

Holomorphic Morse inequalities and volume of (1,1) cohomology classes

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I, France

CMI, Chennai, December 18, 2008

RMS-SMF-IMSc-CMI Conference held in Chennai, December 15–19, 2008

Definition. Let X be a compact Kähler manifold.

 The Kähler cone is the set K ⊂ H^{1,1}(X, ℝ) of cohomology classes {ω} of Kähler forms. This is an open convex cone.

回 と く ヨ と く ヨ と …

Definition. Let X be a compact Kähler manifold.

- The Kähler cone is the set K ⊂ H^{1,1}(X, ℝ) of cohomology classes {ω} of Kähler forms. This is an open convex cone.
- The pseudo-effective cone is the set *E* ⊂ *H*^{1,1}(*X*, ℝ) of cohomology classes {*T*} of closed positive (1, 1) currents. This is a closed convex cone.
 (by weak compactness of bounded sets of currents).

伺下 イヨト イヨト

Definition. Let X be a compact Kähler manifold.

- The Kähler cone is the set K ⊂ H^{1,1}(X, ℝ) of cohomology classes {ω} of Kähler forms. This is an open convex cone.
- The pseudo-effective cone is the set *E* ⊂ *H*^{1,1}(*X*, ℝ) of cohomology classes {*T*} of closed positive (1, 1) currents. This is a closed convex cone.
 (by weak compactness of bounded sets of currents).
- Always true: $\overline{\mathcal{K}} \subset \mathcal{E}$.

伺下 イヨト イヨト

Definition. Let X be a compact Kähler manifold.

- The Kähler cone is the set K ⊂ H^{1,1}(X, ℝ) of cohomology classes {ω} of Kähler forms. This is an open convex cone.
- The pseudo-effective cone is the set *E* ⊂ *H*^{1,1}(*X*, ℝ) of cohomology classes {*T*} of closed positive (1, 1) currents. This is a closed convex cone.
 (by weak compactness of bounded sets of currents).
- Always true: $\overline{\mathcal{K}} \subset \mathcal{E}$.
- One can have: $\overline{\mathcal{K}} \subsetneq \mathcal{E}$:

if X is the surface obtained by blowing-up \mathbb{P}^2 in one point, then the exceptional divisor $E \simeq \mathbb{P}^1$ has a cohomology class $\{\alpha\}$ such that $\int_E \alpha^2 = E^2 = -1$, hence $\{\alpha\} \notin \overline{\mathcal{K}}$, although $\{\alpha\} = \{[E]\} \in \mathcal{E}$.

Kähler (red) cone and pseudoeffective (blue) cone

< 臣 > < 臣 > · ·

3

In case X is projective, it is interesting to consider the "algebraic part" of our "transcendental cones" \mathcal{K} and \mathcal{E} . which consist of suitable integral divisor classes.

Cohomology classes of algebraic divisors live in $H^2(X, \mathbb{Z})$.

In case X is projective, it is interesting to consider the "algebraic part" of our "transcendental cones" \mathcal{K} and \mathcal{E} . which consist of suitable integral divisor classes.

Cohomology classes of algebraic divisors live in $H^2(X, \mathbb{Z})$.

• Neron-Severi lattice and Neron-Severi space

 $\begin{array}{lll} \mathrm{NS}(X) &:= & H^{1,1}(X,\mathbb{R}) \cap \big(H^2(X,\mathbb{Z})/\{\mathrm{torsion}\}\big), \\ \mathrm{NS}_{\mathbb{R}}(X) &:= & \mathrm{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}. \end{array}$

伺下 イヨト イヨト

In case X is projective, it is interesting to consider the "algebraic part" of our "transcendental cones" \mathcal{K} and \mathcal{E} . which consist of suitable integral divisor classes.

Cohomology classes of algebraic divisors live in $H^2(X, \mathbb{Z})$.

• Neron-Severi lattice and Neron-Severi space

 $\begin{array}{lll} \mathrm{NS}(X) &:= & H^{1,1}(X,\mathbb{R}) \cap \big(H^2(X,\mathbb{Z})/\{\mathrm{torsion}\}\big), \\ \mathrm{NS}_{\mathbb{R}}(X) &:= & \mathrm{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}. \end{array}$

• Algebraic parts of \mathcal{K} and \mathcal{E}

The rest we refer to as the "transcendental part"

Jean-Pierre Demailly (Grenoble I), 18/12/2008

□ > 《注》《注》

э

Theorem (Kodaira+successors, D90). Assume X projective.

