

Holomorphic Morse inequalities, old and new

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

35th Annual Geometry Festival Stony Brook University April 23 – 25, 2021

Let X be a compact complex manifold, and $L \to X$ a holomorphic line bundle. Assume L equipped with a Hermitian metric h, written locally as $h = e^{-\varphi}$ in a trivialization.

Let X be a compact complex manifold, and $L \to X$ a holomorphic line bundle. Assume L equipped with a Hermitian metric h, written locally as $h = e^{-\varphi}$ in a trivialization. The curvature form of (L, h) is

$$\theta = \Theta_{L,h} = -\frac{i}{2\pi}\partial\overline{\partial}\log h = \frac{i}{2\pi}\partial\overline{\partial}\varphi.$$

Let X be a compact complex manifold, and $L \to X$ a holomorphic line bundle. Assume L equipped with a Hermitian metric h, written locally as $h = e^{-\varphi}$ in a trivialization. The curvature form of (L, h) is

$$\theta = \Theta_{L,h} = -\frac{i}{2\pi}\partial\overline{\partial}\log h = \frac{i}{2\pi}\partial\overline{\partial}\varphi.$$

Important problems in algebraic or analytic geometry

Find upper and lower bounds for the dimensions of cohomology groups h^q(X, L^{⊗m} ⊗ F) where F is a coherent sheaf, asymptotically as m → +∞, e.g. in terms of θ = Θ_{L,h}.

Let X be a compact complex manifold, and $L \to X$ a holomorphic line bundle. Assume L equipped with a Hermitian metric h, written locally as $h = e^{-\varphi}$ in a trivialization. The curvature form of (L, h) is

$$\theta = \Theta_{L,h} = -\frac{i}{2\pi}\partial\overline{\partial}\log h = \frac{i}{2\pi}\partial\overline{\partial}\varphi.$$

Important problems in algebraic or analytic geometry

- Find upper and lower bounds for the dimensions of cohomology groups h^q(X, L^{⊗m} ⊗ F) where F is a coherent sheaf, asymptotically as m → +∞, e.g. in terms of θ = Θ_{L,h}.
- (Harder question ?) In case q = 0 and F is invertible (say), try to analyze the base locus of H⁰(X, L^{⊗m} ⊗ F), i.e. the set of common zeroes of all holomorphic sections.

< ロ > < 同 > < 三 > < 三 >

Let X be a compact complex manifold, and $L \to X$ a holomorphic line bundle. Assume L equipped with a Hermitian metric h, written locally as $h = e^{-\varphi}$ in a trivialization. The curvature form of (L, h) is

$$\theta = \Theta_{L,h} = -\frac{i}{2\pi}\partial\overline{\partial}\log h = \frac{i}{2\pi}\partial\overline{\partial}\varphi.$$

Important problems in algebraic or analytic geometry

- Find upper and lower bounds for the dimensions of cohomology groups h^q(X, L^{⊗m} ⊗ F) where F is a coherent sheaf, asymptotically as m → +∞, e.g. in terms of θ = Θ_{L,h}.
- (Harder question ?) In case q = 0 and F is invertible (say), try to analyze the base locus of H⁰(X, L^{⊗m} ⊗ F), i.e. the set of common zeroes of all holomorphic sections.

Holomorphic Morse inequalities (D-, 1985) provide workable answers in terms of the q-index sets of the curvature form.

Holomorphic Morse inequalities: main statement

The *q*-index set of a real (1, 1)-form θ is defined to be

 $X(\theta, q) = \{x \in X \mid \theta(x) \text{ has signature } (n - q, q)\}$

(exactly q negative eigenvalues and n - q positive ones)

Holomorphic Morse inequalities: main statement

The *q*-index set of a real (1, 1)-form θ is defined to be

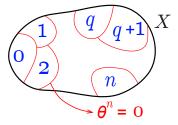
 $X(\theta, q) = \{x \in X \mid \theta(x) \text{ has signature } (n - q, q)\}$

(exactly q negative eigenvalues and n - q positive ones)

Set also
$$X(\theta, \leq q) = \bigcup_{0 \leq j \leq q} X(\theta, j).$$

 $X(\theta, q)$ and $X(\theta, \leq q)$ are open sets.

$$sign(\theta^n) = (-1)^q$$
 on $X(\theta, q)$.



Holomorphic Morse inequalities: main statement

The *q*-index set of a real (1, 1)-form θ is defined to be

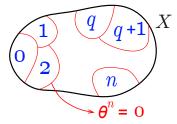
 $X(\theta, q) = \{x \in X \mid \theta(x) \text{ has signature } (n - q, q)\}$

(exactly q negative eigenvalues and n - q positive ones)

Set also
$$X(\theta, \leq q) = \bigcup_{0 \leq j \leq q} X(\theta, j).$$

 $X(\theta, q)$ and $X(\theta, \leq q)$ are open sets.

$$sign(\theta^n) = (-1)^q$$
 on $X(\theta, q)$.



Theorem (D-, 1985)

Let
$$\theta = \Theta_{L,h}$$
 and $r = \operatorname{rank} \mathcal{F}$. Then, as $m \to +\infty$
$$\sum_{j=0}^{q} (-1)^{q-j} h^{j}(X, L^{\otimes m} \otimes \mathcal{F}) \leq r \frac{m^{n}}{n!} \int_{X(\theta, \leq q)} (-1)^{q} \theta^{n} + o(m^{n}).$$

The proof proceeds by considering the $\overline{\partial}$ -complex and looking at the spectral theory of $\overline{\Box} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ acting on sections of $L^{\otimes m} \otimes \mathcal{F}$.

The proof proceeds by considering the $\overline{\partial}$ -complex and looking at the spectral theory of $\overline{\Box} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ acting on sections of $L^{\otimes m} \otimes \mathcal{F}$. The curvature form of $L^{\otimes m}$ is

 $m\theta = im \sum_{j,k} \theta_{jk} dz_j \wedge d\overline{z}_k = i \sum_{j,k} \theta_{jk} d\zeta_j \wedge d\overline{\zeta}_k$

in rescaled coordinates $\zeta_j = \sqrt{m} z_j$.

The proof proceeds by considering the $\overline{\partial}$ -complex and looking at the spectral theory of $\overline{\Box} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ acting on sections of $L^{\otimes m} \otimes \mathcal{F}$. The curvature form of $L^{\otimes m}$ is

 $m\theta = im \sum_{j,k} \theta_{jk} dz_j \wedge d\overline{z}_k = i \sum_{j,k} \theta_{jk} d\zeta_j \wedge d\overline{\zeta}_k$

in rescaled coordinates $\zeta_j = \sqrt{m} z_j$. The "wavelength" of eigenfunctions is $\sim 1/\sqrt{m}$ and the estimates localize at this scale.

The proof proceeds by considering the $\overline{\partial}$ -complex and looking at the spectral theory of $\overline{\Box} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ acting on sections of $L^{\otimes m} \otimes \mathcal{F}$. The curvature form of $L^{\otimes m}$ is

 $m\theta = im \sum_{j,k} \theta_{jk} dz_j \wedge d\overline{z}_k = i \sum_{j,k} \theta_{jk} d\zeta_j \wedge d\overline{\zeta}_k$

in rescaled coordinates $\zeta_j = \sqrt{m} z_j$. The "wavelength" of eigenfunctions is $\sim 1/\sqrt{m}$ and the estimates localize at this scale.

Various formulations of holomorphic Morse inequalities

•
$$h^q(X, L^{\otimes m} \otimes \mathcal{F}) \leq r \frac{m^n}{n!} \int_{X(\theta,q)} (-1)^q \theta^n + o(m^n).$$

The proof proceeds by considering the $\overline{\partial}$ -complex and looking at the spectral theory of $\overline{\Box} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ acting on sections of $L^{\otimes m} \otimes \mathcal{F}$. The curvature form of $L^{\otimes m}$ is

 $m\theta = im \sum_{j,k} \theta_{jk} dz_j \wedge d\overline{z}_k = i \sum_{j,k} \theta_{jk} d\zeta_j \wedge d\overline{\zeta}_k$

in rescaled coordinates $\zeta_j = \sqrt{m} z_j$. The "wavelength" of eigenfunctions is $\sim 1/\sqrt{m}$ and the estimates localize at this scale.

Various formulations of holomorphic Morse inequalities

•
$$h^q(X, L^{\otimes m} \otimes \mathcal{F}) \leq r \frac{m^n}{n!} \int_{X(\theta,q)} (-1)^q \theta^n + o(m^n).$$

• $h^q(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^n}{n!} \int_{\bigcup_{q-1 \leq j \leq q+1} X(\theta,j)} (-1)^q \theta^n - o(m^n).$

The proof proceeds by considering the $\overline{\partial}$ -complex and looking at the spectral theory of $\overline{\Box} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ acting on sections of $L^{\otimes m} \otimes \mathcal{F}$. The curvature form of $L^{\otimes m}$ is

 $m\theta = im \sum_{j,k} \theta_{jk} dz_j \wedge d\overline{z}_k = i \sum_{j,k} \theta_{jk} d\zeta_j \wedge d\overline{\zeta}_k$

in rescaled coordinates $\zeta_j = \sqrt{m} z_j$. The "wavelength" of eigenfunctions is $\sim 1/\sqrt{m}$ and the estimates localize at this scale.

