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0. Introduction.
Let X be a compact complex analytic manifold of dimension n, F a holomorphic vector
bundle of rank r, and E a holomorphic line bundle with a Hermitian structure of class C∞
on X. Let D = D′+D′′ be the canonical connection of E and c(E) = D2 = D′D′′+D′′D′

be the curvature tensor of this connection. Let us denote by X(q), 0 6 q 6 n, the open
subset of points of x ∈ X that are of index q, i.e. points x at which the (1, 1) curvature
form ic(E)(x) has exactly q negative and n− q positive eigenvalues. We also put

X(6 q) = X(0) ∪X(1) ∪ . . . ∪X(q).

We then prove the following Morse inequalities, which bound the dimension of the co-
homology groups Hq(X,E⊗k ⊗ F ) in terms of integral invariants of the curvature of
E.

Theorem 0.1. -- For all degrees q = 0, 1, . . . , n, the following asymptotic inequalities
hold when k tends to +∞.

(a) Morse inequalities :

dimHq(X,E⊗k ⊗ F ) 6 r
kn

n!

∫
X(q)

(−1)q
( i

2π
c(E)

)n
+ o(kn).

(b) Strong Morse inequalities :

q∑
j=0

(−1)q−j dimHj(X,E⊗k ⊗ F ) 6 r
kn

n!

∫
X(6q)

(−1)q
( i

2π
c(E)

)n
+ o(kn).
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(c) Asymptotic Riemann-Roch formula :

n∑
q=0

(−1)q dimHq(X,E⊗k ⊗ F ) = r
kn

n!

∫
X

( i

2π
c(E)

)n
+ o(kn).

Estimates 0.1 (a), (b) are new as far as we know, even in the case of projective vari-
eties. The asymptotic equality 0.1 (c), on the other hand, is a weakened version of the
Riemann-Roch formula, which is itself a special case of Hirzebruch’s general formula or,
alternatively, of the Atiyah-Singer index theorem [1]. Indeed, the Riemann-Roch formula
expresses the Euler-Poincaré characteristic

χ(X,E⊗k ⊗ F ) =
n∑
q=0

(−1)q dimHq(X,E⊗k ⊗ F )

under the form

(0.2) χ(X,E⊗k ⊗ F ) = r
kn

n!
c1(E)n + Pn−1(k) ,

where Pn−1(k) ∈ Q[k] is a polynomial of degree 6 n − 1 and c1(E) ∈ H2(X,Z) is the
first class of Chern de E, represented in De Rham’s cohomology by the closed (1, 1)-
form i

2π c(E) (see for example [16]). It can be observed that the numerical constant of
inequality 0.1 (a) is optimal, as shown by the example of the line bundle given by the
total tensor product O(1)�n−q � O(−1)�q over X = (P1(C))n. For this line bundle, one
indeed gets X(q) = X and

dimHq(X,E⊗k) = (k + 1)n−q(k − 1)q, k > 1,∫
X

( i

2π
c(E)

)n
= (−1)qn! .

The existence of an inequality of the form 0.1(a) has been conjectured by Y.T. Siu, who
has first proved the case where ic(E) is > 0 in the complement of a set of measure zero
(cf. [16]), and then the case where ic(E) > 0 over X (cf. [17]). A substantial part of the
methods used here have been inspired by Siu’s work, especially in §3 and §5. The proof of
Theorem 0.1 is based on an analytic technique recently introduced by E. Witten [18], [19].
This technique allows, among other things, to reprove the classical Morse inequalities
bq 6 mq on any compact differentiable variety M , where bq denotes the q-th number
of Betti and mq the number of critical points of index q of a given (arbitrary) Morse
function on M . In our situation, the role of the Morse function is held by the choice of
the Hermitian metric on E. We also equip X and F with arbitrary Hermitian metrics
which, in the end, will only play a role in the expression of the o(kn) terms in the final
estimates. Given a real number λ > 0, we consider a sub-complex H•k(λ) of the Dolbeault
complex (C∞0,•(X,E

⊗k ⊗ F ), d′′), consisting in degree q of the subspace of (0, q)-forms of
class C∞ on X with values in E⊗k ⊗ F , that is spanned by the eigenfunctions of the
anti-holomorphic Laplacian ∆′′, of eigenvalues 6 kλ. The cohomology groups of the
H•k(λ) complex are then isomorphic to the groups Hq(X,E⊗k ⊗ F ) (Proposition 4.1).
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As a consequence, it is sufficient to estimate the dimensions of these spaces Hq
k(λ). For

this, two tools are used in an essential manner. The first tool consists of a Weitzenböck
type formula

(0.3)
2

k

∫
X

〈∆′′u, u〉 =

∫
X

1

k
|∇ku+ Su|2 − 〈V u, u〉+

1

k
〈Θu, u〉

prove in §3, and derived from non-Kähler Bochner-Kodaira-Nakano identity given in [6].
Here, ∇k denotes the natural Hermitian connection on the bundle Λ0.qT ∗X ⊗E⊗k ⊗ F ,
V is a linear potential of order 0 related to the curvature of the line bundle E, and finally,
S and Θ are linear operators of order 0 depending on the torsion of the Hermitian metric
on X and on the curvature of F . The study of the spectrum of ∆′′ is then reduced to
the study of the spectrum of the self-adjoint operator ∇∗k∇k associated with the real
connection ∇k. The second fundamental tool precisely consists of a very general spectral
theorem relative to elliptic operators of the form ∇∗∇. Let (M, g) be a C∞ Riemannian
manifold of real dimension n, E a complex line bundle overX, equipped with a Hermitian
connection ∇. If ∇k denotes the connection induced by ∇ on E⊗k, one then studies the
spectrum of the quadratic form

(0.4) Qk(u) =

∫
Ω

(1

k
|∇ku|2 − V |u|2

)
dσ, u ∈ L2(Ω, E⊗k)

for the Dirichlet problem, where Ω is a relatively open-ended compact in M , and where
V is a continuous scalar potential onM . From a physical point of view, this is equivalent
to studying the spectrum of the operator of Schrödinger 1

k (∇∗k∇k − kV ) associated with
the electric field kV and the magnetic field kB, where B = −i∇2 is none other than the
curvature 2-form of of the connection ∇. With respect to Witten’s arguments explained
in [18], [19], our main contribution consists of analyzing the role of the magnetic field;
in the case of De Rham cohomology, on the other hand, one can consider the magnetic
field to be zero, as a consequence of the fact that d2 = 0.

At any point x ∈ X, let 2s = 2s(x) 6 n be the rank of the 2-form B(x), and let
B1(x) > . . . > Bs(x) > 0 the absolute values of the non-zero eigenvalue of the associated
skew-symmetric endomorphism. We define a function νB(x)(λ) of the pair (x, λ) ∈M×R,
that is left-continuous in λ, by setting

(0.5) νB(λ) =
2s−nπ−

n
2

Γ(n2 − s+ 1)
B1 . . . Bs

∑
(p1,...,ps)∈Ns

[
λ−

∑
(2pj + 1)Bj

]n
2−s
+

with the convention that 00 = 0. Finally, if λ1 6 λ2 6 . . . denote the eigenvalues of Qk
(counted with multiplicity), we consider the counting function Nk(λ) = card{j ; λj 6 λ},
for λ ∈ R.

Theorem 0.6. -- If the boundary ∂Ω is of measure zero, there exists a countable subset
D ⊂ R such that

lim
k→+∞

k−
n
2Nk(λ) =

∫
Ω

νB(V + λ) dσ

for all λ ∈ RrD.
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In order to prove Theorem 0.6, one starts with the simple case where M = Rn, the
magnetic field B being constant and V = 0. When Ω is a cube, a partial Fourier transform
reduces the problem to the classical harmonic oscillator problem in one variable, and one
can then compute explicitly the eigenfunctions. The idea of this calculation was strongly
inspired by Y. Colin de Verdière’s papers [3], [4]. The generalization of this result to the
case of a vayring magnetic field elaborates on an idea developped by Siu in [16], consisting
of paving Ω by sufficently small cubes. Our method is nevertheless different from the
one used in [16], since we work directly on harmonic forms, whereas Siu’s argument was
based on a use of holomorphic cochains via the Dolbeault isomorphism. In this way,
the estimates become substantially more accurate. The side of the cubes must then be
ajusted to a value comprised the orders of magnitude k− 1

2 and k− 1
4 , for instance k− 1

3 :
k−

1
2 is indeed the wavelength of the the first eigenfunction, so that the effect of the

magnetic field is not sensible at a lower scale lower ; on the other hand, at a scale larger
than k− 1

4 , the oscillation of B becomes too strong. We finally use the minimax principle
to compare the eigenvalues of the quadratic form on Ω to the eigenvalues obtained on
the small cubes. In the previous method employed in [16] (also reproduced in [7]), the
side of the cubes was chosen equal to to k− 1

2 ; one can easily see that this choice ss
critical to bound the effects of the magnetic field independently of k, but the exact
determination of the spectrum then became impossible. The last section of the present
paper is devoted to a study of geometric characterizations of Moišezon spaces [13]. Recall
that an irreducible compact complex space X is called a Moišezon space if the field K(X)
of meromorphic functions on X has a transcendence degree equal to n = dimCX. The
Grauert-Riemenschneider conjecture [10] states that X is Moišezon if and only if there
exists a torsion free quasi-positive sheaf E of rank 1 over X.

By using a desingularization, one is reduced to the case where X is smooth and where E

is the locally free sheaf of sections of a hermitian holomorphic line bundle E of strictly
positive curvature on a dense open subset X. Y.T. Siu [17] recently solved the conjecture,
and strengthened it by merely assuming that ic(E) is semi-positive and positive in at least
one point. The use of theorem 0.1 (b) makes it possible to find even weaker conditions,
which do not require the pointwise semi-positivity of ic(E), but only the positivity of
a certain integral of the curvature form. For q = 1, inequality 0.1 (b) indeed implies a
lower bound of the number of holomorphic sections of E⊗k, namely:

(0.7) dimH0(X,E⊗k) >
kn

n!

∫
X(61)

( i

2π
c(E)

)n
− o(kn).

