Hyperbolic algebraic varieties and holomorphic differential equations

Jean-Pierre Demailly
Institut Fourier, Université de Grenoble I, France
\& Académie des Sciences de Paris

August 26, 2012 / VIASM Yearly Meeting, Hanoi

- Definition. By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \rightarrow X$ into a complex n-dimensional manifold.
X is said to be (Brody) hyperbolic if \nexists such $f: \mathbb{C} \rightarrow X$.
- If X is a bounded open subset $\Omega \subset \mathbb{C}^{n}$, then there are no entire curves $f: \mathbb{C} \rightarrow \Omega$ (Liouville's theorem),
\Rightarrow every bounded open set $\Omega \subset \mathbb{C}^{n}$ is hyperbolic
- $X=\overline{\mathbb{C}} \backslash\{0,1, \infty\}=\mathbb{C} \backslash\{0,1\}$ has no entire curves, so it is hyperbolic (Picard's theorem)
- A complex torus $X=\mathbb{C}^{n} / \Lambda$ (Λ lattice) has a lot of entire curves. As \mathbb{C} simply connected, every $f: \mathbb{C} \rightarrow X=\mathbb{C}^{n} / \Lambda$ lifts as $\tilde{f}: \mathbb{C} \rightarrow \mathbb{C}^{n}, \tilde{f}(t)=\left(\tilde{f}_{1}(t), \ldots, \tilde{f}_{n}(t)\right)$, and $\tilde{f}_{j}: \mathbb{C} \rightarrow \mathbb{C}$ can be arbitrary entire functions.
- Consider now the complex projective n-space

$$
\mathbb{P}^{n}=\mathbb{P}_{\mathbb{C}}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}, \quad[z]=\left[z_{0}: z_{1}: \ldots: z_{n}\right]
$$

- An entire curve $f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ is given by a map

$$
t \longmapsto\left[f_{0}(t): f_{1}(t): \ldots: f_{n}(t)\right]
$$

where $f_{j}: \mathbb{C} \rightarrow \mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

- More generally, look at a (complex) projective manifold, i.e.

$$
X^{n} \subset \mathbb{P}^{N}, \quad X=\left\{[z] ; P_{1}(z)=\ldots=P_{k}(z)=0\right\}
$$

where $P_{j}(z)=P_{j}\left(z_{0}, z_{1}, \ldots, z_{N}\right)$ are homogeneous polynomials (of some degree d_{j}), such that X is non singular.

Complex curves (genus 0 and 1)

Canonical bundle $K_{X}=\Lambda^{n} T_{X}^{*}$ (here $\left.K_{X}=T_{X}^{*}\right)$

- $g=0: X=\mathbb{P}^{1} \quad$ courbure $T_{X}>0$ not hyperbolic
- $g=1: X=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ courbure $T_{X}=0$ not hyperbolic

$\operatorname{deg} K_{X}=2 g-2$
If $g \geq 2, \quad X \simeq \mathbb{D} / \Gamma \quad\left(T_{X}<0\right) \quad \Rightarrow \quad X$ is hyperbolic.
In fact every curve $f: \mathbb{C} \rightarrow X \simeq \mathbb{D} / \Gamma$ lifts to $\widetilde{f}: \mathbb{C} \rightarrow \mathbb{D}$, and so must be constant by Liouville.

Kobayashi metric / hyperbolic manifolds

- For a complex manifold, $n=\operatorname{dim}_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X, \xi \in T_{X}$ $\kappa_{X}(\xi)=\inf \left\{\lambda>0 ; \exists f: \mathbb{D} \rightarrow X, f(0)=x, \lambda f_{*}(0)=\xi\right\}$ On $\mathbb{C}^{n}, \mathbb{P}^{n}$ or complex tori $X=\mathbb{C}^{n} / \Lambda$, one has $\kappa_{X} \equiv 0$.
- X is said to be hyperbolic in the sense of Kobayashi if the associated integrated pseudo-distance is a distance (i.e. it separates points - i.e. has Hausdorff topology).
- Examples. $* X=\Omega / \Gamma, \Omega$ bounded symmetric domain. * any product $X=X_{1} \times \ldots \times X_{s}$ where X_{j} hyperbolic.
- Theorem (dimension n arbitrary) (Kobayashi, 1970) T_{X} negatively curved $\left(T_{X}^{*}>0\right.$, i.e. ample) $\Rightarrow X$ hyperbolic. Recall that a holomorphic vector bundle E is ample iff its symmetric powers $S^{m} E$ have global sections which generate 1 -jets of (germs of) sections at any point $x \in X$.

