∞ and (δ(n))n∈N ∈ l∞

(which is natural, since these energies are bounded by the ionisation energy). Since
δε(n) = εp(n)δ(n) is supposed to be a perturbation of ω(n), we assume

inf
n

p(n) =: p > 0.

In the same way, we suppose the relaxation coefficients satisfy

(γ(n, m))n,m∈N ∈ l∞, inf
n 6=m

γ(n, m) =: γ > 0.

Finally, the Pauli relaxation coefficients possess the following summability condition

‖W‖l∞k l1n∩l∞n l1k
:= sup

k

∑
n

|W (n, k)|+ sup
n

∑
k

|W (n, k)| < ∞,
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as does the (Hermitian) matrix V (n, m):

‖V ‖l∞l1 := sup
k

∑
n

|V (n, k)| < ∞.

These last two assumptions ensure the corresponding terms in (1.1) have a bounded
effect on the density matrix (this is a consequence of Schur’s Lemma 7.1).

Boundedness and positivity of the density matrix
Our assumptions on V , W , and φ ensure that the operators involved in the right-
hand-side of Eq. (1.1) are continuous on L∞(R+, l1). Classical ordinary differen-
tial equation arguments (see e.g. [Cas99]) then allow to state the existence and
uniqueness of a solution ρ to System (1.1) for any initial data in l1. It satisfies
ρ ∈ C0(R+, l1) and ∂tρ ∈ L∞(R+, l1).

The key point is that summation and positiveness of ρ are preserved through
the time evolution. More precisely we have the following Lemma (points (ii), (iii)
are addressed in [Lin76, BBR01, Cas01]).

Lemma 2.1. Let ρ(t = 0) satisfy conditions (1.2). Then, under the above assump-
tions, there exists a unique solution ρ ∈ C0(R+, l1) to Eq. (1.1). It satisfies, for all
t ≥ 0,

(i) ρ(t) is Hermitian: ρ(t, n,m) = ρ(t, m, n)∗,
(ii) the trace of ρ is conserved:

∑
n ρ(t, n, n) =

∑
n ρ(0, n, n) < ∞,

(iii) positiveness of populations is conserved: ρ(t, n, n) ≥ 0.

We stress the importance of items (ii) and (iii), first established in [Lin76]. They
give a nontrivial l1 estimate for the diagonal part ρd. This proves to be crucial in
proving Theorem 1.1 (see also [Cas01] for a situation where the oscillations are
much more difficult to handle).

Technical assumptions needed in the course of the proofs
Most importantly, and as it is usual in the field of oscillations in ordinary differential
equations and averaging techniques (see [Arn89, SV85, LM88]), we introduce a
Diophantine condition on the frequency vector ω.

Hypothesis 1 (Diophantine condition). There exists a (small) number η > 0,
and a constant Cη > 0, such that

∀α = (α1, . . . , αr) ∈ Zr \ {0}, ∀(n, k) ∈ N2 such that α · ω + ω(n, k) 6= 0,

|α · ω + ω(n, k)| ≥ Cη

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η
, (2.10)

and similarly

∀α ∈ Zr \ {0}, |α · ω| ≥ Cη

(1 + |α|)r−1+η
. (2.11)

Remark. Given once and for all a fixed η > 0, we can classically claim (see [Arn89])
that there exists a constant Cη > 0, depending on ω(n, m) and on η, such that for
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almost all value of the frequency vector ω = (ω1, . . . , ωr) Hypothesis 1 is satisfied.
This is proved in Appendix 7.2. This condition is therefore not much restrictive.

The same kind of Diophantine estimate is also needed in the case when α = 0. It
means that the energies do not converge too fast towards the ionisation energy.

Hypothesis 2 (Convergence towards the ionisation energy). There exists
Cη > 0, such that

∀(n, k) ∈ N2, either ω(n, k) = 0, or |ω(n, k)| ≥ Cη

(1 + n)1+η(1 + k)1+η
,

where η is the number occurring in the Diophantine assumption (Hypothesis 1).

For more technical reasons, averaging procedures require a number of decay
assumptions on the Fourier coefficients φα, as well as on V (n, m) and W (n, m). We
list them below.

From Section 3 on, the summability condition
∑

α |φα| < ∞ needs to be
strengthened into

Hypothesis 3 (Smoothness assumption). The Fourier coefficients φα satisfy∑
α

(1 + |α|)r−1+η|φα|2 < ∞,

where η is the number occurring in the Diophantine assumption (Hypothesis 1).

From Section 4 on, we need the following stronger decay. It is used to justify the
sorting out of resonant and non resonant contributions.

Hypothesis 4 (Reinforced smoothness assumption). There exists Nη > 2µ/p

such that the Fourier coefficients φα satisfy∑
α

(1 + |α|)(r−1+η)Nη |φα|2 < ∞,

where η is the number occurring in the Diophantine assumption (Hypothesis 1).

Hypothesis 5 (”Far from continuous spectrum” assumption). The inter-
action coefficients satisfy

sup
n

∑
m

(
(1 + n)1+η(1 + m)1+η

)Nη |V (n, m)|2 < ∞,

where η is the number occurring in the Diophantine assumption (Hypothesis 1) and
Nη is given by Hypothesis 4.

The last hypothesis means that only low levels (i.e. levels which are far from the
continuous spectrum or ionisation threshold) really interact with the wave, with a
significant contribution.

Finally, in Section 4 we also use an assumption on the interaction of low and
high levels via the relaxation operator.
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Hypothesis 6 (Weak interaction of low and high energy levels). The lon-
gitudinal relaxation coefficients satisfy, for some K > 0,

sup
n

∑
m

(1 + n)K(1 + m)K |W (n, m)| < ∞.

3. Proof of Theorem 1.1, part (i)

In this section, we prove part (i) of Theorem 1.1. The proof is in two main steps,
and follows [BFCD03]. First, we prove that the populations ρd tend to satisfy a
closed equation, which is an ODE with oscillating coefficients. Second, we average
out the coefficients.

We start with a basic observation. To simplify the writing, we set

Ωε(n, m) := −iω(n, m)− iδε(n, m)− εµγ(n, m),

where we stress that Ωε(n, n) = 0. With this notation, Eq. (1.1) reads for the
coherences:

∂tρod(t, n,m) =
1
ε2

Ωε(n, m)ρod(t, n,m) (3.12)

+
i

ε
φ

(
t

ε2

)
V (n, m) [ρd(t, m)− ρd(t, n)]

+
i

ε
φ

(
t

ε2

)∑
k

[V (n, k) ρod(t, k,m)− V (k,m) ρod(t, n, k)] ,

and, for the populations:

∂tρd(t, n) =
i

ε
φ

(
t

ε2

)∑
k

[V (n, k) ρod(t, k, n)− V (k, n) ρod(t, n, k)]

+
∑

k

[W (k, n)ρd(t, k)−W (n, k)ρd(t, n)]. (3.13)

As a consequence of the Hermitian properties of Eq. (1.1) recalled in Lemma 2.1,
Eq. (3.13) can also be cast as

∂tρd(t, n) = −2
ε
Im

[∑
k

φ

(
t

ε2

)
V (n, k) ρod(t, k, n)

]
+
∑

k

[W (k, n)ρd(t, k)−W (n, k)ρd(t, n)]. (3.14)

We pass to the limit on this form of the equations.