On the other hand, one can show, using a classical arument of Siegel [15] also reinvesti-
gated by [16], that dimH0(X,E⊗k) 6 Const·kn−1 ifX is not Moišezon (cf. Theorem 5.1).
From there, one gets

Theorem 0.8. -- Let X a compact C-analytic manifold of complex dimension n. Then
X is Moišezon as soon as it possesses a Hermitian holomorphic line bundle satisfying
one of the hypotheses (a), (b), (c) below.

(a)
∫
X(61)

(ic(E))n > 0.

(b) c1(E)n > 0, and there is no point where ic(E) has a non zero even index.
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(c) ic(E) is semi-positive at any point of X, and positive definite in at least one point
of X.

The results of this work have been published in a short Comptes Rendus note [8] with the
same title. This paper is an improved version of an earlier work [7], in which techniques
closer to Siu’s initial approach where employed. In the latter, inequality 0.1 (a) had
been proved only up to a certain constant numerical factor, and as a consequence, the
estimates 0.1 (b) and (c) remained inaccessible.

The author addresses warm thanks to MM. Gérard Besson, Alain Dufresnoy, Sylvestre
Gallot and Yves Colin de Verdière, to whom he is especially indebted, for stimulating
discussions that greatly contributed to shape up the ideas involved in this work, especially
in section §1.

1. Spectrum of the Schrödinger operator
associated with a constant magnetic field.

Let (M, g) be a Riemannian manifold of class C∞, of real dimension n, and E → M
a complex line bundle over M , equipped with a C∞ Hermitian metric. We denote by
C∞q (M,E) the space of C∞ sections of the vector bundle ΛqT ∗M ⊗ E, and (?|?) the
canonical sesquilinear pairing

C∞q (M,E)× C∞q (M,E)→ C∞p+q(M,C).

We assumed given a smooth Hermitian connection D on E, that is, a linear differential
operator of order one

D : C∞q (M,E)→ C∞q+1(M,E), 0 6 q < n,

satisfying identities

D(f ∧ u) = df ∧ u+ (−1)mf ∧Du,(1.1)

d(u|v) = (Du|v) + (−1)p(u|Dv),(1.2)

for all sections f ∈ C∞m (M,C), u ∈ C∞p (M,E), v ∈ C∞q (M,E). Let us consider an
isometric trivialization θ : E|W → W × C of E over an open W ⊂ M . The Hermitian
connections of E|W are then given by a formula of the type

Du = du+ iA ∧ u,

where u ∈ C∞q (W,E) ' C∞q (W,C) and A ∈ C∞1 (W,R) is an arbitrary real 1-form. The
magnetic field (or curvature form) associated with the connection D is the real closed
2-form B = dA such that

D2u = iB ∧ u

for all u ∈ C∞q (M,E). Therefore, B depends only on the connection D, but not on
trivialization θ that has been chosen. A phase change u = veiϕ in θ leads to replace
A by A + dϕ. The choice of a trivialization of E and of a 1-form A can be interpreted
physically as the choice of a particular “vector potential” of the magnetic field B.
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Let us denote by |u| the pointwise norm of any element u ∈ ΛqT ∗M ⊗ E for metric
defined as the tensor product of the respective metrics on M and E. If Ω is an open
subset of M , we let L2(Ω, E) (resp. L2

q(Ω, E)) be the space of L2 sections of E (resp. of
ΛqT ∗M ⊗ E) above Ω, equipped with the norm

‖u‖2Ω =

∫
Ω

|u|2dσ,

where dσ is the Riemannian volume element on M .

Let Dk be the connection induced by D on the k-th tensor power E⊗k, and V a scalar
potential on M , i.e. a continuous function with real values. Given a relatively compact
open subset Ω ⊂ M , our goal is to find an asymptotic estimate, as k tends to +∞, of
the spectrum of the quadratic form

(1.3) QΩ,k(u) =

∫
Ω

(1

k
|Dku|2 − V |u|2

)
dσ

where u ∈ L2(Ω, E⊗k), with Dirichlet condition u|∂Ω = 0. The domain of QΩ,k is there-
fore the Sobolev space W 1

0 (Ω, E⊗k) = closure of the space D(Ω, E⊗k) of C∞ sections of
E⊗k with compact support in Ω in the spaceW 1(M,E⊗k). From a physical point of view,
this amounts to study the spectrum of the Schrödinger operator 1

k (D∗kDk − kV ) asso-
ciated with the magnetic field kB and the electric field kV , when k tends towards +∞.
We refer the reader to the classical article [2] for a general study of the spectrum of
Schrödinger operators, and to papers [3], [4], [5], [9], [12] for the study of asymptotic
problems that are closely related to the above one.

Definition 1.4. -- Let NΩ,k(λ) denote the number of eigenvalues of the quadratic form
QΩ,k that do not exceed λ.

We first study a simple case that will serve as a model for the general case in §2. We
consider the following situation : M = Rn with the constant metric g =

∑n
j=1 dx

2
j , the

open set Ω is the cube of side length r :

Ω =
{

(x1, . . . , xn) ∈ Rn ; |xj | <
r

2
, 1 6 j 6 n

}
,

V = 0, and finally the magnetic field B is constant, equal to the alternate 2-form of rank
2s given by

B =
s∑
j=1

Bj dxj ∧ dxj+s,

where B1 > B2 > · · · > Bs > 0, s 6 n
2 . One can then select a trivialization of E whose

vector potential associated to B is

A =
s∑
j=1

Bjxj dxj+s.

The connection of E⊗k can then be written as

Dku = du+ ikA ∧ u,
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and the quadratic form QΩ,k is given by

QΩ,k(u) =
1

k

∫
Ω

[ ∑
16j6s

(∣∣∣ ∂u
∂xj

∣∣∣2 +
∣∣∣ ∂u

∂xj+s
+ ikBjxju

∣∣∣2)+
∑
j>2s

∣∣∣ ∂u
∂xj

∣∣∣2] dµ
where dµ is the Lebesgue measure on Rn. If we perform the homothety Xj =

√
k xj , we

are reduced to study the eigenvalues of the quadratic form

∫
√
kΩ

[ ∑
16j6s

(∣∣∣ ∂u
∂Xj

∣∣∣2 +
∣∣∣ ∂u

∂Xj+s
+ iBjXju

∣∣∣2)+
∑
j>2s

∣∣∣ ∂u
∂Xj

∣∣∣2] dµ
on the cubes

√
kΩ of side

√
k r. With the field B, we associate the function of the real

variable λ defined by

(1.5) νB(λ) =
2s−nπ−

n
2

Γ(n2 − s+ 1)
B1 . . . Bs

∑
(p1,...,ps)∈Ns

[
λ−

∑
(2pj + 1)Bj

]n
2−s

+

where we agree to put λ0
+ = 0 if λ 6 0 and λ0

+ = 1 if λ > 0. The function νB is then
non decreasing and left continuous on R ; let us observe that νB is actually continuous if
s < n

2 . The spectrum of QΩ,k is then described asymptotically by the following theorem,
the idea of which was suggested to us by Y. Colin of Verdière [4].

Theorem 1.6. --Given a real number R > 0, we let

P (R) =
{
x ∈ Rn ; |xj | <

R

2

}
be the cube of side R and consider the quadratic form QR such that

QR(u) =

∫
P (R)

[ ∑
16j6s

(∣∣∣ ∂u
∂xj

∣∣∣2 +
∣∣∣ ∂u

∂xj+s
+ iBjxju

∣∣∣2)+
∑
j>2s

∣∣∣ ∂u
∂xj

∣∣∣2] dµ.
Finally, we let NR(λ) be the number of eigenvalues 6 λ of QR for the Dirichlet problem.
Then for all λ ∈ R, we have

lim
R→+∞

R−nNR(λ) = νB(λ).

For s = n
2 , νB is a step function. The eigenvalues of QR are then grouped in pack-

ets around the values
∑

(2pj + 1)Bj , with approximate multiplicity (2π)−sB1 . . . BsR
n.

This can be interpreted physically as a phenomenon of quantification of the eigenstates.
Coming back to our initial eigenvalue problem for the quadratic form QΩ,k, we get

Corollary 1.7. -- Asymptotically, lim
k→+∞

k−
n
2NΩ,k(λ) = rnνB(λ).
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Proof of theorem 1.6. – First we seek for an upper bound of NR(λ). In this direction,
given u ∈W 1

0 (P (R)), we express u as a partial Fourier series with respect to the variables
xs+1, . . . , xn :

u(x) = R−
1
2 (n−s)

∑
`∈Zn−s

u`(x
′) exp

(2πi

R
` · x′′

)
,

where u` ∈W 1
0 (Rs ∩ P (R)), with the notation

x′ = (x1, . . . , xs), x′′ = (xs+1, . . . , xn),

` · x′′ = `1xs+1 + · · ·+ `n−sxn.

The hypothesis u ∈W 1
0 (P (R)) implies that the series∑

|`|2|u`(x′)|2

is in L2(Rs). Let us put `′ = (`1, . . . , `s), `′′ = (`s+1, . . . , `n−s). The norm ‖u‖P (R) and
the quadratic form QR are given by

‖u‖2P (R) =
∑

`∈Zn−s

∫
Rs
|u`(x′)|2 dµ(x′),

QR(u) =
∑

`∈Zn−s

∫
Rs

[ ∑
16j6s

(∣∣∣∂u`
∂xj

∣∣∣2 +
(2π

R
`j +Bjxj

)2

|u`|2
)

+
4π2

R2
|`′′|2|u`|2

]
dµ(x′).

We are therefore led to consider a Dirichlet problem with “separate variables” on the
cube Rs ∩ P (R). By putting t = xj +

2π`j
RBj

, we are reduced to studying the spectrum of
the quadratic form in one variable

q(f) =

∫
R

(∣∣∣df
dt

∣∣∣2 +B2
j t

2|f |2
)
dt,

with f ∈ W 1
0

(
]− R

2
R
2 [ +

2π`j
RBj

)
. The latter question is the classical harmonic oscillator

problem (see for example [14], Vol. I, p. 142). On R, i.e. without support condition for
f , the sequence of values of q is the suite (2m+ 1)Bj , m ∈ N, and the eigenfunctions of
q are given by Φm(

√
Bj t) where Φ0, Φ1, . . . are the Hermite functions :

Φm(t) = et
2/2 d

m

dtm
(e−t

2

).

