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Abstract

In the field of molecular evolution genome substitution models with neighbour dependent
substitution rates have recently received much attention. It is well-known that substitution of
nucleotides does not occur independently of neighbouring nucleotides, but there has been less
focus on the phenomenon that this substitution process is also not time-reversible. In this paper
I construct a pseudo-likelihood type method for inference in non-reversible substitution models
with neighbour dependent substitution rates. I also construct an EM-algorithm for maximising
the pseudo-likelihood. For human-mouse aligned sequence data a number of different models are
investigated, where I show that strand-symmetric models are appropriate, and that overlapping
di-nucleotide models do not fit the data well.
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1 Introduction

In molecular evolution stochastic process models are used to elucidate the
biological processes generating variation within and between species at the
molecular level. When DNA sequences from different species are sampled the
focus is on nucleotide substitutions, the prevalent process in the long term
evolution of sequences. The substitution of DNA sequences is modelled using
time-homogeneous continuous time Markov processes; an introduction to the
topic is Galtier, Gascuel and Jean-Marie (2005). In practice the most com-
monly used models have been simple ones, i.e. Jukes-Cantor, Kimura and
HKY, which all share the following properties : 1) the evolution occurs inde-
pendently at each position, 2) the process is time-reversible, and 3) the process
is stationary.

It is well-known that the substitution of nucleotides does not occur inde-
pendently of neighbouring nucleotides, i.e. the CpG effect where an excess of
substitutions is observed at positions with a CpG di-nucleotide. Substitution
models with neighbour dependence have been considered by Jensen and Ped-
ersen (2000), Duret and Galtier (2000), Pedersen and Jensen (2001), Arndt,
Burge and Hwa (2003a), Arndt, Petrov and Hwa (2003b), Siepel and Haussler
(2004), Jojic, Jojic, Geiger, Siepel, Haussler and Heckerman (2004), Lunter
and Hein (2004), Hwang and Green (2004), Christensen, Hobolth and Jensen
(2005), Jensen (2005), Arndt and Hwa (2005) and Hobolth (2006). For mam-
malian genomes, an explanation of the CpG effect is the CpG-methylation-
deamination mutational process, where a CpG is substituted by TpG (which
is seen as a CpG to CpA substitution when it happens on the other strand).
This chemical process is a non-reversible phenomenon - further details, see
Figure 2 in Lunter and Hein (2004). Likelihood inference for non-reversible
Markov process models with neighbour dependent substitution rates is only
considered by few of the papers listed above - Arndt et al. (2003a) and Arndt
and Hwa (2005) consider the case where the ancestral sequence is known,
whereas Lunter and Hein (2004) and Hwang and Green (2004) consider an un-
known ancestral sequence. Here the case with an unknown ancestral sequence
is considered using the nucleotide substitution model introduced by Hwang
and Green (2004), which is more general than the one in Lunter and Hein
(2004).

Hwang and Green (2004) assume that the model is non-stationary and they
use a second order Markov chain model for the distribution of the common an-
cestor sequence of the observed sequences, i.e. the sequence at the root of the
tree relating the observed sequences, whereas Lunter and Hein (2004) consider
the model to be stationary using a second order Markov chain approximation
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for the equilibrium distribution of the sequence. Yap and Speed (2005) in-
vestigate the stationarity assumption for a non-reversible model, although a
very simple site independent model, and conclude that a non-stationary non-
reversible model provides a much better fit to data and also seems to provide
more robust conclusions. In addition, the assumption of stationarity offers
no computational advantages for non-reversible models, contrary to reversible
models where reversibility+stationarity implies that the root can be placed
anywhere on the tree. Therefore, the presentation in this paper follows Hwang
and Green (2004) and does not assume stationarity of the process.

A number of specific sub-models are considered. In particular, for the
strand-symmetric case an improvement of the Hwang and Green model is
introduced, which has both a strand-symmetric substitution process and a
strand-symmetric model for the sequence at the root.

For models with neighbour dependent substitution rates the likelihood
function becomes intractable in practice and approximate methods are needed
for inference. Christensen et al. (2005) derive a pseudo-likelihood for the evo-
lution of one sequence to another and they also construct a corresponding
EM-algorithm. The approach relies crucially on reversibility and stationarity
of the model. Here I extend one of the basic ideas in that paper to models
which are non-reversible and non-stationary, and derive a pseudo-likelihood
for the Hwang and Green model and also a corresponding EM-algorithm. Due
to the second order Markov chain used for the sequence distribution at the
root, the computations for both the pseudo-likelihood and the EM-algorithm
involve recursions along the sequence. In addition, the non-reversibility of
the process implies that the eigenvalue decomposition of certain substitution
matrices involves complex numbers.

A competing approach is to use Markov chain Monte Carlo (MCMC) meth-
ods for inference (Hwang and Green, 2004; Jensen, 2005; Hobolth, 2006). In
Hwang and Green (2004) and Jensen (2005) a discrete time approximation of
the substitution process is used, whereas Hobolth (2006) uses an algorithm that
actually simulates continuous sample paths. The advantage of such MCMC
approaches is the generality, since an implementation of a MCMC-algorithm is
often easy to extend to other models, but the disadvantage is that MCMC for
such models is computationally very slow to use since all the unobserved se-
quences in the whole evolutionary history have to be updated in each iteration
of the MCMC-algorithm.

Another competing approach is the recursive algorithm for approximation
of likelihood function in Lunter and Hein (2004), which avoids some of the
MCMC related problems above, and in principle generalises to the more gen-
eral Hwang and Green model. However, contrary to the pseudo-likelihood
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considered here the Lunter and Hein approximation is not a likelihood func-
tion in itself, which implies that no corresponding EM-algorithm for finding
the maximum of the approximation can be constructed. In addition, the al-
gorithm described in the Appendix of Lunter and Hein (2004) gave negative
values in the recursions, and certain modifications had be made to avoid this
(personal communication with Gerton Lunter - further details can be found
in his code). As regards the more general Hwang and Green model I did not
succeed in actually making my attempts to construct an algorithm along the
ideas in Lunter and Hein (2004) work well.

To illustrate the use of the pseudo-likelihood, in Section 5 the intergenic
human-mouse data set investigated in Lunter and Hein (2004) is considered.
I investigate a number of different models, with particular focus on strand-
symmetric models, and demonstrate that overlapping di-nucleotide types of
models used by Lunter and Hein (2004) do not fit the data well.

2 Nucleotide substitution model with neigh-

bour dependent rates

Here I consider the substitution model in Hwang and Green (2004), which
consists of two parts : the Markov process for the sequence to sequence evo-
lution on a given branch in the species tree, and the sequence distribution at
the root of the tree.

2.1 Markov process for the sequence to sequence evo-
lution

The nucleotide substitution model describes the evolution of a sequence as
a time-homogeneous continuous time Markov process, where a change in the
sequence consists of a change of one nucleotide at a time only. A sequence
x consisting of n nucleotides is written as x = (x1, . . . , xn) and for a given
position k zk denotes the new nucleotide. The rate for such a change depends
upon xk as well as the nucleotide neighbours xk−1 and xk+1 and is given by

γ(zk; xk−1, xk, xk+1). (1)

The general model (1) has 4 × 4 × 4 × 3 = 192 parameters, γ(b; l, a, r),
and it is to be used for intronic regions where strand-asymmetric substitution
rates are known to exist - see Hwang and Green (2004), whereas for intergenic
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regions a strand-symmetric model is appropriate. Such a model assumes that

γ(b; l, a, r) = γ({b; {r, {a, {l), (2)

where the notation { denotes the complementary base in the base-pairing, i.e.
{A = T, {G = C, {C = G and {T = A. The number of parameters in the
strand-symmetric model is 96.