3.1. The populations satisfy an ODE with oscillating coefficients

In this section, we prove the
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Proposition 3.1. Define the time dependent transition rate

Ψε

(
t

ε2
, k, n

)
:= 2|V (n, k)|2Re

∫ t/ε2

0

ds exp (Ωε(k, n)s) φ

(
t

ε2

)
φ

(
t

ε2
− s

)
.

Then, for all T > 0, the vector ρd satisfies

∂tρd(t) =
(

Ψε

(
t

ε2

)
+ W

)
]

ρd(t) + OL∞([0,T ],l1)

(
ε1−2µ

)
. (3.15)

Remark. Eq. (3.15) is a closed linear Boltzmann equation on the populations only,
with a time dependent transition rate.

Remark. For s ≥ 0, and q ≥ 1, the symbol OL∞loc(R,lq) (εs) means that for all T > 0,
there exists a constant C > 0, that does not depend on ε, such that the corresponding
term is bounded:

‖OL∞([0,T ],lq)(εs)‖L∞([0,T ],lq) ≤ Cεs.

In the whole article C denotes constants which do not depend on the (small) pa-
rameter ε. It however possibly depends on all the coefficients of the problem and on
the initial data, but we will never make this dependence explicit.

Remark. Using Lemma 7.1 of the Appendix, and since ReΩε(n, m) ≤ −εµγ, uni-
formly in n and m, n 6= m, the operator Ψε is a priori of order ε−µ on l2 or l1.
More precisely we have∥∥Ψε(t/ε2)]ρd

∥∥
l1
≤ Cε−µ‖V (n, k)‖2l∞n l1k∩l∞k l1n

‖φ‖2L∞(R)‖ρd‖l1 , (3.16)∥∥Ψε(t/ε2)]ρd

∥∥
l2
≤ Cε−µ‖V (n, k)‖2l∞n l1k∩l∞k l1n

‖φ‖2L∞(R)‖ρd‖l2 . (3.17)

Proof. The proof is given in two steps that follow [BFCD03].
First step: computation of coherences
Since the initial data for coherences is ρod(t = 0, n,m) ≡ 0, the integral form for
Eq. (3.12) reads

ρod(t, n,m) = iε

∫ t/ε2

0

exp (Ωε(n, m)s) φ

(
t

ε2
− s

)
V (n, m)

× [ρd(t− ε2s,m)− ρd(t− ε2s, n)] ds + (Aερod)(t, n,m)

=: ρ
(0)
od (t, n,m) + (Aερod)(t, n,m). (3.18)

This serves as a definition for ρ
(0)
od . We have here defined the remainder Aε as

(Aερod)(t, n,m) := iε

∫ t/ε2

0

exp (Ωε(n, m)s)

×
∑

k

φ

(
t

ε2
− s

) [
V (n, k)ρod(t− ε2s, k, m)− V (k, m)ρod(t− ε2s, n, k)

]
ds.



15

We now claim that for any given time T ≥ 0, there exists a constant C, such that∥∥∥ρod − ρ
(0)
od

∥∥∥
L∞([0,T ],l1)

≤ C ε2(1−µ),
∥∥∥ρod

∥∥∥
L∞([0,T ],l1)

≤ Cε1−µ. (3.19)

Indeed, since ReΩε(n, m) ≤ −εµγ < 0, uniformly in n and m, n 6= m, we have

‖Aερod‖L∞([0,T ],l1)

≤ 2ε

∥∥∥∥∫ +∞

0

ds |exp (Ωε(n, m)s)|
∥∥∥∥

l∞n,m

‖φ‖L∞‖V ‖l∞n l1m∩l∞m l1n
‖ρod‖L∞([0,T ],l1)

≤ Cε1−µ‖ρod‖L∞([0,T ],l1).

Hence using Eq. (3.18), we recover

‖ρod − ρ
(0)
od ‖L∞([0,T ],l1) ≤ Cε1−µ‖ρod‖L∞([0,T ],l1)

≤ Cε1−µ ‖ρod − ρ
(0)
od ‖L∞([0,T ],l1) + Cε1−µ‖ρ(0)

od ‖L∞([0,T ],l1).

For ε small enough, it implies

‖ρod − ρ
(0)
od ‖L∞([0,T ],l1) ≤ Cε1−µ‖ρ(0)

od ‖L∞([0,T ],l1).

Then using the definition of ρ
(0)
od (t, n,m), we obtain

‖ρ(0)
od ‖L∞([0,T ],l1) ≤ C ε1−µ × ‖φ‖L∞ ‖V ‖l∞n l1k∩l∞k l1n

× ‖ρd‖L∞([0,T ],l1).

The crucial estimate now stems from the trace conservation property of Lemma 2.1,
which reads ‖ρd‖L∞([0,T ],l1) = ‖ρd(t = 0)‖l1 . This l1-estimate on the diagonal terms
of the density matrix is therefore sufficient to control all the off-diagonal terms in
turn, and the claim (3.19) follows.

Second step: convergence to a delay-free equation

Estimate (3.19) together with Eq. (3.14) governing ρd imply that

∂tρd(t, n) =
∑

k

[W (k, n)ρd(t, k)−W (n, k)ρd(t, n)]

+ 2
∑

k

∫ t/ε2

0

[ρd(t− ε2s, k)− ρd(t− ε2s, n)]

× Re
{

exp(Ωε(k, n)s) φ

(
t

ε2

)
φ

(
t

ε2
− s

)
|V (k, n)|2

}
ds

+ OL∞([0,T ],l1)

(
ε1−2µ

)
. (3.20)

Now, the delayed term ρd(t− ε2s) reads

ρd(t− ε2s, n) = ρd(t, n) + O
(
ε2s ‖∂tρd(·, n)‖L∞([0,T ])

)
.