• \mathcal{K}_{NS} is the open cone generated by ample (or very ample) divisors A (Recall that a divisor A is said to be very ample if the linear system $H^0(X, \mathcal{O}(A))$ provides an embedding of X in projective space).

Theorem (Kodaira+successors, D90). Assume X projective.

- \mathcal{K}_{NS} is the open cone generated by ample (or very ample) divisors A (Recall that a divisor A is said to be very ample if the linear system $H^0(X, \mathcal{O}(A))$ provides an embedding of X in projective space).
- The closed cone K
 _{NS} consists of the closure of the cone of nef divisors D (or nef line bundles L), namely effective integral divisors D such that D · C ≥ 0 for every curve C.

Theorem (Kodaira+successors, D90). Assume X projective.

- \mathcal{K}_{NS} is the open cone generated by ample (or very ample) divisors A (Recall that a divisor A is said to be very ample if the linear system $H^0(X, \mathcal{O}(A))$ provides an embedding of X in projective space).
- The closed cone K
 _{NS} consists of the closure of the cone of nef divisors D (or nef line bundles L), namely effective integral divisors D such that D · C ≥ 0 for every curve C.
- *E*_{NS} is the closure of the cone of effective divisors, i.e. divisors D = ∑ c_jD_j, c_j ∈ ℝ₊.

A (10) A (10)

Theorem (Kodaira+successors, D90). Assume X projective.

- \mathcal{K}_{NS} is the open cone generated by ample (or very ample) divisors A (Recall that a divisor A is said to be very ample if the linear system $H^0(X, \mathcal{O}(A))$ provides an embedding of X in projective space).
- The closed cone K
 _{NS} consists of the closure of the cone of nef divisors D (or nef line bundles L), namely effective integral divisors D such that D · C ≥ 0 for every curve C.
- *E*_{NS} is the closure of the cone of effective divisors, i.e. divisors D = ∑ c_jD_j, c_j ∈ ℝ₊.
- The interior \mathcal{E}_{NS}° is the cone of big divisors, namely divisors D such that $h^{0}(X, \mathcal{O}(kD)) \geq c k^{\dim X}$ for k large.

イロン イヨン イヨン

Theorem (Kodaira+successors, D90). Assume X projective.

- \mathcal{K}_{NS} is the open cone generated by ample (or very ample) divisors A (Recall that a divisor A is said to be very ample if the linear system $H^0(X, \mathcal{O}(A))$ provides an embedding of X in projective space).
- The closed cone K
 _{NS} consists of the closure of the cone of nef divisors D (or nef line bundles L), namely effective integral divisors D such that D · C ≥ 0 for every curve C.
- *E*_{NS} is the closure of the cone of effective divisors, i.e. divisors D = ∑ c_jD_j, c_j ∈ ℝ₊.
- The interior \mathcal{E}_{NS}° is the cone of big divisors, namely divisors D such that $h^{0}(X, \mathcal{O}(kD)) \geq c k^{\dim X}$ for k large.

Proof: L^2 estimates for $\overline{\partial}$ / Bochner-Kodaira technique

□ > 《注 > 《注 > _

3

Characterization of the Kähler cone

Theorem (Demailly-Paun 2004). Consider the "numerically positive cone"

$$\mathcal{P} = \left\{ \alpha \in H^{1,1}(X,\mathbb{R}) \, ; \, \int_{Y} \alpha^{p} > 0 \right\}$$

where $Y \subset X$ irreducible analytic subset, dim Y = p. The Kähler cone \mathcal{K} is one of the connected components of \mathcal{P} .

Characterization of the Kähler cone

Theorem (Demailly-Paun 2004). Consider the "numerically positive cone"

$$\mathcal{P} = \left\{ \alpha \in H^{1,1}(X,\mathbb{R}) \, ; \, \int_{Y} \alpha^{p} > 0 \right\}$$

where $Y \subset X$ irreducible analytic subset, dim Y = p. The Kähler cone \mathcal{K} is one of the connected components of \mathcal{P} .

Corollary (DP2004). Let X be a compact Kähler manifold. $\alpha \in H^{1,1}(X, \mathbb{R})$ is nef $(\alpha \in \overline{\mathcal{K}}) \Leftrightarrow$ $\int_{Y} \alpha \wedge \omega^{p-1} \ge 0, \forall \omega$ Kähler, $\forall Y \subset X$ irreducible, dim Y = p.