Various formulations of holomorphic Morse inequalities

•
$$h^{q}(X, L^{\otimes m} \otimes \mathcal{F}) \leq r \frac{m^{n}}{n!} \int_{X(\theta,q)} (-1)^{q} \theta^{n} + o(m^{n}).$$

• $h^{q}(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^{n}}{n!} \int_{\bigcup_{q=1 \leq j \leq q+1} X(\theta,j)} (-1)^{q} \theta^{n} - o(m^{n}).$
• For $q = 0$, $h^{0}(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^{n}}{n!} \int_{X(\theta, \leq 1)} \theta^{n} - o(m^{n}).$

Singular version of holomorphic Morse inequalities

We assume here that *L* is equipped with a possibly singular metric $h = e^{-\varphi}$ were φ is quasi-psh with analytic singularities, i.e. locally

 $\varphi(z) = c \log \sum_{j} |g_j(z)|^2 + u(z), \quad g_j \text{ holomorphic, } u \in C^{\infty}, c > 0.$

Singular version of holomorphic Morse inequalities

We assume here that L is equipped with a possibly singular metric $h = e^{-\varphi}$ were φ is quasi-psh with analytic singularities, i.e. locally $\varphi(z) = c \log \sum_{j} |g_{j}(z)|^{2} + u(z), \quad g_{j}$ holomorphic, $u \in C^{\infty}, c > 0$. Then L^{2} estimates involve multiplier ideal sheaves $\mathcal{I}(m\varphi) \subset \mathcal{O}_{X}$ $\mathcal{I}(m\varphi)_{x} = \{f \in \mathcal{O}_{X,x}; \exists U \ni x \text{ s.t. } \int_{U} |f|^{2}e^{-m\varphi}dV < +\infty\}.$

Singular version of holomorphic Morse inequalities

We assume here that L is equipped with a possibly singular metric $h = e^{-\varphi}$ were φ is quasi-psh with analytic singularities, i.e. locally

 $\varphi(z) = c \log \sum_{j} |g_{j}(z)|^{2} + u(z), \quad g_{j} \text{ holomorphic, } u \in C^{\infty}, c > 0.$ Then L^{2} estimates involve multiplier ideal sheaves $\mathcal{I}(m\varphi) \subset \mathcal{O}_{X}$

$$\mathcal{I}(m\varphi)_{x} = \big\{ f \in \mathcal{O}_{X,x} \, ; \, \exists U \ni x \text{ s.t. } \int_{U} |f|^{2} e^{-m\varphi} dV < +\infty \big\}.$$

Theorem (L. Bonavero 1996 – proof based on blowing up)

The same estimates as above are still valid, when one considers instead the twisted cohomology groups

 $H^q(X, L^{\otimes m} \otimes \mathcal{I}(m\varphi) \otimes \mathcal{F})$

and Morse integrals in the complement of $\Sigma = \varphi^{-1}(-\infty) =$ singular set of $\theta = \Theta_{L,h}$: $\int_{X(\theta,q) > \Sigma} (-1)^q \theta^n.$

Assume here that X is projective algebraic / \mathbb{C} , and that $L = \mathcal{O}_X(A - B)$ where A and B are ample (or nef) \mathbb{Q} -divisors (such that A - B is integral).

Assume here that X is projective algebraic / \mathbb{C} , and that $L = \mathcal{O}_X(A - B)$ where A and B are ample (or nef) \mathbb{Q} -divisors (such that A - B is integral).

Observation (D-, 1996)

In the above situation, the holomorphic Morse inequalities hold after replacing the q-index Morse integral by the intersection number $\binom{n}{q}A^{n-q} \cdot B^{q}$, and in particular (S. Trapani, 1995) $h^{0}(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^{n}}{n!}(A^{n} - nA^{n-1} \cdot B) - o(m^{n}).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Assume here that X is projective algebraic / \mathbb{C} , and that $L = \mathcal{O}_X(A - B)$ where A and B are ample (or nef) \mathbb{Q} -divisors (such that A - B is integral).

Observation (D-, 1996)

In the above situation, the holomorphic Morse inequalities hold after replacing the *q*-index Morse integral by the intersection number $\binom{n}{q}A^{n-q} \cdot B^{q}$, and in particular (S. Trapani, 1995) $h^{0}(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^{n}}{n!}(A^{n} - nA^{n-1} \cdot B) - o(m^{n}).$

Proof. For (1, 1)-forms $\alpha, \beta \ge 0$, elementary symmetric functions arguments yield

$$\mathbb{1}_{X(\alpha-\beta,\leq q)}(-1)^{q}(\alpha-\beta)^{n}\leq \sum_{j=0}^{r}(-1)^{q-j}\binom{n}{j}\alpha^{n-j}\wedge\beta^{j}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume here that X is projective algebraic / \mathbb{C} , and that $L = \mathcal{O}_X(A - B)$ where A and B are ample (or nef) \mathbb{Q} -divisors (such that A - B is integral).

Observation (D-, 1996)

In the above situation, the holomorphic Morse inequalities hold after replacing the *q*-index Morse integral by the intersection number $\binom{n}{q}A^{n-q} \cdot B^{q}$, and in particular (S. Trapani, 1995) $h^{0}(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^{n}}{n!}(A^{n} - nA^{n-1} \cdot B) - o(m^{n}).$

Proof. For (1, 1)-forms $\alpha, \beta \ge 0$, elementary symmetric functions arguments yield $\mathbb{1}_{X(\alpha-\beta,\le q)}(-1)^q(\alpha-\beta)^n \le \sum_{i=1}^q (-1)^{q-j} \binom{n}{i} \alpha^{n-j} \wedge \beta^j.$

Definition of adapted stratifications (projective case)

 An "adapted stratification" for L over X is a collection of non singular projective schemes S = (S_j), dim S_j = j, S_n = X, together with proper birational morphisms ψ_j of S_j onto the support |D_j| = ψ_j(S_j) of a divisor D_j of S_{j+1}, such that, when putting Φ_j = ψ_{n-1} ◦ · · · ◦ ψ_j : S_j → X, the pull-back Φ_j^{*}L satisfies Φ_j^{*}L ≃ O_{S_j}(D_{j-1}) = O_{S_j}(D_{j-1}⁺ - D_{j-1}⁻).

Definition of adapted stratifications (projective case)

- An "adapted stratification" for L over X is a collection of non singular projective schemes $S = (S_j)$, dim $S_j = j$, $S_n = X$, together with proper birational morphisms ψ_j of S_j onto the support $|D_j| = \psi_j(S_j)$ of a divisor D_j of S_{j+1} , such that, when putting $\Phi_j = \psi_{n-1} \circ \cdots \circ \psi_j : S_j \to X$, the pull-back $\Phi_j^* L$ satisfies $\Phi_j^* L \simeq \mathcal{O}_{S_j}(D_{j-1}) = \mathcal{O}_{S_j}(D_{j-1}^+ - D_{j-1}^-)$.
- The "truncated powers of the Chern class" c₁(L, S)^k_[q] are codim k cycles supported on S_{n-k} (= 0 if q ∉ [0, k]), defined inductively by c₁(L, S)⁰_[0] = [X], c₁(L, S)⁰_[q] = 0 for q ≠ 0, and

向下 イヨト イヨト

Definition of adapted stratifications (projective case)

- An "adapted stratification" for L over X is a collection of non singular projective schemes S = (S_j), dim S_j = j, S_n = X, together with proper birational morphisms ψ_j of S_j onto the support |D_j| = ψ_j(S_j) of a divisor D_j of S_{j+1}, such that, when putting Φ_j = ψ_{n-1} ◦ · · · ◦ ψ_j : S_j → X, the pull-back Φ_j^{*}L satisfies Φ_j^{*}L ≃ O_{S_j}(D_{j-1}) = O_{S_j}(D_{j-1}⁺ - D_{j-1}⁻).
- The "truncated powers of the Chern class" $c_1(L, S)_{[q]}^k$ are codim k cycles supported on S_{n-k} (= 0 if $q \notin [0, k]$), defined inductively by $c_1(L, S)_{[0]}^0 = [X]$, $c_1(L, S)_{[q]}^0 = 0$ for $q \neq 0$, and $c_1(L, S)_{[q]}^k = \psi_{n-k}^* (c_1(L, S)_{[q]}^{k-1} \cdot D_{n-k}^+ - c_1(L, S)_{[q-1]}^{k-1} \cdot D_{n-k}^-)$.

