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Ruler and compasses vs. origamis

Ancient Greek mathematicians have greatly developed
geometry (Euclid, Pythagoras, Thales, Eratosthenes...)
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They raised the question whether certain constructions can be
made by ruler and compasses
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Ruler and compasses vs. origamis

Ancient Greek mathematicians have greatly developed
geometry (Euclid, Pythagoras, Thales, Eratosthenes...)

They raised the question whether certain constructions can be
made by ruler and compasses

Quadrature of the circle ? This means: constructing a square
whose perimeter is equal to the perimeter of a given circle.
It was solved only in 1882 by Lindemann, after more than 2000
years : construction is not possible with ruler and compasses !
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Ancient Greek mathematicians have greatly developed
geometry (Euclid, Pythagoras, Thales, Eratosthenes...)

They raised the question whether certain constructions can be
made by ruler and compasses

Quadrature of the circle ? This means: constructing a square
whose perimeter is equal to the perimeter of a given circle.
It was solved only in 1882 by Lindemann, after more than 2000
years : construction is not possible with ruler and compasses !

Neither is it possible to trisect an angle (Wantzel 1837)
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Ruler and compasses vs. origamis

Ancient Greek mathematicians have greatly developed
geometry (Euclid, Pythagoras, Thales, Eratosthenes...)

They raised the question whether certain constructions can be
made by ruler and compasses

Quadrature of the circle ? This means: constructing a square
whose perimeter is equal to the perimeter of a given circle.
It was solved only in 1882 by Lindemann, after more than 2000
years : construction is not possible with ruler and compasses !

Neither is it possible to trisect an angle (Wantzel 1837)

In Japan, on the other hand, there is a rich tradition of
making origamis : it is the art of folding paper and maker nice
geometric constructions out of such foldings.
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Trisection of an angle with origamis

O

I

(F1)

(F2)
I'

J'

O'

(D')
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J

(F )

B

(D)3

S

Folding along (F3) so that O is brought to O ′ ∈ (F1) and I is
brought to I ′ ∈ D ′ constructs the trisection of angle(D,D ′) !
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Cube root of 2 with origamis

A

E

B

CD
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S

Exercise. Show that this construction can be used to produce
3
√
2 (side of the square is 3).
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“Axioms” for ruler and compasses

One starts from a given set of points S
(quit often just two points S = {O,A})
Then enlarge S into S ′ ⊃ S by constructing lines and
circles according to the following rules:
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“Axioms” for ruler and compasses

One starts from a given set of points S
(quit often just two points S = {O,A})
Then enlarge S into S′ ⊃ S by constructing lines and
circles according to the following rules:

Axiom (RC1). Given two points M, N already
constructed in S′, one can construct the line (MN) or the
circle of center M passing through N (or vice versa).
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“Axioms” for ruler and compasses

One starts from a given set of points S
(quit often just two points S = {O,A})
Then enlarge S into S′ ⊃ S by constructing lines and
circles according to the following rules:

Axiom (RC1). Given two points M, N already
constructed in S′, one can construct the line (MN) or the
circle of center M passing through N (or vice versa).

Axiom (RC2). Given 2 lines, 1 line and a circle, or 2
circles constructed from RC1, S′ contains all points of
intersection of these.
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“Axioms” for ruler and compasses

One starts from a given set of points S
(quit often just two points S = {O,A})
Then enlarge S into S′ ⊃ S by constructing lines and
circles according to the following rules:

Axiom (RC1). Given two points M, N already
constructed in S′, one can construct the line (MN) or the
circle of center M passing through N (or vice versa).

Axiom (RC2). Given 2 lines, 1 line and a circle, or 2
circles constructed from RC1, S′ contains all points of
intersection of these.

Question : Describe the set of points ConstrRC(S) which
can be constructed from S in finitely many steps.
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Complex numbers

One introduces the “imaginary number” denoted
i =

√
−1 which does not exist among real numbers

(x2 = −1 has no solution in R)
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Complex numbers

One introduces the “imaginary number” denoted
i =

√
−1 which does not exist among real numbers

(x2 = −1 has no solution in R)

Complex numbers are combinations x+ iy where x, y are
real numbers, e.g. 2 + 3i. Their set is denoted C.
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Complex numbers

One introduces the “imaginary number” denoted
i =

√
−1 which does not exist among real numbers

(x2 = −1 has no solution in R)

Complex numbers are combinations x+ iy where x, y are
real numbers, e.g. 2 + 3i. Their set is denoted C.

