Recent progress in the study of hyperbolic algebraic varieties

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I, France
December 18, 2009 / Colloquium CAS, Beijing

Entire curves

- Definition. By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \rightarrow X$ into a complex n-dimensional manifold.

Entire curves

- Definition. By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \rightarrow X$ into a complex n-dimensional manifold.
- If X is a bounded open subset $\Omega \subset \mathbb{C}^{n}$, then there are no entire curves $f: \mathbb{C} \rightarrow \Omega$ (Liouville's theorem)

Entire curves

- Definition. By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \rightarrow X$ into a complex n-dimensional manifold.
- If X is a bounded open subset $\Omega \subset \mathbb{C}^{n}$, then there are no entire curves $f: \mathbb{C} \rightarrow \Omega$ (Liouville's theorem)
- $X=\overline{\mathbb{C}} \backslash\{0,1, \infty\}=\mathbb{C} \backslash\{0,1\}$ has no entire curves (Picard's theorem)

Entire curves

- Definition. By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \rightarrow X$ into a complex n-dimensional manifold.
- If X is a bounded open subset $\Omega \subset \mathbb{C}^{n}$, then there are no entire curves $f: \mathbb{C} \rightarrow \Omega$ (Liouville's theorem)
- $X=\overline{\mathbb{C}} \backslash\{0,1, \infty\}=\mathbb{C} \backslash\{0,1\}$ has no entire curves (Picard's theorem)
- A complex torus $X=\mathbb{C}^{n} / \Lambda$ (Λ lattice) has a lot of entire curves. As \mathbb{C} simply connected, every $f: \mathbb{C} \rightarrow X=\mathbb{C}^{n} / \Lambda$ lifts as $\tilde{f}: \mathbb{C} \rightarrow \mathbb{C}^{n}$,

$$
\tilde{f}(t)=\left(\tilde{f}_{1}(t), \ldots, \tilde{f}_{n}(t)\right)
$$

and $\tilde{f}_{j}: \mathbb{C} \rightarrow \mathbb{C}$ can be arbitrary entire functions.

Projective algebraic varieties

- Consider now the complex projective n-space

$$
\mathbb{P}^{n}=\mathbb{P}_{\mathbb{C}}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}, \quad[z]=\left[z_{0}: z_{1}: \ldots: z_{n}\right]
$$

Projective algebraic varieties

- Consider now the complex projective n-space

$$
\mathbb{P}^{n}=\mathbb{P}_{\mathbb{C}}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}, \quad[z]=\left[z_{0}: z_{1}: \ldots: z_{n}\right]
$$

- An entire curve $f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ is given by a map

$$
t \longmapsto\left[f_{0}(t): f_{1}(t): \ldots: f_{n}(t)\right]
$$

where $f_{j}: \mathbb{C} \rightarrow \mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

Projective algebraic varieties

- Consider now the complex projective n-space

$$
\mathbb{P}^{n}=\mathbb{P}_{\mathbb{C}}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}, \quad[z]=\left[z_{0}: z_{1}: \ldots: z_{n}\right]
$$

- An entire curve $f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ is given by a map

$$
t \longmapsto\left[f_{0}(t): f_{1}(t): \ldots: f_{n}(t)\right]
$$

where $f_{j}: \mathbb{C} \rightarrow \mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

- More generally, look at a (complex) projective manifold, i.e.

$$
X^{n} \subset \mathbb{P}^{N}, \quad X=\left\{[z] ; P_{1}(z)=\ldots=P_{k}(z)=0\right\}
$$

where $P_{j}(z)=P_{j}\left(z_{0}, z_{1}, \ldots, z_{N}\right)$ are homogeneous polynomials (of some degree d_{j}), such that X is non singular.

