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The purpose of this series of lectures is to explain some advanced techniques of
Complex Analysis which can be applied to obtain fundamental results in algebraic
geometry: vanishing of cohomology groups, embedding theorems, description of the
geometric structure of projective algebraic varieties.

Contents

0. Preliminary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Holomorphic Vector Bundles, Connections and Curvature . . . . . . . . . . . . . . . . . . . . 4
2. Bochner Technique and Vanishing Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3. L2 Estimates and Existence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4. Multiplier Ideal Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5. Nef and Pseudoeffective Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6. Numerical Characterization of the Kähler Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7. Cones of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
8. Duality Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9. Approximation of psh functions by logarithms of holomorphic functions . . . . . 42
10. Zariski Decomposition and Movable Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11. The Orthogonality Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
12. Proof of the Main Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

0. Preliminary material

Let X be a complex manifold and n = dimC X . The bundle of differential forms
of typr (p, q) is denoted by Λp,qT ∗

X . We are especially interested in closed positive
currents of type (p, p)

T = ip
2 ∑

|J|=|K|=p

TJK(z)dzJ ∧ dzJ , dzJ = dzj1 ∧ . . . ∧ dzjp , dT = 0.

Recall that a current is a differential form with distribution coefficients, and that
such a (p, p) current is said to be positive (in the “medium positivity” sense) if the
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distribution
∑
λJλKTJK is a positive measure for all complex numbers λJ . The

coefficients TJK are then complex measures. Important examples of closed positive
(p, p)-currents are currents of integration over analytic cycles of codimension p :

Z =
∑

cjZj , [Z] =
∑

cj [Zj ]

where the current [Zj ] is defined by duality as

〈[Zj], u〉 =

∫

Zj

u|Zj

for every (n − p, n − p) test form u on X . Another important example of positive
(1, 1)-current is the Hessian form T = i∂∂ϕ of a plurisubharmonic function on an
open set Ω ⊂ X . A Kähler metric on X is a positive definite hermitian (1, 1)-form

ω(z) = i
∑

1≤j,k≤n

ωjk(z)dzj ∧ dzk such that dω = 0,

with smooth coefficients. To every closed real (1, 1)-form (or current) α is associated
its De Rham cohomology class

{α} ∈ H1,1(X,R) ⊂ H2(X,R).

We denote here by Hk(X,C) (resp. Hk(X,R)) the complex (real) De Rham coho-
mology group of degree k, and by Hp,q(X,C) the subspace of classes which can be
represented as closed (p, q)-forms, p+ q = k.

We will rely on the nontrivial fact that all cohomology groups involved (De
Rham, Dolbeault, . . .) can be defined either in terms of smooth forms or in terms of
currents. In fact, if we consider the associated complexes of sheaves, forms and cur-
rents both provide acyclic resolutions of the same sheaf (locally constant functions,
resp. holomorphic sections), hence define the same cohomology groups.

In the sequel, we are mostly interested in the geometry of compact complex
manifolds. The compactness assumption brings many interesting features such as
finitess results for the cohomology or the topology, Stokes theorem, intersection
formulas of Bezout type, etc. A projective algebraic manifold is a closed submanifold
X of some complex projective space PN = PN

C
defined by a finite collection of

homogeneous polynomial equations

Pj(z0, z1, . . . , zN ) = 0, 1 ≤ j ≤ k

(in such a way that X is non singular). An important theorem due to Chow states
that every complex analytic submanifold of PN is in fact automatically algebraic, i.e.
defined as above by a finite collection of polynomials. We will prove this in section 4.

However, we will sometimes need to study local situations, and in that case it is
also useful to consider the case of (pseudoconvex) open sets in Cn.

(0.1) Definition.

a) A hermitian manifold is a pair (X,ω) where ω is a C∞ positive definite (1, 1)-
form on X.
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b) X is said to be a Kähler manifold if X carries at least one Kähler metric ω.

Since ω is real, the conditions dω = 0, d′ω = 0, d′′ω = 0 are all equivalent. In
local coordinates we see that d′ω = 0 if and only if

∂ωjk
∂zl

=
∂ωlk
∂zj

, 1 ≤ j, k, l ≤ n.

A simple computation gives

ωn

n!
= det(ωjk)

∧

1≤j≤n

(
idzj ∧ dzj

)
= 2n det(ωjk) dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn,

where zn = xn + iyn. Therefore the (n, n)-form

(0.2) dV =
1

n!
ωn

is positive and coincides with the hermitian volume element of X . If X is compact,
then

∫
X
ωn = n! Volω(X) > 0. This simple remark already implies that compact

Kähler manifolds must satisfy some restrictive topological conditions:

(0.3) Consequence.

a) If (X,ω) is compact Kähler and if {ω} denotes the cohomology class of ω in
H2(X,R), then {ω}n 6= 0.

b) If X is compact Kähler, then H2k(X,R) 6= 0 for 0 ≤ k ≤ n. In fact, {ω}k is a
non zero class in H2k(X,R).

(0.4) Example. The complex projective space Pn is Kähler. A natural Kähler metric
ωFS on Pn, called the Fubini-Study metric, is defined by

p⋆ωFS =
i

2π
d′d′′ log

(
|ζ0|

2 + |ζ1|
2 + · · ·+ |ζn|

2
)

where ζ0, ζ1, . . . , ζn are coordinates of Cn+1 and where p : Cn+1 \ {0} → Pn is the
projection. Let z = (ζ1/ζ0, . . . , ζn/ζ0) be non homogeneous coordinates on Cn ⊂ Pn.
Then a calculation shows that

ωFS =
i

2π
d′d′′ log(1 + |z|2),

∫

Pn

ωnFS = 1.

It is also well-known from topology that {ωFS} ∈ H2(Pn,Z) is a generator of the
cohomology algebra H•(Pn,Z).

(0.5) Example. A complex torus is a quotient X = Cn/Γ by a lattice Γ of rank 2n.
Then X is a compact complex manifold. Any positive definite hermitian form ω =
i
∑
ωjkdzj ∧ dzk with constant coefficients defines a Kähler metric on X .

(0.6) Example. Every (complex) submanifold Y of a Kähler manifold (X, β) is Kähler
with metric ω = β↾Y . Especially, all complex submanifolds of X ⊂ PN are Kähler
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with Kähler metric ω = ωFS↾X . Since ωFS is in H2(P,Z), the restriction ω is an
integral class in H2(X,Z). Conversely, the Kodaira embedding theorem [Kod54]
states that every compact Kähler manifold X possessing a Kähler metric ω with an
integral cohomology class {ω} ∈ H2(X,Z) can be embedded in projective space as
a projective algebraic subvariety. We will prove this in section 4.

(0.7) Example. Consider the complex surface

X = (C2 \ {0})/Γ

where Γ = {λn ; n ∈ Z}, λ < 1, acts as a group of homotheties. Since C2 \ {0}
is diffeomorphic to R⋆+ × S3, we have X ≃ S1 × S3. Therefore H2(X,R) = 0 by
Künneth’s formula, and property 0.3 b) shows that X is not Kähler. More generally,
one can take Γ to be an infinite cyclic group generated by a holomorphic contraction
of C2, of the form

(
z1
z2

)
7−→

(
λ1z1
λ2z2

)
, resp.

(
z1
z2

)
7−→

(
λz1

λz2 + zp1

)
,

where λ, λ1, λ2 are complex numbers such that 0 < |λ1| ≤ |λ2| < 1, 0 < |λ| < 1, and
p a positive integer. These non Kähler surfaces are called Hopf surfaces.

1. Hermitian Vector Bundles, Connections and Curvature

The goal of this section is to recall the most basic definitions of hemitian differential
geometry related to the concepts of connection, curvature and first Chern class of a
line bundle.

Let F be a complex vector bundle of rank r over a smooth differentiable mani-
fold M . A connection D on F is a linear differential operator of order 1

D : C∞(M,ΛqT ⋆M ⊗ F ) → C∞(M,Λq+1T ⋆M ⊗ F )

such that

(1.1) D(f ∧ u) = df ∧ u+ (−1)deg ff ∧Du

for all forms f ∈ C∞(M,ΛpT ⋆M ), u ∈ C∞(X,ΛqT ⋆M ⊗ F ). On an open set Ω ⊂ M

where F admits a trivialization θ : F|Ω
≃
−→ Ω×Cr, a connection D can be written

Du ≃θ du+ Γ ∧ u

where Γ ∈ C∞(Ω,Λ1T ⋆M ⊗ Hom(Cr,Cr)) is an arbitrary matrix of 1-forms and d
acts componentwise. It is then easy to check that

D2u ≃θ (dΓ + Γ ∧ Γ ) ∧ u on Ω.

Since D2 is a globally defined operator, there is a global 2-form

(1.2) Θ(D) ∈ C∞(M,Λ2T ⋆M ⊗ Hom(F, F ))
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such that D2u = Θ(D) ∧ u for every form u with values in F .

Assume now that F is endowed with a C∞ hermitian metric along the fibers and
that the isomorphism F|Ω ≃ Ω × Cr is given by a C∞ frame (eλ). We then have a
canonical sesquilinear pairing

C∞(M,ΛpT ⋆M ⊗ F ) × C∞(M,ΛqT ⋆M ⊗ F ) −→ C∞(M,Λp+qT ⋆M ⊗ C)(1.3)

(u, v) 7−→ {u, v}

given by

{u, v} =
∑

λ,µ

uλ ∧ vµ〈eλ, eµ〉, u =
∑

uλ ⊗ eλ, v =
∑

vµ ⊗ eµ.

The connection D is said to be hermitian if it satisfies the additional property

d{u, v} = {Du, v} + (−1)deg u{u,Dv}.

Assuming that (eλ) is orthonormal, one easily checks that D is hermitian if and only
if Γ ⋆ = −Γ . In this case Θ(D)⋆ = −Θ(D), thus

iΘ(D) ∈ C∞(M,Λ2T ⋆M ⊗ Herm(F, F )).

(1.4) Special case. For a bundle F of rank 1, the connection form Γ of a hermitian
connection D can be seen as a 1-form with purely imaginary coefficients Γ = iA (A
real). Then we have Θ(D) = dΓ = idA. In particular iΘ(F ) is a closed 2-form. The
first Chern class of F is defined to be the cohomology class

c1(F )R =
{ i

2π
Θ(D)

}
∈ H2

DR(M,R).

The cohomology class is actually independent of the connection, since any other
connection D1 differs by a global 1-form, D1u = Du + B ∧ u, so that Θ(D1) =
Θ(D) + dB. It is well-known that c1(F )R is the image in H2(M,R) of an integral
class c1(F ) ∈ H2(M,Z) ; by using the exponential exact sequence

0 → Z → E → E⋆ → 0,

c1(F ) can be defined in Čech cohomology theory as the image by the coboundary
map H1(M, E⋆) → H2(M,Z) of the cocycle {gjk} ∈ H1(M, E⋆) defining F ; see e.g.
[GrH78] for details. �

We now concentrate ourselves on the complex analytic case. If M = X is a
complex manifold X , every connection D on a complex C∞ vector bundle F can be
splitted in a unique way as a sum of a (1, 0) and of a (0, 1)-connection, D = D′+D′′.
In a local trivialization θ given by a C∞ frame, one can write

D′u ≃θ d
′u+ Γ ′ ∧ u,(1.5′)

D′′u ≃θ d
′′u+ Γ ′′ ∧ u,(1.5′′)
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with Γ = Γ ′+Γ ′′. The connection is hermitian if and only if Γ ′ = −(Γ ′′)⋆ in any or-
thonormal frame. Thus there exists a unique hermitian connection D corresponding
to a prescribed (0, 1) part D′′.

Assume now that the bundle F itself has a holomorphic structure. The unique
hermitian connection for which D′′ is the d′′ operator defined in § 1 is called the
Chern connection of F . In a local holomorphic frame (eλ) of E|Ω, the metric is given
by the hermitian matrix H = (hλµ), hλµ = 〈eλ, eµ〉. We have

{u, v} =
∑

λ,µ

hλµuλ ∧ vµ = u† ∧Hv,

where u† is the transposed matrix of u, and easy computations yield

d{u, v} = (du)† ∧Hv + (−1)deg uu† ∧ (dH ∧ v +Hdv)

=
(
du+H

−1
d′H ∧ u

)†
∧Hv + (−1)deg uu† ∧ (dv +H

−1
d′H ∧ v)

using the fact that dH = d′H + d′H and H
†

= H. Therefore the Chern connection
D coincides with the hermitian connection defined by

(1.6)

{
Du ≃θ du+H

−1
d′H ∧ u,

D′ ≃θ d
′ +H

−1
d′H ∧ • = H

−1
d′(H•), D′′ = d′′.

It is clear from this relations that D′2 = D′′2 = 0. Consequently D2 is given by
to D2 = D′D′′ + D′′D′, and the curvature tensor Θ(D) is of type (1, 1). Since
d′d′′ + d′′d′ = 0, we get

(D′D′′ +D′′D′)u ≃θ H
−1
d′H ∧ d′′u+ d′′(H

−1
d′H ∧ u)

= d′′(H
−1
d′H) ∧ u.

(1.7) Proposition. The Chern curvature tensor Θ(F ) := Θ(D) is such that

iΘ(F ) ∈ C∞(X,Λ1,1T ⋆X ⊗ Herm(F, F )).

If θ : E↾Ω → Ω×Cr is a holomorphic trivialization and if H is the hermitian matrix
representing the metric along the fibers of F↾Ω , then

iΘ(F ) ≃θ i d′′(H
−1
d′H) on Ω. �

Let (z1, . . . , zn) be holomorphic coordinates on X and let (eλ)1≤λ≤r be an or-
thonormal frame of F . Writing

iΘ(F ) =
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµdzj ∧ dzk ⊗ e⋆λ ⊗ eµ,

we can identify the curvature tensor to a hermitian form

(1.8) Θ̃(F )(ξ ⊗ v) =
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµξjξkvλvµ
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on TX ⊗ F . This leads in a natural way to positivity concepts, following definitions
introduced by Kodaira [Kod53], Nakano [Nak55] and Griffiths [Gri69].

(1.9) Definition. The hermitian vector bundle F is said to be

a) positive in the sense of Nakano if Θ̃(F )(τ) > 0 for all non zero tensors τ =∑
τjλ∂/∂zj ⊗ eλ ∈ TX ⊗ F .

b) positive in the sense of Griffiths if Θ̃(F )(ξ⊗v) > 0 for all non zero decomposable
tensors ξ ⊗ v ∈ TX ⊗ F ;

Corresponding semipositivity concepts are defined by relaxing the strict inequalities.

(1.10) Special case of rank 1 bundles. Assume that F is a line bundle. The hermitian
matrix H = (h11) associated to a trivialization θ : F↾Ω ≃ Ω×C is simply a positive
function which we find convenient to denote by e−ϕ, ϕ ∈ C∞(Ω,R). In this case the
curvature form Θ(F ) can be identified to the (1, 1)-form 2d′d′′ϕ, and

i

2π
Θ(F ) =

i

π
d′d′′ϕ = ddcϕ

is a real (1, 1)-form. Hence F is semipositive (in either the Nakano or Griffiths sense)
if and only if ϕ is psh, resp. positive if and only if ϕ is strictly psh. In this setting,
the Lelong-Poincaré equation can be generalized as follows: let σ ∈ H0(X,F ) be a
non zero holomorphic section. Then

(1.11) ddc log ‖σ‖ = [Zσ] −
i

2π
Θ(F ).

Formula (1.11) is immediate if we write ‖σ‖ = |θ(σ)|e−ϕ and if we apply (1.20) to
the holomorphic function f = θ(σ). As we shall see later, it is very important for
the applications to consider also singular hermitian metrics.

(1.12) Definition. A singular (hermitian) metric on a line bundle F is a metric which

is given in any trivialization θ : F↾Ω
≃
−→ Ω × C by

‖ξ‖ = |θ(ξ)| e−ϕ(x), x ∈ Ω, ξ ∈ Fx

where ϕ ∈ L1
loc(Ω) is an arbitrary function, called the weight of the metric with

respect to the trivialization θ.

If θ′ : F↾Ω′ −→ Ω′ × C is another trivialization, ϕ′ the associated weight and
g ∈ O⋆(Ω ∩ Ω′) the transition function, then θ′(ξ) = g(x) θ(ξ) for ξ ∈ Fx, and so
ϕ′ = ϕ + log |g| on Ω ∩ Ω′. The curvature form of F is then given formally by the
closed (1, 1)-current i

2π
Θ(F ) = ddcϕ on Ω ; our assumption ϕ ∈ L1

loc(Ω) guarantees

that Θ(F ) exists in the sense of distribution theory. As in the smooth case, i
2πΘ(F )

is globally defined on X and independent of the choice of trivializations, and its De
Rham cohomology class is the image of the first Chern class c1(F ) ∈ H2(X,Z) in
H2
DR(X,R). Before going further, we discuss two basic examples.
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(1.13) Example. Let D =
∑
αjDj be a divisor with coefficients αj ∈ Z and let

F = O(D) be the associated invertible sheaf of meromorphic functions u such that
div(u) + D ≥ 0 ; the corresponding line bundle can be equipped with the singular
metric defined by ‖u‖ = |u|. If gj is a generator of the ideal of Dj on an open
set Ω ⊂ X then θ(u) = u

∏
g
αj

j defines a trivialization of O(D) over Ω, thus our
singular metric is associated to the weight ϕ =

∑
αj log |gj |. By the Lelong-Poincaré

equation, we find
i

2π
Θ
(
O(D)

)
= ddcϕ = [D],

where [D] =
∑
αj [Dj ] denotes the current of integration over D. �

(1.14) Example. Assume that σ1, . . . , σN are non zero holomorphic sections of F .
Then we can define a natural (possibly singular) hermitian metric on F ⋆ by

‖ξ⋆‖2 =
∑

1≤j≤n

∣∣ξ⋆.σj(x)
∣∣2 for ξ⋆ ∈ F ⋆x .