Addition in C

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′),

e.g. (2 + 3i) + (−7 + 8i) = −5 + 11i
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Complex numbers

One introduces the “imaginary number” denoted
i =

√
−1 which does not exist among real numbers

(x2 = −1 has no solution in R)

Complex numbers are combinations x+ iy where x, y are
real numbers, e.g. 2 + 3i. Their set is denoted C.

Addition in C

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′),

e.g. (2 + 3i) + (−7 + 8i) = −5 + 11i

Multiplication in C

(x+ iy)× (x′ + iy′) = xx′ + ixy′ + iyx′ + i× i× yy′

= xx′ + ixy′ + iyx′ + (−1)× yy′

= (xx′ − yy′) + i(xy′ + yx′)
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Geometric interpretation of complex numbers

Complex numbers are identified with points of a euclidean
plane, once one chooses an origin O and a point A
representing 1
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Geometric interpretation of complex numbers

Complex numbers are identified with points of a euclidean
plane, once one chooses an origin O and a point A
representing 1

Interpretation of addition in C Addition corresponds to
adding vectors in the plane: use a parallelogram
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Geometric interpretation of complex numbers

Complex numbers are identified with points of a euclidean
plane, once one chooses an origin O and a point A
representing 1

Interpretation of addition in C Addition corresponds to
adding vectors in the plane: use a parallelogram

Interpretation of multiplication in C Introduce
|z| =

√

x2 + y2 and arg(z) = angle(0x,Oz). Then

|zz′| = |z| |z′|, arg(zz′) = arg(z) + arg(z′) mod 2π
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Square roots always exist in C !

√
−x = ±i

√
x if x is a positive real number.
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Square roots always exist in C !

√
−x = ±i

√
x if x is a positive real number.

Square root of a complex number: if z = x + iy , then

√
z = ±

(

√

x +
√

x2 + y 2

2
+ εi

√

−x +
√

x2 + y 2

2

)

where ε = +1 if y ≥ 0 and ε = −1 if y < 0.
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Square roots always exist in C !

√
−x = ±i

√
x if x is a positive real number.

Square root of a complex number: if z = x + iy , then

√
z = ±

(

√

x +
√

x2 + y 2

2
+ εi

√

−x +
√

x2 + y 2

2

)

where ε = +1 if y ≥ 0 and ε = −1 if y < 0.

Theorem (d’Alembert-Gauss) Every polynomial of degree d

adz
d + ad−1z

d−1 + . . .+ a1z + a0 with coefficients in C

has exactly d roots when counted with multiciplicities.
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Square roots always exist in C !

√
−x = ±i

√
x if x is a positive real number.

Square root of a complex number: if z = x + iy , then

√
z = ±

(

√

x +
√

x2 + y 2

2
+ εi

√

−x +
√

x2 + y 2

2

)

where ε = +1 if y ≥ 0 and ε = −1 if y < 0.

Theorem (d’Alembert-Gauss) Every polynomial of degree d

adz
d + ad−1z

d−1 + . . .+ a1z + a0 with coefficients in C

has exactly d roots when counted with multiciplicities.

Definition One says that z ∈ C is an algebraic number if
it is a solution of a polynomial with aj ∈ Q (or aj ∈ Z),
a transcendental number otherwise
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Example of algebraic and transcendental numbers

Although irrational, z =
√
2 is algebraic since z2 − 2 = 0.
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Example of algebraic and transcendental numbers

Although irrational, z =
√
2 is algebraic since z2 − 2 = 0.

z = i
√
2 is also algebraic since z2 + 2 = 0.
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Example of algebraic and transcendental numbers

Although irrational, z =
√
2 is algebraic since z2 − 2 = 0.

z = i
√
2 is also algebraic since z2 + 2 = 0.