The over-lapping di-nucleotide model considered in Lunter and Hein (2004),
when allowing only single nucleotide substitutions, is the special case of model
(1) where

γ(b; l, a, r) = ν left(b; l, a) + νright(b; a, r). (3)

The model is over-parameterised, and the number of free parameters is 3 ×
42 +3×42−3×4 = 84. In fact Lunter and Hein (2004) confine their attention
to strand-symmetry and do not consider the strand-asymmetric model. In
that case when allowing only single nucleotide substitutions, ν left(b; l, a) =
νright({b; {a, {l) and the model has 3× 42 = 48 free parameters. Finally, Lunter
and Hein (2004) also allow two substitutions to happen simultaneously in a
di-nucleotide, but such an assumption is outside the framework considered
here.

The most simple models considered here are models where the only neigh-
bour dependent rate parameters are the ones corresponding to the CpG-
methylation-deamination process, i.e.

γ(b; a1, a2, a3) = ε(b; a) when (a1, a2, b) 6= (C, G, A) and (a2, a3, b) 6= (C, G, T).
(4)

The most general such model has 8 + 3 × 4 = 20 parameters, the strand-
symmetric model has 4+3× 2 = 10 parameters, the overlapping di-nucleotide
model 2 + 3 × 4 = 14 parameters, and the strand-symmetric overlapping di-
nucleotide model 1 + 3× 2 = 7 parameters.

In Section 5 different models for the evolution on two branches of the tree
are studied. In particular, both models which assume individual substitution
processes on each branch, and models which assume the same substitution
process but with evolution on different branches happening with a different
speed are considered. The latter type of model assumes that the rate on the
vy branch is γ̃ = τγ, where γ is the rate on the vx branch, and τ > 0 is the
speed of evolution on the vy branch relative to the vx branch.
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2.2 The sequence distribution at the root

Since the model is not time-reversible we need to consider evolution from an
unknown common ancestor sequence v. The distribution at the root is

proot(v; π) =
n∏

k=3

π(vk | vk−2, vk−1)πc(v1, v2), (5)

with the 3 × 42 = 48 parameters π(a3 | a1, a2), and πc determined as the
stationary (along the sequence) di-nucleotide frequencies, i.e. πc and π satisfy

πc(a2, a3) =
∑
a1

π(a3 | a1, a2)πc(a1, a2), (6)

for all a2 and a3, and πc is found by solving these equations.
When considering a strand-symmetric substitution model (2), it seems ap-

propriate to also consider a strand-symmetric model for the root distribution,
i.e. proot((v1, . . . , vn); π) = proot(({vn, . . . , {v1); π) for any (z1, . . . , zn). Requir-
ing that this equation holds for all n and all nucleotides vk, k = 1 . . . , n, is
equivalent to

πc(a1, a2) = πc({a2, {a1) (7)

and
πc(a1, a2)π(a3 | a1, a2) = πc({a3, {a2)π({a1 | {a3, {a2), (8)

for all (a3, a1, a2). These constraints reduce the dimension of the parameter
space considerably to just 25 free parameters for π and πc. Further details are
given in Appendix A. Using a strand-symmetric model for the root distribution
is an improvement of the Hwang and Green model.

3 Pseudo-likelihood

In this section the pseudo-likelihood method in Christensen et al. (2005) is
extended. As previously mentioned, the model considered here is not time-
reversible, and we need to consider the evolution from an unknown com-
mon ancestor sequence, v = (v1, . . . , vn). Only the case with two sequences
x = (x1, . . . , xn) and y = (y1, . . . , yn) is presented here, but the generalisation
to more sequences should be obvious in principle. Since divergence times and
substitution rates cannot be distinguished, the substitution rates are standard-
ised such that evolution from time t = 0 to time t = 1 is considered.
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Introducing the notation γ for the rate parameters at the vx branch and γ̃
for the rate parameters at the vy branch, the likelihood is

L(γ, γ̃, π; x, y) =
∑

v

L(γ; v, x)L(γ̃; v, y)proot(v; π), (9)

where L(γ; v, x) and L(γ̃; v, y) are the sequence to sequence likelihoods for the
vx branch and vy branch, respectively, and proot(v; π) is given by (5).

Below we consider the approximation for the sequence to sequence likeli-
hood, L(γ; v, x), introduced in Christensen et al. (2005), and note that the
approximation for L(γ̃; v, y) is similar. Knowing the nucleotides at the flank-
ing positions (l is the nucleotide to the left and r is the one to the right), the
rate matrix for a single nucleotide position is given by the 4× 4 rate matrix

Qlr(a, b) = γ(b; l, a, r), (10)

for a 6= b, and with the diagonal Qlr(a, a) = −∑
b6=a Qlr(a, b). Considering the

kth nucleotide, we use the approximate evolutionary events, that if vk−1 = xk−1

then no substitutions have happened at the left flanking position, and if vk−1 6=
xk−1 exactly one substitution has happened at time t = 1/2, and similarly for
the nucleotide to the right. Then the rate matrix for nucleotide k becomes
Qvk−1,vk+1 for 0 ≤ t ≤ 1/2, and Qxk−1,xk+1 for 1/2 ≤ t ≤ 1. The evolutionary
history at position k on the vx branch, evx

k , consist of a number of substitutions
mk, at the substitution times tk,` with new states sk,`, ` = 1, . . . , mk, and the
complete observation likelihood at position k is

Lvk−1,vk+1;xk−1,xk+1
(evx

k |vk) (11)

=

{
mk∏

`=1

Q∗(sk,`−1, sk,`, tk,`)e
R tk,`

tk,`−1
Q∗(sk,`−1,sk,`−1,t)dt

}
e
R 1

tk,mk
Q∗(xk,xk,t)dt

,

where tk,0 = 0, sk,0 = vk, sk,mk
= xk and

Q∗(a, b, t) =

{
Qvk−1,vk+1(a, b) 0 ≤ t ≤ 1/2
Qxk−1,xk+1(a, b) 1/2 < t ≤ 1.

Marginalising the unobserved evolutionary history of nucleotide k, evx
k , we

obtain the approximation of nucleotide to nucleotide probabilities at position
k when knowing the flanking nucleotides

Lvk−1,vk+1;xk−1,xk+1
(xk|vk) = [exp (Qvk−1vk+1/2) exp (Qxk−1xk+1/2)]vk,xk

. (12)
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To compute the matrix exponentials in (12), Schadt and Lange (2002) note
that in numerical practice substitution matrices Qlr are complex diagonalis-
able, and hence these matrix exponentials can be computed using an eigenvalue
decomposition; further details are found in Appendix A.

From (9) and (5) the pseudo-likelihood becomes

Lp(γ, γ̃, π)

=
∑

v

(
n−1∏

k=2

Lvk−1,vk+1;xk−1,xk+1
(xk|vk)Lvk−1,vk+1;yk−1,yk+1

(yk|vk)

)
proot(v; π)

=
∑

v1,...,vn

(
n−1∏

k=2

ck(vk−1, vk, vk+1)

)
πc(v1, v2). (13)

where

ck(vk−1, vk, vk+1) (14)

= Lvk−1,vk+1;xk−1,xk+1
(xk|vk)Lvk−1,vk+1;yk−1,yk+1

(yk|vk)π(vk+1 | vk−1, vk),

for k = 2, . . . , n− 1, and vj ∈ {A, G, C, T} for j = 1, . . . , n.
A recursive algorithm for calculating the pseudo-likelihood is given by

h2(v1, v2) = πc(v1, v2),

hj(vj−1, vj) =
∑
vj−2

cj−1(vj−2, vj−1, vj)hj−1(vj−2, vj−1)/h̄j−1, (15)

for j = 3, . . . , n, where h̄j is the average of hj(·, ·, ·). The log pseudo-likelihood
is then

log Lp = log

( ∑
vn−1,vn

hn(vn−1, vn)

)
+

n−1∑
j=2

log(h̄j). (16)

The appearance of h̄2, . . . , h̄n−1 in (15) and (16) may confuse the reader. Their
entire purpose is to standardise the size of the terms in the recursion to prevent
numerical underflow.

