

Monge-Ampère functionals for the curvature tensor of a holomorphic vector bundle

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Conference on Complex Geometric Analysis in honor of Kang-Tae Kim for his 65th birthday January 14, 2022, 17:00 - 17:50

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

1/24

Plan of the talk

- 1. Positivity concepts for holomorphic vector bundles
- 2. Monge-Ampère functionals for vector bundles
- 3. Chern class inequalities for Monge-Ampère volumes
- 4. A Hermitian-Yang-Mills approach to the Griffiths conjecture

5. Further results by Siarhei Finski

Positive and ample vector bundles

Let X be a projective n-dimensional manifold and $E \to X$ a holomorphic vector bundle of rank $r \ge 1$.

Ample vector bundles

 $E \to X$ is said to be ample in the sense of Hartshorne if the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on the hyperplane bundle $\mathbb{P}(E)$ is ample.

By Kodaira (1954), this is equivalent to the existence of a smooth hermitian metric on $\mathcal{O}_{\mathbb{P}(E)}(1)$ with positive curvature (equivalently, a negatively curved Finsler metric on E^*).

Chern curvature tensor of a hermitian bundle (E, h)

This is $\Theta_{E,h}=i
abla_{E,h}^2\in C^\infty(\Lambda^{1,1}T_X^*\otimes \operatorname{Hom}(E,E))$, which can be written

$$\Theta_{E,h} = i \sum_{1 \leq j,k \leq n, \, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} dz_j \wedge d\overline{z}_k \otimes e_{\lambda}^* \otimes e_{\mu}$$

in terms of an orthonormal frame $(e_{\lambda})_{1 \leq \lambda \leq r}$ of E.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

3/24

Griffiths positivity concept for vector bundles

Definition

One looks at the associated quadratic form on $S = T_X \otimes E$

$$\widetilde{\Theta}_{E,h}(\xi \otimes v) := \langle \Theta_{E,h}(\xi, \overline{\xi}) \cdot v, v \rangle_h = \sum_{1 \leq j,k \leq n, \, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \xi_j \overline{\xi}_k v_\lambda \overline{v}_\mu.$$

Then E is said to be Griffiths positive (Griffiths 1969) if at every point $z \in X$

$$\widetilde{\Theta}_{E,h}(\xi \otimes v) > 0, \quad \forall 0 \neq \xi \in T_{X,z}, \ \forall 0 \neq v \in E_z$$

Well known fact

E Griffiths $> 0 \Rightarrow E$ ample.

Proof. E Griffiths $> 0 \Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1) > 0 \iff_{\mathrm{Kodaira}} \mathcal{O}_{\mathbb{P}(E)}(1)$ ample.

Griffiths conjecture [unsolved, except for n = 1 (Umemura 1973)]

Is it true that E ample $\Rightarrow E$ Griffiths > 0? (If so, both are \Leftrightarrow).

Nakano / dual Nakano positivity concepts

The curvature tensor yields a natural hermitian form on $T_X \otimes E$

$$\widetilde{\Theta}_{E,h}(\tau) = \sum_{1 \leq j,k \leq n, \, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \tau_{j\lambda} \overline{\tau}_{k\mu}, \quad \tau \in T_{X,z} \otimes E_z.$$

Definition of Nakano positivity

E is Nakano positive (Nakano 1955) if at every point $z \in X$

$$\widetilde{\Theta}_{E,h}(\tau) = \sum_{1 \leq j,k \leq n, \, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \tau_{j\lambda} \overline{\tau}_{k\mu} > 0, \quad \forall \tau \in T_{X,z} \otimes E_z, \, \tau \neq 0.$$

Curvature tensor of the dual bundle E^*

$$\Theta_{E^*,h^*} = -{}^T\Theta_{E,h} = -\sum_{1 \leq j,k \leq n,\, 1 \leq \lambda, \mu \leq r} c_{jk\mu\lambda} dz_j \wedge d\overline{z}_k \otimes (e_{\lambda}^*)^* \otimes e_{\mu}^*.$$

Definition of dual Nakano positivity

E is dual Nakano positive if E^* is Nakano < 0, i.e.

$$-\widetilde{\Theta}_{E^*,h^*}(\tau) = \sum_{1 \leq j,k \leq n, \ 1 \leq \lambda,\mu \leq r} c_{jk\mu\lambda} \tau_{j\lambda} \overline{\tau}_{k\mu} > 0, \quad \forall \tau \in T_{X,z} \otimes E_z^*, \ \tau \neq 0.$$