The proof of the above Kobayashi result depends crucially on:
Ahlfors-Schwarz lemma. Let $\gamma=i \sum \gamma_{j k} d t_{j} \wedge d \bar{t}_{k}$ be an almost everywhere positive hermitian form on the ball $B(0, R) \subset \mathbb{C}^{p}$, such that $-\operatorname{Ricci}(\gamma):=i \partial \bar{\partial} \log \operatorname{det} \gamma \geq A \gamma$ in the sense of currents, for some constant $A>0$ (this means in particular that $\operatorname{det} \gamma=\operatorname{det}\left(\gamma_{j k}\right)$ is such that $\log \operatorname{det} \gamma$ is plurisubharmonic). Then the γ-volume form is controlled by the Poincaré volume form :

$$
\operatorname{det}(\gamma) \leq\left(\frac{p+1}{A R^{2}}\right)^{p} \frac{1}{\left(1-|t|^{2} / R^{2}\right)^{p+1}}
$$

Brody reparametrization Lemma. Assume that X is compact, let ω be a hermitian metric on X and $f: \mathbb{D} \rightarrow X$ a holomorphic map. For every $\varepsilon>0$, there exists a radius $R \geq(1-\varepsilon)\left\|f^{\prime}(0)\right\|_{\omega}$ and a homographic transformation ψ of the disk $D(0, R)$ onto $(1-\varepsilon) \mathbb{D}$ such that $\left\|(f \circ \psi)^{\prime}(0)\right\|_{\omega}=1$ and $\left\|(f \circ \psi)^{\prime}(t)\right\|_{\omega} \leq\left(1-|t|^{2} / R^{2}\right)^{-1}$ for every $t \in D(0, R)$. \Rightarrow if f^{\prime} unbounded, $\exists g=\lim f \circ \psi_{\nu}: \mathbb{C} \rightarrow X$ with $\left\|g^{\prime}\right\|_{\omega} \leq 1$.
Brody theorem (1978). If X is compact then X is Kobayashi hyperbolic if and only if there are no entire holomorphic curves $f: \mathbb{C} \rightarrow X$ (Brody hyperbolicity).
Hyperbolic varieties are especially interesting for their expected diophantine properties:
Conjecture (S. Lang, 1986) An arithmetic projective variety X is hyperbolic iff $X(\mathbb{K})$ is finite for every number field \mathbb{K}.

- Definition A non singular projective variety X is said to be of general type if the growth of pluricanonical sections

$$
\operatorname{dim} H^{0}\left(X, K_{X}^{\otimes m}\right) \sim c m^{n}, \quad K_{X}=\Lambda^{n} T_{X}^{*}
$$

is maximal.
(sections locally of the form $\left.f(z)\left(d z_{1} \wedge \ldots \wedge d z_{n}\right)^{\otimes m}\right)$
Example: A non singular hypersurface $X^{n} \subset \mathbb{P}^{n+1}$ of degree d satisfies $K_{X}=\mathcal{O}(d-n-2)$,
X is of general type iff $d>n+2$.

- Conjecture CGT. If a compact variety X is hyperbolic, then it should be of general type, and if X is non singular, then $K_{X}=\Lambda^{n} T_{X}^{*}$ should be ample, i.e. $K_{X}>0$ (Kodaira) (equivalently \exists Kähler metric ω such that $\operatorname{Ricci}(\omega)<0$).

Conjectural characterizations of hyperbolicity

- Theorem. Let X be projective algebraic. Consider the following properties :
(GT) Every subvariety Y of X is of general type.
(AH) $\exists \varepsilon>0, \forall C \subset X$ algebraic curve

$$
2 g(\bar{C})-2 \geq \varepsilon \operatorname{deg}(C)
$$

(X "algebraically hyperbolic")
(HY) X is hyperbolic
(JC) X possesses a jet-metric with negative curvature on its k-jet bundle X_{k} [to be defined later], for $k \geq k_{0} \gg 1$.
Then $(\mathrm{JC}) \Rightarrow(\mathrm{GT}),(\mathrm{AH}),(\mathrm{HY})$,
$(\mathrm{HY}) \Rightarrow(\mathrm{AH})$,
and if Conjecture CGT holds, (HY) \Rightarrow (GT).

- It is expected that all 4 properties are in fact equivalent for projective varieties.
- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then there exists an algebraic variety $Y \subsetneq X$ such that for all non-constant holomorphic $f: \mathbb{C} \rightarrow X$ one has $f(\mathbb{C}) \subset Y$.
- Combining the above conjectures, we get:

Expected consequence (of CGT + GGL) Properties:
(HY) X is hyperbolic
(GT) Every subvariety Y of X is of general type are equivalent if CGT + GGL hold.