The dual metric on F is given by

‖ξ‖2 =
|θ(ξ)|2

|θ(σ1(x))|2 + . . .+ |θ(σN (x))|2

with respect to any trivialization θ. The associated weight function is thus given by
ϕ(x) = log

(∑
1≤j≤N |θ(σj(x))|2

)
1/2. In this case ϕ is a psh function, thus iΘ(F ) is

a closed positive current. Let us denote by Σ the linear system defined by σ1, . . . , σN
and by BΣ =

⋂
σ−1
j (0) its base locus. We have a meromorphic map

ΦΣ : X rBΣ → PN−1, x 7→ (σ1(x) : σ2(x) : . . . : σN (x)).

Then i
2π
Θ(F ) is equal to the pull-back over X r BΣ of the Fubini-Study metric

ωFS = i
2π log(|z1|2 + . . .+ |zN |2) of PN−1 by ΦΣ . �

(1.15) Ample and very ample line bundles. A holomorphic line bundle F over a
compact complex manifold X is said to be

a) very ample if the map Φ|F | : X → PN−1 associated to the complete linear system
|F | = P (H0(X,F )) is a regular embedding (by this we mean in particular that
the base locus is empty, i.e. B|F | = ∅).

b) ample if some multiple mF , m > 0, is very ample.

Here we use an additive notation for Pic(X) = H1(X,O⋆), hence the symbol mF
denotes the line bundle F⊗m. By Example 1.14, every ample line bundle F has a
smooth hermitian metric with positive definite curvature form; indeed, if the linear
system |mF | gives an embedding in projective space, then we get a smooth hermitian
metric on F⊗m, and the m-th root yields a metric on F such that i

2π
Θ(F ) =

1
mΦ

⋆
|mF |ωFS. Conversely, the Kodaira embedding theorem [Kod54] tells us that every

positive line bundle F is ample (see (4.14) for a straightforward analytic proof of
the Kodaira embedding theorem).
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2. Bochner Technique and Vanishing Theorems

We first recall briefly a few basic facts of Hodge theory. Assume for the moment that
M is a differentiable manifold equipped with a Riemannian metric g =

∑
gijdxi ⊗

dxj . Given a q-form u on M with values in F , we consider the global L2 norm

‖u‖2 =

∫

M

|u(x)|2dVg(x)

where |u| is the pointwise hermitian norm and dVg is the Riemannian volume form.
The Laplace-Beltrami operator associated to the connection D is

∆ = DD⋆ +D⋆D

where
D⋆ : C∞(M,ΛqT ⋆M ⊗ F ) → C∞(M,Λq−1T ⋆M ⊗ F )

is the (formal) adjoint of D with respect to the L2 inner product. Assume that M
is compact. Since

∆ : C∞(M,ΛqT ⋆M ⊗ F ) → C∞(M,ΛqT ⋆M ⊗ F )

is a self-adjoint elliptic operator in each degree, standard results of PDE theory
show that there is an orthogonal decomposition

C∞(M,ΛqT ⋆M ⊗ F ) = Hq(M,F ) ⊕ Im∆

where Hq(M,F ) = Ker∆ is the space of harmonic forms of degree q; Hq(M,F ) is a
finite dimensional space. Assume moreover that the connection D is integrable, i.e.
that D2 = 0. It is then easy to check that there is an orthogonal direct sum

Im∆ = ImD ⊕ ImD⋆,

indeed 〈Du,D⋆v〉 = 〈D2u, v〉 = 0 for all u, v. Hence we get an orthogonal decompo-
sition

C∞(M,ΛqT ⋆M ⊗ F ) = Hq(M,F ) ⊕ ImD ⊕ ImD⋆,

and KerD = (ImD∗)⊥ is precisely equal to Hq(M,F ) ⊕ ImD. Especially, the q-
th cohomology group Hq

DR(M,F ) := KerD/ ImD is isomorphic to Hq(M,F ). In
general, a nontrivial vector bundle F does not admit an integrable connection, but
this is certainly the case for the trivial bundle F = M × C. This implies that the
De Rham cohomology groups Hq

DR(M,C) can be computed in terms of harmonic
forms:

(2.1) Hodge Fundamental Theorem. If M is a compact Riemannian manifold, there
is an isomorphism

Hq
DR(M,C) ≃ Hq(M,C)

from De Rham cohomology groups onto spaces of harmonic forms. �

A rather important consequence of the Hodge fundamental theorem is a proof
of the Poincaré duality theorem. Assume that the Riemannian manifold (M, g) is
oriented. Then there is a (conjugate linear) Hodge star operator
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⋆ : ΛqT ⋆M ⊗ C → Λm−qT ⋆M ⊗ C, m = dimR M

defined by u ∧ ⋆v = 〈u, v〉dVg for any two complex valued q-forms u, v. A standard
computation shows that ⋆ commutes with ∆, hence ⋆u is harmonic if and only if u
is. This implies that the natural pairing

(2.2) Hq
DR(M,C) ×Hm−q

DR (M,C), ({u}, {v}) 7→

∫

M

u ∧ v

is a nondegenerate duality, the dual of a class {u} represented by a harmonic form
being {⋆u}.

Let us now suppose that X is a compact complex manifold equipped with a
hermitian metric ω =

∑
ωjkdzj ∧ dzk. Let F be a holomorphic vector bundle on

X equipped with a hermitian metric, and let D = D′ +D′′ be its Chern curvature
form. All that we said above for the Laplace-Beltrami operator ∆ still applies to the
complex Laplace operators

∆′ = D′D′⋆ +D′⋆D′, ∆′′ = D′′D′′⋆ +D′′⋆D′′,

with the great advantage that we always have D′2 = D′′2 = 0. Especially, if X is a
compact complex manifold, there are isomorphisms

(2.3) Hp,q(X,F ) ≃ Hp,q(X,F )

between Dolbeault cohomology groups Hp,q(X,F ) := KerD′′/ ImD′′ and spaces
Hp,q(X,F ) of ∆′′-harmonic forms of bidegree (p, q) with values in F ; indeed, as
above, we have an orthogonal direct sum

C∞(X,Λp,qT ∗
X ⊗ F ) = Ker∆′′ ⊕ Im∆′′ = Hp,q(X,F ) ⊕ ImD′′ ⊕ ImD′′∗

and KerD′′ = (ImD′′∗)⊥ = Hp,q(X,F )⊕ ImD′′. Now, there is a generalized Hodge
star operator

⋆ : Λp,qT ⋆X ⊗ F → Λn−p,n−qT ⋆X ⊗ F ⋆, n = dimC X,

such that u ∧ ⋆v = 〈u, v〉dVg, for any two F -valued (p, q)-forms, when the wedge
product u ∧ ⋆v is combined with the pairing F × F ⋆ → C. This leads to the Serre
duality theorem [Ser55]: the bilinear pairing

(2.4) Hp,q(X,F ) ×Hn−p,n−q(X,F ⋆), ({u}, {v}) 7→

∫

X

u ∧ v

is a nondegenerate duality. Combining this with the Dolbeault isomorphism, we may
restate the result in the form of the duality formula

(2.4′) Hq(X,ΩpX ⊗O(F ))⋆ ≃ Hn−q(X,Ωn−pX ⊗O(F ⋆)).

We now proceed to explain the basic ideas of the Bochner technique used to
prove vanishing theorems. Great simplifications occur in the computations if the
hermitian metric on X is supposed to be Kähler, i.e. if the associated fundamental
(1, 1)-form

ω = i
∑

ωjkdzj ∧ dzk
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satisfies dω = 0. It can be easily shown that ω is Kähler if and only if there are
holomorphic coordinates (z1, . . . , zn) centered at any point x0 ∈ X such that the
matrix of coefficients (ωjk) is tangent to identity at order 2, i.e.

ωjk(z) = δjk +O(|z|2) at x0.

It follows that all order 1 operatorsD, D′, D′′ and their adjoints D⋆, D′⋆,D′′⋆ admit
at x0 the same expansion as the analogous operators obtained when all hermitian
metrics on X or F are constant. From this, the basic commutation relations of
Kähler geometry can be checked. If A,B are differential operators acting on the
algebra C∞(X,Λ•,•T ⋆X ⊗ F ), their graded commutator (or graded Lie bracket) is
defined by

[A,B] = AB − (−1)abBA

where a, b are the degrees of A and B respectively. If C is another endomorphism
of degree c, the following purely formal Jacobi identity holds:

(−1)ca
[
A, [B,C]

]
+ (−1)ab

[
B, [C,A]

]
+ (−1)bc

[
C, [A,B]

]
= 0.

(2.5) Basic commutation relations. Let (X,ω) be a Kähler manifold and let L be the
operators defined by Lu = ω ∧ u and Λ = L⋆. Then

[D′′⋆, L] = iD′,

[Λ,D′′] = −iD′⋆,

[D′⋆, L] = −iD′′,

[Λ,D′] = iD′′⋆.

Proof (sketch). The first step is to check the identity [d′′⋆, L] = id′ for constant
metrics on X = Cn and F = X × C, by a brute force calculation. All three other
identities follow by taking conjugates or adjoints. The case of variable metrics follows
by looking at Taylor expansions up to order 1; essentially nothing changes since the
Kähler metric ω just introduces additional O(|z|2) terms which have zero derivative
at the center of the coordinate chart. �

(2.6) Bochner-Kodaira-Nakano identity. If (X,ω) is Kähler, the complex Laplace
operators ∆′ and ∆′′ acting on F -valued forms satisfy the identity

∆′′ = ∆′ + [iΘ(F ), Λ].

Proof. The last equality in (2.5) yields D′′⋆ = −i[Λ,D′], hence

∆′′ = [D′′, δ′′] = −i[D′′,
[
Λ,D′]

]
.

By the Jacobi identity we get
[
D′′, [Λ,D′]

]
=
[
Λ, [D′, D′′]] +

[
D′, [D′′, Λ]

]
= [Λ,Θ(F )] + i[D′, D′⋆],

taking into account that [D′, D′′] = D2 = Θ(F ). The formula follows. �

(2.7) Corollary (Hodge decomposition). If (X,ω) is a compact Kähler manifold,
there is a canonical decomposition
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Hk(X,R) =
⊕

p+q=k

Hp,q(X,C)

of the De Rham cohomology groups in terms of the Dolbeault cohomology groups.

Proof. If we apply the Bochner-Kodaira-Nakano identity to the trivial bundle F =
X × C, we find ∆′′ = ∆′. Morever

∆ = [d′ + d′′, d′⋆ + d′′⋆] = ∆′ +∆′′ + [d′, d′′⋆] + [d′′, d′⋆].

We claim that [d′, d′′⋆] = [d′′, d′⋆] = 0. Indeed, we have [d′, d′′⋆] = −i
[
d′, [Λ, d′]

]
by

(2.5), and the Jacobi identity implies

−
[
d′, [Λ, d′]

]
+
[
Λ, [d′, d′]

]
+
[
d′, [d′, Λ]

]
= 0,

hence −2
[
d′, [Λ, d′]

]
= 0 and [d′, d′′⋆] = 0. The second identity is similar. As a

consequence

∆′ = ∆′′ =
1

2
∆.

We infer that ∆ preserves the bidegree of forms and operates “separately” on each
term C∞(X,Λp,qT ∗

X). Hence, on the level of harmonic forms we have

Hk(X,C) =
⊕

p+q=k

Hp,q(X,C).

The decomposition theorem (2.7) now follows from the Hodge isomorphisms for
De Rham and Dolbeault groups. The decomposition is canonical since Hp,q(X)
coincides with the set of classes in Hk(X,C) which can be represented by d-closed
(p, q)-forms. �

Now, assume that X is compact Kähler and that u ∈ C∞(X,Λp,qT ⋆X ⊗ F ) is
an arbitrary (p, q)-form. An integration by parts yields

〈∆′u, u〉 = ‖D′u‖2 + ‖D′⋆u‖2 ≥ 0

and similarly for ∆′′, hence we get the basic a priori inequality

(2.8) ‖D′′u‖2 + ‖D′′⋆u‖2 ≥

∫

X

〈[iΘ(F ), Λ]u, u〉dVω.

This inequality is known as the Bochner-Kodaira-Nakano inequality (see [Boc48],
[Kod53], [Nak55]). When u is ∆′′-harmonic, we get

∫

X

(
〈[iΘ(F ), Λ]u, u〉+ 〈Tωu, u〉

)
dV ≤ 0.

If the hermitian operator [iΘ(F ), Λ] acting on Λp,qT ⋆X ⊗ F is positive on each fiber,
we infer that u must be zero, hence

Hp,q(X,F ) = Hp,q(X,F ) = 0

by Hodge theory. The main point is thus to compute the curvature form Θ(F ) and
find sufficient conditions under which the operator [iΘ(F ), Λ] is positive definite.
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Elementary (but somewhat tedious) calculations yield the following formulae: if the
curvature of F is written as in (1.8) and u =

∑
uJ,K,λdzI ∧ dzJ ⊗ eλ, |J | = p,

|K| = q, 1 ≤ λ ≤ r is a (p, q)-form with values in F , then

〈[iΘ(F ), Λ]u, u〉 =
∑

j,k,λ,µ,J,S

cjkλµ uJ,jS,λ uJ,kS,µ(2.9)

+
∑

j,k,λ,µ,R,K

cjkλµ ukR,K,λ ujR,K,µ

−
∑

j,λ,µ,J,K

cjjλµ uJ,K,λ uJ,K,µ,

where the sum is extended to all indices 1 ≤ j, k ≤ n, 1 ≤ λ, µ ≤ r and multiindices
|R| = p − 1, |S| = q − 1 (here the notation uJKλ is extended to non necessarily
increasing multiindices by making it alternate with respect to permutations). It is
usually hard to decide the sign of the curvature term (2.9), except in some special
cases.

The easiest case is when p = n. Then all terms in the second summation of
(2.9) must have j = k and R = {1, . . . , n} r {j}, therefore the second and third
summations are equal. It follows that [iΘ(F ), Λ] is positive on (n, q)-forms under the
assumption that F is positive in the sense of Nakano. In this case X is automatically
Kähler since

ω = TrF (iΘ(F )) = i
∑

j,k,λ

cjkλλdzj ∧ dzk = iΘ(detF )

is a Kähler metric.

(2.10) Nakano vanishing theorem ([Nak55]). Let X be a compact complex manifold
and let F be a Nakano positive vector bundle on X. Then

Hn,q(X,F ) = Hq(X,KX ⊗ F ) = 0 for every q ≥ 1. �

Another tractable case is the case where F is a line bundle (r = 1). Indeed,
at each point x ∈ X , we may then choose a coordinate system which diagonalizes
simultaneously the hermitians forms ω(x) and iΘ(F )(x), in such a way that

ω(x) = i
∑

1≤j≤n

dzj ∧ dzj , iΘ(F )(x) = i
∑

1≤j≤n

γjdzj ∧ dzj

with γ1 ≤ . . . ≤ γn. The curvature eigenvalues γj = γj(x) are then uniquely defined
and depend continuously on x. With our previous notation, we have γj = cjj11 and
all other coefficients cjkλµ are zero. For any (p, q)-form u =

∑
uJKdzJ ∧ dzK ⊗ e1,

this gives

〈[iΘ(F ), Λ]u, u〉 =
∑

|J|=p, |K|=q

(∑

j∈J

γj +
∑

j∈K

γj −
∑

1≤j≤n

γj

)
|uJK |2

≥ (γ1 + . . .+ γq − γn−p+1 − . . .− γn)|u|
2.(2.11)
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Assume that iΘ(F ) is positive. It is then natural to make the special choice
ω = iΘ(F ) for the Kähler metric. Then γj = 1 for j = 1, 2, . . . , n and we obtain
〈[iΘ(F ), Λ]u, u〉 = (p+ q − n)|u|2. As a consequence:

(2.12) Akizuki-Kodaira-Nakano vanishing theorem ([AN54]). If F is a positive line
bundle on a compact complex manifold X, then

Hp,q(X,F ) = Hq(X,ΩpX ⊗ F ) = 0 for p+ q ≥ n+ 1. �

More generally, if F is a Griffiths positive (or ample) vector bundle of rank r ≥ 1,
Le Potier [LP75] proved that Hp,q(X,F ) = 0 for p + q ≥ n + r. The proof is
not a direct consequence of the Bochner technique. A rather easy proof has been
found by M. Schneider [Sch74], using the Leray spectral sequence associated to the
projectivized bundle P(F ) → X .

3. L
2 Estimates and Existence Theorems

The starting point is the following L2 existence theorem, which is essentially due
to Hörmander [Hör65, 66], and Andreotti-Vesentini [AV65]. We will only outline
the main ideas, referring e.g. to [Dem82] for a detailed exposition of the technical
situation considered here.

(3.1) Theorem. Let (X,ω) be a Kähler manifold. Here X is not necessarily compact,
but we assume that the geodesic distance δω is complete on X. Let F be a hermitian
vector bundle of rank r over X, and assume that the curvature operator A = Ap,qF,ω =
[iΘ(F ), Λω] is positive definite everywhere on Λp,qT ⋆X⊗F , q ≥ 1. Then for any form
g ∈ L2(X,Λp,qT ⋆X ⊗F ) satisfying D′′g = 0 and

∫
X
〈A−1g, g〉 dVω < +∞, there exists

f ∈ L2(X,Λp,q−1T ⋆X ⊗ F ) such that D′′f = g and

∫

X

|f |2 dVω ≤

∫

X

〈A−1g, g〉 dVω.