In practise, all the matrix exponentials in (12) are computed for rate pa-
rameters γ and γ̃, first. Then all the ck(·, ·, ·) terms (15) are computed, and
finally the recursion in (15) is carried out. The algorithm operates in linear
time depending on sequence length.

Maximising the pseudo-likelihood provides the parameter estimates. How-
ever, this numerical maximisation is in practice not straight-forward since
the number of parameters is large. A gradient method for the maximisation

7Christensen: Pseudo-likelihood for non-reversible substitution models

Published by The Berkeley Electronic Press, 2006



would require both the first and second derivatives, but formulas for comput-
ing the derivatives seem not to be available for the pseudo-likelihood function
(13). Alternatively, priors can be assigned to the parameters as considered
in Lunter and Hein (2004), and the inference would not require maximisation
of the high-dimensional approximate likelihood function, but is instead easily
implemented as a MCMC simulation procedure. The prize to be paid is that
for models with a high-dimensional parameter space as considered here, the
specification of a high-dimensional prior may put restrictions on the param-
eters, which were not really intended. It may also hide undetected problems
of parameter identifiability in the model, which is further discussed in Sec-
tion 5 in relation to re-analysing the data analysed in Lunter and Hein (2004).
An EM-algorithm for maximum pseudo-likelihood would avoid both types of
problems mentioned above.

The accuracy of the pseudo-likelihood
∏n−1

k=2 Lvk−1,vk+1;xk−1,xk+1
(xk|vk) for

the sequence to sequence evolution was investigated in Christensen et al.
(2005) by a simulation study, where it was seen that the parameter esti-
mates obtained by maximising the pseudo-likelihood were almost identical
to the maximum likelihood estimates. Only in extreme cases, i.e. very high
neighbour-dependent rates, a noticeable difference was seen. Since (13) only
involves the approximations of L(γ; v, x) by

∏n−1
k=2 Lvk−1,vk+1;xk−1,xk+1

(xk|vk) and

L(γ; v, y) by
∏n−1

k=2 Lvk−1,vk+1;yk−1,yk+1
(yk|vk), the parameter estimated obtained

from (13) should perform equally well.

4 EM-algorithm for maximum pseudo-likelihood

estimation

In this section an EM-algorithm for maximising the pseudo-likelihood (13) is
derived. The complete observation pseudo-likelihood is

Lc(γ, γ̃, π) = Lc(γ; evx)Lc(γ̃; evy)proot(v; π), (17)

where

Lc(γ; evx) =
n−1∏

k=2

Lvk−1,vk+1;xk−1,xk+1
(evx

k |vk),

with Lvk−1,vk+1;xk−1,xk+1
(evx

k |vk) given by (12), and Lc(γ̃; evy) defined similarly.
As noted in Christensen et al. (2005) the complete observation pseudo-likelihood
for the sequence to sequence evolution is a complete observation likelihood for
some model and data, i.e. here Lc(γ; evx) and Lc(γ̃; evy) are complete ob-
servation likelihoods. This implies that Lc(γ, γ̃, π) in (17) is also a complete
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observation likelihood function for some model and data, and therefore a corre-
sponding EM-algorithm exists with the usual properties of EM-algorithms, i.e.
improvement of the pseudo-likelihood (13) in each iteration and convergence
to a local maximum.

An EM-algorithm iterates between an expectation (E) step and a maximi-
sation (M) step. In the E-step

G((γ, γ̃, π); (γ0, γ̃0, π0)) = E(γ0,γ̃0,π0)[log Lc(γ, γ̃, π) | x, y]

is computed given the current parameter values, (γ0, γ̃0, π0). In the M-step,
G((γ, γ̃, π); (γ0, γ̃0, π0)) is maximised as a function of (γ, γ̃, π). The E-step and
the M-step for (17) are considered in Section 4.1 and Section 4.2, respectively.

4.1 The E-step

We note that (17) is the product of three terms where Lc(γ; evx) and Lc(γ̃; evy)
are the complete observation pseudo-likelihoods for the evolution on the v to
x branch, and v to y branch, respectively. The complete observation pseudo-
likelihood becomes

Lc(γ, γ̃, π) =
n−1∏

k=2

Lvk−1,vk+1;xk−1,xk+1
(evx

k |vk)

×
n−1∏

k=2

Lvk−1,vk+1;yk−1,yk+1
(evy

k |vk)
n−1∏

k=2

π(vk+1 | vk−1, vk)πc(v1, v2),

where Lvk−1,vk+1;xk−1,xk+1
(evx

k |vk) is defined in (12), and Lvk−1,vk+1;yk−1,yk+1
(evy

k |vk)
is defined similarly. By simplifying (12) and rearranging the terms in the for-
mula above, we obtain an exponential family form

Lc(γ, γ̃, π)

= exp

( ∑

l,r

∑

a,b:a 6=b

log γ(b; l, a, r)Nl,r(a, b)−
∑

l,r

∑

a,b:a 6=b

γ(b; l, a, r)Tl,r(a)

+
∑

l,r

∑

a,b:a 6=b

log γ̃(b; l, a, r)Ñl,r(a, b)−
∑

l,r

∑

a,b:a6=b

γ̃(b; l, a, r)T̃l,r(a)

+
∑

a1,a2,a3

log π(a3 | a1, a2)N
root(a1, a2, a3) +

∑
a1,a2

log πc(a1, a2)N
12(a1, a2)

)
,

where Nl,r(a, b) and Tl,r(a) are the number of substitutions from a to b and the
total time nucleotide a is present, respectively, with flanking nucleotides l, r
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on the vx branch, Ñl,r(a, b) and T̃l,r(a) are defined similarly for the vy branch,
N root(a1, a2, a3) is the number of tri-nucleotides (a1, a2, a3) in the root sequence
v, and N12(a1, a2) is the indicator function for the first two nucleotides in the
root sequence being (a1, a2). Since the pseudo-likelihood is derived by con-
sidering approximate evolutionary events for the flanking nucleotides, then
Nl,r(a, b) = N1

l,r(a, b)+N2
l,r(a, b), where N1

l,r(a, b) and N2
l,r(a, b) are the number

of substitutions from a to b in [0; 1/2] with flanking nucleotides l, r in the v se-
quence, and the number of substitutions from a to b in [1/2, 1] with flanking nu-
cleotides l, r in the x sequence, respectively. Similarly, Tl,r(a) = T 1

l,r(a)+T 2
l,r(a)

where T 1
l,r(a) and T 2

l,r(a) are the total time nucleotide a is present in [0; 1/2]
with flanking nucleotides l, r in the v sequence, and the total time nucleotide
a is present in [1/2, 1] with flanking nucleotides l, r in the x sequence, respec-
tively, and Ñl,r(a, b) and T̃l,r(a) are expressed in the same manner.

From the exponential family form of the complete pseudo-likelihood above
we obtain the E-step

G((γ, γ̃, π); (γ0, γ̃0, π0)) = E(γ0,γ̃0,π0)[log Lc(γ, γ̃, π) | x, y]

=
∑

l,r

∑

a,b:a 6=b

log γ(b; l, a, r) E(γ0,γ̃0,π0)[Nl,r(a, b) | x, y]

−
∑

l,r

∑

a,b:a6=b

γ(b; l, a, r) E(γ0,γ̃0,π0)[Tl,r(a) | x, y]

+
∑

l,r

∑

a,b:a 6=b

log γ̃(b; l, a, r) E(γ0,γ̃0,π0)[Ñl,r(a, b) | x, y]

−
∑

l,r

∑

a,b:a6=b

γ̃(b; l, a, r) E(γ0,γ̃0,π0)[T̃l,r(a) | x, y]

+
∑

a1,a2,a3

log π(a3 | a1, a2) E(γ0,γ̃0,π0)[N
root(a1, a2, a3) | x, y]

+
∑
a1,a2

log πc(a1, a2) E(γ0,γ̃0,π0)[N
12(a1, a2) | x, y].