Kobayashi metric / hyperbolic manifolds

- For a complex manifold, $n=\operatorname{dim}_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X, \xi \in T_{X}$ $\kappa_{x}(\xi)=\inf \left\{\lambda>0 ; \exists f: \mathbb{D} \rightarrow X, f(0)=x, \lambda f_{*}(0)=\xi\right\}$
On $\mathbb{C}^{n}, \mathbb{P}^{n}$ or complex tori $X=\mathbb{C}^{n} / \Lambda$, one has $\kappa_{X} \equiv 0$.

Kobayashi metric / hyperbolic manifolds

- For a complex manifold, $n=\operatorname{dim}_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X, \xi \in T_{X}$ $\kappa_{x}(\xi)=\inf \left\{\lambda>0 ; \exists f: \mathbb{D} \rightarrow X, f(0)=x, \lambda f_{*}(0)=\xi\right\}$
On $\mathbb{C}^{n}, \mathbb{P}^{n}$ or complex tori $X=\mathbb{C}^{n} / \Lambda$, one has $\kappa_{X} \equiv 0$.
- X is said to be hyperbolic (in the sense of Kobayashi) if the associated integrated pseudo-distance is a distance (i.e. it separates points - Hausdorff topology),

Kobayashi metric / hyperbolic manifolds

- For a complex manifold, $n=\operatorname{dim}_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X, \xi \in T_{X}$

$$
\kappa_{x}(\xi)=\inf \left\{\lambda>0 ; \exists f: \mathbb{D} \rightarrow X, f(0)=x, \lambda f_{*}(0)=\xi\right\}
$$

On $\mathbb{C}^{n}, \mathbb{P}^{n}$ or complex tori $X=\mathbb{C}^{n} / \Lambda$, one has $\kappa_{X} \equiv 0$.

- X is said to be hyperbolic (in the sense of Kobayashi) if the associated integrated pseudo-distance is a distance (i.e. it separates points - Hausdorff topology),
- Theorem. (Brody) If X is compact then X is Kobayashi hyperbolic if and only if there are no entire holomorphic curves $f: \mathbb{C} \rightarrow X$ (Brody hyperbolicity).

Kobayashi metric / hyperbolic manifolds

- For a complex manifold, $n=\operatorname{dim}_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X, \xi \in T_{X}$

$$
\kappa_{x}(\xi)=\inf \left\{\lambda>0 ; \exists f: \mathbb{D} \rightarrow X, f(0)=x, \lambda f_{*}(0)=\xi\right\}
$$

On $\mathbb{C}^{n}, \mathbb{P}^{n}$ or complex tori $X=\mathbb{C}^{n} / \Lambda$, one has $\kappa_{X} \equiv 0$.

- X is said to be hyperbolic (in the sense of Kobayashi) if the associated integrated pseudo-distance is a distance (i.e. it separates points - Hausdorff topology),
- Theorem. (Brody) If X is compact then X is Kobayashi hyperbolic if and only if there are no entire holomorphic curves $f: \mathbb{C} \rightarrow X$ (Brody hyperbolicity).
- Hyperbolic varieties are especially interesting for their expected diophantine properties:
Conjecture (S. Lang) If a projective variety X defined over \mathbb{Q} is hyperbolic, then $X(\mathbb{Q})$ is finite.

Complex curves $(n=1)$: genus and curvature

$$
\begin{array}{cl}
g=0, & K_{x}<0 \\
\text { (positive curvature) }
\end{array}
$$

$$
K_{X}=\Lambda^{n} T_{X}^{*}, \quad \operatorname{deg}\left(K_{X}\right)=2 g-2 \quad \text { (negative curvature) }
$$

Curves: hyperbolicity and curvature

- Case $n=1$ (compact Riemann surfaces):

$$
\begin{array}{lll}
X=\mathbb{P}^{1} & (g=0, & \left.T_{X}>0\right) \\
X=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau) & (g=1, & \left.T_{X}=0\right)
\end{array}
$$

obviously non hyperbolic : $\exists f: \mathbb{C} \rightarrow X$.

