
On the weak solutions to the Maxwell-Landau-Lifshitz equations and to

the Hall-Magneto-Hydrodynamic equations

Eric Dumas∗Franck Sueur†‡

July 31, 2013

Abstract

In this paper we deal with weak solutions to the Maxwell-Landau-Lifshitz equations and to the
Hall-Magneto-Hydrodynamic equations. First we prove that these solutions satisfy some weak-strong
uniqueness property. Then we investigate the validity of energy identities. In particular we give a
sufficient condition on the regularity of weak solutions to rule out anomalous dissipation. In the case of
the Hall-Magneto-Hydrodynamic equations we also give a sufficient condition to guarantee the magneto-
helicity identity. Our conditions correspond to the same heuristic scaling as the one introduced by
Onsager in hydrodynamic theory. Finally we examine the sign, locally, of the anomalous dissipations of
weak solutions obtained by some natural approximation processes.
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1 Introduction

In this paper we consider two non stationary quasilinear systems of PDEs originating from two different
physical contexts, for which we develop a similar mathematical analysis. These systems are the Maxwell-
Landau-Lifshitz equations and the Hall-Magneto-Hydrodynamic equations. When studying the associated
Cauchy problem, weak solutions can be constructed, and they satisfy energy inequalities, which are equal-
ities if the solutions are smooth.

First we prove that these solutions satisfy some weak-strong uniqueness property. More precisely we
state that strong solutions are unique among the class of weak solutions. A key point here is precisely
that the weak solutions considered satisfy some energy inequalities.

Then we investigate, according to the regularity of solutions, if the energy inequalities are equalities,
or if some anomalous dissipation1 shows up during evolution. In order to prove that, under some regu-
larity assumption on a solution, no dissipation occurs, we essentially analyze the commutation between
regularization operators and nonlinearities. Of course energy identities rely on the particular structure
of the nonlinearities of the systems under study, and a regularization of the equations may destroy this
structure so that some cancellations arising in the formal operations leading to the energy identities are
not true anymore. For both equations only quadratic nonlinearities are involved, when the equations are
written in conservative form. In the case of the Hall-Magneto-Hydrodynamic equations we also consider
some helicity identities.

Finally we examine, locally, the sign of anomalous dissipations. One motivation here is that one expects
physical solutions effectively dissipate (and do not create) energy, globally as well as locally.

1.1 Presentation of the two systems

We start with a presentation of the two systems. In both cases we consider that the underlying physical
space is the three dimensional euclidian space R3.

• The Maxwell-Landau-Lifshitz equations (MLL for short), which describes the coupling be-
tween the electromagnetic field and a magnetizable medium, see [7] and [41] for Physics references:

∂tm = m× (∆m+H)−m×
(
m× (∆m+H)

)
, (1)

∂tH + curlE = −∂tm, (2)

∂tE − curlH = 0, (3)

divE = div(H +m) = 0. (4)

Here m(t, x) stands for the magnetic moment and takes values in the unit sphere S2 of R3, whereas
H(t, x) and E(t, x) are respectively the magnetic and electric fields.

• The Hall-Magneto-Hydrodynamic equations (HMHD for short) from Plasma Physics, see
[42]:

∂tu+ u · ∇u+∇p = (curlB)×B + ∆u (5)

div u = 0, (6)

∂tB − curl(u×B) + curl
(

(curlB)×B
)

= ∆B, (7)

divB = 0, (8)

1In this paper energy dissipation due to irregularity of a flow is called anomalous dissipation. As kindly indicated to us
by a referee in other contexts this term may also denote the absence of a singular limit of dissipation in long time behavior,
if the system is forced and damped. We hope that this will not lead to any confusion in the reader’s mind.
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where u(t, x) and B(t, x) are the fluid velocity and magnetic induction.

The paper [1] provides a derivation of this system from a two-fluid isothermal Euler-Maxwell system
for electrons and ions.

The system (5)-(8) is a variant of the following Magneto-Hydrodynamic system with resistance
and dissipation (MHD for short)

∂tu+ u · ∇u+∇p = (curlB)×B + ∆u, (9)

div u = 0, (10)

∂tB − curl(u×B) = ∆B, (11)

divB = 0. (12)

Let us stress that the only difference is that the system (5)-(8) contains an extra-term in the left-
hand-side of (7), curl

(
(curlB)×B

)
which takes the Hall effect into account. This effect is believed to

be the key for understanding the problem of magnetic reconnection which is involved in geomagnetic
storms and solar flares, see for instance [39]. The Hall effect has also been studied in connection
with the kinematic dynamo problem [34].

1.2 A few formal identities

In both cases existence of global weak solutions is known. We will recall precisely these results below, but
let us emphasize here and now that their proof uses in a crucial way some energy bounds. Indeed a few
formal computations lead to the following energy identities.

Energy identity for the MLL equations:

∀T > 0, EMLL(T ) +

∫ T

0
DMLL(t) dt = EMLL(0), (13)

where

EMLL(t) :=

∫
R3

(
|E|2(t, x) + |H|2(t, x) + |∇m|2(t, x)

)
dx and DMLL(t) :=

∫
R3

|∂tm|2(t, x) dx.

Energy identity for the MHD and HMHD equations:

∀T > 0, EMHD(T ) +

∫ T

0
DMHD(t) dt = EMHD(0) and EHMHD(T ) +

∫ T

0
DHMHD(t) dt = EHMHD(0), (14)

where we denote

EMHD(t) = EHMHD(t) :=
1

2

∫
R3

(
|u|2 + |B|2

)
(t, x) dx,

DMHD(t) = DHMHD(t) :=

∫
R3

(
| curlu|2 + | curlB|2

)
(t, x) dx.

These two formal identities can be justified when the solutions involved are smooth. However the weak
solutions alluded here are obtained as weak limits of smooth functions so that only an inequality can be
justified.

Another interesting quantity for the MHD and HMHD equations is the magneto-helicity

Hm(t) :=

∫
R3

(
B ·A

)
(t, x) dx,
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where A is a vector potential of B, that is a vector field satisfying curlA = B. Indeed since B is divergence
free the magneto-helicity is independent of the choice of the vector potential. In what follows we consider
the gauge choice divA = 0.

Magneto-helicity identity for the MHD and HMHD equations:

∀T > 0, Hm(T ) +

∫ T

0
Dm(t) dt = Hm(0), (15)

where

Dm(t) := 2

∫
R3

(
B · (curlB)

)
(t, x) dx.

Once again this formal identity can be justified for smooth solutions, but not for weak solutions, a
priori.

One may also consider the fluid helicity

Hf (t) :=

∫
R3

(
u · ω

)
(t, x) dx,

where ω := curlu denotes the vorticity of the fluid. One then has formally the following identity.

Fluid helicity identity for the MHD and HMHD equations:

∀T > 0, Hf (T ) +

∫ T

0
Df (t) dt = Hf (0), (16)

where

Df (t) := 2

∫
R3

(
ω ·
(
(B × curlB) + curlω

)
(t, x) dx.

In the case of the MHD system it is interesting to consider the crossed fluid-magneto-helicity:

Hfm(t) :=

∫
R3

(
B · u

)
(t, x) dx =

∫
R3

(
A · ω

)
(t, x) dx,

which satisfies formally the following identity.

Crossed fluid-magneto-helicity identity for the MHD equations:

∀T > 0, Hfm(T ) +

∫ T

0
Dfm(t) dt = Hfm(0), (17)

where

Dfm(t) := 2

∫
R3

(
ω ·
(
(B × curlB) + curlω

)
(t, x) dx.

Finally, in the case of the HMHD equations, a rather simple identity is obtained if one considers the
total fluid-magneto-helicity:

Hf+m(t) :=

∫
R3

(
u(t, x) +A(t, x)

)
·
(
ω(t, x) +B(t, x)

)
dx.
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Total fluid-magneto-helicity identity for the HMHD equations:

∀T > 0, Hf+m(T ) +

∫ T

0
Df+m(t) dt = Hf+m(0), (18)

where

Df+m(t) := 2

∫
R3

(
(ω +B) · curl(ω +B)

)
(t, x) dx.

1.3 A common structure

Let us emphasize that the identities (13)-(14)-(15)-(16)-(17)-(18) have the same form:

(E or H)(T ) +

∫ T

0
D(t) dt = (E or H)(0), (19)

where the terms E or H denote respectively various energies and helicities, and the term D can be inter-
preted as some “dissipation”, even if we do not claim anything about its sign in general at this point of
the paper.

Actually, these global identities are obtained by space-time integration from local identities of the form:

∂t(e or h) + d+ div f = 0, (20)

where the terms e, h and d denote respectively various energy, helicity and dissipation densities, and
f denotes some flux density. The global quantities E , H and D are then obtained from e, h and d by
integration in space, that is:

E(t) :=

∫
R3

e(t, x) dx, H(t) :=

∫
R3

h(t, x) dx and D(t) :=

∫
R3

d(t, x) dx. (21)

The appropriate densities will be given explicitly in each case in Section 2.3.

1.4 Physical motivations

The investigation of the validity of energy or helicity identities for weak solutions to MLL and MHD
equations is quite natural mathematically but is also linked to a few physical motivations that we want to
address now.

The LLM equations. Physically, singularities of the magnetization field are referred to as Bloch points
(see [50]). The mathematical analysis of these singularities has not been performed yet, but they may be of
the same type as the ones of the heat flow. For the heat flow of maps from a manifold to the sphere S2, at
least when the space variable x belongs to some 2-dimensional manifold, (space-time) singularities of weak
solutions correspond to the “bubbling” phenomenon, i.e. the asymptotic convergence of the solution, up
to renormalization, towards some harmonic map (see [38] for a review on this topic): this “bubble” can be
interpreted as the precise loss of energy of the solution at the singularity. The Landau-Lifshitz equation
is close to this class of equations, in the following sense. Considering the simplified case, dropping the
gyroscopic term m×∆m (and with no magnetic field), the equation

∂tm = −m× (m×∆m)

may be rewritten, for smooth solutions,

∂tm = ∆m+ |∇m|2m,
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using |m|2 = 1. This is the heat flow equation for maps with values in the sphere S2, so that the Landau-
Lifshitz equation (1) (with H = 0) can be viewed as a perturbation of this heat flow equation (on the other
hand, the Landau-Lifshitz equation ∂tm = m × ∆m, with no Gilbert dissipation term, is a Schrödinger
map equation, as can be seen thanks to the stereographic projection – see [49]).

The HMHD equations. In ideal MHD, instead of considering equation (7) or equation (11), one
considers the equation:

∂tB − curl(u×B) = 0. (22)

If one introduces the flow η associated with the divergence free fluid velocity field u, that is the volume-
preserving diffeomorphism η(t) obtained by solving the ordinary differential equation: ∂tη = u(t, η) with
initial data η(0, x) = x, equation (22) is (formally) equivalent to

B(t, ·) =
(

(Dη)(t, ·)B(0, ·)
)

(η(t, ·)−1).

This means that any motion of the medium transports the magnetic field through a diffeomorphism action
preserving the relative position of the field lines. The term “frozen-in” has been coined in this context.
The topological structure of such a field, including its degree of knottedness, does not change along time
evolution. In particular the helicity of a field, which measures the average linking of the field lines, or their
relative winding, cf. [3], is preserved under the action of a volume-preserving diffeomorphism. A formal
way to visualize this relies on Smirnov’ decomposition of divergence free vector fields into elementary
solenoids, cf. [48]. More precisely if we decompose initially the field B0 into a superposition of elementary
solenoids

S0 :=

∫
T
(∂sτ0(s))δ(x− τ0(s))ds,

where T denotes the one-dimensional torus and T 3 s 7→ τ0(s) ∈ R3 denotes a loop, then, when time goes
by, the field B is obtained as a superposition of the elementary solenoids

S :=

∫
T
(∂sτ(t, s))δ(x− τ(t, s))ds, (23)

where T 3 s 7→ τ(t, s) ∈ R3 denotes the loop obtained by solving ∂tτ(t, s) = u(t, τ(t, s)), with the
initial data τ(0, s) = τ0(s). Thus one sees that the corresponding loops cannot be unknotted without
contradicting that the flow is a diffeomorphism.

Now if one takes into account the Hall effect, by considering the equation

∂tB − curl(u×B) + curl
(

(curlB)×B
)

= 0,

the previous analysis remains true if one substitutes to η the flow associated with the divergence free
vector field u− curlB.

However it appears that for a correct description of magnetic reconnection it is necessary to take the
magnetic viscosity into account, as this is done here by considering equation (7). This implies that the
field B is not simply transported (as a 2-form). In this reconnection process a subtle interplay takes place
between the Hall effect and the magnetic viscosity [39].

Another motivation for the investigation of the topological structure of the magnetic field is that it
provides obstructions to the full dissipation of the magnetic energy in stars or planets. In particular it has
been shown by Arnold and Khesin [3] that helicity bounds the energy from below. The helicity approach to
magnetic energy minoration in terms of the topology of magnetic lines has been generalized by Freedman
and He [33] by introducing the notion of asymptotic crossing number.
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1.5 An analogy with Onsager’s conjecture

The validity of conservation laws for weak solutions is a quite general issue in PDEs. In particular such a
question was raised for incompressible flows by Onsager in [43]. The conjecture states that the minimal
space regularity needed for a weak solution to the incompressible Euler equation to conserve energy is 1/3,
that is every weak solution to the Euler equations with Hölder continuous velocity of order h > 1/3 does
not dissipate energy; and conversely, there exists a weak solution to the incompressible Euler equations of
smoothness of exactly 1/3 which does not conserve energy.

Concerning the first part of the conjecture, there was a renewal of interest starting with a paper by
Eyink [30] who also discussed the connections of Onsager’s conjecture with phenomenological approaches
of fully-developed turbulence. Soon after this, Constantin, E and Titi gave a simple proof in [21] that a
weak solution u(t, x) of the incompressible Euler equations satisfying the condition

lim
y→0

1

|y|

∫ T

0

∫
R3

|u(t, x)− u(t, x− y)|3 dx dt = 0 (24)

verifies the energy equality.
Let us stress that the condition (24) is a Besov type condition rather than a Hölder one. Actually the

result in [21] is stated for a velocity in L3(0, T ;Bα
3,∞(Ω)) with α > 1

3 , but the proof works as well under
the slightly weaker condition (24), see also [19, 29, 47].