Definition of adapted stratifications (projective case)

- An "adapted stratification" for L over X is a collection of non singular projective schemes $S = (S_j)$, dim $S_j = j$, $S_n = X$, together with proper birational morphisms ψ_j of S_j onto the support $|D_j| = \psi_j(S_j)$ of a divisor D_j of S_{j+1} , such that, when putting $\Phi_j = \psi_{n-1} \circ \cdots \circ \psi_j : S_j \to X$, the pull-back Φ_j^*L satisfies $\Phi_j^*L \simeq \mathcal{O}_{S_j}(D_{j-1}) = \mathcal{O}_{S_j}(D_{j-1}^+ - D_{j-1}^-)$.
- The "truncated powers of the Chern class" $c_1(L, S)_{[q]}^k$ are codim k cycles supported on S_{n-k} (= 0 if $q \notin [0, k]$), defined inductively by $c_1(L, S)_{[0]}^0 = [X]$, $c_1(L, S)_{[q]}^0 = 0$ for $q \neq 0$, and $c_1(L, S)_{[q]}^k = \psi_{n-k}^* (c_1(L, S)_{[q]}^{k-1} \cdot D_{n-k}^+ - c_1(L, S)_{[q-1]}^{k-1} \cdot D_{n-k}^-)$. Theorem (Cadorel, December 2019)

$$\sum_{0 \le j \le q} (-1)^{q-j} h^j(X, L^{\otimes m} \otimes \mathcal{F}) \le \frac{(-1)^q r m^n}{n!} \deg c_1(L, S)^n_{[\le q]} + O(m^{n-1}).$$

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta = \Theta_{L,h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^n > 0$, then we know that L is big, i.e. that $h^0(X, L^{\otimes m}) \geq c m^n$, for $m \geq m_0$ and c > 0,

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta = \Theta_{L,h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^n > 0$, then we know that L is big, i.e. that $h^0(X, L^{\otimes m}) \ge c m^n$, for $m \ge m_0$ and c > 0, but this does not tell us anything about the base locus $\operatorname{Bs}(L) = \bigcap_{\sigma \in H^0(X, L^{\otimes m})} \sigma^{-1}(0)$.

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta = \Theta_{L,h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^n > 0$, then we know that L is big, i.e. that $h^0(X, L^{\otimes m}) \ge c m^n$, for $m \ge m_0$ and c > 0, but this does not tell us anything about the base locus $\operatorname{Bs}(L) = \bigcap_{\sigma \in H^0(X, L^{\otimes m})} \sigma^{-1}(0)$.

Definition

The "iterated base locus" $\operatorname{IBs}(L)$ is obtained by picking inductively $Z_0 = X$ and $Z_k = \operatorname{zero}$ divisor of a section σ_k of $L^{\otimes m_k}$ over the normalization of Z_{k-1} , and taking $\bigcap_{k,m_1,\ldots,m_k,\sigma_1,\ldots,\sigma_k} Z_k$.

向下 イヨト イヨト

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta = \Theta_{L,h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^n > 0$, then we know that L is big, i.e. that $h^0(X, L^{\otimes m}) \ge c m^n$, for $m \ge m_0$ and c > 0, but this does not tell us anything about the base locus $\operatorname{Bs}(L) = \bigcap_{\sigma \in H^0(X, L^{\otimes m})} \sigma^{-1}(0)$.

Definition

The "iterated base locus" $\operatorname{IBs}(L)$ is obtained by picking inductively $Z_0 = X$ and $Z_k = \operatorname{zero}$ divisor of a section σ_k of $L^{\otimes m_k}$ over the normalization of Z_{k-1} , and taking $\bigcap_{k,m_1,\ldots,m_k,\sigma_1,\ldots,\sigma_k} Z_k$.

Unsolved problem

Find a condition, e.g. in the form of Morse integrals (or analogs) for $\theta = \Theta_{L,h}$, ensuring for instance that $\operatorname{codim} \operatorname{IBs}(L) > p$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta = \Theta_{L,h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^n > 0$, then we know that L is big, i.e. that $h^0(X, L^{\otimes m}) \ge c m^n$, for $m \ge m_0$ and c > 0, but this does not tell us anything about the base locus $\operatorname{Bs}(L) = \bigcap_{\sigma \in H^0(X, L^{\otimes m})} \sigma^{-1}(0)$.

Definition

The "iterated base locus" $\operatorname{IBs}(L)$ is obtained by picking inductively $Z_0 = X$ and $Z_k = \operatorname{zero}$ divisor of a section σ_k of $L^{\otimes m_k}$ over the normalization of Z_{k-1} , and taking $\bigcap_{k,m_1,\ldots,m_k,\sigma_1,\ldots,\sigma_k} Z_k$.

Unsolved problem

Find a condition, e.g. in the form of Morse integrals (or analogs) for $\theta = \Theta_{L,h}$, ensuring for instance that $\operatorname{codim} \operatorname{IBs}(L) > p$.

We would need for instance to be able to check the positivity of Morse integrals $\int_{Z(\theta|_Z, \leq 1)} \theta^{n-p}$ for Z irreducible, $\operatorname{codim} Z = p$.

Transcendental holomorphic Morse inequalities

Morse inequalities were initially found as a strengthening of Siu's solution of the Grauert-Riemenschneider conjecture characterizing Moishezon manifolds among compact complex manifolds.

Transcendental holomorphic Morse inequalities

Morse inequalities were initially found as a strengthening of Siu's solution of the Grauert-Riemenschneider conjecture characterizing Moishezon manifolds among compact complex manifolds.

In this general setting, we raised 25-30 years ago the following

Conjecture

Let X be a compact complex manifold and $\alpha \in H^{1,1}_{BC}(X, \mathbb{R})$ a Bott-Chern class, represented by closed real (1, 1)-forms modulo $\partial \overline{\partial}$ exact forms. Assume α pseudoeffective, and set

$$\operatorname{Vol}(\alpha) = \sup_{T = \alpha + i\partial\overline{\partial}\varphi \ge 0} \int_X T_{ac}^n, \quad T \ge 0 \text{ current, } n = \dim X.$$

Transcendental holomorphic Morse inequalities

Morse inequalities were initially found as a strengthening of Siu's solution of the Grauert-Riemenschneider conjecture characterizing Moishezon manifolds among compact complex manifolds.

In this general setting, we raised 25-30 years ago the following

Conjecture

Let X be a compact complex manifold and $\alpha \in H^{1,1}_{BC}(X, \mathbb{R})$ a Bott-Chern class, represented by closed real (1, 1)-forms modulo $\partial \overline{\partial}$ exact forms. Assume α pseudoeffective, and set

$$\operatorname{Vol}(\alpha) = \sup_{\substack{T = \alpha + i\partial\overline{\partial}\varphi \ge 0}} \int_X T_{ac}^n, \quad T \ge 0 \text{ current, } n = \dim X.$$

Then
$$\operatorname{Vol}(\alpha) \ge \sup_{\theta \in \{\alpha\}, \ \theta \in C^{\infty}} \int_{X(\theta, \le 1)} \theta^n$$

where

$$X(\theta, q) = q$$
-index set of $\theta = \{x \in X; \theta(x) \text{ has signature } (n - q, q)\}.$

Conjecture on volumes of (1,1)-classes

Conjectural corollary (transcendental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef classes. Then $\operatorname{Vol}(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta$.

• (1) • (

Conjecture on volumes of (1,1)-classes

Conjectural corollary (transcendental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef classes. Then $\operatorname{Vol}(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta$.

By BDPP 2004, this conjecture yields a characterization of the dual of the pseudoeffective cone on arbitrary compact Kähler manifolds.

Conjecture on volumes of (1,1)-classes

Conjectural corollary (transcendental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef classes. Then $\operatorname{Vol}(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta$.

By BDPP 2004, this conjecture yields a characterization of the dual of the pseudoeffective cone on arbitrary compact Kähler manifolds.

Observation (BDPP, 2004)

The volume estimate holds if X has deformation approximations by projective manifolds X_{ν} of maximal Picard number $\rho(X_{\nu}) = h^{1,1}$.

A (10) × (10) × (10) ×

Conjecture on volumes of (1,1)-classes

Conjectural corollary (transcendental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef classes. Then $\operatorname{Vol}(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta$.

By BDPP 2004, this conjecture yields a characterization of the dual of the pseudoeffective cone on arbitrary compact Kähler manifolds.

Observation (BDPP, 2004)

The volume estimate holds if X has deformation approximations by projective manifolds X_{ν} of maximal Picard number $\rho(X_{\nu}) = h^{1,1}$.