Curves : hyperbolicity and curvature

- Case $n=1$ (compact Riemann surfaces):

$$
\begin{array}{lll}
X=\mathbb{P}^{1} & (g=0, & \left.T_{X}>0\right) \\
X=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau) & (g=1, & \left.T_{X}=0\right)
\end{array}
$$

obviously non hyperbolic: $\exists f: \mathbb{C} \rightarrow X$.

- If $g \geq 2, \quad X \simeq \mathbb{D} / \Gamma \quad\left(T_{X}<0\right)$, then X hyperbolic.

Curves : hyperbolicity and curvature

- Case $n=1$ (compact Riemann surfaces):

$$
\begin{array}{lll}
X=\mathbb{P}^{1} & (g=0, & \left.T_{X}>0\right) \\
X=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau) & (g=1, & \left.T_{X}=0\right)
\end{array}
$$

obviously non hyperbolic : $\exists f: \mathbb{C} \rightarrow X$.

- If $g \geq 2, \quad X \simeq \mathbb{D} / \Gamma \quad\left(T_{X}<0\right)$, then X hyperbolic.
- The n-dimensional case (Kobayashi)

If T_{X} is negatively curved $\left(T_{X}^{*}>0\right.$, i.e. ample), then X is hyperbolic.
Recall that a holomorphic vector bundle E is ample iff its symmetric powers $S^{m} E$ have global sections which generate 1 -jets of (germs of) sections at any point $x \in X$.

- Examples : $X=\Omega / \Gamma, \Omega$ bounded symmetric domain.

Varieties of general type

- Definition A non singular projective variety X is said to be of general type if the growth of pluricanonical sections

$$
\operatorname{dim} H^{0}\left(X, K_{X}^{\otimes m}\right) \sim c m^{n}, \quad K_{X}=\Lambda^{n} T_{X}^{*}
$$

is maximal.
(sections locally of the form $\left.f(z)\left(d z_{1} \wedge \ldots \wedge d z_{n}\right)^{\otimes m}\right)$
Example: A non singular hypersurface $X^{n} \subset \mathbb{P}^{n+1}$ of degree d satisfies $K_{X}=\mathcal{O}(d-n-2)$, it is of general type iff $d>n+2$.

Varieties of general type

- Definition A non singular projective variety X is said to be of general type if the growth of pluricanonical sections

$$
\operatorname{dim} H^{0}\left(X, K_{X}^{\otimes m}\right) \sim c m^{n}, \quad K_{X}=\Lambda^{n} T_{X}^{*}
$$

is maximal.
(sections locally of the form $\left.f(z)\left(d z_{1} \wedge \ldots \wedge d z_{n}\right)^{\otimes m}\right)$
Example: A non singular hypersurface $X^{n} \subset \mathbb{P}^{n+1}$ of degree d satisfies $K_{X}=\mathcal{O}(d-n-2)$, it is of general type iff $d>n+2$.

- Conjecture GT. If a compact manifold X is hyperbolic, then it should be of general type, and even better $K_{X}=\Lambda^{n} T_{X}^{*}$ should be of positive curvature (i.e. K_{X} is ample, or equivalently \exists Kähler metric ω such that $\operatorname{Ricci}(\omega)<0)$.

Conjectural characterizations of hyperbolicity

- Theorem. Let X be projective algebraic. Consider the following properties :
(P1) X is hyperbolic
(P2) Every subvariety Y of X is of general type.
(P3) $\exists \varepsilon>0, \forall C \subset X$ algebraic curve

$$
2 g(\bar{C})-2 \geq \varepsilon \operatorname{deg}(C)
$$

(X "algebraically hyperbolic")
(P4) X possesses a jet-metric with negative curvature on its k-jet bundle X_{k} [to be defined later], for $k \geq k_{0} \gg 1$.
Then (P4) \Rightarrow (P 1), (P 2), (P 3),
$(\mathrm{P} 1) \Rightarrow(\mathrm{P} 3)$,
and if Conjecture GT holds, $(\mathrm{P} 1) \Rightarrow(\mathrm{P} 2)$.