Characterization of the Kähler cone

Theorem (Demailly-Paun 2004). Consider the "numerically positive cone"

$$\mathcal{P} = \left\{ \alpha \in H^{1,1}(X,\mathbb{R}) \, ; \, \int_{Y} \alpha^{p} > 0 \right\}$$

where $Y \subset X$ irreducible analytic subset, dim Y = p. The Kähler cone \mathcal{K} is one of the connected components of \mathcal{P} .

Corollary (DP2004). Let X be a compact Kähler manifold. $\alpha \in H^{1,1}(X, \mathbb{R})$ is nef $(\alpha \in \overline{\mathcal{K}}) \Leftrightarrow$ $\int_{Y} \alpha \wedge \omega^{p-1} \ge 0, \forall \omega$ Kähler, $\forall Y \subset X$ irreducible, dim Y = p.

Re-interpretation. the dual of the nef cone $\overline{\mathcal{K}}$ is the closed convex cone in $H^{n-1,n-1}_{\mathbb{R}}(X)$ generated by cohomology classes of currents of the form $[Y] \wedge \omega^{p-1}$ in $H^{n-1,n-1}(X, \mathbb{R})$.

Duality theorem for \mathcal{K}

Variation of complex structure

Suppose $\pi : \mathcal{X} \to S$ is a deformation of compact Kähler manifolds. Put $X_t = \pi^{-1}(t)$, $t \in S$ and let

$$abla = egin{pmatrix}
abla^{2,0} & * & 0 \ & &
abla^{1,1} & * \ 0 & * &
abla^{0,2} \end{pmatrix}$$

be the Gauss-Manin connection on the Hodge bundle $t \mapsto H^2(X_t, \mathbb{C})$, relative to the decomposition $H^2 = H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$.

通 とう きょう うちょう

Variation of complex structure

Suppose $\pi : \mathcal{X} \to S$ is a deformation of compact Kähler manifolds. Put $X_t = \pi^{-1}(t)$, $t \in S$ and let

$$abla = egin{pmatrix}
abla^{2,0} & * & 0 \ & &
abla^{1,1} & * \ 0 & * &
abla^{0,2} \end{pmatrix}$$

be the Gauss-Manin connection on the Hodge bundle $t \mapsto H^2(X_t, \mathbb{C})$, relative to the decomposition $H^2 = H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$.

Theorem (Demailly-Păun 2004). Let $\pi : \mathcal{X} \to S$ be a deformation of compact Kähler manifolds over an irreducible base S. Then there exists a countable union $S' = \bigcup S_{\nu}$ of analytic subsets $S_{\nu} \subsetneq S$, such that the Kähler cones $\mathcal{K}_t \subset H^{1,1}(X_t, \mathbb{C})$ of the fibers $X_t = \pi^{-1}(t)$ are $\nabla^{1,1}$ -invariant over $S \setminus S'$ under parallel transport with respect to $\nabla^{1,1}_{\tau \to \tau}$.

Jean-Pierre Demailly (Grenoble I), 18/12/2008

Approximation of currents, Zariski decomposition

 Definition. On X compact Kähler, a Kähler current T is a closed positive (1,1)-current T such that T ≥ δω for some smooth hermitian metric ω and a constant δ ≪ 1.

Approximation of currents, Zariski decomposition

- Definition. On X compact Kähler, a Kähler current T is a closed positive (1,1)-current T such that T ≥ δω for some smooth hermitian metric ω and a constant δ ≪ 1.
- Theorem. $\alpha \in \mathcal{E}^{\circ} \Leftrightarrow \alpha \ni T$, a Kähler current.

We say that \mathcal{E}° is the cone of big (1, 1)-classes.

Approximation of currents, Zariski decomposition

- Definition. On X compact Kähler, a Kähler current T is a closed positive (1,1)-current T such that T ≥ δω for some smooth hermitian metric ω and a constant δ ≪ 1.
- **Theorem.** $\alpha \in \mathcal{E}^{\circ} \Leftrightarrow \alpha \ni T$, a Kähler current. We say that \mathcal{E}° is the cone of big (1, 1)-classes.
- Theorem (D92). Any Kähler current T can be written

 $T = \lim T_m$

where $T_m \in \alpha = \{T\}$ has logarithmic poles, i.e. \exists a modification $\mu_m : \widetilde{X}_m \to X$ such that

$$\mu_m^{\star} T_m = [E_m] + \gamma_m$$

where E_m is an effective \mathbb{Q} -divisor on \widetilde{X}_m with coefficients in $\frac{1}{m}\mathbb{Z}$ and γ_m is a Kähler form on \widetilde{X}_m .