Proof. The assumption that δω is complete implies the existence of cut-off functions
ψν with arbitrarily large compact support such that |dψν | ≤ 1 (take ψν to be a
function of the distance x 7→ δω(x0, x), which is an almost everywhere differentiable
1-Lipschitz function, and regularize if necessary). From this, it follows that very
form u ∈ L2(X,Λp,qT ⋆X ⊗ F ) such that D′′u ∈ L2 and D′′⋆u ∈ L2 in the sense
of distribution theory is a limit of a sequence of smooth forms uν with compact
support, in such a way that uν → u, D′′uν → D′′u and D′′⋆uν → D′′⋆u in L2

(just take uν to be a regularization of ψνu). As a consequence, the basic a priori
inequality (2.8) extends to arbitrary forms u such that u, D′′u,D′′⋆u ∈ L2 . Now,
consider the Hilbert space orthogonal decomposition

L2(X,Λp,qT ⋆X ⊗ F ) = KerD′′ ⊕ (KerD′′)⊥,
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observing that KerD′′ is weakly (hence strongly) closed. Let v = v1 + v2 be
the decomposition of a smooth form v ∈ Dp,q(X,F ) with compact support ac-
cording to this decomposition (v1, v2 do not have compact support in general !).
Since (KerD′′)⊥ ⊂ KerD′′⋆ by duality and g, v1 ∈ KerD′′ by hypothesis, we get
D′′⋆v2 = 0 and

|〈g, v〉|2 = |〈g, v1〉|
2 ≤

∫

X

〈A−1g, g〉 dVω

∫

X

〈Av1, v1〉 dVω

thanks to the Cauchy-Schwarz inequality. The a priori inequality (2.8) applied to
u = v1 yields

∫

X

〈Av1, v1〉 dVω ≤ ‖D′′v1‖
2 + ‖D′′⋆v1‖

2 = ‖D′′⋆v1‖
2 = ‖D′′⋆v‖2.

Combining both inequalities, we find

|〈g, v〉|2 ≤
(∫

X

〈A−1g, g〉 dVω
)
‖D′′⋆v‖2

for every smooth (p, q)-form v with compact support. This shows that we have a
well defined linear form

w = D′′⋆v 7−→ 〈v, g〉, L2(X,Λp,q−1T ⋆X ⊗ F ) ⊃ D′′⋆(Dp,q(F )) −→ C

on the range of D′′⋆. This linear form is continuous in L2 norm and has norm ≤ C
with

C =
(∫

X

〈A−1g, g〉 dVω
)1/2

.

By the Hahn-Banach theorem, there is an element f ∈ L2(X,Λp,q−1T ⋆X ⊗ F ) with
||f || ≤ C, such that 〈v, g〉 = 〈D′′⋆v, f〉 for every v, hence D′′f = g in the sense
of distributions. The inequality ||f || ≤ C is equivalent to the last estimate in the
theorem. �

The above L2 existence theorem can be applied in the fairly general context of
weakly pseudoconvex manifolds. By this, we mean a complex manifold X such that
there exists a smooth psh exhaustion function ψ on X (ψ is said to be an exhaustion
if for every c > 0 the sublevel setXc = ψ−1(c) is relatively compact, i.e. ψ(z) tends to
+∞ when z is taken outside larger and larger compact subsets of X). In particular,
every compact complex manifold X is weakly pseudoconvex (take ψ = 0), as well
as every Stein manifold, e.g. affine algebraic submanifolds of CN (take ψ(z) = |z|2),
open balls X = B(z0, r)

(
take ψ(z) = 1/(r − |z − z0|2)

)
, convex open subsets, etc.

Now, a basic observation is that every weakly pseudoconvex Kähler manifold (X,ω)
carries a complete Kähler metric: let ψ ≥ 0 be a psh exhaustion function and set

ωε = ω + ε id′d′′ψ2 = ω + 2ε(2iψd′d′′ψ + id′ψ ∧ d′′ψ).

Then |dψ|ωε
≤ 1/ε and |ψ(x) − ψ(y)| ≤ ε−1δωε

(x, y). It follows easily from this
estimate that the geodesic balls are relatively compact, hence δωε

is complete for
every ε > 0. Therefore, the L2 existence theorem can be applied to each Kähler
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metric ωε, and by passing to the limit it can even be applied to the non necessarily
complete metric ω. An important special case is the following

(3.2) Theorem. Let (X,ω) be a Kähler manifold, dimX = n. Assume that X is
weakly pseudoconvex. Let F be a hermitian line bundle and let

γ1(x) ≤ . . . ≤ γn(x)

be the curvature eigenvalues (i.e. the eigenvalues of iΘ(F ) with respect to the
metric ω) at every point. Assume that the curvature is positive, i.e. γ1 > 0
everywhere. Then for any form g ∈ L2(X,Λn,qT ⋆X ⊗ F ) satisfying D′′g = 0
and

∫
X
〈(γ1 + . . .+ γq)

−1|g|2 dVω < +∞, there exists f ∈ L2(X,Λp,q−1T ⋆X ⊗ F ) such
that D′′f = g and

∫

X

|f |2 dVω ≤

∫

X

(γ1 + . . .+ γq)
−1|g|2 dVω.

Proof. Indeed, for p = n, Formula 2.11 shows that

〈Au, u〉 ≥ (γ1 + . . .+ γq)|u|
2,

hence 〈A−1u, u〉 ≥ (γ1 + . . .+ γq)
−1|u|2. �

An important observation is that the above theorem still applies when the her-
mitian metric on F is a singular metric with positive curvature in the sense of cur-
rents. In fact, by standard regularization techniques (convolution of psh functions
by smoothing kernels), the metric can be made smooth and the solutions obtained
by (3.1) or (3.2) for the smooth metrics have limits satisfying the desired estimates.
Especially, we get the following

(3.3) Corollary. Let (X,ω) be a Kähler manifold, dimX = n. Assume that X is
weakly pseudoconvex. Let F be a holomorphic line bundle equipped with a singular
metric whose local weights are denoted ϕ ∈ L1

loc. Suppose that

iΘ(F ) = 2id′d′′ϕ ≥ εω

for some ε > 0. Then for any form g ∈ L2(X,Λn,qT ⋆X ⊗ F ) satisfying D′′g = 0,
there exists f ∈ L2(X,Λp,q−1T ⋆X ⊗ F ) such that D′′f = g and

∫

X

|f |2e−ϕ dVω ≤
1

qε

∫

X

|g|2e−ϕ dVω. �

Here we denoted somewhat incorrectly the metric by |f |2e−ϕ, as if the weight
ϕ were globally defined on X (of course, this is so only if F is globally trivial). We
will use this notation anyway, because it clearly describes the dependence of the L2

norm on the psh weights.

In order to apply Corollary 3.3 in a fruitful way, it is usually necessary to select
ϕ with suitable logarithmic poles along an analytic set. The basic construction of
such a function is provided by the following Lemma.
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(3.4) Lemma. Let X be a compact complex manifold X equipped with a Kähler metric
ω = i

∑
1≤j,k≤n ωjk(z)dzj ∧ dzk and let Y ⊂ X be an analytic subset of X. Then

there exist globally defined quasi-plurisubharmonic potentials ψ and (ψε)ε∈]0,1] on
X, satisfying the following properties.

(i) The function ψ is smooth on X r Y , satisfies i∂∂ψ ≥ −Aω for some A > 0,
and ψ has logarithmic poles along Y , i.e., locally near Y

ψ(z) ∼ log
∑

k

|gk(z)| +O(1)

where (gk) is a local system of generators of the ideal sheaf IY of Y in X.

(ii) We have ψ = limε→0 ↓ ψε where the ψε are C∞ and possess a uniform Hessian
estimate

i∂∂ψε ≥ −Aω on X.

(iii) Consider the family of hermitian metrics

ωε := ω +
1

2A
i∂∂ψε ≥

1

2
ω.

For any point x0 ∈ Y and any neighborhood U of x0, the volume element of ωε
has a uniform lower bound

∫

U∩Vε

ωnε ≥ δ(U) > 0,

where Vε = {z ∈ X ; ψ(z) < log ε} is the “tubular neighborhood” of radius ε
around Y .

(iv) For every integer p ≥ 0, the family of positive currents ωpε is bounded in mass.
Moreover, if Y contains an irreducible component Y ′ of codimension p, there is
a uniform lower bound

∫

U∩Vε

ωpε ∧ ω
n−p ≥ δp(U) > 0

in any neighborhood U of a regular point x0 ∈ Y ′. In particular, any weak limit
Θ of ωpε as ε tends to 0 satisfies Θ ≥ δ′[Y ′] for some δ′ > 0.

Proof. By compactness of X , there is a covering of X by open coordinate balls Bj,
1 ≤ j ≤ N , such that IY is generated by finitely many holomorphic functions
(gj,k)1≤k≤mj

on a neighborhood of Bj . We take a partition of unity (θj) subordinate
to (Bj) such that

∑
θ2
j = 1 on X , and define

ψ(z) =
1

2
log
∑

j

θj(z)
2
∑

k

|gj,k(z)|
2,

ψε(z) =
1

2
log(e2ψ(z) + ε2) =

1

2
log
(∑

j,k

θj(z)
2|gj,k(z)|

2 + ε2
)
.

Moreover, we consider the family of (1, 0)-forms with support in Bj such that
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γj,k = θj∂gj,k + 2gj,k∂θj.

Straightforward calculations yield

∂ψε =
1

2

∑
j,k θjgj,kγj,k

e2ψ + ε2
,

i∂∂ψε =
i

2

(∑
j,k γj,k ∧ γj,k

e2ψ + ε2
−

∑
j,k θjgj,kγj,k ∧

∑
j,k θjgj,kγj,k

(e2ψ + ε2)2

)
,(3.5)

+ i

∑
j,k |gj,k|

2(θj∂∂θj − ∂θj ∧ ∂θj)

e2ψ + ε2
.

As e2ψ =
∑
j,k θ

2
j |gj,k|

2, the first big sum in i∂∂ψε is nonnegative by the Cauchy-
Schwarz inequality; when viewed as a hermitian form, the value of this sum on a
tangent vector ξ ∈ TX is simply

(3.6)
1

2

(∑
j,k |γj,k(ξ)|

2

e2ψ + ε2
−

∣∣∑
j,k θjgj,kγj,k(ξ)

∣∣2

(e2ψ + ε2)2

)
≥

1

2

ε2

(e2ψ + ε2)2

∑

j,k

|γj,k(ξ)|
2.

Now, the second sum involving θj∂∂θj − ∂θj ∧ ∂θj in (3.5) is uniformly bounded
below by a fixed negative hermitian form −Aω, A≫ 0, and therefore i∂∂ψε ≥ −Aω.
Actually, for every pair of indices (j, j′) we have a bound

C−1 ≤
∑

k

|gj,k(z)|
2/
∑

k

|gj′,k(z)|
2 ≤ C on Bj ∩Bj′ ,

since the generators (gj,k) can be expressed as holomorphic linear combinations
of the (gj′,k) by Cartan’s theorem A (and vice versa). It follows easily that all
terms |gj,k|2 are uniformly bounded by e2ψ + ε2. In particular, ψ and ψε are quasi-
plurisubharmonic, and we see that (i) and (ii) hold true. By construction, the real
(1, 1)-form ωε := ω + 1

2A i∂∂ψε satisfies ωε ≥ 1
2ω, hence it is Kähler and its eigen-

values with respect to ω are at least equal to 1/2.

Assume now that we are in a neighborhood U of a regular point x0 ∈ Y where Y
has codimension p. Then γj,k = θj∂gj,k at x0, hence the rank of the system of (1, 0)-
forms (γj,k)k≥1 is at least equal to p in a neighborhood of x0. Fix a holomorphic local
coordinate system (z1, . . . , zn) such that Y = {z1 = . . . = zp = 0} near x0, and let
S ⊂ TX be the holomorphic subbundle generated by ∂/∂z1, . . . , ∂/∂zp. This choice
ensures that the rank of the system of (1, 0)-forms (γj,k|S) is everywhere equal to p.
By (1,3) and the minimax principle applied to the p-dimensional subspace Sz ⊂ TX,z,
we see that the p-largest eigenvalues of ωε are bounded below by cε2/(e2ψ + ε2)2.

However, we can even restrict the form defined in (3.6) to the (p−1)-dimensional
subspace S ∩ Ker τ where τ(ξ) :=

∑
j,k θjgj,kγj,k(ξ), to see that the (p− 1)-largest

eigenvalues of ωε are bounded below by c/(e2ψ + ε2), c > 0. The p-th eigenvalue is
then bounded by cε2/(e2ψ + ε2)2 and the remaining (n− p)-ones by 1/2. From this
we infer

ωnε ≥ c
ε2

(e2ψ + ε2)p+1
ωn near x0,

ωpε ≥ c
ε2

(e2ψ + ε2)p+1

(
i
∑

1≤ℓ≤p

γj,kℓ
∧ γj,kℓ

)p
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where (γj,kℓ
)1≤ℓ≤p is a suitable p-tuple extracted from the (γj,k), such that⋂

ℓ Ker γj,kℓ
is a smooth complex (but not necessarily holomorphic) subbundle of

codimension p of TX ; by the definition of the forms γj,k, this subbundle must coin-
cide with TY along Y . From this, properties (iii) and (iv) follow easily; actually, up
to constants, we have e2ψ + ε2 ∼ |z1|2 + . . .+ |zp|2 + ε2 and

i
∑

1≤ℓ≤p

γj,kℓ
∧ γj,kℓ

≥ c i∂∂(|z1|
2 + . . .+ |zp|

2) −O(ε)i∂∂|z|2 on U ∩ Vε,

hence, by a straightforward calculation,

ωpε ∧ ω
n−p ≥ c

(
i∂∂ log(|z1|

2 + . . .+ |zp|
2 + ε2)

)p
∧
(
i∂∂(|zp+1|

2 + . . .+ |zn|
2)
)n−p

on U ∩ Vε; notice also that ωnε ≥ 2−(n−p)ωpε ∧ ωn−p, so any lower bound for the
volume of ωpε ∧ ω

n−p will also produce a bound for the volume of ωnε . As it is well
known, the (p, p)-form

( i

2π
∂∂ log(|z1|

2 + . . .+ |zp|
2 + ε2)

)p
on Cn

can be viewed as the pull-back to Cn = Cp×Cn−p of the Fubini-Study volume form
of the complex p-dimensional projective space of dimension p containing Cp as an
affine Zariski open set, rescaled by the dilation ratio ε. Hence it converges weakly
to the current of integration on the p-codimensional subspace z1 = . . . = zp = 0.
Moreover the volume contained in any compact tubular cylinder

{|z′| ≤ Cε} ×K ′′ ⊂ Cp × Cn−p

depends only on C and K (as one sees after rescaling by ε). The fact that ωpε is
uniformly bounded in mass can be seen easily from the fact that

∫

X

ωpε ∧ ω
n−p =

∫

X

ωn,

as ω and ωε are in the same Kähler class. Let Θ be any weak limit of ωpε . By what we
have just seen, Θ carries non zero mass on every p-codimensional component Y ′ of
Y , for instance near every regular point. However, standard results of the theory of
currents (support theorem and Skoda’s extension result) imply that 1Y ′Θ is a closed
positive current and that 1Y ′Θ = λ[Y ′] is a nonnegative multiple of the current of
integration on Y ′. The fact that the mass of Θ on Y ′ is positive yields λ > 0.
Lemma 3.4 is proved. �

4. Multiplier Ideal Sheaves

We now introduce the concept of multiplier ideal sheaf, following A. Nadel [Nad89].
The main idea actually goes back to the fundamental works of Bombieri [Bom70]
and H. Skoda [Sko72a].

(4.1) Definition. Let ϕ be a psh function on an open subset Ω ⊂ X ; to ϕ is associated
the ideal subsheaf I(ϕ) ⊂ OΩ of germs of holomorphic functions f ∈ OΩ,x such that
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|f |2e−ϕ is integrable with respect to the Lebesgue measure in some local coordinates
near x.

The zero variety V (I(ϕ)) is thus the set of points in a neighborhood of which
e−ϕ is non integrable. Of course, such points occur only if ϕ has logarithmic poles.
This is made precise as follows.

(4.2) Definition. A psh function ϕ is said to have a logarithmic pole of coefficient γ
at a point x ∈ X if the Lelong number

ν(ϕ, x) := lim inf
z→x

ϕ(z)

log |z − x|

is non zero and if ν(ϕ, x) = γ.

(4.3) Lemma (Skoda [Sko72a]). Let ϕ be a psh function on an open set Ω and let
x ∈ Ω.

a) If ν(ϕ, x) < 2, then e−ϕ is integrable in a neighborhood of x, in particular
I(ϕ)x = OΩ,x.

b) If ν(ϕ, x) ≥ 2(n + s) for some integer s ≥ 0, then e−ϕ ≥ C|z − x|−2n−2s in a
neighborhood of x and I(ϕ)x ⊂ m

s+1
Ω,x , where mΩ,x is the maximal ideal of OΩ,x.

c) The zero variety V (I(ϕ)) of I(ϕ) satisfies

E2n(ϕ) ⊂ V (I(ϕ)) ⊂ E2(ϕ)

where Ec(ϕ) = {x ∈ X ; ν(ϕ, x) ≥ c} is the c-sublevel set of Lelong numbers
of ϕ.

Proof. a) Set Θ = ddcϕ and γ = ν(Θ, x) = ν(ϕ, x). Let χ be a cut-off function with
support in a small ball B(x, r), equal to 1 in B(x, r/2). As (ddc log |z|)n = δ0, we
get

ϕ(z) =

∫

B(x,r)

χ(ζ)ϕ(ζ)(ddc log |ζ − z|)n

=

∫

B(x,r)

ddc(χ(ζ)ϕ(ζ)) ∧ log |ζ − z|(ddc log |ζ − z|)n−1

for z ∈ B(x, r/2). Expanding ddc(χϕ) and observing that dχ = ddcχ = 0 on
B(x, r/2), we find

ϕ(z) =

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ log |ζ − z|(ddc log |ζ − z|)n−1 + smooth terms

on B(x, r/2). Fix r so small that

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − x|)n−1 ≤ ν(Θ, x, r) < 2.