For all pj ∈ N, let Ψpj ,`j (xj) be the pj-th eigenfunction of the quadratic form

(1.8) q(f) =

∫
R

(∣∣∣ df
dxj

∣∣∣2 +
(2π

R
`j +Bjxj

)2

|f |2
)
dxj

for f ∈ W 1
0 ( ] − R

2
R
2 [ ), and let λpj ,`j be the corresponding eigenvalue. We can then

decompose each function u` as a series of eigenfunctions. Then we see that u can be
written under the form

(1.9) u(x) = R−
1
2 (n−s)

∑
(p,`)∈Ns×Zn−s

up,`Ψp,`′(x
′) exp

(2πi

R
` · x′′

)
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with
up,` ∈ C, Ψp,`′(x

′) =
∏

16j6s

Ψpj ,`j (xj).

One should pay attention to the fact that Ψp,`′(x
′) exp( 2πi

R ` · x′′) is not not a genuine
eigenfunction for the Dirichlet problem, since the exponential term takes non-zero values
at the boundary points xj = ±R2 , j > s. Therefore, the coefficients (up,`) are not
arbitrary for a given function u ∈ W 1

0 (P (R)) ; they must satisfy the relevant vanishing
boundary conditions, namely

(1.10)
∑
tj∈Z

(−1)`jup,` = 0

for all j = 1, . . . , n− s and all indices else than `j fixed :

p ∈ Ns, `1, . . . , `j−1, `j+1, . . . , `n−s ∈ Z.

Thanks to formula (1.9), the L2 norm and the quadratic form QR can be expressed under
the form

‖u‖2P (R) =
∑
|up,`|2, QR(u) =

∑(
λp,`′ +

4π2

R2
|`′′|2

)
|up,`|2,

where λp,`′ =
∑

16j6s λpj ,`j . The minimax principle 1.20 (b) recalled below implies that

(1.11) NR(λ) 6 card
{

(p, `) ∈ Ns × Zn−s ; λp,`′ +
4π2

R2
|`′′|2 6 λ

}
.

It is therefore sufficient to obtain an appropriate lower bound of λpj ,`j .

Lemma 1.12. --We have an inequality

λpj ,`j > max

(
(2pj + 1)Bj ,

4π2

R2

[(pj + 1

2

)2

+
(
|`j | −

BjR
2

4π

)2

+

])
,

which moreover is strict if `j 6= 0 or if Φpj (R
√
Bj/2) 6= 0.

The lower bound λpj ,`j > (2pj + 1)Bj follows in fact from the minimax and the fact
that the eigenvalues of q(f) on R are equal to (2pj + 1)Bj . In order to obtain the other
inequality, we observe that (1.8) dominates the quadratic form

q̂(f) =

∫
xj |<R/2

(∣∣∣ df
dxj

∣∣∣2 +
(2π

R
|`j | −Bj

R

2

)2

+
|f |2

)
dxj .

The eigenfunctions of q̂ are given explicitly by

sin
π

R
(pj + 1)

(
xj +

R

2

)
, pj ∈ N ;



10 Annales de l’Institut Fourier 35, (1985) 189–229

λpj ,tj is therefore bounded below by the corresponding eigenvalue

4π2

R2

[(pj + 1

2

)2

+
(
|tj | −

BjR
2

4π

)2

+

]
.

These inequalities are strict because on the one hand q(f) > q̂(f) for any f 6= 0, and
on the other hand, Φpj (

√
Bjt) can be an eigenfunction of q on ]−R/2, R/2[ + 2π`j/RBj

only when
Φpj
(
±R

√
Bj/2 + 2πtj/R

√
Bj
)

= 0.

Since the zeros of Φpj are algebraic and π is transcendental, this is only possible if

`j = 0 and Φpj (R
√
BJ/2) = 0.

Lemma 1.13. -- Let τn(ρ) be the number of points of Zn located in the closed ball
B(0, ρ) ⊂ Rn. Then

π
n
2

Γ(n2 + 1)

(
ρ−
√
n

2

)n
+
6 τn(ρ) 6

π
n
2

Γ(n2 + 1)

(
ρ+

√
n

2

)n
.

Indeed, the union of cubes of side 1 centered at integral points x ∈ Zn such that |x| 6 ρ
is contained in the ball B(0, ρ+

√
n

2 ), and contains the ball B(0, ρ−
√
n

2 ) if ρ >
√
n

2 , where
√
n

2 is half the diagonal of the cube ; the integer τn(ρ) is thus in the interval comprised
between the volumes of the balls B(0, ρ±

√
n

2 ).

We now proceed to find an upper bound of lim supR−nNR(λ) by using (1.11) and lemmas
1.12, 1.13. For p ∈ Ns fixed, the inequality λp,`′ + 4π2

R2 |`′′|2 6 λ implies

(1.14) |`′′| 6 R

2π

(
λ−

∑
(2pj + 1)Bj

) 1
2

+
,

and the inequality is strict for R > R0(p) large enough. When s < n/2 the number of
corresponding multi-indices `′′ ∈ Zn−2s is therefore at most

π
n
2−s

Γ(n2 − s+ 1)

[
R

2π

(
λ−

∑
(2pj + 1)Bj

) 1
2

+
+

√
n

2

]n−2s

∼
R→+∞

22s−nπs−
n
2

Γ(n2 − s+ 1)
Rn−2s

(
λ−

∑
(2pj + 1)Bj

)n
2−s

+
.(1.15)

When s = n
2 , this number must be counted as 1 if λ−

∑
(2pj+1)Bj > 0 and 0 otherwise, in

conformity with the convention we adopted for the notation λ0
+. The inequality λp,`′ 6 λ

implies on the other hand

(1.16) |`j | 6
R

2π

√
λ+ +

BjR
2

4π
, 1 6 j 6 s,
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which asymptotically corresponds to a number of multi-indices `′ = (`1, . . . , `s) ∈ Zs
equivalent to

(1.17)

s∏
j=1

BjR
2

2π
= 2−sπ−sB1 . . . BsR

2s.

The upper bound lim supR−nNR(λ) 6 νB(λ) is then obtained by multiplying (1.15) by
(1.17), and taking the sum over all p ∈ Ns (the sum is finite).

For questions of convergence that will play a role in §2, we will also need an upper
bound of NR(λ) that is independent of the magnetic field B. Such a uniform estimate is
provided by the following proposition.

Proposition 1.18. -- NR(λ) 6 (R
√
λ+ + 1)n.

Proof. – For each index j, we bound the number of integers pj and `j such that the
inequality

λp,`′ +
4π2

R2
|`′′|2 6 λ

holds. Lemma 1.12 implies

card{pj} 6 max(pj + 1) 6 min
(λ+

Bj
,
R

π

√
λ+

)
, 1 6 j 6 s,

while (1.16) entails

card{li} 6
R

π

√
λ+ +

BjR
2

2π
+ 1, 1 6 j 6 s.

For 1 6 j 6 s, we therefore infer that

card{(pj , lj)} 6
(R
π

√
λ+

)2

+
λ+

Bj
· BjR

2

2π
+
R

π

√
λ+ · 1 6

(
R
√
λ+ + 1

)2
.

For s < j 6 n− s, inequality (1.14) gives on the other hand

|`j | <
R

2π

√
λ+,

hence card{lj} 6 R
π

√
λ+ + 1. Proposition 1.18 follows.

End of the proof of Theorem 1.6 (lower bound of NR(λ)).

In order to get a lower bound of NR(λ), it is sufficient by 1.20 (a) to construct a finite
dimensional vector space on which QR(u) 6 λ‖u‖2P (R). We consider for this the vector
space Fλ of linear combinations of “eigenfunctions” of the type (1.9), subject to the
additional boundary conditions (1.10), for which summations are taken on indices (p, `) ∈
Ns × Zn−s such as

λp,`′ +
4π2

R2
|`′′|2 6 λ.
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By the arguments used in Proposition 1.18, the number of conditions (1.10) to be realized
is bounded above by

s∑
j=1

[
card{pj} ×

∏
16i6s, i 6=j

card{(pi, `i)} ×
∏

s<i6n−s

card{`i}
]

+
∑

s<j6n−s

[ ∏
16i6s

card{(pi, `i)} ×
∏
s<i6=j

card{`i}
]
6 n(R

√
λ+ + 1)n−1.

The number NR(λ) is therefore bounded by

dimFλ > card
{

(p, `) ∈ Ns × Zn−s ; λp,`′ +
4π2

R2
|`′′|2 6 λ

}
−O(Rn−1).

A combination of Lemma 1.13 with the next lemma below shows that the inequality
lim inf R−nNR(λ) > νB(λ) can be obtained from calculations that are similar to those
used in the upper bound estimate of NR(λ).

Lemma 1.19. -- Let p ∈ Ns be a fixed multi-index. Then there is a constant
C = C(p,B) > 0 such that

λp,`′ 6
(

1 +
C

R

) s∑
j=1

(2pj + 1)Bj

when |`j | 6 BjR
2

4π (1−R− 1
2 ), 1 6 j 6 s.

Proof. – We use again the minimax principle and the fact that the Hermite functions
Φp(
√
Bjt) are good approximations of the eigenfunctions of q on any sufficiently large

interval centered at 0. When |`j | 6 BjR
2

4π (1 − R− 1
2 ) and xj ∈ ] − R

2 ,
R
2 [, the parameter

t = xj +
2π`j
BjR

that appears in (1.8) indeed runs on an interval containing ] −
√
R
2 ,
√
R
2 [.

Therefore, we have λpj ,`j 6 λ̃pj where (λ̃m)m∈N is the sequence of eigenvalues of the
quadratic form

q̃(f) =

∫ [ ∣∣∣df
dt

∣∣∣2 + (Bjt)
2|f |2

]
dt, f ∈W 1

0

( ]
−
√
R

2
,

√
R

2

[ )
.