Conjectural characterizations of hyperbolicity

- Theorem. Let X be projective algebraic. Consider the following properties :
(P1) X is hyperbolic
(P2) Every subvariety Y of X is of general type.
(P3) $\exists \varepsilon>0, \forall C \subset X$ algebraic curve

$$
2 g(\bar{C})-2 \geq \varepsilon \operatorname{deg}(C)
$$

(X "algebraically hyperbolic")
(P4) X possesses a jet-metric with negative curvature on its k-jet bundle X_{k} [to be defined later], for $k \geq k_{0} \gg 1$.
Then (P4) \Rightarrow (P1), (P2), (P3),
$(\mathrm{P} 1) \Rightarrow(\mathrm{P} 3)$,
and if Conjecture GT holds, (P1) \Rightarrow (P2).

- It is expected that all 4 properties (P1), (P2), (P3), (P4) are equivalent for projective varieties.

Green-Griffiths-Lang conjecture

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then there exists an algebraic variety $Y \subsetneq X$ such that for all non-constant holomorphic $f: \mathbb{C} \rightarrow X$ one has $f(\mathbb{C}) \subset Y$.

Green-Griffiths-Lang conjecture

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then there exists an algebraic variety $Y \subsetneq X$ such that for all non-constant holomorphic $f: \mathbb{C} \rightarrow X$ one has $f(\mathbb{C}) \subset Y$.
- Combining the above conjectures, we get:

Expected consequence (of GT + GGL)
(P1) X is hyperbolic
(P2) Every subvariety Y of X is of general type are equivalent.

Green-Griffiths-Lang conjecture

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then there exists an algebraic variety $Y \subsetneq X$ such that for all non-constant holomorphic $f: \mathbb{C} \rightarrow X$ one has $f(\mathbb{C}) \subset Y$.
- Combining the above conjectures, we get:

Expected consequence (of GT + GGL)
(P1) X is hyperbolic
(P2) Every subvariety Y of X is of general type are equivalent.

- The main idea in order to attack GGL is to use differential equations. Let

$$
\mathbb{C} \rightarrow X, \quad t \mapsto f(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)
$$

be a curve written in some local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on X.

Definition of algebraic differential operators

- Consider algebraic differential operators which can be written locally in multi-index notation

$$
\begin{aligned}
P\left(f_{[k]}\right) & =P\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \\
& =\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(f(t)) f^{\prime}(t)^{\alpha_{1}} f^{\prime \prime}(t)^{\alpha_{2}} \ldots f^{(k)}(t)^{\alpha_{k}}
\end{aligned}
$$

where $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are holomorphic coefficients on X and $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet.

Definition of algebraic differential operators

- Consider algebraic differential operators which can be written locally in multi-index notation

$$
\begin{aligned}
P\left(f_{[k]}\right) & =P\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \\
& =\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(f(t)) f^{\prime}(t)^{\alpha_{1}} f^{\prime \prime}(t)^{\alpha_{2}} \ldots f^{(k)}(t)^{\alpha_{k}}
\end{aligned}
$$

where $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are holomorphic coefficients on X and $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet. Obvious \mathbb{C}^{*}-action:

$$
\lambda \cdot f(t)=f(\lambda t), \quad(\lambda \cdot f)^{(k)}(t)=\lambda^{k} f^{(k)}(\lambda t)
$$

\Rightarrow weighted degree $m=\left|\alpha_{1}\right|+2\left|\alpha_{2}\right|+\ldots+k\left|\alpha_{k}\right|$.

Definition of algebraic differential operators

- Consider algebraic differential operators which can be written locally in multi-index notation

$$
\begin{aligned}
P\left(f_{[k]}\right) & =P\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \\
& =\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(f(t)) f^{\prime}(t)^{\alpha_{1}} f^{\prime \prime}(t)^{\alpha_{2}} \ldots f^{(k)}(t)^{\alpha_{k}}
\end{aligned}
$$

where $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are holomorphic coefficients on X and $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet. Obvious \mathbb{C}^{*}-action :

$$
\lambda \cdot f(t)=f(\lambda t), \quad(\lambda \cdot f)^{(k)}(t)=\lambda^{k} f^{(k)}(\lambda t)
$$

\Rightarrow weighted degree $m=\left|\alpha_{1}\right|+2\left|\alpha_{2}\right|+\ldots+k\left|\alpha_{k}\right|$.

