

INSTITUT DE FRANCE Académie des sciences

From the Ohsawa-Takegoshi theorem to asymptotic cohomology estimates

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I, France

dedicated to Prof. Takeo Ohsawa and Tetsuo Ueda on the occasion of their sixtieth birthday

July 20, 2011 / Kyoto Symposium SCV XIV

The Ohsawa-Takegoshi extension theorem

Theorem (Ohsawa-Takegoshi 1987), (Manivel 1993)

Let (X, ω) be a Kähler manifold, which is compact or weakly pseudoconvex, $n = \dim_{\mathbb{C}} X$, $L \to X$ a hermitian line bundle, Ea hermitian holomorphic vector bundle, and $s \in H^0(X, E)$ s.t. $Y = \{x \in X ; s(x) = 0, \Lambda^r ds(x) \neq 0\}$ is dense in $\overline{Y} = \{s(x) = 0\}$, so that $p = \dim \overline{Y} = n - r$. Assume that $\exists \alpha(x) \ge 1$ continuous s.t.

(i)
$$i\Theta_L + r i \partial \overline{\partial} \log |s|^2 \ge \max \left(0, \alpha^{-1} \frac{\{I\Theta_E s, s\}}{|s|^2}\right)$$

(ii) $|s| \le e^{-\alpha}$. Then

 $\begin{array}{l} \forall f \in H^0(Y, (K_X \otimes L)_{|Y}) \text{ s.t. } \int_Y |f|^2 |\Lambda^r(ds)|^{-2} dV_{Y,\omega} < +\infty, \\ \exists F \in H^0(X, K_X \otimes L) \text{ s.t. } F_{|Y} = f \text{ and} \end{array}$

$$\int_{X} \frac{|F|^2}{|s|^{2r}(-\log|s|)^2} \, dV_{X,\omega} \leq C_r \int_{Y} \frac{|f|^2}{|\Lambda^r(ds)|^2} dV_{Y,\omega}.$$

The Ohsawa-Takegoshi extension theorem (II)

Theorem (Ohsawa-Takegoshi 1987)

Let $X = \Omega \subset \mathbb{C}^n$ be a bounded pseudoconvex set, φ a plurisubharmonic function on Ω and $Y = \Omega \cap S$ where Sis an affine linear subspace of \mathbb{C}^n of any codimension r. For every $f \in H^0(Y, \mathcal{O}_Y)$ such that $\int_Y |f|^2 e^{-\varphi} dV_Y < +\infty$, there exists $F \in H^0(\Omega, \mathcal{O}_\Omega)$ s.t. $F_{|Y} = f$ and

$$\int_{\Omega} |F|^2 e^{-\varphi} \, dV_{\Omega} \leq C_r (\operatorname{diam} \Omega)^{2r} \int_{Y} |f|^2 e^{-\varphi} dV_{Y}.$$

Even the case when $Y = \{z_0\}$ is highly non trivial, thanks to the L^2 estimate : $\forall z_0 \in \Omega$, $\exists F \in H^0(\Omega, \mathcal{O}_\Omega)$, such that $F(z_0) = C_n^{-1/2} (\operatorname{diam} \Omega)^{-n} e^{\varphi(z_0)/2}$ and

$$\|F\|^2 = \int_{\Omega} |F|^2 e^{-\varphi} \, dV_{\Omega} \leq 1.$$

▲圖▶ ★ 国▶ ★ 国▶

Local approximation of plurisubharmonic functions

Let $\Omega \subset \mathbb{C}^n$ be a bounded pseudoconvex set, φ a plurisubharmonic function on Ω . Consider the Hilbert space

$$\mathcal{H}(\Omega, m\varphi) = \big\{ f \in \mathcal{O}(\Omega) \, ; \, \int_{\Omega} |f|^2 e^{-2m\varphi} dV < +\infty \big\}.$$

One defines an "approximating sequence" of φ by putting

$$\varphi_m(z) = rac{1}{2m} \log \sum_{j \in \mathbb{N}} |g_{j,m}(z)|^2$$

where $(g_{j,m})$ is a Hilbert basis of $\mathcal{H}(\Omega, m\varphi)$ (Bergman kernel procedure).