- Arithmetic counterpart (Lang 1987). If X is a variety of general type defined over a number field and Y is the Green-Griffiths locus (Zariski closure of $\bigcup f(\mathbb{C})$), then $X(\mathbb{K}) \backslash Y$ is finite for every number field \mathbb{K}.
- Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. - El Goul proved
Theorem (solution of Kobayashi conjecture, 1998).
A very generic surface $X \subset \mathbb{P}^{3}$ of degree ≥ 21 is hyperbolic.
Independently McQuillan got degree ≥ 35.
Recently improved to degree ≥ 18 (Păun, 2008).
For $X \subset \mathbb{P}^{n+1}$, the optimal bound should be degree $\geq 2 n+1$
for $n \geq 2$ (Zaidenberg).
- Generic GGL conjecture for $\operatorname{dim}_{\mathbb{C}} X=n$ (S. Diverio, J. Merker, E. Rousseau, 2009). If $X \subset \mathbb{P}^{n+1}$ is a generic n-fold of degree $d \geq d_{n}:=2^{n^{5}}$, [also $d_{3}=593, d_{4}=3203, d_{5}=35355, d_{6}=172925$] then $\exists Y \subsetneq X$ s.t. \forall non const. $f: \mathbb{C} \rightarrow X$ satisfies $f(\mathbb{C}) \subset Y$ Moreover (S. Diverio, S. Trapani, 2009) $\operatorname{codim}_{\mathbb{C}} Y \geq 2 \Rightarrow$ generic hypersurface $X \subset \mathbb{P}^{4}$ of degree ≥ 593 is hyperbolic.

The main idea in order to attack GGL is to use differential equations. Let

$$
\mathbb{C} \rightarrow X, \quad t \mapsto f(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)
$$

be a curve written in some local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on X.
Consider algebraic differential operators which can be written locally in multi-index notation

$$
\begin{aligned}
P\left(f_{[k]}\right) & =P\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \\
& =\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(f(t)) f^{\prime}(t)^{\alpha_{1}} f^{\prime \prime}(t)^{\alpha_{2}} \ldots f^{(k)}(t)^{\alpha_{k}}
\end{aligned}
$$

where $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are holomorphic coefficients on X and $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet. Obvious \mathbb{C}^{*}-action :

$$
\lambda \cdot f(t)=f(\lambda t), \quad(\lambda \cdot f)^{(k)}(t)=\lambda^{k} f^{(k)}(\lambda t)
$$

\Rightarrow weighted degree $m=\left|\alpha_{1}\right|+2\left|\alpha_{2}\right|+\ldots+k\left|\alpha_{k}\right|$.

Vanishing theorem for differential operators

- Definition. $E_{k, m}^{\mathrm{GG}}$ is the sheaf (bundle) of algebraic differential operators of order k and weighted degree m.

- Fundamental vanishing theorem

[Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996] Let $P \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} \otimes \mathcal{O}(-A)\right)$ be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then $\forall f: \mathbb{C} \rightarrow X, P\left(f_{[k]}\right) \equiv 0$.

- Proof. One can assume that A is very ample and intersects $f(\mathbb{C})$. Also assume f^{\prime} bounded (this is not so restrictive by Brody !). Then all $f^{(k)}$ are bounded by Cauchy inequality. Hence

$$
\mathbb{C} \ni t \mapsto P\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)(t)
$$

is a bounded holomorphic function on \mathbb{C} which vanishes at some point. Apply Liouville's theorem!

- Let $X_{k}^{\mathrm{GG}}=J_{k}(X)^{*} / \mathbb{C}^{*}$ be the projectivized k-jet bundle of X $=$ quotient of non constant k-jets by \mathbb{C}^{*}-action.
Fibers are weighted projective spaces.
Observation. If $\pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X$ is canonical projection and $\mathcal{O}_{X_{k}^{G G}}(1)$ is the tautological line bundle, then

$$
E_{k, m}^{\mathrm{GG}}=\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m)
$$

- Saying that $f: \mathbb{C} \rightarrow X$ satisfies the differential equation $P\left(f_{[k]}\right)=0$ means that

$$
f_{[k]}(\mathbb{C}) \subset Z_{P}
$$

where Z_{P} is the zero divisor of the section

$$
\sigma_{P} \in H^{0}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m) \otimes \pi_{k}^{*} \mathcal{O}(-A)\right)
$$

associated with P.
Jean-Pierre Demailly (Grenoble), VIASM, Hanoi, 26/08/2012 Hyperbolic algebraic varieties \& holomorphic differential equations