Hermite (1872): e = exp(1) is transcendental.
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Example of algebraic and transcendental numbers

Although irrational, z =
√
2 is algebraic since z2 − 2 = 0.

z = i
√
2 is also algebraic since z2 + 2 = 0.

Hermite (1872): e = exp(1) is transcendental.

Lindemann (1882): π is transcendental.
In fact if α is algebraic and non zero, then
eα is transcendental (Lindemann-Weierstrass 1885).
Now π cannot be algebraic since e iπ = −1 is algebraic !

Jean-Pierre Demailly (Grenoble I), 26/02/2010 Geometric constructions & algebraic numbers



Example of algebraic and transcendental numbers

Although irrational, z =
√
2 is algebraic since z2 − 2 = 0.

z = i
√
2 is also algebraic since z2 + 2 = 0.

Hermite (1872): e = exp(1) is transcendental.

Lindemann (1882): π is transcendental.
In fact if α is algebraic and non zero, then
eα is transcendental (Lindemann-Weierstrass 1885).
Now π cannot be algebraic since e iπ = −1 is algebraic !

Gelfond / Schneider (1934): if α and β are algebraic,
α 6= 0, 1 and β /∈ Q, then αβ is transcendental.
For example, 2

√
2 is transcendental, as well as

eπ = (e iπ)−i = (−1)−i .
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Example of algebraic and transcendental numbers

Although irrational, z =
√
2 is algebraic since z2 − 2 = 0.

z = i
√
2 is also algebraic since z2 + 2 = 0.

Hermite (1872): e = exp(1) is transcendental.

Lindemann (1882): π is transcendental.
In fact if α is algebraic and non zero, then
eα is transcendental (Lindemann-Weierstrass 1885).
Now π cannot be algebraic since e iπ = −1 is algebraic !

Gelfond / Schneider (1934): if α and β are algebraic,
α 6= 0, 1 and β /∈ Q, then αβ is transcendental.
For example, 2

√
2 is transcendental, as well as

eπ = (e iπ)−i = (−1)−i .

Unknown whether e/π is transcendental, not even known
that e/π /∈ Q !
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Subfields of the field of complex numbers

A subset F ⊂ C is called a field (but there is a more
general concept than just for numbers...) if F contains
0, 1, and is stable by addition, subtraction, multiplication
and division, (i.e. for z ,w ∈ F, we have z + w ∈ F,
z − w ∈ F, zw ∈ F, z/w ∈ F if w 6= 0)
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Subfields of the field of complex numbers

A subset F ⊂ C is called a field (but there is a more
general concept than just for numbers...) if F contains
0, 1, and is stable by addition, subtraction, multiplication
and division, (i.e. for z ,w ∈ F, we have z + w ∈ F,
z − w ∈ F, zw ∈ F, z/w ∈ F if w 6= 0)

If F contains 0, 1,−1, it is enough for F to be stable by
addition, multiplication and especially inverse (z ∈ F,
z 6= 0 ⇒ 1/z ∈ F).
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Subfields of the field of complex numbers

A subset F ⊂ C is called a field (but there is a more
general concept than just for numbers...) if F contains
0, 1, and is stable by addition, subtraction, multiplication
and division, (i.e. for z ,w ∈ F, we have z + w ∈ F,
z − w ∈ F, zw ∈ F, z/w ∈ F if w 6= 0)

If F contains 0, 1,−1, it is enough for F to be stable by
addition, multiplication and especially inverse (z ∈ F,
z 6= 0 ⇒ 1/z ∈ F).

For example, Q, R, C are fields but Z is not (2 ∈ Z but
1/2 /∈ Z), nor is the set D of decimal numbers
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Subfields of the field of complex numbers

A subset F ⊂ C is called a field (but there is a more
general concept than just for numbers...) if F contains
0, 1, and is stable by addition, subtraction, multiplication
and division, (i.e. for z ,w ∈ F, we have z + w ∈ F,
z − w ∈ F, zw ∈ F, z/w ∈ F if w 6= 0)

If F contains 0, 1,−1, it is enough for F to be stable by
addition, multiplication and especially inverse (z ∈ F,
z 6= 0 ⇒ 1/z ∈ F).

