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Positive and ample vector bundles

Let X be a projective n-dimensional manifold and
E — X a holomorphic vector bundle of rank r > 1.

Ample vector bundles

E — X is said to be ample in the sense of Hartshorne if the associ-
ated line bundle Op(£)(1) on the hyperplane bundle P(E) is ample.

By Kodaira (1954), this is equivalent to the existence of a
smooth hermitian metric on Opg)(1) with positive curvature
(equivalently, a negatively curved Finsler metric on E*).

Chern curvature tensor of a hermitian bundle (E, h)
Thisis ©f = iVg, € C°(AM T @ Hom(E, E)), which can be
written
G)E,h =1 Z Cjk/\udzj ANdzi & ej ® ey
1</,k<n,1<A,u<r
in terms of an orthonormal frame (ey)1<x<, of E.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampére functionals for vector bundles

Griffiths positivity concept for vector bundles

One looks at the associated quadratic formon S = Tx ® E
(:)E,h(f ®v) = <9E,h(€>g) SV V)h = Z CjkA,ungkVAVu-

1<j,k<n,1<A,u<r
Then E is said to be Griffiths positive (Griffiths 1969) if at every point
ze X

Oen(@v)>0, YO£E€ Tx,, YO#£veE,

Well known fact
E Griffiths > 0 = E ample.

Proof. E Griffiths > 0 = Op)(1) >0 <= Opg)(1) ample.

Kodaira

Griffiths conjecture [unsolved, except for n = 1 (Umemura 1973)]

Is it true that E ample = E Griffiths > 0 7 (If so, both are <).
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Nakano / dual Nakano positivity concepts

The curvature tensor yields a natural hermitian form on Tx ® E

@EJ,(T) = E Cik uTi Tkus, T € Tx,®E;.
1<j,k<n,1<A\,u<r

Definition of Nakano positivity

E is Nakano positive (Nakano 1955) if at every point z € X

@E,h(T) = Z Cik AW TiAT kp > 0, Vre TX,z ® E,, T #0.
1<j,k<n,1<A,u<r

Curvature tensor of the dual bundle E*

) bl 'LL

Definition of dual Nakano positivity

E is dual Nakano positive if E* is Nakano < 0, i.e.

A = *
_eE*,h* (T) = E Cjk,u/\TjATku > O, V1 e TX,z X Ez? T 75 0.
1<j,k<n,1<A,u<r
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Known results

@ Nakano and dual Nakano positivity imply Griffiths positivity.

@ Griffiths and dual Nakano Nakano positivity are preserved by taking
quotients: E > 0 = any quotient @ = E/S is also > 0.
This is wrong for Nakano positivity.

@ E ample A E Nakano > 0.
For instance, Tpn is ample and even Griffiths > 0 for the
Fubini-Study metric, but it is not Nakano > 0. Otherwise the
Nakano vanishing theorem would imply

Hn—l,n—l(]P)n7 C) _ Hn—l(]P)n’ ann—l) _ Hn_l(Pn, Kpn @ TIP’”) =0 I

@ E ample # E dual Nakano > 0.

For instance, any compact quotient X = B"/I" has Ty ample and
even Griffiths > 0 for the hyperbolic metric, but Ty is
not dual Nakano > 0, otherwise Tx would be Nakano < 0 and

HLO(X,C) = HO(X, QL ® Tx) = HO(X,Hom(Tx, Tx))  Idr,

would contradict the (dual) Nakano vanishing theorem.
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Positivity thresholds

There are subtle relations between the various positivity concepts.

Theorem (Berndtsson 2009)
E ample = S™E ® det E Nakano > 0 for every m € N.

Theorem (Liu-Sun-Yang 2013)

E ample = S™E ® det E dual Nakano > 0O for every m € N.

This leads in a natural way to the following definition.

Let P = A, G, N, N* mean the Ampleness / Griffiths / Nakano / dual

Nakano positivity concepts. Let E — X be a vector bundle such that
det E is ample. We let

mp(E) =inf{t eR; E® (detE)* >p 0}.