Consequence of fundamental vanishing theorem

- Consequence of fundamental vanishing theorem. If $P_{j} \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} \otimes \mathcal{O}(-A)\right)$ is a basis of sections then the image $f(\mathbb{C})$ lies in $Y=\pi_{k}\left(\bigcap Z_{P_{j}}\right)$, hence property asserted by the GGL conjecture holds true if there are "enough independent differential equations" so that

$$
Y=\pi_{k}\left(\bigcap_{j} Z_{P_{j}}\right) \subsetneq X
$$

- However, some differential equations are not very useful. On a surface with coordinates (z_{1}, z_{2}), a Wronskian equation $f_{1}^{\prime} f_{2}^{\prime \prime}-f_{2}^{\prime} f_{1}^{\prime \prime}=0$ tells us that $f(\mathbb{C})$ sits on a line, but $f_{2}^{\prime \prime}(t)=0$ says that the second component is linear affine in time, an essentially meaningless information which is lost by a change of parameter $t \mapsto \varphi(t)$.
- The k-th order Wronskian operator

$$
W_{k}(f)=f^{\prime} \wedge f^{\prime \prime} \wedge \ldots \wedge f^{(k)}
$$

(locally defined in coordinates) has degree $m=\frac{k(k+1)}{2}$ and

$$
W_{k}(f \circ \varphi)=\varphi^{\prime m} W_{k}(f) \circ \varphi
$$

- Definition. A differential operator P of order k and degree m is said to be invariant by reparametrization if

$$
P(f \circ \varphi)=\varphi^{\prime m} P(f) \circ \varphi
$$

for any parameter change $t \mapsto \varphi(t)$. Consider their set

$$
E_{k, m} \subset E_{k, m}^{\mathrm{GG}} \quad(\text { a subbundle })
$$

(Any polynomial $Q\left(W_{1}, W_{2}, \ldots W_{k}\right)$ is invariant, but for $k \geq 3$ there are other invariant operators.)

Category of directed manifolds

- Goal. We are interested in curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_{X}.
- Definition. Category of directed manifolds:
- Objects : pairs $(X, V), X$ manifold $/ \mathbb{C}$ and $V \subset \mathcal{O}\left(T_{X}\right)$
- Arrows $\psi:(X, V) \rightarrow(Y, W)$ holomorphic s.t. $\psi_{*} V \subset W$
- "Absolute case" $\left(X, T_{X}\right)$
- "Relative case" $\left(X, T_{X / S}\right)$ where $X \rightarrow S$
- "Integrable case" when $[V, V] \subset V$ (foliations)
- Fonctor "1-jet" : $(X, V) \mapsto(\tilde{X}, \tilde{V})$ where :

$$
\begin{aligned}
& \tilde{X}=P(V)=\text { bundle of projective spaces of lines in } V \\
& \pi: \tilde{X}=P(V) \rightarrow X, \quad(x,[v]) \mapsto x, \quad v \in V_{x} \\
& \tilde{V}_{(x,[v])}=\left\{\xi \in T_{\tilde{X},(x,[v])} ; \pi_{*} \xi \in \mathbb{C} v \subset T_{X, x}\right\}
\end{aligned}
$$

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V

$$
\begin{aligned}
& f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\
& f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \quad(\text { projectivized 1st-jet })
\end{aligned}
$$

- Definition. Semple jet bundles :
$-\left(X_{k}, V_{k}\right)=k$-th iteration of fonctor $(X, V) \mapsto(\tilde{X}, \tilde{V})$
$-f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow\left(X_{k}, V_{k}\right)$ is the projectivized k-jet of f.

- Basic exact sequences

$$
\begin{aligned}
& 0 \rightarrow T_{\tilde{X} / X} \rightarrow \tilde{V} \xrightarrow{\pi_{\star}} \mathcal{O}_{\tilde{X}}(-1) \rightarrow 0 \quad \Rightarrow \mathrm{rk} \tilde{V}=r=\mathrm{rk} V \\
& 0 \rightarrow \mathcal{O}_{\tilde{X}} \rightarrow \pi^{\star} V \otimes \mathcal{O}_{\tilde{X}}(1) \rightarrow T_{\tilde{X} / X} \rightarrow 0 \quad \text { (Euler) } \\
& 0 \rightarrow T_{X_{k} / X_{k-1}} \rightarrow V_{k} \stackrel{\left(\pi_{k}\right)_{\star}}{ } \mathcal{O}_{X_{k}}(-1) \rightarrow 0 \quad \Rightarrow \text { rk } V_{k}=r \\
& 0 \rightarrow \mathcal{O}_{X_{k}} \rightarrow \pi_{k}^{\star} V_{k-1} \otimes \mathcal{O}_{X_{k}}(1) \rightarrow T_{X_{k} / X_{k-1}} \rightarrow 0 \quad \text { (Euler) }
\end{aligned}
$$

Jean-Pierre Demailly (Grenoble), VIASM, Hanoi, 26/08/2012 Hyperbolic algebraic varieties \& holomorphic differential equations

Direct image formula

- For $n=\operatorname{dim} X$ and $r=r k V$, get a tower of \mathbb{P}^{r-1}-bundles

$$
\pi_{k, 0}: X_{k} \xrightarrow{\pi_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{1}} X_{0}=X
$$

with $\operatorname{dim} X_{k}=n+k(r-1)$, rk $V_{k}=r$, and tautological line bundles $\mathcal{O}_{X_{k}}(1)$ on $X_{k}=P\left(V_{k-1}\right)$.