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

5/24

Known results

- Nakano and dual Nakano positivity imply Griffiths positivity.
- Griffiths and dual Nakano Nakano positivity are preserved by taking quotients: $E > 0 \Rightarrow$ any quotient Q = E/S is also > 0. This is wrong for Nakano positivity.
- E ample $\not\Rightarrow E$ Nakano > 0. For instance, $T_{\mathbb{P}^n}$ is ample and even Griffiths > 0 for the Fubini-Study metric, but it is not Nakano > 0. Otherwise the Nakano vanishing theorem would imply

$$H^{n-1,n-1}(\mathbb{P}^n,\mathbb{C})=H^{n-1}(\mathbb{P}^n,\Omega^{n-1}_{\mathbb{P}^n})=H^{n-1}(\mathbb{P}^n,\mathcal{K}_{\mathbb{P}^n}\otimes\mathcal{T}_{\mathbb{P}^n})=0\quad !!!$$

• E ample $\not\Rightarrow E$ dual Nakano > 0. For instance, any compact quotient $X = \mathbb{B}^n/\Gamma$ has T_X^* ample and even Griffiths > 0 for the hyperbolic metric, but T_X^* is not dual Nakano > 0, otherwise T_X would be Nakano < 0 and $H^{1,0}(X,\mathbb{C}) = H^0(X,\Omega_X^1\otimes T_X) = H^0(X,\operatorname{Hom}(T_X,T_X)) \ni \operatorname{Id}_{T_X}$ would contradict the (dual) Nakano vanishing theorem.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

Positivity thresholds

There are subtle relations between the various positivity concepts.

Theorem (Berndtsson 2009)

 $E \text{ ample} \Rightarrow S^m E \otimes \det E \text{ Nakano} > 0 \text{ for every } m \in \mathbb{N}.$

Theorem (Liu-Sun-Yang 2013)

E ample $\Rightarrow S^m E \otimes \det E$ dual Nakano > 0 for every $m \in \mathbb{N}$.

This leads in a natural way to the following definition.

Definition

Let $P = A, G, N, N^*$ mean the Ampleness / Griffiths / Nakano / dual Nakano positivity concepts. Let $E \to X$ be a vector bundle such that det E is ample. We let

$$au_P(E) = \inf \big\{ t \in \mathbb{R} \, ; \, E \otimes (\det E)^t >_P 0 \big\}.$$

Remark. $\Theta_{E \otimes (\det E)^t} = \Theta_E + t \Theta_{\det E} \otimes \operatorname{Id}_E$, $\Theta_{\det E} = \operatorname{Tr}_E \Theta_E$.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

7/24

Simple facts about positivity thresholds

Notice that Nakano and dual Nakano positivity are stronger than Griffiths positivity, the latter being itself stronger than ampleness, hence we always have

$$au_N(E) \geq au_G(E) \geq au_A(E), \quad au_{N^*}(E) \geq au_G(E) \geq au_A(E).$$

Moreover, since $E \otimes (\det E)^{-1/r}$ has trivial determinant, we also have $\tau_A(E) \geq -1/r$.

Proposition

One has $\tau_A(E) = -1/r \Leftrightarrow F = E \otimes (\det E)^{-1/r}$ is numerically flat (i.e. F, F^* both nef), so that $E = F \otimes L$ where $L = (\det E)^{1/i}$ s ample: we say that E is projectively numerically flat. Then

$$au_{N}(E) = au_{N^{*}}(E) = au_{G}(E) = au_{A}(E) = -rac{1}{r}.$$

Remark

The Griffiths conjecture is equivalent to: $E \text{ ample} \Rightarrow \tau_G(E) < 0$.

Monge-Ampère functionals for vector bundles

Definition of the functionals, $\Theta_{E,h}\mapsto \mathsf{volume}\;(n,n)$ -form on X:

- If
$$E >_N 0$$
, we set $\Phi_N(\Theta_{E,h}) := \det_{T_X \otimes E}(\Theta_{E,h})^{1/r}$, i.e.
$$\Phi_N(\Theta_{E,h}) := \det(c_{jk\lambda\mu})_{(j,\lambda),(k,\mu)}^{1/r} idz_1 \wedge d\overline{z}_1 \wedge \ldots \wedge idz_n \wedge d\overline{z}_n.$$

- If
$$E >_{N^*} 0$$
, we set $\Phi_{N^*}(\Theta_{E,h}) := \det_{T_X \otimes E^*} ({}^T\Theta_{E,h})^{1/r}$, i.e.