By continuity, there exists δ, ε > 0 such that
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I(z) :=

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1 ≤ 2 − δ

for all z ∈ B(x, ε). Applying Jensen’s convexity inequality to the probability measure

dµz(ζ) = I(z)−1χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1,

we find

−ϕ(z) =

∫

B(x,r)

I(z) log |ζ − z|−1 dµz(ζ) +O(1) =⇒

e− varphi(z) ≤ C

∫

B(x,r)

|ζ − z|−I(z) dµz(ζ).

As

dµz(ζ) ≤ C1|ζ − z|−(2n−2)Θ(ζ) ∧ (ddc|ζ|2)n−1 = C2|ζ − z|−(2n−2)dσΘ(ζ),

we get

e−ϕ(z) ≤ C3

∫

B(x,r)

|ζ − z|−2+δ−(2n−2)dσΘ(ζ),

and the Fubini theorem implies that e−2ϕ(z) is integrable on a neighborhood of x.

b) If ν(ϕ, x) = γ, the convexity properties of psh functions, namely, the convexity
of log r 7→ sup|z−x|=r ϕ(z) implies that

ϕ(z) ≤ γ log |z − x|/r0 +M,

where M is the supremum on B(x, r0). Hence there exists a constant C > 0 such
that e−2ϕ(z) ≥ C|z − x|−2γ in a neighborhood of x. The desired result follows from
the identity

∫

B(0,r0)

∣∣∑ aαz
α
∣∣2

|z|2γ
dV (z) = Const

∫ r0

0

(∑
|aα|

2r2|α|
)
r2n−1−2γ dr,

which is an easy consequence of Parseval’s formula. In fact, if γ has integral part
[γ] = n+ s, the integral converges if and only if aα = 0 for |α| ≤ s.

c) is just a simple formal consequence of a) and b). �

(4.3) Proposition ([Nad89]). For any psh function ϕ on Ω ⊂ X, the sheaf I(ϕ) is
a coherent sheaf of ideals over Ω. Moreover, if Ω is a bounded Stein open set, the
sheaf I(ϕ) is generated by any Hilbert basis of the L2 space H2(Ω,ϕ) of holomorphic
functions f on Ω such that

∫
Ω
|f |2e−ϕ dλ < +∞.

Proof. Since the result is local, we may assume that Ω is a bounded pseudoconvex
open set in Cn. By the strong noetherian property of coherent sheaves, the family
of sheaves generated by finite subsets of H2(Ω,ϕ) has a maximal element on each
compact subset of Ω, hence H2(Ω,ϕ) generates a coherent ideal sheaf J ⊂ OΩ .
It is clear that J ⊂ I(ϕ); in order to prove the equality, we need only check that
Jx + I(ϕ)x ∩ m

s+1
Ω,x = I(ϕ)x for every integer s, in view of the Krull lemma. Let
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f ∈ I(ϕ)x be defined in a neighborhood V of x and let θ be a cut-off function
with support in V such that θ = 1 in a neighborhood of x. We solve the equation
d′′u = g := d′′(θf) by means of Hörmander’s L2 estimates 3.3, where F is the trivial
line bundle Ω × C equipped with the strictly psh weight

ϕ̃(z) = ϕ(z) + 2(n+ s) log |z − x| + |z|2.

We get a solution u such that
∫
Ω
|u|2e−ϕ|z − x|−2(n+s)dλ < ∞, thus F = θf − u

is holomorphic, F ∈ H2(Ω,ϕ) and fx − Fx = ux ∈ I(ϕ)x ∩ m
s+1
Ω,x . This proves the

coherence. Now, J is generated by any Hilbert basis of H2(Ω,ϕ), because it is well-
known that the space of sections of any coherent sheaf is a Fréchet space, therefore
closed under local L2 convergence. �

The multiplier ideal sheaves satisfy the following basic functoriality property
with respect to direct images of sheaves by modifications.

(4.5) Proposition. Let µ : X ′ → X be a modification of non singular complex man-
ifolds (i.e. a proper generically 1:1 holomorphic map), and let ϕ be a psh function
on X. Then

µ⋆
(
O(KX′) ⊗ I(ϕ ◦ µ)

)
= O(KX) ⊗ I(ϕ).

Proof. Let n = dimX = dimX ′ and let S ⊂ X be an analytic set such that
µ : X ′ r S′ → X r S is a biholomorphism. By definition of multiplier ideal sheaves,
O(KX)⊗I(ϕ) is just the sheaf of holomorphic n-forms f on open sets U ⊂ X such

that in
2

f ∧ f e−ϕ ∈ L1
loc(U). Since ϕ is locally bounded from above, we may even

consider forms f which are a priori defined only on U r S, because f will be in
L2

loc(U) and therefore will automatically extend through S. The change of variable
formula yields

∫

U

in
2

f ∧ f e−ϕ =

∫

µ−1(U)

in
2

µ⋆f ∧ µ⋆f e−ϕ◦µ,

hence f ∈ Γ (U,O(KX) ⊗ I(ϕ)) iff µ⋆f ∈ Γ (µ−1(U),O(KX′) ⊗ I(ϕ ◦ µ)). Proposi-
tion 4.5 is proved. �

(4.6) Remark. If ϕ has analytic singularities, i.e. if there are holomorphic functions
(fj)1≤j≤N and a constant α > 0 such that

ϕ(z) =
α

2
log(|f1(z)|

2 + . . .+ |fN (z)|2) +O(1)

in a neighborhood of every point, the computation of I(ϕ) can be reduced to a
purely algebraic problem.

The first observation is that I(ϕ) can be computed easily if ϕ has the form ϕ =∑
αj log |gj| where Dj = g−1

j (0) are nonsingular irreducible divisors with normal
crossings. Then I(ϕ) is the sheaf of functions h on open sets U ⊂ X such that

∫

U

|h|2
∏

|gj|
−2αjdV < +∞.
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Since locally the gj can be taken to be coordinate functions from a local coordinate
system (z1, . . . , zn), the condition is that h is divisible by

∏
g
mj

j where mj−αj > −1
for each j, i.e. mj ≥ ⌊αj⌋ (integer part). Hence

I(ϕ) = O(−⌊D⌋) = O(−
∑

⌊αj⌋Dj)

where ⌊D⌋ denotes the integral part of the Q-divisor D =
∑
αjDj .

Now, consider the general case of analytic singularities and suppose that ϕ ∼
α
2 log

(
|f1|2+· · ·+|fN |2

)
near the poles. By the remarks after Definition 1.10, we may

assume that the (fj) are generators of the integrally closed ideal sheaf J = J (ϕ/α),
defined as the sheaf of holomorphic functions h such that |h| ≤ C exp(ϕ/α). In this
case, the computation is made as follows (see also L. Bonavero’s work [Bon93], where
similar ideas are used in connection with “singular” holomorphic Morse inequalities).

First, one computes a smooth modification µ : X̃ → X of X such that µ⋆J is
an invertible sheaf O(−D) associated with a normal crossing divisor D =

∑
λjDj ,

where (Dj) are the components of the exceptional divisor of X̃ (take the blow-up
X ′ of X with respect to the ideal J so that the pull-back of J to X ′ becomes an
invertible sheaf O(−D′), then blow up again by Hironaka [Hir64] to makeX ′ smooth
and D′ have normal crossings). Now, we have K

X̃
= µ⋆KX +R where R =

∑
ρjDj

is the zero divisor of the Jacobian function Jµ of the blow-up map. By the direct
image formula 4.5, we get

I(ϕ) = µ⋆
(
O(K

X̃
− µ⋆KX) ⊗ I(ϕ ◦ µ)

)
= µ⋆

(
O(R) ⊗ I(ϕ ◦ µ)

)
.

Now, (fj ◦ µ) are generators of the ideal O(−D), hence

ϕ ◦ µ ∼ α
∑

λj log |gj|

where gj are local generators of O(−Dj). We are thus reduced to computing multi-
plier ideal sheaves in the case where the poles are given by a Q-divisor with normal
crossings

∑
αλjDj . We obtain I(ϕ ◦ µ) = O(−

∑
⌊αλj⌋Dj), hence

I(ϕ) = µ⋆OX̃

(∑
(ρj − ⌊αλj⌋)Dj

)
. �

(4.7) Exercise. Compute the multiplier ideal sheaf I(ϕ) associated with ϕ =
log(|z1|α1 + . . .+ |zp|αp) for arbitrary real numbers αj > 0.
Hint: using Parseval’s formula and polar coordinates zj = rje

iθj , show that the
problem is equivalent to determining for which p-tuples (β1, . . . , βp) ∈ Np the inte-
gral

∫

[0,1]p

r2β1

1 . . . r
2βp
p r1dr1 . . . rpdrp

r2α1
1 + . . .+ r

2αp
p

=

∫

[0,1]p

t
(β1+1)/α1

1 . . . t
(βp+1)/αp
p

t1 + . . .+ tp

dt1
t1

. . .
dtp
tp

is convergent. Conclude from this that I(ϕ) is generated by the monomials zβ1

1 . . . z
βp
p

such that
∑

(βp + 1)/αp > 1. (This exercise shows that the analytic definition of
I(ϕ) is sometimes also quite convenient for computations). �
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Let F be a line bundle over X with a singular metric h of curvature current
Θh(F ). If ϕ is the weight representing the metric in an open set Ω ⊂ X , the ideal
sheaf I(ϕ) is independent of the choice of the trivialization and so it is the restriction
to Ω of a global coherent sheaf I(h) on X . We will sometimes still write I(h) = I(ϕ)
by abuse of notation. In this context, we have the following fundamental vanishing
theorem, which is probably one of the most central results of analytic and algebraic
geometry (as we will see later, it contains the Kawamata-Viehweg vanishing theorem
as a special case).

(4.8) Nadel vanishing theorem ([Nad89], [Dem93b]). Let (X,ω) be a Kähler weakly
pseudoconvex manifold, and let F be a holomorphic line bundle over X equipped
with a singular hermitian metric h of weight ϕ. Assume that iΘh(F ) ≥ εω for some
continuous positive function ε on X. Then

Hq
(
X,O(KX + F ) ⊗ I(h)

)
= 0 for all q ≥ 1.

Proof. Let Lq be the sheaf of germs of (n, q)-forms u with values in F and with
measurable coefficients, such that both |u|2e−ϕ and |d′′u|2e−ϕ are locally integrable.
The d′′ operator defines a complex of sheaves (L•, d′′) which is a resolution of the
sheaf O(KX + F ) ⊗ I(ϕ): indeed, the kernel of d′′ in degree 0 consists of all germs
of holomorphic n-forms with values in F which satisfy the integrability condition;
hence the coefficient function lies in I(ϕ); the exactness in degree q ≥ 1 follows from
Corollary 3.3 applied on arbitrary small balls. Each sheaf Lq is a C∞-module, so L•

is a resolution by acyclic sheaves. Let ψ be a smooth psh exhaustion function on X .
Let us apply Corollary 3.3 globally on X , with the original metric of F multiplied
by the factor e−χ◦ψ, where χ is a convex increasing function of arbitrary fast growth
at infinity. This factor can be used to ensure the convergence of integrals at infinity.
By Corollary 3.3, we conclude that Hq

(
Γ (X,L•)

)
= 0 for q ≥ 1. The theorem

follows. �

(4.9) Corollary. Let (X,ω), F and ϕ be as in Theorem 4.8 and let x1, . . . , xN be
isolated points in the zero variety V (I(ϕ)). Then there is a surjective map

H0(X,KX + F ) −→−→
⊕

1≤j≤N

O(KX + L)xj
⊗
(
OX/I(ϕ)

)
xj
.

Proof. Consider the long exact sequence of cohomology associated to the short exact
sequence 0 → I(ϕ) → OX → OX/I(ϕ) → 0 twisted by O(KX + F ), and apply
Theorem 4.8 to obtain the vanishing of the first H1 group. The asserted surjectivity
property follows. �

(4.10) Corollary. Let (X,ω), F and ϕ be as in Theorem 4.8 and suppose that the
weight function ϕ is such that ν(ϕ, x) ≥ 2(n+ s) at some point x ∈ X which is an
isolated point of E2(ϕ). Then H0(X,KX + F ) generates all s-jets at x.
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Proof. The assumption is that ν(ϕ, y) < 2 for y near x, y 6= x. By Skoda’s lemma
4.3 b), we conclude that e−ϕ is integrable at all such points y, hence I(ϕ)y = OX,y,
whilst I(ϕ)x ⊂ m

s+1
X,x by 4.3 a). Corollary 4.10 is thus a special case of 4.9. �

The philosophy of these results (which can be seen as generalizations of the
Hörmander-Bombieri-Skoda theorem [Bom70], [Sko72a, 75]) is that the problem of
constructing holomorphic sections of KX +F can be solved by constructing suitable
hermitian metrics on F such that the weight ϕ has isolated poles at given points xj.
The following result gives a somewhat general result in this direction.

(4.11) Theorem. Let X be a compact complex manifold, E a holomorphic vector
bundle and (F, hF ) a hermitian line bundle with a smooth metric h such that

ω = iΘhF
(F ) > 0.

Let ϕ be a quasi-psh function on X, i.e. a function ϕ such that id′d′′ϕ ≥ −Cω for
some constant C > 0. Then

a) There exists an integer m0 such that

Hq(X,E ⊗ F⊗m ⊗ I(ϕ)) = 0

for q ≥ 1 and m ≥ m0.

b) The restriction map

H0(X,E ⊗ F⊗m ⊗ I(ϕ)) −→ H0(X,E ⊗ F⊗m ⊗OX/I(ϕ))

is surjective for m ≥ m0.

b) The vector bundle E ⊗ F⊗m generates its sections (or jets of any order s) for
m ≥ m0(s) large enough.

Proof. a) Put an arbitrary smooth hermitian metric hE en E and consider the
singular hermitian metric hE · hmF · e−ϕ on E ⊗ F⊗m. The L2 holomorphic sections
of E ⊗ F⊗m are exactly the sections of the sheaf E ⊗ F⊗m ⊗ I(ϕ). On the other
hand, the curvature of the metric is

iΘhE
(E) + (m iΘhF

(F ) + id′d′′ϕ) ⊗ IdE

and therefore the curvature is Nakano > 0 for m large. This implies the vanishing
of Hq(X,E ⊗ F⊗m ⊗ I(ϕ)).

b) The vanishing of H1 itself implies the surjevtivity statement on the H0 groups
by the same argument as in Corollary (4.9).

c) Clearly, one can construct a quasi-psh function ϕ with a single logarithmic pole
at a point x ∈ X by taking

ϕ(z) = θ(z)(n+ s− 1) log
∑

|zj − xj |
2

in some local coordinates near x, where θ is a cut-off function with support in the
coordinate open set. Then I(ϕ) = m

s
x and we conclude by b). �
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(4.12) Remark. Assume that X is compact and that F is a positive line bundle
on X . Let {x1, . . . , xN} be a finite set. Show that there are constants C1, C2 ≥ 0
depending only on X and E, F such that H0(X,E ⊗ F⊗m) interpolates given jets
of order sj at xj for m ≥ C1

∑
sj + C2. To see this, we take a quasi-psh weight

ϕ(z) =
∑

θj(z)(n+ sj − 1) log |w(j)(z)|

with respect to coordinate systems (w
(j)
k (z))1≤k≤n centered at xj . The cut-off

functions can be taken of a fixed radius (bounded away from 0) with respect to
a finite collection of coordinate patches covering X . It is then easy to see that
id′d′′ϕ ≥ −C(

∑
sj + 1)ω. �

(4.13) Theorem (Kodaira [Kod54]). Let X be a compact complex manifold. A line
bundle L on X is ample if and only if L is positive. In particular, a manifold X
posessing a positive line bundle is projective, and can be embedded in projective space
via the canonical map Φ|mL| : X → PN for N large.

Proof. If the line bundle L is ample, then by definition the canonical map Φ|mL| :
X → PN is an embedding for m large, and mL = Φ−1

|mL|O(1). This implies that L
can be equipped with a metric of positive curvature, as we saw in (1.15). Conversely,
if L possesses a metric with positive curvature, then by Theorem 4.11 c), there exists
an integer m0 such that for m ≥ m0 sections in H0(X,mL) separate any pair of
points {x, y} ⊂ X and generate 1-jets of sections at every point x ∈ X . However, as
is easily seen, separation of points is equivalent to the injectivity of the map Φ|mL|,
and the generation of 1-jets is equivalent to the fact that Φ|mL is an immersion. �

(4.14) Theorem (Chow [Chw49]). Let X ⊂ PN be a (closed) complex analytic subset
of PN . Then X is algebraic and can be defined as the common zero set of a finite
collection of homogeneous polynomials Pj(z0, z1, . . . , zN ) = 0, 1 ≤ j ≤ k.

Proof. By Lemma 3.4 (i), there exists a quasi psh function ψ with logarithmic poles
along X . Then I(2Nψ) ⊂ IX , since e−2Nψ is certainly not integrable along Z. For
x ∈ PN rX , we consider a quasi-psh weight

ϕx(z) = ψ(z) + θx(z)(2N) log |z − x|

with a suitable cut-off function with support on a neighborhood of x possessing
holomorphic coordinates, in such a way that I(ϕx)x = mPN ,x. We can arrange that

i∂∂ϕx ≥ −Cω uniformly for all x. Then we have vanishing of H1(PN ,O(m)⊗I(ϕx))
for m ≥ m0 and therefore we get a surjective map

H0(PN ,O(m)) → H0(PN ,O(m) ⊗OPN /I(ϕx)).