Idea of proof of analytic Zariski decomposition (1)

Locally one can write $T = i\partial \overline{\partial} \varphi$ for some strictly plurisubharmonic potential φ on X. The approximating potentials φ_m of φ are defined as

$$arphi_m(z) = rac{1}{2m} \log \sum_\ell |g_{\ell,m}(z)|^2$$

where $(g_{\ell,m})$ is a Hilbert basis of the space

$$\mathcal{H}(\Omega, m\varphi) = \big\{ f \in \mathcal{O}(\Omega) \, ; \, \int_{\Omega} |f|^2 e^{-2m\varphi} dV < +\infty \big\}.$$

The Ohsawa-Takegoshi L^2 extension theorem (applied to extension from a single isolated point) implies that there are enough such holomorphic functions, and thus $\varphi_m \ge \varphi - C/m$. On the other hand $\varphi = \lim_{m \to +\infty} \varphi_m$ by a Bergman kernel trick and by the mean value inequality.

Jean-Pierre Demailly (Grenoble I), 18/12/2008

Idea of proof of analytic Zariski decomposition (2)

The Hilbert basis $(g_{\ell,m})$ is a family of local generators of the multiplier ideal sheaf $\mathcal{I}(mT) = \mathcal{I}(m\varphi)$. The modification $\mu_m : \widetilde{X}_m \to X$ is obtained by blowing-up this ideal sheaf, with

 $\mu_m^{\star}\mathcal{I}(mT)=\mathcal{O}(-mE_m).$

for some effective \mathbb{Q} -divisor E_m with normal crossings on \widetilde{X}_m . Now, we set $T_m = i\partial\overline{\partial}\varphi_m$ and $\gamma_m = \mu_m^*T_m - [E_m]$. Then $\gamma_m = i\partial\overline{\partial}\psi_m$ where

$$\psi_m = rac{1}{2m} \log \sum_\ell |g_{\ell,m} \circ \mu_m/h|^2$$
 locally on \widetilde{X}_m

and *h* is a generator of $\mathcal{O}(-mE_m)$, and we see that γ_m is a smooth semi-positive form on \widetilde{X}_m . The construction can be made global by using a gluing technique, e.g. via partitions of unity, and γ_m can be made Kähler by a perturbation argument.

The more familiar algebraic analogue would be to take $\alpha = c_1(L)$ with a big line bundle L and to blow-up the base locus of |mL|, $m \gg 1$, to get a Q-divisor decomposition

$\mu_m^{\star}L \sim E_m + D_m, \qquad E_m$ effective, D_m free.

Such a blow-up is usually referred to as a "log resolution" of the linear system |mL|, and we say that $E_m + D_m$ is an approximate Zariski decomposition of L.

We will also use the terminology of "approximate Zariski decomposition" for the above decomposition of Kähler currents with logarithmic poles.

(4月) (4日) (4日)

Analytic Zariski decomposition

< 注) < 注)

3

Theorem. (Fujita 1994) If *L* is a big line bundle and $\mu_m^*(mL) = [E_m] + [D_m] (E_m = fixed part, D_m = moving part)$ $\lim_{m \to +\infty} \frac{n!}{m^n} h^0(X, mL) = \lim_{m \to +\infty} D_m^n.$

This quantity will be called $Vol(c_1(L))$. More generally :

伺い イヨト イヨト 三日

Theorem. (Fujita 1994) If *L* is a big line bundle and $\mu_m^*(mL) = [E_m] + [D_m] (E_m = fixed part, D_m = moving part)$ $\lim_{m \to +\infty} \frac{n!}{m^n} h^0(X, mL) = \lim_{m \to +\infty} D_m^n.$

This quantity will be called $Vol(c_1(L))$. More generally :

Definition (Boucksom 2002). Let $\alpha \in \mathcal{E}^{\circ}$ be a big class The volume (movable self-intersection) of α is

$$\operatorname{Vol}(\alpha) = \sup_{T \in \alpha} \int_{\widetilde{X}} \gamma^n > 0$$

with Kähler currents $T \in \alpha$ with log poles, and $\mu^*T = [E] + \gamma$ where $\mu : \widetilde{X} \to X$ modification.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem. (Fujita 1994) If *L* is a big line bundle and $\mu_m^*(mL) = [E_m] + [D_m] (E_m = fixed part, D_m = moving part)$ $\lim_{m \to +\infty} \frac{n!}{m^n} h^0(X, mL) = \lim_{m \to +\infty} D_m^n.$