Regarding the other part of the conjecture, the celebrated works by Scheffer [44] and Shnirelman
[45] prove that there are nontrivial distributional solutions to the Euler equations which are compactly
supported in space and time, and which therefore do not conserve the kinetic energy. Recently these
results were extended by De Lellis and Szekelyhidi in [26] where they prove that there exist infinitely
many compactly supported bounded weak solutions to the incompressible Euler equations. Consequently
the existence of solutions, better than bounded, but with a regularity slightly weaker than (24), which
dissipate the kinetic energy, was proved in a series of papers culminating in [8].

On the other hand in [5] Bardos and Titi prove that there exist some solutions to the incompressible
Euler equations which do not satisfy (24) but which still preserve the energy. Indeed these solutions are
some very explicit shear flows with only L2 regularity.

The issue of the conservation of helicity for incompressible flows was tackled by [13, 19]. In particular
Theorem 4.2 in [19] proves the validity of helicity conservation for solutions to the incompressible Euler

equation which are in L∞(0, T ;H
1
2 (R3)) and satisfy

lim
y→0

1

|y|2

∫ T

0

∫
R3

|u(t, x)− u(t, x− y)|3 dx dt = 0. (25)

We wish to mention that some anisotropic versions of the Onsager conjecture were studied by Caflisch,
Klapper and Steele in [16] and by Shvydkoy in [46]. Furthermore, the papers [20, 32] deal with the first
part of the Onsager conjecture for the incompressible Navier-Stokes equations when the fluid occupies a
domain limited by a boundary.

Finally, a related phenomenon is described in the recent papers [22, 23] by Dascaliuc and Grujić, who
study the energy cascade in the physical space for both the Euler and Navier-Stokes equations.
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1.6 Structure of the paper

In the next section we start with a reminder of the weak theories available for the MLL and HMHD equa-
tions and we present our results. Then we state some weak-strong uniqueness results for these solutions.
Next we list the local counterparts of the formal identities given in the introduction, and we establish some
local conservation identities corresponding to (13), (14) and (15). These identities include in general, i.e.
for weak solutions, some anomalous dissipation terms. Then we provide a regularity condition, of Besov
type, which is sufficient for the vanishing of these anomalous dissipation terms. Finally we investigate the
sign of these energy anomalous dissipations. In Sections 3 and 4, we prove the weak-strong uniqueness
results for the MLL and HMHD equations, respectively. In Section 5 we provide the proof of the first
part of these results (local conservations) for both the MLL and HMHD equations. The proof of the other
part (vanishing of anomalous dissipations) requires a few more technicalities which are given in Section
6. Then we provide in Section 7 a regularity condition sufficient for the vanishing of anomalous energy
dissipation for the MLL equation. In Section 8, we show the vanishing of magneto-helicity and energy
anomalous dissipations for the HMHD equations under analogous conditions. Section 9 is devoted to the
crossed fluid-magneto-helicity identity for the MHD equations. In Section 10 we prove the results stated
in Section 2 about the sign of the energy dissipation for weak solutions to the MLL and HMHD equations
obtained by standard processes. An Appendix is devoted to the proof of a technical Bernstein-type lemma
for a time-space Besov space involved in the analysis.

2 Presentation of the results

2.1 A reminder of the weak theories for the MLL and HMHD equations

Existence of global weak solutions to the MLL equations. Let us first recall that the MLL system
admits some global weak solutions. This result relies on the following conservative form of (1), sometimes
referred to as the Gilbert form of the equations:

∂tm+m× ∂tm = 2
∑
i

∂i

(
m× ∂im

)
+ 2m×H, (26)

where the sum is over 1, 2, 3.
For smooth functions, the two equations, (1) and (26), are equivalent, but the last form is more

appropriate for some u with weak regularity. Indeed we have the following result of existence of weak
solutions to the MLL equations, see [51, 10, 37] (see also, concerning weak solutions for the Landau-
Lifshitz equation, the papers [2, 36]); see also the book [35], as well as references therein.

Theorem 1. Let be given m0 in L∞(R3;R3) such that |m0| = 1 almost everywhere and ∇m0 is in
L2(R3;R9), E0 and H0 in L2(R3;R3) such that divE0 = div(H0 +m0) = 0. Then, there exists (m,E,H) :
(0,∞)× R3 → R9 such that, for all T > 0,

m ∈ L∞((0, T )× R3;R3), |m| = 1 a.e.,

∇m ∈ L∞((0, T );L2(R3;R9)) and ∂tm ∈ L2((0, T )× R3;R3),

(E,H) ∈ L∞((0, T );L2(R3;R6)),

and (m,E,H) is a weak solution to the MLL equations (26)-(2)-(3)-(4) on (0,∞)×R3, with initial value
(m0, E0, H0). Moreover, this solution satisfies the following energy inequality,

for almost every T > 0, EMLL(T ) +

∫ T

0
DMLL(t) dt 6 EMLL(0). (27)
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Existence of global weak solutions to the HMHD equations. Let us now tackle the case of the
HMHD equations. These equations are recast in a conservative form:

∂tu+ div(u⊗ u−B ⊗B) +∇pm = ∆u, (28)

div u = 0, (29)

∂tB − curl(u×B) + curl div(B ⊗B) = ∆B, (30)

divB = 0, (31)

where pm denotes the magnetic pressure

pm := p+
1

2
|B|2.

Let
H := {φ ∈ L2(R3;R3) | div φ = 0} and V := {φ ∈ H1(R3;R3) | div φ = 0}.

In the recent paper [14], Chae, Degond and Liu establish the existence of global weak solutions for the
incompressible viscous resistive HMHD model written as follows:

Theorem 2 (Chae-Degond-Liu, Acheritogaray-Degond-Frouvelle-Liu). Let u0 and B0 be in H. Then
there exists a global weak solution (u,B) to the HMHD model (28)-(31), corresponding to these initial
data. Moreover, for all T > 0, we have

(u,B) ∈
(
L∞(0, T ;H) ∩ L2(0, T ;V)

)2
, (32)

and this solution satisfies the following energy inequality:

for almost every T > 0, EHMHD(T ) +

∫ T

0
DHMHD(t) dt 6 EHMHD(0). (33)

Actually the first result concerning existence of weak solutions to the HMHD system is due to Acher-
itogaray, Degond, Frouvelle and Liu [1], who prove Theorem 2 in a periodic setting.

2.2 Weak-Strong uniqueness

One major issue about the weak solutions mentioned above is their uniqueness. In particular regarding
the Landau-Lifshitz equations, non-uniqueness of weak solutions is proved in [2]. On the other hand, up
to our knowledge, uniqueness of weak solutions to the HMHD equations has not been proved or disproved
yet.

Still, one way to get uniqueness results is to consider stronger solutions. Actually, for both the MLL
and HMHD equations, there also exists some results about the local-in-time existence and uniqueness of
strong solutions. Let us mention here the papers [11, 12] for the MLL equations and [14] for the HMHD
equations.

Facing these two theories, the weak one and the strong one, it is natural to wonder if there is a weak-
strong uniqueness principle. Indeed, such a property ensures that the weak theory is an extension of the
strong one, rather than a bifurcation.

The following results provide such properties for both the MLL and HMHD equations. In both cases
a key point is that weak solutions satisfy an energy inequality. This echoes the similar well-known results
for the incompressible Navier-Stokes and Euler equations, cf. for example, respectively, [17] and [27,
Proposition 1]. Let us also mention here, in this direction, the recent extension to the full Navier-Stokes-
Fourier system by [31].

Let us warn the reader that we will not try here to minimize the smoothness of the strong solutions
involved in the following statement.
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Weak-Strong uniqueness for the MLL equations. Our first result states that a strong solution is
unique among the class of weak solutions, as given by Theorem 1.

Theorem 3. Consider initial data (m0, E0, H0) as in Theorem 1, and assume moreover that they are
smooth.

Finally assume that

• (m2, E2, H2) : (0,∞)× R3 → R9 is a global weak solution to the MLL equations (26)-(2)-(3)-(4) on
(0, T )× R3, with initial value (m0, E0, H0), as given by Theorem 1;

• (m1, E1, H1) : (0,∞) × R3 → R9 is a smooth solution to the MLL equations (26)-(2)-(3)-(4), up to
some time T > 0, also with the initial value (m0, E0, H0).

Then (m2, E2, H2) = (m1, E1, H1) on (0, T )× R3.

Let us mention that, up to our knowledge, this result is already new for the Landau-Lifshitz equations:

∂tm+m× ∂tm = 2m×∆m. (34)

Actually we will first give a proof of the corresponding result for the global weak solution to the Landau-
Lifshitz equations, as given in [2, Theorem 1.4], and then we will give the proof of Theorem 3.

Let us therefore state here the case of the Landau-Lifshitz equation (34).

Theorem 4. Consider an initial data m0 in L∞(R3;R3) such that |m0| = 1 almost everywhere and such
that ∇m0 is in L2(R3;R9). Assume moreover that m0 is smooth. Finally assume that

• m2 is a global weak solution to (34) on (0,∞)×R3 satisfying the energy inequality: for almost every
T > 0,

JLL[m2](T ) :=
( ∫

R3

|∇m2|2 dx
)
(T ) +

∫ T

0

∫
R3

|∂tm2|2 dx dt 6
∫
R3

|∇m0|2 dx. (35)

• m1 is a smooth solution to the Landau-Lifshitz equation (34) up to some time T > 0, with the same
initial data m0.

Then m2 = m1 on (0, T )× R3.

Weak-Strong uniqueness for the HMHD equations. Let us now turn to the case of the HMHD
equations.

Theorem 5. Consider initial data u0 and B0 in H, and assume moreover that they are smooth.
Finally assume that

• (u2, B2) is a global weak solution to the HMHD model (28)-(31), associated with the initial data
(u0, B0), as in Theorem 3;

• (u1, B1) is a smooth solution to the HMHD model (28)-(31) on (0, T ), for some T > 0, also associated
with the initial data (u0, B0).

Then (u2, B2) = (u1, B1) on (0, T )× R3.

We will prove Theorem 5 in a simplified setting which focuses on the difficulty due to the Hall effect.
Actually the corresponding statement for the MHD equations is well-known, see for instance [24], and the
extension to the general case by combining the corresponding proof and the proof below for the simplified
Hall model is routine.
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2.3 Local energy and helicity identities

In this section we recall the explicit formulations of the formal local identities hinted in the introduction.
We start with the energy identities.

Local energy identity for the MLL equations: formally,

∂teMLL + dMLL + div fMLL = 0, (36)

where

eMLL := |E|2 + |H|2 + |∇m|2, dMLL := |∂tm|2, fMLL := −2(∂tm · ∂im)i=1,2,3 + 2H × E. (37)

Local energy identity for the HMHD equations: formally,

∂teHMHD + dHMHD + div fHMHD = 0, (38)

where

eHMHD :=
1

2

(
|u|2 + |B|2

)
, dHMHD := | curlu|2 + | curlB|2, (39)

fHMHD := (
1

2
|u|2 + p)u+B × (u×B) + (curlu)× u+ (curlB)×B +

(
(curlB)×B

)
×B. (40)

Let us mention here that, despite the global energy identities are the same for the HMHD and MHD
equations, their local counterparts are different. Indeed, for the MHD equations, one has to drop out the
last term in the flux density above.

Local energy identity for the MHD equations: formally,

∂teMHD + dMHD + div fMHD = 0, (41)

where

eMHD :=
1

2

(
|u|2 + |B|2

)
= eHMHD, dMHD := | curlu|2 + | curlB|2 = dHMHD, (42)

but

fMHD := (
1

2
|u|2 + p)u+B × (u×B) + (curlu)× u+ (curlB)×B

)
. (43)

Let us now tackle the helicity identities.

Local magneto-helicity identity for the HMHD equations: formally,

∂thm,HMHD + dm,HMHD + div fm,HMHD = 0, (44)

where

hm,HMHD := A ·B, dm,HMHD := 2B · curlB, fm,HMHD := (2(u− curlB)×B − 2 curlB − ∂tA)×A. (45)

Once again, despite the global magneto-helicity identities are the same for the HMHD and MHD
equations, their local counterparts are not the same. Indeed, for the MHD equations, on has to drop out
the last term in the flux density above.
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Local magneto-helicity identity for the MHD equations: formally,

∂thm,MHD + dm,MHD + div fm,MHD = 0, (46)

where

hm,MHD := A ·B = hm,HMHD, dm,MHD := 2B · curlB = dm,HMHD, (47)

but

fm,MHD := (2u×B − 2 curlB − ∂tA)×A. (48)

Local fluid helicity identity for the MHD and HMHD equations: formally,

∂thf + df + div ff = 0, (49)

where

hf := u · ω, df := 2ω · (curlω +B × curlB), ff := (ω · u)u+ (p+
1

2
u2)ω − u× (curlω +B × curlB).

Local crossed fluid-magneto-helicity identity for the MHD equations: formally,

∂thfm + dfm + div ffm = 0, (50)

where

hfm := u ·B, dfm := 2ω · curlB, ffm := (u ·B)u+ (p− 1

2
|u|2)B + (curlu)×B + (curlB)× u. (51)

Local total fluid-magneto-helicity identity for HMHD equations: formally,

∂thf+m + df+m + div ff+m = 0, (52)

where

hf+m := (u+A) · (ω +B), df+m := 2(ω +B) · curl(ω +B),

ff+m :=
(
∂t(u+A)− 2u× (ω +B) + 2 curl(ω +B)

)
× (u+A).

2.4 Regularization of quadratic terms

The above weak solutions are of course solutions on (0,∞) × R3 in the distributional sense. In the
sequel, for a given such solution, we shall compare the difference between the equation, with each term
regularized, and the same (linear or quadratic) terms obtained from the regularization of the solution. We
thus introduce some notations.