Expressions for the expectations in the formula above are given by (22)-
(25) below. However, to derive (22)-(25) we use a different expression for
G((γ, γ̃, π); (γ0, γ̃0, π0)) where we condition on the unobserved root sequence
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v,

G((γ, γ̃, π); (γ0, γ̃0, π0)) = E(γ0,γ̃0,π0)[log Lc(γ, γ̃, π) | x, y]

∝
∑

v

E(γ0,γ̃0,π0)[log Lc(γ, γ̃, π) | v, x, y]L(γ0; v, x)L(γ̃0; v, y)proot(v; π0)

=
∑

v

Eγ0 [log Lc(γ; evx) | v, x]L(γ0; v, x)L(γ̃0; v, y)proot(v; π0) (18)

+
∑

v

Eγ̃0 [log Lc(γ̃; evy) | v, y]L(γ0; v, x)L(γ̃0; v, y)proot(v; π0) (19)

+
∑

v

log(proot(v; π))L(γ0; v, x)L(γ̃0; v, y)proot(v; π0). (20)

Considering these terms, then Eγ0 [log Lc(γ; evx) | v, x] and Eγ̃0 [log Lc(γ̃; evy) |
v, y] are E-steps for a pseudo-likelihood describing the evolution of sequence
v into sequences x and y, respectively. They can be derived as in Christensen
et al. (2005) with the complication that the eigenvalue decompositions of sub-
stitution matrices now involve complex numbers; details are found in Appendix
B. Substituting (36) from Appendix B we obtain that (18) equals

∑

lv ,rv

∑

a,b:a 6=b

log γ(b; lv, a, rv)
n−1∑

k=2

∑
vk

w1
(lv ,rv ,xk−1,xk+1)

(a, b; vk, xk)dk(l
v, vk, r

v)

−
∑

lv ,rv

∑

a,b:a6=b

γ(b; lv, a, rv)
n−1∑

k=2

∑
vk

w1
(lv ,rv,xk−1,xk+1)

(a, a; vk, xk)dk(l
v, vk, r

v)

+
∑

lx,rx

∑

a,b:a 6=b

log γ(b; lx, a, rx)
∑

k∈K(lx,rx)

∑

lv ,rv

∑
vk

w2
(lv ,rv ,lx,rx)(a, b; vk, xk)dk(l

v, vk, r
v)

−
∑

lx,rx

∑

a,b:a 6=b

γ(b; lx, a, rx)
∑

k∈K(lx,rx)

∑

lv ,rv

∑
vk

w2
(lv ,rv ,lx,rx)(a, a; vk, xk)dk(l

v, vk, r
v),

and (19) equals

∑

lv ,rv

∑

a,b:a 6=b

log γ̃(b; lv, a, rv)
n−1∑

k=2

∑
vk

w̃1
(lv ,rv ,yk−1,yk+1)

(a, b; vk, yk)dk(l
v, vk, r

v)

−
∑

lv,rv

∑

a,b:a 6=b

γ̃(b; lv, a, rv)
n−1∑

k=2

∑
vk

w̃1
(lv ,rv ,xk−1,xk+1)

(a, a; vk, yk)dk(l
v, vk, r

v)

+
∑

ly,ry

∑

A,b:a 6=b

log γ̃(b; ly, a, ry)
∑

k∈K(ly,ry)

∑

lv ,rv

∑
vk

w̃2
(lv ,rv ,ly,ry)(a, b; vk, yk)dk(l

v, vk, r
v)

−
∑

ly ,ry

∑

a,b:a 6=b

γ̃(b; ly, a, ry)
∑

k∈K(ly,ry)

∑

lv ,rv

∑
vk

w̃2
(lv ,rv,ly,ry)(a, a; vk, yk)dk(l

v, vk, r
v),
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where the arrays w1
I and w2

I , and w̃1
I and w̃2

I are given in (37), (38), (39) and
(40), for rate parameters γ0 and γ̃0, respectively, K(lx, rx) = {k : (xk−1, xk+1) =
(lx, rx)}, K(ly, ry) = {k : (yk−1, yk+1) = (ly, ry)}, and dk(vk−1, vk, vk+1) denotes
the summation of L(γ0; v, x)L(γ̃0; v, y)proot(v; π0) over v with (vk−1, vk, vk+1)
fixed,

dk(vk−1, vk, vk+1) =
∑

v1,...,vk−2

∑
vk+2,...,vn

L(γ0; v, x)L(γ̃0; v, y)proot(v; π0), (21)

for k = 2, . . . , n− 1. The last term, (20), equals

n−1∑

k=2

∑
vk−1,vk,vk+1

log π(vk+1 | vk−1, vk)dk(vk−1, vk, vk+1)+
∑
v1,v2

log πc(v1, v2)d1(v1, v2),

where d1(v1, v2) denotes the summation of L(γ0; v, x)L(γ̃0; v, y)proot(v; π0) over
v with (v1, v2) fixed, and hence d1(v1, v2) =

∑
v3

d2(v1, v2, v3) where d2 is de-
fined in (21).

Rearranging the terms above we see that G((γ, γ̃, π); (γ0, γ̃0, π0)) is on a
simple form

G((γ, γ̃, π); (γ0, γ̃0, π0))

=
∑

l,r

∑

a,b:a 6=b

log γ(b; l, a, r)wl,r(a, b)−
∑

l,r

∑

a,b:a6=b

γ(b; l, a, r)wl,r(a, a) (22)

+
∑

l,r

∑

a,b:a6=b

log γ̃(b; l, a, r)w̃l,r(a, b)−
∑

l,r

∑

a,b:a 6=b

γ̃(b; l, a, r)w̃l,r(a, a)

+
∑

a1,a2,a3

log π(a3 | a1, a2)w
root(a1, a2, a3) +

∑
a1,a2

log πc(a1, a2)d1(a1, a2),

where

wl,r(a, b) =
n−1∑

k=2

∑
vk

w1
(l,r,xk−1,xk+1)

(a, b; vk, xk)dk(l, vk, r) (23)

+
∑

k:(xk−1,xk+1)=(l,r)

∑

lv ,rv

∑
vk

w2
(lv ,rv,l,r)(a, b; vk, xk)dk(l

v, vk, r
v),

w̃l,r(a, b) =
n−1∑

k=2

∑
vk

w̃1
(l,r,yk−1,yk+1)

(a, b; vk, yk)dk(l, vk, r) (24)

+
∑

k:(xk−1,xk+1)=(l,r)

∑

lv ,rv

∑
vk

w̃2
(lv ,rv,l,r)(a, b; vk, xk)dk(l

v, vk, r
v),
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for all a, b, and,

wroot(a1, a2, a3) =
n−1∑

k=2

dk(a1, a2, a3), (25)

for all (a1, a2, a3).
To compute the dk terms in (21) another recursion is needed. First, we

note that the dk’s are on the form

dk(vk−1, vk, vk+1) ∝ gk(vk, vk+1)ck(vk−1, vk, vk+1)hk(vk−1, vk)/h̄k, (26)

where ck is defined in (15), hk is defined recursively in (15), and h̄k is the
average of hk(·, ·, ·). The gk terms are defined recursively, as gn−1(vn−1, vn) = 1,
and

gk−1(vk−1, vk) =
∑
vk+1

ck(vk−1, vk, vk+1)gk(vk, vk+1)/h̄k, (27)

for k = n− 1 . . . , 2. The proportionality constant in (26) equals
∏n−1

k=2 h̄k.
Note that the recursions (15) and (27) in fact are similar to the recursions

used in the EM-algorithm for hidden Markov models (see Section 12.2.3 in
Ewens and Grant, 2005).

To summarise the E-step. First, all the ck terms in (15) are computed, and
the recursion in (15) is carried out to compute the hk and h̄k terms. Second,
the recursion in (27) is carried out to compute all the gk terms, and this gives
the dk terms in (21). Third, the arrays w1

I (·, ·; ·, ·), w2
I (·, ·; ·, ·), w̃1

I (·, ·; ·, ·) and
w̃2

I (·, ·; ·, ·) are computed for each of the 44 = 256 possible flanking situations
I. Finally, the weight matrices wl,r(·, ·) and w̃l,r(·, ·) in (22) are computed for
the 42 = 16 combinations of l, r.