This quantity will be called $Vol(c_1(L))$. More generally :

Definition (Boucksom 2002). Let $\alpha \in \mathcal{E}^{\circ}$ be a big class The volume (movable self-intersection) of α is

$$\operatorname{Vol}(\alpha) = \sup_{\mathcal{T} \in \alpha} \int_{\widetilde{X}} \gamma^n > 0$$

with Kähler currents $T \in \alpha$ with log poles, and $\mu^* T = [E] + \gamma$ where $\mu : \widetilde{X} \to X$ modification. If $\alpha \in \mathcal{K}$, then $\operatorname{Vol}(\alpha) = \alpha^n = \int_X \alpha^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem. (Fujita 1994) If *L* is a big line bundle and $\mu_m^*(mL) = [E_m] + [D_m] (E_m = fixed part, D_m = moving part)$ $\lim_{m \to +\infty} \frac{n!}{m^n} h^0(X, mL) = \lim_{m \to +\infty} D_m^n.$

This quantity will be called $Vol(c_1(L))$. More generally : **Definition** (Boucksom 2002). Let $\alpha \in \mathcal{E}^\circ$ be a big class

The volume (movable self-intersection) of α is

$$\operatorname{Vol}(\alpha) = \sup_{\mathcal{T} \in \alpha} \int_{\widetilde{X}} \gamma^n > 0$$

with Kähler currents $T \in \alpha$ with log poles, and $\mu^* T = [E] + \gamma$ where $\mu : \widetilde{X} \to X$ modification. If $\alpha \in \mathcal{K}$, then $\operatorname{Vol}(\alpha) = \alpha^n = \int_X \alpha^n$. **Theorem** (Boucksom 2002). α contains T_{\min} and $\operatorname{Vol}(\alpha) = \lim_{m \to +\infty} \int_X \gamma_m^n$ for the approximation of T_{\min} .

Jean-Pierre Demailly (Grenoble I), 18/12/2008

Morse inequalities and volume of (1,1) classes

Movable intersection theory

Theorem (Boucksom 2002) Let X be a compact Kähler manifold and

 $H^{k,k}_{\geq 0}(X) = \{\{T\} \in H^{k,k}(X,\mathbb{R}); \ T \ closed \geq 0\}.$

伺下 イヨト イヨト

3

Movable intersection theory

Theorem (Boucksom 2002) Let X be a compact Kähler manifold and

 $H^{k,k}_{\geq 0}(X) = \{\{T\} \in H^{k,k}(X,\mathbb{R}); \ T \ closed \geq 0\}.$

•
$$\forall k = 1, 2, ..., n$$
,
 \exists canonical "movable intersection product"
 $\mathcal{E} \times \cdots \times \mathcal{E} \to H^{k,k}_{\geq 0}(X), \quad (\alpha_1, ..., \alpha_k) \mapsto \langle \alpha_1 \cdot \alpha_2 \cdots \alpha_{k-1} \cdot \alpha_k \rangle$
such that $\operatorname{Vol}(\alpha) = \langle \alpha^n \rangle$ whenever α is a big class.

伺下 イヨト イヨト

3

Movable intersection theory

Theorem (Boucksom 2002) Let X be a compact Kähler manifold and

 $H^{k,k}_{\geq 0}(X) = \{\{T\} \in H^{k,k}(X,\mathbb{R}); \ T \ closed \geq 0\}.$

• $\forall k = 1, 2, \ldots, n$. \exists canonical "movable intersection product" $\mathcal{E} \times \cdots \times \mathcal{E} \to H^{k,k}_{>0}(X), \quad (\alpha_1, \ldots, \alpha_k) \mapsto \langle \alpha_1 \cdot \alpha_2 \cdots \alpha_{k-1} \cdot \alpha_k \rangle$ such that $Vol(\alpha) = \langle \alpha^n \rangle$ whenever α is a big class. • The product is increasing, homogeneous of degree 1 and superadditive in each argument, i.e. $\langle \alpha_1 \cdots (\alpha'_i + \alpha''_i) \cdots \alpha_k \rangle \ge \langle \alpha_1 \cdots \alpha'_i \cdots \alpha_k \rangle + \langle \alpha_1 \cdots \alpha''_i \cdots \alpha_k \rangle.$ It coincides with the ordinary intersection product when the $\alpha_i \in \mathcal{K}$ are nef classes.