Let ψ ∈ C∞c (R3;R) be nonnegative, and such that

∫
R3

ψ(x) dx = 1. For all ε ∈ (0, 1), we define the

usual mollifier ψε := ε−3ψ(·/ε). Then, for any function u on R3, we set

uε(x) = (ψε ∗ u)(x) =

∫
R3

ψε(y)u(x− y)dy. (53)

For all ε ∈ (0, 1) and functions φ1, φ2, we also define

Aε[φ1, φ2] := (φ1 · φ2)ε − φ1ε · φ2ε, (54)

Bε[φ1, φ2] := (φ1 × φ2)ε − φ1ε × φ2ε, (55)

Cε[φ1, φ2] := (φ1 ⊗ φ2)ε − φ1ε ⊗ φ2ε. (56)

13



2.5 Some Besov type conditions

Our goal is to provide some sufficient conditions, similar to (24), which rule out anomalous dissipation in
the MLL and in the HMHD equations.

The Fourier transform F is defined on the space of integrable functions f ∈ L1(R3) by (Ff)(ξ) :=∫
R3 e

−2iπx·ξf(x)dx, and extended to an automorphism of the space S ′(R3) of tempered distributions,
which is the dual of the Schwartz space S(R3) of rapidly decreasing functions. We consider the following
extensions of condition (24).

Definition 6. Let T > 0, α ∈ (0, 1) and p, r ∈ [1,∞]. We denote by S ′h the space of tempered distributions
u on (0, T )× R3 such that for all θ ∈ C∞c (R3), there holds

‖θ(λD)u‖L∞((0,T )×R3) −→
λ→∞

0,

where θ(D) is the Fourier multiplier defined by θ(D)u = F−1(θFu). For every function u on (0, T )× R3

we define, for (t, y) ∈ (0, T )× (R3 \ {0}),

fα,p[u](t, y) :=
‖u(t, · − y)− u(t, ·)‖Lp(R3)

|y|α
.

We denote

• by L̃r(0, T ; Ḃα
p,∞(R3)), the space of functions u on (0, T )× R3, belonging to S ′h, which satisfy

sup
y
‖fα,p[u](·, y)‖Lr(0,T ) <∞,

equipped with the seminorm

‖u‖
L̃r(0,T ;Ḃαp,∞(R3))

:= sup
y
‖fα,p[u](·, y)‖Lr(0,T );

• by L̃r(0, T ; Ḃα+1
p,∞ (R3)), the subspace of the functions u in L̃r(0, T ; Ḃα

p,∞(R3)) which satisfy, for i =

1, 2, 3, ∂iu ∈ L̃r(0, T ; Ḃα
p,∞(R3)), equipped with the seminorm

‖u‖
L̃r(0,T ;Ḃα+1

p,∞ (R3))
:= ‖u‖

L̃r(0,T ;Ḃαp,∞(R3))
+

3∑
i=1

‖∂iu‖L̃r(0,T ;Ḃαp,∞(R3))
;

• by L̃r(0, T ; Ḃα
p,c0(R3)), the subspace of the functions u in L̃r(0, T ; Ḃα

p,∞(R3)) which satisfy

‖fα,p[u](·, y)‖Lr(0,T ) → 0 when y → 0;

• by L̃r(0, T ; Ḃα+1
p,c0 (R3)), the subspace of the functions u in L̃r(0, T ; Ḃα

p,c0(R3)) which satisfy, for i =

1, 2, 3, ∂iu ∈ L̃r(0, T ; Ḃα
p,c0(R3));

• by Lr(0, T ;Lp(R3))loc the space of functions u on (0, T )×R3 such that for all χ ∈ C∞c ((0, T )×R3),
χu belongs to Lr(0, T ;Lp(R3)).

• by L̃r(0, T ; Ḃα
p,α(R3))loc, where α holds for ∞ or c0, the space of functions u on (0, T )×R3 such that

for all χ ∈ C∞c ((0, T )× R3), χu belongs to L̃r(0, T ; Ḃα
p,α(R3)).
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In particular, condition (24) is equivalent to u ∈ L̃3(0, T ; Ḃ
1/3
3,c0

(R3)).

The notation L̃, rather than L, is used to emphasize the fact that time integration is performed before
taking the supremum in y. This contrasts with the more classical space Lr(0, T ; Ḃα

p,∞(R3)), the space
of the functions u on (0, T ) × R3 which satisfy ‖ supy fα,p[u](·, y)‖Lr(0,T ) < ∞, equipped with the semi-

norm ‖u‖Lr(0,T ;Ḃαp,∞(R3)) := ‖ supy fα,p[u](·, y)‖Lr(0,T ). It is not difficult to see that Lr(0, T ; Ḃα
p,∞(R3)) ⊂

L̃r(0, T ; Ḃα
p,∞(R3)). This kind of spaces has been introduced by Chemin and Lerner in [18].

2.6 Anomalous dissipation for the MLL equations

We have the following result.

Theorem 7. Let (m,E,H) be a weak solution to the MLL equations (26)-(2)-(3)-(4) given by Theorem
1.

Let daMLL denote the local anomalous energy dissipation for the MLL equations:

daMLL := ∂teMLL + dMLL + div fMLL, (57)

where (eMLL, dMLL, fMLL) is given by (37).

i) Then the local anomalous energy dissipation daMLL can be obtained as follows. Let

da,εMLL := −Bε[m, ∂tm− 2(H + ∆m)] · (∂tmε − 2(Hε + ∆mε)). (58)

Then,
da,εMLL → daMLL in D′

(
(0,∞)× R3;R

)
when ε→ 0,

and this holds true whatever is the mollifier chosen in Section 2.4.

ii) Assume furthermore that m belongs to L̃3(0, T ; Ḃα
p,c0(R3))loc for some α ∈ (3/2, 2) and

p :=
9

3α− 1
. (59)

Then the local anomalous energy dissipation daMLL vanishes.

The first part of the theorem provides a way (actually many, since the choice of the mollifier is arbitrary)
to obtain the anomalous dissipation. The second part provides a sufficient condition on the regularity of
the weak solution to guarantee that this anomalous dissipation vanishes. In this case the local energy
identity (36) holds true and the global identity (13) as well.

We briefly describe the strategy of the proof of the above theorem. Let us consider here, to simplify,
the case of the Landau-Lifshitz equation (34). Then the energy identity is formally obtained as follows.
One takes the inner product of (34) with ∂tm and ∆m to get

(∂tm)2 = 2(m×∆m) · ∂tm, (60)

∂tm ·∆m+ (m× ∂tm) ·∆m = 0. (61)

Observe that the combination (60)− 2(61) yields

(∂tm)2 − 2∂tm ·∆m = 0.
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Then integrate by parts in space and finally integrate in time to obtain the energy identity: for any T > 0,∫
R3

|∇m|2(T, x)dx+

∫
(0,T )×R3

|∂tm|2 dx dt =

∫
R3

|∇m|2(0, x)dx.

However some terms involved in this process do not even have a sense for weak solutions. In fact, we
shall apply a smoothing convolution to equation (34), using the notation ε in the index as in (53), and then
we shall take the inner product with the approximation ∂tmε and ∆mε. Still some cancellations, which
were trivial in the formal calculations above, are not guaranteed anymore, and the point is to be able to
get rid of the spurious terms. For example when we take the inner product of the regularized version of
(34) with ∆mε we face in particular the expression∫

(0,T )×R3

(m×∆m)ε ·∆mε dx dt. (62)

Actually it appears in the proof below that this term is somehow the worse we have to cope with. The
idea behind Theorem 7 is that the regularity assumption on m allows to get rid of the term (62) when ε
goes to 0.

A formal argument consists in simply counting that in (62), there appear four derivatives, in a product
of three terms. One can then think that the regularity threshold above which integration by parts becomes
possible is 4/3. For the Euler equations (where the quantity obtained in energy estimates is ((u ·∇)u) ·u),
Onsager’s conjecture precisely indicated the formal threshold 1/3, which can be interpreted as the result
of one derivative in a product of three terms. Here, for the MLL system, we are in some sense less able to
“share out” the derivatives, and conclude only for a regularity strictly above 3/2.

We do not know if this is sharp. In particular, one can notice that the value 3/2 is not reached by the
exponent α in our proof, contrary to the limiting regularity values given in Theorem 8 and Theorem 9 in
the HMHD case below. This limitation is due to our treatment of the “fourth term” F ε4 in the proof (see
the end of Section 7). This kind of terms does not appear in the HMHD case.

However the couple of exponents (α, p) in Theorem 7 is critical, in the sense given by Shvydkoy in
[47], referring to the following dimensional argument. Let M,X, T be respectively some units for magnetic
moment, length and time. Then the quantity in (62) has a dimension equal to X−1 TM3. On the other
hand the quantity ‖fα,p[m](·, y)‖Lr(0,T ) from Definition 6 has a dimension equal to

X−α
(
T (MpX3)

r
p

) 1
r

= X
3
p
−α

T
1
r M.

We would like to control the term (62) by ‖fα,p[m](·, y)‖3Lr(0,T ) which has a dimension equal toX
9
p
−3α

T
3
r M3,

which provides r = 3 and (59).

In [5] the authors prove that there exist some solutions to the incompressible Euler equations which
do not satisfy (24) but which still preserve the energy. It is quite easy to provide a similar result for the
MLL equation. Indeed, omitting the magnetic field, it is sufficient to consider the example which is used
in [2] in order to exhibit a case where weak solutions are non unique.

2.7 Anomalous dissipation for the HMHD equations

Let us denote by K[·] the Biot-Savart law in R3. We consider B given by Theorem 2 and A := K[B], so
that

A ∈ L∞(0, T ;V) ∩ L2(0, T ;H2(R3)), and curlA = B.

Observe in particular that we consider here the gauge choice divA = 0.
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Our second main result concerns the magneto-helicity conservation or dissipation for the HMHD equa-
tions.

Theorem 8. Let (u,B) be a solution to the HMHD equations given by Theorem 2. Let us denote by dam
the local magneto-helicity anomalous dissipation:

dam := ∂thm + dm + div fm, (63)

where (hm, dm, fm) is given by (45).

i) Define
da,εm := 2Aε · curlBε[u,B]− 2Aε · curl div Cε[B,B]. (64)

Then
da,εm → dam in D′

(
(0,∞)× R3;R

)
when ε→ 0,

and this holds true whatever is the mollifier chosen in Section 2.4.

ii) Assume furthermore that B ∈ L̃3(0, T ; Ḃ
1
3
3,c0

(R3))loc. Then the anomalous magneto-helicity dissipation
dam vanishes.

Remark 1. The proof of part ii) below will show that the first term in the definition (64) of da,εm converges
to 0 when ε→ 0+ in the sense of distributions under the sole assumption that (u,B) is given by Theorem
2.

Investigation of the validity of the fluid helicity identity (16) and of the total fluid-magneto-helicity
(18) is very similar and is left aside in this paper. Regarding energy, we have the following result.

Theorem 9. Let (u,B) be a solution to the HMHD equations given by Theorem 2, and assume that
B ∈ L4((0, T )× R3)loc. Let us denote by daHMHD the local energy anomalous dissipation:

daHMHD := ∂teHMHD + dHMHD + div fHMHD, (65)

where (eHMHD, dHMHD, fHMHD) is given by (39).

i) Let

da,εHMHD := −uε · div
(
Cε[u, u]− Cε[B,B]

)
− 1

2
uε · ∇Aε[B,B]

−Bε ·
(

curlBε[u,B]
)

+Bε ·
(

curl div Cε[B,B]
)
.

Then
da,εHMHD → daHMHD in D′

(
(0,∞)× R3;R

)
when ε→ 0,

and this holds true whatever is the mollifier chosen in Section 2.4.

ii) Assume furthermore that

u ∈ L̃3(0, T ; Ḃ
1
3
3,c0

(R3))loc and B ∈ L̃3(0, T ; Ḃ
2
3
3,c0

(R3))loc.

Then the anomalous energy dissipation daHMHD vanishes.

17



2.8 A comparison with the MHD equations

It is interesting to compare the results for the HMHD equations with the case of the Magneto-Hydrodynamic
system without Hall effect. Recasting (9) under the conservative form

∂tu+ div(u⊗ u−B ⊗B) +∇pm = ∆u, (66)

we can define the notion of weak solution. Actually this was observed a long time ago by Duvaut and
Lions who proved the following theorem (see [24]).

Theorem 10 (Duvaut-Lions). Let u0 and B0 be in H and T > 0. Then there exists a weak solution

(u,B) ∈
(
L∞(0, T ;H) ∩ L2(0, T ;V)

)2
,

for the MHD model (66)-(10)-(11)-(12) corresponding to these initial data. Moreover, this solution satisfies
(33).

Now following the proofs of Theorem 8 and Theorem 9 we also have the following result about the
conservation of energy, of magneto-helicity and of crossed fluid-magneto-helicity.

Theorem 11. Let (u,B) be a solution to (66) given by Theorem 10.

i) Then the local magneto-helicity identity (46) is valid.

ii) Assume furthermore that

• u is in L̃3(0, T ; Ḃα
3,∞(R3))loc with α ∈ (0, 1) or u is in L3((0, T )×R3)loc, and then we set α = 0,

• B is in L̃3(0, T ; Ḃβ
3,∞(R3))loc with β ∈ (0, 1),

and at least one the three following properties holds true:

• α = 0,

• α ∈ (0, 1) and u is in L̃3(0, T ; Ḃα
3,c0

(R3))loc,

• B is in L̃3(0, T ; Ḃβ
3,c0

(R3))loc.

Finally assume that α+ 2β > 1. Then the local energy estimate (41) holds true.

iii) Let us consider again (u,B) a solution to (66) given by Theorem 10. Assume furthermore that

• u is in L̃3(0, T ; Ḃα
3,∞(R3))loc with α ∈ (0, 1),

• B is in L̃3(0, T ; Ḃβ
3,∞(R3))loc with β ∈ (0, 1),

and at least one the two following properties holds true:

• u is in L̃3(0, T ; Ḃα
3,c0

(R3))loc,

• B is in L̃3(0, T ; Ḃβ
3,c0

(R3))loc.

Finally assume that 2α + β > 1 and 3β > 1. Then the local crossed fluid-magneto-helicity identity
(50) holds true.
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Therefore the Hall effect does not modify formally the laws of conservation of energy and magneto-
helicity but it could be, in view of Theorem 8, Theorem 9 and Theorem 11, that it creates some extra
anomalous dissipation in these laws for solutions which have only a quite bad regularity.