Let χR be a cut-off function with support in
[
−
√
R
2 ,
√
R
2

]
, equal to 1 on

[
−
√
R
4 ,
√
R
4

]
,

and whose derivative is bounded by 5/
√
R. For any linear combination

f =
∑
m6pj

cmΦm(
√
Bjt),

the exponential decay of the Φm functions at infinity implies for R large enough an
inequality

‖f‖ 6
(

1 + C1 exp
(
− R

C1

))
‖χRf‖
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where C1 = C1(pj , Bj) > 0. Therefore, we obtain

q̃(χRf) 6 q̃(f) +

∫
|t|>
√
R/4

(
10√
R

∣∣∣f df
dt

∣∣∣+
25

R
|f |2

)
dt

6 q̃(f) +

∫
|t|>
√
R/4

(
1

R

∣∣∣df
dt

∣∣∣2 + 25
(

1 +
1

R

)
|f |2

)
dt

6
(

1 +
C2

R

)
q̃(f) 6

(
1 +

C2

R

)
(2pj + 1)Bj ‖f‖2

6
(

1 +
C

R

)
(2pj + 1)Bj ‖χRf‖2

This gives λpj ,`j 6 λ̃pj 6
(
1 + C

R

)
(2pj + 1)Bj .

For the reader’s convenience, we now state the minimax principle in the exact form it
has been applied above.

Proposition 1.20 (minimax principle, see [14], Vol. IV, p. 76 and 78). -- Let Q be
a quadratic form with dense domain D(Q) in a Hilbert space H. We assume that Q
is bounded from below, i.e. Q(f) > −C‖f‖2 for f ∈ D(Q), that D(Q) is complete
for the norm ‖f‖Q = [Q(f) + (C + 1)‖f‖2]

1
2 , and finally that the injection morphism

(D(Q), ‖ ‖Q) ↪→ (H, ‖ ‖) is compact. Then Q has a discrete spectrum λ1 6 λ2 6 . . . ,
and we have equalities

(a) λp = min
F⊂D(Q)

max
f∈F, ‖f‖=1

Q(f),

where F runs over the set of subspaces of dimension p of D(Q) ;

(b) λp+1 = max
F⊂D(Q)

min
f∈F, ‖f‖=1

Q(f),

where F runs over the set of Q-closed subspaces of codimension p of D(Q).

2. Asymptotic distribution of the spectrum
(case of a variable field).

We consider again the general framework described at the beginning of section §1. Our
goal is to study the spectrum of the quadratic formQΩ,k (see (1.3)) in the case of arbitrary
magnetic field B and electric field V . At any point a ∈M , let

(2.1) B(a) =

s∑
j=1

Bj(a) dxj ∧ dxj+s

be the normalized expression of B(a) in a suitable orthonormal basis (dx1, . . . , dxn) of
T ∗aM , where 2s = 2s(a) = rank of B(a), 2s 6 n, and B1(a) > B2(a) > . . . > Bs(a) > 0
are the positive eigenvalues of the associated antisymmetric endomorphism. The defining
equality 1.5 allows us to view νB(λ) as a function of the pair(a, λ) ∈M ×R. It will also
be useful to consider the function νB(λ), that is right continuous in λ, defined by

(2.2) νB(λ) = lim
0<ε→0

νB(λ+ ε).
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We then prove the following generalization of Corollary 1.7.

Theorem 2.3. When k tends to +∞, the number NΩ,k(λ) of eigenvalues 6 λ of QΩ,k

satisfies the asymptotic inequalities∫
Ω

νB(V + λ) dσ 6 lim inf k−
n
2NΩ,k(λ) 6 lim sup k−

n
2NΩ,k(λ) 6

∫
Ω

νB(V + λ) dσ.

The function λ 7→
∫

Ω
νB(V + λ) dσ is non decreasing and left continuous ; therefore it

has at most a countable set D of points of discontinuity. The set D is in fact empty when
n is odd, since νB(λ) is then continuous. From this, we immediately infer

Corollary 2.4. Assume that ∂Ω is of measure zero. Then

lim
k→+∞

k−
n
2NΩ,k(λ) =

∫
Ω

νB(V + λ) dσ

for all λ ∈ RrD, and the spectral density measure k−n2 d
dλNΩ,k(λ) converges weakly on R

to d
dλ

∫
Ω
νB(V + λ) dσ. If n is odd, the limit measure has no atoms.

The following lemma shows that the integrals involved in Theorem 2.3 are well defined.

Lemma 2.5.

(a) We have inequalities
νB(λ) 6 νB(λ) 6 λn/2+ .

(b) νB(V ) (resp. νB(V )) is lower (resp. upper ) semi-continuous on M .

(c) At any point x ∈ M where s(x) < n
2 we have νB(V )(x) = νB(V )(x), and the

functions νB(V ), νB(V ) are continuous in x.

(d) If n is odd, νB(V ) = νB(V ) is continuous on M .

Proof. – (a) We always have
(
λ−

∑
(2pj +1)Bj

)n
2−s
+

6 λ
n
2−s
+ , and the number of integers

pj such that λ− (2pj + 1)Bj is > 0 is bounded above by λ+

Bj
. As the resulting numerical

factor occurring in (1.5) is bounded by 1, inequality (a) follows.

(b, c) The rank s = s(x) is a lower semi-continuous function on M , and the eigenvalues
B1, B2, . . . , extended by Bj(x) = 0 for j > s(x), are continuous on M . As the function
t 7→ t0+ (resp. t 7→ (t + 0)0

+) is lower (resp. upper) semi-continuous, the semi-continuity
of νB(V ) and νB(V ) is a problem only at points a ∈ M in the neighborhood of which
s(x) is not locally constant. At such a point a ∈ M , we necessarily have s(a) < n

2 , so
νB(V )(a) = νB(V )(a) ; we are going to show that νB(V ) and νB(V ) are then continuous
at a. The continuity of Bj gives limx→aBj(x) = 0 for j > s(a). When the integers
p1, . . . , ps〈a) are fixed, the summation in (1.5) may be interpreted as a Riemann sum for
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an integral over Rs(x)−s(a), and we therefore get the equivalent∑
(pj ; s(a)<j6s(x))

(
V (x)−

∑
(2pj + 1)Bj(x)

)n
2−s(x)

+

∼
∫
t∈Rs(x)−s(a)

[
V (a)−

s(a)∑
j=1

(2pj + 1)Bj(a)−
s(x)∑

j=s(a)+1

2tjBj(x)

]n
2−s(x)

+

dt

=
2s(a)−s(x)

(
V (a)−

∑
(2pj + 1)Bj(a)

)n
2−s(a)

+

(n2 − s(x) + 1) · · · (n2 − s(a))Bs(a)+1(x) · · ·Bs(x)(x)
.

Therefore, we find

lim
x→a

νB(V )(x) = νB(V )(a) = lim
x→a

νB(V )(x).

(d) Is a special case of (c).

The proof of theorem 2.3 is based essentially on two ingredients : firstly, an asymptotic
localization principle of the eigenfunctions, which is can be seen through a direct appli-
cation of the minimax principle (Proposition 2.6) ; secondly, an explicit evaluation of the
spectrum of the Schrödinger operator associated with a constant magnetic field (see §1).
Indeed, the localization principle reduces the situation to the case of a constant field by
using a covering of Ω by small cubes.

Proposition 2.6.

(a) If Ω1, · · · ,ΩN ⊂ Ω are pairwise disjoint open subsets, then

NΩ,k(λ) >
N∑
j=1

NΩj ,k(λ).

(b) Let (Ω′j)16j6N an open covering of Ω and let (ψj)16j6N be a system of functions
ψj ∈ C∞(Rn) with support in Ω′j, such that

∑
ψ2
j = 1 on Ω. We set

C(ψ) = sup
Ω

N∑
j=1

|dψj |2.

Then

NΩ,k(λ) 6
N∑
j=1

NΩ′
j
,k

(
λ+

1

k
C(ψ)

)
.

Proof. – (a) Let F be the C-vector space generated by the collection of all eigenfunctions
of the quadratic forms QΩj ,k, 1 6 j 6 N , corresponding to eigenvalues 6 λ. The space
F is of dimension

dimF =
N∑
j=1

NΩj ,k(λ)
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and for all u ∈ F, we have

QΩ,k(u) =

N∑
j=1

QΩj ,k(u) 6
N∑
j=1

λ‖u‖2Ω′
j

= λ‖u‖2Ω.

The minimax principle therefore shows that the eigenvalues of QΩ,k of index 6 dimF

are 6 λ, whence inequality (a).

(b) For every u ∈W 1
0 (Ω, E⊗k), we have∑

j

|Dk(ψju)|2 =
∑
j

∣∣ψjDku+ (dψj)u
∣∣2 = |Dku|2 +

∑
j

|dψj |2|u|2

since 2
∑
ψjdψj = d(

∑
ψ2
j ) = 0. Therefore we get

N∑
j=1

QΩ′
j
,k(ψju) = QΩ,k(u) +

∫
Ω

1

k

N∑
j=1

|dψj |2|u|2 dσ 6 QΩ,k(u) +
1

k
C(ψ)‖u‖2Ω.

If each function Hq(X,E⊗k⊗F )c is orthogonal to the eigenfunctions of QΩj ,k associated
with the eigenvalues 6 λ+ 1

kC(ψ), we infer successively

QΩj ,k(ψju) >
(
λ+

1

k
C(ψ)

)
‖ψju‖2Ωj , if ψju 6= 0,

QΩ,k(u) > λ‖u‖2Ω, if u 6= 0.

The minimax principle 1.20 (b) then shows that NΩ,k(λ) is bounded above by the number
of linear constraints that we had to impose on u, namely

N∑
j=1

NΩj ,k

(
λ+

1

k
C(ψ)

)
.

Let W1, . . . ,WN be a covering of Ω by open coordinate charts of the manifold M . For
any ε > 0, we can find open sets Ωi ⊂ Ω′j , that are relatively compact in Wj , 1 6 j 6 N ,
and such that

Ω ⊃
⋃

Ωj (disjoint), and Vol(Ω) =
∑

Vol(Ωj),(2.7)

Ω ⊂
⋃

Ω′j , and
∑

Vol(Ω
′
j) 6 Vol(Ω) + ε.(2.8)

Proposition 2.6 then reduces the proof of Theorem 2.3 to the case of the open sets Ωj
and Ω′j (observe for this that the function νB(V + λ) is bounded and that the constant
C(ψ) is independent of k ).