4.2 The M-step

The maximisation of G((γ, γ̃, π); (γ0, γ̃0, π0)) in (22) with respect to (γ, γ̃, π)
provides the parameter values for the next iteration in the EM-algorithm.
First, the maximisation of (22) with respect to π(a3 | a1, a2) and πc(a1, a2)
under the constraints which determine the parameter space in the general and
in the strand-symmetric cases, respectively, is done using the nlm numerical
maximisation routine implemented in R (R Development Core Team, 2005).
Further details of the actual parameterisation used in the strand-symmetric
case are given in Appendix A. Second, using a given model for the rate pa-
rameters γ and γ̃, the maximisation of (22) with respect to these parameters
is done almost analytically. Some specific models for the rate parameters γ
and γ̃ are considered in Appendix C.

13Christensen: Pseudo-likelihood for non-reversible substitution models

Published by The Berkeley Electronic Press, 2006



5 Data analysis

A re-analysis the 100 kb intergenic human-mouse aligned sequence data from
human chromosome 10 analysed in Lunter and Hein (2004) is made here. The
models in Sections 2 are used, and parameter estimates are obtained by the
EM-algorithm, where Appendix C shows the formulas for updating (γ, γ̃) for
the models considered. The results in terms of value of log-pseudo-likelihood
are reported in Tables 1 and 5. The former shows the results for the types of
models containing all possible neighbour dependent rate parameters, whereas
the latter shows the results for the simple models (4) with only neighbour
dependent rate parameters corresponding to CpG to TpG and CpA substitu-
tions.

Model Param. Description log Lp τ̂
I 2*192+48 general -222099.98 -

II 2*96+25 strand-sym. -222196.04 -
III 192+1+48 same on branches -222198.39 1.079
IV 96+1+25 strand-sym. + same on branches -222265.06 1.084
V 2*84+48 di-nucl. -222424.39 -

VI 2*48+25 di-nucl. + strand-sym. -222469.19 -
VII 84+1+48 di-nucl. + same on branches -222478.42 1.077

VIII 48+1+25 di-nucl. + strand-sym. + same -222512.04 1.074

Table 1: Log-pseudo-likelihood and estimated value of τ parameter for eight
different models. The number of parameters reported in the table refers to the
sum of the number of free parameters in the substitution processes on the two
branches and the number of free parameters in the model for the distribution
of the root sequence.

Since these sequence data are not within any genes (intron or exon) we
expect the strand-symmetric models to be appropriate for our analysis. The
models I, III, V and VII in Table 1, and 1, 3, 5 and 7 in Table 5 do not
assume strand-symmetry and the results for these models are mainly reported
to demonstrate that the strand-symmetric models actually fit the data well.
As expected, the values of the likelihoods are not largely increased for these
models, when taking into account the larger number of parameters.

When considering the models III, IV, VII and VIII, which assume the same
substitution process on the two branches, again the decrease in likelihood is not
dramatic, and model IV therefore provides a good fit to the data (compared to
the other models in Table 1). Such a result seems to contradict the conclusion
in Hwang and Green (2004) that the substitution processes for the mouse

14 Statistical Applications in Genetics and Molecular Biology Vol. 5 [2006], No. 1, Article 18

http://www.bepress.com/sagmb/vol5/iss1/art18



branch and the human branch differ, but we do note here that Hwang and
Green (2004) consider 19 mammalian species, and our result may be an artefact
from considering only human and mouse sequences. We also see from the τ̂
parameter estimates in (1) that the estimated mouse branch is slightly longer
than the estimated human branch.

Considering model IV, Table 2 lists the largest substitution rates. It is
clearly seen that the rates involving a CpG to TpG substitution (which is seen
as a CpG to CpA substitution when it happens on the other strand) are much
larger than the other rates. Hence, as also Lunter and Hein (2004) concluded,
the data clearly demonstrate the CpG-methylation-deamination mutational
process where a CpG becomes a TpG.

subst. subst. compl.-strand rates (IV) rates (VIII)
CCG → CTG CGG → CAG 0.9952 0.8603
ACG → ATG CGT → CAT 0.8599 0.8598
GCG → GTG CGC → CAC 0.7346 0.8598
TCG → TTG CGA → CAA 0.6388 0.8598
AAC → AGC GTT → GCT 0.2442 0.2012

Table 2: The five largest estimated substitution rate parameters for model
IV. The second column shows the substitution pattern on the complementary
strand, and the fourth column shows the parameter estimates for model VIII.

Considering instead the smallest estimated rate parameters for model IV,
there are 31 different rate parameters which are approximately equal to zero,
and therefore no table with such estimates is shown. Most of these rate pa-
rameters are related to either removal of a TpG or a CpA, or addition of a
CpG, and they therefore represent substitutions in the opposite direction of the
predominant CpG to TpG substitution pattern. These estimated zero rates
may therefore reflect that parameters in the model are poorly identified. Both
Lunter and Hein (2004) and Hwang and Green (2004) assign positive prior dis-
tributions to all substitution rate parameters and therefore obtain posterior
means of these parameters which are strictly positive. Such Bayesian approach
may be seen as a way to stabilise the inference procedure, but in this case it
also hides possible problems with the model and data.

In Tables 3 and 4 we show the estimates of the root distribution parame-
ters. Focusing on the CpG, TpG and CpA di-nucleotides, the estimated CpG
di-nucleotide frequency, πc(C, G) = 0.0888 is high, and the estimated TpG
di-nucleotide frequency πc(T, G) = πc(C, A) = 0.0305 is low. We also see that
the estimates of the conditional frequency of G are high when resulting in a
CpG di-nucleotide, i.e. π(G | A, C) = 0.487, and estimates of the conditional
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a1 a2 π(A | a1, a2) π(G | a1, a2) π(C | a1, a2) π(T | a1, a2)
A A 0.363 0.133 0.193 0.310
A G 0.363 0.249 0.159 0.229
A C 0.144 0.487 0.212 0.157
A T 0.387 0.094 0.164 0.355
G A 0.369 0.155 0.231 0.245
G G 0.337 0.225 0.192 0.247
G C 0.126 0.483 0.235 0.155
G T 0.307 0.107 0.241 0.344
C A 0.323 0.197 0.203 0.278
C G 0.218 0.244 0.221 0.317
C C 0.140 0.436 0.225 0.199
C T 0.266 0.151 0.237 0.346
T A 0.346 0.109 0.184 0.361
T G 0.330 0.228 0.168 0.274
T C 0.166 0.319 0.276 0.238
T T 0.324 0.095 0.216 0.363

Table 3: The root parameters π(a3 | a1, a2) for model IV.

a1 πc(a1, A) πc(a1, G) πc(a1, C) πc(a1, T)
A 0.103 0.040 0.058 0.090
G 0.061 0.050 0.041 0.058
C 0.031 0.089 0.050 0.040
T 0.097 0.031 0.061 0.103

Table 4: The root frequencies πc(a1, a2) for model IV.

frequency of T and A are small when resulting in a TpG or CpA di-nucleotide,
respectively, i.e. π(G | A, T) = 0.094. Such pattern of di-nucleotide frequen-
cies at the root sequence seems unrealistic, and it is therefore tempting to
conclude that this result and the result above about rate parameters being
zero when they involve addition of a CpG or deletion of a TpG or CpA, may
be due to parameters in the model being poorly identified when considering
only two distantly related sequences. Implicitly Lunter and Hein (2004) avoid
an increased CpG frequency at the root sequence by letting the root distri-
bution equal the equilibrium distribution which has a decreased frequency of
CpG.