As a consequence, we can find a homogeneous polynomial of degree m which takes
value 1 at x and vanishes on X (as prescribed by the ideal sheaf I(ψ)). �

In the case of submanifolds, one can of course prove a slightly more precise result,
by demanding that the polynomials Pj have non vanishing differentials along X .
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(4.15) Theorem (Chow [Chw49]). Let X ⊂ PN be a complex analytic submanifold
of dimension n. Then X is projective algebraic and can be defined by a collection of
homogeneous polynomials Pj(z0, z1, . . . , zN ) = 0, 1 ≤ j ≤ k, such that the system of
differentials (dPj) has rank equal to codimX at every point of X.

Proof. Put r = codimX = N − n. There exists a quasi-psh function ϕ which has
logarithmic poles along X . To see this, just take an open overing of PN by open

sets Uj where X is defined by w
(j)
1 = . . . = w

(j)
r = 0 and (w

(j)
k )1≤k≤N is a suitable

coordinate system on Uj . As in the proof of Lemma 3.4, the function

ϕ(z) = log
(∑

θ2
j (z)

(
|w

(j)
1 |2 + . . .+ |w(j)

r |2
))

is quasi-psh if the functions θj are cut-off functions with support in Uj such that∑
θ2
j = 1. An easy calculation also shows that I((r + 1)ϕ) = I2

X where IX is the

reduced ideal sheaf of X in PN . Hence for m ≥ m0 large enough, we have

Hq(PN ,O(m) ⊗ I2
X) = 0

for q ≥ 1. The long-exact sequence associated with

0 → I2
X → IX → IX/I

2
X → 0

twisted by O(m) implies the surjectivity of

H0(PN ,O(m) ⊗ IX) → H0(X,O(m) ⊗ IX/I
2
X).

However, IX/I2
X can be identified with the conormal bundle N∗

X (where NX =
TPN |X/TX), and we infer from this that H0(X,O(m) ⊗ IX/I

2
X) is generated by its

global sections for m ≥ m1 large enough by Theorem 4.11 c). This means that we
can generate any 1-differential of N∗

X at any point x ∈ X as the differential of a
section

P ∈ H0(PN ,O(m) ⊗ IX) ⊂ H0(PN ,O(m)),

i.e. a homogeneous polynomial of degree m vanishing on X , for m ≥ max(m0, m1).
�

(4.16) Corollary (Kodaira [Kod54]). Let X be a compact complex manifold and
dimC X = n. The following conditions are equivalent.

a) X is projective algebraic, i.e. X can be embedded as an algebraic submanifold of
the complex projective space PN for N large.

b) X carries a positive line bundle L.

c) X carries a Hodge metric, i.e. a Kähler metric ω with rational cohomology class
{ω} ∈ H2(X,Q).

Proof. a) ⇔ b). This follows from Theorems 4.13 and 4.15 combined.

b) ⇒ c). Take ω = i
2πΘ(L) ; then {ω} is the image of c1(L) ∈ H2(X,Z).
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c) ⇒ b). We can multiply {ω} by a common denominator of its coefficients and
suppose that {ω} is in the image of H2(X,Z). Then a classical result due to A. Weil
shows that there exists a hermitian line bundle (L, h) such that i

2πΘh(L) = ω. This
bundle L is then positive. �

(4.17) Exercise (solution of the Levi problem). Show that the following two proper-
ties are equivalent.

a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

b) X is Stein, i.e. the global holomorphic functions H0(X,OX) separate points
and yield local coordinates at any point, and X is holomorphically convex (this
means that for any discrete sequence zν there is a function f ∈ H0(X,OX) such
that |f(zν)| → ∞). �

5. Nef and Pseudo-Effective Cones

We now introduce important concepts of positivity for cohomology classes of
type (1, 1).

(5.1) Definition. Let X be a compact Kähler manifold.

(i) The Kähler cone is the set K ⊂ H1,1(X,R) of cohomology classes {ω} of Kähler
forms. This is an open convex cone.

(ii)The pseudo-effective cone is the set E ⊂ H1,1(X,R) of cohomology classes {T}
of closed positive currents of type (1, 1). This is a closed convex cone.

K

E K = nef cone in H1,1(X,R)

E = pseudo-effective cone in H1,1(X,R)

The openness of K is clear by definition, and the closedness of E follows from the
fact that bounded sets of currents are weakly compact (as follows from the similar
weak compacteness property for bounded sets of positive measures). It is then clear
that K ⊂ E .
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In spite of the fact that cohomology groups can be defined either in terms of
forms or currents, it turns out that the cones K and E are in general different. To
see this, it is enough to observe that a Kähler class {α} satisfies

∫
Y
αp > 0 for

every p-dimensional analytic set. On the other hand, if X is the surface obtained by
blowing-up P2 in one point, then the exceptional divisopr E ≃ P1 has a cohomology
class {α} such that

∫
E
α = E2 = −1, hence {α} /∈ K, although {α} = {[E]} ∈ E .

In case X is projective, it is interesting to consider also the algebraic analogues
of our “transcendental cones” K and E , which consist of suitable integral divisor
classes. Since the cohomology classes of such divisors live in H2(X,Z), we are led
to introduce the Neron-Severi lattice and the associated Neron-Severi space

NS(X) := H1,1(X,R) ∩
(
H2(X,Z)/{torsion}

)
,

NSR(X) := NS(X)⊗Z R.

All classes of real divisors D =
∑
cjDj , cj ∈ R, lie by definition in NSR(X). No-

tice that the integral lattice H2(X,Z)/{torsion} need not hit at all the subspace
H1,1(X,R) ⊂ H2(X,R) in the Hodge decomposition, hence in general the Picard
number

ρ(X) = rankZ NS(X) = dimR NSR(X)

satisfies ρ(X) ≤ h1,1 = dimR H
1,1(X,R), but the equality can be strict (actually,

it is well known that a generic complex torus X = Cn/Λ satisfies ρ(X) = 0 and
h1,1 = n2). In order to deal with the case of algebraic varieties we introduce

KNS = K ∩ NSR(X), ENS = E ∩ NSR(X).

KNS

ENS

NSR(X)

A very important fact is that the “Neron-Severi part” of any of the open or
closed transcendental cones K, E , K, E◦ is algebraic, i.e. can be characterized in
simple algebraic terms.

(5.2) Theorem. Let X be a projective manifold. Then
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(i) ENS is the closure of the cone generated by classes of effective divisors, i.e.
divisors D =

∑
cjDj, cj ∈ R+.

(ii) KNS is the open cone generated by classes of ample (or very ample) divisors A
(Recall that a divisor A is said to be very ample if the linear system H0(X,O(A))
provides an embedding of X in projective space).

(iii) The interior E◦
NS is the cone generated by classes of big divisors, namely divisors

D such that h0(X,O(kD)) ≥ c kdimX for k large.

(iv) The closed cone KNS consists of the closure of the cone generated by nef divisors
D (or nef line bundles L), namely effective integral divisors D such that D ·C ≥
0 for every curve C.

Sketch of proof. These results were already observed (maybe in a slightly different
terminology) in [Dem90]. If we denote by Kalg the open cone generated by ample
divisors, resp. by Ealg the closure of the cone generated by effective divisors, it is
obvious that

Kalg ⊂ KNS, Ealg ⊂ ENS.

As was to be expected, the interesting part lies in the converse inclusions. The
inclusion KNS ⊂ Kalg is more or less equivalent to the Kodaira embedding theorem :
if a rational class {α} is in K, then some multiple of {α} is the first Chern class of a
hermitian line bundle L whose curvature form is Kähler. Therefore L is ample and
{α} ∈ Kalg ; property (ii) follows.

Similarly, if we take a rational class {α} ∈ E◦
NS, then it is still in E by subtracting

a small multiple εω of a Kähler class, hence some multiple of {α} is the first Chern
class of a hermitian line bundle (L, h) with curvature form

T = Θh(L) := −
i

2π
i∂∂ log h ≥ εω.

Let us apply Theorem 4.11 to a metric of the form hke−mψ on L⊗k, where ψ has
logarithmic poles at given points xj in X . It is then easily shown that L⊗k admits
sections which have given m-jets at the point xj , provided that k ≥ Cm, C ≫ 1,
and the xj are chosen outside the Lelong sublevel sets of logh. From this we get
h0(X,L⊗k) ≥ mn/n! ≥ ckn, hence the linear system kL can be represented by a big
divisor. This implies (iii) and also that E◦

NS ⊂ Ealg. Therefore ENS ⊂ Ealg by passing
to the closure ; (i) follows. The statement (iv) about nef divisors follows e.g. from
[Kle66], [Har70], since every nef divisor is a limit of a sequence of ample rational
divisors. �

As a natural extrapolation of the algebraic situation, we say that K is the cone of
nef (1, 1)-cohomology classes (even though these classes are not necessarily integral).
Property 5.2 (i) also explains the terminology used for the pseudo-effective cone.
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6. Numerical Characterization of the Kähler Cone

We describe here the main results obtained in [DP03]. The upshot is that the Kähler
cone depends only on the intersection product of the cohomology ring, the Hodge
structure and the homology classes of analytic cycles. More precisely, we have :

(6.1) Theorem. Let X be a compact Kähler manifold. Let P be the set of real (1, 1)
cohomology classes {α} which are numerically positive on analytic cycles, i.e. such
that

∫
Y
αp > 0 for every irreducible analytic set Y in X, p = dimY . Then the

Kähler cone K of X is one of the connected components of P.

(6.2) Special case. If X is projective algebraic, then K = P.

These results (which are new even in the projective case) can be seen as a
generalization of the well-known Nakai-Moishezon criterion. Recall that the Nakai-
Moishezon criterion provides a necessary and sufficient criterion for a line bundle
to be ample: a line bundle L→ X on a projective algebraic manifold X is ample if
and only if

Lp · Y =

∫

Y

c1(L)p > 0,

for every algebraic subset Y ⊂ X, p = dimY .

It turns out that the numerical conditions
∫
Y
αp > 0 also characterize arbitrary

transcendental Kähler classes when X is projective : this is precisely the meaning of
the special case 6.2.

(6.3) Example. The following example shows that the cone P need not be connected
(and also that the components of P need not be convex, either). Let us consider
for instance a complex torus X = Cn/Λ. It is well-known that a generic torus X
does not possess any analytic subset except finite subsets and X itself. In that case,
the numerical positivity is expressed by the single condition

∫
X
αn > 0. However,

on a torus, (1, 1)-classes are in one-to-one correspondence with constant hermitian
forms α on Cn. Thus, for X generic, P is the set of hermitian forms on Cn such that
det(α) > 0, and Theorem 6.1 just expresses the elementary result of linear algebra
saying that the set K of positive definite forms is one of the connected components
of the open set P = {det(α) > 0} of hermitian forms of positive determinant (the
other components, of course, are the sets of forms of signature (p, q), p + q = n, q
even. They are not convex when p > 0 and q > 0).

Sketch of proof of Theorems 6.1 and 6.2. By definition a Kähler current is a closed
positive current T of type (1, 1) such that T ≥ εω for some smooth Kähler metric ω
and ε > 0 small enough. The crucial steps of the proof of Theorem 6.1 are contained
in the following statements.

(6.4) Proposition (Paun [Pau98a, 98b]). Let X be a compact complex manifold (or
more generally a compact complex space). Then
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(i) The cohomology class of a closed positive (1, 1)-current {T} is nef if and only
if the restriction {T}|Z is nef for every irreducible component Z in any of the
Lelong sublevel sets Ec(T ).

(ii)The cohomology class of a Kähler current {T} is a Kähler class (i.e. the class
of a smooth Kähler form) if and only if the restriction {T}|Z is a Kähler class
for every irreducible component Z in any of the Lelong sublevel sets Ec(T ).

The proof of Proposition 6.4 is not extremely hard if we take for granted the
fact that Kähler currents can be approximated by Kähler currents with logarithmic
poles, a fact which was first proved in [Dem92] (see also section 9 below). Thus
in (ii), we may assume that T = α + i∂∂ϕ is a current with analytic singularities,
where ϕ is a quasi-psh function with logarithmic poles on some analytic set Z,
and ϕ smooth on X r Z. Now, we proceed by an induction on dimension (to do
this, we have to consider analytic spaces rather than with complex manifolds, but
it turns out that this makes no difference for the proof). Hence, by the induction
hypothesis, there exists a smooth potential ψ on Z such that α|Z + i∂∂ψ > 0

along Z. It is well known that one can then find a potential ψ̃ on X such that
α + i∂∂ψ̃ > 0 in a neighborhood V of Z (but possibly non positive elsewhere).
Essentially, it is enough to take an arbitrary extension of ψ to X and to add a large
multiple of the square of the distance to Z, at least near smooth points; otherwise,
we stratify Z by its successive singularity loci, and proceed again by induction on
the dimension of these loci. Finally, we use a a standard gluing procedure : the
current T = α+ i maxε(ϕ, ψ̃−C), C ≫ 1, will be equal to α+ i∂∂ϕ > 0 on X r V ,
and to a smooth Kähler form on V . �

The next (and more substantial step) consists of the following result which is
reminiscent of the Grauert-Riemenschneider conjecture ([Siu84], [Dem85]).

(6.5) Theorem ([DP03]). Let X be a compact Kähler manifold and let {α} be a nef
class (i.e. {α} ∈ K). Assume that

∫
X
αn > 0. Then {α} contains a Kähler current T ,

in other words {α} ∈ E◦.

Step 1. The basic argument is to prove that for every irreducible analytic set Y ⊂ X
of codimension p, the class {α}p contains a closed positive (p, p)-current Θ such that
Θ ≥ δ[Y ] for some δ > 0. For this, we use in an essentail way the Calabi-Yau theorem
[Yau78] on solutions of Monge-Ampère equations, which yields the following result
as a special case:

(6.6) Lemma ([Yau78]). Let (X,ω) be a compact Kähler manifold and n = dimX.
Then for any smooth volume form f > 0 such that

∫
X
f =

∫
X
ωn, there exist a

Kähler metric ω̃ = ω + i∂∂ϕ in the same Kähler class as ω, such that ω̃n = f . �

We exploit this by observing that α + εω is a Kähler class, and by solving the
Monge-Ampère equation

(6.6a) (α+ εω + i∂∂ϕε)
n = Cεω

n
ε
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where (ωε) is the family of Kähler metrics on X produced by Lemma 3.4 (iii), such
that their volume is concentrated in an ε-tubular neighborhood of Y .

Cε =

∫
X
αnε∫

X
ωnε

=

∫
X

(α+ εω)n∫
X
ωn

≥ C0 =

∫
X
αn∫

X
ωn

> 0.

Let us denote by
λ1(z) ≤ . . . ≤ λn(z)

the eigenvalues of αε(z) with respect to ωε(z), at every point z ∈ X (these functions
are continuous with respect to z, and of course depend also on ε). The equation
(6.6a) is equivalent to the fact that

(6.6b) λ1(z) . . . λn(z) = Cε

is constant, and the most important observation for us is that the constant Cε is
bounded away from 0, thanks to our assumption

∫
X
αn > 0.

Fix a regular point x0 ∈ Y and a small neighborhood U (meeting only the
irreducible component of x0 in Y ). By Lemma 3.4, we have a uniform lower bound

(6.6c)

∫

U∩Vε

ωpε ∧ ω
n−p ≥ δp(U) > 0.

Now, by looking at the p smallest (resp. (n− p) largest) eigenvalues λj of αε with
respect to ωε, we find

αpε ≥ λ1 . . . λp ω
p
ε ,(6.6d)

αn−pε ∧ ωpε ≥
1

n!
λp+1 . . . λn ω

n
ε ,(6.6e)

The last inequality (6.6e) implies
∫

X

λp+1 . . . λn ω
n
ε ≤ n!

∫

X

αn−pε ∧ ωpε = n!

∫

X

(α+ εω)n−p ∧ ωp ≤M

for some constant M > 0 (we assume ε ≤ 1, say). In particular, for every δ > 0, the
subset Eδ ⊂ X of points z such that λp+1(z) . . . λn(z) > M/δ satisfies

∫
Eδ
ωnε ≤ δ,

hence

(6.6f)

∫

Eδ

ωpε ∧ ω
n−p ≤ 2n−p

∫

Eδ

ωnε ≤ 2n−pδ.

The combination of (6.6c) and (6.6f) yields
∫

(U∩Vε)rEδ

ωpε ∧ ω
n−p ≥ δp(U) − 2n−pδ.

On the other hand (6.6b) and (6.6d) imply

αpε ≥
Cε

λp+1 . . . λn
ωpε ≥

Cε
M/δ

ωpε on (U ∩ Vε) r Eδ.

From this we infer
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(6.6g)

∫

U∩Vε

αpε ∧ω
n−p ≥

Cε
M/δ

∫

(U∩Vε)rEδ

ωpε ∧ω
n−p ≥

Cε
M/δ

(δp(U)− 2n−pδ) > 0

provided that δ is taken small enough, e.g. δ = 2−(n−p+1)δp(U). The family of
(p, p)-forms αpε is uniformly bounded in mass since

∫

X

αpε ∧ ω
n−p =

∫

X

(α+ εω)p ∧ ωn−p ≤ Const.

Inequality (6.6g) implies that any weak limit Θ of (αpε) carries a positive mass on U∩
Y . By Skoda’s extension theorem [Sko82], 1YΘ is a closed positive current with
support in Y , hence 1YΘ =

∑
cj [Yj] is a combination of the various components

Yj of Y with coefficients cj > 0. Our construction shows that Θ belongs to the
cohomology class {α}p. Step 1 of Theorem 6.5 is proved.