Thus, Eq. (3.20) yields, using the shorter expressions defined in Notation 1.5,

∂tρd(t, n) =
(
Ψε(t/ε2)] ρd

)
(t, n)

+ (W] ρd)(t, n) + OL∞([0,T ],l1)

(
ε1−2µ

)
+ rε(t, n), (3.21)
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where the remainder rε can be estimated by

‖rε‖L∞([0,T ],l1) ≤ C‖∂tρd‖L∞([0,T ],l1)

∥∥∥∥ε2

∫ +∞

0

s exp(Ωε(n, m)s) ds

∥∥∥∥
l∞n,m

≤ Cε2−2µ‖∂tρd‖L∞([0,T ],l1)

≤ Cε2−2µε−µ‖ρd‖L∞([0,T ],l1) thanks to Eqs (3.21) and (3.16)

≤ Cε2−3µ.

Including this new estimate in Eq. (3.21), Proposition 3.1 follows from

∂tρd(t, n) = ((Ψε)] ρd) (t, n) + (W] ρd)(t, n) + OL∞([0,T ],l1)

(
ε1−2µ + ε2−3µ

)
.

3.2. Time averaging of transition rates

Proposition 3.1 reduces the problem to the analysis of an ODE with fast oscillating
coefficients. In this section we integrate out the oscillations of Ψε(t/ε2), using av-
eraging techniques (see e.g. [SV85]). As in [BFCD03], a crude averaging procedure
in Eq. (3.15) would actually destroy the specific structure of the equations (rate
equations), on which all our a priori estimates are based. This is why the simple
but crucial remark that leads from Proposition 3.1 to Theorem 1.1 is the fact that
the entries of 〈Ψε〉 are non-negative. As a counterpart, this remark strongly relies
on the specific form of the wave, and this is the reason why we restrict to the case
of a quasiperiodic wave in all this paper (the result might be false otherwise).

The proof goes as follows. First, we observe the following

Lemma 3.1. For any ε > 0, operator 〈Ψε〉] is a bounded non-positive operator on
the Hilbert space l2. In particular, the exponential exp(t〈Ψε〉]) is well defined as an
operator on l2 for t ≥ 0, and its norm is less than 1, for all t ≥ 0.

(See Appendix 7.1, Lemma 7.1 for the proof).
Second, using the explicit value of the wave φ(t), we compute from Eq. (3.15)

the time-dependent transition rate Ψε:

Ψε

(
t

ε2
, k, n

)
= 2|V (n, k)|2Re

∑
α,β∈Zr

φαφβ exp
(

i(α + β) · ω t

ε2

)

×
1− exp

(
[−εµγ(k, n)− i(ω(k, n) + β · ω + δε(k, n))]t/ε2

)
εµγ(k, n) + i(ω(k, n) + β · ω + δε(k, n))

. (3.22)

We are now in position to perform the averaging procedure, which leads to replacing

the transition rate Ψε(t/ε2) by its mean value 〈Ψε〉(k, n) := lim
T→+∞

1
T

∫ T

0

ds Ψε(s).

First step: splitting of Ψε into an average, and an oscillating value

Theorem 1.1 amounts to estimating the difference ∆(t) := ρd(t)−ρ
(1)
d (t). Eq. (3.15)
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and Eq. (3.22) can be cast as

∂tρd(t) =

(
Ψε

(
t

ε2

)
]

ρd

)
(t) + (W] ρd)(t) + O

(
ε1−2µ

)
,

∂tρ
(1)
d (t) =

(
〈Ψε〉] ρ

(1)
d

)
(t) +

(
W] ρ

(1)
d

)
(t).

Hence the difference ∆(t) satisfies the equation

∂t∆(t) = (〈Ψε〉] ∆)(t) +

(
Ψosc

ε

(
t

ε2

)
]

ρd

)
(t) + (W] ∆)(t) + O(ε1−2µ), (3.23)

where Ψosc
ε

(
t

ε2
, k, n

)
:= Ψε

(
t

ε2
, k, n

)
− 〈Ψε〉(k, n) contains the oscillatory con-

tribution to the transition rate, which we want to prove to be negligible. Gathering
the terms for which α + β = 0, this contribution is equal to

Ψosc
ε

(
t

ε2
, k, n

)
=

2|V (n, k)|2Re

(
−
∑
β∈Zr

|φβ |2

εµγ(k, n) + i(ω(k, n) + β · ω + δε(k, n))

× exp
(

[−εµγ(k, n)− i(ω(k, n) + β · ω + δε(k, n))]
t

ε2

)
+

∑
α6=−β∈Zr

φαφβ exp(i(α + β) · ωt/ε2)
[εµγ(k, n) + i(ω(k, n) + β · ω + δε(k, n))]

(3.24)

×
[
1− exp

(
[−εµγ(k, n)− i(ω(k, n) + β · ω + δε(k, n))]

t

ε2

)])
.

This expression carries “time-oscillations” (at frequency ε−2+µ at least), which kill
the possibly diverging factors ε−µ (due to the denominators), and make them of
size ε2−2µ, as we show now.

Second step: preliminary bounds

Since V ∈ l∞n l1k ∩ l∞k l1n and
∑

β |φβ |2 < ∞, we first find that

‖〈Ψε〉(k, n)‖l∞k l1n∩l∞n l1k
≤ Cε−µ, ‖Ψosc

ε (t/ε2, k, n)‖l∞k l1n∩l∞n l1k
Cε−µ‖u‖l2 ,

for some C > 0 that does not depend on t and ε, which yields

‖〈Ψε〉] u‖l2 ≤ Cε−µ‖u‖l2 ,
∥∥∥Ψosc

ε ] u
∥∥∥

l2
≤ Cε−µ‖u‖l2 . (3.25)

Now, according to Eq. (3.24), Ψosc
ε (t, k, n) is a sum of two different terms. We use

the decay assumptions on V and φβ to estimate the contribution of the first term
by

C

∥∥∥∥∥∥
∑

β

|V (n, k)|2 |φβ |2

|εµγ(k, n) + i(ω(k, n) + β · ω + δε(k, n)|2)

∥∥∥∥∥∥
l∞n l1k∩l∞k l1n

≤ Cε−2µ.
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The second contribution is estimated by

C

∥∥∥∥∥∥
∑

α+β 6=0

|V (n, k)|2|φα||φβ |
|εµγ(k, n) + i(ω(k, n) + β · ω + δε(k, n))|

· 1
|(α + β) · ω|

∥∥∥∥∥∥
l∞n l1k∩l∞k l1n

+ C

∥∥∥∥∥∥
∑

α+β 6=0

|V (n, k)|2|φα||φβ |
|εµγ(k, n) + i((α + β) · ω + δε(k, n))|2

∥∥∥∥∥∥
l∞n l1k∩l∞k l1n

≤ Cε−µ
∑
α,β

|φα||φβ ||α + β|r−1+η + Cε−2µ
∑
α,β

|φα||φβ |

≤ Cε−2µ,

thanks to the Diophantine estimate (Hypothesis 1), together with Hypothesis 3.
This yields

sup
0≤t≤T

∥∥∥∥∥
∫ t/ε2

0

ds Ψosc
ε (s, k, n)

∥∥∥∥∥
l∞n l1k∩l∞k l1n

≤ Cε−2µ. (3.26)

Third step: integral form of the equations, and final estimates

Since ∆(0) = 0, the integral form for Eq. (3.23) governing ∆(t) reads ∆(t) :=
∆(1)(t) + ∆(2)(t), where

∆(1)(t) =
∫ t

0

ds exp([t− s]〈Ψε〉])Ψosc
ε

( s

ε2

)
]

ρd(s),

∆(2)(t) =
∫ t

0

ds exp([t− s]〈Ψε〉])
(
(W] ∆)(s) + O(ε1−2µ)

)
.