In the end, we can assume that M = Rn, with an arbitrary Riemannian metric g. Since
M = Rn is contractible, the bundle E is then trivial ; let A be a vector potential of the
connection D and B = dA the corresponding magnetic field. We first prove the following
local version of Theorem 2.3.
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Proposition 2.9. -- Let a ∈ Rn be a given point, and Pk a sequence of open cubes such
that Pk 3 a. Denote by rk the side length of Pk, and assume that

rk 6 1, lim k
1
2 rk = +∞, lim k

1
4 rk = 0.

Then, when k tends to +∞, we have

lim inf
k−

n
2

Vol(Pk)
NPk,k(λ) > νB(a)(V (a) + λ),

lim sup
k−

n
2

Vol(Pk)
NPk,k(λ) 6 νB(a)(V (a) + λ),

and for every compact K ⊂ Rn, NPk,k(λ) admits the upper bound

NPk,k(λ) 6 CK
(

1 + rk
√
k
(
λ+ + max

K
V+

))n
uniformly with respect to the point a, as long as Pk ⊂ K.

Proof. – We proceed via a reduction to Theorem 1.6, after applying an homothety of
ratio

√
k to Pk – this is the reason why we had to assume lim k

1
2 rk = +∞. The following

lemma measures how much the magnetic field B deviates from the field constant B(a)
on each cube Pk.

Lemma 2.10. -- On each cube P k, one can choose a vector potential Ãk of the constant
field B(a) tel that for all x ∈ P k we have

|Ak(x)−A(x)| 6 C1r
2
k,

where C1 > 0 is a constant independent of k (and independent of a when a runs over a
compact set K ⊂ Rn).

The C∞ regularity of B indeed leads to an upper bound

|B(a)−B(x)| 6 C2rk, x ∈ P k.

Let A′k be a potential of the field B(a)−B(x) on the cube P k, calculated using the usual
homotopy formula for starlike open sets. We then get

|A′k(x)| 6 C3r
2
k,

and it is sufficient to take Ãk = A+A′k.

Let (x1, . . . , xn) be the standard coordinates on Rn. Let us take new coordinates
(y1, . . . , yn) depending linearly on x1, . . . , xn such that (dy1, . . . , dyn) is an orthonormal
basis for the metric g at point a, and such that B(a) admits in this basis a normalized
form as in (2.1) :

B(a) =
s∑
j=1

Bj(a) dyj ∧ dyj+s.
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Let g̃ be the constant metric

g̃ ≡ g(a) =
n∑
j=1

dy2
j .

Let us denote by Dk = d+ ikA∧?, D̃k = d+ ikÃk∧? the connections on E⊗k|Pk associated
with the potentials A, Ãk, and by Qk = QPk,k, Q̃k the quadratic forms associated
respectively with the metrics g, g̃, and the scalar potentials V , Ṽ ≡ V (a) (formula
(1.3)).

Lemma 2.11. --There exists a sequence εk converging to 0 ( dépending on rk, but in-
dependent of a when a runs over a compact set K ⊂ Rn), such that the global L2 norms
‖ ‖g, ‖ ‖g̃ associated with the metrics g and g̃ satisfy

(1− εk)‖u‖2g̃ 6 ‖u‖2g 6 (1 + εk)‖u‖2
g̃
,

(1− εk)Q̃k(u)− εk‖u‖2g̃ 6 Qk(u) 6 (1 + εk)Q̃k(u) + εk‖u‖2g̃

for all u ∈W 1
0 (Pk).

Indeed, we have on Pk inequalities

(1− C4rk) g̃ 6 g 6 (1 + C4rk) g̃,

and this gives the first double inequality in 2.11. With the notation A′k = Ak − A, we
infer from there

Qk(u) =

∫
Pk

(1

k
|D̃ku− ikA′k ∧ u|2g − V |u|2

)
dσ

6 (1 + C5rk)

∫
Pk

(1

k
|D̃ku− ikA′k ∧ u|2g̃ − V (a)|u|2

)
dσ̃ + ηk‖u‖2g̃

with ηk = supPk |V − V (a)| + C6rk, a quantity that converges to 0 as k tends to +∞.
Using the inequality (a + b)2 6 (1 + α)(a2 + α−1b2), Lemma 2.10 implies on the other
hand

|D̃ku− ikA′k ∧ u|2g̃ 6 (1 + α)
[
|D̃ku|2g̃ + α−1C2

1k
2r4
k|u|2

]
.

Let us choose α = αk = C1

√
kr2
k. The sequence αk tends to 0 by the assumption

lim k
1
4 rk = 0, and we find

1

k
|D̃ku− ikA′k ∧ u|2g̃ 6 (1 + αk)

[1

k
|Dku|2g̃ + αk|u|2

]
.

This implies the upper bound for Qk. The lower bound is obtained in the same way by
means of the inequality (a+ b)2 > (1− α)(a2 − α−1b2).

Lemma 2.11 reduces the proof of Proposition 2.9 to the case where the metric g and the
magnetic field B are constant :

g =
n∑
j=1

dy2
j , B =

n∑
j=1

Bj dyj ∧ dyj+s.
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We can assume moreover that V ≡ 0 by performing a translation λ 7→ λ + V (a). The
only remaining difficulty for applying directly Theorem 1.6 comes from the fact that
the cubes Pk become oblique parallelepipeds in the coordinates (y1, . . . , yn) ; the angles
between the different edges of each Pk and the ratios of their side lengths remain however
bounded by positive constants. In order to solve this difficulty, it is sufficient to cover
each parallelepiped Pk by cubes Pk,α whose edges are parallel to the coordinate axes
(y1, . . . , yn). Let us fix ε ∈ ]0, 1[. For all α ∈ Zn, let (Pk,α), (P ′k,α) be the open cubes of
side lengths εrk, ε(1 + ε)rk, and the common center εrkα. We can limit ourselves to the
consideration of the cubes Pk,α contained in Pk and of the cubes P ′k,α meeting Pk. Then
we get

Pk ⊃
⋃
α

Pk,α (disjointe), and
∑
α Vol(Pk,α)

Vol(Pk)
> 1− C7ε,(2.12)

Pk ⊂
⋃
α

P ′k,α, and
∑
α Vol(P ′k,α)

Vol(Pk)
6 1 + C7ε,(2.13)

where C7 is a constant independent of k (and also of a, when a runs over a compact set).
The number of cubes Pk,α, P ′k,α which are involved in (2.12) or (2.13) is bounded above
by C8ε

−n. As the cubes P ′k,α overlap each other on an interval of length ∼ ε2rk when
they are contiguous, one can construct a partition of unity

∑
ψ2
k,α = 1 on Pk, such that

Suppψk,α ⊂ P ′k,α and

sup
Pk

∑
α

|dψk,α|2 = C(ψk) 6 C9(ε2rk)−2.

The hypothesis lim k
1
2 rk = +∞ actually implies lim 1

kC(ψk) = 0, and this allows to
apply 2.6 (b). On the cubes Pkα, P ′k,α we are now in the situation of Theorem 1.6 : after
applying a homothety of ratio

√
k, the side of the homothetic cube

√
k Pk,α becomes

Rk = εrk
√
k and this value indeed tends to +∞ by hypothesis. The uniform upper

bound of NPk,k(λ) follows from Proposition 1.18 and from the fact that all our constants
C1, . . . , C9 are uniform. Proposition 2.9 is proved.

Proof of Theorem 2.3. – According to the remark preceding Proposition 2.9, we can
assume M = Rn and Ω to be a bounded open subset of Rn. The main idea of our
argument is to combine Propositions 2.6 and 2.9 with a covering of Ω by cubes of side
rk = k−

1
3 . The actual implementation requires nevertheless some care, in view of the

difficulties related to the possible non-uniformity of the lim sup and lim inf involved.
Let us denote by Πk,α, Π′k,α, α ∈ Zn, the open cubes of respective side lengths

k−
1
3 , k−

1
3 (1 + k−

1
8 ) = k−

1
3 + k−

11
24

and common center k− 1
3α. Let I(k) (resp. I ′(k)) be the set of indices α ∈ Zn such that

Πk.α ⊂ Ω (resp. Π
′
k,α ∩ Ω 6= ∅). As in the reasoning of Proposition 2.9, there exists a

partition of unity
∑
α∈I′(k) ψ

2
k,α = 1 on Ω, such that Suppψk,α ⊂ Π′k,α and

C(ψk) = sup
Ω

∑
α∈I′(k)

|dψk,α|2 6 C10k
11
12 ,
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hence lim 1
kC(ψk) = 0. We set

Ωk =
⋃

α∈I(k)

Πk,α, Ω′k =
⋃

α∈I′(k)

Π′k,α

and consider for every given λ ∈ R, the functions on Rn defined by

fk = k−
n
2

∑
α∈I(k)

NΠk,α,k(λ)
1

Vol(Πk,α)
1lΠk,α ,

f ′k = k−
n
2

∑
α∈I′(k)

NΠ′
k,α

,k

(
λ+

1

k
C(ψk)

) 1

Vol(Πk,α)
1lΠk,α

where 1lΠk,α denotes the characteristic function of Πk,α. Proposition 2.6 implies the
inequalities

(2.14)

∫
Rn
fk dσ 6 k

−n2NΩ,k(λ) 6
∫
Rn
f ′k dσ.

Let x ∈ Rn be a point taken in the complement of the negligible set

Z =
⋃

k∈N, α∈Zn
∂Πk,α.

Then there exists a unique sequence of indices α(k) ∈ Zn such that x ∈ Πk,α(k). Propo-
sition 2.9 applied to the cubes Pk = Πk,α(k) (resp. P ′k = Π′k,α(k)) with Vol(Pk) ∼ VolP ′k
shows that the pointwise sequences

fk(x) =
k−

n
2

Vol(Pk)
NPk,k(λ)1lΩk(x), f ′k(x) =

k−
n
2

Vol(Pk)
NP ′

k
,k(λ)1lΩ′

k
(x),

satisfy

(2.15)

{
lim inf fk(x) > νB(x)(V (x) + λ) 1lΩ(x),

lim sup f ′k(x) 6 νB(x)(V (x) + λ) 1lΩ(x).

On the other hand, the uniform upper bound of Proposition 2.9 implies the existence of
constants C11, C12 independent of k, x and λ such that

fk(x) 6 f ′k(x) 6 C11

(
1 +

√
λ+ + C12

)n
.