For example, Q, R, C are fields but Z is not (2 ∈ Z but
1/2 /∈ Z), nor is the set D of decimal numbers

The set denoted Q[
√
2] of numbers of the form x + y

√
2,

x , y ∈ Q is a field :

(x + y
√
2)−1 =

x − y
√
2

x2 − 2y 2
=

x

x2 − 2y 2
− y

x2 − 2y 2

√
2
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Algebraic number fields

Similarly the set denoted Q[
√
−2] of numbers of the form

x + y
√
−2 = x + iy

√
2, x , y ∈ Q is a field (exercise !)

These fields are called quadratic fields
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Algebraic number fields

Similarly the set denoted Q[
√
−2] of numbers of the form

x + y
√
−2 = x + iy

√
2, x , y ∈ Q is a field (exercise !)

These fields are called quadratic fields

The set Q[ 3
√
2] of numbers of the form

x + y 3
√
2 + z( 3

√
2)2, x , y , z ∈ Q is a field (cubic field)

This is a bit harder to prove.
Hint: calculate ω3 where ω = −1

2
+ i

√
3

2
, and then show

that the product

(x + yω 3
√
2 + z(ω 3

√
2)2)(x + yω2 3

√
2 + z(ω2 3

√
2)2)

no longer involves ω and yields a rational number when
multiplied by x + y 3

√
2 + z( 3

√
2)2.
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Degree of a number field

One can show (but this is yet harder) that if α, β, γ, . . .
are algebraic numbers, then the sets Q[α], Q[α, β],
Q[α, β, γ] of polynomials P(α), P(α, β), P(α, β, γ) (...)
with rational coefficients are fields.
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Degree of a number field

One can show (but this is yet harder) that if α, β, γ, . . .
are algebraic numbers, then the sets Q[α], Q[α, β],
Q[α, β, γ] of polynomials P(α), P(α, β), P(α, β, γ) (...)
with rational coefficients are fields.

If F ⊂ G are fields and every element y ∈ G can be
written in a unique way y = x1α1 + . . .+ xpαp for xi ∈ F

and certain (well chosen) elements αi ∈ G, one says that
G has (finite) degree p over F, with basis (αj) over F,
and one writes [G : F] = p
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Degree of a number field

One can show (but this is yet harder) that if α, β, γ, . . .
are algebraic numbers, then the sets Q[α], Q[α, β],
Q[α, β, γ] of polynomials P(α), P(α, β), P(α, β, γ) (...)
with rational coefficients are fields.

If F ⊂ G are fields and every element y ∈ G can be
written in a unique way y = x1α1 + . . .+ xpαp for xi ∈ F

and certain (well chosen) elements αi ∈ G, one says that
G has (finite) degree p over F, with basis (αj) over F,
and one writes [G : F] = p

Example: [Q[ 2
√
:Q] = 2 and [Q[ 3

√
2 : Q] = 3.

Exercise. If G = F[α] where α ∈ G, α /∈ F and α satisfies
an equation of degree 2 with coefficients in F, then
[G : F] = 2. Idem for degree d if α does not satisfy any
equation of lower order (take αj = αj , 0 ≤ j ≤ d − 1).

Jean-Pierre Demailly (Grenoble I), 26/02/2010 Geometric constructions & algebraic numbers



Successive extensions of fields

Theorem. If F ⊂ G ⊂ K are fields then

[K : F] = [K : G]× [G : F]

if the degrees are finite.
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Successive extensions of fields

Theorem. If F ⊂ G ⊂ K are fields then

[K : F] = [K : G]× [G : F]

if the degrees are finite.

Proof. Write p = [G : F] and q = [K : G].
Every z ∈ K can be written in a unique way

z =
∑

k

ykβk , yk ∈ G for a basis β1, . . . , βq ∈ K,

and each yk ∈ G can then be written in a unique way

yk =
∑

j

xjkαj , xjk ∈ F for a basis α1, . . . , αp ∈ G,

so, uniquely in terms of the αjβk (check it!)

z =
∑

j ,k

xjkαjβk .