Step 2. The second and final step consists in using a “diagonal trick”: for this, we
apply Step 1 to

X̃ = X ×X, Ỹ = diagonal∆ ⊂ X̃, α̃ = pr∗1 α+ pr∗2 α.

It is then clear that α̃ is nef on X̃ and that
∫

X̃

(α̃)2n =

(
2n

n

)(∫

X

αn
)2

> 0.

It follows by Step 1 that the class {α̃}n contains a Kähler current Θ of bidegree
(n, n) such that Θ ≥ δ[∆] for some δ > 0. Therefore the push-forward

T := (pr1)∗(Θ ∧ pr∗2 ω)

is a positive (1, 1)-current such that

T ≥ δ(pr1)∗([∆] ∧ pr∗2 ω) = δω.

It follows that T is a Kähler current. On the other hand, T is numerically equivalent
to (pr1)∗(α̃

n ∧ pr∗2 ω), which is the form given in coordinates by

x 7→

∫

y∈X

(
α(x) + α(y)

)n
∧ ω(y) = Cα(x)

where C = n
∫
X
α(y)n−1 ∧ ω(y). Hence T ≡ Cα, which implies that {α} contains a

Kähler current. Theorem 6.5 is proved. �

End of Proof of Theorems 6.1 and 6.2. Clearly the open cone K is contained in P,
hence in order to show that K is one of the connected components of P, we need
only show that K is closed in P, i.e. that K ∩ P ⊂ K. Pick a class {α} ∈ K ∩ P.
In particular {α} is nef and satisfies

∫
X
αn > 0. By Theorem 6.5 we conclude that

{α} contains a Kähler current T . However, an induction on dimension using the
assumption

∫
Y
αp for all analytic subsets Y (we also use resolution of singularities

for Y at this step) shows that the restriction {α}|Y is the class of a Kähler current
on Y . We conclude that {α} is a Kähler class by 6.4 (ii), therefore {α} ∈ K, as
desired. �

The projective case 6.2 is a consequence of the following variant of Theorem 6.1.
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(6.7) Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class
{α} on X is Kähler if and only if there exists a Kähler metric ω on X such that∫
Y
αk ∧ ωp−k > 0 for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dimY .

Proof. The assumption clearly implies that
∫

Y

(α+ tω)p > 0

for all t ∈ R+, hence the half-line α + (R+)ω is entirely contained in the cone P
of numerically positive classes. Since α + t0ω is Kähler for t0 large, we conclude
that the half-line in entirely contained in the connected component K, and therefore
α ∈ K. �

In the projective case, we can take ω = c1(H) for a given very ample divisor H,
and the condition

∫
Y
αk ∧ ωp−k > 0 is equivalent to

∫

Y ∩H1∩...∩Hp−k

αk > 0

for a suitable complete intersection Y ∩H1 ∩ . . .∩Hp−k, Hj ∈ |H|. This shows that
algebraic cycles are sufficient to test the Kähler property, and the special case 6.2
follows. On the other hand, we can pass to the limit in 6.7 by replacing α by α+εω,
and in this way we get also a characterization of nef classes.

(6.8) Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class
{α} on X is nef if and only if there exists a Kähler metric ω on X such that∫
Y
αk ∧ ωp−k ≥ 0 for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dimY .

By a formal convexity argument, one can derive from 6.7 or 6.8 the following
interesting consequence about the dual of the cone K. We will not give the proof
here, because it is just a simple tricky argument which does not require any new
analysis.

(6.9) Theorem. Let X be a compact Kähler manifold. A (1, 1) cohomology class {α}
on X is nef if and only for every irreducible analytic set Y in X, p = dimX and
every Kähler metric ω on X we have

∫
Y
α ∧ ωp−1 ≥ 0. In other words, the dual of

the nef cone K is the closed convex cone in Hn−1,n−1
R

(X) generated by cohomology
classes of currents of the form [Y ] ∧ ωp−1 in Hn−1,n−1(X,R), where Y runs over
the collection of irreducible analytic subsets of X and {ω} over the set of Kähler
classes of X.

Our main Theorem 6.1 has an important application to the deformation theory
of compact Kähler manifolds.

(6.10) Theorem. Let π : X → S be a deformation of compact Kähler manifolds over
an irreducible base S. Then there exists a countable union S′ =

⋃
Sν of analytic

subsets Sν ( S, such that the Kähler cones Kt ⊂ H1,1(Xt,C) of the fibers Xt =
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π−1(t) are invariant over S r S′ under parallel transport with respect to the (1, 1)-
projection ∇1,1 of the Gauss-Manin connection ∇ in the decomposition of

∇ =




∇2,0 ∗ 0
∗ ∇1,1 ∗
0 ∗ ∇0,2





on the Hodge bundle H2 = H2,0 ⊕H1,1 ⊕H0,2.

We moreover conjecture that for an arbitrary deformation X → S of compact
complex manifolds, the Kähler property is open with respect to the countable Zariski
topology on the base S of the deformation.

Let us recall the general fact that all fibers Xt of a deformation over a connected
base S are diffeomorphic, since X → S is a locally trivial differentiable bundle. This
implies that the cohomology bundle

S ∋ t 7→ Hk(Xt,C)

is locally constant over the base S. The corresponding (flat) connection of this
bundle is called the Gauss-Manin connection, and will be denoted here by ∇. As is
well known, the Hodge filtration

F p(Hk(Xt,C)) =
⊕

r+s=k,r≥p

Hr,s(Xt,C)

defines a holomorphic subbundle of Hk(Xt,C) (with respect to its locally constant
structure). On the other hand, the Dolbeault groups are given by

Hp,q(Xt,C) = F p(Hk(Xt,C)) ∩ F k−p(Hk(Xt,C)), k = p+ q,

and they form real analytic subbundles of Hk(Xt,C). We are interested especially
in the decomposition

H2(Xt,C) = H2,0(Xt,C) ⊕H1,1(Xt,C) ⊕H0,2(Xt,C)

and the induced decomposition of the Gauss-Manin connection acting on H2

∇ =




∇2,0 ∗ ∗
∗ ∇1,1 ∗
∗ ∗ ∇0,2


 .

Here the stars indicate suitable bundle morphisms – actually with the lower left
and upper right stars being zero by Griffiths’ transversality property, but we do
not really care here. The notation ∇p,q stands for the induced (real analytic, not
necessarily flat) connection on the subbundle t 7→ Hp,q(Xt,C).

Sketch of Proof of Theorem 6.10. The result is local on the base, hence we may
assume that S is contractible. Then the family is differentiably trivial, the Hodge
bundle t 7→ H2(Xt,C) is the trivial bundle and t 7→ H2(Xt,Z) is a trivial lattice.
We use the existence of a relative cycle space Cp(X /S) ⊂ Cp(X ) which consists
of all cycles contained in the fibres of π : X → S. It is equipped with a canonical
holomorphic projection
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πp : Cp(X /S) → S.

We then define the Sν ’s to be the images in S of those connected components of
Cp(X /S) which do not project onto S. By the fact that the projection is proper
on each component, we infer that Sν is an analytic subset of S. The definition of
the Sν ’s imply that the cohomology classes induced by the analytic cycles {[Z]},
Z ⊂ Xt, remain exactly the same for all t ∈ S r S′. This result implies in its turn
that the conditions defining the numerically positive cones Pt remain the same,
except for the fact that the spaces H1,1

R
(Xt) ⊂ H2(Xt,R) vary along with the

Hodge decomposition. At this point, a standard calculation implies that the Pt are
invariant by parallel transport under ∇1,1. This is done as follows.

Since S is irreducible and S′ is a countable union of analytic sets, it follows that
S r S′ is arcwise connected by piecewise smooth analytic arcs. Let

γ : [0, 1] → S r S′, u 7→ t = γ(u)

be such a smooth arc, and let α(u) ∈ H1,1(Xγ(u),R) be a family of real (1, 1)-
cohomology classes which are constant by parallel transport under ∇1,1. This is
equivalent to assuming that

∇(α(u)) ∈ H2,0(Xγ(u),C) ⊕H0,2(Xγ(u),C)

for all u. Suppose that α(0) is a numerically positive class in Xγ(0). We then have

α(0)p · {[Z]} =

∫

Z

α(0)p > 0

for all p-dimensional analytic cycles Z in Xγ(0). Let us denote by

ζZ(t) ∈ H2q(Xt,Z), q = dimXt − p,

the family of cohomology classes equal to {[Z]} at t = γ(0), such that ∇ζZ(t) = 0
(i.e. constant with respect to the Gauss-Manin connection). By the above discussion,
ζZ(t) is of type (q, q) for all t ∈ S, and when Z ⊂ Xγ(0) varies, ζZ(t) generates all
classes of analytic cycles in Xt if t ∈ S r S′. Since ζZ is ∇-parallel and ∇α(u) has
no component of type (1, 1), we find

d

du
(α(u)p · ζZ(γ(u)) = pα(u)p−1 · ∇α(u) · ζZ(γ(u)) = 0.

We infer from this that α(u) is a numerically positive class for all u ∈ [0, 1]. This
argument shows that the set Pt of numerically positive classes in H1,1(Xt,R) is
invariant by parallel transport under ∇1,1 over S r S′.

By a standard result of Kodaira-Spencer [KS60] relying on elliptic PDE theory,
every Kähler class in Xt0 can be deformed to a nearby Kähler class in nearby fibres
Xt. This implies that the connected component of Pt which corresponds to the
Kähler cone Kt must remain the same. The theorem is proved. �

As a by-product of our techniques, especially the regularization theorem for
currents, we also get the following result for which we refer to [DP03].
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(6.11) Theorem. A compact complex manifold carries a Kähler current if and only
if it is bimeromorphic to a Kähler manifold (or equivalently, dominated by a Kähler
manifold).

This class of manifolds is called the Fujiki class C. If we compare this result with
the solution of the Grauert-Riemenschneider conjecture, it is tempting to make the
following conjecture which would somehow encompass both results.

(6.12) Conjecture. Let X be a compact complex manifold of dimension n. Assume
that X possesses a nef cohomology class {α} of type (1, 1) such that

∫
X
αn > 0.

Then X is in the Fujiki class C. [Also, {α} would contain a Kähler current, as it
follows from Theorem 6.5 if Conjecture 6.12 is proved ].

We want to mention here that most of the above results were already known in
the cases of complex surfaces (i.e. in dimension 2), thanks to the work of N. Buchdahl
[Buc99, 00] and A. Lamari [Lam99a, 99b].

Shortly after the original [DP03] manuscript appeared in April 2001, Daniel Huy-
brechts [Huy01] informed us Theorem 6.1 can be used to calculate the Kähler cone of
a very general hyperkähler manifold: the Kähler cone is then equal to a suitable con-
nected component of the positive cone defined by the Beauville-Bogomolov quadratic
form. In the case of an arbitrary hyperkähler manifold, S.Boucksom [Bou02] later
showed that a (1, 1) class {α} is Kähler if and only if it lies in the positive part of the
Beauville-Bogomolov quadratic cone and moreover

∫
C
α > 0 for all rational curves

C ⊂ X (see also [Huy99]).

7. Cones of Curves

In a dual way, we consider in Hn−1,n−1
R

(X) the cone N generated by classes of pos-
itive currents T of type (n− 1, n− 1) (i.e., of bidimension (1, 1)). In the projective
case, we also consider the intersection

By extension, we will say that K is the cone of nef (1, 1)-cohomology classes
(even though they are not necessarily integral). We now turn ourselves to cones in
cohomology of bidegree (n− 1, n− 1).

(7.1) Definition. Let X be a compact Kähler manifold.

(i) We define N to be the (closed) convex cone in Hn−1,n−1
R

(X) generated by classes
of positive currents T of type (n− 1, n− 1) (i.e., of bidimension (1, 1)).

(ii) We define the cone M ⊂ Hn−1,n−1
R

(X) of movable classes to be the closure of
the convex cone generated by classes of currents of the form

µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1)

where µ : X̃ → X is an arbitrary modification (one could just restrict oneself
to compositions of blow-ups with smooth centers), and the ω̃j are Kähler forms

on X̃. Clearly M ⊂ N .
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(iii) Correspondingly, we introduce the intersections

NNS = N ∩N1(X), MNS = M∩N1(X),

in the space of integral bidimension (1, 1)-classes

N1(X) := (Hn−1,n−1
R

(X) ∩H2n−2(X,Z)/tors) ⊗Z R.

(iv) If X is projective, we define NE(X) to be the convex cone generated by all
effective curves. Clearly NE(X) ⊂ NNS.

(v) If X is projective, we say that C is a strongly movable curve if

C = µ⋆(Ã1 ∩ . . . ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where µ : X̃ → X is a modifica-
tion. We let SME(X) to be the convex cone generated by all strongly movable
(effective) curves. Clearly SME(X) ⊂ MNS.

(vi) We say that C is a movable curve if C = Ct0 is a member of an analytic family
(Ct)t∈S such that

⋃
t∈S Ct = X and, as such, is a reduced irreducible 1-cycle.

We let ME(X) to be the convex cone generated by all movable (effective) curves.

The upshot of this definition lies in the following easy observation.

(7.2) Proposition. Let X be a compact Kähler manifold. Consider the Poincaré du-
ality pairing

H1,1(X,R) ×Hn−1,n−1
R

(X) −→ R, (α, β) 7−→

∫

X

α ∧ β.

Then the duality pairing takes nonnegative values

(i) for all pairs (α, β) ∈ K ×N ;

(ii) for all pairs (α, β) ∈ E ×M.

(iii)for all pairs (α, β) where α ∈ E and β = [Ct] ∈ ME(X) is the class of a movable
curve.

Proof. (i) is obvious. In order to prove (ii), we may assume that β = µ⋆(ω̃1 ∧ . . . ∧

ω̃n−1) for some modification µ : X̃ → X , where α = {T} is the class of a positive

(1, 1)-current on X and ω̃j are Kähler forms on X̃ . Then

∫

X

α ∧ β =

∫

X

T ∧ µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1) =

∫

X

µ∗T ∧ ω̃1 ∧ . . . ∧ ω̃n−1 ≥ 0.

Here, we have used the fact that a closed positive (1, 1)-current T always has a pull-
back µ⋆T , which follows from the fact that if T = i∂∂ϕ locally for some plurisub-
harmonic function in X , we can set µ⋆T = i∂∂(ϕ◦µ). For (iii), we suppose α = {T}
and β = {[Ct]}. Then we take an open covering (Uj) on X such that T = i∂∂ϕj
with suitable plurisubharmonic functions ϕj on Uj . If we select a smooth partition
of unity

∑
θj = 1 subordinate to (Uj), we then get
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∫

X

α ∧ β =

∫

Ct

T|Ct
=
∑

j

∫

Ct∩Uj

θji∂∂ϕj|Ct
≥ 0.

For this to make sense, it should be noticed that T|Ct
is a well defined closed positive

(1, 1)-current (i.e. measure) on Ct for almost every t ∈ S, in the sense of Lebesgue
measure. This is true only because (Ct) covers X , thus ϕj|Ct

is not identically
−∞ for almost every t ∈ S. The equality in the last formula is then shown by a
regularization argument for T , writing T = limTk with Tk = α + i∂∂ψk and a
decreasing sequence of smooth almost plurisubharmonic potentials ψk ↓ ψ such that
the Levi forms have a uniform lower bound i∂∂ψk ≥ −Cω (such a sequence exists
by [Dem92]). Then, writing α = i∂∂vj for some smooth potential vj on Uj , we have
T = i∂∂ϕj on Uj with ϕj = vj + ψ, and this is the decreasing limit of the smooth
approximations ϕj,k = vj + ψk on Uj . Hence Tk|Ct

→ T|Ct
for the weak topology of

measures on Ct. �

If C is a convex cone in a finite dimensional vector space E, we denote by C∨ the
dual cone, i.e. the set of linear forms u ∈ E⋆ which take nonnegative values on all
elements of C. By the Hahn-Banach theorem, we always have C∨∨ = C.

Proposition 7.2 leads to the natural question whether the cones (K,N ) and
(E ,M) are dual under Poincaré duality. This question is addressed in the next
section. Before doing so, we observe that the algebraic and transcendental cones of
(n− 1, n− 1) cohomology classes are related by the following equalities.

(7.3) Theorem. Let X be a projective manifold. Then

(i) NE(X) = NNS.

(ii) SME(X) = ME(X) = MNS.

Proof. (i) It is a standard result of algebraic geometry (see e.g. [Har70]), that the
cone of effective cone NE(X) is dual to the cone KNS of nef divisors, hence

NNS ⊃ NE(X) = K∨.

On the other hand, (7.3) (i) implies that NNS ⊂ K∨, so we must have equality and
(i) follows.

Similarly, (ii) requires a duality statement which will be established only in the
next sections, so we postpone the proof. �

8. Main Duality Results

It is very well-known that the cone KNS of nef divisors is dual to the cone NNS of
effective curves if X is projective. The transcendental case can be stated as follows.

(8.1) Theorem (Demailly-Paun, 2001). If X is Kähler, the cones K ⊂ H1,1(X,R) and
N ⊂ Hn−1,n−1

R
(X) are dual by Poincaré duality, and N is the closed convex cone
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generated by classes [Y ] ∧ ωp−1 where Y ⊂ X ranges over p-dimensional analytic
subsets, p = 1, 2, . . . , n, and ω ranges over Kähler forms.

Proof. Indeed, Prop. 7.4 shows that the dual cone K∨ contains N which itself con-
tains the cone N ′ of all classes of the form {[Y ]∧ωp−1}. The main result of [DP03]
conversely shows that the dual of (N ′)∨ is equal to K, so we must have

K∨ = N ′ = N . �

The other important duality result is the following characterization of pseudo-
effective classes, proved in [BDPP03] (the “only if” part already follows from
7.4 (iii)).