$$\Phi_{N^*}(\Theta_{E,h}) := \det(c_{jk\mu\lambda})_{(j,\lambda),(k,\mu)}^{1/r} idz_1 \wedge d\overline{z}_1 \wedge \ldots \wedge idz_n \wedge d\overline{z}_n.$$

- If $E >_G 0$, we set

$$\Phi_G(\Theta_{E,h}) := \inf_{|v|_h = 1} \langle \Theta_{E,h} \cdot v, v \rangle^n$$
 (not differentiable),

$$\Phi_{G,s}(\Theta_{E,h}) := \left(\int_{|v|_h = 1} (\langle \Theta_{E,h} \cdot v, v \rangle^n)^{-s} \, d\sigma(v) \right)^{-1/s} \xrightarrow{s \to +\infty} \Phi_G(\Theta_{E,h}).$$

These (n, n)-forms are intrinsic: they do not depend on the choice of coordinates (z_j) on X, nor on the choice of the orthonormal frame (e_{λ}) on E.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

9/24

Main properties of the Monge-Ampère functionals

Coercivity of the Φ_P functionals

For
$$P = N, N^*$$
 or $P = (G, s), s \in [r - 1, \infty]$,

 $\Phi_P(\bullet)$ prevents degeneration of positivity, i.e.

$$\Theta_{E,h} \geq_P 0$$
 and $\Phi_P(\Theta_{E,h}) > 0$ on $X \implies \Theta_{E,h} >_P 0$.

Chern class inequality for Monge-Ampère volumes

For any P, we define Monge-Ampère volumes for vector bundles by

$$\mathrm{MAVol}_P(E) = \sup_{h,\,\Theta_{E,h}>_P 0} \ \frac{1}{(2\pi)^n} \int_X \Phi_P(\Theta_{E,h}).$$

Then

$$MAVol_P(E) \leq \frac{1}{n! r^n} c_1(E)^n$$
.

The equality occurs, with the supremum being a maximum, if and only if E is projectively flat.

Conjecture

Equality occurs for the sup iff E is numerically projectively flat.

Proof of the Chern class inequality

Take h with $\Theta_{E,h} >_P 0$, set $\omega = \Theta_{\det E,h} = \operatorname{Tr}_E \Theta_{E,h} > 0$, and let $(\lambda_i)_{1 \le i \le nr} = \text{eigenvalues of } \widetilde{\Theta}_{E,h} \text{ with respect to } \omega \otimes h \text{ on } T_X \otimes E.$

The proof is a consequence of the inequality $(\prod \lambda_j)^{1/nr} \leq \frac{1}{nr} \sum \lambda_j$ between geometric and arithmetic means. For Φ_N , we ge

$$\begin{split} \frac{1}{(2\pi)^n} \int_X \Phi_N(\Theta_{E,h}) &= \int_X \left(\prod \lambda_j\right)^{1/r} \frac{\omega^n/n!}{(2\pi)^n} \leq \int_X \left(\frac{1}{nr} \sum \lambda_j\right)^n \frac{\omega^n/n!}{(2\pi)^n} \\ &\leq \int_X \frac{1}{n! \ r^n} \left(\frac{1}{n} \operatorname{Tr}_{\omega}(\operatorname{Tr}_E \Theta_{E,h})\right)^n \frac{\omega^n}{(2\pi)^n} = \frac{1}{n! \ r^n} \ c_1(E)^n. \end{split}$$

Equality occurs iff all eigenvalues λ_i are equal (and then equal to 1/r), which means that E is projectively flat.

The proof for Φ_{N^*} is the same.

The proof for Φ_G is based on the concavity of the function $A \mapsto (\det A)^{1/n}$ on $(n \times n)$ -hermitian matrices.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

11/24

Further remarks

• In the split case $E = \bigoplus_{1 < j < r} L_j$ and $h = \bigoplus_{1 < j < r} h_j$, the inequality reads $\left(\prod c_1(L_j)^n\right)^{1/r} \leq r^{-n}c_1(E)^n,$

with equality iff $c_1(L_1) = \cdots = c_1(L_r)$.

In the split case, it seems natural to conjecture that

$$\mathrm{MAVol}_P(E) = \bigg(\prod_{1 \leq j \leq r} c_1(L_j)^n\bigg)^{1/r},$$

i.e. that the supremum is reached for split metrics $h = \bigoplus h_i$.