Thus (αjβk) is a basis of K over F and [K : F] = pq.
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Re-interpretation of constructions with ruler and

compasses

We start from a set of points S in the plane (of at least
two points) and interpret them as complex numbers in
coordinates. By a rotation, change of origin and change
of unit, we mant assume that two of these numbers are
s1 = 0, s2 = 1, the other ones are complex numbers
s3 . . . , sn, n = ♯S .
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Re-interpretation of constructions with ruler and

compasses

We start from a set of points S in the plane (of at least
two points) and interpret them as complex numbers in
coordinates. By a rotation, change of origin and change
of unit, we mant assume that two of these numbers are
s1 = 0, s2 = 1, the other ones are complex numbers
s3 . . . , sn, n = ♯S .

Basic observation. The set of points constructible from S

by ruler and compasses is stable by addition,
multiplication, inverse, and also by conjugation and
square root.
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Re-interpretation of constructions with ruler and

compasses

We start from a set of points S in the plane (of at least
two points) and interpret them as complex numbers in
coordinates. By a rotation, change of origin and change
of unit, we mant assume that two of these numbers are
s1 = 0, s2 = 1, the other ones are complex numbers
s3 . . . , sn, n = ♯S .

Basic observation. The set of points constructible from S

by ruler and compasses is stable by addition,
multiplication, inverse, and also by conjugation and
square root.

The set Q(S) of all rational fractions
P(s3, . . . , sn)/Q(s3, . . . , sn) is a field (equal to Q if we
start from only two points).
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Necessary and sufficient condition for

constructibility

When we construct a bigger set S ′ ⊂ S with ruler and
compasses, we only solve linear and quadratic equations
(intersections of lines and/or circles) with coefficients in
Q(S) for the first step.
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Necessary and sufficient condition for

constructibility

When we construct a bigger set S ′ ⊂ S with ruler and
compasses, we only solve linear and quadratic equations
(intersections of lines and/or circles) with coefficients in
Q(S) for the first step.

In general, our construction consists of producing a
“tower of quadratic extensions”

Q(S) = F0 ⊂ F1 ⊂ . . . ⊂ Fk = Q(S ′)

where each field Fj+1 = Fj [αj ] is obtained by adjoining a
point αj satisfying at most a quadratic equation.
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Necessary and sufficient condition for

constructibility

When we construct a bigger set S ′ ⊂ S with ruler and
compasses, we only solve linear and quadratic equations
(intersections of lines and/or circles) with coefficients in
Q(S) for the first step.

In general, our construction consists of producing a
“tower of quadratic extensions”

Q(S) = F0 ⊂ F1 ⊂ . . . ⊂ Fk = Q(S ′)

where each field Fj+1 = Fj [αj ] is obtained by adjoining a
point αj satisfying at most a quadratic equation.

Remark. The “quadratic tower” condition is necessary
and sufficient: any such tower starting with Q(S) consists
of points which are constructible step by step from S .
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The degree must be a power of 2

Consequence: [Q(S ′) : Q(S)] must be a power of 2 !
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The degree must be a power of 2

Consequence: [Q(S ′) : Q(S)] must be a power of 2 !

Theorem (Gauss, just before 1800) A regular n-agon
(polygon with n-sides), is constructible if and only if the
prime factorization of n is of the form n = 2kp1 . . . pm
where the pj are Fermat primes, i.e. prime numbers of the
form pj = 22

qj
+ 1.
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The degree must be a power of 2

Consequence: [Q(S ′) : Q(S)] must be a power of 2 !

Theorem (Gauss, just before 1800) A regular n-agon
(polygon with n-sides), is constructible if and only if the
prime factorization of n is of the form n = 2kp1 . . . pm
where the pj are Fermat primes, i.e. prime numbers of the
form pj = 22

qj
+ 1.