Theorem 1 (Xiao 2015, Popovici 2016)

If
$$\alpha^n - n\alpha^{n-1} \cdot \beta > 0$$
, then $\alpha - \beta$ is a big class, i.e. $Vol(\alpha - \beta) > 0$.

Conjecture on volumes of (1,1)-classes

Conjectural corollary (transcendental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef classes. Then $\operatorname{Vol}(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta$.

By BDPP 2004, this conjecture yields a characterization of the dual of the pseudoeffective cone on arbitrary compact Kähler manifolds.

Observation (BDPP, 2004)

The volume estimate holds if X has deformation approximations by projective manifolds X_{ν} of maximal Picard number $\rho(X_{\nu}) = h^{1,1}$.

Theorem 1 (Xiao 2015, Popovici 2016)

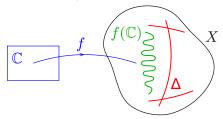
If $\alpha^n - n\alpha^{n-1} \cdot \beta > 0$, then $\alpha - \beta$ is a big class, i.e. $Vol(\alpha - \beta) > 0$.

Theorem 2 (Witt-Nyström & Boucksom 2019)

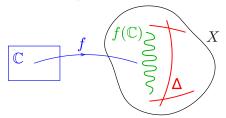
The transcendental volume estimate holds if X is projective.

 The goal is to study (nonconstant) entire curves f : C → X drawn in a projective variety/C. The variety X is said to be Brody (⇔ Kobayashi) hyperbolic if there are no such curves.

- The goal is to study (nonconstant) entire curves f : C → X drawn in a projective variety/C. The variety X is said to be Brody (⇔ Kobayashi) hyperbolic if there are no such curves.
- More generally, if Δ = ∑ Δ_j is a reduced normal crossing divisor in X, we want to study entire curves f : C → X \ Δ drawn in the complement of Δ.

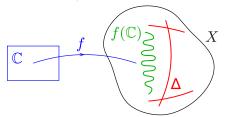


- The goal is to study (nonconstant) entire curves f : C → X drawn in a projective variety/C. The variety X is said to be Brody (⇔ Kobayashi) hyperbolic if there are no such curves.
- More generally, if Δ = ∑ Δ_j is a reduced normal crossing divisor in X, we want to study entire curves f : C → X \ Δ drawn in the complement of Δ.



If there are none, the log pair (X, Δ) is said Brody hyperbolic.

- The goal is to study (nonconstant) entire curves f : C → X drawn in a projective variety/C. The variety X is said to be Brody (⇔ Kobayashi) hyperbolic if there are no such curves.
- More generally, if Δ = ∑ Δ_j is a reduced normal crossing divisor in X, we want to study entire curves f : C → X \ Δ drawn in the complement of Δ.



If there are none, the log pair (X, Δ) is said Brody hyperbolic.

• The strategy is to show that under suitable conditions, such entire curves must satisfy algebraic differential equations.

k-jets of curves and *k*-jet bundles

Let X be a nonsingular *n*-dimensional projective variety over \mathbb{C} .

ヨトィヨト

k-jets of curves and k-jet bundles

Let X be a nonsingular *n*-dimensional projective variety over \mathbb{C} .

Definition of k-jets

For $k \in \mathbb{N}^*$, a k-jet of curve $f_{[k]} : (\mathbb{C}, 0)_k \to X$ is an equivalence class of germs of holomorphic curves $f : (\mathbb{C}, 0) \to X$, written $f = (f_1, \ldots, f_n)$ in local coordinates (z_1, \ldots, z_n) on an open subset $U \subset X$, where two germs are declared to be equivalent if they have the same Taylor expansion of order k at 0 :

$$\begin{split} f(t) &= x + t\xi_1 + t^2\xi_2 + \dots + t^k\xi_k + O(t^{k+1}), \quad t \in D(0,\varepsilon) \subset \mathbb{C}, \\ \text{and } x &= f(0) \in U, \, \xi_s \in \mathbb{C}^n, \, 1 \leq s \leq k. \end{split}$$

k-jets of curves and k-jet bundles

Let X be a nonsingular *n*-dimensional projective variety over \mathbb{C} .

Definition of k-jets

For $k \in \mathbb{N}^*$, a k-jet of curve $f_{[k]} : (\mathbb{C}, 0)_k \to X$ is an equivalence class of germs of holomorphic curves $f : (\mathbb{C}, 0) \to X$, written $f = (f_1, \ldots, f_n)$ in local coordinates (z_1, \ldots, z_n) on an open subset $U \subset X$, where two germs are declared to be equivalent if they have the same Taylor expansion of order k at 0 :

$$\begin{split} f(t) &= x + t\xi_1 + t^2\xi_2 + \dots + t^k\xi_k + O(t^{k+1}), \quad t \in D(0,\varepsilon) \subset \mathbb{C}, \\ \text{and } x &= f(0) \in U, \, \xi_s \in \mathbb{C}^n, \, 1 \leq s \leq k. \end{split}$$

Notation

Let $J^k X$ be the bundle of k-jets of curves, and $\pi_k : J^k X \to X$ the natural projection, where the fiber $(J^k X)_x = \pi_k^{-1}(x)$ consists of k-jets of curves $f_{[k]}$ such that f(0) = x.

Let $t \mapsto z = f(t)$ be a germ of curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its *k*-jet at any point t = 0. Look at the \mathbb{C}^* -action induced by dilations $\lambda \cdot f(t) := f(\lambda t), \ \lambda \in \mathbb{C}^*$, for $f_{[k]} \in J^k X$.

伺 ト イヨト イヨト

Let $t \mapsto z = f(t)$ be a germ of curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its k-jet at any point t = 0. Look at the \mathbb{C}^* -action induced by dilations $\lambda \cdot f(t) := f(\lambda t), \ \lambda \in \mathbb{C}^*$, for $f_{[k]} \in J^k X$.

Taking a (local) connection ∇ on T_X and putting $\xi_s = f^{(s)}(0) = \nabla^s f(0)$, we get a trivialization $J^k X \simeq (T_X)^{\oplus k}$ and the \mathbb{C}^* action is given by

(*)
$$\lambda \cdot (\xi_1, \xi_2, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

Let $t \mapsto z = f(t)$ be a germ of curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its k-jet at any point t = 0. Look at the \mathbb{C}^* -action induced by dilations $\lambda \cdot f(t) := f(\lambda t), \ \lambda \in \mathbb{C}^*$, for $f_{[k]} \in J^k X$.

Taking a (local) connection ∇ on T_X and putting $\xi_s = f^{(s)}(0) = \nabla^s f(0)$, we get a trivialization $J^k X \simeq (T_X)^{\oplus k}$ and the \mathbb{C}^* action is given by

(*)
$$\lambda \cdot (\xi_1, \xi_2, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

We consider the Green-Griffiths sheaf $E_{k,m}(X)$ of homogeneous polynomials of weighted degree m on $J^k X$ defined by

$$P(x; \xi_1, \ldots, \xi_k) = \sum a_{\alpha_1 \alpha_2 \ldots \alpha_k}(x) \xi_1^{\alpha_1} \ldots \xi_k^{\alpha_k}, \quad \sum_{s=1}^k s |\alpha_s| = m.$$

Let $t \mapsto z = f(t)$ be a germ of curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its k-jet at any point t = 0. Look at the \mathbb{C}^* -action induced by dilations $\lambda \cdot f(t) := f(\lambda t), \ \lambda \in \mathbb{C}^*$, for $f_{[k]} \in J^k X$.

Taking a (local) connection ∇ on T_X and putting $\xi_s = f^{(s)}(0) = \nabla^s f(0)$, we get a trivialization $J^k X \simeq (T_X)^{\oplus k}$ and the \mathbb{C}^* action is given by

(*)
$$\lambda \cdot (\xi_1, \xi_2, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

We consider the Green-Griffiths sheaf $E_{k,m}(X)$ of homogeneous polynomials of weighted degree m on $J^k X$ defined by

$$P(x; \xi_1, \ldots, \xi_k) = \sum a_{\alpha_1 \alpha_2 \ldots \alpha_k}(x) \xi_1^{\alpha_1} \ldots \xi_k^{\alpha_k}, \quad \sum_{s=1}^k s |\alpha_s| = m.$$

Here, we assume the coefficients $a_{\alpha_1\alpha_2...\alpha_k}(x)$ to be holomorphic in x, and view P as a differential operator $P(f) = P(f; f', f'', ..., f^{(k)})$,

$$P(f)(t) = \sum a_{\alpha_1 \alpha_2 \dots \alpha_k}(f(t)) f'(t)^{\alpha_1} f''(t)^{\alpha_2} \dots f^{(k)}(t)^{\alpha_k}$$

イロト イポト イヨト イヨト

Graded algebra of algebraic differential operators

In this way, we get a graded algebra $\bigoplus_m E_{k,m}(X)$ of differential operators. As sheaf of rings, in each coordinate chart $U \subset X$, it is a pure polynomial algebra isomorphic to

 $\mathcal{O}_X[f_j^{(s)}]_{1 \leq j \leq n, 1 \leq s \leq k}$ where deg $f_j^{(s)} = s$.