- Definition. $E_{k, m}^{\mathrm{GG}}$ is the sheaf (bundle) of algebraic differential operators of order k and weighted degree m.

Vanishing theorem for differential operators

- Fundamental vanishing theorem
([Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996]
Let $P \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} \otimes \mathcal{O}(-A)\right)$ be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then for any $f: \mathbb{C} \rightarrow X, P\left(f_{[k]}\right) \equiv 0$.

Vanishing theorem for differential operators

- Fundamental vanishing theorem
([Green-Griffiths 1979], [Demailly 1995],
[Siu-Yeung 1996]
Let $P \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} \otimes \mathcal{O}(-A)\right)$ be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then for any $f: \mathbb{C} \rightarrow X, P\left(f_{[k]}\right) \equiv 0$.
- Proof. One can assume that A is very ample and intersects $f(\mathbb{C})$. Also assume f^{\prime} bounded (this is not so restrictive by Brody !). Then all $f^{(k)}$ are bounded by Cauchy inequality. Hence

$$
\mathbb{C} \ni t \mapsto P\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)(t)
$$

is a bounded holomorphic function on \mathbb{C} which vanishes at some point. Apply Liouville's theorem !

Geometric interpretation of vanishing theorem

- Let $X_{k}^{\mathrm{GG}}=J_{k}(X)^{*} / \mathbb{C}^{*}$ be the projectivized k-jet bundle of $X=$ quotient of non constant k-jets by \mathbb{C}^{*}-action. Fibers are weighted projective spaces. Observation. If $\pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X$ is canonical projection and $\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1)$ is the tautological line bundle, then

$$
E_{k, m}^{\mathrm{GG}}=\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m)
$$

Geometric interpretation of vanishing theorem

- Let $X_{k}^{\mathrm{GG}}=J_{k}(X)^{*} / \mathbb{C}^{*}$ be the projectivized k-jet bundle of $X=$ quotient of non constant k-jets by \mathbb{C}^{*}-action.
Fibers are weighted projective spaces.
Observation. If $\pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X$ is canonical projection and $\mathcal{O}_{X_{k}^{G G}}(1)$ is the tautological line bundle, then

$$
E_{k, m}^{\mathrm{GG}}=\left(\pi_{k}\right)_{*} \mathcal{O}_{x_{k}^{\mathrm{GG}}}(m)
$$

- Saying that $f: \mathbb{C} \rightarrow X$ satisfies the differential equation $P\left(f_{[k]}\right)=0$ means that

$$
f_{[k]}(\mathbb{C}) \subset Z_{P}
$$

where Z_{P} is the zero divisor of the section

$$
\sigma_{P} \in H^{0}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m) \otimes \pi_{k}^{*} \mathcal{O}(-A)\right)
$$

associated with P.

Consequence of fundamental vanishing theorem

- Consequence of fundamental vanishing theorem. If $P_{j} \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} \otimes \mathcal{O}(-A)\right)$ is a basis of sections then the image $f(\mathbb{C})$ lies in $Y=\pi_{k}\left(\bigcap Z_{P_{j}}\right)$, hence property asserted by the GGL conjecture holds true if there are "enough independent differential equations" so that

$$
Y=\pi_{k}\left(\bigcap_{j} Z_{P_{j}}\right) \subsetneq X
$$

Consequence of fundamental vanishing theorem

- Consequence of fundamental vanishing theorem. If $P_{j} \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} \otimes \mathcal{O}(-A)\right)$ is a basis of sections then the image $f(\mathbb{C})$ lies in $Y=\pi_{k}\left(\bigcap Z_{P_{j}}\right)$, hence property asserted by the GGL conjecture holds true if there are "enough independent differential equations" so that