- Theorem. X_{k} is a smooth compactification of

$$
X_{k}^{\mathrm{GG}, \text { reg }} / G_{k}=J_{k}^{\mathrm{GG}, \text { reg }} / G_{k}
$$

where G_{k} is the group of k-jets of germs of biholomorphisms of $(\mathbb{C}, 0)$, acting on the right by reparametrization: $(f, \varphi) \mapsto f \circ \varphi$, and $J_{k}^{\text {reg }}$ is the space of k-jets of regular curves.

- Direct image formula. $\left(\pi_{k, 0}\right)_{*} \mathcal{O}_{X_{k}}(m)=E_{k, m} V^{*}=$ invariant algebraic differential operators $f \mapsto P\left(f_{[k]}\right)$ acting on germs of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$.
- Although very interesting, results are currently limited by lack of knowledge on jet bundles and differential operators
- Theorem (Bérczi-Kirwan, 2009). The ring of germs of invariant differential operators on $\left(\mathbb{C}^{n}, T_{\mathbb{C}^{n}}\right)$ at the origin

$$
\mathcal{A}_{k, n}=\bigoplus_{m} E_{k, m} T_{\mathbb{C}^{n}}^{*} \quad \text { is finitely generated }
$$

- Checked by direct calculations $\forall n, k \leq 2$ and $n=2, k \leq 4$:

$$
\begin{aligned}
& \begin{aligned}
& \mathcal{A}_{1, n}=\mathcal{O}\left[f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right] \\
& \mathcal{A}_{2, n}=\mathcal{O}\left[f_{1}^{\prime}, \ldots, f_{n}^{\prime}, W^{[i j]}\right], \quad W^{[i j]}=f_{i}^{\prime} f_{j}^{\prime \prime}-f_{j}^{\prime} f_{i}^{\prime \prime} \\
& \mathcal{A}_{3,2}=\mathcal{O}\left[f_{1}^{\prime}, f_{2}^{\prime}, W_{1}, W_{2}\right][W]^{2}, \quad W_{i}=f_{i}^{\prime} D W-3 f_{i}^{\prime \prime} W \\
& \mathcal{A}_{4,2}=\mathcal{O}\left[f_{1}^{\prime}, f_{2}^{\prime}, W_{11}, W_{22}, S\right][W]^{6}, \quad W_{i i}=f_{i}^{\prime} D W_{i}-5 f_{i}^{\prime \prime} W_{i} \\
& \text { where } W=f_{1}^{\prime} f_{2}^{\prime \prime}-f_{2}^{\prime} f_{1}^{\prime \prime}, S=\left(W_{1} D W_{2}-W_{2} D W_{1}\right) / W
\end{aligned}
\end{aligned}
$$

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. det V^{*} big, then $\exists Y \subsetneq X$ such that $\forall f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ non const., $f(\mathbb{C}) \subset Y$.
- Remark. Elementary by Ahlfors-Schwarz if $r=r k V=1$. $t \mapsto \log \left\|f^{\prime}(t)\right\| V, h$ is strictly subharmonic if $r=1$ and (V^{*}, h^{*}) has >0 curvature in the sense of currents.
- Strategy. Try some sort of induction on $r=r k V$.

First try to get differential equations $f_{[k]}(\mathbb{C}) \subset Z \subsetneq X_{k}$.
Take minimal such k. If $k=0$, we are done! Otherwise $k \geq 1$ and $\pi_{k, k-1}(Z)=X_{k-1}$, thus $V^{\prime}=V_{k} \cap T_{Z}$ has rank $<$ rk $V_{k}=r$ and should have again det V^{*} big (unless some unprobable geometry situation occurs ?).

- Needed induction step. If (X, V) has det V^{*} big and $Z \subset X_{k}$ irreducible with $\pi_{k, k-1}(Z)=X_{k-1}$, then $\left(Z, V^{\prime}\right)$, $V^{\prime}=V_{k} \cap T_{Z}$ has $\mathcal{O}_{z_{\ell}}(1)$ big on $\left(Z_{\ell}, V_{\ell}^{\prime}\right), \ell \gg 0$.