向下 イヨト イヨト

Graded algebra of algebraic differential operators

In this way, we get a graded algebra $\bigoplus_m E_{k,m}(X)$ of differential operators. As sheaf of rings, in each coordinate chart $U \subset X$, it is a pure polynomial algebra isomorphic to

 $\mathcal{O}_X[f_j^{(s)}]_{1 \leq j \leq n, 1 \leq s \leq k}$ where deg $f_j^{(s)} = s$.

If a change of coordinates $z \mapsto w = \psi(z)$ is performed on U, the curve $t \mapsto f(t)$ becomes $t \mapsto \psi \circ f(t)$ and we have inductively

 $(\psi \circ f)^{(s)} = (\psi' \circ f) \cdot f^{(s)} + Q_{\psi,s}(f', \ldots, f^{(s-1)})$

where $Q_{\psi,s}$ is a polynomial of weighted degree s.

• (1) • (

Graded algebra of algebraic differential operators

In this way, we get a graded algebra $\bigoplus_m E_{k,m}(X)$ of differential operators. As sheaf of rings, in each coordinate chart $U \subset X$, it is a pure polynomial algebra isomorphic to

 $\mathcal{O}_X[f_j^{(s)}]_{1 \leq j \leq n, 1 \leq s \leq k}$ where deg $f_j^{(s)} = s$.

If a change of coordinates $z \mapsto w = \psi(z)$ is performed on U, the curve $t \mapsto f(t)$ becomes $t \mapsto \psi \circ f(t)$ and we have inductively

$$(\psi \circ f)^{(s)} = (\psi' \circ f) \cdot f^{(s)} + Q_{\psi,s}(f', \dots, f^{(s-1)})$$

where $Q_{\psi,s}$ is a polynomial of weighted degree *s*.

By filtering by the partial degree of $P(x; \xi_1, ..., \xi_k)$ successively in $\xi_k, \xi_{k-1}, ..., \xi_1$, one gets a multi-filtration on $E_{k,m}(X)$ such that the graded pieces are

$$G^{\bullet}E_{k,m}(X) = \bigoplus_{\ell_1+2\ell_2+\cdots+k\ell_k=m} S^{\ell_1}T_X^* \otimes \cdots \otimes S^{\ell_k}T_X^*.$$

Take a logarithmic pair (X, Δ) , $\Delta = \sum \Delta_j$ normal crossing divisor.

Take a logarithmic pair (X, Δ) , $\Delta = \sum \Delta_j$ normal crossing divisor.

Fix a point $x \in X$ which belongs exactly to p components, say

 $\Delta_1, ..., \Delta_p$, and take coordinates $(z_1, ..., z_n)$ so that $\Delta_j = \{z_j = 0\}$.

• • = • • = •

Take a logarithmic pair (X, Δ) , $\Delta = \sum \Delta_j$ normal crossing divisor. Fix a point $x \in X$ which belongs exactly to p components, say $\Delta_1, ..., \Delta_p$, and take coordinates $(z_1, ..., z_n)$ so that $\Delta_j = \{z_j = 0\}$. \implies log differential operators : polynomials in the derivatives $(\log f_i)^{(s)}, 1 \leq j \leq p$ and $f_i^{(s)}, p+1 \leq j \leq n$.

伺 とう きょう とう うう

Take a logarithmic pair (X, Δ) , $\Delta = \sum \Delta_i$ normal crossing divisor. Fix a point $x \in X$ which belongs exactly to p components, say $\Delta_1, ..., \Delta_p$, and take coordinates $(z_1, ..., z_n)$ so that $\Delta_i = \{z_i = 0\}$. \implies log differential operators : polynomials in the derivatives $(\log f_i)^{(s)}, 1 \leq j \leq p \text{ and } f_i^{(s)}, p+1 \leq j \leq n.$ Alternatively, one gets an algebra of logarithmic jet differentials, denoted $\bigoplus_{m} E_{k,m}(X, \Delta)$, that can be expressed locally as $\mathcal{O}_{X}[(f_{1})^{-1}f_{1}^{(s)},...,(f_{p})^{-1}f_{p}^{(s)},f_{p+1}^{(s)},...,f_{p}^{(s)}]_{1 \leq s \leq k}$

(1日) (1日) (1日)

Take a logarithmic pair (X, Δ) , $\Delta = \sum \Delta_i$ normal crossing divisor. Fix a point $x \in X$ which belongs exactly to p components, say $\Delta_1, ..., \Delta_p$, and take coordinates $(z_1, ..., z_n)$ so that $\Delta_i = \{z_i = 0\}$. \implies log differential operators : polynomials in the derivatives $(\log f_i)^{(s)}, 1 \leq j \leq p \text{ and } f_i^{(s)}, p+1 \leq j \leq n.$ Alternatively, one gets an algebra of logarithmic jet differentials, denoted $\bigoplus_{m} E_{k,m}(X, \Delta)$, that can be expressed locally as $\mathcal{O}_{X}[(f_{1})^{-1}f_{1}^{(s)},...,(f_{p})^{-1}f_{p}^{(s)},f_{p+1}^{(s)},...,f_{n}^{(s)}]_{1 \le s \le k}.$

One gets a multi-filtration on $E_{k,m}(X, \Delta)$ with graded pieces

$$G^{\bullet}E_{k,m}(X,\Delta) = \bigoplus_{\ell_1+2\ell_2+\cdots+k\ell_k=m} S^{\ell_1}T^*_X\langle\Delta\rangle\otimes\cdots\otimes S^{\ell_k}T^*_X\langle\Delta\rangle$$

where $T_X^*\langle\Delta\rangle$ is the logarithmic tangent bundle, i.e., the locally free sheaf generated by $\frac{dz_1}{z_1}, ..., \frac{dz_p}{z_p}, dz_{p+1}, ..., dz_n$.

Green Griffiths bundles

Consider $X_k := J^k X / \mathbb{C}^* = \operatorname{Proj} \bigoplus_m E_{k,m}(X)$. This defines a bundle $\pi_k : X_k \to X$ of weighted projective spaces whose fibers are the quotients of $(\mathbb{C}^n)^k \setminus \{0\}$ by the \mathbb{C}^* action

$$\lambda \cdot (\xi_1, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

Green Griffiths bundles

Consider $X_k := J^k X / \mathbb{C}^* = \operatorname{Proj} \bigoplus_m E_{k,m}(X)$. This defines a bundle $\pi_k : X_k \to X$ of weighted projective spaces whose fibers are the quotients of $(\mathbb{C}^n)^k \setminus \{0\}$ by the \mathbb{C}^* action

$$\lambda \cdot (\xi_1, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

Correspondingly, there is a tautological rank 1 sheaf $\mathcal{O}_{X_k}(m)$ [invertible only when $\operatorname{lcm}(1, ..., k) \mid m$], and a direct image formula $E_{k,m}(X) = (\pi_k)_* \mathcal{O}_{X_k}(m).$

Green Griffiths bundles

Consider $X_k := J^k X / \mathbb{C}^* = \operatorname{Proj} \bigoplus_m E_{k,m}(X)$. This defines a bundle $\pi_k : X_k \to X$ of weighted projective spaces whose fibers are the quotients of $(\mathbb{C}^n)^k \setminus \{0\}$ by the \mathbb{C}^* action

$$\lambda \cdot (\xi_1, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

Correspondingly, there is a tautological rank 1 sheaf $\mathcal{O}_{X_k}(m)$ [invertible only when $lcm(1, ..., k) \mid m$], and a direct image formula

 $E_{k,m}(X) = (\pi_k)_* \mathcal{O}_{X_k}(m).$

In the logarithmic case, we define similarly

 $X_k \langle \Delta \rangle := \operatorname{Proj} \bigoplus_m E_{k,m}(X, \Delta)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Green Griffiths bundles

Consider $X_k := J^k X / \mathbb{C}^* = \operatorname{Proj} \bigoplus_m E_{k,m}(X)$. This defines a bundle $\pi_k : X_k \to X$ of weighted projective spaces whose fibers are the quotients of $(\mathbb{C}^n)^k \setminus \{0\}$ by the \mathbb{C}^* action

$$\lambda \cdot (\xi_1, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

Correspondingly, there is a tautological rank 1 sheaf $\mathcal{O}_{X_k}(m)$ [invertible only when $lcm(1, ..., k) \mid m$], and a direct image formula

 $E_{k,m}(X) = (\pi_k)_* \mathcal{O}_{X_k}(m).$

In the logarithmic case, we define similarly

 $X_k \langle \Delta \rangle := \operatorname{Proj} \bigoplus_m E_{k,m}(X, \Delta)$

and let $\mathcal{O}_{X_k \langle \Delta \rangle}(1)$ be the corresponding tautological sheaf, so that

 $E_{k,m}(X,\Delta) = (\pi_k)_* \mathcal{O}_{X_k \langle \Delta \rangle}(m).$

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, Δ) is a log pair of general type, in the sense that $K_X + \Delta$ is big, then there is a proper algebraic subvariety $Y \subsetneq X \setminus \Delta$ containing all entire curves $f : \mathbb{C} \to X \setminus \Delta$.