If $ev_z : \mathcal{H}(\Omega, m\varphi) \to \mathbb{C}$ is the evaluation linear form, one also has

$$\varphi_m(z) = \frac{1}{m} \log \|\operatorname{ev}_z\| = \frac{1}{m} \sup_{f \in \mathcal{H}(\Omega, m\varphi), \|f\| \le 1} \log |f(z)|.$$

From the Ohsawa-Takegoshi theorem to asymptotic cohomology

伺下 イヨト イヨト

Local approximation of psh functions (II)

The Ohsawa-Takegoshi approximation theorem implies

$$\varphi_m(z) \ge \varphi(z) - \frac{C_1}{m}$$

In the other direction, the mean value inequality gives

$$\varphi_m(z) \leq \sup_{B(z,r)} \varphi + \frac{n}{m} \log \frac{C_2}{r}, \qquad \forall B(z,r) \subset \Omega$$

Corollary 1 ("strong psh approximation")

One has $\lim \varphi_{\textit{m}} = \varphi$ and the Lelong-numbers satisfy

$$u(\varphi, z) - \frac{n}{m} \leq \nu(\varphi_m, z) \leq \nu(\varphi, z).$$

Corollary 2 (new proof of Siu's Theorem, 1974)

The Lelong-number sublevel sets $F(a) = \{z \in \Omega : y \mid (a, z) > a\}$

 $E_c(\varphi) = \{z \in \Omega; \ \nu(\varphi, z) \ge c\}, \ c > 0 \text{ are analytic subsets.}$

Approximation of global closed (1,1) currents

Let (X, ω) be a compact Kähler manifold and $\{\alpha\} \in H^{1,1}(X, \mathbb{R})$ a cohomology class given by a smooth representative α . Let $T \in \{\alpha\}$ be an almost positive current, i.e. a closed (1, 1)-current such that

 $T = \alpha + i\partial\overline{\partial}\varphi, \qquad T \ge \gamma$ where γ is a continuous (1, 1)-form (e.g. $\gamma = 0$ in case $T \ge 0$). One can write $T = \alpha + i\partial\overline{\partial}\varphi$ for some quasi-psh potential φ on X, with $i\partial\overline{\partial}\varphi \ge \gamma - \alpha$. Then use a finite covering $(B_j)_{1\le j\le N}$ of X by coordinate balls, a partition of unity (θ_j) , and set

$$\varphi_m(z) = \sum_{j=1}^n \theta_j(z) \left(\psi_{j,m} + \sum_{k=1}^n \lambda_{j,k} |z_k^{(j)}|^2 \right)$$

where $\psi_{j,m}$ are Bergman approximations of $\psi_j(z) := \varphi(z) - \sum \lambda_{j,k} |z_k^{(j)}|^2$ (coordinates $z^{(j)}$ and coefficients $\lambda_{j,k}$ are chosen so that ψ_j is psh on B_j).

Kyoto Symposium SCV XIV, 20/07/2011

Approximation of global closed (1,1) currents (II)

Approximation therem ([D - 1992])

Let (X, ω) be a compact Kähler manifold and $T = \alpha + i\partial\overline{\partial}\varphi \ge \gamma$ a quasi-positive closed (1, 1)-currents. Then $T = \lim T_m$ weakly where (i) $T_m = \alpha + i\partial\overline{\partial}\varphi_m > \gamma - \varepsilon_m\omega$. $\varepsilon_m \rightarrow 0$ (ii) $\nu(T,z) - \frac{n}{m} \leq \nu(T_m,z) \leq \nu(T,z)$ (iii) the potentials φ_m have only analytic singularities of the form $\frac{1}{2m} \log \sum_i |g_{i,m}|^2 + C^{\infty}$ (iv) The local coherent ideal sheaves $(g_{i,m})$ glue together into a global ideal $\mathcal{J}_m =$ multiplier ideal sheaf $\mathcal{I}(m\varphi)$.

The OT theorem implies that (φ_{2^m}) is decreasing, i.e. that the singularities of φ_{2^m} increase to those of φ by "subadditivity":

 $\mathcal{I}(\varphi + \psi) \subset \mathcal{I}(\varphi) + \mathcal{I}(\psi) \Rightarrow \mathcal{I}(2^{m+1}\varphi) \subset (\mathcal{I}(2^m \varphi))^2.$

Kähler (red) cone and pseudoeffective (blue) cone

▲御▶ ★ 理≯ ★ 理≯

In case X is projective, it is interesting to consider the "algebraic part" of our "transcendental cones" \mathcal{K} and \mathcal{E} , which consist of suitable integral divisor classes. Since the cohomology classes of such divisors live in $H^2(X, \mathbb{Z})$, we are led to introduce the Neron-Severi lattice and the associated Neron-Severi space

$$\begin{split} \mathrm{NS}(X) &:= H^{1,1}(X,\mathbb{R}) \cap \big(H^2(X,\mathbb{Z})/\{\mathrm{torsion}\}\big),\\ \mathrm{NS}_{\mathbb{R}}(X) &:= \mathrm{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R},\\ \mathcal{K}_{\mathrm{NS}} &:= \mathcal{K} \cap \mathrm{NS}_{\mathbb{R}}(X) = \mathrm{cone \ of \ ample \ divisors},\\ \mathcal{E}_{\mathrm{NS}} &:= \mathcal{E} \cap \mathrm{NS}_{\mathbb{R}}(X) = \overline{\mathrm{cone \ of \ effective \ divisors}}. \end{split}$$