Theorem 2.3 then follows from (2.14), (2.15) and the Fatou lemma.

In view of applications to complex geometry, we will need below a slight generalization
of Theorem 2.3. Consider a Hermitian vector bundle F of rank r and of class C∞

over M , equipped with a Hermitian connection ∇, and continuous sections S of the fiber
Λ1
RT
∗X ⊗R HomC(F, F ) and V of the bundle Herm(F ) of Hermitian endomorphisms

of F . Let ∇k be the Hermitian connection on E⊗k ⊗ F induced by the connections D
and ∇. For the simplicity of notation, we will still denote by S and V the endomorphisms
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IdE⊗k ⊗S and IdE⊗k ⊗V acting on E⊗k⊗F . Given a relatively compact open set Ω inM ,
we consider the quadratic form

QΩ,k(u) =

∫
Ω

(1

k
|∇ku+ Su|2 − 〈V u, u〉

)
dσ,

where u ∈W 1
0 (Ω, E⊗k⊗F ). Let V1(x) 6 V2(x) 6 · · · 6 Vr(x) be the eigenvalues of V (x)

at any point x ∈M . In this setting, the following result holds.

Theorem 2.16. --The counting function NΩ,k(λ) of the eigenvalues of QΩ,k admits for
all λ ∈ R asymptotic estimates

lim inf
k→+∞

k−
n
2NΩ,k(λ) >

r∑
j=1

∫
Ω

νB(Vj + λ) dσ,

lim sup
k→+∞

k−
n
2NΩ,k(λ) 6

r∑
j=1

∫
Ω

νB(Vj + λ) dσ,

where B is the magnetic field associated with the connection D on E.

Proof. – The localization principle 2.6 is still valid in the present situation. It is therefore
sufficient to prove the inequalities of proposition 2.16 when Ω is small enough. Let a ∈M
be a fixed point and (e1, . . . , er) a C∞ orthonormal frame of F over a neighborhood W
of a, such that (e1(a), . . . , er(a)) diagonalizes the endomorphism V (a). Let us express u
under the form

u =

r∑
j=1

uj ⊗ ej

where uj is a section of E⊗k. For every ε > 0, there is exists a neighborhood W ′ε ⊂ W
of a on which

r∑
j=1

(Vj(a)− ε)|uj |2 6 〈V u, u〉 6
r∑
j=1

(Vj(a) + ε)|uj |2

On the other hand, we have

∇ku =

r∑
j=1

Dkuj ⊗ ej + uj ⊗∇ej ,

and the term uj ⊗∇ej can be absorbed into Su (this actually brings us back to the case
where the connection ∇ is flat). The inequalities

(1− k− 1
2 )|∇ku|2 + (1− k 1

2 )|Su|2 6 |∇ku+ Su|2 6 (1 + k−
1
2 )|∇ku|2 + (1 + k

1
2 )|Su|2

shows that the term Su only changes QΩ,k by a multiplicative factor 1 ± ε and by an
additive factor ±ε‖u‖2. As a consequence, for every ε > 0, there exist a neighborhood
Wε of a and an integer k0(ε) such that

(1− ε)Q̃Ω.k(u)− ε‖u‖2 6 QΩ,k(u) 6 (1 + ε)Q̃Ω,k(u) + ε‖u‖2,
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as soon as k > k0(ε) and Ω ⊂Wε, where Q̃Ω,k denotes the quadratic form

Q̃Ω.k(u) =

r∑
j=1

∫
Ω

(1

k
|Dkuj |2 − Vj(a)|uj |2

)
dσ.

Since Q̃Ω,k is a direct sum of r quadratic forms, the spectrum of Q̃Ω.k is the union (counted
with multiplicities) of the spectra of the terms in the sum. Theorem 2.16 follows.

3. Bochner-Kodaira-Nakano identity in Hermitian geometry.
The goal of the forthcoming sections is to draw consequences of the spectral theorem 2.16
in the study of d′′-cohomology of Hermitian holomorphic vector bundles. In this direc-
tion, we need to relate the conjugate-holomorphic Laplace-Beltrami operator ∆′′ with the
Schrödinger operator of a suitable real connection. This is done by means of a Weitzen-
böck type formula, known in complex differential geometry as the Bochner-Kodaira-
Nakano identity.

Let X be a compact complex analytic manifold of dimension n and F a Hermitian
holomorphic vector bundle of rank r over X. As is well known, there exists a unique
Hermitian connection D = D′ + D′′ on F whose component D′′ of type (0, 1) coincides
with the ∂ operator of the bundle (this connection is sometimes termed “holomorphic”
and called the Chern connection). Let c(F ) = D2 = D′D′′ + D′′D′ be the curvature
form of D on F . Let us equip X with an arbitrary Hermitian metric ω of type (1, 1)
and class C∞. The space C∞p,q(X,F ) of C∞ sections of the bundle Λp,qT ∗X ⊗ F is then
equipped with a natural prehilbertian structure. We let δ = δ′ + δ′′ denote the formal
adjoint of D, considered as a differential operator on C∞(X,F ), and Λ the adjoint of the
Lefschetz operator L : u 7→ ω ∧ u.

We will use the Hermitian Bochner-Kodaira-Nakano identity in the form it was estab-
lished in [6], although one could in fact get by with the less precise formula given by
P. Griffiths, as Y.T. Siu does in [16], [17]. For differential operators A, B on C∞(X,F ),
one defines their graded bracket [A,B] by the formula

[A,B] = AB − (−1)abBA

where a, b are the respective degrees of A and B. The Laplace-Beltrami operators ∆′

and ∆′′ are then classically given by

∆′ = [D′, δ′] = D′δ′ + δ′D′, ∆′′ = [D′′, δ′′].

With the torsion tensor d′ω, we associate the wedge multiplication operator u 7→ d′ω ∧u
on C∞(X,F ), type (2, 1), which we still denote d′ω, and the operator τ of type (1, 0)
defined by τ = [Λ, d′ω]. We finally put

D′τ = D′ + τ, δ′τ = (D′τ )∗ = δ′ + τ∗, ∆′τ = [D′τ , δ
′
τ ].

Then the following identity holds. The reader is referred to [6] for a proof.
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Proposition 3.1. We have

∆′′ = ∆′τ + [ic(F ),Λ] + Tω

where Tω is the operator of order 0 and of type (0, 0) defined by

Tω =
[
Λ,
[
Λ,

i

2
d′d′′ω

]]
− [d′ω, (d′ω)∗].

According to the Hodge-De Rham theory, the sheaf cohomology group Hq(X,F ) is iso-
morphic to the space of ∆′′-harmonic (0, q)-forms with values in F . Let u ∈ C∞p.q(X,F ).
Proposition 3.1 gives us an equality

(3.2)

∫
X

|D′′u|2+|δ′′u|2 =

∫
X

〈∆′′u, u〉 =

∫
X

|D′τu|2+|δ′τu|2+〈[ic(F ),Λ]u, u〉+〈Tωu, u〉,

where integrals are calculated relatively to the volume element dσ = ωn

n! . In particular,
if u is of bidegré (0, q), we have δ′τu = 0 by a bidegree consideration. Therefore

(3.3)

∫
X

〈∆′′u, u〉 =

∫
X

|D′τu|2 + 〈[ic(F ),Λ]u, u〉+ 〈Tωu, u〉.

One can also consider u as a (n, q)-form with values in the vector bundle

F̃ := F ⊗ ΛnTX.

We will denote by D̃ = D̃′ + D̃′′ the Hermitian holomorphic connection on F̃ , and by ũ
the canonical image of u in C∞n,q(X,F ).

Lemma 3.4. We have commutative diagrams

C∞0.q(X,F )
D′′−→ C∞0,q+1(X,F )

∼
y y ∼

C∞n,q(X, F̃ )
D̃′′−→ C∞n,q+1(X, F̃ ),

C∞0,q(X,F )
∆′′−→ C∞0,q(X,F )

∼
y y ∼

C∞n,q(X, F̃ )
∆̃′′−→ C∞n,q(X, F̃ ),

where the vertical arrows are the metric isomorphisms u 7→ ũ.

Proof. – The commutativity of the left diagram is a consequence of the fact that the line
bundle ΛnTX is holomorphic (notice however that the corresponding result for D′ and
D̃′ is wrong). Therefore, there is a corresponding commutative diagram for the adjoint
operators δ′′, δ̃′′ and for ∆′′, ∆̃′′.

Lemma 3.4 and identity (3.2) imply

(3.5)

∫
X

〈∆′′u, u〉 =

∫
X

〈∆̃′′ũ, ũ〉 =

∫
X

|δ̃′τ ũ|2 + 〈[ic(F̃ ),Λ]ũ, ũ〉+ 〈Tωũ, ũ 〉.

We now slightly transform the expression of (3.3) and (3.5). The holomorphic Hermitian
connection on the bundle ΛqT ∗X induces on conjugate bundle Λ0,qT ∗X a connection
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whose component of type (1, 0) coincides with the operator d′. From this we get a
natural Hermitian connection ∇ on the tensor product bundle Λ0,qT ∗X ⊗ F (observe
however that this vector bundle is in general non holomorphic for q 6= 0). Let ∇′ and
∇′′ be the components of ∇ of type (1, 0) and (0, 1).

Proposition 3.6. We have

∇′ = D′ : C∞(Λ0,qT ∗X ⊗ F )→ C∞1,0(Λ0,qT ∗X ⊗ F ),

and there is a commutative diagram

C∞(X,Λ0.qT ∗X ⊗ F )
∇′′−→ C∞0,1(X,Λ0.qT ∗X ⊗ F )

∼
y yΨ

C∞n,q(X, F̃ )
δ̃′′−→ C∞n−1,q(X, F̃ ),

where the vertical arrows are isometries, the one on the left being given by u 7→ ũ.