伺 ト イ ヨ ト イ ヨ ト

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, Δ) is a log pair of general type, in the sense that $K_X + \Delta$ is big, then there is a proper algebraic subvariety $Y \subsetneq X \setminus \Delta$ containing all entire curves $f : \mathbb{C} \to X \setminus \Delta$.

One possible strategy is to show that such entire curves f must satisfy a lot of algebraic differential equations of the form $P(f; f', ..., f^{(k)}) = 0$ for $k \gg 1$. This is based on:

・ 同 ト ・ ヨ ト ・ ヨ ト

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, Δ) is a log pair of general type, in the sense that $K_X + \Delta$ is big, then there is a proper algebraic subvariety $Y \subsetneq X \setminus \Delta$ containing all entire curves $f : \mathbb{C} \to X \setminus \Delta$.

One possible strategy is to show that such entire curves f must satisfy a lot of algebraic differential equations of the form $P(f; f', ..., f^{(k)}) = 0$ for $k \gg 1$. This is based on:

Fundamental vanishing theorem

[Green-Griffiths 1979], [D- 1995], [Siu-Yeung 1996], ... Let *A* be an ample divisor on *X*. Then, for all global jet differential operators on (X, Δ) with coefficients vanishing on *A*, i.e. $P \in H^0(X, E_{k,m}(X, \Delta) \otimes \mathcal{O}(-A))$, and for all entire curves $f : \mathbb{C} \to X \smallsetminus \Delta$, one has $P(f_{[k]}) \equiv 0$.

Simple case. First consider the compact case ($\Delta = 0$), and assume that f is a Brody curve, i.e. $||f'||_{\omega}$ bounded for some hermitian metric ω on X. By raising P to a power, we can assume A very ample, and view P as a \mathbb{C} valued differential operator whose coefficients vanish on a very ample divisor A.

Simple case. First consider the compact case ($\Delta = 0$), and assume that f is a Brody curve, i.e. $||f'||_{\omega}$ bounded for some hermitian metric ω on X. By raising P to a power, we can assume A very ample, and view P as a \mathbb{C} valued differential operator whose coefficients vanish on a very ample divisor A.

The Cauchy inequalities imply that all derivatives $f^{(s)}$ are bounded in any relatively compact coordinate chart. Hence $u_A(t) = P(f_{[k]})(t)$ is bounded, and must thus be constant by Liouville's theorem.

Simple case. First consider the compact case ($\Delta = 0$), and assume that f is a Brody curve, i.e. $||f'||_{\omega}$ bounded for some hermitian metric ω on X. By raising P to a power, we can assume A very ample, and view P as a \mathbb{C} valued differential operator whose coefficients vanish on a very ample divisor A.

The Cauchy inequalities imply that all derivatives $f^{(s)}$ are bounded in any relatively compact coordinate chart. Hence $u_A(t) = P(f_{[k]})(t)$ is bounded, and must thus be constant by Liouville's theorem.

Since A is very ample, we can move $A \in |A|$ such that A hits $f(\mathbb{C}) \subset X$. But then u_A vanishes somewhere, and so $u_A \equiv 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Simple case. First consider the compact case ($\Delta = 0$), and assume that f is a Brody curve, i.e. $||f'||_{\omega}$ bounded for some hermitian metric ω on X. By raising P to a power, we can assume A very ample, and view P as a \mathbb{C} valued differential operator whose coefficients vanish on a very ample divisor A.

The Cauchy inequalities imply that all derivatives $f^{(s)}$ are bounded in any relatively compact coordinate chart. Hence $u_A(t) = P(f_{[k]})(t)$ is bounded, and must thus be constant by Liouville's theorem.

Since A is very ample, we can move $A \in |A|$ such that A hits $f(\mathbb{C}) \subset X$. But then u_A vanishes somewhere, and so $u_A \equiv 0$.

Logarithmic case. In the logarithmic case, one can use instead a "Poincaré type metric" ω . Removing the hypothesis f' bounded is more tricky. One possible way is to use the Ahlfors lemma and some representation theory.

Probabilistic cohomology estimate

Theorem (D-, PAMQ 2011 + recent work for logarithmic case)

Fix A ample line bundle on X, and hermitian structures $(T_X \langle \Delta \rangle, h)$, (A, h_A) with $\omega_A = \Theta_{A,h_A} > 0$.

Probabilistic cohomology estimate

Theorem (D-, PAMQ 2011 + recent work for logarithmic case)

Fix A ample line bundle on X, and hermitian structures $(T_X \langle \Delta \rangle, h)$, (A, h_A) with $\omega_A = \Theta_{A,h_A} > 0$. Let $\eta_{\varepsilon} = \Theta_{K_X + \Delta, \det h^*} - \varepsilon \omega_A$ and

$$\mathcal{L}_{k,arepsilon} = \mathcal{O}_{X_k \langle \Delta
angle}(1) \otimes \pi_k^* \mathcal{O}_X \Big(-rac{1}{kn} \Big(1 + rac{1}{2} + \cdots + rac{1}{k} \Big) arepsilon A \Big), \;\; arepsilon \in \mathbb{Q}_+.$$

Probabilistic cohomology estimate

Theorem (D-, PAMQ 2011 + recent work for logarithmic case)

Fix A ample line bundle on X, and hermitian structures $(T_X \langle \Delta \rangle, h)$, (A, h_A) with $\omega_A = \Theta_{A, h_A} > 0$. Let $\eta_{\varepsilon} = \Theta_{K_X + \Delta, \det h^*} - \varepsilon \omega_A$ and $L_{k,\varepsilon} = \mathcal{O}_{X_k \langle \Delta \rangle}(1) \otimes \pi_k^* \mathcal{O}_X \Big(-\frac{1}{kn} \Big(1 + \frac{1}{2} + \dots + \frac{1}{k} \Big) \varepsilon A \Big), \quad \varepsilon \in \mathbb{Q}_+.$ Then for *m* sufficiently divisible, we have a lower bound $h^{0}(X_{k}, L_{k,\varepsilon}^{\otimes m}) = h^{0}\left(X, E_{k,m}(X, \Delta) \otimes \mathcal{O}_{X}\left(-\frac{m\varepsilon}{kn}\left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)A\right)\right)$ $\geq \frac{m^{n+kn-1}}{(n+kr-1)!} \frac{\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)^n}{n! (k!)^n} \left(\int_{X(n\leq 1)} \eta_{\varepsilon}^n - \frac{C}{\log k}\right).$

Probabilistic cohomology estimate

Theorem (D-, PAMQ 2011 + recent work for logarithmic case)

Fix A ample line bundle on X, and hermitian structures $(T_X \langle \Delta \rangle, h)$, (A, h_A) with $\omega_A = \Theta_{A,h_A} > 0$. Let $\eta_{\varepsilon} = \Theta_{K_X + \Delta, \det h^*} - \varepsilon \omega_A$ and $L_{k,\varepsilon} = \mathcal{O}_{X_k \langle \Delta \rangle}(1) \otimes \pi_k^* \mathcal{O}_X \left(-\frac{1}{kn} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) \varepsilon A \right), \quad \varepsilon \in \mathbb{Q}_+.$ Then for *m* sufficiently divisible, we have a lower bound $h^0(X_k, L_{k,\varepsilon}^{\otimes m}) = h^0 \left(X, E_{k,m}(X, \Delta) \otimes \mathcal{O}_X \left(-\frac{m\varepsilon}{kn} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) A \right) \right)$ $\geq \frac{m^{n+kn-1}}{(n+kr-1)!} \frac{(1 + \frac{1}{2} + \dots + \frac{1}{k})^n}{n! (k!)^n} \left(\int_{X(n < 1)} \eta_{\varepsilon}^n - \frac{C}{\log k} \right).$

Corollary

If $K_X + \Delta$ is big and $\varepsilon > 0$ is small, then η_{ε} can be taken > 0, so $h^0(X_k, L_{k,\varepsilon}^{\otimes m}) \ge C_{n,k,\eta,\varepsilon} m^{n+kn-1}$ with $C_{n,k,\eta,\varepsilon} > 0$, for $m \gg k \gg 1$.