The interior \mathcal{E}° is by definition the cone of big classes.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Neron Severi parts of the cones

Kyoto Symposium SCV XIV, 20/07/2011

From the Ohsawa-Takegoshi theorem to asymptotic cohomology

・ 回 と ・ ヨ と ・ ヨ と …

æ

Approximation of Kähler currents

Definition

On X compact Kähler, a Kähler current T is a closed positive (1,1)-current T such that $T \ge \delta \omega$ for some smooth hermitian metric ω and a constant $\delta \ll 1$.

Observation

$$\alpha \in \mathcal{E}^{\circ} \Leftrightarrow \alpha = \{T\}, \ T = a \ K$$
ähler current.

Consequence of approximation theorem

Any Kähler current T can be written $T = \lim T_m$ where $T_m \in \alpha = \{T\}$ has logarithmic poles, i.e. \exists a modification $\mu_m : \widetilde{X}_m \to X$ such that $\mu_m^* T_m = [E_m] + \beta_m$ where : E_m effective Q-divisor and β_m Kähler form on \widetilde{X}_m .

> <回> < 三> < 三>

Proof of the consequence

Since $T \geq \delta \omega$, the main approximation theorem implies

$$T_m = i\partial\overline{\partial} \frac{1}{2m} \log \sum_j |g_{j,m}|^2 (\mod C^\infty) \ge \frac{\delta}{2}\omega, \ m \ge m_0$$

and $\mathcal{J}_m = \mathcal{I}(m\varphi)$ is a global coherent sheaf. The modification $\mu_m : \widetilde{X}_m \to X$ is obtained by blowing-up this ideal sheaf, so that $\mu_m^* \mathcal{J}_m = \mathcal{O}(-m\mathcal{E}_m)$

for some effective \mathbb{Q} -divisor E_m with normal crossings on X_m . If h is a generator of $\mathcal{O}(-mE_m)$, and we see that

$$\beta_m = \mu_m^* T_m - [E_m] = \frac{1}{2m} \log \sum_j |g_{j,m} \circ \mu_m / h|^2 \quad \text{locally on } \widetilde{X}_m$$

hence β_m is a smooth semi-positive form on \widetilde{X}_m which is > 0 on
 $\widetilde{X}_m \setminus \text{Supp } E_m$. By a perturbation argument using transverse nega-
tivity of exceptional divisors, β_m can easily be made Kähler.

Kyoto Symposium SCV XIV, 20/07/2011

Analytic Zariski decomposition

Theorem

For every class $\{\alpha\} \in \mathcal{E}$, there exists a positive current $T_{\min} \in \{\alpha\}$ with minimal singularities.

Proof. Take $T = \alpha + i\partial\overline{\partial}\varphi_{\min}$ where $\varphi_{\min}(x) = \max\{\varphi(x); \varphi \leq 0 \text{ and } \alpha + i\partial\overline{\partial}\varphi \geq 0\}.$

Theorem

Let X be compact Kähler and let $\{\alpha\} \in \mathcal{E}^{\circ}$ be a big class and $T_{\min} \geq 0$ be a current with minimal singularities. Then $T_{\min} = \lim T_m$ where T_m are Kähler currents such that (i) \exists modification $\mu_m : \widetilde{X}_m \to X$ with $\mu_m^* T_m = [E_m] + \beta_m$, where E_m is a Q-divisor and β_m a Kähler form on \widetilde{X}_m . (ii) $\int_{\widetilde{X}_m} \beta_m^n$ is an increasing sequence converging to $\operatorname{Vol}(X, \{\alpha\}) := \int_X (T_{\min})_{\mathrm{ac}}^n = \sup_{T \in \{\alpha\}, \mathrm{anal.sing}} \int_{X \setminus \operatorname{Sing}(T)} T^n$.

Kyoto Symposium SCV XIV, 20/07/2011

Orthogonality estimate

Theorem (Boucksom-Demailly-Păun-Peternell 2004)

Assume X projective and $\{\alpha\} \in \mathcal{E}_{NS}^{\circ}$. Then $\beta_m = [D_m]$ is an ample \mathbb{Q} -divisor such that

 $(D_m^{n-1} \cdot E_m)^2 \le 20 (C\omega)^n (\operatorname{Vol}(\alpha) - D_m^n)$

where $\omega = c_1(H)$ is a fixed polarization and $C \ge 0$ is a constant such that $\pm \alpha$ is dominated by $C\omega$ (i.e., $C\omega \pm \alpha$ nef).