Observe that Theorem 11 extends to the case of the viscous resistive MHD some earlier results by [16]
about the ideal MHD.

Remark 2. We do not reproduce here the dimensional argument (given after Theorem 7) for the HMHD
and MHD equations but one can check that the conditions given in Theorem 8, Theorem 9 and Theorem 11
are critical in the sense of this dimensional analysis.

The proof of Part i) and Part ii) of Theorem 11 is left to the reader since it can be proved along the
same lines as the proofs of Theorem 8 and Theorem 9. The proof of the Part iii) is tackled in Section 9.

2.9 Suitable weak solutions

Observe that despite we use the word “dissipation” in the statements above we do not claim anything
about the sign of daMLL or daHMHD. This terminology would be particularly appropriate if the distributions
daMLL or daHMHD were non positive.

The corresponding feature for the Navier-Stokes equations has been quite useful in order to obtain
partial regularity theorems limiting the parabolic Hausdorff dimension of the singular set, see [9]. In
particular, in this context, the term “suitable” has been coined for weak solutions that have a non positive
anomalous dissipation. Strikingly enough the approximation process used by Leray in order to establish
the existence of weak solutions actually leads to suitable weak solutions, see [29]. In Leray’s scheme, the
approximate equations read:

∂tu
ε + (uε)ε · ∇uε +∇pε = ∆uε, (67)

div uε = 0. (68)

One may also argue that an appropriate sign condition on the anomalous dissipation could be helpful
to select among weak solutions, which ones may be considered physically acceptable, as one might think
that the lack of smoothness could lead to local energy creation. Indeed in the case of the inviscid Burgers
equation in one space dimension the requirement to be suitable coincides with the usual entropy condition
of negative jumps, which does imply uniqueness. However such a result has not been proved yet for the
Navier-Stokes equations, up to our knowledge, and the case of the HMHD equations could be even more
difficult. In the case of the MLL equations, such a result is even more desirable since Alouges and Soyeur
have proved in [2] non-uniqueness of weak solutions to the Landau-Lifshitz equation.

In this section, we investigate what can be said about the sign of the anomalous energy dissipations
daMLL and daHMHD for some rather standard processes used in order to prove the existence of weak solutions
to the MLL equations and of the HMHD equations.

Case of the MLL equations. One difficulty in establishing the existence of weak solutions to the MLL
equations as claimed in Theorem 1 is due to the condition |m| = 1 almost everywhere. A brutal application
of the usual strategy of mollification of the equation fails to capture this constraint. A by-now usual way
to overcome this difficulty consists in using a Ginzburg-Landau type penalization, following the analysis
performed in [2] for the Landau-Lifshitz equation and [10] for the MLL equations. Here we will consider,
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for ε ∈ (0, 1), the penalized equations:

∂tm
ε −mε × ∂tmε = 2

(
∆mε +Hε − (Hε ·mε)mε − 1

ε
(|mε|2 − 1)mε

)
, (69)

∂tH
ε + curlEε = −∂tmε, (70)

∂tE
ε − curlHε = 0, (71)

divEε = div(Hε +mε) = 0. (72)

Let us emphasize in particular that equation (69) is slightly different from the penalized equation used in
[10]. The difference is that we add the term (Hε ·mε)mε in order to be able to apply the weak maximum
principle and to get a better regularity. A similar idea was used in [28] and in [25] for the quasi-stationary
Landau-Lifshitz equations.

As a first step in order to prove Theorem 1, one then establishes the existence of weak solutions to
(69)-(72), an easy task since the condition |m| = 1 a.e. has been dropped out. More precisely, one obtains
that for initial data as in Theorem 1, that is for m0 in L∞(R3;R3) such that |m0| = 1 almost everywhere
and ∇m0 is in L2(R3;R9), E0 and H0 in L2(R3;R3) such that divE0 = div(H0 + m0) = 0, there exists,
for all ε ∈ (0, 1), a weak solution (mε, Eε, Hε) : (0,∞)×R3 → R9 of (69)-(72) on (0,∞)×R3, with initial
value (m0, E0, H0), such that, for all T > 0,

mε ∈ L∞((0, T ); Ḣ1(R3;R3)), (Eε, Hε) ∈ L∞((0, T );L2(R3;R6)),

(|mε|2 − 1,∇mε) ∈ L∞((0, T );L2(R3;R10)) and ∂tm
ε ∈ L2((0, T )× R3;R3),

and

∀T > 0,
(
EεMLL(T ) + EεGL(T ) +

∫ T

0
DεMLL(t) dt

)
ε

is bounded uniformly, (73)

where

EεMLL(t) :=

∫
R3

(
|Eε|2(t, x) + |Hε|2(t, x) + |∇mε|2(t, x)

)
dx, DεMLL(t) :=

∫
R3

|∂tmε|2(t, x) dx,

and EεGL(t) :=
1

2ε

∫
R3

(
|mε(t, x)|2 − 1

)2
dx.

Then, by standard compactness arguments, one infers that there exists

m ∈ L∞((0, T ); Ḣ1(R3;R3)), (E,H) ∈ L∞((0, T );L2(R3;R6)),

with (|m|2 − 1,∇m) ∈ L∞((0, T );L2(R3;R10)) and ∂tm ∈ L2((0, T )× R3;R3),

such that, up to a subsequence, mε weakly converges to m in H1((0, T )×R3;R3), |mε|2− 1 converges to 0
weakly in L2((0, T )× R3;R) and almost everywhere, (Eε, Hε) converges to (E,H) weakly in L2((0, T )×
R3;R6). Moreover (m,E,H) is a weak solution as claimed in Theorem 1. Since we do not claim here
any originality let us simply refer for instance to [2] where this step is detailed for the Landau-Lifshitz
equation, and to [10] where the case of the MLL equations is tackled.

Our point here is the following.

Theorem 12. Let (m,E,H) be a weak solution to the MLL equations obtained as a limit point of the
sequence (mε, Eε, Hε) as considered above. Assume moreover that, up to a subsequence, Hε×Eε and, for
i = 1, 2, 3, ∂tm

ε · ∂imε converge respectively to H ×E and ∂tm · ∂im in the sense of distributions, and that
Hε ·mε converges in L2

loc((0, T ) × (R3)) to H ·m. Then there exist two non negative distributions da,1MLL

and eaMLL such that daMLL = −da,1MLL − ∂teaMLL.
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This theorem can be seen somehow as a counterpart of [29, Proposition 4] which shows that any weak
solution to the Euler equation which is a strong limit of suitable solutions to the Navier-Stokes equation,
as viscosity goes to zero, is a suitable weak solution. Let us stress that in Theorem 12 the assumption
is weaker than the strong convergence of Hε, Eε, Hε ·mε and ∇mε in L2

loc((0, T ) × (R3)). On the other
hand when this strong convergence holds, the proof will reveal that daMLL vanishes and that eaMLL is only
due to the possible lack of strong convergence of the energy density

eεGL :=
1

2ε

(
|mε|2 − 1

)2
(74)

associated with EεGL. It would be interesting to investigate the existence of another way to construct weak
solutions to the MLL equations for which the distribution eaMLL vanishes as well.

Case of the HMHD equations. Mimicking the mollification process in (67)-(68), we consider the
equations:

∂tu
ε + (uε)ε · ∇uε +∇pε = (curlBε)× (Bε)ε + ∆uε (75)

div uε = 0, (76)

∂tB
ε − curl(uε × (Bε)ε) + curl

(
(curlBε)× (Bε)ε

)
= ∆Bε, (77)

divBε = 0. (78)

Standard arguments yield that for all u0 and B0 in H, for all ε ∈ (0, 1), there exists a global weak solution

(uε, Bε) ∈
(
L∞(0, T ;H) ∩ L2(0, T ;V)

)2
solution to (75)-(78) corresponding to these initial data. Moreover this solution satisfies the energy in-
equality (33). Therefore, up to a subsequence, uε and Bε converge in L∞(0, T ;H) weak-* and weakly in
L2(0, T ;V) respectively to u and B. Using some a priori temporal estimates and Aubin-Lions’ lemma, we
deduce that, up to a subsequence, uε and Bε converges in L3((0, T )×R3)loc. This allows to establish that
(u,B) is a weak solution to the HMHD equations associated with the initial data (u0, B0). We refer to
[1, 14] for the details of this procedure, though for a slightly different regularization scheme.

Our point here is the following.

Theorem 13. Let (u,B) be a weak solution to the HMHD equations obtained as a limit point of the
sequence (uε, Bε) as considered above. Assume moreover that, up to a subsequence, Bε converges to B in
L4((0, T )× R3)loc. Then the anomalous energy dissipation daHMHD is non positive.

Let us mention that the assumption that, up to a subsequence, Bε converges to B in L4((0, T )×R3)loc,
can be dropped out in the case of the MHD equations, as will be shown in the proof.

2.10 A few extra comments

An analysis relying on Littlewood-Paley decomposition as in [19] for the incompressible Euler equations
can be transposed to the MLL and HMHD systems. We will not go in this direction here. Let us only
mention that it seems that the same range of regularity is attained by both methods.

In [17], Chemin recently used a strategy which is precisely close to the Littlewood-Paley counterpart of
the key lemma used in [21], and adapted below, cf. Section 6.2, in order to obtain some sharp weak-strong
uniqueness result for the incompressible Navier-Stokes equations, see in particular Lemma 2.3 in [17].

21



It could therefore be interesting to see if it is possible to sharpen the weak-strong uniqueness results
given in Theorem 3 and in Theorem 5, that is to extend the statements to rougher strong solutions, using
for example the regularization approach.

Since the results obtained here are local in space, they could easily be adapted to the case where
the equations are set in a bounded domain; one then obtains a sufficient condition for the dissipation
to vanish in the interior of the domain. However the counterpart of such a result up to the boundary
seems more difficult. In this direction let us mention the results [20, 32] about the incompressible Navier-
Stokes equations. Yet, with respect to this issue the MLL and HMHD equations seem to be closer to
the incompressible Euler equations, for which there is, to our knowledge, no result of regularity up to the
boundary.

3 Weak-strong uniqueness: Proof of Theorem 4 and of Theorem 3

3.1 Case of the Landau-Lifshitz equation

For sake of expository, we shall first give the proof of Theorem 4 which deals with the case of the Landau-
Lifshitz equation (34), where the fields E and H are omitted. The extension to the MLL equations
(26)-(2)-(3)-(4) is given in the next subsection.

We therefore consider m2 : (0,∞)× R3 → R3 a global weak solution to (34) on (0,∞)× R3 satisfying
the energy inequality (35), for almost every T > 0. Here the weak formulation of the Landau-Lifshitz
equation (34) reads: for every Ψ ∈ H1((0,∞)× R3;R3),∫ T

0

∫
R3

(∂tm2 +m2 × ∂tm2) ·Ψ dx dt = −2
∑
i

∫ T

0

∫
R3

(m2 × ∂im2) · ∂iΨ dx dt, (79)

where the sum is over 1, 2, 3. The initial data m0 is prescribed in the trace sense, and is here assumed to
be smooth.

Let us consider m1, a smooth solution to (34) with the same initial data m0. We denote m := m1−m2

and expand JLL[m](T ) into

JLL[m](T ) = JLL[m1](T ) + JLL[m2](T )− 2
( ∫

R3

∇m1 : ∇m2 dx
)
(T )− 2

∫ T

0

∫
R3

∂tm1 · ∂tm2 dx dt.

Using some integration by parts, we have( ∫
R3

∇m1 : ∇m2 dx
)
(T ) =

∑
i

∫ T

0

∫
R3

(∂i∂tm1) · ∂im2 dx dt (80)

−
∫ T

0

∫
R3

(∆m1) · ∂tm2 dx dt+

∫
R3

|∇m0|2 dx.

Now, the two solutions satisfy the energy inequality (35), so that, for almost every T > 0,

JLL[m](T ) 6 KLL[m1,m2](T ), (81)

where

KLL[m1,m2](T ) := −2
∑
i

∫ T

0

∫
R3

(∂i∂tm1) · ∂im2 dx dt+ 2

∫ T

0

∫
R3

(∆m1) · ∂tm2 dx dt

−2

∫ T

0

∫
R3

∂tm1 · ∂tm2 dx dt. (82)
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We now use the weak formulation (79) with the test functions Ψ = ∂tm1 and Ψ = −2∆m1:∫ T

0

∫
R3

(∂tm2 +m2 × ∂tm2) · ∂tm1 dx dt = −2
∑
i

∫ T

0

∫
R3

(m2 × ∂im2) · ∂i∂tm1 dx dt, (83)

−2

∫ T

0

∫
R3

(∂tm2 +m2 × ∂tm2) ·∆m1 dx dt = 4
∑
i

∫ T

0

∫
R3

(m2 × ∂im2) · ∂i∆m1 dx dt. (84)

On the other hand, since m1 is a strong solution to (34), we have∫ T

0

∫
R3

(∂tm1 +m1 × ∂tm1) · ∂tm2 dx dt = 2
∑
i

∫ T

0

∫
R3

(m1 ×∆m1) · ∂tm2 dx dt, (85)

2

∫ T

0

∫
R3

∂i(∂tm1 +m1 × ∂tm1) · ∂im2 dx dt = 4
∑
i

∫ T

0

∫
R3

∂i(m1 × ∂im1) · ∂im2 dx dt. (86)

Thanks to (83)-(86) we get that

KLL[m1,m2] := −4(I1 + I2) + 2(I3 + . . .+ I6) + (I7 + I8),

with

I1 :=
∑
i

∫ T

0

∫
R3

(m2 × ∂im2) · ∂i∆m1 dx dt, I2 :=
∑
i

∫ T

0

∫
R3

(
∂i(m1 ×∆m1)

)
· ∂im2 dx dt,

I3 :=
∑
i

∫ T

0

∫
R3

∂i(m1 × ∂tm1) · ∂im2 dx dt, I4 := −
∫ T

0

∫
R3

(m2 × ∂tm2) ·∆m1 dx dt,

I5 := −
∫ T

0

∫
R3

(m1 ×∆m1) · ∂tm2 dx dt, I6 :=
∑
i

∫ T

0

∫
R3

(m2 × ∂im2) · ∂i∂tm1 dx dt,

I7 :=

∫ T

0

∫
R3

(m2 × ∂tm2) · ∂tm1 dx dt, I8 :=

∫ T

0

∫
R3

(m1 × ∂tm1) · ∂tm2 dx dt.