Returning to Table 1, all the overlapping di-nucleotide models V, VI, VII
and VIII present small pseudo-likelihood values, indicating a poor performance
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of these models. From Table 2 we see that there are large differences in the
parameter estimates for model IV and model VIII. In particular, the four
substitution rates involving CpG to TpG or CpA substitutions are nearly
identical under model VIII, whereas they clearly differ for model IV. I conclude
that the neighbour dependent substitution rates depend on the nucleotides
to the left and right in a non-additive way which violates model VIII. In
particular, note the increased rate for CCG to CTG substitutions (seen as
CGG to CAG substitution on the complementary strand) compared to the
other three types of substitutions involving a CpG to CpT substitution.

Considering the results in Table 5, and comparing the log-likelihoods with
the log-likelihoods in Table 1 we note large differences which show that the
models (4) are too simple, and other important neighbour dependent muta-
tional processes must exist than the ones related to the CpG-methylation-
deamination process. I will not discuss this further here, but refer to Arndt
and Hwa (2005) for an analysis of copies of AluSx Sines in the human genome
where they discover several other important neighbour-dependent substitu-
tional processes.

Model Param. Description log Lp τ̂
1 2*20+48 general -223744.18 -
2 2*10+25 strand-sym. -223775.53 -
3 20+1+48 same on branches -223759.56 1.074
4 10+1+25 strand-sym. + same on branches -223788.08 1.092
5 2*14+48 di-nucl. -223760.98 -
6 2*7+25 di-nucl. + strand-sym. -223788.29 -
7 14+1+48 di-nucl. + same on branches -223773.65 1.092
8 7+1+25 di-nucl. + strand-sym. + same -223799.41 1.092

Table 5: Log-pseudo-likelihood and estimated value of τ parameter for eight
simple models satisfying (4).

Comparing models 1-4 with models 5-8, again the overlapping di-nucleotide
models do not perform very well, i.e. the difference in log-likelihood between
models 4 and 8 is 11.33 which should be compared to χ2(3)-distribution and
results in a p-value of 1%.

Considering model 4, Tables 6-8 list the parameter estimates. We ob-
serve that the estimated CpG to TpG/CpA types of substitution rates in
Table 6 are much larger than the ones in Table 2, and thus see that the ac-
tual model has a significant impact on the estimates of the strength of the
CpG-methylation-deamination process. Considering the neighbour indepen-

17Christensen: Pseudo-likelihood for non-reversible substitution models

Published by The Berkeley Electronic Press, 2006



subst. subst. compl.-strand rates
CCG → CTG CGG → CAG 1.9385
ACG → ATG CGT → CAT 1.6507
GCG → GTG CGC → CAC 1.6061
TCG → TTG CGA → CAA 1.6415
A → G T → C 0.1808
A → C T → G 0.0607
A → T T → A 0.0363
G → A C → T 0.0000
G → C C → G 0.0315
G → T C → A 0.0090

Table 6: The neighbour dependent substitution rate parameters γ(T; l; C, G)
and neighbour independent substitution rate parameters ε(b; a) for model 4.

a1 a2 π(A | a1, a2) π(G | a1, a2) π(C | a1, a2) π(T | a1, a2)
A A 0.4196 0.1542 0.1408 0.2854
A G 0.4322 0.1760 0.1823 0.2095
A C 0.2617 0.3354 0.1694 0.2335
A T 0.2787 0.1326 0.1619 0.4269
G A 0.4374 0.1779 0.1571 0.2276
G G 0.4105 0.1438 0.2124 0.2338
G C 0.2189 0.2921 0.2108 0.2782
G T 0.2105 0.1476 0.2225 0.4194
C A 0.3594 0.2235 0.1496 0.2675
C G 0.2398 0.2354 0.2040 0.3208
C C 0.2463 0.3397 0.1433 0.2707
C T 0.1636 0.1979 0.2262 0.4124
T A 0.4433 0.1070 0.1236 0.3260
T G 0.3919 0.1808 0.1620 0.2652
T C 0.2730 0.1770 0.2100 0.3400
T T 0.2534 0.1191 0.2080 0.4196

Table 7: The root parameters π(a3 | a1, a2) for model 4.

dent substitution rates in Table 6, we see that the estimated G to A substitu-
tion rate is equal to zero. Whether this result is a real phenomenon or some
artefact of either the model or of considering only human and mouse sequences
is unclear to me. From Tables 7 and 8 we still see a high frequency of CpG
di-nucleotides, although not as extreme as in Tables 3 and 4.
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a1 πc(a1, A) πc(a1, G) πc(a1, C) πc(a1, T)
A 0.136 0.051 0.046 0.091
G 0.065 0.033 0.033 0.046
C 0.045 0.048 0.033 0.051
T 0.078 0.045 0.065 0.136

Table 8: The root frequencies πc(a1, a2) for model 4.

Finally, with a number of rates being equal to zero I did observe some rate
matrices on the edge of not being complex diagonalisable, and I had to check
the values of the log-pseudo-likelihood in Table 1 and Table 5 by calculating
the matrix exponentials using the Pade-algorithm instead of the eigenvalue
decomposition.

6 Discussion

I have constructed a pseudo-likelihood method for inference in non-reversible
nucleotide substitution models with neighbour dependent substitution rates.
The method is computationally faster than the MCMC methods considered
previously and will make data analysis using these models more practical.
Extending the pseudo-likelihood method to a general phylogenetic tree is sim-
ple in principle, but for a large tree it requires an efficient algorithm for the
summations of the unobserved nodes in the tree, similar to the extension of
Felsenstein’s pruning algorithm in Siepel and Haussler (2004). Also, the im-
plementation presented here has not been optimised with respect to compu-
tational speed, which could be significantly increased by implementing the
recursions in Sections 3 and 4.1 and the for-loops in Appendix B in a compiled
language like C or Fortran instead of R which is known to be relatively slow for
such types of computations. However such an implementation may require a
significant investment of time since the current implementation benefits much
from the build in routines in R for numerical optimisation, root finding and
complex matrix algebra.

The general model (1) is very rich and contains a large number of param-
eters, and here I have considered a number of specific sub-models. I have
demonstrated the poor performance of the overlapping di-nucleotide types of
models used by Lunter and Hein (2004). I have also demonstrated that strand-
symmetry is a feature that should be included in both the substitution process
part of a model and the distribution of the root sequence.

Finally, the pseudo-likelihood method presented here for non-reversible nu-
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cleotide models can in principle also be used for non-reversible codon models,
although the large increase in computing time due to having 61 codons instead
of 4 nucleotides should be noted. However, as discussed in Christensen et al.
(2005), for coding sequences the main future challenge seems to be the de-
velopment of non-reversible models with a small number of parameters more
than the improvement of the inferential procedure.

Appendix A: The parameter space for sequence

distribution at the root

Here the technical details of how the parameter space for the sequence dis-
tribution at the root looks like for the strand-symmetric case described in
Section 2.2 are provided. The notation here follows the one in Section 2.2.

Lemma 1. The parameter space given by (7), (8),
∑

a1,a2
πc(a1, a2) = 1 and∑

a3
π(a3 | a1, a2) = 1 is 25 dimensional and can be determined by having the

7 free parameters for πc :

πc(A,A), πc(A,G), πc(A,C), πc(A,T), πc(G,A), πc(G,C), πc(C,A),

the 18 free parameters for π :

π(a3 | a1, a2), a1 ∈ {G,C,T}, a2 ∈ {A,G}, a3 ∈ {A,G,C},
and the remaining parameters given by

πc(T,T) = πc(A,A), πc(C,T) = πc(A,G), πc(G,T) = πc(A,C),

πc(T,C) = πc(G,A), πc(T,G) = πc(C,A), (28)

πc(T,A) = πc(A,G) + πc(A,C) + πc(A,T)− πc(G,A)− πc(C,A) (29)

πc(C,G) = πc(G,A) + πc(G,C) + πc(G,T)− πc(A,G)− πc(T,G) (30)

πc(G,G) =
1−∑

(a1,a2)6∈{(C,C)(G,G)} πc(a1, a2)

2
, πc(C,C) = πc(G,G) (31)

π(T | a1, a2) = 1−
∑

a3 6=T

π(a3 | a1, a2) for a1 ∈ {G,C,T}, a2 ∈ {A,G}, (32)

π(a3 | a1, a2) =
πc({a3, {a2)π({a1 | {a3, {a2)

πc(a1, a2)

for a1 ∈ {A,G,C,T}, a2 ∈ {C,T}, a3 ∈ {A,G,C} (33)
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π(T | a1, a2) = 1−
∑

a3 6=T

π(a3 | a1, a2) for a1 ∈ {A,G,C,T}, a2 ∈ {C,T}, (34)

π(a3 | A, a2) =
πc({a3, {a2)π(T | {a3, {a2)

πc(A, a2)
for a2 ∈ {A,G}, a3 ∈ {A,G,C,T}

(35)

Proof. A careful inspection of (28)-(35) shows that this system of equations
defines all the parameters π(a3 | a1, a2) and πc(a1, a2) in an iterative way; i.e.
there are no loops in this system.