Jean-Pierre Demailly (Grenoble I), 18/12/2008

Construction of the movable intersection product

First assume that all classes α_j are big, i.e. $\alpha_j \in \mathcal{E}^\circ$. Fix a smooth closed (n - k, n - k) semi-positive form u on X. We select Kähler currents $T_j \in \alpha_j$ with logarithmic poles, and simultaneous more and more accurate log-resolutions $\mu_m : \widetilde{X}_m \to X$ such that

$$\mu_m^{\star} T_j = [E_{j,m}] + \gamma_{j,m}.$$

We define

$$\langle \alpha_1 \cdot \alpha_2 \cdots \alpha_k \rangle = \lim_{m \to +\infty} \{ (\mu_m)_{\star} (\gamma_{1,m} \wedge \gamma_{2,m} \wedge \ldots \wedge \gamma_{k,m}) \}$$

as a weakly convergent subsequence. The main point is to show that there is actually convergence and that the limit is unique in cohomology ; this is based on "monotonicity properties" of the Zariski decomposition.

Transcendental Holomorphic Morse inequalities

Conjecture. For any class $\alpha \in H^{1,1}(X, \mathbb{R})$ and $\theta \in \alpha$ smooth $\operatorname{Vol}(\{\alpha\}) \ge \int_{X(\theta, \le 1)} \theta^n$ where $\operatorname{Vol}(\alpha) := 0$ if $\alpha \notin \mathcal{E}^\circ$ and $X(\theta, q) = \{x \in X; \ \theta(x) \text{ has signature } (n - q, q)\}$ $X(\theta, \le q) = \bigcup_{0 \le i \le q} X(\theta, j).$

Transcendental Holomorphic Morse inequalities

Conjecture. For any class $\alpha \in H^{1,1}(X, \mathbb{R})$ and $\theta \in \alpha$ smooth $\operatorname{Vol}(\{\alpha\}) \ge \int_{X(\theta, \le 1)} \theta^n$

where $Vol(\alpha) := 0$ if $\alpha \notin \mathcal{E}^{\circ}$ and

 $\begin{array}{lll} X(\theta,q) &=& \left\{ x \in X \, ; \, \theta(x) \text{ has signature } (n-q,q) \right\} \\ X(\theta,\leq q) &=& \bigcup_{0\leq j\leq q} X(\theta,j). \end{array}$

Theorem (D 1985) (Holomorphic Morse inequalities) The above is true when $\alpha = c_1(L)$ is integral. Then, with $\theta = \frac{i}{2\pi} \Theta_{L,h} \in \alpha$

$$H^{0}(X, L^{\otimes k}) \geq \frac{k^{n}}{n!} \int_{X(\theta, \leq 1)} \theta^{n} - o(k^{n})$$

(and more generally, bounds for all $H^q(X, L^{\otimes k})$ hold true).

Jean-Pierre Demailly (Grenoble I), 18/12/2008

Morse inequalities and volume of (1,1) classes

Three equivalent properties

Lemma. A, B nef divisors on X projective. Then $Vol(A - B) \ge A^n - nA^{n-1} \cdot B.$

Elementary / easy corollary of Morse inequalities.

伺い イヨン イヨン

Lemma. A, B nef divisors on X projective. Then $Vol(A - B) \ge A^n - nA^{n-1} \cdot B.$

Elementary / easy corollary of Morse inequalities.

Theorem. Let X be compact Kähler. We have \iff (1) $\forall \alpha, \beta \in \overline{\mathcal{K}}$, $\operatorname{Vol}(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta$. (Weak Morse) (2) $\forall \alpha, \beta \in \mathcal{E}$, $\operatorname{Vol}(\alpha - \beta) \ge \operatorname{Vol}(\alpha) - n \int_0^1 \langle \alpha - t\beta \rangle^{n-1} \cdot \beta \, dt$. (3) Orthogonality property : Let $\alpha = \{T\} \in \mathcal{E}^\circ$ big, and $\mu_m^* T_m = [E_m] + \gamma_m$ approximate Zariski decomposition. Then $\gamma_m^{n-1} \cdot E_m \to 0$ as $\operatorname{Vol}(\gamma_m) \to \operatorname{Vol}(\alpha)$.

Proof. (2) \Rightarrow (1) obvious. What remains to show is : (1) \Rightarrow (3), (3) \Rightarrow (2).