Holomorphic Morse inequalities (D-, 1985) Let $L \rightarrow X$ be a holomorphic line bundle on a compact complex manifold X, h a smooth hermitian metric on L and

$$
\Theta_{L, h}=\frac{i}{2 \pi} \nabla_{L, h}^{2}=-\frac{i}{2 \pi} \partial \bar{\partial} \log h
$$

its curvature form. Then $\forall q=0,1, \ldots, n=\operatorname{dim}_{\mathbb{C}} X$

$$
\sum_{j=0}^{q}(-1)^{q-j} h^{j}\left(X, L^{\otimes k}\right) \leq \frac{k^{n}}{n!} \int_{X(L, h, \leq q)}(-1)^{q} \Theta_{L, h}^{n}+o\left(k^{n}\right)
$$

where

$$
X(L, h, q)=\left\{x \in X ; \Theta_{L, h}(x) \text { has signature }(n-q, q)\right\}
$$

(q-index set), and

$$
X(L, h, \leq q)=\bigcup_{0 \leq j \leq q} X(L, h, \leq j)
$$

Holomorphic Morse inequalities (continued)

As a consequence, one gets an upper bound

$$
h^{0}\left(X, L^{\otimes k}\right) \leq \frac{k^{n}}{n!} \int_{X(L, h, 0)} \Theta_{L, h}^{n}+o\left(k^{n}\right)
$$

and a lower bound

$$
\begin{aligned}
& h^{0}\left(X, L^{\otimes k}\right) \geq h^{0}\left(X, L^{\otimes k}\right)-h^{1}\left(X, L^{\otimes k}\right) \geq \\
& \quad \geq \frac{k^{n}}{n!}\left(\int_{X(L, h, 0)} \Theta_{L, h}^{n}-\int_{X(L, h, 1)}\left|\Theta_{L, h}^{n}\right|\right)-o\left(k^{n}\right)
\end{aligned}
$$

and similar bounds for the higher cohomology groups H^{q} :

$$
\begin{aligned}
h^{q}\left(X, L^{\otimes k}\right) & \leq \frac{k^{n}}{n!} \int_{X(L, h, q)}\left|\Theta_{L, h}^{n}\right|+o\left(k^{n}\right) \\
h^{q}\left(X, L^{\otimes k}\right) & \geq \frac{k^{n}}{n!}\left(\int_{X(L, h, q)}-\int_{X(L, h, q-1)}-\int_{X(L, h, q+1)}\left|\Theta_{L, h}^{n}\right|\right)-o\left(k^{n}\right)
\end{aligned}
$$

Finsler metric on the k-jet bundles

Let $J_{k} V$ be the bundle of k-jets of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$
Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^{k} V$ by taking $p=k$! and

$$
\Psi_{h_{k}}(f):=\left(\sum_{1 \leq s \leq k} \varepsilon_{s}\left\|\nabla^{s} f(0)\right\|_{h(x)}^{2 p / s}\right)^{1 / p}, \quad 1=\varepsilon_{1} \gg \varepsilon_{2} \gg \cdots \gg \varepsilon_{k}
$$

Letting $\xi_{s}=\nabla^{s} f(0)$, this can actually be viewed as a metric h_{k} on $L_{k}:=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1)$, with curvature form $\left(x, \xi_{1}, \ldots, \xi_{k}\right) \mapsto$

$$
\Theta_{L_{k}, h_{k}}=\omega_{\mathrm{FS}, k}(\xi)+\frac{i}{2 \pi} \sum_{1 \leq s \leq k} \frac{1}{s} \frac{\left|\xi_{s}\right|^{2 p / s}}{\sum_{t}\left|\xi_{t}\right|^{2 p / t}} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} \frac{\xi_{s \alpha} \bar{\xi}_{s \beta}}{\left|\xi_{s}\right|^{2}} d z_{i} \wedge d \bar{z}_{j}
$$

where ($c_{i j \alpha \beta}$) are the coefficients of the curvature tensor $\Theta_{V^{*}, h^{*}}$ and $\omega_{F S, k}$ is the vertical Fubini-Study metric on the fibers of $X_{k}^{\mathrm{GG}} \rightarrow X$. The expression gets simpler by using polar coordinates $x_{s}=\left|\xi_{s}\right|_{h}^{2 p / s}, u_{s}=\xi_{s} /\left|\xi_{s}\right|_{h}=\nabla^{s} f(0) /\left|\nabla^{s} f(0)\right|$.

Jean-Pierre Demailly (Grenoble), VIASM, Hanoi, 26/08/2012 Hyperbolic algebraic varieties \& holomorphic differential equations

Probabilistic interpretation of the curvature

In such polar coordinates, one gets the formula

$$
\Theta_{L_{k}, h_{k}}=\omega_{\mathrm{FS}, p, k}(\xi)+\frac{i}{2 \pi} \sum_{1 \leq s \leq k} \frac{1}{s} x_{s} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta}(z) u_{s \alpha} \bar{u}_{s \beta} d z_{i} \wedge d \bar{z}_{j}
$$

where $\omega_{\mathrm{FS}, k}(\xi)$ is positive definite in ξ. The other terms are a weighted average of the values of the curvature tensor $\Theta_{V, h}$ on vectors u_{s} in the unit sphere bundle $S V \subset V$. The weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum\left|\xi_{s}\right|^{2 p / s}=1$, so we can take here $x_{s} \geq 0$, $\sum x_{s}=1$. This is essentially a sum of the form $\sum \frac{1}{s} \gamma\left(u_{s}\right)$ where u_{s} are random points of the sphere, and so as $k \rightarrow+\infty$ this can be estimated by a "Monte-Carlo" integral

$$
\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) \int_{u \in S V} \gamma(u) d u .
$$

As γ is quadratic here, $\int_{u \in S V} \gamma(u) d u=\frac{1}{r} \operatorname{Tr}(\gamma)$.