Probabilistic cohomology estimate

Theorem (D-, PAMQ 2011 + recent work for logarithmic case)

Fix A ample line bundle on X, and hermitian structures $(T_X \langle \Delta \rangle, h)$, (A, h_A) with $\omega_A = \Theta_{A,h_A} > 0$. Let $\eta_{\varepsilon} = \Theta_{K_X + \Delta, \det h^*} - \varepsilon \omega_A$ and $L_{k,\varepsilon} = \mathcal{O}_{X_k \langle \Delta \rangle}(1) \otimes \pi_k^* \mathcal{O}_X \left(-\frac{1}{kn} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) \varepsilon A \right), \quad \varepsilon \in \mathbb{Q}_+.$ Then for *m* sufficiently divisible, we have a lower bound $h^0(X_k, L_{k,\varepsilon}^{\otimes m}) = h^0 \left(X, E_{k,m}(X, \Delta) \otimes \mathcal{O}_X \left(-\frac{m\varepsilon}{kn} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) A \right) \right)$ $\geq \frac{m^{n+kn-1}}{(n+kr-1)!} \frac{(1 + \frac{1}{2} + \dots + \frac{1}{k})^n}{n! (k!)^n} \left(\int_{X(n < 1)} \eta_{\varepsilon}^n - \frac{C}{\log k} \right).$

Corollary

If $K_X + \Delta$ is big and $\varepsilon > 0$ is small, then η_{ε} can be taken > 0, so $h^0(X_k, L_{k,\varepsilon}^{\otimes m}) \ge C_{n,k,\eta,\varepsilon} m^{n+kn-1}$ with $C_{n,k,\eta,\varepsilon} > 0$, for $m \gg k \gg 1$. Therefore, all $f : \mathbb{C} \to X \setminus \Delta$ satisfy algebraic diff. equations.

Proof. Consider for simplicity the absolute (non logarithmic) case. Assume that T_X is equipped with a C^{∞} connection ∇ and a hermitian metric *h*.

• • = • • = •

Proof. Consider for simplicity the absolute (non logarithmic) case. Assume that T_X is equipped with a C^{∞} connection ∇ and a hermitian metric *h*. One then defines a "weighted Finsler metric" on $J^k X$ by taking $b = \operatorname{lcm}(1, 2, ..., k)$ and, $\forall f, f(0) = x \in X_k$, $\Psi_{h_k}(f_{[k]}) := \left(\sum_{1 \leq c \leq k} \|\varepsilon_s \nabla^s f(0)\|_{h(x)}^{2b/s}\right)^{1/b}, \quad 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$

Proof. Consider for simplicity the absolute (non logarithmic) case. Assume that T_X is equipped with a C^{∞} connection ∇ and a hermitian metric h. One then defines a "weighted Finsler metric" on $J^k X$ by taking b = lcm(1, 2, ..., k) and, $\forall f, f(0) = x \in X_k$, $\Psi_{h_k}(f_{[k]}) := \left(\sum_{1 \le s \le k} \|\varepsilon_s \nabla^s f(0)\|_{h(x)}^{2b/s}\right)^{1/b}, \quad 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$ Letting $\xi_s = \varepsilon_s \nabla^s f(0)$, this can be viewed as a metric h_k on

 $L_k := \mathcal{O}_{X_k}(1)$, and the curvature form of L_k is obtained by computing $\frac{i}{2\pi}\partial\overline{\partial}\log\Psi_{h_k}(f_{[k]})$ as a function of (x,ξ_1,\ldots,ξ_k) .

Proof. Consider for simplicity the absolute (non logarithmic) case. Assume that T_X is equipped with a C^{∞} connection ∇ and a hermitian metric h. One then defines a "weighted Finsler metric" on $J^k X$ by taking $b = \operatorname{lcm}(1, 2, ..., k)$ and, $\forall f, f(0) = x \in X_k$, $\Psi_{h_k}(f_{[k]}) := \left(\sum_{1 \le s \le k} \|\varepsilon_s \nabla^s f(0)\|_{h(x)}^{2b/s}\right)^{1/b}, \quad 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$ Letting $\xi_s = \varepsilon_s \nabla^s f(0)$, this can be viewed as a metric h_k on $L_k := \mathcal{O}_{X_k}(1)$, and the curvature form of L_k is obtained by

computing $\frac{i}{2\pi}\partial\overline{\partial}\log\Psi_{h_k}(f_{[k]})$ as a function of (x,ξ_1,\ldots,ξ_k) .

Modulo negligible error terms of the form $O(\varepsilon_{s+1}/\varepsilon_s)$, this gives

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + rac{i}{2\pi} \sum_{1 \le s \le k} rac{1}{s} rac{|\xi_s|^{2b/s}}{\sum_t |\xi_t|^{2b/t}} \sum_{i,j,lpha,eta} c_{ijlphaeta} rac{\xi_{slpha}\overline{\xi}_{seta}}{|\xi_s|^2} \, dz_i \wedge d\overline{z}_j$$

where $(c_{ij\alpha\beta})$ are the coefficients of the curvature tensor $-\Theta_{T_X,h}$ and $\omega_{FS,k}$ is the weighted Fubini-Study metric on the fibers of $X_k \to X$.

The above expression can be simplified by using polar coordinates

$$x_s = |\xi_s|_h^{2b/s}, \quad u_s = \xi_s/|\xi_s|_h = \nabla^s f(0)/|\nabla^s f(0)|.$$

4 E b

The above expression can be simplified by using polar coordinates

$$x_s = |\xi_s|_h^{2b/s}, \quad u_s = \xi_s/|\xi_s|_h = \nabla^s f(0)/|\nabla^s f(0)|.$$

Since the weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum |\xi_s|^{2b/s} = 1$, we can take $\sum x_s = 1$, i.e. (x_s) in the (k-1)-dimensional simplex Δ^{k-1} ,

The above expression can be simplified by using polar coordinates

$$x_s = |\xi_s|_h^{2b/s}, \quad u_s = \xi_s/|\xi_s|_h = \nabla^s f(0)/|\nabla^s f(0)|.$$

Since the weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum |\xi_s|^{2b/s} = 1$, we can take $\sum x_s = 1$, i.e. (x_s) in the (k-1)-dimensional simplex Δ^{k-1} , and we obtain

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + \frac{i}{2\pi} \sum_{1 \le s \le k} \frac{1}{s} x_s \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) \, u_{s\alpha} \overline{u}_{s\beta} \, dz_i \wedge d\overline{z}_j$$

where $\omega_{\mathrm{FS},k}(\xi) = \frac{i}{2\pi b} \partial \overline{\partial} \log \sum_{1 \le s \le k} |\xi_s|^{2b/s} > 0$ on fibers of $X_k \to X$.

The above expression can be simplified by using polar coordinates

$$x_s = |\xi_s|_h^{2b/s}, \quad u_s = \xi_s/|\xi_s|_h = \nabla^s f(0)/|\nabla^s f(0)|.$$

Since the weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum |\xi_s|^{2b/s} = 1$, we can take $\sum x_s = 1$, i.e. (x_s) in the (k-1)-dimensional simplex Δ^{k-1} , and we obtain

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + \frac{i}{2\pi} \sum_{1 \le s \le k} \frac{1}{s} x_s \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) \, u_{s\alpha} \overline{u}_{s\beta} \, dz_i \wedge d\overline{z}_j$$

where $\omega_{\text{FS},k}(\xi) = \frac{i}{2\pi b} \partial \overline{\partial} \log \sum_{1 \le s \le k} |\xi_s|^{2b/s} > 0$ on fibers of $X_k \to X$.

By holomorphic Morse inequalities, we need to evaluate an integral

$$\int_{X_k(\Theta_{L_h,h_k},\leq 1)} \Theta_{L_k,h_k}^{N_k}, \quad N_k = \dim X_k = n + (kn-1),$$

and we have to integrate over the parameters $z \in X$, $x_s \in \mathbb{R}_+$ and u_s in the unit sphere bundle $\mathbb{S}(T_X, 1) \subset T_X$.

The signature of Θ_{L_k,h_k} depends only on the vertical terms, i.e. $\sum_{1 \le s \le k} \frac{1}{s} x_s Q(u_s), \quad Q(u_s) := \frac{i}{2\pi} \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) \, u_{s\alpha} \overline{u}_{s\beta} \, dz_i \wedge d\overline{z}_j.$

The signature of Θ_{L_k,h_k} depends only on the vertical terms, i.e.

$$\sum_{1\leq s\leq k}\frac{1}{s}x_sQ(u_s), \quad Q(u_s):=\frac{i}{2\pi}\sum_{i,j,\alpha,\beta}c_{ij\alpha\beta}(z)\,u_{s\alpha}\overline{u}_{s\beta}\,dz_i\wedge d\overline{z}_j.$$

After averaging over $(x_s) \in \Delta^{k-1}$ and computing the rational number $\int \omega_{\text{FS},k}(\xi)^{nk-1} = \frac{1}{(k!)^n}$, what is left is to evaluate Morse integrals with respect to $(u_s) \in (\mathbb{S}(T_X, 1))^k$ of "horizontal" (1, 1)-forms given by sums $\sum \frac{1}{s} Q(u_s)$, where (u_s) is a sequence of "random points" on the unit sphere.