Lemma 3.1 gives the uniform boundedness of exp (t〈Ψε〉]), so that

‖∆(2)(t)‖l2 ≤ C

(
ε1−2µ +

∫ t

0

ds ‖∆(s)‖l2

)
. (3.27)

On the other hand, to take advantage of the time oscillations of the operator
Ψosc

ε (t/ε2), we carry out the natural integration by parts in the expression for ∆(1):

∆(1)(t) = ε2

(∫ t/ε2

0

duΨosc
ε (u)

)
]

ρd(t)

+ ε2

∫ t

0

ds exp([t− s]〈Ψε〉])〈Ψε〉]

(∫ s/ε2

0

duΨosc
ε (u)

)
]

ρd(s)

− ε2

∫ t

0

ds exp([t− s]〈Ψε〉])

(∫ s/ε2

0

duΨosc
ε (u)

)
]

×
(
〈Ψε〉+ Ψosc

ε

( s

ε2

)
+ W + O(ε1−2µ)

)
]

ρd(s),
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where we have used Eq. (3.15) to express ∂tρd(s). We deduce

‖∆(1)‖L∞([0,T ],l2) ≤ Cε2−µ sup
0≤t≤T

∥∥∥∥∥
∫ t/ε2

0

ds Ψosc
ε (s)

∥∥∥∥∥
L(l2)

‖ρd‖L∞([0,T ],l2).

Besides, from ‖ρd‖L∞([0,T ],l2) ≤ ‖ρd‖L∞([0,T ],l1) ≤ C, it follows that

‖∆(1)‖L∞([0,T ],l2) ≤ Cε2−µ sup
0≤t≤T

∥∥∥∥∥
∫ t/ε2

0

ds Ψosc
ε (s)

∥∥∥∥∥
L(l2)

≤ Cε2−µ sup
0≤t≤T

∥∥∥∥∥
∫ t/ε2

0

ds Ψosc
ε (s, k, n)

∥∥∥∥∥
l∞n l1k∩l∞k l1n

≤ Cε2−3µ.

This, together with estimate (3.27), and Gronwall lemma, yields ‖∆(t)‖L∞([0,T ],l2) ≤
Cε1−2µ, and Theorem 1.1-(i) is proved.

4. Proof of Theorem 1.1, part (ii)

In this section we prove that the non-resonant contributions, which correspond
to the triples (n, k, β) such that ω(k, n) + β · ω 6= 0 in the transition rate (1.6),
are negligible in the limit ε → 0. We therefore replace the transition rate 〈Ψε〉 by a
purely resonant (or “dominant”) transition rate 〈Ψε〉dom. Due to small denominator
problems, we need to reinforce the decay assumptions on the coefficients and assume
Hypothesis 4 and 5 hold.

To prove Theorem 1.1-(ii), we have to understand the effect of a perturbation on
Diophantine estimates. Lemma 4.1 below answers this problem. It is the key result
of this section, and gives us the tool to avoid hard arithmetic problems linked to
small denominators. The ultraviolet cutoff procedure attached with this Lemma is
then performed in section 4.2.

4.1. Perturbed Diophantine estimates

Lemma 4.1. If ω and ω(n, k) satisfy the Diophantine condition (2.10) and Hypoth-
esis 2 with constants η and Cη, then the following assertion holds. Let (n, k, β) ∈
N× N× Zr satisfy

|β · ω + ω(n, k) + δε(n, k)| ≤ 1
2

Cη

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
,

then (with p = infn p(n))

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η ≥ Cηε−p

4|δ|l∞
.

Remark. In other words, those coefficients ω(n, k) + εpδ(n, k), that are capable of
violating the Diophantine condition (2.10), are necessarily associated with values of
the triple (n, k, β) which are very large when ε → 0.
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Proof.
Set K = Cη/2 and take (n, k, β) such that

|β · ω + ω(n, k) + δε(n, k)| ≤ K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
.

Then

|β · ω + ω(n, k)| − |δε(n, k)| ≤ K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
,

and according to condition (2.10) (or Hypothesis 2, when β = 0)

2K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
− |δε(n, k)|

≤ K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
.

Hence

K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
≤ |δε(n, k)| ≤ 2εp|δ|l∞ ,

which ends the proof of Lemma 4.1.

4.2. Proof of the main theorem: the ultra-violet cutoff procedure

First step: Integral formulation

Our task is to estimate the difference ∆(t) = ρ
(2)
d (t) − ρ

(1)
d (t), where ρ

(2)
d (t) and

ρ
(1)
d (t) are respectively solution to

∂tρ
(2)
d (t) =

(
〈Ψε〉dom

] ρ
(2)
d

)
(t) +

(
W] ρ

(2)
d

)
(t),

∂tρ
(1)
d (t) =

(
〈Ψε〉] ρ

(1)
d

)
(t) +

(
W] ρ

(1)
d

)
(t),

Hence

∂t∆(t) = (〈Ψε〉] ∆)(t) +
(
〈Ψε〉neg

] ρ
(2)
d

)
(t) + (W] ∆)(t). (4.28)

Here, the transition coefficient

〈Ψε〉neg(k, n) = 〈Ψε〉dom(k, n)− 〈Ψε〉(k, n)

contains the contributions to the transition rate, that we want to prove to be neg-
ligible. Since ∆(0) = 0 the integral form for (4.28) reads

∆(t) =
∫ t

0

ds exp([t− s]〈Ψε〉)
(
〈Ψε〉neg

] ρ
(2)
d

)
(s)

+
∫ t

0

ds exp([t− s]〈Ψε〉)(W] ∆)(s).
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Second step: Estimating 〈Ψε〉neg

In view of Eqs (1.6) and (1.8), we have

‖〈Ψε〉neg‖l∞n l1k∩l∞k l1n
=

sup
n

∑
k,β; ω(n,k)+β·ω 6=0

2|V (n, k)|2εµγ(k, n)|φβ |2

ε2µγ(k, n)2 + |ω(k, n) + β · ω + δε(k, n)|2
.