Proof. – The equality ∇′ = D′ comes from the fact that the (1, 0) component of the
connection prescribed above on Λ0,qT ∗X coincides with d′. The diagram requires the
vertical arrow Ψ to be defined. Let

{?|?} : (Λp1,q1T ∗X ⊗ F̃ )× (Λp2,q2T ∗X ⊗ F̃ ) −→ Λp1+q2,q1+p2T ∗X

be the sesquilinear canonical pairing induced by the metric on the fibers of F , and let

∗ : Λp,qT ∗X ⊗ F̃ −→ Λn−q,n−pT ∗X ⊗ F̃

be the Hodge-De Rham-Poincaré operator defined by

{v| ∗ w} = 〈v, w〉 dσ, v, w ∈ Λp,qT ∗X ⊗ F̃ .

By taking the composition, we derive from this an isometry

Ψ0 : Λ0,1T ∗X ⊗ F ∼−→Λn,1T ∗X ⊗ F̃ ∗−→Λn−1,0T ∗X ⊗ F̃

and the arrow Ψ is obtained by definition by tensorizing −i−n2

Ψ0 with Λ0,qT ∗X. To
prove the commutativity, we first assume q = 0. Let u ∈ C∞(F ). We have classically

δ̃′ũ = − ∗ D̃′′ ∗ ũ.

Since ũ ∈ C∞n,0(X,F ), we get ∗ũ = i−n
2

ũ, hence

δ̃′ũ = −i−n
2

∗D′′ũ = −i−n
2

∗ ∼ D′′u = −i−n
2

Ψ0(D′′u) = Ψ(∇′′u).

In case q is arbitrary, one just needs trivializing Λ0,qT ∗X in a neighborhood of an ar-
bitrary point x and choosing an orthonormal frame (e1, . . . , eN ) of this bundle, such
that∇e1(x) = · · · = ∇eN (x) = 0.
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We now consider the bundle morphisms

S′ : Λ0,qT ∗X ⊗ F → Λ1,0T ∗X ⊗ Λ0,qT ∗X ⊗ F
S′′ : Λ0,qT ∗X ⊗ F → Λ0,1T ∗X ⊗ Λ0,qT ∗X ⊗ F

where S′ = τ = [Λ, d′ω], and where S′′ is the lifting by the isometries ∼ and Ψ of the
morphism

τ∗ = [(d′ω)∗, L] : Λn,qT ∗X ⊗ F̃ → Λn−1.qT ∗X ⊗ F̃ .

According to Proposition 3.6, we have

|D′τu| = |∇′u+ S′u|, |δ̃′τ ũ| = |∇′′u+ S′′u|.

Putting S = S′ ⊕ S′′, the addition of identities (3.3) and (3.5) imply

2

∫
X

〈∆′′u, u〉 =

∫
x

|∇u+ Su|2 +

∫
X

〈[ic(F ),Λ]u, u〉

+

∫
X

〈[ic(F̃ ),Λ]ũ, ũ〉+ 〈Tωu, u〉+ 〈Tωũ, ũ〉(3.7)

for all u ∈ C∞0,q(X,F ).

Now, let E be a Hermitian holomorphic fiber of rank 1 over X. For any integer k, we
denote by Dk and ∇k the natural Hermitian connections on the bundles Fk = E⊗k ⊗ F
and Λ0,qT ∗X ⊗ Fk, and we put ∆′′k = [D′′k , δ

′′
k ]. The curvature form of Fk (resp. F̃k) is

given by

(3.8) c(Fk) = c(F ) + kc(E)⊗ IdF , resp. c(F̃k) = c(F̃ ) + kc(E)⊗ Id
F̃
.

Recall, although this will not be used in the sequel, that

c(F̃ ) = c(F ) + c(ΛnTX)⊗ IdF = c(F ) + Ricci(ω)⊗ IdF .

We thus have to evaluate the terms [ic(E),Λ]. At any point x ∈ X, let α1(x), α2(x), . . . ,
αn(x) be the eigenvalues of ic(E)(x) relatively to the Hermitian metric ω on X. There
exists a local coordinate system (z1, . . . , zn) centered at x such that ( ∂

∂z1
, . . . , ∂

∂zn
) is an

orthonormal basis of (TxX,ω(x)), and such that

ω(x) =
i

2

n∑
j=1

dzj ∧ dzj ,

ic(E)(x) =
i

2

n∑
j=1

αj(x) dzj ∧ dzj .

Let (e1, . . . , er) be an orthonormal frame of the fiber Ekx ⊗ Fx. For v ∈ Λp.qT ∗X ⊗ Fk,
we can write

v =
∑

|I|=p,|J|=q, `

vI,J,` dzI ∧ dzJ ⊗ e`, |v|2 = 2p+q
∑
I,J,`

|vI,J,`|2.
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An elementary calculation, explained for example in [6], gives the formula

(3.9) 〈[ic(E),Λ]v, v〉 = 2p+q
∑
I,J,`

(αI + αJ −
n∑
j=1

αj)|vI,J,`|2

with αI =
∑
j∈I αj . Let u ∈ Λ0,qT ∗X ⊗ Fk. Put

u =
∑
J,`

uJ,` dzJ ⊗ e`.

According to (3.9), we have

〈[ic(E),Λ]u, u〉 = 2q
∑
J,`

−α{J |uJ,`|2,

〈[ic(E〉,Λ]ũ, ũ〉 = 2q
∑
J,`

αJ |uJ,`|2.

Let V be the Hermitian endomorphism of Λ0,qT ∗X ⊗ Fk defined by

(3.10) 〈V u, u〉 = −〈[ic(E),Λ]u, u〉 − 〈[ic(E),Λ]ũ, ũ〉 = 2q
∑
J,`

(α{J − αJ)|uJ,`|2.

The eigenvalues of V are therefore the coefficients α{J − αJ , counted with multiplicity
r = rank(F ). Finally, let Θ be the Hermitian endomorphism defined by

(3.11) 〈Θu, u〉 = 〈[ic(F ),Λ]u, u〉+ 〈[ic(F̃ ),Λ]ũ, ũ〉+ 〈Tωu, u〉+ 〈Tωũ, ũ〉.

The identities (3.7-11) then imply

(3.12)
2

k

∫
X

〈∆′′ku, u〉 =

∫
X

1

k
|∇ku+ Su|2 − 〈V u, u〉+

1

k
〈Θu, u〉

where the operators S, V , Θ act merely on the component Λ0,qT ∗X⊗F of Λ0,qT ∗X⊗Fk.
We can thus use Theorem 2.16 to determine the asymptotic spectral distribution of ∆′′k ,
because the term 1

k 〈Θu, u〉 tends to 0 in norm.
Let hqk(λ) be the number of eigenvalues 6 kλ of ∆′′k acting on C∞0,q(E

⊗k ⊗ F ). The
magnetic field B is given here by

(3.13) B = −ic(E) = −
n∑
j=1

αj dxj ∧ dyj , zj = xj + iyj .

Since dimRX = 2n, Theorem 2.16 can be reinterpreted as follows.

Theorem 3.14. There exists a countable set D such that for every q = 0, 1, . . . , n and
λ ∈ RrD the asymptotic estimate

hqk(λ) = rkn
∑
|J|=q

∫
X

νB(2λ+ α{J − αJ) dσ + o(kn)

holds when k tends to +∞.
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4. Witten complex and Morse inequalities.
E. Witten [18], [19] recently introduced a new analytic method that reproves the standard
Morse inequalities for de Rham cohomology. We adapt here his method to the study of
d′′-cohomology. The main difference lies in the fact that the magnetic field is always zero
in the case of the de Rham cohomology (since d2 = 0 !), and, in this case, the only thing
that plays a role is the “electric field”.

With the notation of §3, let Hq
k(λ) ⊂ C∞0,q(X,E

⊗k ⊗ F ) be the direct sum of the eigen-
subspaces of ∆′′k attached to eigenvalues 6 kλ. The vector space H

q
k(λ) has therefore a

finite dimension
hqk(λ) = dimC H

q
k(λ).

Hodge theory gives us an isomorphism

Hq(X,E⊗k ⊗ F ) ' H
q
k(0).

For brevity of notation, we put

hqk = dimHq(X,E⊗k ⊗ F ) = hqk(0).

Proposition 4.1. --H•k(λ) is a sub-complex of the Dolbeault complex

D′′k : C∞0,•(X,E
⊗k ⊗ F ).

Moreover, the inclusion H•k(λ) ⊂ C∞0,•(X,E
⊗k ⊗ F ) and the orthogonal projection

Pλ : C∞0,•(X,E
⊗k ⊗ F )→ H•k(λ)

induce inverse isomorphisms in cohomology.

Proof. – The fact that H•k(λ) is a sub-complex of C∞0,•(X,E
⊗k ⊗ F ) comes from the

commutativity of operators D′′k and ∆′′k . Now, let

G =

∫
λ>0

1

λ
dP1

be the Green operator of the Laplacian ∆′′k . Since [Pλ,∆
′′
k ] = 0, we have equalities

[G,∆′′k ] = 0 and
∆′′kG+ P0 = Id .

Moreover, [Pλ, D
′′
k ] = [G,D′′k ] = 0. Therefore we get

Id−Pλ = ∆′′kG(Id−Pλ) + P0(Id−Pλ) = ∆′′kG(Id−Pλ)

= D′′k
(
δ′′kG(Id−Pλ)

)
+
(
δ′′kG(Id−Pλ)

)
D′′k ,

hence the operator δ′′kG(Id− Pλ) is a homotopy between Id and Pλ.

We now use a simple and classical lemma of homological algebra.
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Lemma 4.2. -- Let

0 −→ C0 d0−→C1 d1−→ · · · d
n−1

−→ Cn −→ 0

be a complex of vector spaces of finite dimensions c0, c1, . . ., cn over a field K. Let
hq = dimKH

q(C•). Then we have the following inequalities.

(a) Morse inequalities : hq 6 cq, 0 6 q 6 n.

(b) Equality of Euler-Poincaré characteristics χ(H•(C•)) = χ(C•) :

h0 − h1 + · · ·+ (−1)nhn = c0 − c1 + · · ·+ (−1)ncn.

(c) Strong Morse inequalities : for all q, 0 6 q 6 n,

hq − hq−1 + · · ·+ (−1)qh0 6 cq − cq−1 + · · ·+ (−1)qc0.

Proof. – Let Zq = Ker dq and Bq = Im dq−1 have dimensions zq and bq. Equality (b)
follows from the trivial formulas

cq = zq + bq+1, hq = zq − bq,

while (c) is a consequence of (b) applied to the complex

0→ C0 → C1 → · · · → Cq−1 → Zq → 0.