Using Leibniz’ rule and the properties of the triple product, we get

I1 + I2 = −
∑
i

∫ T

0

∫
R3

(m2 × ∂i∆m1) · ∂im2 dx dt+
∑
i

∫ T

0

∫
R3

(m1 × ∂i∆m1) · ∂im2 dx dt

+
∑
i

∫ T

0

∫
R3

(∂im1 ×∆m1) · ∂im2 dx dt

=
∑
i

∫ T

0

∫
R3

(m× ∂i∆m1) · ∂im2 dx dt−
∑
i

∫ T

0

∫
R3

(∂im1 ×∆m1) · ∂imdxdt

=
∑
i

∫ T

0

∫
R3

(m× ∂i∆m1) · ∂im2 dx dt−
∑
i

∫ T

0

∫
R3

(∂im×∆m1) · ∂imdxdt

= −
∑
i

∫ T

0

∫
R3

(m× ∂i∆m1) · ∂im2 dx dt+
∑
i

∫ T

0

∫
R3

(
∂i(m×∆m1)

)
· ∂im1 dx dt

−
∑
i

∫ T

0

∫
R3

(m× ∂i∆m1) · ∂im1 dx dt.
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By an integration by parts, we see that the second term in the right hand side above vanishes. The
remaining two terms can be combined into

I1 + I2 = −
∑
i

∫ T

0

∫
R3

(m× ∂i∆m1) · ∂imdxdt. (87)

We use again Leibniz’ rule to expand I3 into

I3 =
∑
i

∫ T

0

∫
R3

(
(∂im1)× ∂tm1

)
· ∂im2 dx dt+

∑
i

∫ T

0

∫
R3

(m1 × ∂i∂tm1) · ∂im2 dx dt =: I3,a + I3,b. (88)

Then, we observe that

I3,b + I6 =
∑
i

∫ T

0

∫
R3

det(m, ∂i∂tm1, ∂im2) dx dt, (89)

I4 + I5 =

∫ T

0

∫
R3

det(m, ∂tm2,∆m1) dx dt. (90)

On the other hand, we have

I3,a = −
∑
i

∫ T

0

∫
R3

(
(∂im1)× ∂tm1

)
· ∂imdxdt

=

∫ T

0

∫
R3

(
∆m1 × ∂tm1) ·mdxdt+

∑
i

∫ T

0

∫
R3

(
(∂im1)× ∂tm1

)
·mdxdt, (91)

by integration by parts.
Combining (88)-(91) we obtain

I3 + . . .+ I6 = −
∑
i

∫ T

0

∫
R3

det(m, ∂t∂im1, ∂im) dx dt−
∫ T

0

∫
R3

det(m, ∂tm,∆m1) dx dt. (92)

We have

I7 + I8 =

∫ T

0

∫
R3

(
det(m, ∂tm2, ∂tm1) + det(∂tm2,m1, ∂tm1)

)
dx dt

= −
∫ T

0

∫
R3

det(m, ∂tm2, ∂tm1) dx dt =

∫ T

0

∫
R3

det(m, ∂tm, ∂tm1) dx dt. (93)

Now, summing (87), (92) and (93), we deduce that

KLL[m1,m2] = 4
∑
i

∫ T

0

∫
R3

(m× ∂i∆m1) · ∂imdxdt− 2
∑
i

∫ T

0

∫
R3

(m× ∂t∂im1) · ∂imdxdt (94)

−2

∫ T

0

∫
R3

(m× ∂tm) ·∆m1 dx dt+

∫ T

0

∫
R3

(m× ∂tm) · ∂tm1 dx dt.

Since m vanishes at initial time, Poincaré’s inequality yields∫ T

0

∫
R3

|m|2 6 o(T )

∫ T

0

∫
R3

|∂tm|2 dx dt.

Thus, for T small enough, one gets

|KLL[m1,m2]| 6
1

2

∫ T

0

∫
R3

|∂tm|2 dx dt+ C

∫ T

0

∫
R3

|∇m|2 dx dt.

We combine this with the inequality (81) and use Gronwall’s lemma to conclude that m vanishes, first for
small time, and the argument can be repeated as many times as necessary.
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3.2 Case of the MLL equations

We consider (m2, E2, H2) : (0,∞)×R3 → R9 a global weak solution to the MLL equations on (0,∞)×R3

satisfying the energy inequality, for almost every T > 0. Here the weak formulation reads: for every
Ψ ∈ H1((0, T )× R3;R3),∫ T

0

∫
R3

(∂tm2 +m2 × ∂tm2) ·Ψ dx dt = −2
∑
i

∫ T

0

∫
R3

(m2 × ∂im2) · ∂iΨ dx dt (95)

+2

∫ T

0

∫
R3

(m2 ×H2) ·Ψ dx dt,

−
∫ T

0

∫
R3

(H2 +m2) · ∂tΨ dx dt+

∫ T

0

∫
R3

E2 · curl Ψ dx dt =

∫
R3

(H0 +m0) ·Ψ(0, ·) dx (96)

−(

∫
R3

(H2 +m2) ·Ψ dx)(T ),

−
∫ T

0

∫
R3

E2 · ∂tΨ dx dt−
∫ T

0

∫
R3

H2 · curl Ψ dx dt =

∫
R3

E0 ·Ψ(0, ·) dx− (

∫
R3

E2 ·Ψ dx)(T ), (97)

where the sum is over 1, 2, 3. The initial data m0 is prescribed in the trace sense, and is here assumed to
be smooth.

Let us consider (m1, E1, H1), regular solution to the MLL equations with the same initial data m0.
For j = 1, 2, let

EjMLL(t) :=

∫
R3

(
|Ej |2(t, x) + |Hj |2(t, x) + |∇mj |2(t, x)

)
dx and DjMLL(t) :=

∫
R3

|∂tmj |2(t, x) dx.

Let us also introduce

J jMLL(T ) := EjMLL(T ) +

∫ T

0
Dj

MLL dt

and

LMLL(T ) :=

∫
R3

(
|E|2(T, x) + |H|2(T, x) + |∇m|2(T, x)

)
dx+

∫ T

0

∫
R3

|∂tm|2(t, x) dx dt,

where m := m1 −m2, E := E1 − E2 and H := H1 −H2.
We first expand LMLL(T ) into

LMLL(T ) = J1
MLL(T ) + J2

MLL(T )− 2
( ∫

R3

∇m1 : ∇m2 dx
)
(T )− 2

∫ T

0

∫
R3

∂tm1 · ∂tm2 dx dt

−2
( ∫

R3

E1 · E2 dx
)
(T )− 2

( ∫
R3

H1 ·H2 dx
)
(T ).

Since the two solutions satisfy the energy inequality, and using (80), we get

LMLL(T ) 6 2L̃MLL(T ) + K̃MLL(T ), (98)

with

K̃MLL(T ) := −2
∑
i

∫ T

0

∫
R3

(∂i∂tm1) · ∂im2 dx dt+ 2
∑
i

∫ T

0

∫
R3

(∆m1) · ∂tm2 dx dt

−2

∫ T

0

∫
R3

∂tm1 · ∂tm2 dx dt,
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and

L̃MLL(T ) :=

∫
R3

(
|E0|2(T, x) + |H0|2(T, x)

)
dx−

( ∫
R3

E1 · E2 dx
)
(T )−

( ∫
R3

H1 ·H2 dx
)
(T ).

Following the computations performed for the LL equations, taking into account the extra-term coming
from the magnetic field in (95), we obtain:

K̃MLL(T ) := KLL[m1,m2](T )− 2

∫ T

0

∫
R3

det(m2, H2, ∂tm1) dx dt+ 4

∫ T

0

∫
R3

det(m2, H2,∆m1) dx dt

−2

∫ T

0

∫
R3

det(m1, H1, ∂tm2) dx dt+ 4
∑
i

∫ T

0

∫
R3

(
∂i(m1 ×H1)

)
· ∂im2 dx dt,

where KLL[m1,m2](T ) denotes here the right-hand-side of (94).
We use (96) and (97) respectively with Ψ = H1 and Ψ = E1 to get

L̃MLL(T ) = −
∫ T

0

∫
R3

(H2 +m2) · ∂tH1 dx dt+

∫ T

0

∫
R3

E2 · curlH1 dx dt

−
∫
R3

H0 ·m0 dx+

∫
R3

m2(T ) ·H1(T ) dx

−
∫ T

0

∫
R3

E2 · ∂tE1 dx dt−
∫ T

0

∫
R3

H2 · curlE1 dx dt,

and then, using that (m1, E1, H1) satisfies the equations (2) and (3), we obtain

L̃MLL(T ) =

∫ T

0

∫
R3

H2 · ∂tm1 dx dt+

∫ T

0

∫
R3

H1 · ∂tm2 dx dt.

Now, we use on one hand that m1 solves equation (1) and on the other hand equation (95) with Ψ = H1

to obtain

L̃MLL(T ) = −
∫ T

0

∫
R3

det(H2,m1, ∂tm1) dx dt+ 2

∫ T

0

∫
R3

det(H2,m1,∆m1) dx dt

+2

∫ T

0

∫
R3

det(H2,m1, H1) dx dt

−
∫ T

0

∫
R3

det(H1,m2, ∂tm2) dx dt− 2
∑
i

∫ T

0

∫
R3

(∂iH1) · (m2 × ∂im2) dx dt

+2

∫ T

0

∫
R3

det(H1,m2, H2) dx dt.

Therefore

2L̃MLL(T ) + K̃MLL(T ) = KLL[m1,m2](T ) + 2P1(T ) + 4P2(T ) + 4P3(T ), (99)

where

P1(T ) := −
∫ T

0

∫
R3

det(m2, H2, ∂tm1) dx dt−
∫ T

0

∫
R3

det(m1, H1, ∂tm2) dx dt

−
∫ T

0

∫
R3

det(H2,m1, ∂tm1) dx dt−
∫ T

0

∫
R3

det(H1,m2, ∂tm2) dx dt,
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P2(T ) :=
∑
i

∫ T

0

∫
R3

(
∂i(m1 ×H1)

)
· ∂im2 dx dt+

∫ T

0

∫
R3

det(H2,m1,∆m1) dx dt

−
∑
i

∫ T

0

∫
R3

(∂iH1) · (m2 × ∂im2) dx dt+

∫ T

0

∫
R3

det(m2, H2,∆m1) dx dt,

and

P3(T ) :=

∫ T

0

∫
R3

det(H1,m2, H2) dx dt+

∫ T

0

∫
R3

det(H2,m1, H1) dx dt.

Now, we observe that

P1(T ) = −
∫ T

0

∫
R3

det(m,H, ∂tm1) dx dt+

∫ T

0

∫
R3

det(m,H1, ∂tm) dx dt, (100)

and, by Leibniz’ rule, that

P2(T ) =
∑
i

∫ T

0

∫
R3

det(∂im1, H1, ∂im2) dx dt+
∑
i

∫ T

0

∫
R3

det(m1, ∂iH1, ∂im2) dx dt

+

∫ T

0

∫
R3

det(H2,m,∆m1) dx dt−
∑
i

∫ T

0

∫
R3

det(∂iH1,m2, ∂im2) dx dt.

Now, we use an integration by parts to get that∫ T

0

∫
R3

det(∂im1, H1, ∂im2) dx dt =

∫ T

0

∫
R3

det(∂im1, H1, ∂im) dx dt

= −
∫ T

0

∫
R3

det(∂2im1, H1,m) dx dt

−
∫ T

0

∫
R3

det(∂im1, ∂iH1,m) dx dt.

Thus

P2(T ) = −
∫ T

0

∫
R3

det(∆m1, H,m) dx dt−
∑
i

∫ T

0

∫
R3

det(∂im, ∂iH1,m) dx dt. (101)

Finally, we easily get

P3(T ) =

∫ T

0

∫
R3

det(H1,m,H) dx dt. (102)

Plugging (99)-(100)-(101)-(102) into (98) one gets

LMLL(T ) 6
1

2

∫ T

0

∫
R3

|∂tm|2 dx dt+ C

∫ T

0

∫
R3

(
|E|2 + |H|2 + |∇m|2

)
dx dt,

and using a Gronwall lemma yields the desired conclusion.
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4 Weak-strong uniqueness: Proof of Theorem 5

We will prove Theorem 5 in a simplified setting which focuses on the difficulty due to the Hall effect. The
extension to the general case is straightforward. Therefore we consider the following equations:

∂tB + curl
(
(curlB ×B)

)
= ∆B, (103)

divB = 0. (104)

We consider a global weak solution B2 to (103)-(104) associated with an initial data B0 ∈ H, assumed
smooth.

Here the weak formulation reads: for any Ψ ∈ C1([0, T ];C1
c (R3), for any T > 0,

−
∫ T

0

∫
R3

(∂tΨ) ·B2 dx dt+
( ∫

R3

Ψ ·B2

)
|t=T dx−

( ∫
R3

Ψ|t=0 ·B0 dx
)

(105)

+

∫ T

0

∫
R3

(curl Ψ) ·
(
(curlB2)×B2

)
dx dt = −

∫ T

0

∫
R3

(curl Ψ) · (curlB2) dx dt,

and the energy inequality: for almost every T > 0,

JHMHD[B2](T ) :=
1

2

( ∫
R3

B2 dx
)
|t=T +

∫ T

0

∫
R3

(curlB2)
2 dx dt 6

1

2

∫
R3

B2
0 dx. (106)

We also consider a regular solution B2 of (103)-(103) on (0, T0), for T0 > 0. We denote B := B1−B2 and
expand JHMHD[B](T ) into

JHMHD[B](T ) = JHMHD[B1](T ) +JHMHD[B2](T )− (

∫
R3

B1 ·B2 dx)(T )−2

∫ T

0

∫
R3

(curlB1) · (curlB2) dx dt,

and then we use that both B1 and B2 satisfy the weak energy inequality (106) to deduce that

JHMHD[B](T ) 6
∫
R3

B2
0 dx− (

∫
R3

B1 ·B2 dx)(T )− 2

∫ T

0

∫
R3

(curlB1) · (curlB2) dx dt. (107)

We use (105) with Ψ = B1 to get

−
∫
R3

B2
0 +

( ∫
R3

B1 ·B2 dx
)
(T ) +

∫ T

0

∫
R3

(curlB1) · (curlB2) dx dt =

∫ T

0

∫
R3

(∂tB1) ·B2 dx dt (108)

−
∫ T

0

∫
R3

(curlB1) ·
(
(curlB2)×B2

)
dx dt.