We split this expression into two contributions according to the fact that

|β · ω + ω(n, k) + δε(n, k)| ≥ 1
2

Cη

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
,

or not. Using Lemma 4.1 for the second contribution, we obtain

‖〈Ψε〉neg‖l∞n l1k∩l∞k l1n
≤ sup

n

{ ∑
k,β; ω(n,k)+β·ω 6=0

4|V (n, k)|2εµγ(k, n)|φβ |2

Cη

× (1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η

+
∑

k,β; ω(n,k)+β·ω 6=0

1
[
(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η ≥ Cε−p

]
× 2|V (n, k)|2ε−µ|φβ |2

γ

}
.

The first sum is estimated using Hypotheses 4, 2 and 5. The second term is first
multiplied and divided by the quantity [(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η]Nη .
Therefore we get

‖〈Ψε〉neg‖l∞n l1k∩l∞k l1n
≤ Cεµ

+ CεNηp−µ
∑
n,k,β

(
(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η

)Nη |V (n, k)|2|φβ |2.

Since we assumed that Nη > 2µ/p, we finally have ‖〈Ψε〉neg‖l∞n l1k∩l∞k l1n
≤ Cεµ.

Third step: Conclusion

Using Lemma 3.1 (non-positiveness of 〈Ψε〉) leads to

‖∆(t)‖l2 ≤ C‖〈Ψε〉neg‖L(l2)‖ρ
(2)
d ‖L∞([0,T ],l2) + C

∫ t

0

ds ‖∆(s)‖l2

≤ C‖〈Ψε〉neg(n, k)‖l∞n l1k∩l∞k l1n

[
‖∆‖L∞([0,T ],l2) + ‖ρ(1)

d ‖L∞([0,T ],l2)

]
+ C

∫ t

0

ds ‖∆(s)‖l2 .
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A by-product of Theorem 1.1-(i) is that the quantity ‖ρ(1)
d ‖L∞([0,T ],l2) can be esti-

mated by a constant. Therefore

‖∆(t)‖l2 ≤ C‖〈Ψε〉neg(n, k)‖l∞n l1k∩l∞k l1n
(1 + ‖∆‖L∞([0,T ],l2)) + C

∫ t

0

ds ‖∆(s)‖l2

≤ Cεµ(1 + ‖∆‖L∞([0,T ],l2)) + C

∫ t

0

ds ‖∆(s)‖l2 .

Thanks to the Gronwall lemma, we recover ‖∆‖L∞([0,T ],l2) ≤ Cεµ, and Theorem 1.1-
(ii) is proved.

5. Proof of Theorem 1.2: time-layers and limiting dynamics

In all this section we assume N < ∞. We derived in Theorem 1.1 the rate equation
(1.9) on ρ

(2)
d , with the (modified) transition rates

Wmod
ε (n, m) = 〈Ψε〉dom(n, m) + W (n, m).

For a fixed ε, the underlying dynamics is standard (see Appendix 7.1). However, in
most cases, the coefficients become singular as ε → 0. Therefore the time evolution
of the solution obeys two different regimes as ε goes to zero: first a time-layer, and
then relaxation to a slow, asymptotic dynamics. This is what we prove now.

5.1. Setting for the time-layer

We split 〈Ψε〉dom(n, m) into different contributions according to the size of δε(n, m).
To simplify notations, we set

C(n, m) = 2|V (n, m)|2
∑

β∈Zr; ω(n,m)+β·ω=0

|φβ |2.

Now, observe that for given indices n, m, as ε → 0, either δε(n, m) ≡ 0, or δε(n, m) ∼
δ(n, m)εq(n,m) with δ(n, m) 6= 0 and

q(n, m) = min(p(n), p(m)) (q(n, m) := ∞ when δε(n, m) ≡ 0). (5.29)

Then we have the fairly natural decomposition

〈Ψε〉dom(n, m) =
J∑

j=0

ε−νj Bε
j (n, m),

where Bε
0 accounts for the asymptotically unperturbed rates, and the other Bε

j ’s
take care of the perturbed ones, with decreasing strength of the singularity ε−νj .
More precisely, we first define

ν0 = µ, Bε
0(n, m) =

C(n, m) γ(n, m)
γ(n, m)2 + ε−2µδε(n, m)2

1[q(n, m) > µ].
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Then we take (qj)1≤j≤J as the distinct, decreasing ordered values of the remaining
q(n, m)’s, and for each j ≥ 1, we set

νj = 2qj − µ, Bε
j (n, m) =

C(n, m) γ(n, m)
ε2(µ−qj)γ(n, m)2 + ε−2qj δε(n, m)2

1[q(n, m) = qj ] .

With the above notations, we clearly have, for all j, Bε
j → B0

j in l∞l1, as ε → 0 (and

therefore also as an operator on l2). Also, Eq. (1.9) governing ρ
(2)
d reads accordingly

∂tρ
(2)
d =

 J∑
j=0

ε−νj Bε
j + W


]

ρ
(2)
d . (5.30)

Using the block decomposition described in Appendix 7.1, we notice the important
fact that for all j, the kernel of Bε

j is constant:

∀ε ≥ 0 , Ker(Bε
j ) = Ker(B0

j ).

In the remainder part of this section, we exploit this decomposition of 〈Ψε〉dom

to describe completely the limiting dynamics of ρ
(2)
d , solution to (5.30). Since the

non-singular perturbations ε−νj Bε
j for νj < 0 have no influence on the dynamics

for times O(1), when νJ < 0, we define I such that

µ = ν0 > · · · > νI > 0 = νI+1 > · · · > νJ .

5.2. A finite dimensional lemma

Lemma 5.1. Let ν0 > · · · > νI > 0 > νI+2 > · · · > νJ . For each j, let Bε
j ∈

MN (R) be a symmetric non-positive matrix such that Bε
j → B0

j , and assume that
Ker(Bε

j ) is constant for ε ≥ 0. Let Π be the orthogonal projection onto ∩j≤IKerB0.
Then there exists a constant c > 0 and ε0 > 0, such that any non-zero eigenvalue
λε of (1−Π)(

∑
j ε−νj Bε

j )(1−Π) satisfies

λε ≤ −cε−νI , ∀ε ∈]0, ε0].

Proof. Let λε be such an eigenvalue, and xε ∈ Range(1−Π) an associated eigen-
vector of

∑
j ε−νj Bε

j with norm one. We simply estimate, using the nonpositivity
of the Bε

j ,

ενI λε‖xε‖2 =

∑
j

ενI−νj Bε
j

xε, xε

 ≤
I∑

j=0

(Bε
j xε, xε) + o(1).