Remark. eE@(det E)t = OF + tOuet e ®Idg, Ogete = Tre OF.
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Simple facts about positivity thresholds

Notice that Nakano and dual Nakano positivity are stronger than
Griffiths positivity, the latter being itself stronger than ampleness, hence
we always have

TN(E)ZTg(E)ZTA(E), TN*(E)ZTG(E)ZTA(E).

Moreover, since E ® (det E)~/" has trivial determinant, we also have
Ta(E) > —1/r.

One has 74(E) = —1/r & F = E ® (det E)~Y/" is numerically flat (i.e.
F. F* both nef), so that E = F @ L where L = (det E)'46 ample: we
say that E is projectively numerically flat. Then

™(E) = Tn+(E) = 76(E) = Ta(E) = —1.

The Griffiths conjecture is equivalent to: E ample = 7¢(E) < 0.
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Monge-Ampere functionals for vector bundles

Definition of the functionals, © j — volume (n, n)-form on X:
—If E>n 0, we set Py(Of ) = detTX®E(GE,h)l/r, i.e.

P (Ok h) = det(Gian)(L 5 (k) 1021 A dZ1 A .. A iddzy A dZp.
—If E >p« 0, we set O« (OF ) = det, e+ T@E,h)l/r, l.e.

P+ (OF ) = det(Ciugun ) ny (k) 02 A AZ1A ... A idzy A dZp,

—If E >¢ 0, we set
P6(©e ) = inf (Ogp-v,v)" (not differentiable),

V=1
—1/s
q)G,s(eE,h) = (/ (<@E,h v, v)™)TE dO‘(V) — q)G(eE,h)-
‘V‘h:]- s—+o00

These (n, n)-forms are intrinsic: they do not depend on the choice of
coordinates (z;) on X, nor on the choice of the orthonormal frame (e))
on E.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampére functionals for vector bundles

Main properties of the Monge-Ampére functionals

Coercivity of the ®p functionals
For P=N,N*or P=(G,s),se [r— 1,0,
®p(e) prevents degeneration of positivity, i.e.
©en>p0and ®p(Opp) >00n X — Of.n>p 0.

Chern class inequality for Monge-Ampére volumes

For any P, we define Monge-Ampeére volumes for vector bundles by

1
MAVOIP(E): sup n/ q)p(@E,h).
h,@E)h>p0 (27T) X

MAVolp(E) < L5 c1(E)".

nlrn

Then

The equality occurs, with the supremum being a maximum,
if and only if E is projectively flat.

v

Equality occurs for the sup iff E is numerically projectively flat.
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Proof of the Chern class inequality

Take h with @E,h >p 0, set w = Oyet Eh= Tre @E,h > 0, and let
(A\j)1<j<nr = eigenvalues of ©f j with respect to w® hon Tx ® E.

The proof is a consequence of the inequality ([T A;)Y/"" < =D A
between geometric and arithmetic means. For &y, we get

(2;)n/xd>/\/(95,h)=/X<H)\j)l/r C;;{;; S/)((%ZAJ)H?J;T/;:

w" 1

g/X L (% Trw(TI’E@E,h))n 2n) ca(E)".

nlrn nlrn

Equality occurs iff all eigenvalues \; are equal (and then equal to 1/r),
which means that E is projectively flat.

The proof for ®px is the same.

The proof for ®¢ is based on the concavity of the function
A — (det A)/" on (n x n)-hermitian matrices.
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Further remarks

@ In the split case E = D;.;., Lj and h = D, hj, the inequality

reads 1/r
( 1] Cl(Lj)”) < r "a(E)",

1<<r
with equality iff c;(L1) = --- = a1 (L,).
@ In the split case, it seems natural to conjecture that
1/r
MAVolp(E) = ( 11 cl(Lj)”) / :
1<<r
i.e. that the supremum is reached for split metrics h = € h;.