First, we need to investigate whether all restrictions on the parameters π
and πc are satisfied. It is trivially seen that

∑
a1,a2

πc(a1, a2) = 1 and that∑
a3

π(a3 | a1, a2) = 1 for all (a1, a2) 6∈ {(A, A), (A, G)}. We also easily see
that both (7) and (8) are satisfied. What remains is to investigate whether∑

a3
π(a3 | A, A) = 1 and

∑
a3

π(a3 | A, G) = 1. Here we use (35), (34), (33),
(32), (28) and (31) to obtain

∑
a3

π(a3 | A, a2)

=

(∑
a3

πc({a3, {a2)−
∑

ã3 6=T

∑
a3

π(ã3 | {a3, {a2)πc({a3, {a2)

)
/πc(A, a2)

=

(∑
a3

πc({a3, {a2)−
∑

ã3 6=T

∑
a3

π(a3 | {ã3, a2)πc({ã3, a2)

)
/πc(A, a2)

=

(∑
a3

πc({a3, {a2) + πc(A, a2)−
∑
ã3

πc({ã3, a2)

)
/πc(A, a2)

= 1 +

(∑
ã

πc(a2, ã)−
∑

ã

πc(ã, a2)

)
/πc(A, a2),

for a2 ∈ {A, G}. Hence using (29) we see that
∑

a3
π(a3 | A, A) = 1, and

similarly using (30) we see that
∑

a3
π(a3 | A, G) = 1, which completes the

first half of the proof.
Second, we must show that all the equations (28)-(35) are really needed.

Equations (28) and (31)-(35) are derived directly from the restrictions 1 =∑
a1,a2

πc(a1, a2), 1 =
∑

a3
π(a3 | a1, a2), (7) and (8), and the considerations in

the first half of the proof shows the necessity of (29) and (30) to ensure that∑
a3

π(a3 | A, A) = 1 and
∑

a3
π(a3 | A, G) = 1. This completes the proof.
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Appendix B: E-step for sequence to sequence

likelihood

Here we consider the E-step for the pseudo-likelihood describing the sequence
to sequence evolution. We assume that sequences v = (v1, . . . , vn) and x =
(x1, . . . , xn) have been observed, and consider the evolution from v to x under
the model (1) with substitution parameters γ. In the E-step we must calculate

G(γ; γ0) = Eγ0 [log Lc(γ; evx) | v, x],

where Lc(γ; evx) is the complete observation pseudo-likelihood for the evolution
from v to x.

The derivation follows Section 5 and Appendix C in Christensen et al.
(2005) and we will therefore skip some of the details. Using that Lc(γ; evx) is
on an exponential family form with a 2× (4× 3 + 4)× 44 = 8192-dimensional
sufficient statistics

(N1
I (a, b), T 1

I (a), N1
I (a, b), T 1

I (a)) : a 6= b, I = (lv, rv, lx, rx),

where N1
I (a, b) and T 1

I (a) are the number of substitutions from a to b and the
time spend in a, respectively, for flanking situation I and in the time interval
[0; 1/2], and N1

2 (a, b) and T 1
2 (a) are defined similarly for the time interval

[1/2; 1], we have that

G(γ; γ0) = Eγ0 [log Lc(γ; evx) | v, x]

=
∑

I

∑

a,b:a 6=b

log γ(b; lv, a, rv) Eγ0 [N
1
I (a, b) | v, x]− γ(b; lv, a, rv) Eγ0 [T

1
I (a) | v, x]

+
∑

I

∑

a,b:a 6=b

log γ(b; lx, a, rx) Eγ0 [N
2
I (a, b) | v, x]− γ(b; lx, a, rx) Eγ0 [T

2
I (a) | v, x],

which in Christensen et al. (2005) corresponds to the first formula in Sec-
tion 5.2.1 and formula (C3).

The formula above provides some intuition about the form of the E-step,
but since I in Section 4.1 need to sum out the sequence v, I instead prefer
a less compact formula here. The first formula in Section 5.2.1, and formula
(C3), (C4) and (C5) in Christensen et al. (2005) viewed in the present context
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(although the notation w1
I and w2

I has a different meaning here) become,

G(γ; γ0) = Eγ0 [log Lc(γ; evx) | v, x]

=
∑

I

∑

a,b:a6=b

log γ(b; lv, a, rv)
∑

k:(vk−1,vk+1,xk−1,xk+1)=I

w1
I (a, b; vk, xk)

−
∑

I

∑

a,b:a 6=b

γ(b; lv, a, rv)
∑

k:(vk−1,vk+1,xk−1,xk+1)=I

w1
I (a, a; vk, xk) (36)

+
∑

I

∑

a,b:a 6=b

log γ(b; lx, a, rx)
∑

k:(vk−1,vk+1,xk−1,xk+1)=I

w2
I (a, b; vk, xk)

−
∑

I

∑

a,b:a 6=b

γ(b; lx, a, rx)
∑

k:(vk−1,vk+1,xk−1,xk+1)=I

w2
I (a, a; vk, xk)

where I = (lv, rv, lx, rx),

w1
I (a, b; ã, b̃) = Qlv ,rv

0 (a, b)

∫ 1/2

0
P I

0 (0, t, ã, a)P I
0 (t, 1, b, b̃)dt

P I
0 (0, 1, ã, b̃)

, (37)

for a 6= b,

w1
I (a, a; ã, b̃) =

∫ 1/2

0
P I

0 (0, t, ã, a)P I
0 (t, 1, a, b̃)dt

P I
0 (0, 1, ã, b̃)

, (38)

w2
I (a, b; ã, b̃) = Qlx,rx

0 (a, b)

∫ 1

1/2
P I

0 (0, t, ã, a)P I
0 (t, 1, b, b̃)dt

P I
0 (0, 1, ã, b̃)

, (39)

for a 6= b,

w2
I (a, a; ã, b̃) =

∫ 1

1/2
P I

0 (0, t, ã, a)P I
0 (t, 1, a, b̃)dt

P I
0 (0, 1, ã, b̃)

. (40)

Here the 4× 4 rate matrices Ql,r are defined in (10), and

P I
0 (0, 1, ã, b̃) =

∑
c

P I
0 (0, 1/2, ã, c)P I(1/2, 1, c, b̃). (41)

Assume that Qlv,rv
is complex diagonalisable with complex eigenvalues and

complex valued eigenvectors. Let V be the matrix with eigenvectors as columns,
Dλ the diagonal matrix of eigenvalues, and W = V −1 the inverse of the eigen-
vector matrix. It follows that

P I(0, t) = exp(Qlv ,rv

t) = V exp(tDλ)W, 0 ≤ t ≤ 1/2.
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Similarly, assume that Qlx,rx
is complex diagonalisable, let U be the matrix

with eigenvectors as columns, Dµ the diagonal matrix of eigenvalues, and
O = U−1 the inverse of the eigenvector matrix. Then we obtain

P I(1/2, 1/2 + t) = exp(Qlx,rx

t) = U exp(tDµ)O, 0 ≤ t ≤ 1/2.