On the other hand, up to extracting a subsequence of xε converging to x0, we have
the convergence (Bε

j xε, xε) → (B0
j x0, x0) for all j. Hence any number c such that

c < min‖x‖≤1,Πx=0(−(
∑I

j=0 B0
j )x, x) gives the upper bound λε ≤ −cε−νI , for ε

small enough.
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As an immediate consequence of Lemma 5.1, we obtain

Lemma 5.2. Let ν0 > · · · > νI > νI+1 = 0 > νI+2 > · · · > νJ . For each j, let
Bε

j ∈MN (R) be a symmetric matrix such that Bε
j → B0

j , and assume that Ker(Bε
j )]

is constant for ε ≥ 0. Let Π be the orthogonal projection onto ∩j≤IKer(Bε
j )]. If y

is solution to

∂ty =

 J∑
j=0

ε−νj Bε
j + W


]

y

and if z is solution to

∂tz = Π(B0
I+1)] Πz, z(0) = Πy(0), (5.31)

then we have the error estimates

‖(1−Π)y‖ ≤ C(ενI + exp(−ctε−νI )), (5.32)

‖Π(y − z)‖ ≤ C(ενI + exp(−ctε−νI ) + ‖Bε
I+1 −B0

I+1‖+ ενI+2), (5.33)

where C depends on the B0
j ’s, y(0), T and c (the constant of Lemma 5.1).

Proof. Simply observe that ∂t(1 − Π)y = (
∑I

j=0 ε−νj Bε
j )] (1 − Π)y + (1 −

Π)(Bε
I+1)] y + o(‖y‖), from which we deduce

‖(1−Π)y‖ ≤ exp(−ctε−νI )‖y(0)‖+ C

∫ t

0

ds exp(−(t− s)cε−νI )‖y(s)‖.

This establishes (5.32). To prove (5.33), write ∂tΠ(y − z) = Π(B0
I+1)] Π(y − z) +

Π(Bε
I+1 −B0

I+1)] Πy + Π(Bε
I+1)] (1−Π)y + Π

∑
j≥I+2(B

ε
j )] y.

5.3. Proof of Theorem 1.2

Lemmas 5.1 and 5.2, together with the splitting obtained in section 5.1, imply
Theorem 1.2. We simply explain here the different cases summarized in Table 1.
Note that in the framework of [BFCD03] the Bε

j ’s are identically zero for j ≥ 1
(and q = ∞ in the discussion below).

(i) Case when µ = 0. This case plays a special role, since we have to use the
transition rates 〈Ψε〉 of Theorem 1.1-(i) then. We have

〈Ψε〉(n, m) = 2|V (n, m)|2
∑
β∈Zr

γ(n, m)
γ(n, m)2 + |ω(n, m) + β · ω + εpδ(n, m)|2

|φβ |2.

Hence at leading order, we have ρd = ρ
(3)
d , where

∂tρ
(3)
d = (〈Ψ0〉+ W )] ρ

(3)
d , ρ

(3)
d (0) = ρd(0),

and 〈Ψ0〉(n, m) = 2|V (n, m)|2
∑

β∈Zr

γ(n, m)
γ(n, m)2 + |ω(n, m) + β · ω|

|φβ |2.
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(ii) Case when µ > 0: the remaining cases depend on the value of
q:=infn,m q(n, m) (see (5.29)), which fixes the possible values of the coefficients.

• When q > µ, the transition rates satisfy 〈Ψε〉dom(n, m) ∼ε−µC(n, m)/γ(n, m).
The size of the time layer (which is εµ), the value of the projector Π, and the limit
transition rates W (n, m), are the same as in the unperturbed case q = ∞.

• When q = µ, the value of the transition rates is modified, since

for qj = µ, B0
j (n, m) =

C(n, m) γ(n, m)
γ(n, m)2 + δ(n, m)2

1[q(n, m) = µ].

• When q ∈]µ/2, µ[, Eq. (5.30) really involves at least three different time scales
(εµ, ενJ , and 1), and another value of the transition rates is allowed,

for qj ∈ [µ/2, µ[, B0
j (n, m) =

C(n, m) γ(n, m)
δ(n, m)2

1[q(n, m) = µ].

• When q = µ/2, in addition, the contribution of B0
j for j = J competes with

that of W , since the corresponding νj is zero. The limit transition rates are thus
modified (W is replaced by W + B0

I+1), as well as the projector Π (Ker(B0
j )] is not

included then).
• When q decreases below µ/2, parts of 〈Ψε〉dom asymptotically vanish (and this

also modifies Π): those for which νj = 2qj−µ < 0. Hence for small values of q(n, m)
compared to µ, two almost degenerate levels n and m for which δε(n, m) 6= 0 are
already too far apart to resonate with the wave.

6. The infinite dimensional case

In this section, we give partial extensions of Theorem 1.2 in the case N = +∞.
The main point is Proposition 6.1, which allows to measure the error made in the
infinite dimensional system when retaining only finitely many levels. Second, we
give a result analogous to Theorem 1.2 for some range of the exponants µ and p.

6.1. Restriction to a finite number of levels

Consider a solution ρ to Bloch equations (1.1) with initial datum ρ(0), and infinitely
many quantum levels. For any given N ∈ N, define πN as the projection on the space
CN2

of infinite matrices onto the space of N ×N matrices, by

(πNu)(n, m) := u(n, m)1[n, m < N ].

To ρ, we then associate the N -level truncated system (6.34),

ε2∂tρ
N (t, n,m) = −iωε(n, m)ρN (t, n,m) + (πNQε)(ρN )(n, m)

+ iε
∑
k<N

[
φ

(
t

ε2

)
V (n, k)ρN (t, k,m)− φ

(
t

ε2

)
V (k,m)ρN (t, n, k)

]
. (6.34)
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with initial datum ρN (0) naturally defined as

ρN (0) := πNρ(0).

We prove below that the dynamics of ρ (the system with infinitely many energy
levels) may be approximated by that of ρN , uniformly in time, upon taking N large
enough. As a consequence, when ε → 0, the dynamics of ρ resembles that of ρ

N,(2)
d ,

the solution to the truncated system obtained from Eq. (1.9):

∂tρ
N,(2)
d = (πN 〈Ψε〉dom + πNW )] ρ

N,(2)
d , ρ

N,(2)
d (0) = πNρ(0). (6.35)

Proposition 6.1. Under Hypotheses 1 to 6, for all ν, T, ε > 0, there exists an
integer N such that,

if ‖(1− πN )ρ(0)‖l2 ≤ ν, then ‖ρ− ρN‖L∞([0,T ],l2) ≤ 2ν + C(εµ + ε1−2µ),

where C = C(T ) is the constant from Theorem 1.1, and N has the form

N = N0(ν, T )ε−
µ

(1+η)Nη ,

with η and Nη given by Hypotheses 1 and 4.
If, in addition, no resonance occurs between the wave and high energy levels (i.e.

there exists M ∈ N such that, when min(n, k) > M , the set {β ∈ Zr; ω(n, k)+β ·ω =
0} is empty), then N has the form N = N0(ν, T ), uniformly with respect to ε.