1
@ We also conjecture that inf dp(O = 0.
Jectur h @:Er’\h>P0 (2m)" /X P( E,h)

(true in the split case).

@ The Euler-Lagrange equation for the maximizer is complicated (4th
order!). It somehow generalizess the 4th order differential equation
characterizing cscK metrics.
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Approach by Hermitian Yang-Mills equations

Let E — X be a holomorphic vector bundle such that det E is ample.

Use of coercivity 4+ continuity method, with “time” parameter t

Assigning for the unknown h a generalized Monge-Ampere equation
() ®p(OFh + t Odet Edeth @ Idg) = £ > 0

where f; is a positive (n, n)-form, may enforce the P-positivity of

O Ew(det E)t,h, I that assignment is combined with a continuity technique
from an initial time value t = ty for which the existence of a
P-positively curved metric h is known.

We then try to decrease t to 0, until we reach ©g 4 >p 0.

Case r = rank E = 1: reduction to Yau's theorem

When E is a line bundle and h = hoe™ ¥, (x) is equivalent to the
standard Monge-Ampere equation (wo + i00p)" = f; = (1 + )" "f
where wo = Of p,, which is solvable provided (27)~" [, f; = c1(E)".
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Recovering an exactly determined differential system

Problem: underdeterminacy of the equation (x)

For r = rank E > 1, the equation (*) amounts for only 1 scalar
equation, while there are r? functions (hxp)i<x,pu<r to determine.
Solutions might still exist, but lack uniqueness and a priori bounds.

Mitigation of the problem

In order to recover a well determined system of equations, one needs an
additional “matrix equation” of rank r? — 1.

Use of a Hermite-Einstein equation (Donaldson / Uhlenbeck-Yau)

Let w be a Kahler metric on X and log h the logarithm of the
endomorphism h with respect to a fixed metric hg on E. Let u° the
trace free part of a hermitian endomorphism u. Then J'h such that
dety,(h) = 1 and w1 A Of = —¢ loghw" € Herm, (E, E).

This is an equation of rankg r> — 1, always solvable for e >0 ...
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Setup of the Yang-Mills differential system

In view of the above, we are led to considering a Yang-Mills differential
system denoted (YM;), t € ]tinf, to], consisting of a scalar
Monge-Ampere type equation 5

Q
(YM?) Pp(OFh + t Odet Edeth ® Idg ) = f; (J) Q,

h

where €2 is a fixed volume form on X, wp =Oget£,n, fr € C(X,R),
fr >0, 8 € R; we add a matrix trace free Hermite-Einstein equation

(YM?) wp ' AOE ), =gewp, g € C°(X, Hermj(E, E)).

The reason for introducing a factor (%)5 comes from the following
h

Theorem 1 (D, 2021 — essentially linear algebra!)
There exist explicit distortion functions B3p 5 in CO(X,R.) s.t. for any
metric h on E satisfying O  + t Oget £ det h © Idg >p 0 and any

B > Bo = supx Bp nt, the system of differential equations
(YM,) possesses an elliptic linearization in a C? neighborhood of h.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampére functionals for vector bundles

Expression of the distortion functions

Letting Qt(h) = @Eh + t Oget E det h ® Idg and
0:(h))°°t = cofactor matrix of §;(h) € Herm(Tx ® E),
the distortion functions are given explicitly at each point of X by

Vn—1+1 |0g ] 18:(h)*"|

Pt = r det 0;(h)
o V=141 10% 4l [(70:(h))|
Nt = r det(TO:(h))

BGsht=(Vn—1+1)|OF 4|

’ </ do(v) )
|‘:/|f£1 <(<9t(h) -V, V>h)n)5

where wj, = Oget E det h-
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but we need ellipticity _and_ local invertibility . ..