It follows that the leading term in the estimate only involves the trace of $\Theta_{V^{*}, h^{*}}$, i.e. the curvature of $\left(\operatorname{det} V^{*}, \operatorname{det} h^{*}\right)$, which can be taken to be >0 if $\operatorname{det} V^{*}$ is big.
Corollary (D-, 2010) Let (X, V) be a directed manifold, $F \rightarrow X$ a \mathbb{Q}-line bundle, (V, h) and $\left(F, h_{F}\right)$ hermitian. Define

$$
\begin{aligned}
& L_{k}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right), \\
& \eta=\Theta_{\operatorname{det} V^{*}, \operatorname{det} h^{*}}+\Theta_{F, h_{F}}
\end{aligned}
$$

Then for all $q \geq 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have

$$
\begin{aligned}
& h^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right) \leq \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X(\eta, q)}(-1)^{q} \eta^{n}+\frac{C}{\log k}\right) \\
& h^{0}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right) \geq \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X(\eta, \leq 1)} \eta^{n}-\frac{C}{\log k}\right)
\end{aligned}
$$

Partial solution of the GGL conjecture

Using the above cohomological estimate, we obtain:
Theorem ($\mathrm{D}-, 2010$) Let (X, V) be of general type, i.e.
$K_{V}=(\operatorname{det} V)^{*}$ is a big line bundle. Then there exists $k \geq 1$ and an algebraic hypersurface $Z \subsetneq X_{k}$ such that every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \mapsto(X, V)$ satisfies $f_{[k]}(\mathbb{C}) \subset Z$ (in other words, f satisfies an algebraic differential equation of order k).

Another important consequence is:
Theorem (D-, 2012) A generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geq d_{n}$ with

$$
d_{2}=286, \quad d_{3}=7316, \quad d_{n}=\left\lfloor\frac{n^{4}}{3}(n \log (n \log (24 n)))^{n}\right\rfloor
$$

(for $n \geq 4$) satisfies the Green-Griffiths conjecture.

A differentiation technique by Yum-Tong Siu

The proof of the last result uses an important idea due to
Yum-Tong Siu, itself based on ideas of Claire Voisin and Herb Clemens, and then refined by M. Păun [Pau08], E. Rousseau [Rou06b] and J. Merker [Mer09].
The idea consists of studying vector fields on the relative jet space of the universal family of hypersurfaces of \mathbb{P}^{n+1}.
Let $\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_{d}}$ be the universal hypersurface, i.e.

$$
\mathcal{X}=\left\{(z, a) ; a=\left(a_{\alpha}\right) \text { s.t. } P_{a}(z)=\sum a_{\alpha} z^{\alpha}=0\right\}
$$

let $\Omega \subset \mathbb{P}^{N_{d}}$ be the open subset of a's for which $X_{a}=\left\{P_{a}(z)=0\right\}$ is smooth, and let

$$
p: \mathcal{X} \rightarrow \mathbb{P}^{n+1}, \quad \pi: \mathcal{X}_{\Omega} \rightarrow \Omega \subset \mathbb{P}^{N_{d}}
$$

be the natural projections.

Jean-Pierre Demailly (Grenoble), VIASM, Hanoi, 26/08/2012 Hyperbolic algebraic varieties \& holomorphic differential equations

Meromorphic vector fields on jet spaces

Let

$$
p_{k}: \mathcal{X}_{k} \rightarrow \mathcal{X} \rightarrow \mathbb{P}^{n+1}, \quad \pi_{k}: \mathcal{X}_{k} \rightarrow \Omega \subset \mathbb{P}^{N_{d}}
$$

be the relative Green-Griffiths k-jet space of $\mathcal{X} \rightarrow \Omega$. Then J. Merker [Mer09] has shown that global sections η_{j} of

$$
\mathcal{O}\left(T_{\mathcal{X}_{k}}\right) \otimes p_{k}^{*} \mathcal{O}_{\mathbb{P}^{n+1}}\left(k^{2}+2 k\right) \otimes \pi_{k}^{*} \mathcal{O}_{\mathbb{P}^{N_{d}}}(1)
$$

generate the bundle at all points of $\mathcal{X}_{k}^{\text {reg }}$ for $k=n=\operatorname{dim} X_{a}$.
From this, it follows that if P is a non zero global section over Ω of $E_{k, m}^{\mathrm{GG}} T_{\mathcal{X}}^{*} \otimes p_{k}^{*} \mathcal{O}_{\mathbb{P}^{n+1}}(-s)$ for some s, then for a suitable collection of $\eta=\left(\eta_{1}, \ldots, \eta_{m}\right)$, the m-th derivatives