Proof. Theorem 1.1 applies for both the infinite and the finite number of levels
problems, therefore

‖ρ− ρ
(2)
d ‖L∞([0,T ],l2) ≤ C(εµ + ε1−2µ),

‖ρN − ρ
N,(2)
d ‖L∞([0,T ],l2) ≤ C(εµ + ε1−2µ).

We only need to estimate the difference ∆ := ρ
(2)
d − ρ

N,(2)
d , which is solution to

∂t∆ =
(
〈Ψε〉dom + W

)
]

∆ +
(
〈Ψε〉dom − 〈Ψε〉dom,N

)
]

ρ
N,(2)
d +

(
W − πNW

)
]

ρ
N,(2)
d .

Thanks to the non-positiveness property of the operators associated with 〈Ψε〉dom

and W , an integral formulation leads to

‖∆‖L∞([0,T ],l2)

≤ C
(
‖(1− πN )ρ(0)‖l2 + ‖

(
〈Ψε〉dom − πN 〈Ψε〉dom

)
]

ρ
N,(2)
d ‖L∞([0,T ],l2)

+ ‖
(
W − πNW

)
]

ρ
N,(2)
d ‖L∞([0,T ],l2)

)
≤ C

(
‖(1− πN )ρ(0)‖l2 + ‖〈Ψε〉dom − πN 〈Ψε〉dom‖l∞k l1n∩l∞n l1k

+ ‖W − πNW‖l∞k l1n∩l∞n l1k

)
.
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The first term goes to zero as N goes to infinity simply because the initial datum
ρ(0) is in l2. The third one reads

sup
n>N

∑
k

|W (n, k)|+ sup
n

∑
k>N

|W (n, k)|+ sup
k>N

∑
n

|W (n, k)|+ sup
k

∑
n>N

|W (n, k)|

≤ C

(
sup
n>N

∑
k

|W (n, k)|+ sup
n

∑
k>N

|W (n, k)|

)

≤ CN−K

(
sup
n>N

∑
k

(1 + n)K |W (n, k)|+ sup
n

∑
k>N

(1 + k)K |W (n, k)|

)
≤ CN−K ,

thanks to Hypothesis 6. Thus, this term is also o(1) uniformly with respect to ε as
N goes to infinity. Finally, taking into account the fact that 〈Ψε〉dom is symmetric,
the second term is

2

(
sup
n>N

∑
k

|〈Ψε〉dom(n, k)|+ sup
n

∑
k>N

|〈Ψε〉dom(n, k)|

)
≤ Cε−µ sup

n>N

∑
k

∑
β; ω(n,k)+β·ω=0

|φβ |2|V (n, k)|2

≤ Cε−µN−(1+η)Nη sup
n>N

∑
k

(1 + n)(1+η)Nη

∑
β; ω(n,k)+β·ω=0

|φβ |2|V (n, k)|2

≤ Cε−µN−(1+η)Nη ,

which vanishes in fact when no resonance occurs between the wave and high energy
levels. Else, we obtain a o(1) as ε goes to zero under the condition N � ε−µ/Nη(1+η).

6.2. A version of Theorem 1.2

In the infinite dimensional case, adopting the strategy of Section 5 above, the con-
vergence of Bε towards B0 is not sufficient to conclude. In this paragraph however,
we use series expansions when they only include one non-positive order in ε, i.e.
when

〈Ψε〉dom + W = ε−νA + o(1),

for some A and ν. In this case, we consider at leading order the solution ρ
(5)
d of

∂tρ
(5)
d = ε−νA] ρ

(5)
d . (6.36)

Clearly, Eq. (6.36)) defines an approximate solution in that Gronwall’s Lemma
ensures

‖ρd − ρ
(5)
d ‖L∞([0,T ],l2) = o(1).

Now, we list the cases where such an homogeneous rate operator occurs, restricting
the discussion to µ > 0 for simplicity: all such cases anyhow require W = 0.
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• Case when µ < p. Series expansion yields

〈Ψε〉dom(n, m) = ε−µ C(n, m)
γ(n, m)

+ O(ε2p−3µ),

and the above discussion allows to conclude if 2p− 3µ > 0.
• Case when µ = p. No series expansion is needed and we have exactly

〈Ψε〉dom(n, m) = ε−µ C(n, m)γ(n, m)
γ(n, m)2 + δ(n, m)2

.

• Case when µ > p. Series expansion leads to

〈Ψε〉dom(n, m) = ε−µ C(n, m)
γ(n, m)

1(δ(n, m) = 0)

+ ε−(2p−µ) C(n, m)γ(n, m)
δ(n, m)2

1(δ(n, m) 6= 0) + O(ε3µ−4p).

We can conclude in two cases: either δ(n, m) is always nonzero, µ > 4
3p. In this case

ν = 2p− µ. Or µ > 2p and ν = µ.

7. Appendix

7.1. Relaxation operators

In this section, we give (more or less) standard lemmas concerning the general rate
equation

∂tρd(t) = A] ρd(t) . (7.37)

7.1.1. Continuity and non-positiveness

Lemma 7.1. Let A(n, m) ∈ l∞n l1m ∩ l∞m l1n.
(i) Its associated operator A] is bounded on the spaces lq, 1 ≤ q ≤ ∞, and

‖A] u‖lq ≤ ‖A(n, m)‖l∞n l1m∩l∞m l1n
‖u‖lq .

Similarly if u ∈ lqn,m(N× N), we have∥∥∥∥∥∑
k

A(n, k)u(k,m)−A(k,m)u(n, k)

∥∥∥∥∥
lqn,m

≤ ‖A(n, m)‖l∞n l1m∩l∞m l1n
‖u(n, m)‖lqn,m

.

(ii) If in addition A(n, m) ≥ 0, then for all positive integer N , the spectrum of
the restriction of A] to RN is contained in {Reλ < 0} ∪ {0}.

(iii) If A(n, m) ≥ 0 is symmetric, A] is non-positive on l2, and the exponential
exp(tA]) is well defined as an operator on l2 when t ≥ 0. Its norm is 1.