Now we use that B1 satisfies (103)-(104) to obtain∫ T

0

∫
R3

(∂tB1) ·B2 dx dt = −
∫ T

0

∫
R3

(
(curlB1)×B1)

)
· curlB2 dx dt−

∫ T

0

∫
R3

(curlB1) · (curlB2) dx dt.

Plugging this into (108) provides that

L := −
∫
R3

B2
0 +

( ∫
R3

B1 ·B2

)
(T ) dx+ 2

∫ T

0

∫
R3

(curlB1) · (curlB2) dx dt
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is given by

L = −
∫ T

0

∫
R3

(
(curlB1)×B1)

)
· curlB2 dx dt−

∫ T

0

∫
R3

(curlB1) · (curlB2 ×B2) dx dt

= −
∫ T

0

∫
R3

det((curlB1), B1, curlB2) dx dt+

∫ T

0

∫
R3

det((curlB1), B2, curlB2) dx dt

= −
∫ T

0

∫
R3

det((curlB1), B, curlB2) dx dt

= −
∫ T

0

∫
R3

det((curlB1), B, curlB) dx dt,

and therefore combining with (107) we get

JHMHD[B](T ) 6
∫ T

0

∫
R3

det((curlB1), B, curlB) dx dt

6 C

∫ T

0

∫
R3

B2 dx dt+
1

2

∫ T

0

∫
R3

(curlB)2 dx dt,

which leads to the conclusion, thanks to a Gronwall estimate.

5 Local conservations: Proof of Part i) of Theorem 7, Theorem 8 and
Theorem 9

We use repetitively in the sequel the following formula: for two smooth vector fields v and w there holds

−v · curlw + w · curl v = div(v × w). (109)

5.1 MLL equations: Proof of Part i) of Theorem 7

We first take the convolution of the equations with the mollifier ψε in order to obtain the regularized
equations:

∂tmε + (m× ∂tm)ε = 2
∑
i

∂i

(
m× ∂im

)
ε

+ 2(m×H)ε, (110)

∂tHε + curlEε = −∂tmε, (111)

∂tEε − curlHε = 0, (112)

divEε = div(Hε +mε) = 0, (113)

where we use notation (53).
Next we apply formula (55), so that (110) becomes

∂tmε +mε × ∂tmε + Bε[m, ∂tm] = 2mε ×∆mε + 2Bε[m,∆m] + 2mε ×Hε + 2Bε[m,H]. (114)

Let us take the inner product of (114) with ∂tmε, ∆mε and Hε to get

|∂tmε|2 + Bε[m, ∂tm] · ∂tmε = 2(mε ×∆mε) · ∂tmε + 2Bε[m,∆m] · ∂tmε (115)

+2(mε ×Hε) · ∂tmε + 2Bε[m,H] · ∂tmε,
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∂tmε ·∆mε + (mε × ∂tmε) ·∆mε + Bε[m, ∂tm] ·∆mε = 2Bε[m,∆m] ·∆mε (116)

+2(mε ×Hε) ·∆mε + 2Bε[m,H] ·∆mε,

∂tmε ·Hε + (mε × ∂tmε) ·Hε + Bε[m, ∂tm] ·Hε = 2(mε ×∆mε) ·Hε + 2Bε[m,∆m] ·Hε (117)

+2(mε ×Hε) ·Hε + 2Bε[m,H] ·Hε.

On the other hand we take the inner product of (111) with Hε, the inner product of (112) with Eε and
we take the sum to get

∂t(|Eε|2 + |Hε|2) + 2 div(Hε × Eε) = −2Hε · ∂tmε. (118)

Let us now compute (115)− 2(116)− 2(117) + (118). This yields

|∂tmε|2 − 2∂tmε ·∆mε + ∂t(|Eε|2 + |Hε|2) + 2 div(Hε × Eε) = da,εMLL,

with da,εMLL given by (58).
Therefore it suffices to observe that

−2∂tm ·∆m = −2
∑
i

∂i

(
∂tm · ∂im

)
+ ∂t(|∇m|2),

to obtain
∂te

ε
MLL + dεMLL + div f εMLL = da,εMLL, (119)

where

eεMLL := |Eε|2 + |Hε|2 + |∇mε|2, dεMLL := |∂tmε|2 f εMLL := −2(∂tmε · ∂imε)i=1,2,3 + 2Hε × Eε. (120)

Now we prove that, when ε → 0, da,εMLL converges, in the sense of distributions, to daMLL whatever is
the choice of the mollifier. Let us recall that daMLL is given by (57).

Indeed it follows from the regularity of m, E and H that |∂tmε|2, |Eε|2, |Hε|2, |∇mε|2, ∂tmε ·∂imε and
Hε×Eε converge respectively to |∂tm|2, |E|2, |H|2, |∇m|2, ∂tm · ∂im and H ×E in L1((0, T )×R3)loc. As
a consequence the left hand side of (119) converges, in the sense of distributions, to

|∂tm|2 + ∂t(|E|2 + |H|2 + |∇m|2)− 2
∑
i

∂i

(
∂tm · ∂im

)
+ 2 div(H × E).

This entails that, da,εMLL converges, in the sense of distributions, to daMLL.

5.2 HMHD equations: Proof of Part i) of Theorem 8 and Theorem 9

5.2.1 Regularization

We start with the regularized equations:

∂tuε + div(u⊗ u−B ⊗B)ε +∇(pm)ε = ∆uε, (121)

div uε = 0, (122)

∂tBε − curl(u×B)ε + curl div(B ⊗B)ε = ∆Bε, (123)

divBε = 0. (124)

We use the decompositions (54), (55) and (56) to recast (121) and (123) as follows:

∂tuε + div(uε ⊗ uε −Bε ⊗Bε) + div(Cε[u, u]− Cε[B,B]) +∇(pε +
1

2
|Bε|2) +

1

2
∇Aε[B,B] = ∆uε, (125)

∂tBε − curl(uε ×Bε)− curlBε[u,B] + curl
(

(curlBε)×Bε + div Cε[B,B]
)

= ∆Bε. (126)
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5.2.2 Local magneto-helicity identity: Proof of Part i) of Theorem 8

Thanks to Leibniz’ identity and (109) there holds

∂t(Aε ·Bε) = (∂tAε) ·Bε +Aε · ∂tBε = 2Aε · ∂tBε + div(Aε × ∂tAε).

Using now (126) we obtain

∂t(Aε ·Bε) = −2Aε · curl
(

(curlBε − uε)×Bε)
)

+ 2Aε ·∆Bε + div(Aε × ∂tAε)

+2Aε · curlBε[u,B]− 2Aε · curl div Cε[B,B].

Thanks to (109) and to the divergence free conditions we obtain

−Aε · curl
(

(curlBε − uε)×Bε)
)

= div
(
Aε × ((curlBε − uε)×Bε)

)
,

and
Aε ·∆Bε = −Aε · curl curlBε = −Bε · curlBε + div(Aε × curlBε).

Therefore

∂t(Aε ·Bε) + 2Bε · curlBε − div
(

2
(
(uε − curlBε)×Bε − 2 curlBε − ∂tAε

)
×Aε

)
= da,εm , (127)

where da,εm is given by (64).
Let us now prove that da,εm converges in the sense of distributions to dam. Indeed we are going to prove

that the left hand side of (127) converges to

∂t(A ·B) + 2B · curlB − div
(

2(u− curlB)×B − 2 curlB − ∂tA)×A
)
.

Actually thanks to the estimates given by the existence theorem 2, and the fact that the vector potential
A is in L2(0, T ;H2(R3)) by elliptic regularity, we easily infer that

∂t(Aε ·Bε) + 2Bε · curlBε − div
((

2(uε − curlBε)×Bε − 2 curlBε
)
×Aε

)
converges in the sense of distributions to

∂t(A ·B) + 2B · curlB − div
((

2(u− curlB)×B − 2 curlB
)
×A

)
.

Let us now turn our attention to the last term of the left hand side of (127). Using again elliptic regularity,

we easily infer that A is in L∞(0, T ;V). Moreover using equation (7), one infers that ∂tA is in L
4
3 (0, T ;V ′).

Actually this estimate is used in course of proving the existence theorem 2, see [1]. From that we deduce

that div
(

(∂tAε)×Aε
)

converges in the sense of distributions to div
(

(∂tA)×A
)

.

This concludes the proof of the first part of Theorem 8.

5.2.3 Local Energy identity: Proof of Part i) of Theorem 9

Let us take the inner product of (125) and (126) respectively with uε and Bε, and sum the resulting
identities, taking into account that, thanks to (122) and (124),

uε · div(uε ⊗ uε) + uε · ∇pε = div
(

(
1

2
|uε|2 + pε)uε

)
,
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uε ·
(
− div(Bε ⊗Bε) +

1

2
∇(|Bε|2)

)
= −uε ·

(
(curlBε)×Bε

)
= (curlBε) ·

(
uε ×Bε

)
,

so that

uε ·
(
− div(Bε ⊗Bε) +

1

2
∇(|Bε|2)

)
−Bε ·

(
curl(uε ×Bε)

)
= div

(
Bε × (uε ×Bε)

)
,

Bε ·
(

curl
(

(curlBε)×Bε
))

= div
((

(curlBε)×Bε
)
×Bε

)
,

and
−uε ·∆uε −Bε ·∆Bε = | curluε|2 + | curlBε|2 + div

(
(curluε)× uε + (curlBε)×Bε

)
.

We thus obtain
∂te

ε
HMHD + dεHMHD + div f εHMHD = da,εHMHD, (128)

where

eεHMHD :=
1

2

(
|uε|2 + |Bε|2

)
, dεHMHD := | curluε|2 + | curlBε|2, (129)

f εHMHD := (
1

2
|uε|2 + pε)uε +Bε × (uε ×Bε) + (curluε)× uε + (curlBε)×Bε +

(
(curlBε)×Bε

)
×Bε,

da,εHMHD := −uε · div
(
Cε[u, u]− Cε[B,B]

)
− 1

2
uε · ∇Aε[B,B] +Bε · curlBε[u,B]−Bε · curl div Cε[B,B].

Let us now prove that if u and B are given by Theorem 2 with B ∈ L4((0, T ) × R3)loc then da,εHMHD

converges, in the sense of distributions, to daHMHD.
First observe that since u and B belong to L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)), they also belong to

L3((0, T )× R3).
It is not difficult to see that, under these assumptions,

|uε|2 + |Bε|2, |uε|2uε, Bε × (uε ×Bε), (curluε)× uε, (curlBε)×Bε,
(
(curlBε)×Bε

)
×Bε,

| curluε|2 and | curlBε|2

converge in L1((0, T )× R3)loc respectively to

|u|2 + |B|2, |u|2u,B × (u×B), (curlu)× u, (curlB)×B,
(
(curlB)×B

)
×B, | curlu|2 and | curlB|2.

Therefore in order to prove that the left hand side of (128) converges in the sense of distributions to the

left hand side of (38) it is sufficient to prove that pε converges in L
3
2 ((0, T )× R3)loc to p. But taking the

divergence of (28), and taking (29) into account, we obtain that the magnetic pressure pm satisfies

∆pm = −div div(u⊗ u−B ⊗B). (130)

Then classical elliptic regularity allows to conclude that pm, and therefore p, is in L
3
2 ((0, T )×R3)loc, what

concludes the proof of Part i) of Theorem 9.

6 Technicalities

In this section we gather a few technical results which will be useful in the sequel.
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6.1 Some injections

The following lemma is a consequence of Bernstein’s lemma. Its proof is given in the Appendix.

Lemma 14. Let α, α̃ ∈ (0, 1) ∪ (1, 2), and p, r ∈ [1,∞]. Assume that α̃ 6 α and define p̃ ∈ [1,∞]
by α̃ − 3/p̃ = α − 3/p. Then L̃r(0, T ; Ḃα

p,∞(R3)) is continuously embedded in L̃r(0, T ; Ḃα̃
p̃,∞(R3)). As a

consequence, any u ∈ L̃r(0, T ; Ḃα
p,∞(R3))loc belongs to L̃r(0, T ; Ḃα̃

p̃,∞(R3))loc.

Let us observe that if (p, α) satisfies the relationship in (59) then so does any (p̃, α̃) such that α̃−3/p̃ =
α − 3/p. Similarly if (q, β) satisfies q = 12/(4β − 1) (see Remark 3), then so does any (q̃, β̃) such that
β̃ − 3/q̃ = β − 3/q.

We will use in particular that

• for α ∈ (3/2, 11/6] and p :=
9

3α− 1
, a function belonging to the space L̃3(0, T ; Ḃα

p,∞(R3))loc also

belongs to the space L̃3(0, T ; Ḃα̃
p̃,∞(R3))loc, with α̃ := 4−2α and p̃ :=

9

3α̃− 1
which satisfies

2

p
+

1

p̃
= 1.

• for β ∈ (9/8, 3/2) and q :=
12

4β − 1
, a function belonging to the space L̃4(0, T ; Ḃβ

q,∞(R3))loc also

belongs to the space L̃4(0, T ; Ḃ2−β
q̃,∞ (R3))loc, with q̃ :=

3
7
4 − β

which satisfies
1

q
+

1

q̃
=

1

2
.

6.2 A Constantin-E-Titi type lemma

We will make a crucial use of the following lemma adapted from [21]. The notations Aε,Bε, Cε are from
(54), (55), (56).

Lemma 15. Let i = 0, 1 or 2. Let (r1, r2, r3) ∈ [1,∞]3, (p1, p2, p3) ∈ [1,∞]3 and (α1, α2, α3) ∈ [0, 1)3 be
such that

1

r1
+

1

r2
+

1

r3
=

1

p1
+

1

p2
+

1

p3
= 1 and α1 + α2 + α3 > i.