$$
D_{\eta_{1}} \ldots D_{\eta_{m}} P
$$

yield sections of $H^{0}\left(\mathcal{X}, E_{k, m}^{\mathrm{GG}} T_{\mathcal{X}}^{*} \otimes p_{k}^{*} \mathcal{O}_{\mathbb{P}^{n+1}}\left(m\left(k^{2}+2 k\right)-s\right)\right)$ whose joint base locus is contained in $\mathcal{X}_{k}^{\text {sing }}$, whence the result.
[Dem85] Demailly, J.-P.: Champs Magnétiques et Inégalités de Morse pour la d"'cohomologie. Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 189-229.
[Dem95] Demailly, J.-P.: Algebraic Criteria for Kobayashi Hyperbolic Projective Varieties and Jet Differentials. Algebraic geometry - Santa Cruz 1995, 285-360, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
[Dem10] Demailly, J.-P.: Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, November 2010, arXiv: math.AG/1011.3636, dedicated to the memory of Eckart Viehweg; Pure and Applied Mathematics Quarterly 7 (2011) 1165-1208
[Dem12] Demailly, J.-P.: Hyperbolic algebraic varieties and holomorphic differential equations, lecture given at the VIASM Annual Meeting 2012, Hanoi 26 August 2012, 63p, to appear in Acta Vietnamica
[D-EG00] Demailly, J.-P., El Goul, J.: Hyperbolicity of Generic

Surfaces of High Degree in Projective 3-Space. Amer. J. Math.
122 (2000), no. 3, 515-546.
[Div09] Diverio, S.: Existence of global invariant jet differentials on projective hypersurfaces of high degree. Math. Ann. 344 (2009) 293-315.
[DMR09] Diverio, S., Merker, J., Rousseau, E.: Effective algebraic degeneracy. e-print arXiv:0811.2346v5.
[DT9] Diverio, S., Trapani, T.: A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree. e-print arXiv:0902.3741v2.
[F-H91] Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991, xvi+551 pp.
[G-G79] Green, M., Griffiths, P.: Two Applications of Algebraic Geometry to Entire Holomorphic Mappings. The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), pp. 41-74, Springer, New York-Berlin, 1980.
[Kobayashi70] Kobayashi S.: Hyperbolic Manifolds and Holomorphic Mappings. Marcel Dekker, Inc., New York 1970 $\mathrm{ix}+148 \mathrm{pp}$.
[Lang86] Lang S.: Hyperbolic and Diophantine analysis, Bull.
Amer. Math. Soc. 14 (1986), no. 2, 159-205.
[Mer08] An algorithm to generate all polynomials in the k-jet of a holomorphic disc $D \rightarrow \mathbb{C}^{n}$ that are invariant under source reparametrization, arxiv.org:math.CV/0808.3547.
[Mer09] Merker, J.: Low pole order frames on vertical jets of the universal hypersurface. Ann. Inst. Fourier (Grenoble) 59 (2009) 1077-1104.
[Pau08] Păun, M.: Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity. Math. Ann. 340 (2008), 875-892.
[Rou05] Rousseau, E: Weak Analytic Hyperbolicity of Generic Hypersurfaces of High Degree in the Complex Projective Space of Dimension 4. arXiv:math/0510285v1 [math.AG].

[^0][Rou06a] Rousseau, E.: Étude des Jets de Demailly-Semple en Dimension 3. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 2, 397-421.
[Rou06b] Rousseau, E: Équations Différentielles sur les Hypersurfaces de \mathbb{P}^{4}. J. Math. Pures Appl. (9) 86 (2006), no. 4, 322-341.
[Siu04] Siu, Y.-T.: Hyperbolicity in Complex Geometry. The legacy of Niel Henrik Abel, 543-566, Springer, Berlin, 2004.
[SY96] Siu, Y.T., Yeung, S.K.: Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane. Invent. Math. 124 (1996), 573-618
[SY97] Siu, Y.T., Yeung, S.K.: Defects for ample divisors of Abelian varieties, Schwarz lemma and hyperbolic surfaces of low degree. Amer. J. Math. 119 (1997), 1139-1172
[Tra95] Trapani, S.: Numerical criteria for the positivity of the difference of ample divisors, Math. Z. 219 (1995), no. 3, 387-401.
[Voj87] Vojta, P.: Diophantine Approximations and Value

Distribution Theory, Springer-Verlag, Lecture Notes in Mathematics no. 1239, 1987.

[^0]: Jean-Pierre Demailly (Grenoble), VIASM, Hanoi, 26/08/2012 Hyperbolic algebraic varieties \& holomorphic differential equations