Proof.
(i) For q = ∞ or q = 1, the result is immediate. The remaining cases are

obtained by interpolation.
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(ii) The localization of the eigenvalues of A] is obtained via the Hadamard-
Gerschgorin method applied to M := tA] = tA], whose eigenvalues are the con-
jugates of those of A]: if λ is an eigenvalue of M , there exists an index n such
that

|λ−M(n, n)| ≤
∑
m6=n

|M(n, m)|.

Remarking that for m 6= n, M(n, m) = A](m,n) ≥ 0, and M(n, n) =
−
∑

m6=n M(n, m), the conclusion is straightforward.
(iii) In the symmetric case, compute for all u ∈ l2,

(A] u, u) =
∑

n

∑
m6=n

A](n, m)u(m)u(n) +
∑

n

A](n, n)u(n)2

≤ 1
2

∑
n

∑
m6=n

A](n, m)(|u(m)|2 + |u(n)|2)−
∑

n

∑
m6=n

A](m,n)u(n)2 = 0.

The norm of exp(tA]) is 1 on l2 for t > 0 because A] has a non-trivial kernel (see
below).

7.1.2. Convergence to equilibrium

We define the asymptotic state ρ associated with Eq. (7.37) and with the initial
datum ρ(0), the limit (in l1), if it exists, of the solution ρd(t) to Eq. (7.37) with the
initial value ρ(0) as t goes to infinity. Such an asymptotic state necessarily belongs
to the kernel of A]. For that reason, we study the kernel of operators A] modelled
on W]. To do so, we require that the –finite or infinite– matrix A, written in the
eigenstates basis e = (e1, e2, . . . ), should have the following property (P).

A(m,n) = 0 ⇔ A(n, m) = 0. (P)

Such an assumption is clearly satisfied by the coefficients W of the introduction (see
(1.4)): a vanishing column in A] corresponds to a vanishing line, and conversely.

For such a matrix, it is possible to split A] into irreducible blocks, as follows:
each block is built up upon retaining the coefficients AL

] := {(A])(n, m)}n,m∈L,
where L is some subset of indices, characterized by the property

m ≤ n ∈ L ⇔ ∃m =: m1 ≤ · · · ≤ ms := n, such that

mj ∈ L for all j = 1, . . . , s

and A](mj ,mj+1) 6= 0 for all j = 1, . . . , s− 1.

(this is the irreducibility property of the Perron-Frobenius theorem). Under these
circumstances, the kernel of A] is simply the direct sum of the kernels of all the
irreducible blocks AL

] . More precisely, the Perron-Frobenius theorem, together with
the positivity property of Lemma 7.1, immediately imply the

Proposition 7.1. Let A(m,n) ∈ l∞m l1n ∩ l∞n l1m satisfy property (P). Assume
A(m,n) ≥ 0 when m 6= n. In addition, suppose that the above decomposition of
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A] only involves finite dimensional irreducible blocks AL
] . Then, each irreducible

block AL
] has a one-dimensional kernel.

As a corollary, for each initial datum ρ(0) ∈ l1 satisfying Eq. (1.2), there is a unique
asymptotic state ρ, i.e. an element of l1 ∩ KerA] that satisfies the additional trace
constraint ∑

n∈L

ρ(n) =
∑
n∈L

ρ(0, n), (7.38)

whenever AL
] := {(A])(m,n)}m,n∈L is an irreducible block of A].

Proof. Simply observe that the vector
∑

n∈L en belongs to the kernel of tAL
] .

Then, the positivity property of Lemma 7.1 and the Perron-Frobenius Theorem
immediately imply that 0 is the largest eigenvalue of AL

] : it has thus multiplicity
one.

In the case when A] possesses an infinite dimensional irreducible block, propo-
sition 7.1 becomes false. We have the

Proposition 7.2. Consider A(m,n) ∈ l∞m l1n ∩ l∞n l1m satisfying property (P),
A(m,n) ≥ 0 when m 6= n, and either symmetric, or in Pauli form (relation (1.4)).
Suppose that there exists an irreducible block AL

] that has infinite dimension. Then,
the kernel of A]

L, as an operator on l1, is {0}.
As a corollary, for any initial datum ρ(0) such that the sequence {ρ(0, n)}n∈L is

non-identically zero, there is no asymptotic state ρ, i.e. no element ρ ∈ l1 ∩KerA]

that satisfies the trace constraint (7.38).

Proof. We have

u ∈ KerAL
] ⇔ tu ∈ Ker tAL

] in the symmetric case,

⇔
(

u(n) exp
(

ω(n)
T

)
; n ∈ L

)
∈ Ker tAL

] in the “Pauli” case.

Since we have the bounds

0 < exp
(

ω(1)
T

)
≤ exp

(
ω(n)
T

)
≤ exp

(ωionisation

T

)
for all n, this correspondence preserves the summability property. Finally, the proof
of Proposition 7.1 shows that the kernel of tAE

] in l1 is {0}. This gives the result.

Remark. In the symmetric case (when A(m,n) = A(n, m)), according to
Lemma 7.1, the l2-norm of the solution ρd to Eq. (7.37) is decreasing in time;
thus, it tends to a certain value r ≥ 0. This means that ρd approaches a limit cycle
in l2 belonging the intersection of the sphere ‖ρd‖l2 = r and the hyperplane where
the l1-norm is one (assuming for simplicity that there is no strict A]-stable subspace
of l1). In this case, only weak convergence (to zero) can occur.
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7.2. Diophantine estimates

We show the genericity of Hypothesis 1.

Lemma 7.2. For all η > 0 and all real sequence ω(n, m), there exists a constant
Cη > 0, such that for almost all value of the frequency vector ω = (ω1, . . . , ωr),

∀α = (α1, . . . , αr) ∈ Zr \ {0}, ∀(n, k) ∈ N2 such that α · ω + ω(n, k) 6= 0,

|α · ω + ω(n, k)| ≥ Cη

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η
.

Proof. We follow the standard approach (see e.g. [AG91]). Restricting ω to a ball
B in Rr, we show that the measure of the set of “bad frequencies” violating the
inequality for all constant C is zero.

For η, c > 0, α ∈ Zr \ {0} and (n, k) ∈ N2 fixed, set

Bη,c
α,n,k :=

{
ω ∈ B; |α · ω + ω(n, k)| ≤ c

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η

}
.

This limitates ω in the direction of α. Introducing a constant K which depends on
the size of B only, we obtain

meas
(
Bη,c

α,n,k

)
≤ Kc

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η
.

Now, with η, c > 0 fixed, the measure of the set of frequencies for which the in-
equality is false at least for some (α, n, k) is less than the sum (over α, n and k) of
the ones above, and thus is O(c).
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