(8.2) Theorem. If X is projective, then a class α ∈ NSR(X) is pseudo-effective if
(and only if ) it is in the dual cone of the cone SME(X) of strongly movable curves.

In other words, a line bundle L is pseudo-effective if (and only if) L · C ≥ 0 for
all movable curves, i.e., L · C ≥ 0 for every very generic curve C (not contained
in a countable union of algebraic subvarieties). In fact, by definition of SME(X),
it is enough to consider only those curves C which are images of generic complete
intersection of very ample divisors on some variety X̃, under a modification µ : X̃ →
X .

By a standard blowing-up argument, it also follows that a line bundle L on
a normal Moishezon variety is pseudo-effective if and only if L · C ≥ 0 for every
movable curve C.

The Kähler analogue should be :

(8.3) Conjecture. For an arbitrary compact Kähler manifold X, the cones E and M
are dual.

K

KNS

E

ENS

NSR(X) H1,1(X,R)

MNS

M

N

NNS

N1(X)Hn−1,n−1
R

(X)

duality
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The relation between the various cones of movable curves and currents in (7.5)
is now a rather direct consequence of Theorem 8.2. In fact, using ideas hinted in
[DPS96], we can say a little bit more. Given an irreducible curve C ⊂ X , we consider
its normal “bundle” NC = Hom(I/I2,OC), where I is the ideal sheaf of C. If C is
a general member of a covering family (Ct), then NC is nef. Now [DPS96] says that
the dual cone of the pseudo-effective cone of X contains the closed cone spanned by
curves with nef normal bundle, which in turn contains the cone of movable curves.
In this way we get :

(8.4) Theorem. Let X be a projective manifold. Then the following cones coincide.

(i) the cone MNS = M∩N1(X) ;

(ii) the closed cone SME(X) of strongly movable curves ;

(iii) the closed cone ME(X) of movable curves ;

(iv) the closed cone MEnef(X) of curves with nef normal bundle.

Proof. We have already seen that

SME(X) ⊂ ME(X) ⊂ MEnef(X) ⊂ (ENS)
∨

and
SME(X) ⊂ ME(X) ⊂ MNS ⊂ (ENS)

∨

by 7.4 (iii). Now Theorem 8.2 implies (MNS)
∨ = SME(X), and 8.4 follows. �

(8.5) Corollary. Let X be a projective manifold and L a line bundle on X.

(i) L is pseudo-effective if and only if L · C ≥ 0 for all curves C with nef normal
sheaf NC .

(ii) If L is big, then L · C > 0 for all curves C with nef normal sheaf NC .

8.5 (i) strenghtens results from [PSS99]. It is however not yet clear whether
MNS = M∩N1(X) is equal to the closed cone of curves with ample normal bundle
(although we certainly expect this to be true).

The most important special case of Theorem 8.2 is

(8.6) Theorem. If X is a projective manifold and is not uniruled, then KX is pseudo-
effective, i.e. KX ∈ ENS.

Proof. If KX /∈ ENS, Theorem 7.2 shows that there is a moving curve Ct such that
KX · Ct < 0. The “bend-and-break” lemma then implies that there is family Γt of
rational curves with KX · Γt < 0, so X is uniruled. �

A stronger result is expected to be true, namely :

(8.7) Conjecture (special case of the “abundance conjecture”). If KX is pseudo-
effective, then κ(X) ≥ 0.
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9. Approximation of psh functions by logarithms of holomor-

phic functions

The fundamental tool is the Ohsawa-Takegoshi extension theorem in the following
form ([OT87], see also [Dem00]).

(9.1) Theorem. Let Ω ⊂ Cn be a bounded pseudoconvex domain, and let Y ⊂ X
be a nonsingular complex submanifold defined by a section s of some hermitian
vector bundle E with bounded curvature tensor on Ω. Assume that s is everywhere
transverse to the zero section and that |s| ≤ e−1 on Ω. Then there is a constant
C > 0 (depending only on E), with the following property: for every psh function
ϕ on Ω, every holomorphic function f on Y with

∫
Y
|f |2|Λr(ds)|−2e−ϕdVY < +∞,

there exists an extension F of f to Ω such that

∫

Ω

|F |2

|s|2r(− log |s|)2
e−ϕdVΩ ≤ C

∫

Y

|f |2

|Λr(ds)|2
e−ϕdVY .

Here we simply take Y to be a point {z0}. In this case, the theorem says that we
can find F ∈ O(Ω) with a prescribed value F (z0), such that

∫

Ω

|F |2e−ϕdλ ≤ C|F (z0)|
2.

We now show that every psh function on a pseudoconvex open set Ω ⊂ Cn can
be approximated very accurately by psh functions with analytic singularities. The
main idea is taken from [Dem92].

(9.2) Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex
open set Ω ⊂ Cn. For every m > 0, let HΩ(mϕ) be the Hilbert space of holomorphic
functions f on Ω such that

∫
Ω
|f |2e−2mϕdλ < +∞ and let ϕm = 1

2m log
∑

|σℓ|2

where (σℓ) is an orthonormal basis of HΩ(mϕ). Then there are constants C1, C2 > 0
independent of m such that

a) ϕ(z) −
C1

m
≤ ϕm(z) ≤ sup

|ζ−z|<r

ϕ(ζ) +
1

m
log

C2

rn

for every z ∈ Ω and r < d(z, ∂Ω). In particular, ϕm converges to ϕ pointwise
and in L1

loc topology on Ω when m→ +∞ and

b) ν(ϕ, z) −
n

m
≤ ν(ϕm, z) ≤ ν(ϕ, z) for every z ∈ Ω.

Proof. Note that
∑

|σℓ(z)|2 is the square of the norm of the evaluation linear form
f 7→ f(z) on HΩ(mϕ). As ϕ is locally bounded above, the L2 topology is actually
stronger than the topology of uniform convergence on compact subsets of Ω. It
follows that the series

∑
|σℓ|2 converges uniformly on Ω and that its sum is real

analytic. Moreover we have

ϕm(z) = sup
f∈B(1)

1

m
log |f(z)|
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where B(1) is the unit ball of HΩ(mϕ). For r < d(z, ∂Ω), the mean value inequality
applied to the psh function |f |2 implies

|f(z)|2 ≤
1

πnr2n/n!

∫

|ζ−z|<r

|f(ζ)|2dλ(ζ)

≤
1

πnr2n/n!
exp

(
2m sup

|ζ−z|<r

ϕ(ζ)
)∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ϕm(z) ≤ sup
|ζ−z|<r

ϕ(ζ) +
1

2m
log

1

πnr2n/n!

and the second inequality in a) is proved. Conversely, the Ohsawa-Takegoshi exten-
sion theorem applied to the 0-dimensional subvariety {z} ⊂ Ω shows that for any
a ∈ C there is a holomorphic function f on Ω such that f(z) = a and

∫

Ω

|f |2e−2mϕdλ ≤ C3|a|
2e−2mϕ(z),

where C3 only depends on n and diamΩ. We fix a such that the right hand side
is 1. This gives the other inequality

ϕm(z) ≥
1

m
log |a| = ϕ(z) −

logC3

2m
.

The above inequality implies ν(ϕm, z) ≤ ν(ϕ, z). In the opposite direction, we find

sup
|x−z|<r

ϕm(x) ≤ sup
|ζ−z|<2r

ϕ(ζ) +
1

m
log

C2

rn
.

Divide by log r and take the limit as r tends to 0. The quotient by log r of the
supremum of a psh function over B(x, r) tends to the Lelong number at x. Thus we
obtain

ν(ϕm, x) ≥ ν(ϕ, x) −
n

m
. �

Theorem 9.2 implies in a straighforward manner a deep result of [Siu74] on the
analyticity of the Lelong number sublevel sets.

(9.3) Corollary. Let ϕ be a plurisubharmonic function on a complex manifold X.
Then, for every c > 0, the Lelong number sublevel set

Ec(ϕ) =
{
z ∈ X ; ν(ϕ, z) ≥ c

}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh
function ϕ on a pseudoconvex open set Ω ⊂ Cn. The inequalities obtained in 9.2 b)
imply that
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Ec(ϕ) =
⋂

m≥m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations σ
(α)
ℓ (z) = 0

for all multi-indices α such that |α| < mc. Thus Ec(ϕ) is analytic as a (countable)
intersection of analytic sets. �

(9.4) Regularization theorem for currents. Let X be a compact complex manifold
equipped with a hermitian metric ω. Let T = α + i∂∂ψ be a closed (1, 1)-current
on X, where α is smooth and ψ is a quasi-plurisubharmonic function. Assume that
T ≥ γ for some real (1, 1)-form γ on X with real coefficients. Then there exists a
sequence Tk = α+ i∂∂ψk of closed (1, 1)-currents such that

(i) ψk (and thus Tk) is smooth on the complement X r Zk of an analytic set Zk,
and the Zk’s form an increasing sequence

Z0 ⊂ Z1 ⊂ . . . ⊂ Zk ⊂ . . . ⊂ X.

(ii) There is a uniform estimate Tk ≥ γ − δkω with lim ↓ δk = 0 as k tends to +∞.

(iii) The sequence (ψk) is non increasing, and we have lim ↓ ψk = ψ. As a conse-
quence, Tk converges weakly to T as k tends to +∞.

(iv) Near Zk, the potential ψk has logarithmic poles, namely, for every x0 ∈ Zk,
there is a neighborhood U of x0 such that ψk(z) = λk log

∑
ℓ |gk,ℓ|

2 + O(1) for
suitable holomorphic functions (gk,ℓ) on U and λk > 0. Moreover, there is a

(global) proper modification µk : X̃k → X of X, obtained as a sequence of

blow-ups with smooth centers, such that ψk ◦ µk can be written locally on X̃k as

ψk ◦ µk(w) = λk
(∑

nℓ log |g̃ℓ|
2 + f(w)

)

where (g̃ℓ = 0) are local generators of suitable (global) divisors Dℓ on X̃k such
that

∑
Dℓ has normal crossings, nℓ are positive integers, and the f ’s are smooth

functions on X̃k.

Sketch of proof. We briefly indicate the main ideas, since the proof can only be
reconstructed by patching together arguments which appeared in different places
(although the core the proof is entirely in [Dem92]). After replacing T with T − α,
we can assume that α = 0 and T = i∂∂ψ ≥ γ. Given a small ε > 0, we select a
covering of X by open balls Bj together with holomorphic coordinates (z(j)) and
real numbers βj such that

0 ≤ γ − βj i∂∂|z
(j)|2 ≤ ε i∂∂|z(j)|2 on Bj

(this can be achieved just by continuity of γ, after diagonalizing γ at the center
of the balls). We now take a partition of unity (θj) subordinate to (Bj) such that∑
θ2
j = 1, and define

ψk(z) =
1

2k
log
∑

j

θ2
j e

2kβj |z
(j)|2

∑

ℓ∈N

|gj,k,ℓ|
2
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where (gj,k,ℓ) is a Hilbert basis of the Hilbert space of holomorphic functions f on
Bj such that ∫

Bj

|f |2e−2k(ψ−βj |z
(j)|2) < +∞.

Notice that by the Hessian estimate i∂∂ψ ≥ γ ≥ βj i∂∂|z(j)|2, the weight involved
in the L2 norm is plurisubharmonic. It then follows from the proof of Proposition
3.7 in [Dem92] that all properties (i)–(iv) hold true, except possibly the fact that
the sequence ψk can be chosen to be non increasing, and the existence of the modi-
fication in (iv). However, the multiplier ideal sheaves of the weights k(ψ − βj |z(j)|2)
are generated by the (gj,k,ℓ)ℓ on Bj , and these sheaves glue together into a global
coherent multiplier ideal sheaf I(kψ) on X (see [DEL99]); the modification µk is
then obtained by blowing-up the ideal sheaf I(kψ) so that µ∗

kI(kψ) is an invertible
ideal sheaf associated with a normal crossing divisor (Hironaka [Hir64]). The fact
that ψk can be chosen to be non increasing follows from a quantitative version of
the “subadditivity of multiplier ideal sheaves” which is proved in Step 3 of the proof
of Theorem 2.2.1 in [DPS01] (see also ([DEL99]). (Anyway, this property will not
be used here, so the reader may wish to skip the details). �

10. Zariski Decomposition and Movable Intersections

Let X be compact Kähler and let α ∈ E◦ be in the interior of the pseudo–effective
cone. In analogy with the algebraic context such a class α is called “big”, and it
can then be represented by a Kähler current T , i.e. a closed positive (1, 1)-current
T such that T ≥ δω for some smooth hermitian metric ω and a constant δ ≪ 1.

(10.1) Theorem (Demailly [Dem92], [Bou02, 3.1.24]. If T is a Kähler current, then
one can write T = limTm for a sequence of Kähler currents Tm which have logarith-
mic poles with coefficients in 1

mZ, i.e. there are modifications µm : Xm → X such
that

µ⋆mTm = [Em] + βm

where Em is an effective Q-divisor on Xm with coefficients in 1
mZ (the “fixed part”)

and βm is a closed semi-positive form (the “movable part”).

Proof. This is a direct consequence of the results of section 9. Locally we can write
T = i∂∂ϕ for some strictly plurisubharmonic potential ϕ. By the Bergman kernel
trick and the Ohsawa-Takegoshi L2 extension theorem, we get local approximations

ϕ = limϕm, ϕm(z) =
1

2m
log
∑

ℓ

|gℓ,m(z)|2

where (gℓ,m) is a Hilbert basis of the set of holomorphic functions which are L2 with
respect to the weight e−2mϕ. This Hilbert basis is also a family of local generators
of the globally defined multiplier ideal sheaf I(mT ) = I(mϕ). Then µm : Xm → X
is obtained by blowing-up this ideal sheaf, so that

µ⋆mI(mT ) = O(−mEm).
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We should notice that by approximating T − 1
mω instead of T , we can replace βm

by βm+ 1
m
µ⋆ω which is a big class on Xm ; by playing with the multiplicities of the

components of the exceptional divisor, we could even achieve that βm is a Kähler
class on Xm, but this will not be needed here. �

The more familiar algebraic analogue would be to take α = c1(L) with a big
line bundle L and to blow-up the base locus of |mL|, m ≫ 1, to get a Q-divisor
decomposition

µ⋆mL ∼ Em +Dm, Em effective, Dm free.

Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|,
and we say that Em +Dm is an approximate Zariski decomposition of L. We will
also use this terminology for Kähler currents with logarithmic poles.

KNS

ENS

NSR(Xm)

α̃

[Em]
βm

α̃ = µ⋆mα = [Em] + βm

(10.2) Definition. We define the volume, or movable self-intersection of a big class
α ∈ E◦ to be

Vol(α) = sup
T∈α

∫

X̃

βn > 0

where the supremum is taken over all Kähler currents T ∈ α with logarithmic poles,
and µ⋆T = [E] + β with respect to some modification µ : X̃ → X.

By Fujita [Fuj94] and Demailly-Ein-Lazarsfeld [DEL00], if L is a big line bundle,
we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞

n!

mn
h0(X,mL),

and in these terms, we get the following statement.

(10.3) Proposition. Let L be a big line bundle on the projective manifold X. Let ǫ > 0.
Then there exists a modification µ : Xǫ → X and a decomposition µ∗(L) = E + β
with E an effective Q-divisor and β a big and nef Q-divisor such that
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Vol(L) − ε ≤ Vol(β) ≤ Vol(L).

It is very useful to observe that the supremum in Definition 10.2 is actually
achieved by a collection of currents whose singularities satisfy a filtering property.
Namely, if T1 = α + i∂∂ϕ1 and T2 = α + i∂∂ϕ2 are two Kähler currents with
logarithmic poles in the class of α, then

(10.4) T = α+ i∂∂ϕ, ϕ = max(ϕ1, ϕ2)

is again a Kähler current with weaker singularities than T1 and T2. One could define
as well

(10.4′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

wherem = lcm(m1, m2) is the lowest common multiple of the denominators occuring
in T1, T2. Now, take a simultaneous log-resolution µm : Xm → X for which the
singularities of T1 and T2 are resolved as Q-divisors E1 and E2. Then clearly the
associated divisor in the decomposition µ⋆mT = [E]+β is given by E = min(E1, E2).
By doing so, the volume

∫
Xm

βn gets increased, as we shall see in the proof of
Theorem 10.5 below.

(10.5) Theorem (Boucksom [Bou02]). Let X be a compact Kähler manifold. We

denote here by Hk,k
≥0 (X) the cone of cohomology classes of type (k, k) which have

non-negative intersection with all closed semi-positive smooth forms of bidegree (n−
k, n− k).

(i) For each integer k = 1, 2, . . . , n, there exists a canonical “movable intersection
product”

E × · · · × E → Hk,k
≥0 (X), (α1, . . . , αk) 7→ 〈α1 · α2 · · ·αk−1 · αk〉

such that Vol(α) = 〈αn〉 whenever α is a big class.

(ii)The product is increasing, homogeneous of degree 1 and superadditive in each
argument, i.e.

〈α1 · · · (α
′
j + α′′

j ) · · ·αk〉 ≥ 〈α1 · · ·α
′
j · · ·αk〉 + 〈α1 · · ·α

′′
j · · ·αk〉.

It coincides with the ordinary intersection product when the αj ∈ K are nef
classes.

(iii)The movable intersection product satisfies the Teissier-Hovanskii inequalities

〈α1 · α2 · · ·αn〉 ≥ (〈αn1 〉)
1/n . . . (〈αnn〉)

1/n (with 〈αnj 〉 = Vol(αj) ).

(iv)For k = 1, the above “product” reduces to a (non linear) projection operator

E → E1, α→ 〈α〉

onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E . Moreover, there is
a “divisorial Zariski decomposition”
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α = {N(α)} + 〈α〉

where N(α) is a uniquely defined effective divisor which is called the “negative
divisorial part” of α. The map α 7→ N(α) is homogeneous and subadditive, and
N(α) = 0 if and only if α ∈ E1.