• = • • = •

Morse implies orthogonality

 $(1) \Rightarrow (3)$. The proof is similar to the case of projecting a point onto a convex set, where the segment to closest point is orthogonal to tangent plane.

< 3 > 4 3 > 4

Orthogonality implies differential estimate

(3) \Rightarrow (2): Take a parametrized) approximate Zariski Decomposition :

$$\mu^*(lpha - teta)
i [E_t] + \gamma_t$$

where $E_t = \sum c_j(t)E_j$. Take d/dt :
 $-\mu^*eta
i \sum \dot{c}_j(t)E_j + \dot{\gamma}_t$

while

$$\operatorname{Vol}(\alpha - t\beta) \simeq \int_{\widetilde{X}} \gamma_t^n, \quad \frac{d}{dt} \operatorname{Vol}(\alpha - t\beta) \simeq n \int_{\widetilde{X}} \gamma_t^{n-1} \dot{\gamma}_t.$$

Since $\int_{\widetilde{X}} \gamma_t^{n-1} \cdot E_j$ small (by orthogonality), we get
$$\frac{d}{dt} \operatorname{Vol}(\alpha - t\beta) \simeq n \int_{\widetilde{X}} \gamma_t^{n-1} \cdot (-\mu^*\beta) = -n \int_{\widetilde{X}} \mu_*(\gamma_t^{n-1}) \cdot \beta \Rightarrow$$
$$\frac{d}{dt} \operatorname{Vol}(\alpha - t\beta) \simeq -n \int_{\widetilde{X}} \langle (\alpha - t\beta)^{n-1} \rangle \cdot \beta.$$

Jean-Pierre Demailly (Grenoble I), 18/12/2008

Morse inequalities and volume of (1,1) classes

Positive cones in $H^{n-1,n-1}(X)$ and Serre duality

Definition. Let X be a compact Kähler manifold.

- Cone of (n-1, n-1) positive currents $\mathcal{N} = \overline{cone} \{ \{T\} \in H^{n-1, n-1}(X, \mathbb{R}); T \text{ closed} \geq 0 \}.$
- Cone of effective curves $\mathcal{N}_{NS} = \mathcal{N} \cap NS_{\mathbb{R}}^{n-1,n-1}(X),$ $= \overline{cone} \{ \{C\} \in H^{n-1,n-1}(X,\mathbb{R}); C \text{ effective curve} \}.$
- Cone of movable curves : with $\mu : \widetilde{X} \to X$, let $\mathcal{M}_{NS} = \overline{\operatorname{cone}} \{ \{C\} \in H^{n-1,n-1}(X,\mathbb{R}); [C] = \mu_{\star}(H_1 \cdots H_{n-1}) \}$ where H_j = ample hyperplane section of \widetilde{X} .
- Cone of movable currents : with $\mu : \widetilde{X} \to X$, let $\mathcal{M} = \overline{\operatorname{cone}} \{ \{T\} \in H^{n-1,n-1}(X,\mathbb{R}); T = \mu_{\star}(\widetilde{\omega}_1 \wedge \ldots \wedge \widetilde{\omega}_{n-1}) \}$ where $\widetilde{\omega}_j = K$ ähler metric on \widetilde{X} .

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Main duality theorem

 $H^{1,1}(X,\mathbb{R}) \leftarrow \text{Serre duality} \rightarrow H^{n-1,n-1}(X,\mathbb{R})$

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣 ─

Proof of duality between $\mathcal{E}_{\mathrm{NS}}$ and $\mathcal{M}_{\mathrm{NS}}$

Theorem (Boucksom-Demailly-Păun-Peternell 2004). For X projective, a class α is in \mathcal{E}_{NS} (pseudo-effective) if and only if it is dual to the cone \mathcal{M}_{NS} of moving curves.

Proof of the theorem. We want to show that $\mathcal{E}_{NS} = \mathcal{M}_{NS}^{\vee}$. By obvious positivity of the integral pairing, one has in any case

$$\mathcal{E}_{\mathrm{NS}} \subset (\mathcal{M}_{\mathrm{NS}})^{\vee}.$$

If the inclusion is strict, there is an element $\alpha \in \partial \mathcal{E}_{NS}$ on the boundary of \mathcal{E}_{NS} which is in the interior of \mathcal{N}_{NS}^{\vee} . Hence

(*)
$$\alpha \cdot \Gamma \ge \varepsilon \omega \cdot \Gamma$$

for every moving curve Γ , while $\langle \alpha^n \rangle = \operatorname{Vol}(\alpha) = 0$.