Proof similar to projection of a point onto a convex set, using elementary case of Morse inequalities:

$$\operatorname{Vol}(eta - \gamma) \ge eta^n - neta^{n-1} \cdot \gamma$$

 $orall eta, \gamma \text{ ample classes}$

From the Ohsawa-Takegoshi theorem to asymptotic cohomology

・ 回 ト ・ ヨ ト ・ ヨ ト

Kyoto Symposium SCV XIV, 20/07/2011

Duality between $\mathcal{E}_{\mathrm{NS}}$ and $\mathcal{M}_{\mathrm{NS}}$

Theorem (BDPP, 2004)

For X projective, a class α is in $\mathcal{E}_{\rm NS}$ (pseudo-effective) if and only if $\alpha \cdot C_t \geq 0$ for all mobile curves, i.e. algebraic curves which can be deformed to fill the whole of X. In other words, $\mathcal{E}_{\rm NS}$ is the dual cone of the cone $\mathcal{M}_{\rm NS}$ of mobile curves with respect to Serre duality.

Proof. We want to show that $\mathcal{E}_{NS} = \mathcal{M}_{NS}^{\vee}$. By obvious positivity of the integral pairing, one has in any case $\mathcal{E}_{NS} \subset (\mathcal{M}_{NS})^{\vee}$.

If the inclusion is strict, there is an element $\alpha \in \partial \mathcal{E}_{NS}$ on the boundary of \mathcal{E}_{NS} which is in the interior of \mathcal{N}_{NS}^{\vee} . Hence

 $\alpha \cdot \mathsf{\Gamma} \geq \varepsilon \omega \cdot \mathsf{\Gamma}$

for every moving curve Γ , while $\langle \alpha^n \rangle = \operatorname{Vol}(\alpha) = 0$.

Kyoto Symposium SCV XIV, 20/07/2011

Schematic picture of the proof

Then use approximate Zariski decomposition of $\{\alpha + \delta\omega\}$ and orthogonality relation to contradict (*) with $\Gamma = \langle \alpha^{n-1} \rangle$.

• • = • • = •

Characterization of uniruled varieties

Recall that a projective variety is called uniruled if it can be covered by a family of rational curves $C_t \simeq \mathbb{P}^1_{\mathbb{C}}$.

Theorem (Boucksom-Demailly-Paun-Peternell 2004)

A projective manifold X has its canonical bundle K_X pseudo-effective, i.e. $K_X \in \mathcal{E}_{NS}$, if and only if X is not uniruled.

Proof (of the non trivial implication). If $K_X \notin \mathcal{E}_{NS}$, the duality pairing shows that there is a moving curve C_t such that $K_X \cdot C_t < 0$. The standard "bend-and-break" lemma of Mori then implies that there is family Γ_t of rational curves with $K_X \cdot \Gamma_t < 0$, so X is uniruled.

Note: Mori's proof uses characteristic p, so it is hard to extend to the Kähler case !

▲圖▶ ▲屋▶ ▲屋▶

Asymptotic cohomology functionals

Definition

Let X be a compact complex manifold and let $L \rightarrow X$ be a holomorphic line bundle.

(i) $\widehat{h}^{q}(X, L) := \limsup_{k \to +\infty} \frac{n!}{m^{n}} h^{q}(X, L^{\otimes m})$ (ii) (asymptotic Morse partial sums) $\widehat{h}^{\leq q}(X, L) := \limsup_{m \to +\infty} \frac{n!}{m^{n}} \sum_{0 \leq j \leq q} (-1)^{q-j} h^{j}(X, L^{\otimes m}).$

Conjecture

$$\widehat{h}^q(X,L)$$
 and $\widehat{h}^{\leq q}(X,L)$ depend only on $c_1(L) \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R}).$

Theorem (Küronya, 2005), (D, 2010)

This is true if $c_1(L)$ belongs to the "divisorial Neron-Severi group" $DNS_{\mathbb{R}}(X)$ generated by divisors.

Kyoto Symposium SCV XIV, 20/07/2011

Holomorphic Morse inequalities

Theorem (D, 1985)

Let $L \to X$ be a holomorphic line bundle on a compact complex manifold. Then (i) $\hat{h}^q(X, L) \leq \inf_{u \in c_1(L)} \int_{X(u,q)} (-1)^q u^n$ (ii) $\hat{h}^{\leq q}(X, L) \leq \inf_{u \in c_1(L)} \int_{X(u, \leq q)} (-1)^q u^n$ where X(u, q) is the q-index set of the (1, 1)-form u and $X(u, \leq q) = \bigcup_{0 \leq j \leq q} X(u, j)$.