- We also conjecture that $\inf_{h,\Theta_{E,h}>_{P}0} \frac{1}{(2\pi)^n} \int_{V} \Phi_{P}(\Theta_{E,h}) = 0.$ (true in the split case).
- The Euler-Lagrange equation for the maximizer is complicated (4th order!). It somehow generalizess the 4th order differential equation characterizing cscK metrics.

Approach by Hermitian Yang-Mills equations

Let $E \to X$ be a holomorphic vector bundle such that det E is ample.

Use of coercivity + continuity method, with "time" parameter t

Assigning for the unknown h a generalized Monge-Ampère equation

$$(*) \qquad \qquad \Phi_P(\Theta_{E,h} + t \, \Theta_{\det E,\det h} \otimes \operatorname{Id}_E) = f_t > 0$$

where f_t is a positive (n, n)-form, may enforce the P-positivity of $\Theta_{E\otimes(\det E)^t,h}$, if that assignment is combined with a continuity technique from an initial time value $t=t_0$ for which the existence of a *P*-positively curved metric *h* is known.

We then try to decrease t to 0, until we reach $\Theta_{E,h} >_P 0$.

Case $r = \operatorname{rank} E = 1$: reduction to Yau's theorem

When E is a line bundle and $h = h_0 e^{-\varphi}$, (*) is equivalent to the standard Monge-Ampère equation $(\omega_0 + i\partial \overline{\partial} \varphi)^n = \widetilde{f_t} = (1+t)^{-n} f_t$ where $\omega_0 = \Theta_{E,h_0}$, which is solvable provided $(2\pi)^{-n} \int_X \widetilde{f_t} = c_1(E)^n$.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

13/24

Recovering an exactly determined differential system

Problem: underdeterminacy of the equation (*)

For $r = \operatorname{rank} E > 1$, the equation (*) amounts for only 1 scalar equation, while there are r^2 functions $(h_{\lambda\mu})_{1<\lambda,\mu< r}$ to determine. Solutions might still exist, but lack uniqueness and a priori bounds.

Mitigation of the problem

In order to recover a well determined system of equations, one needs an additional "matrix equation" of rank $r^2 - 1$.

Use of a Hermite-Einstein equation (Donaldson / Uhlenbeck-Yau)

Let ω be a Kähler metric on X and log h the logarithm of the endomorphism h with respect to a fixed metric h_0 on E. Let u° the trace free part of a hermitian endomorphism u. Then $\exists ! h$ such that $\det_{h_0}(h) = 1$ and $\omega^{n-1} \wedge \Theta_{E,h}^{\circ} = -\varepsilon \log h \ \omega^n \in \operatorname{Herm}_h^{\circ}(E,E)$.

This is an equation of rank_R $r^2 - 1$, always solvable for $\varepsilon > 0$...

Setup of the Yang-Mills differential system

In view of the above, we are led to considering a Yang-Mills differential system denoted (YM_t) , $t \in]t_{inf}, t_0]$, consisting of a scalar Monge-Ampère type equation

$$(YM_t^{\Phi}) \qquad \Phi_P(\Theta_{E,h} + t \Theta_{\det E,\det h} \otimes \operatorname{Id}_E) = f_t \left(\frac{\Omega}{\omega_h^n}\right)^{\beta} \Omega,$$

where Ω is a fixed volume form on X, $\omega_h = \Theta_{\det E,h}$, $f_t \in C^{\infty}(X,\mathbb{R})$, $f_t > 0$, $\beta \in \mathbb{R}$; we add a matrix trace free Hermite-Einstein equation

$$(YM_t^\circ)$$
 $\omega_h^{n-1} \wedge \Theta_{E,h}^\circ = g_t \, \omega_h^n, \quad g_t \in C^\infty(X, \operatorname{Herm}_h^\circ(E, E)).$

The reason for introducing a factor $(\frac{\Omega}{\omega_h^n})^{\beta}$ comes from the following

Theorem 1 (D, 2021 – essentially linear algebra!)