Now we can find (41) and thereby the integrals in the formulas for w1
I and w2

I .
Note that for 0 ≤ t ≤ 1/2 we have

P I(t, 1, b, b̃) =
∑

c̃

P I(t, 1/2, b, c̃)P I(1/2, 1, c̃, b̃)

=
∑

i

Vbie
(1/2−t)λi

∑
c̃

Wic̃

∑
m

Ucmeµm/2Omb̃,

and we get
∫ 1/2

0

P I(0, t, ã, a)P I(t, 1, b, b̃)dt

=

∫ 1/2

0

∑
j

Vãj exp(tλj)Wja

∑
i

Vbie
(1/2−t)λi

∑
c

Wic

∑
m

Ucmeµm/2Omb̃dt

=
∑

j

VãjWja

∑
i

VbiJ
1
ji

{ ∑
c

Wic

∑
m

Ucmeµm/2Omb̃

}
, (42)

where

J1
ji =

{
1
2
exp(λi/2) if λj = λi

(exp(λj/2)− exp(λi/2))/(λj − λi) if λj 6= λi.

Similarly,
∫ 1

1/2

P I(0, t, ã, a)P I(t, 1, b, b̃)dt

=
∑

j

{ ∑
c

∑
m

Vãmeλm/2WmcUcj

}
Oja

∑
i

UbiJ
2
jiOib̃, (43)

where

J2
ji =

{
1
2
exp(µi/2) if µj = µi

(exp(µj/2)− exp(µi/2))/(µj − µi) if µj 6= µi.

In the above equations, the reader should recognise that the formulas involve
complex numbers. In the actual implementation, it was very convenient that
R (R Development Core Team, 2005) handles matrix arithmetics for complex
numbers.
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Appendix C: The M-step for specific models

The maximisation of G((γ, γ̃, π); (γ0, γ̃0, π0)) in (22) with respect to (γ, γ̃) is
considered here for some specific models for the rate parameters γ and γ̃.

M-step for the general branch-specific substitution model

For the general model where γ and γ̃ vary freely, maximising (22) with respect
to these two parameter vectors gives

γ(b; l, a, r) = wl,r(a, b)/wl,r(a, a),

γ̃(b; l, a, r) = w̃l,r(a, b)/w̃l,r(a, a),

for B 6= A.

M-step for the strand-symmetric branch-specific substitution model

For the strand-symmetric model, the constraints (2) hold both for γ and γ̃, and
the parameters, γ(b; l, a, r), γ̃(b; l, a, r), a ∈ {A, G}, b 6= a, l, r ∈ {A, G, C, T},
vary freely. The maximisation with respect to these parameters gives

γ(b; l, a, r) = (wl,r(a, b) + w{r,{l({a, {b))/(wl,r(a, a) + w{r,{l({a, {a)),

γ̃(b; l, a, r) = (w̃l,r(a, b) + w̃{r,{l({a, {b))/(w̃l,r(a, a) + w̃{r,{l({a, {a)),

for b 6= a.

M-step for models with the same substitution process on branches

For a model where the substitution process is the same on both branches
γ̃ = τγ, where τ > 0 is the speed of evolution on the vy branch relative to
the vx branch. The maximisation with respect to τ gives that the following
equation should be satisfied

0 = (1/τ)
∑

a,B,l,r:a 6=b

w̃l,r(a, b)−
∑

a,b,l,r:a 6=b

γ(b; l, a, r)w̃l,r(a, a)

For the general substitution model, the maximisation with respect to γ
gives

γ(b; l, a, r) = (wl,r(a, b) + w̃l,r(a, b))/(wl,r(a, a) + τw̃l,r(a, a)).
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Combining these two formulas and re-arranging the terms, we see that τ
is found as the solution to the equation

0 =
∑

a,b,l,r:a 6=b

wl,r(a, b)− (wl,r(a, b) + w̃l,r(a, b))wl,r(a, a)

(wl,r(a, a) + τw̃l,r(a, a))
,

which has to solved numerically. To solve such one-dimensional equations I
throughout this paper have used the R-function uniroot (R Development Core
Team, 2005).

Similarly, for the strand-symmetric model, the maximisation gives that τ
is the solution to the equation

0 =
∑

a,b,l,r:a 6=b

wl,r(a, b)− (wl,r(a, b) + w̃l,r(a, b))(wl,r(a, a) + w{r,{l({a, {a))

wl,r(a, a) + τw̃l,r(a, a) + w{r,{l({a, {a) + τw̃{r,{l({a, {a)
,

and γ is given by

γ(b; l, a, r) =
wl,r(a, b) + w̃l,r(a, b) + w{r,{l({a, {b) + w̃{r,{l({a, {B)

wl,r(a, a) + τw̃l,r(a, a) + w{r,{l({a, {a) + τw̃{r,{l({a, {a)
,

for a ∈ {A, G}, b 6= a.

M-step for the overlapping di-nucleotide models

For the overlapping di-nucleotide model (2), γ(b; l, a, r) = ν left(b; l, a)+νright(b; a, r)
and γ̃(b; l, a, r) = ν̃ left(b; l, a)+ν̃right(b; a, r). Only the procedure for the general
model where the parameters vary freely is stated here, but for the models with
strand-symmetry and/or the same substitution process on both branches the
derivations are not complicated either.

The maximisation with respect to ν left(b; l, a) gives that this parameter
solves the equation

0 =
∑

r

wl,r(a, b)

ν left(b; l, a) + νright(b; a, r)
−

∑
r

wl,r(a, a), (44)

given the other parameters. Similarly, the maximisation with respect to the
parameter νright(b; a, r) gives the equation

0 =
∑

l

wl,r(a, b)

ν left(b; l, a) + νright(b; a, r)
−

∑

l

wl,r(a, a). (45)
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For every a and b, the new parameter values of ν left(b; l, a), l ∈ {A, G, C, T}
and νright(b; a, r), r ∈ {A, G, C, T} are found using the following iterative pro-
cedure. Given the parameters νright(b; a, r), r ∈ {A, G, C, T}, (44) is solved for
ν left(b; l, a) for every l, and given the parameters ν left(b; l, a), l ∈ {A, G, C, T},
(45) is solved for νright(b; a, r) for every r. The procedure is iterated until
convergence.

A similar procedure is used to obtain the new ν̃ left(b; l, a) and ν̃right(b; a, r)
parameters.

M-step for the simple models with only neighbour dependent CpG
to TpG and CpA substitutions

Considering the simple model (4) where the only neighbour dependent rate
parameters are the ones involving CpG to TpG and CpA substitutions, then
the procedure for the most general model is stated here. For the models with
strand-symmetry and/or the same substitution process on both branches the
derivations are not complicated either.

Maximising (22) with respect to γ(A; C, G, r), γ(T; l, C, G), γ̃(A; C, G, r),
γ̃(T; l, C, G), ε(b; a), ε̃(b; a) gives

γ(A; C, G, r) =
wC,r(G, A)

wC,r(G, G)
, γ(T; l, C, G) =

wl,G(C, T)

wl,G(C, C)
,

γ̃(A; C, G, r) =
w̃C,r(G, A)

w̃C,r(G, G)
, γ̃(T; l, C, G) =

w̃l,G(C, T)

w̃l,G(C, C)
,

ε(A; G) =

∑
l 6=C,r wl,r(G, A)∑
l 6=C,r wl,r(G, G)

, ε̃(A; G) =

∑
l 6=C,r w̃l,r(G, A)∑
l 6=C,r w̃l,r(G, G)

,

ε(T; C) =

∑
l,r 6=G wl,r(C, T)∑
l,r 6=G wl,r(C, C)

, ε̃(T; C) =

∑
l,r 6=G w̃l,r(C, T)∑
l,r 6=G w̃l,r(C, C)

,

and

ε(b; a) =

∑
l,r wl,r(a, b)∑
l,r wl,r(a, a)

, ε̃(b; a) =

∑
l,r w̃l,r(a, b)∑
l,r w̃l,r(a, a)

,

for b 6= a and (a, b) 6∈ {(G, A), (C, T)}.
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