$$
Y=\pi_{k}\left(\bigcap_{j} Z_{P_{j}}\right) \subsetneq X
$$

- However, some differential equations are useless. On a surface with coordinates $\left(z_{1}, z_{2}\right)$, a Wronskian equation $f_{1}^{\prime} f_{2}^{\prime \prime}-f_{2}^{\prime} f_{1}^{\prime \prime}=0$ tells us that $f(\mathbb{C})$ sits on a line, but $f_{2}^{\prime \prime}(t)=0$ says that the second component is linear affine in time, an essentially meaningless information which is lost by a change of parameter $t \mapsto \varphi(t)$.

Invariant differential operators

- The k-th order Wronskian operator

$$
W_{k}(f)=f^{\prime} \wedge f^{\prime \prime} \wedge \ldots \wedge f^{(k)}
$$

(locally defined in coordinates) has degree $m=\frac{k(k+1)}{2}$ and

$$
W_{k}(f \circ \varphi)=\varphi^{\prime m} W_{k}(f) \circ \varphi
$$

Invariant differential operators

- The k-th order Wronskian operator

$$
W_{k}(f)=f^{\prime} \wedge f^{\prime \prime} \wedge \ldots \wedge f^{(k)}
$$

(locally defined in coordinates) has degree $m=\frac{k(k+1)}{2}$ and

$$
W_{k}(f \circ \varphi)=\varphi^{\prime m} W_{k}(f) \circ \varphi .
$$

- Definition. A differential operator P of order k and degree m is said to be invariant by reparametrization if

$$
P(f \circ \varphi)=\varphi^{\prime m} P(f) \circ \varphi
$$

for any parameter change $t \mapsto \varphi(t)$. Consider their set

$$
E_{k, m} \subset E_{k, m}^{\mathrm{GG}} \quad(\text { a subbundle })
$$

(Any polynomial $Q\left(W_{1}, W_{2}, \ldots W_{k}\right)$ is invariant, but for $k \geq 3$ there are other invariant operators.)

Category of directed manifolds

- Goal. We are interested in curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_{X}.

Category of directed manifolds

- Goal. We are interested in curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_{X}.
- Definition. Category of directed manifolds :
- Objects : pairs $(X, V), X$ manifold $/ \mathbb{C}$ and $V \subset \mathcal{O}\left(T_{X}\right)$
- Arrows $\psi:(X, V) \rightarrow(Y, W)$ holomorphic s.t. $\psi_{*} V \subset W$

Category of directed manifolds

- Goal. We are interested in curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_{X}.
- Definition. Category of directed manifolds :
- Objects : pairs $(X, V), X$ manifold $/ \mathbb{C}$ and $V \subset \mathcal{O}\left(T_{X}\right)$
- Arrows $\psi:(X, V) \rightarrow(Y, W)$ holomorphic s.t. $\psi_{*} V \subset W$
- "Absolute case" $\left(X, T_{X}\right)$
- "Relative case" $\left(X, T_{X / S}\right)$ where $X \rightarrow S$
- "Integrable case" when $[V, V] \subset V$ (foliations)

Category of directed manifolds

- Goal. We are interested in curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_{X}.
- Definition. Category of directed manifolds :
- Objects : pairs $(X, V), X$ manifold $/ \mathbb{C}$ and $V \subset \mathcal{O}\left(T_{X}\right)$
- Arrows $\psi:(X, V) \rightarrow(Y, W)$ holomorphic s.t. $\psi_{*} V \subset W$
- "Absolute case" $\left(X, T_{X}\right)$
- "Relative case" $\left(X, T_{X / S}\right)$ where $X \rightarrow S$
- "Integrable case" when $[V, V] \subset V$ (foliations)
- Fonctor "1-jet" : $(X, V) \mapsto(\tilde{X}, \tilde{V})$ where :

$$
\begin{aligned}
& \tilde{X}=P(V)=\text { bundle of projective spaces of lines in } V \\
& \pi: \tilde{X}=P(V) \rightarrow X, \quad(x,[v]) \mapsto x, \quad v \in V_{x} \\
& \tilde{V}_{(x,[v])}=\left\{\xi \in T_{\tilde{X},(x,[v])} ; \pi_{*} \xi \in \mathbb{C} v \subset T_{X, x}\right\}
\end{aligned}
$$