There exist explicit distortion functions $\beta_{P,h,t}$ in $C^0(X,\mathbb{R}_+)$ s.t. for any metric h on E satisfying $\Theta_{E,h} + t \Theta_{\det E,\det h} \otimes \operatorname{Id}_E >_P 0$ and any $\beta > \beta_0 = \sup_X \beta_{P,h,t}$, the system of differential equations (YM_t) possesses an elliptic linearization in a C^2 neighborhood of h.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

15/24

Expression of the distortion functions

Letting $\theta_t(h) = \Theta_{E,h} + t \Theta_{\det E,\det h} \otimes \operatorname{Id}_E$ and $\theta_t(h))^{\operatorname{cof}} = \operatorname{cofactor} \operatorname{matrix} \operatorname{of} \widetilde{\theta}_t(h) \in \operatorname{Herm}(T_X \otimes E)$, the distortion functions are given explicitly at each point of X by

$$\beta_{N,h,t} = \frac{\sqrt{n-1}+1}{r} \frac{|\Theta_{E,h}^{\circ}| |\theta_{t}(h)^{\text{cof}}|}{\det \theta_{t}(h)}$$

$$\beta_{N^{*},h,t} = \frac{\sqrt{n-1}+1}{r} \frac{|\Theta_{E,h}^{\circ}| |({}^{T}\theta_{t}(h))^{\text{cof}}|}{\det({}^{T}\theta_{t}(h))},$$

$$\beta_{G,s,h,t} = (\sqrt{n-1}+1) |\Theta_{E,h}^{\circ}|$$

$$\times \left(\int_{\substack{v \in E \\ |v|_{h}=1}} \frac{d\sigma(v)}{\left((\langle \theta_{t}(h) \cdot v, v \rangle_{h})^{n}\right)^{s}} \right)^{-1}$$

$$\times \int_{\substack{v \in E \\ |v|_{h}=1}} \frac{n(\langle \theta_{t}(h) \cdot v, v \rangle_{h})^{n-1} \wedge \omega_{h} d\sigma(v)}{\left((\langle \theta_{t}(h) \cdot v, v \rangle_{h})^{n}\right)^{s+1}}$$

where $\omega_h = \Theta_{\det E, \det h}$.

but we need ellipticity _and_ local invertibility . . .

Local invertibility of the linearized elliptic operator is needed to apply the implicit function theorem and get openness for solutions.

Theorem 2 (D, 2021 – local openness of existence for solutions)

Consider the more specific Yang-Mills system (YM_t) , $t \in [t_{min}, t_0]$

$$(YM_t^{\Phi}) \qquad \Phi_P igl(\Theta_{E,h} + t \, \Theta_{\det E,\det h} \otimes \operatorname{Id}_Eigr) = \left(rac{\det h_{t_0}}{\det h}
ight)^{\lambda} \left(rac{\Omega}{\omega_h^n}
ight)^{eta} \Omega,$$

$$(YM_t^\circ)$$
 $\omega_h^{-n}(\omega_h^{n-1}\wedge\Theta_{E,h}^\circ)=-\varepsilon\,A(\det h)(\log h)^\circ,$

where A>0 is any C^{∞} functional, and $\log h$ is computed with respect to the initial metric h_{t_0} .

Then there exist bounds $\beta_0 := \sup_X \beta_{P,t,h}$, $\varepsilon_0(A,\beta)$ and $\lambda_0(\beta)$ such that for any choice of constants

$$\beta > \beta_0$$
, $\varepsilon > \varepsilon_0(A, \beta)$ and $\lambda > \lambda_0(\beta)$,

the system (YM_t) possesses an invertible elliptic linearization.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

17/24

Very rough sketch of proof of ellipticity/invertibility

The (long, computational) proof consists of analyzing the linearized system of equations, starting from the curvature tensor formula

$$\Theta_{E,h} = i\overline{\partial}(h^{-1}\partial h) = i\overline{\partial}(\widetilde{h}^{-1}\partial_{H_0}\widetilde{h}),$$

where $\partial_{H_0} s = H_0^{-1} \partial(H_0 s)$ is the (1,0)-component of the Chern connection on Hom(E,E) associated with $H_0 = h_{t_0}$ on E.

Let us recall that the ellipticity of an operator

$$P: C^{\infty}(V) \to C^{\infty}(W), \quad f \mapsto P(f) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha} f(x)$$

means the invertibility of the principal symbol

$$\sigma_P(x,\xi) = \sum_{|\alpha|=m} a_{\alpha}(x) \, \xi^{\alpha} \in \mathsf{Hom}(V,W)$$

whenever $0 \neq \xi \in T^*_{X,x}$.

For instance, on the torus $\mathbb{R}^n/\mathbb{Z}^n$, $f\mapsto P_\lambda(f)=-\Delta f+\lambda f$ has an invertible symbol $\sigma_{P_\lambda}(x,\xi)=-|\xi|^2$, but P_λ is invertible only when λ avoids the eigenvalues of Δ , e.g. when $\lambda>0$.