Let φ1, φ2, φ3 be functions on (0, T )× R3 such that for j = 1, 2, 3,

• either αj ∈ (0, 1) and φj ∈ L̃rj (0, T ; Ḃ
αj
pj ,∞(R3))loc,

• or αj = 0, and φj ∈ Lrj (0, T ;Lpj (R3))loc,

and such that for at least one index j ∈ {1, 2, 3} (j ∈ {1, 2} in the case where α1 + α2 + α3 = i = 0),

• either αj ∈ (0, 1) and φj ∈ L̃rj (0, T ; Ḃ
αj
pj ,c0(R3))loc,

• or αj = 0, rj , pj <∞ and φj ∈ Lrj (0, T ;Lpj (R3))loc.

Then, for all χ ∈ C∞c ((0, T )× R3),∫ T

0

∫
R3

χ
(
|Aε[φ1, φ2]|+ |Bε[φ1, φ2]|+ |Cε[φ1, φ2]|

)
|∇iφ3ε| dx dt→ 0 when ε→ 0. (131)

Before proving Lemma 15, we start with a few preliminary results.

Lemma 16. Let α ∈ (0, 1), and p, r ∈ [1,∞].

1. For all u ∈ L̃r(0, T ; Ḃα
p,∞(R3)),

‖u− uε‖Lr((0,T );Lp(R3)) = O(εα). (132)
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2. For all u ∈ L̃r(0, T ; Ḃα
p,c0(R3)),

‖u− uε‖Lr((0,T );Lp(R3)) = o(εα). (133)

3. If r, p ∈ [1,∞), then for all u ∈ Lr(0, T ;Lp(R3)),

‖u− uε‖Lr((0,T );Lp(R3)) = o(1). (134)

Proof. We begin with the proof of (132). We use that

uε(t, x)− u(t, x) =

∫
R3

ψε(y)(u(t, x− y)− u(t, x))dy,

so that, with δyu(t, x) = u(t, x− y)− u(t, x),

‖u− uε‖Lr(0,T ;Lp(R3)) 6
∫
R3

ψε(y)‖δyu‖Lr(0,T ;Lp(R3))dy. (135)

Now, this implies

‖u− uε‖Lr(0,T ;Lp(R3)) 6

(∫
R3

ψε(y)|y|αdy
)
‖u‖

L̃r(0,T ;Bαp,∞(R3))
.

According to the size of the support of ψε, this proves (132). To obtain (133), we write

ε−α‖u− uε‖Lr(0,T ;Lp(R3)) 6
∫
R3

ψε(y)

(
|y|
ε

)α
‖fα,p[u](y)‖Lr(0,T )dy 6 C

∫
R3

ψε(y)‖fα,p[u](y)‖Lr(0,T )dy,

and again, the fact that supp(ψε) has size ε yields the result.
To prove (134), we come back to (135). For all t ∈ (0, T ), ‖δyu(t, ·)‖Lp(R3) 6 2‖u(t, ·)‖Lp(R3), and since

p <∞, ‖δyu(t, ·)‖Lp(R3)−→
y→0

0, so that Lebesgue’s dominated convergence Theorem concludes.

Lemma 17. Let α ∈ (0, 1), and p, r ∈ [1,∞].

1. For all u ∈ L̃r(0, T ; Ḃα
p,∞(R3)),

‖∇uε‖Lr(0,T ;Lp(R3)) = O(εα−1) and ‖∇2uε‖Lr(0,T ;Lp(R3)) = O(εα−2). (136)

2. For all u ∈ L̃r(0, T ; Ḃα
p,c0(R3)),

‖∇uε‖Lr(0,T ;Lp(R3)) = o(εα−1) and ‖∇2uε‖Lr(0,T ;Lp(R3)) = o(εα−2). (137)

3. If r, p ∈ [1,∞), then for all u ∈ Lr((0, T );Lp(R3)),

‖∇uε‖Lr(0,T ;Lp(R3)) = o(1/ε) and ‖∇2uε‖Lr(0,T ;Lp(R3)) = o(1/ε2). (138)

Proof. Let us only prove the part of (136) regarding ∇uε, the other cases being similar. We start from

∇uε(t, x) =
1

ε

∫
R3

ψ̃ε(y)u(t, x− y)dy,

where
ψ̃ε(y) := ε−3ψ̃(ε−1x), whith ψ̃ := ∇ψ.
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Since the mean value of ψ̃ over R3 vanishes, we get

∇uε(t, x) =
1

ε

∫
R3

ψ̃ε(y)(u(t, x− y)− u(t, x))dy,

=
1

ε

∫
R3

|y|αψ̃ε(y)
u(t, x− y)− u(t, x)

|y|α
dy,

and we conclude as in the proof of (132) above.

Let us now prove Lemma 15.

Proof of Lemma 15. In order to prove the part of the claim concerning the vector product it suffices to
observe that Bε[φ1, φ2] may be written

Bε[φ1, φ2] = rε[φ1, φ2]− (φ1 − φ1ε)× (φ2 − φ2ε),

where

rε[φ1, φ2](x) :=

∫
R3

ψε(y)δyφ
1(x)× δyφ2(x) dy.

Now, if χ ∈ C∞c ((0, T ) × R3), there exists some nonnegative θ ∈ C∞c ((0, T ) × R3) taking the value 1 on
supp(χ), so that χ = χθ3. Then, we have∫ T

0

∫
R3

χ|rε[φ1, φ2]| |∇iφ3ε| dx dt =∫
(0,T )×R3

χ(t, x)

∣∣∣∣∫
R3

ψε(y)((θδyφ
1)(t, x))× ((θδyφ

2)(t, x)) dy

∣∣∣∣ |(θ∇iφ3ε)(t, x)| dt dx.

But θδyφ
1 = δy(θφ

1)− φ1δyθ. Since supp(ψε) is contained in some ball of size ε, and θ takes the value 1
on supp(χ), for ε small enough, with y in supp(ψε), δyθ vanishes on supp(χ):

for ε small enough,

∫ T

0

∫
R3

χ|rε[φ1, φ2]| |∇iφ3ε| dx dt =

∫ T

0

∫
R3

χ|rε[θφ1, θφ2]| |∇i(θφ3ε)| dx dt.

Then, use Hölder’s inequality, estimating rε[θφ1, θφ2] as in the proof of Lemma 16, and combine with
Lemma 16 and Lemma 17, noticing that among the estimates, at least one of the O’s is a o.

7 Vanishing of anomalous energy dissipation for the MLL equations:
Proof of Part ii) of Theorem 7

In order to conclude the proof of Theorem 7, it is sufficient to prove that for all χ ∈ C∞c ((0, T )× R3),∫
(0,T )×R3

χda,εMLL dx dt→ 0, as ε→ 0. (139)

For the sequel, we fix such a function χ. We expand the local anomalous energy dissipation da,εMLL, defined
in (58), into

da,εMLL = −Bε[m, ∂tm− 2H] · (∂tmε − 2Hε) + 2Bε[m,∆m] · (∂tmε − 2Hε)

+2Bε[m, ∂tm− 2H] ·∆mε − 4Bε[m,∆m] ·∆mε,

which we denote
da,εMLL = F ε1 [m,H] + F ε2 [m,H] + F ε3 [m,H] + F ε4 [m].

Now it suffices to proceed as follows.
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Remark 3. When m ∈ L̃3
t Ḃ

α
p,∞ ∩ L∞t,x with α ∈ (3/2, 2) and p = 9/(3α − 1), by interpolation m belongs

to L̃4
t Ḃ

β
q,∞ with β := 3α/4 ∈ (9/8, 3/2) and q = 12/(4β − 1). This follows from the injection L∞((0, T )×

R3) ↪→ L̃3(0, T ;B0
∞,∞(R3)) and Theorem 6.4.5 in [6].

First term. Since ∂tm − 2H ∈ L2((0, T ) × R3) and m ∈ L∞((0, T ) × R3), we deduce from Lemma
15 (with i = 0, φ1 = m, φ2 = φ3 = ∂tm− 2H) that∫

(0,T )×R3

F ε1 [m,H]χdx dt→ 0, as ε→ 0. (140)

Second term. For the second term we use first an integration by parts to get∫
(0,T )×R3

χF ε2 [m,H] dx dt = −2
∑
k

∫
(0,T )×R3

χBε[m, ∂km] · ∂k(∂tmε − 2Hε) dx dt

−2
∑
k

∫
(0,T )×R3

(∂kχ)Bε[m, ∂km] · (∂tmε − 2Hε) dx dt

:= Iε1 + Iε2 .

Then, one uses Lemma 15 with i = 1,

φ3 = ∂tm− 2H ∈ L2((0, T )× R3), φ2 = ∇m ∈ L̃4(0, T ; Ḃβ−1
q,∞ (R3))loc,

and φ1 = m ∈ L̃4(0, T ; Ḃβ
q,∞(R3))loc ↪→ L̃4(0, T ; Ḃβ̃

q̃,∞(R3))loc

for all q̃ > q, with β̃ = β − 3
(
1
q −

1
q̃

)
. Under this last condition, q = 12

4β−1 is equivalent to q̃ = 12
4β̃−1 . It is

then required that 1
q̃ + 1

q = 1
2 , which leads, because of the relations q = 12

4β−1 , q̃ = 12
4β̃−1 , to the constraint

β̃ = 2 − β. Note that, when β belongs to (1, 2), β̃ and β − 1 belong to (0, 1); furthermore, in this case,
we have q < 4 < q̃. Now, the remaining requirement from Lemma 15 is β̃ + (β − 1) > 1, which is fulfilled
(since β̃ + (β − 1) = 1). Hence, we get that Iε1 → 0 as ε→ 0.

Similarly, one uses Lemma 15 with the same functions φ1, φ2, φ3, but this time with i = 0 and ∂kχ
instead of χ, to get that Iε2 → 0 as ε→ 0. Thus∫

(0,T )×R3

χF ε2 [m,H] dx dt→ 0, as ε→ 0. (141)

Third term. Now,∫
(0,T )×R3

χF ε3 [m,H] dx dt = 2
∑
k

∫
(0,T )×R3

χBε[m, ∂tmε − 2Hε] · ∂k(∂km) dx dt,

so that we apply again Lemma 15 with i = 1, φ3 = ∇m ∈ L̃4(0, T ; Ḃβ−1
q,∞ (R3))loc, φ

2 = ∂tm − 2H ∈
L2((0, T ) × R3) and φ1 = m ∈ L̃4(0, T ; Ḃβ

q,∞(R3))loc ↪→ L̃4(0, T ; Ḃβ̃
q̃,∞(R3))loc, exactly as for the second

term F 2
ε [m,H], to obtain ∫

(0,T )×R3

χF ε3 [m,H] dx dt→ 0, as ε→ 0. (142)
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Fourth term. Finally we use again an integration by parts to get∫
(0,T )×R3

χF ε4 [m] dx dt = 4
∑
k

∫
(0,T )×R3

χBε[m, ∂km] ·∆∂kmε dx dt

+4
∑
k

∫
(0,T )×R3

(∂kχ)Bε[m, ∂km] ·∆mε dx dt.

Let us focus on the first term of the right hand side which is the most difficult. Here, we invoke Lemma
15 with i = 2. Instead, we take φ1 = m ∈ L̃3Ḃα

p,c0 ↪→ L̃3Ḃα̃
p̃,c0

, φ2 = φ3 = ∇m ∈ L̃3Ḃα−1
p,c0 . We have the

constraints

α̃ = α− 3

(
1

p
− 1

p̃

)
< α,

2

p
+

1

p̃
= 1 and α̃+ 2(α− 1) > 2.

Choosing α̃+2(α−1) = 2 is equivalent to the relation p = 9
3α−1 . Furthermore, imposing α̃ = 4−2α ∈ (0, 1)

is equivalent to α ∈ (3/2, 2). This is enough to ensure∫
(0,T )×R3

χF ε4 [m] dx dt→ 0, as ε→ 0. (143)

Gathering (140)-(141)-(142)-(143) yields (139).

8 Vanishing of anomalous dissipations for the HMHD equations: Proof
of Part ii) of Theorem 8 and Theorem 9

8.1 No anomalous magneto-helicity dissipation: Proof of Part ii) of Theorem 8

In order to prove Part ii) of Theorem 8, it is sufficient to prove that for all χ ∈ C∞c ((0, T )× R3),∫
(0,T )×R3

χda,εm dx dt→ 0, as ε→ 0. (144)

For the sequel, we fix such a function χ. Let us recall the definition of da,εm given in (64):

da,εm := 2Aε · curlBε[u,B]− 2Aε · curl div Cε[B,B] =: 2T ε1 [u,A]− 2T ε2 [A].

We use (109) and an integration by parts to obtain:∫
(0,T )×R3

χT ε1 [u,A] dx dt =

∫
(0,T )×R3

χBε · Bε[u,B] dx dt (145)

−
∫
(0,T )×R3

(
Bε[u,B]×Aε) · ∇χdx dt.

On the other hand, we apply (109) to get:∫
(0,T )×R3

χT ε2 [A] dx dt =

∫
(0,T )×R3

χ curlAε · div Cε[B,B] dx dt

+

∫
(0,T )×R3

χdiv
(

(div Cε[B,B])×Aε
)
dx dt.
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An integration by parts yields∫
(0,T )×R3

χT ε2 [A] dx dt = −
∫
(0,T )×R3

χ(∇ curlAε) : Cε[B,B] dx dt

−
∫
(0,T )×R3

(Cε[B,B] curlAε) · ∇χdx dt

−
∫
(0,T )×R3

(
(div Cε[B,B])×Aε

)
· ∇χdx dt,

so that we finally obtain:∫
(0,T )×R3

χT ε2 [A] dx dt = −
∫
(0,T )×R3

χ(∇Bε) : Cε[B,B] dx dt

−
∫
(0,T )×R3

(Cε[B,B]Bε) · ∇χdx dt

+

∫
(0,T )×R3

(
(Cε[B,B]∇)×Aε

)
· ∇χdx dt

+
∑
j

∫
(0,T )×R3

(
((Cε[B,B])ij)i ×Aε

)
· ∂j∇χdx dt. (146)

To get the vanishing of the T ε1 term given by (145) as ε goes to zero, observe that the regularity given
by Theorem 2 and interpolation theory suffices, applying Lemma 15 with i = 0 and the φj ’s equal to u, B
or A, all belonging to L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)) ↪→ L3(0, T ;L3(R3)).