Proof. – We are using n-th rooths of 1, i.e. the field
Q[ω], ωn−1 + . . .+ ω + 1 = 0, of degree d ≤ n − 1.
– Degree can be d < n − 1 (example d = 2 for n = 6).
– Reduction to the case n = pr is a prime power
– When n = pr , ω is of degree d = (p − 1)pr exactly
(this has to be proved!). Thus either p = 2 or r = 1 and
p − 1 has to be a pover of 2, i.e. p = 2s + 1, and then s

itself has to be a power of 2.
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Axioms of construction by origamis (1)

One constructs lines by folding paper; points can be
constructed by taking intersections of folding lines.
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Axioms of construction by origamis (1)

One constructs lines by folding paper; points can be
constructed by taking intersections of folding lines.

Axiom O1. Given two points P ,Q, one can fold paper
through line (PQ)
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Axioms of construction by origamis (2)

Axiom O2. Given two points P, Q, one can fold paper to
bring P to Q (through the median line of segment [P,Q].

(F)

Q

P
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Axioms of construction by origamis (3)

Axiom O3. Given two lines (D1), (D2) one can fold paper to
bring (D1) onto (D2) (through one of the bissecting lines)

(D )1

(D )2

(D )1

(D )2
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Axioms of construction by origamis (4)

Axiom O4. Given one point P and a line (D), one can fold
through point P in such a way that (D) is brought to itself
(thus perpendiculary to (D) through P)

P

(D)
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Axioms of construction by origamis (5)

Axiom O5. Given a line (D) and two points P,Q, one can
(whenever possible) fold paper through P in such a way that
Q is brought to a point of (D).

PQ

(D)
Q'

Jean-Pierre Demailly (Grenoble I), 26/02/2010 Geometric constructions & algebraic numbers



Axioms of construction by origamis (6)

Axiom O6. Given two lines (D1) and (D2) and two points
P,Q, one can (whenever possible) fold paper to bring P to a
point of (D1) and Q to a point of (D2)

P
Q

(D
1
)

(D
2
)
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Axioms of construction by origamis (6)

Axiom O6. Given two lines (D1) and (D2) and two points
P,Q, one can (whenever possible) fold paper to bring P to a
point of (D1) and Q to a point of (D2)

P
Q

(D
1
)

(D
2
)

In fact, axiom O6 can be seen to imply all others. As in the
case of compass and ruler, one can see that the axioms allow
to take arbitrary integer multiples or quotients, as well as
addition, multiplication or division of complex numbers.
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Origamis and cubic equations

O

B'

x

y

B(b,d)

A(a,c)

A'(x,0)

(0,y)

J

I

Problem. Bring A(a, c) given onto A′ ∈ Ox and B(b, d) given
onto B ′ ∈ Oy by folding.
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Origamis and cubic equations (calculation)

One gets t = slope(AA′) = slope(BB ′) ⇒ t =
d − y

b
=

c

a − x

I
(a + x

2
,
c

2

)

J
(b

2
,
d + y

2

)

, slope (IJ) =
−1

t
=

d + y − c

b − (a + x)
Therefore

x = a − c

t
, y = d − bt,

−1

t
=

2d − c − bt

b − 2a + c
t

whence the equation

bt3 + (c − 2d)t2 + (2a − b)t − c = 0

which is equivalent to the most general cubic equation
t3 + pt2 + qt + r = 0 by putting

a =
q + 1

2
, b = 1, c = −r , d = −p + r

2
.
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Necessary and sufficient condition for

constructibility by origamis

Theorem: a set S ′ can be constructed by origamis from
S = {0, 1, s3, . . . , sn} if and only if there is a tower of
field extensions

Q(S) = F0 ⊂ F1 ⊂ . . . ⊂ Fk = Q(S ′)

where each extension Fj+1 = Fj [αj ] is a quadratic or
cubic extension.
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Necessary and sufficient condition for

constructibility by origamis

Theorem: a set S ′ can be constructed by origamis from
S = {0, 1, s3, . . . , sn} if and only if there is a tower of
field extensions

Q(S) = F0 ⊂ F1 ⊂ . . . ⊂ Fk = Q(S ′)

where each extension Fj+1 = Fj [αj ] is a quadratic or
cubic extension.

Corollary. A polygon with n sides can be constructed with
origamis if and only if n = 2k3ℓp1 . . . pm where each pj is a
prime number with the property that each pj − 1 = 2aj3bj .
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