If F is a holomorphic vector bundle on X, we define its Euler-Poincaré characteristic by

χ(X,F ) =
n∑
q=0

(−1)q dimHq(X,F ).

Combining proposition 4.1 and lemma 4.2, we get for all λ > 0 and q ∈ N, 0 6 q 6 n,
the inequality

hqk − h
q−1
k + · · ·+ (−1)qh0

k 6 h
q
k(λ)− hq−1

k (λ) + · · ·+ (−1)qh0
k(λ).

Now, we evaluate hqk(λ) by means of Theorem 3.14 and we let λ ∈ R r D tend to 0+.
We then get the following conclusion.

Corollary 4.3. -- There are asymptotic inequalities

(a) hqk 6 knIq + o(kn),

(b) χ(X,E⊗k ⊗ F ) = kn(I0 − I1 + · · ·+ (−1)nIn) + o(kn),

(c) hqk − h
q−1
k + · · ·+ (−1)qh0

k 6 k
n(Iq − Iq−1 + · · ·+ (−1)qI0) + o(kn),
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where Iq is the curvature integral

Iq = r
∑
|J|=q

∫
X

νB(α{J − αJ)dσ.

According to (3.13), the non negative eigenvalues of the magnetic field B are the |αj |,
1 6 j 6 n. For any point x ∈ X, let us arrange these eigenvalues so that

|α1 > |α2| > · · · > |αs| > 0 = |αs+1| = · · · = |αn|, s = s(x).

Formula (1.5) gives

νB(a{J − αJ) =
2s−2nπ−n

Γ(n− s+ 1)
|α1 . . . αs|

∑
(p1,...,ps)

{
α{J − αJ −

∑
(2pj + 1)|αj |

}n−s
+

with the notation {λ}0+ = 0 if λ < 0 and {λ}0+ = 1 if λ > 0. As the quantity

α{J − αJ −
∑

(2pj + 1)|αj |

is always 6 0, νB(α{J − αJ) can be non zero only for s = n. In the latter case

α{J − αJ −
∑

(2pj + 1)|αj | = 0

if and only if p1 = · · · = pn = 0 and αj < 0 for j ∈ J , αj > 0 for j ∈ {J . This requires
the form ic(E) to be non degenerate of index q. For x ∈ X(q) and |J | = q (see notation
from the introduction), we thus get

νB(α{J − αJ) = (2π)−n|α1 . . . αn| > 0

where J is the multi-index J(x) = {j ; αj(x) < 0} and νB(α{J − αJ) = 0 si J 6= J(x).
This implies

Iq = r

∫
X(q)

(2π)−n(−1)qα1 . . . αn dσ =
r

n!

∫
X(q)

(−1)q
( i

2π
c(E)

)n
.

Our fundamental theorem 0.1 is then just a reformulation of Corollary 4.3. The above
arguments show that the harmonic forms associated with Hq(X,E⊗k ⊗ F ) concentrate
asymptotically on X(q), and that, at each point of X(q), their direction tends to be
aligned with the q-subspace of TX corresponding to the negative part of ic(E). Moreover,
the eigenvalue of minimal energy p1 = · · · = pn = 0 of the harmonic oscillator is the only
one that is involved in those harmonic forms. For q = 1, the Morse inequality 4.3 (c) can
be written

h1
k − h0

k 6 k
n(I1 − I0) + o(kn).

In particular, we find an asymptotic lower bound of the number of holomorphic sections
of the vector bundle E⊗k ⊗ F .
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Theorem 4.4. --We have

dimH0(X,E⊗k ⊗ F ) > r
kn

n!

∫
X(61)

( i

2π
c(E)

)n
− o(kn).

More generally, the addition of the two instances of inequality 4.3 (c) for indices q + 1
and q − 2 leads to

hq+1
k − hqk + hq−1

k 6 kn(Iq+1 − Iq + Iq−1) + o(kn),

hence the lower bound

(4.5) dimHq(X,E⊗k ⊗ F ) > r
kn

n!

∑
j=0,±1

(−1)q
∫
X(q+j)

( i

2π
c(E)

)n
− o(kn).

5. Characterization of Moišezon varieties.
Let X be a compact C-analytic variety of dimension n. The algebraic dimension of X,
denoted a(X), is by definition the transcendence degree over C of the field K(X) of
meromorphic functions on X. According to a well-known theorem of Siegel [15], the
algebraic dimension of X always satisfies the inequality 0 6 a(X) 6 n. When a(X) = n,
the variety X is called a Moišezon space. As we recall below, the algebraic dimension
of X imposes strong asymptotic bounds for the dimension of spaces of sections of tensor
powers of any holomorphic line or vector bundle on X.

Theorem 5.1. -- Let X be a compact complex manifold, a the algebraic dimension of X,
F a holomorphic vector bundle of rank r, and E a holomorphic line bundle over X.
Then, there exists a constant CE > 0 that depends only on E, such that

dimH0(X,E⊗k ⊗ F ) 6 CErk
a + o(ka).

Proof. – We essentially repeat the arguments detailed by Y.T. Siu in [16]. Let {W`} be
a covering of X by open coordinate charts W` ⊂ Cn, and Bj = B(aj , Rj), 1 6 j 6 m, a
family of relatively compact balls in the open setsW`, such that the concentric balls B′j =

B(aj ,
1
7Rj) still cover X. Let us provide E, F with Hermitian metrics, and let exp(−ϕj)

be the weight representing the metric of E in a trivialization of E in a neighborhood
of Bj .

Let s ∈ H0(X,E⊗k ⊗ F ) be a holomorphic section that vanishes at order p at a point
xj ∈ B′j . The inclusions

B′j ⊂ B(xj ,
2

7
Rj) ⊂ B(xj ,

6

7
Rj) ⊂ Bj

and the Schwarz lemma applied to the two intermediate balls lead to the inequality

(5.2) sup
B′
j

|s| 6 exp(Ak + CF )3−p sup
Bj

|s|,
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where A = max16j6m diamϕj(Bj) depends only on of E, and where CF > 0 is a constant
that depends on the metric of F .

Let ρ 6 r = rank(F ) be the maximum for all x ∈ X of the dimension of the subspace
of the fiber Fx generated by elements s(x) when s runs over

⋃
k∈NH

0(X,E⊗k ⊗ F ).
If ρ = 0, then H0(X,E⊗k ⊗F ) = 0 for all k. Let us now distinguish two cases according
to whether ρ = 1 or ρ > 1.

(a) Assume ρ = 1.

Let hk = dimH0(X,E⊗k ⊗ F ), and suppose that hk > 0. Under the hypothesis ρ = 1,
the global sections of E⊗k ⊗ F define a holomorphic map

Φk : X r Zk → Phk−1(C)

where Zk ⊂ X is the analytic subset of common zeros. Let d the maximum rank of the
differential Φ′k on XrZk. We necessarily have d 6 a, otherwise the field of rational func-
tions of Phk−1(C) would induce a field of meromorphic functions on X of transcendence
degree > d > a, which is absurd. Let us choose for all j = 1, . . . ,m a point xj ∈ B′j rZk
such that Φ′k is of maximum rank = d at xj , and let s0 ∈ H0(X,E⊗k ⊗ F ) be a section
that does not vanish at any point xj . For every s ∈ H0(X,E⊗k ⊗ F ), the quotient s/s0

is well defined as a meromorphic function on X, and moreover s/s0 is a holomorphic
function in a neighborhood of xj , that is constant along the fibers of Φk. As Φk is a
subimmersion in the neighborhood of each point xj , we can choose a subvariety Mj of
dimension d passing through xj and transverse to the fiber Φ−1

k (Φk(xj)). The section s
will vanish at order p at each point xj , 1 6 j 6 m, if and only if partial derivatives of
order < p of s/s0 along Mj vanish at xj . In total, this corresponds to the vanishing of

m

(
p+ d− 1

d

)
derivatives. If we choose p = [Ak + CF ] + 1, then inequality (5.2) implies

sup
X
|s| 6

(e
3

)p
sup
X
|s|,

hence s = 0. As d 6 a, we therefore get

dimH0(X,E⊗k ⊗ F ) 6 m

(
p+ a− 1

a

)
6 CEk

a + o(ka)

with CE = mAa/a! .

(b) Assume ρ > 1.

Then there are sections st ∈ H0(X,Ekt⊗F ), 1 6 t 6 ρ, and a point x0 ∈ X such that the
vectors s1(x0), . . . , sρ(x0) are linearly independent. By construction, for any k ∈ N and
any section s ∈ H0(X,E⊗k⊗F ), the line C·s(x) is contained in the subspace generated by
(s1(x), . . . , sρ(x)), except perhaps above the analytic subset {x ∈ X; s1∧ . . .∧sρ(x)} = 0.
Therefore, we get an injective morphism

H0(X,E⊗k ⊗ F )→
⊕

16t6ρ

H0(X,Ek+kt̂ ⊗ ΛpF )
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where kt̂ = (k1 + · · · + kρ) − kt, whose component of index t is given by the morphism
s→ s1∧· · ·∧ ŝt∧· · ·∧sρ∧s. The image of H0(X,E⊗k⊗F ) on each component consists of
sections that are colinear at almost any point with s1∧· · ·∧sρ. We are led to a situation
analogous to the one considered in (a), where F is replaced by Ekt̂ ⊗ΛρF . Therefore we
infer

dimH0(X,E⊗k ⊗ F ) 6 CEρk
a + o(ka), ρ 6 r.

Let us choose in particular for F the trivial line bundle X × C. The combination of
Theorems 4.4 and 5.1 leads to the following characterization of Moišezon varieties.

Theorem 5.2. -- Let X be a compact C-analytic manifold of dimension n. Then X is
Moišezon as soon as there exists a Hermitian holomorphic line bundle E over X such
that ∫

X(61)

(ic(E))n > 0.

This theorem in turn leads to Theorem 0.8, since 0.8 (c) ⇒ 0.8(b) ⇒ 0.8(a). This
strengthens Y.T. Siu’s results [17], [18], and gives in particular a new proof of the Grauert-
Riemenschneider conjecture [10].
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