The signature of Θ_{L_k,h_k} depends only on the vertical terms, i.e.

$$\sum_{1\leq s\leq k}\frac{1}{s}x_sQ(u_s), \quad Q(u_s):=\frac{i}{2\pi}\sum_{i,j,\alpha,\beta}c_{ij\alpha\beta}(z)\,u_{s\alpha}\overline{u}_{s\beta}\,dz_i\wedge d\overline{z}_j.$$

After averaging over $(x_s) \in \Delta^{k-1}$ and computing the rational number $\int \omega_{\text{FS},k}(\xi)^{nk-1} = \frac{1}{(k!)^n}$, what is left is to evaluate Morse integrals with respect to $(u_s) \in (\mathbb{S}(T_X, 1))^k$ of "horizontal" (1, 1)-forms given by sums $\sum \frac{1}{s} Q(u_s)$, where (u_s) is a sequence of "random points" on the unit sphere.

As $k \to +\infty$, this sum is asymptotically equivalent to a "Monte-Carlo" integral $\left(1 + \frac{1}{2} + \cdots + \frac{1}{k}\right) \int_{u \in \mathbb{S}(T_X, 1)} Q(u) du$.

The signature of Θ_{L_k,h_k} depends only on the vertical terms, i.e.

$$\sum_{1\leq s\leq k}\frac{1}{s}x_sQ(u_s), \quad Q(u_s):=\frac{i}{2\pi}\sum_{i,j,\alpha,\beta}c_{ij\alpha\beta}(z)\,u_{s\alpha}\overline{u}_{s\beta}\,dz_i\wedge d\overline{z}_j.$$

After averaging over $(x_s) \in \Delta^{k-1}$ and computing the rational number $\int \omega_{\text{FS},k}(\xi)^{nk-1} = \frac{1}{(k!)^n}$, what is left is to evaluate Morse integrals with respect to $(u_s) \in (\mathbb{S}(T_X, 1))^k$ of "horizontal" (1, 1)-forms given by sums $\sum \frac{1}{s} Q(u_s)$, where (u_s) is a sequence of "random points" on the unit sphere.

As $k \to +\infty$, this sum is asymptotically equivalent to a "Monte-Carlo" integral $\left(1 + \frac{1}{2} + \cdots + \frac{1}{k}\right) \int_{u \in \mathbb{S}(T_X, 1)} Q(u) du$. Now, Q(u) quadratic form $\Rightarrow \int_{u \in \mathbb{S}(T_X, 1)} Q(u) du = \frac{1}{n} \operatorname{Tr}(Q)$,

・ 同 ト ・ ヨ ト ・ ヨ ト

The signature of Θ_{L_k,h_k} depends only on the vertical terms, i.e.

$$\sum_{1\leq s\leq k}\frac{1}{s}x_sQ(u_s), \quad Q(u_s):=\frac{i}{2\pi}\sum_{i,j,\alpha,\beta}c_{ij\alpha\beta}(z)\,u_{s\alpha}\overline{u}_{s\beta}\,dz_i\wedge d\overline{z}_j.$$

After averaging over $(x_s) \in \Delta^{k-1}$ and computing the rational number $\int \omega_{\text{FS},k}(\xi)^{nk-1} = \frac{1}{(k!)^n}$, what is left is to evaluate Morse integrals with respect to $(u_s) \in (\mathbb{S}(T_X, 1))^k$ of "horizontal" (1, 1)-forms given by sums $\sum \frac{1}{s}Q(u_s)$, where (u_s) is a sequence of "random points" on the unit sphere.

As $k \to +\infty$, this sum is asymptotically equivalent to a "Monte-Carlo" integral $\left(1 + \frac{1}{2} + \cdots + \frac{1}{k}\right) \int_{u \in \mathbb{S}(T_X, 1)} Q(u) \, du$. Now, Q(u) quadratic form $\Rightarrow \int_{u \in \mathbb{S}(T_X, 1)} Q(u) \, du = \frac{1}{n} \operatorname{Tr}(Q)$, and we have $\operatorname{Tr}(Q) = \operatorname{Tr}(-\Theta_{T_X,h}) = \Theta_{\det T_X^*, \det h^*} = \Theta_{K_X, \det h^*}$. The asserted Morse estimates follow.

22/24

Thorem (D-, 2021)

Let (X, Δ) be a pair of general type, i.e. such that $K_X + \Delta$ is big. Then there exists $k_0 \in \mathbb{N}$ and $\delta > 0$ with the following properties.

向下 イヨト イヨト

Thorem (D-, 2021)

Let (X, Δ) be a pair of general type, i.e. such that $K_X + \Delta$ is big. Then there exists $k_0 \in \mathbb{N}$ and $\delta > 0$ with the following properties. Let $Z \subset X_k$ be an irreducible algebraic subvariety that is a component of a complete intersection of irreducible hypersurfaces $\bigcap_{1 \leq j \leq \ell} \{k\text{-jets } f_{[k]} \in X_k; P_j(f) = 0\}, P_j \in H^0(X, E_{s_j, m_j}(X, \Delta) \otimes L_j)$ with $k \geq k_0$, $\operatorname{ord}(P_j) = s_j, 1 \leq s_1 < \cdots < s_\ell \leq k, \sum_{1 \leq j \leq \ell} \frac{1}{s_j} \leq \delta \log k$.

・ 同 ト ・ ヨ ト ・ ヨ ト

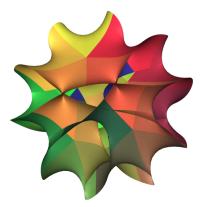
Thorem (D-, 2021)

Let (X, Δ) be a pair of general type, i.e. such that $K_X + \Delta$ is big. Then there exists $k_0 \in \mathbb{N}$ and $\delta > 0$ with the following properties. Let $Z \subset X_k$ be an irreducible algebraic subvariety that is a component of a complete intersection of irreducible hypersurfaces $\bigcap \{k\text{-jets } f_{[k]} \in X_k ; P_j(f) = 0\}, P_j \in H^0(X, E_{s_j, m_j}(X, \Delta) \otimes L_j)$ $1 \le j \le \ell$ with $k \ge k_0$, $\operatorname{ord}(P_j) = s_j$, $1 \le s_1 < \dots < s_\ell \le k$, $\sum_{1 \le j \le \ell} \frac{1}{s_j} \le \delta \log k$. Then the Morse integrals $\int_{Z(L_{k,\varepsilon},\le 1)} \Theta_{L_{k,\varepsilon}}^{\dim Z}$ of $L_{k,arepsilon} = \mathcal{O}_{X_k \langle \Delta
angle}(1) \otimes \pi_k^* \mathcal{O}_X \Big(- rac{1}{kn} \Big(1 + rac{1}{2} + \dots + rac{1}{k} \Big) arepsilon A \Big)$ are positive for $\varepsilon > 0$ small, hence $H^0(Z, L_{k,\varepsilon}^{\otimes m}) \ge c m^{\dim Z}$ for $m \gg 1$.

Thorem (D-, 2021)

Let (X, Δ) be a pair of general type, i.e. such that $K_X + \Delta$ is big. Then there exists $k_0 \in \mathbb{N}$ and $\delta > 0$ with the following properties. Let $Z \subset X_k$ be an irreducible algebraic subvariety that is a component of a complete intersection of irreducible hypersurfaces $\bigcap \{k\text{-jets } f_{[k]} \in X_k ; P_j(f) = 0\}, P_j \in H^0(X, E_{s_j, m_j}(X, \Delta) \otimes L_j)$ $1 \le j \le \ell$ with $k \ge k_0$, $\operatorname{ord}(P_j) = s_j$, $1 \le s_1 < \dots < s_\ell \le k$, $\sum_{1 \le j \le \ell} \frac{1}{s_j} \le \delta \log k$. Then the Morse integrals $\int_{Z(L_{k,\varepsilon},\le 1)} \Theta_{L_{k,\varepsilon}}^{\dim Z}$ of $L_{k,arepsilon} = \mathcal{O}_{X_k \langle \Delta
angle}(1) \otimes \pi_k^* \mathcal{O}_X \Big(- rac{1}{kn} \Big(1 + rac{1}{2} + \dots + rac{1}{k} \Big) arepsilon A \Big)$ are positive for $\varepsilon > 0$ small, hence $H^0(Z, L_{k,\varepsilon}^{\otimes m}) \ge c m^{\dim Z}$ for $m \gg 1$. Unfortunately, seems insufficient to show that $\dim \operatorname{IBs}(L_{k,\varepsilon}) < n$.

Thank you for your attention!



24/24