(v) The components of N(α) always consist of divisors whose cohomology classes are
linearly independent, especially N(α) has at most ρ = rankZ NS(X) components.

Proof. We essentially repeat the arguments developped in [Bou02], with some sim-
plifications arising from the fact that X is supposed to be Kähler from the start.

(i) First assume that all classes αj are big, i.e. αj ∈ E◦. Fix a smooth closed
(n − k, n − k) semi-positive form u on X . We select Kähler currents Tj ∈ αj with

logarithmic poles, and a simultaneous log-resolution µ : X̃ → X such that

µ⋆Tj = [Ej] + βj .

We consider the direct image current µ⋆(β1 ∧ . . . ∧ βk) (which is a closed positive
current of bidegree (k, k) on X) and the corresponding integrals

∫

X̃

β1 ∧ . . . ∧ βk ∧ µ
⋆u ≥ 0.

If we change the representative Tj with another current T ′
j , we may always take a

simultaneous log-resolution such that µ⋆T ′
j = [E′

j] +β′
j , and by using (10.4′) we can

always assume that E′
j ≤ Ej . Then Dj = Ej −E′

j is an effective divisor and we find
[Ej] + βj ≡ [E′

j] + β′
j , hence β′

j ≡ βj + [Dj ]. A substitution in the integral implies

∫

X̃

β′
1 ∧ β2 ∧ . . . ∧ βk ∧ µ

⋆u

=

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u+

∫

X̃

[D1] ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u

≥

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u.

Similarly, we can replace successively all forms βj by the β′
j , and by doing so, we

find ∫

X̃

β′
1 ∧ β

′
2 ∧ . . . ∧ β

′
k ∧ µ

⋆u ≥

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u.

We claim that the closed positive currents µ⋆(β1 ∧ . . .∧ βk) are uniformly bounded
in mass. In fact, if ω is a Kähler metric in X , there exists a constant Cj ≥ 0 such
that Cj{ω} − αj is a Kähler class. Hence Cjω − Tj ≡ γj for some Kähler form γj
on X . By pulling back with µ, we find Cjµ

⋆ω − ([Ej] + βj) ≡ µ⋆γj, hence

βj ≡ Cjµ
⋆ω − ([Ej] + µ⋆γj).

By performing again a substitution in the integrals, we find
∫

X̃

β1 ∧ . . . ∧ βk ∧ µ
⋆u ≤ C1 . . . Ck

∫

X̃

µ⋆ωk ∧ µ⋆u = C1 . . . Ck

∫

X

ωk ∧ u
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and this is true especially for u = ωn−k. We can now arrange that for each of
the integrals associated with a countable dense family of forms u, the supremum
is achieved by a sequence of currents (µm)⋆(β1,m ∧ . . . ∧ βk,m) obtained as direct
images by a suitable sequence of modifications µm : X̃m → X . By extracting a
subsequence, we can achieve that this sequence is weakly convergent and we set

〈α1 · α2 · · ·αk〉 = lim ↑
m→+∞

{(µm)⋆(β1,m ∧ β2,m ∧ . . . ∧ βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of the
integrals obtained when we evaluate against a smooth closed semi-positive form u).
By evaluating against a basis of positive classes {u} ∈ Hn−k,n−k(X), we infer by
Poincaré duality that the class of 〈α1 · α2 · · ·αk〉 is uniquely defined (although, in
general, the representing current is not unique).

(ii) It is indeed clear from the definition that the movable intersection product is
homogeneous, increasing and superadditive in each argument, at least when the αj ’s
are in E◦. However, we can extend the product to the closed cone E by monotonicity,
by setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω) · · · (αk + δω)〉

for arbitrary classes αj ∈ E (again, monotonicity occurs only where we evaluate
against closed semi-positive forms u). By weak compactness, the movable intersec-
tion product can always be represented by a closed positive current of bidegree
(k, k).

(iii) The Teissier-Hovanskii inequalities are a direct consequence of the fact that
they hold true for nef classes, so we just have to apply them to the classes βj,m on
X̃m and pass to the limit.

(iv) When k = 1 and α ∈ E0, we have

α = lim
m→+∞

{(µm)⋆Tm} = lim
m→+∞

(µm)⋆[Em] + {(µm)⋆βm}

and 〈α〉 = limm→+∞{(µm)⋆βm} by definition. However, the images Fm = (µm)⋆Fm
are effective Q-divisors in X , and the filtering property implies that Fm is a decreas-
ing sequence. It must therefore converge to a (uniquely defined) limit F = limFm :=
N(α) which is an effective R-divisor, and we get the asserted decomposition in the
limit.

Since N(α) = α−〈α〉 we easily see that N(α) is subadditive and that N(α) = 0
if α is the class of a smooth semi-positive form. When α is no longer a big class, we
define

〈α〉 = lim
δ↓0

↓ 〈α+ δω〉, N(α) = lim
δ↓0

↑ N(α+ δω)

(the subadditivity of N implies N(α+(δ+ε)ω) ≤ N(α+δω)). The divisorial Zariski
decomposition follows except maybe for the fact that N(α) might be a convergent
countable sum of divisors. However, this will be ruled out when (v) is proved. AsN(•)
is subadditive and homogeneous, the set E1 = {α ∈ E ; N(α) = 0} is a closed convex
conne, and we find that α 7→ 〈α〉 is a projection of E onto E1 (according to [Bou02],
E1 consists of those pseudo-effective classes which are “nef in codimension 1”).
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(v) Let α ∈ E◦, and assume that N(α) contains linearly dependent components
Fj . Then already all currents T ∈ α should be such that µ⋆T = [E] + β where
F = µ⋆E contains those linearly dependent components. Write F =

∑
λjFj , λj > 0

and assume that ∑

j∈J

cjFj ≡ 0

for a certain non trivial linear combination. Then some of the coefficients cj must
be negative (and some other positive). Then E is numerically equivalent to

E′ ≡ E + tµ⋆
(∑

λjFj

)
,

and by choosing t > 0 appropriate, we obtain an effective divisor E′ which has a
zero coefficient on one of the components µ⋆Fj0 . By replacing E with min(E,E′)
via (10.4′), we eliminate the component µ⋆Fj0 . This is a contradiction since N(α)
was supposed to contain Fj0 . �

(10.6) Definition. For a class α ∈ H1,1(X,R), we define the numerical dimension
ν(α) to be ν(α) = −∞ if α is not pseudo-effective, and

ν(α) = max{p ∈ N ; 〈αp〉 6= 0}, ν(α) ∈ {0, 1, . . . , n}

if α is pseudo-effective.

By the results of [DP03], a class is big (α ∈ E◦) if and only if ν(α) = n. Classes
of numerical dimension 0 can be described much more precisely, again following
Boucksom [Bou02].

(10.7) Theorem. Let X be a compact Kähler manifold. Then the subset D0 of irre-
ducible divisors D in X such that ν(D) = 0 is countable, and these divisors are rigid
as well as their multiples. If α ∈ E is a pseudo-effective class of numerical dimen-
sion 0, then α is numerically equivalent to an effective R-divisor D =

∑
j∈J λjDj ,

for some finite subset (Dj)j∈J ⊂ D0 such that the cohomology classes {Dj} are
linearly independent and some λj > 0. If such a linear combination is of numerical
dimension 0, then so is any other linear combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of numerical
dimension 0 if and only if 〈α〉 = 0, in other words if α = N(α). Thus α ≡

∑
λjDj

as described in 10.7, and since λj〈Dj〉 ≤ 〈α〉, the divisors Dj must themselves have
numerical dimension 0. There is at most one such divisor D in any given cohomology
class in NS(X) ∩ E ⊂ H2(X,Z), otherwise two such divisors D ≡ D′ would yield

a blow-up µ : X̃ → X resolving the intersection, and by taking min(µ⋆D, µ⋆D′)
via (10.4′), we would find µ⋆D ≡ E + β, β 6= 0, so that {D} would not be of
numerical dimension 0. This implies that there are at most countably many divisors
of numerical dimension 0, and that these divisors are rigid as well as their multiples.

�

The above general concept of numerical dimension leads to a very natural for-
mulation of the abundance conjecture for non-minimal (Kähler) varieties.
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(10.8) Generalized abundance conjecture. For an arbitrary compact Kähler mani-
fold X, the Kodaira dimension should be equal to the numerical dimension :

κ(X) = ν(X) := ν(c1(KX)).

This appears to be a fairly strong statement. In fact, it is not difficult to show
that the generalized abundance conjecture would contain the Cn,m conjectures.

(10.9) Remark. Using the Iitaka fibration, it is immediate to see that κ(X) ≤ ν(X).

(10.10) Remark. It is known that abundance holds in the case ν(X) = −∞ (if
KX is not pseudo-effective, no multiple of KX can have sections), or in the case
ν(X) = n which implies KX big ; the latter property follows e.g. from the solution
of the Grauert-Riemenschneider conjecture in the form proven in [Dem85] (see also
[DP03]).

In the remaining cases, the most tractable situation is the case when ν(X) = 0.
In fact Theorem 10.7 then gives KX ≡

∑
λjDj for some effective divisor with

numerically independent components, ν(Dj) = 0. It follows that the λj are rational
and therefore

(∗) KX ∼
∑

λjDj + F where λj ∈ Q+, ν(Dj) = 0 and F ∈ Pic0(X).

If we assume additionally that q(X) = h0,1(X) is zero, then mKX is linearly equiv-
alent to an integral divisor for some multiple m, and it follows immediately that
κ(X) = 0. The case of a general projective manifold with ν(X) = 0 and positive
irregularity q(X) > 0 has been solved by Campana-Peternell [CP04], Corollary 3.7.
It would be interesting to understand the Kähler case as well.

11. The Orthogonality Estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

(11.1) Theorem. Let X be a projective manifold, and let α = {T} ∈ E◦
NS be a big class

represented by a Kähler current T . Consider an approximate Zariski decomposition

µ⋆mTm = [Em] + [Dm]

Then
(Dn−1

m · Em)2 ≤ 20 (Cω)n
(
Vol(α) −Dn

m

)

where ω = c1(H) is a Kähler form and C ≥ 0 is a constant such that ±α is
dominated by Cω (i.e., Cω ± α is nef ).

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) ≥ Vol(tEm +Dm).
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Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = µ⋆α−Dm = µ⋆m(α+ Cω) − (Dm + Cµ⋆mω).

(11.2) Lemma. For all nef R-divisors A, B we have

Vol(A−B) ≥ An − nAn−1 ·B

as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the
holomorphic Morse inequalities, [Dem01, 8.4]; one can also argue by an elementary
estimate of to H0(X,mA−B1− . . .−Bm) via the Riemann-Roch formula (assuming
A and B very ample, B1, . . . , Bm ∈ |B| generic). If A and B are Q-Cartier, we
conclude by the homogeneity of the volume. The general case of R-divisors follows
by approximation using the upper semi-continuity of the volume [Bou02, 3.1.26].

�

(11.3) Remark. We hope that Lemma 11.2 also holds true on an arbitrary Kähler
manifold for arbitrary nef (non necessarily integral) classes. This would follow from
a generalization of holomorphic Morse inequalities to non integral classes. However
the proof of such a result seems technically much more involved than in the case of
integral classes.

(11.4) Lemma. Let β1, . . . , βn and β′
1, . . . , β

′
n be nef classes on a compact Kähler

manifold X̃ such that each difference β′
j − βj is pseudo-effective. Then the n-th

intersection products satisfy

β1 · · ·βn ≤ β′
1 · · ·β

′
n.

Proof. We can proceed step by step and replace just one βj by β′j ≡ βj + Tj where
Tj is a closed positive (1, 1)-current and the other classes β′

k = βk, k 6= j are limits
of Kähler forms. The inequality is then obvious. �

End of proof of Theorem 11.1. In order to exploit the lower bound of the volume,
we write

tEm +Dm = A−B, A = Dm + tµ⋆m(α+ Cω), B = t(Dm + Cµ⋆mω).

By our choice of the constant C, both A and B are nef. Lemma 11.2 and the binomial
formula imply

Vol(tEm+Dm) ≥ An − nAn−1 ·B

= Dn
m + ntDn−1

m · µ⋆m(α+ Cω) +

n∑

k=2

tk
(
n

k

)
Dn−k
m · µ⋆m(α+ Cω)k

− ntDn−1
m · (Dm + Cµ⋆mω)

− nt2
n−1∑

k=1

tk−1

(
n− 1

k

)
Dn−1−k
m · µ⋆m(α+ Cω)k · (Dm + Cµ⋆mω).
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Now, we use the obvious inequalities

Dm ≤ µ⋆m(Cω), µ⋆m(α+ Cω) ≤ 2µ⋆m(Cω), Dm + Cµ⋆mω ≤ 2µ⋆m(Cω)

in which all members are nef (and where the inequality ≤ means that the difference
of classes is pseudo-effective). We use Lemma 11.4 to bound the last summation in
the estimate of the volume, and in this way we get

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m · Em − nt2
n−1∑

k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is bounded by
4(n− 1)(1 + 1/5n)n−2 < 4ne1/5 < 5n. This implies

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m · Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n (Dn−1

m · Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m · Em)2

(Cω)n
≤ Vol(Em +Dm) −Dn

m ≤ Vol(α) −Dn
m

(and we have indeed t ≤ 1
10n

by Lemma 11.4), whence Theorem 11.1. Of course, the
constant 20 is certainly not optimal. �

(11.5) Corollary. If α ∈ ENS, then the divisorial Zariski decomposition α = N(α) +
〈α〉 is such that

〈αn−1〉 ·N(α) = 0.

Proof. By replacing α by α + δc1(H), one sees that it is sufficient to consider the
case where α is big. Then the orthogonality estimate implies

(µm)⋆(D
n−1
m )·(µm)⋆Em = Dn−1

m ·(µm)⋆(µm)⋆Em ≤ Dn−1
m ·Em ≤ C(Vol(α)−Dn

m)1/2.

Since 〈αn−1〉 = lim(µm)⋆(D
n−1
m ), N(α) = lim(µm)⋆Em and limDn

m = Vol(α), we
get the desired conclusion in the limit. �

12. Proof of the Main Duality Theorem

The proof is reproduced from [BDPP03]. We want to show that ENS and SME(X)
are dual (Theorem 8.2). By 7.4 (iii) we have in any case

ENS ⊂ (SME(X))∨.

If the inclusion is strict, there is an element α ∈ ∂ENS on the boundary of ENS which
is in the interior of SME(X)∨.
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E

ENS

M∨

(MNS)
∨

NSR(X) H1,1(X,R)

MNS

α− εω

α
α+ δω

ω

Γ

N1(X)

Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α + δω is big for
every δ > 0, and since α ∈ ((SME(X))∨)◦ we still have α − εω ∈ (SME(X))∨ for
ε > 0 small. Therefore

(12.1) α · Γ ≥ εω · Γ

for every movable curve Γ . We are going to contradict (12.1). Since α + δω is big,
we have an approximate Zariski decomposition

µ⋆δ(α+ δω) = Eδ +Dδ .

We pick Γ = (µδ)⋆(D
n−1
δ ). By the Hovanskii-Teissier concavity inequality

ω · Γ ≥ (ωn)1/n(Dn
δ )(n−1)/n.

On the other hand

α · Γ = α · (µδ)⋆(D
n−1
δ )

= µ⋆δα ·Dn−1
δ ≤ µ⋆δ(α+ δω) ·Dn−1

δ

= (Eδ +Dδ) ·D
n−1
δ = Dn

δ +Dn−1
δ ·Eδ.

By the orthogonality estimate, we find

α · Γ

ω · Γ
≤
Dn
δ +

(
20(Cω)n(Vol(α+ δω) −Dn

δ )
)1/2

(ωn)1/n(Dn
δ )(n−1)/n

≤ C′(Dn
δ )1/n + C′′ (Vol(α+ δω) −Dn

δ )1/2

(Dn
δ )(n−1)/n

.

However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.
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We can also take Dδ to approximate Vol(α+ δω) in such a way that (Vol(α+ δω)−
Dn
δ )1/2 tends to 0 much faster than Dn

δ . Notice that Dn
δ ≥ δnωn, so in fact it is

enough to take

Vol(α+ δω) −Dn
δ ≤ δ2n.

This is the desired contradiction by (12.1). �

(12.2) Remark. If holomorphic Morse inequalities were known also in the Kähler
case, we would infer by the same proof that “α not pseudo-effective” implies the
existence of a blow-up µ : X̃ → X and a Kähler metric ω̃ on X̃ such that α ·
µ⋆(ω̃)n−1 < 0. In the special case when α = KX is not pseudo-effective, we would
expect the Kähler manifold X to be covered by rational curves. The main trouble
is that characteristic p techniques are no longer available. On the other hand it is
tempting to approach the question via techniques of symplectic geometry :

(12.3) Question. Let (M,ω) be a compact real symplectic manifold. Fix an almost
complex structure J compatible with ω, and for this structure, assume that
c1(M) · ωn−1 > 0. Does it follow that M is covered by rational J-pseudoholomorphic
curves ?
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University, May 2001, 3 p, to appear in Invent. Math.

[Kle66] S. Kleiman. — Toward a numerical theory of ampleness, Ann. Math., 84 (1966),
293–344.

[Kod53] K. Kodaira. — On a differential geometric method in the theory of analytic stacks,
Proc. Nat. Acad. Sci. USA, 39 (1953), 1268–1273.

[Kod54] K. Kodaira. — On Kähler varieties of restricted type, Ann. of Math., 60 (1954),
28–48.

[KS60] K. Kodaira, D.C. Spencer. — On deformations of complex analytic structures.
III. Stability theorems for complex structures, Ann. of Math., 71 (1960), 43–76.
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