Local invertibility of the linearized elliptic operator is needed to apply
the implicit function theorem and get openness for solutions.
Theorem 2 (D, 2021 — local openness of existence for solutions)
Consider the more specific Yang-Mills system (YM;), t € ]tmin, to]

det hy, \ ( Q)

YMP dp (O t© Idg ) = 0 — ) Q,

(YM;”) P(OFh+ t Odet Edet h @ IdE ) (deth) (Wﬁ>
(YM?)  w, " (wi A ©F p) = —¢ A(det h) (log h)°,
where A > 0 is any C® functional, and log h is computed with respect
to the initial metric hy,.

Then there exist bounds Sy := supx Bp.t.h €0(A, 5) and Ag(/3) such
that for any choice of constants

B> Bo, € > eo(A, B) and A > Ao(B),
the system (YM;) possesses an invertible elliptic linearization.
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Very rough sketch of proof of ellipticity/invertibility

The (long, computational) proof consists of analyzing the linearized
system of equations, starting from the curvature tensor formula

Ok, = i0(h~18h) = id(h~ 8, h),
where O, s = Hy 10(Hos) is the (1,0)-component of the Chern
connection on Hom(E, E) associated with Hy = hy, on E.
Let us recall that the ellipticity of an operator
P:C®(V)— C®(W), fw— P(f)= Z,algm aq(x)D*f(x)

means the invertibility of the principal symbol

O-P(Xﬁg) - Z\a\:m aOé(X) ga < Hom(\/> W)
whenever 0 = § € T4 ..

For instance, on the torus R"/Z", f — Py(f) = —Af + Af has
an invertible symbol op, (x,£) = —|£|?, but P, is invertible only when \
avoids the eigenvalues of A, e.g. when \ > 0.
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Important remaining points . ..

@ We have been able to set-up a Yang-Mills differential system (YM;)
that is elliptic invertible, and ensures the existence of an open time
interval |ty, to] for which we have uniqueness of the solution.

@ We somehow know that the solution persists unless some distortion
occurs (in the sense that supy Sp .+ — +00, or the trace free part
ratio |©% ,|/(1 + |log h|) explodes at t;).

@ The latter point might possibly be used (as in the work of
Uhlenbeck-Yau) to get suitable destabilizing subsheaves,
that would e.g. contradict the ampleness assumption if P = G
and t; > 0.

@ A natural question is whether one can arrange that the infimum
tinf Of times t for which (YM;) has a solution coincides with the
positivity threshold 7p(E), in the case of P-positivity.

For this, we would probably need uniform a priori estimates ...
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On the Fulton Lazarsfeld inequalities

A fundamental result due to Fulton-Lazarsfeld asserts that if E — X is
an ample vector bundle, then all Schure polynomials P(ce(E)) in the
Chern classes are numerically positive, i.e.

/ P(cu(E)) > 0
Y

for all irreducible cycles Y of the appropriate dimension in X.

Recently, Siarhei Finski has shown

Theorem (Finski 2020)

If (E, h) is a (dual) Nakano positive vector bundle, then all Schur
polynomials P(ce(E, h)) in the Chern forms are pointwise positive
(k, k)-forms (in the sense of the weak positivity of forms).

This is a compelling motivation to investigate the various types of
positivity for vector bundles.
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Further recent results by Siarhei Finski

When E — X is an ample vector bundle, the symmetric powers S™E
have enough sections to generate 1-jets for m > mg > 1, and one can
immediately derive from there that

E ample = S™E dual-Nakano positive for m > mg > 1.

Then it makes sense to wonder whether there is an asymptotic formula
for the monge-Ampére volume MAVolp(S™E).

S. Finski obtained more generally an asymptotic formula for the
Monge-Ampére volume of direct images E,, = m.(L™ ® G) by any
proper morphism 7 : Y — X of any line bundle (L,h;) >0on Y.

Theorem (S. Finski 2020)

Given any volume form dv on X, the direct images satisfy

_ |Og (wdim X/ﬂ.*y)wdim Y
MAVoly«(Em, hg ) ~ d'mX/ Jy H : d
Oln ( ) Em) m XeXP ( fY C1(L)d'm Y v,

where w = ©; 5, > 0o0n Y, and wy is its horizontal part.
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Best wishes Kang-Tae !
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