Schematic picture of the proof

Then use approximate Zariski decomposition of $\{\alpha + \delta\omega\}$ and orthogonality relation to contradict (*) with $\Gamma = \langle \alpha^{n-1} \rangle$.

→ ∃ >

Characterization of uniruled varieties

Recall that a projective variety is called uniruled if it can be covered by a family of rational curves $C_t \simeq \mathbb{P}^1_{\mathbb{C}}$.

Theorem (Boucksom-Demailly-Paun-Peternell 2004) A projective manifold X has K_X pseudo-effective, i.e. $K_X \in \mathcal{E}_{NS}$, if and only if X is not uniruled. Recall that a projective variety is called uniruled if it can be covered by a family of rational curves $C_t \simeq \mathbb{P}^1_{\mathbb{C}}$.

Theorem (Boucksom-Demailly-Paun-Peternell 2004) A projective manifold X has K_X pseudo-effective, i.e. $K_X \in \mathcal{E}_{NS}$, if and only if X is not uniruled.

Proof (of the non trivial implication). If $K_X \notin \mathcal{E}_{NS}$, the duality pairing shows that there is a moving curve C_t such that $K_X \cdot C_t < 0$. The standard "bend-and-break" lemma of Mori then implies that there is family Γ_t of rational curves with $K_X \cdot \Gamma_t < 0$, so X is uniruled.

Conjecture. (BDPP 2004) The same is expected to be true for X compact Kähler.

く 同 ト く ヨ ト く ヨ ト

Weak Kähler Morse inequalities (new approach)

Theorem (D 2008) Let X be compact Kähler, γ a Kähler class on X and $E = \sum c_j E_j \ge 0$ a divisor with normal crossings. Then, if $\operatorname{Vol}_{X|Y}$ denotes the "restricted" volume on Y ("sections" on Y which extend to X)

$$\begin{aligned} \operatorname{Vol}\left(\gamma + \sum c_{j}E_{j}\right) &\geq \operatorname{Vol}(\gamma) + n\sum_{j}\int_{0}^{c_{j}}\operatorname{Vol}_{X|E_{j}}(\gamma + tE_{j})\,dt \\ &+ n(n-1)\sum_{j < k}\int_{0}^{c_{j}}\int_{0}^{c_{k}}\operatorname{Vol}_{X|E_{j} \cap E_{k}}(\gamma + t_{j}E_{j} + t_{k}E_{k})\,dt_{j}dt_{k} \\ &+ n(n-1)(n-2)\sum_{j < k < \ell}\int_{0}^{c_{j}}\int_{0}^{c_{k}}\int_{0}^{c_{\ell}}\operatorname{Vol}_{X|E_{j} \cap E_{k} \cap E_{\ell}}\dots\end{aligned}$$

Jean-Pierre Demailly (Grenoble I), 18/12/2008

伺下 イヨト イヨト

Weak Kähler Morse inequalities (new approach)

Theorem (D 2008) Let X be compact Kähler, γ a Kähler class on X and $E = \sum c_j E_j \ge 0$ a divisor with normal crossings. Then, if $\operatorname{Vol}_{X|Y}$ denotes the "restricted" volume on Y ("sections" on Y which extend to X)

$$\operatorname{Vol}\left(\gamma + \sum c_{j}E_{j}\right) \geq \operatorname{Vol}(\gamma) + n \sum_{j} \int_{0}^{c_{j}} \operatorname{Vol}_{X|E_{j}}(\gamma + tE_{j}) dt$$
$$+ n(n-1) \sum_{j < k} \int_{0}^{c_{j}} \int_{0}^{c_{k}} \operatorname{Vol}_{X|E_{j} \cap E_{k}}(\gamma + t_{j}E_{j} + t_{k}E_{k}) dt_{j}dt_{k}$$
$$+ n(n-1)(n-2) \sum_{j < k < \ell} \int_{0}^{c_{j}} \int_{0}^{c_{k}} \int_{0}^{c_{\ell}} \operatorname{Vol}_{X|E_{j} \cap E_{k} \cap E_{\ell}} \dots$$

The proof relies on pluripotential theory (glueing psh functions).

This should imply the orthogonality estimate in the Kähler case, and therefore also the duality theorem (work in progress).

Jean-Pierre Demailly (Grenoble I), 18/12/2008