Semple jet bundles

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V

$$
\begin{aligned}
& f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\
& f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \quad \text { (projectivized 1st-jet) }
\end{aligned}
$$

Semple jet bundles

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V

$$
\begin{aligned}
& f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\
& f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \quad(\text { projectivized 1st-jet })
\end{aligned}
$$

- Definition. Semple jet bundles :
$-\left(X_{k}, V_{k}\right)=k$-th iteration of fonctor $(X, V) \mapsto(\tilde{X}, \tilde{V})$
$-f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow\left(X_{k}, V_{k}\right)$ is the projectivized k-jet of f.

Semple jet bundles

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V

$$
\begin{aligned}
& f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\
& f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \quad(\text { projectivized 1st-jet })
\end{aligned}
$$

- Definition. Semple jet bundles :
$-\left(X_{k}, V_{k}\right)=k$-th iteration of fonctor $(X, V) \mapsto(\tilde{X}, \tilde{V})$
$-f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow\left(X_{k}, V_{k}\right)$ is the projectivized k-jet of f.
- Basic exact sequences

$$
\begin{aligned}
& 0 \rightarrow T_{\tilde{X} / X} \rightarrow \tilde{V} \xrightarrow{\pi_{\star}} \mathcal{O}_{\tilde{X}}(-1) \rightarrow 0 \Rightarrow r k \tilde{V}=r=\mathrm{rk} V \\
& 0 \rightarrow \mathcal{O}_{\tilde{X}} \rightarrow \pi^{\star} V \otimes \mathcal{O}_{\tilde{X}}(1) \rightarrow T_{\tilde{x} / X} \rightarrow 0 \quad(\text { Euler })
\end{aligned}
$$

Semple jet bundles

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V

$$
\begin{aligned}
& f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\
& f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \quad(\text { projectivized 1st-jet })
\end{aligned}
$$

- Definition. Semple jet bundles :
$-\left(X_{k}, V_{k}\right)=k$-th iteration of fonctor $(X, V) \mapsto(\tilde{X}, \tilde{V})$
$-f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow\left(X_{k}, V_{k}\right)$ is the projectivized k-jet of f.
- Basic exact sequences

$$
\begin{aligned}
& 0 \rightarrow T_{\tilde{X} / X} \rightarrow \tilde{V} \xrightarrow[\rightarrow]{\pi_{\star}} \mathcal{O}_{\tilde{X}}(-1) \rightarrow 0 \quad \Rightarrow \mathrm{rk} \tilde{V}=r=\mathrm{rk} V \\
& 0 \rightarrow \mathcal{O}_{\tilde{X}} \rightarrow \pi^{\star} V \otimes \mathcal{O}_{\tilde{X}}(1) \rightarrow T_{\tilde{X} / X} \rightarrow 0 \quad \text { (Euler) } \\
& 0 \rightarrow T_{X_{k} / X_{k-1}} \rightarrow V_{k} \xrightarrow{\left(\pi_{k}\right)_{\star}} \mathcal{O}_{X_{k}}(-1) \rightarrow 0 \quad \Rightarrow \text { rk } V_{k}=r \\
& 0 \rightarrow \mathcal{O}_{X_{k}} \rightarrow \pi_{k}^{\star} V_{k-1} \otimes \mathcal{O}_{X_{k}}(1) \rightarrow T_{X_{k} / X_{k-1}} \rightarrow 0 \quad \text { (Euler) }
\end{aligned}
$$

Direct image formula

- For $n=\operatorname{dim} X$ and $r=$ rk V, get a tower of \mathbb{P}^{r-1}-bundles

$$
\pi_{k, 0}: X_{k} \xrightarrow{\pi_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{1}} X_{0}=X
$$

with $\operatorname{dim} X_{k}=n+k(r-1)$, rk $V_{k}=r$, and tautological line bundles $\mathcal{O}_{X_{k}}(1)$ on $X_{k}=P\left(V_{k-1}\right)$.