Question (or Conjecture !)

Are these inequalities always equalities ?

If the answer is yes, then $\hat{h}^q(X, L)$ and $\hat{h}^{\leq q}(X, L)$ actually only depend only on $c_1(L)$ and can be extended to $H^{1,1}_{BC}(X, \mathbb{R})$, e.g.

$$h_{\mathrm{tr}}^{\leq q}(X,\alpha) := \inf_{u \in \alpha} \int_{X(u, \leq q)} (-1)^q u^n, \quad \forall \alpha \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$$

Kyoto Symposium SCV XIV, 20/07/2011

Converse of Andreotti-Grauert theorem

Theorem (D, 2010) / related result S.-I. Matsumura, 2011

Let X be a projective variety. Then

(i) the conjectures are true for q = 0:

 $\widehat{h}^0(X,L) = \operatorname{Vol}(X,c_1(L)) = \inf_{u \in c_1(L)} \int_{X(u,0)} u^n$

(ii) The conjectures are true for dim $X \leq 2$

The limsup's are limits in all of these cases.

Observation 1. The question is invariant by Serre duality : $\widehat{h}^q(X,L) = \widehat{h}^{n-q}(X,-L)$

Observation 2. (Birational invariance). If $\mu : \widetilde{X} \to X$ is a modification, then $\widehat{h}^q(X, L) = \widehat{h}^q(\widetilde{X}, \mu^*L)$ by the Leray spectral sequence and

$$\inf_{u\in\alpha}\int_{X(u,\leq q)}(-1)^{q}u^{n}=\inf_{\widetilde{u}\in\mu^{*}\alpha}\int_{\widetilde{X}(\widetilde{u},\leq q)}(-1)^{q}\widetilde{u}^{n}.$$

Kyoto Symposium SCV XIV, 20/07/2011

・ 同 ト ・ ヨ ト ・ ヨ ト

Main idea of the proof

It is enough to consider the case of a big line bundle *L*. Then use approximate Zariski decomposition:

$$\forall \delta > 0, \ \exists \mu = \mu_{\delta} : \widetilde{X} \to X, \quad \mu^* L = E + A$$

where E is \mathbb{Q} -effective and A \mathbb{Q} -ample, and

 $\operatorname{Vol}(X,L) - \delta \leq A^n \leq \operatorname{Vol}(X,L), \quad E \cdot A^{n-1} \leq C \delta^{1/2},$

the latter inequality by the orthogonality estimate. Take $\omega \in c_1(A)$ a Kähler form and a metric h on $\mathcal{O}(E)$ such that

$$\Theta_{\mathcal{O}(E),h} \wedge \omega^{n-1} = c_{\delta} \omega^n, \qquad c_{\delta} = O(\delta^{1/2}).$$

The last line is obtained simply by solving a Laplace equation, thanks to the orthogonality estimate.

End of the proof

$$\mu^*L = E + A \Rightarrow \widetilde{u} = \Theta_{\mathcal{O}(E),h} + \omega \in c_1(\mu^*L).$$

If $\lambda_1 \leq \ldots \leq \lambda_n$ are the eigenvalues of $\Theta_{\mathcal{O}(E),h}$ with respect to ω , then $\sum \lambda_i = \text{trace} \leq C \delta^{1/2}$. We have

$$\widetilde{u}^n = \prod (1+\lambda_i) \omega^n \leq \left(1+rac{1}{n}\sum \lambda_i\right)^n \omega^n \leq (1+O(\delta^{1/2})\omega^n,$$

therefore

$$\int_{\widetilde{X}(u,0)} \widetilde{u}^n \leq (1+O(\delta^{1/2})) \int_X \omega^n \leq (1+O(\delta^{1/2})\operatorname{Vol}(X,L)).$$

As $\delta \rightarrow {\rm 0}$ we find

$$\inf_{u \in c_1(L)} \int_{X(u,0)} u^n = \inf_{\mu} \inf_{\widetilde{u} \in c_1(\mu^*L)} \int_{\widetilde{X}(u,0)} \widetilde{u}^n \leq \operatorname{Vol}(X,L). \quad \mathsf{QED}$$

Kyoto Symposium SCV XIV, 20/07/2011

From the Ohsawa-Takegoshi theorem to asymptotic cohomology

通 と く ヨ と く ヨ と