Important remaining points ...

- We have been able to set-up a Yang-Mills differential system (YM_t) that is elliptic invertible, and ensures the existence of an open time interval $[t_1, t_0]$ for which we have uniqueness of the solution.
- We somehow know that the solution persists unless some distortion occurs (in the sense that $\sup_X \beta_{P,h,t} \to +\infty$, or the trace free part ratio $|\Theta_{E,h}^{\circ}|/(1+|\log h|)$ explodes at t_1).
- The latter point might possibly be used (as in the work of Uhlenbeck-Yau) to get suitable destabilizing subsheaves, that would e.g. contradict the ampleness assumption if P = Gand $t_1 \geq 0$.
- A natural question is whether one can arrange that the infimum t_{inf} of times t for which (YM_t) has a solution coincides with the positivity threshold $\tau_P(E)$, in the case of P-positivity. For this, we would probably need uniform a priori estimates ...

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

19/24

On the Fulton Lazarsfeld inequalities

A fundamental result due to Fulton-Lazarsfeld asserts that if $E \to X$ is an ample vector bundle, then all Schure polynomials $P(c_{\bullet}(E))$ in the Chern classes are numerically positive, i.e.

$$\int_{Y} P(c_{\bullet}(E)) > 0$$

for all irreducible cycles Y of the appropriate dimension in X. Recently, Siarhei Finski has shown

Theorem (Finski 2020)

If (E, h) is a (dual) Nakano positive vector bundle, then all Schur polynomials $P(c_{\bullet}(E,h))$ in the Chern forms are pointwise positive (k, k)-forms (in the sense of the weak positivity of forms).

This is a compelling motivation to investigate the various types of positivity for vector bundles.

Further recent results by Siarhei Finski

When $E \to X$ is an ample vector bundle, the symmetric powers $S^m E$ have enough sections to generate 1-jets for $m \ge m_0 \gg 1$, and one can immediately derive from there that

E ample $\Rightarrow S^m E$ dual-Nakano positive for $m \geq m_0 \gg 1$.

Then it makes sense to wonder whether there is an asymptotic formula for the monge-Ampère volume $MAVol_P(S^mE)$.

S. Finski obtained more generally an asymptotic formula for the Monge-Ampère volume of direct images $E_m = \pi_*(L^m \otimes G)$ by any proper morphism $\pi: Y \to X$ of any line bundle $(L, h_L) > 0$ on Y.

Theorem (S. Finski 2020)

Given any volume form $d\nu$ on X, the direct images satisfy

$$\mathrm{MAVol}_{N^*}(E_m,h_{E_m}) \sim m^{\dim X} \int_X \exp\left(\frac{\int_Y \log\left(\omega_H^{\dim X}/\pi^*\nu\right)\omega^{\dim Y}}{\int_Y c_1(L)^{\dim Y}}\right) d\nu,$$

where $\omega = \Theta_{L,h_L} > 0$ on Y, and ω_H is its horizontal part.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

21/24

The end

Best wishes Kang-Tae!

References

- [Ber09] Berndtsson B.: Curvature of vector bundles associated to holomorphic fibrations, Annals of Math. **169** (2009), 531—560.
- [Dem20] Demailly J.-P: Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles, Mat. Sbornik, 212 Number 3 (2021) 39-53, https://doi.org/10.4213/sm9387.
- [Dem21] Demailly J.-P: Monge-Ampère functionals for the curvature tensor of a holomorphic vector bundle, to appear in Analysis Math. 2022, vol. in honor of László Lempert.
- [Fin20a] Finski, S. On characteristic forms of positive vector bundles, mixed discriminants and pushforward identities, arXiv:2009.13107.

J.-P. Demailly, Kang-Tae Kim's 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles

23/24

References (continued)

- [Fin20b] Finski, S. On Monge-Ampère volumes of direct images arXiv:2010.01839.
- [LSY13] Liu K., Sun X., Yang, X.: Positivity and vanishing theorems for ample vector bundles, J. Alg. Geom. 22 (2013) 303 - 331.
- [Pin20] Pingali, V.P.: A vector bundle version of the Monge-Ampère equation, Adv. in Math. **360** (2020), 40 pages, https://doi.org/10.1016/j.aim.2019.106921.
- [UhY86] Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math. **39** (1986) 258–293.
- [Ume73] Umemura, H.: Some results in the theory of vector bundles, Nagoya Math. J. **52** (1973), 97–128.