Concerning the last three terms produced by T ε2 in (146), use again Lemma 15 with i = 0, φ1 = φ2 = B,
and φ3 being B, ∇A or A, which all belong to L3(0, T ;L3(R3)). The first term in (146) is the one for which

the most regularity is needed: in Lemma 15, take i = 1 and φ1 = φ2 = φ3 = B ∈ L̃3(0, T ; Ḃ
1/3
3,c0

(R3))loc.

8.2 No anomalous energy dissipation: Proof of Part ii) of Theorem 9

In order to prove Part ii) of Theorem 9, we consider χ ∈ C∞c ((0, T )× R3), and we prove that∫
(0,T )×R3

χda,εHMHD dx dt→ 0, as ε→ 0. (147)

We recall that

da,εHMHD := −uε · div
(
Cε[u, u]− Cε[B,B]

)
− 1

2
uε · ∇Aε[B,B]

−Bε ·
(

curlBε[u,B]
)

+Bε ·
(

curl div Cε[B,B]
)

=: Jε1 [u,B] + Jε2 [u,B] + Jε3 [u,B] + Jε4 [B].

Using (109) and that uε is divergence free, we have∫
(0,T )×R3

χJε1 [u,B] dx dt =

∫
(0,T )×R3

χ∇uε ·
(
Cε[u, u]− Cε[B,B]

)
dx dt

+

∫
(0,T )×R3

(
Cε[u, u]− Cε[B,B]

)
(uε · ∇χ) dx dt,

∫
(0,T )×R3

χJε2 [u,B] dx dt =
1

2

∫
(0,T )×R3

(uε · ∇χ)Aε[B,B] dx dt,
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∫
(0,T )×R3

χJε3 [u,B] dx dt = −
∫
(0,T )×R3

χ(curlBε) · Bε[u,B] dx dt

−
∫
(0,T )×R3

(
Bε × Bε[u,B]

)
· ∇χdx dt,

and ∫
(0,T )×R3

χJε4 [B] dx dt =

∫
(0,T )×R3

χdiv
(

(div Cε[B,B])×Bε
)
dx dt

+

∫
(0,T )×R3

χ
(

(div Cε[B,B]) · curlBε

)
dx dt,

by using again (109).
Then, integrating by parts:∫

(0,T )×R3

χJε4 [B] dx dt = −
∫
(0,T )×R3

(
(div Cε[B,B])×Bε

)
· ∇χdx dt

−
∫
(0,T )×R3

χ∇(curlBε) : Cε[B,B] dx dt

−
∫
(0,T )×R3

(
Cε[B,B] curlBε

)
· ∇χ,

so that

=

∫
(0,T )×R3

(
(Cε[B,B]∇)×Bε

)
· ∇χdx dt

+
∑
j

∫
(0,T )×R3

(
((Cε[B,B])ij)i ×Bε

)
· ∂j∇χdx dt

−
∫
(0,T )×R3

χ∇(curlBε) : Cε[B,B] dx dt (148)

−
∫
(0,T )×R3

(
Cε[B,B] curlBε

)
· ∇χdx dt.

Finally, we use repetitively Lemma 15 with the φj ’s equal to u or B, and i = 0 (u,B ∈ L3(0, T ;L3(R3))),

i = 1 (u,B ∈ L̃3(0, T ; Ḃ
1/3
3,c0

(R3))loc), or i = 2 (u,B ∈ L̃3(0, T ; Ḃ
2/3
3,c0

(R3))loc): the worse term to cope with,
in term of needed regularity, is χ∇(curlBε) : Cε[B,B], from (148). It then follows that, as ε→ 0,

for i = 1, 2, 3,

∫
(0,T )×R3

χJεi [u,B] dx dt→ 0, and

∫
(0,T )×R3

χJε4 [B] dx dt→ 0,

which provides (147).
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9 Vanishing of anomalous crossed fluid-magneto-helicity dissipation for
the MHD equations: Proof of Part iii) of Theorem 11

We consider the inner product of equation (125) with Bε and the inner product of equation (126) with uε
and we sum the resulting identities, taking into account that

Bε · div(uε ⊗ uε −Bε ⊗Bε)− uε · curl(uε ×Bε) = div
(

(uε ·Bε)uε −
1

2
(|uε|2 + |Bε|2)Bε

)
,

Bε · ∇(pε +
1

2
|Bε|2) = div

(
(pε +

1

2
|Bε|2)Bε

)
,

−Bε ·∆uε − uε ·∆Bε = 2(curluε) · (curlBε) + div
(
(curluε)×Bε

)
+ div

(
(curlBε)× uε

)
.

We obtain that

∂th
ε
fm + dεfm + div f εfm = da,εfm,

where

hεfm := uε ·Bε, dεfm := 2ωε · curlBε,

f εfm := (uε ·Bε)uε + (pε −
1

2
|uε|2)Bε + (curluε)×Bε + (curlBε)× uε,

da,εfm := −Bε · div
(
Cε[u, u]− Cε[B,B]

)
− 1

2
Bε · ∇Aε[B,B] + uε · curlBε[u,B].

One easily sees that hεfm, dεfm, and f εfm converge respectively in the sense of distributions to hfm, dfm
and ffm.

Finally, we use repetitively Lemma 15 to conclude that the anomalous dissipation da,εfm vanishes when
ε→ 0.

10 Suitable solutions: Proof of Theorem 12 and of Theorem 13

10.1 Proof of Theorem 12

We recall from [2, 10] that the weak maximum principle yields that for any ε ∈ (0, 1), mε is bounded by 1
almost everywhere in space and time. Then, using equation (69) and the estimate (73) we deduce that mε

belongs to the space L2((0, T );H2(R3;R3)) (observe however that this provides an estimate of the norm
of mε in this space which is not uniform in ε).

Now, observe that, formally, multiplying (69) by ∂tm
ε, (70) by Hε, (71) by Eε, and summing the

resulting identities lead to

∂t
(
eεMLL + eεGL

)
+ dεMLL + div f εMLL = −2(mε ·Hε)(mε · ∂tmε), (149)

where (eεMLL, d
ε
MLL, f

ε
MLL) is given by (120) and eεGL by (74).

In fact, Identity (149) can be easily justified. On one hand the smoothness of (mε, Hε, Eε) is sufficient
to manipulate all the terms coming from the multiplication of (69) by ∂tm

ε. On the other hand, one
can mollify the linear equations (70) and (71) and then multiply them respectively by Hε and Eε. It
then remains to sum the resulting identities and to pass to the limit with respect to the regularization
parameter. Thus, the local energy identity (149) holds true without any anomalous dissipation.

Now, using the uniform bounds of (mε, Hε, Eε) provided by (73), we have, up to a subsequence: f εMLL

converges in the sense of distributions to fMLL; dεMLL and eεMLL +eεGL converge in the sense of distributions
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respectively to some distributions d̃a,1MLL and ẽaMLL such that, by lower weak semicontinuity, d̃a,1MLL− |∂tm|2
and ẽaMLL − eMLL are non negative. Finally the term (mε · Hε)(mε · ∂tmε) converges in the sense of
distributions to 0.

Therefore it follows from (57) that the anomalous energy dissipation daMLL is given by daMLL = −da,1MLL−
∂te

a
MLL, where da,1MLL := d̃a,1MLL − dMLL and eaMLL := ẽaMLL − eMLL are non negative.

10.2 Proof of Theorem 13

Multiplying (75) by uε, (77) by Bε, and summing the resulting identities lead to

∂te
ε
HMHD + dεHMHD + div f̃ εHMHD = 0, (150)

where eεHMHD and dεHMHD are given by the formula in (129) and

f̃ εHMHD :=
1

2
|uε|2(uε)ε + pεuε +Bε × (uε × (Bε)ε) + (curluε)× (uε)ε

+(curlBε)× (Bε)ε +
(
(curlBε)× (Bε)ε

)
×Bε.

We do not detail the computations here since it is sufficient to adapt what we have already done in Section
5.2.3 in order to obtain (128) with here an extra bookkeeping of the mollifications.

Now, using that, up to a subsequence, uε and Bε converges in L3((0, T )×R3)loc respectively to u and
B, and therefore (uε)ε and (Bε)ε converges as well in L3((0, T )×R3)loc respectively to u and B, and that
curluε and curlBε weakly converge to curlu and curlB in L2((0, T )× R3), we get that

1

2
∂t

(
|uε|2 + |Bε|2

)
+ div

(
(
1

2
|uε|2(uε)ε +Bε × (uε × (Bε)ε) + (curluε)× (uε)ε + (curlBε)× (Bε)ε

)
converges in the sense of distributions to

1

2
∂t

(
|u|2 + |B|2

)
+ div

(1

2
|u|2u+B × (u×B) + (curlu)× u+ (curlB)×B

)
.

Moreover, using once again (130), we get that pε converges in L
3
2 ((0, T )×R3)loc to p. Thus div(pεuε)

converges in the sense of distributions to div(pu).
Finally, using that, up to a subsequence, Bε converges to B in L4((0, T )× R3)loc we obtain that

div
(
(curlBε)× (Bε)ε

)
×Bε

)
(151)

converges in the sense of distributions to div
(
(curlB)×B

)
×B

)
.

We therefore get that the anomalous energy dissipation daHMHD is given by the discrepancy between the
limit of | curluε|2 + | curlBε|2 and | curlu|2 + | curlB|2 which is non positive by lower weak semicontinuity.

Since the term (151) vanishes when the Hall effect is omitted one sees that the assumption that, up to
a subsequence, Bε converges to B in L4((0, T )× R3)loc, is not needed in order to prove the result for the
MHD equations.

Appendix: proof of Lemma 14

Here, we prove that for all p, r ∈ [1,∞], α ∈ (0, 1) and α̃ ∈ (0, α), with p̃ defined by α̃− 3/p̃ = α− 3/p,
the space L̃r(0, T ; Ḃα

p,∞(R3)) is continuously embedded in L̃r(0, T ; Ḃα̃
p̃,∞(R3)).

The proof of the other case, when α ∈ (1, 2) and α̃ ∈ (0, 1) ∪ (1, α), follows, since, when α ∈ (1, 2),

‖u‖
L̃r(0,T ;Ḃαp,∞(R3))

= ‖u‖
L̃r(0,T ;Ḃα−1

p,∞ (R3))
+
∑
i

‖∂iu‖L̃r(0,T ;Ḃα−1
p,∞ (R3))

.
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As usual, A . B denotes the inequality A 6 CB for some universal constant C. We recall the existence
of a smooth dyadic partition of unity: there exists a smooth radial function ϕ, supported in the annulus
C(3/4, 8/3) := {3/4 < |ξ| < 8/3}, with values in the interval [0, 1], such that

∀ξ ∈ R3 \ {0},
∑
j∈Z

ϕ(2−jξ) = 1; |j − j′| > 2⇒ supp ϕ(2−j ·) ∩ supp ϕ(2−j
′ ·) = ∅.

The so-called dyadic blocks ∆̇j correspond to the Fourier multipliers ∆̇j := ϕ(2−jD), that is

∆̇ju(x) := 23j
∫
R3

h(2jy)u(x− y)dy for j ∈ Z, where h := F−1ϕ.

Then, for all u ∈ S ′h (from Definition 6), homogeneous Littlewood-Paley decomposition holds: u =∑
j∈Z ∆̇ju.

Let u ∈ L̃r(0, T ; Ḃα
p,∞(R3)) and y ∈ R3 \ {0}. Denoting δyu(t, x) = u(t, x− y)− u(t, x), we write

δyu =
∑
j∈Z

∆̇jδyu.

Thus, we estimate

‖‖δyu‖Lp̃(R3)‖Lr(0,T ) 6
∑
j∈Z
‖‖δy∆̇ju‖Lp̃(R3)‖Lr(0,T ),

which splits up, for any jy ∈ Z, as the sum I + II, where

I =
∑
j6jy

‖‖δy∆̇ju‖Lp̃(R3)‖Lr(0,T ) and II =
∑
j>jy

‖‖δy∆̇ju‖Lp̃(R3)‖Lr(0,T ).

We recall that Bernstein’s lemma implies

‖∆̇ju‖Lp̃(R3) . 2
3j
(

1
p
− 1
p̃

)
‖∆̇ju‖Lp(R3) = 23j(α−α̃)‖∆̇ju‖Lp(R3). (152)

We also notice that
‖δy∆̇ju‖Lp̃(R3) 6 2‖∆ju‖Lp̃(R3), (153)

as well as
‖δy∆̇ju‖Lp̃(R3) . 2j |y|

∑
|j−j′|61

‖∆j′u‖Lp̃(R3) (154)

(see [4], page 75), and
2jα‖‖δy∆̇ju‖Lp̃(R3)‖Lr(0,T ) . ‖u‖L̃r(0,T ;Ḃαp,∞(R3))

(155)

(from [4], page 76).
Then, for any term in the sum I, we have

‖‖δy∆̇ju‖Lp̃(R3)‖Lr(0,T ) . 2j |y|
∑
|j−j′|61

‖‖∆j′u‖Lp̃(R3)‖Lr(0,T ) by (154),

. 2j |y|23j(α−α̃)
∑
|j−j′|61

‖‖∆j′u‖Lp(R3)‖Lr(0,T ) by (152),

. |y|2j(1−α̃)‖u‖
L̃r(0,T ;Ḃαp,∞(R3))

by (155). (156)

42



Now, for the terms in the sum II, inequalities (153), (152) and (155) lead to

‖‖δy∆̇ju‖Lp̃(R3)‖Lr(0,T ) . 2−jα̃‖u‖
L̃r(0,T ;Ḃαp,∞(R3))

. (157)

Finally, choosing jy ∈ Z such that
1

|y|
6 2jy

2

|y|
, we get |y|

∑
j6jy

2j(1−α̃) +
∑
j>jy

2−jα̃ . |y|α̃, and hence the

desired inequality,
‖u‖

L̃r(0,T ;Ḃα̃p̃,∞(R3))
. ‖u‖

L̃r(0,T ;Ḃαp,∞(R3))
.
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