Direct image formula

- For $n=\operatorname{dim} X$ and $r=\mathrm{rk} V$, get a tower of \mathbb{P}^{r-1}-bundles

$$
\pi_{k, 0}: X_{k} \xrightarrow{\pi_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{1}} X_{0}=X
$$

with $\operatorname{dim} X_{k}=n+k(r-1)$, rk $V_{k}=r$, and tautological line bundles $\mathcal{O}_{X_{k}}(1)$ on $X_{k}=P\left(V_{k-1}\right)$.

- Theorem. X_{k} is a smooth compactification of

$$
X_{k}^{\mathrm{GG}, \text { reg }} / G_{k}=J_{k}^{\mathrm{GG}, \text { reg }} / G_{k}
$$

where G_{k} is the group of k-jets of germs of biholomorphisms of $(\mathbb{C}, 0)$, acting on the right by reparametrization: $(f, \varphi) \mapsto f \circ \varphi$, and $J_{k}^{\text {reg }}$ is the space of k-jets of regular curves.

Direct image formula

- For $n=\operatorname{dim} X$ and $r=$ rk V, get a tower of \mathbb{P}^{r-1}-bundles

$$
\pi_{k, 0}: X_{k} \xrightarrow{\pi_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{1}} X_{0}=X
$$

with $\operatorname{dim} X_{k}=n+k(r-1)$, rk $V_{k}=r$, and tautological line bundles $\mathcal{O}_{X_{k}}(1)$ on $X_{k}=P\left(V_{k-1}\right)$.

- Theorem. X_{k} is a smooth compactification of

$$
X_{k}^{\mathrm{GG}, \text { reg }} / G_{k}=J_{k}^{\mathrm{GG}, \mathrm{reg}} / G_{k}
$$

where G_{k} is the group of k-jets of germs of biholomorphisms of $(\mathbb{C}, 0)$, acting on the right by reparametrization: $(f, \varphi) \mapsto f \circ \varphi$, and $J_{k}^{\text {reg }}$ is the space of k-jets of regular curves.

- Direct image formula. $\left(\pi_{k, 0}\right)_{*} \mathcal{O}_{X_{k}}(m)=E_{k, m} V^{*}=$ invariant algebraic differential operators $f \mapsto P\left(f_{[k]}\right)$ acting on germs of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$.

Results obtained so far

- Using this technology and deep results of McQuillan for curve foliations on surfaces, D. - El Goul proved in 1998 Theorem. (solution of Kobayashi conjecture)
A very generic surface $X \subset \mathbb{P}^{3}$ of degree ≥ 21 is hyperbolic. (McQuillan got independently degree ≥ 35).
- $\operatorname{dim}_{\mathbb{C}} X=n$. (S. Diverio, J. Merker, E. Rousseau [DMR09])
If $X \subset \mathbb{P}^{n+1}$ is a generic n-fold of degree $d \geq d_{n}:=2^{n^{5}}$, then $\exists Y \subsetneq X$ s.t. every non constant $f: \mathbb{C} \rightarrow X$ satisfies $f(\mathbb{C}) \subset Y$.
[also $d_{3}=593, d_{4}=3203, d_{5}=35355, d_{6}=172925$.]

Results obtained so far

- Using this technology and deep results of McQuillan for curve foliations on surfaces, D. - El Goul proved in 1998 Theorem. (solution of Kobayashi conjecture) A very generic surface $X \subset \mathbb{P}^{3}$ of degree ≥ 21 is hyperbolic. (McQuillan got independently degree ≥ 35).
- $\operatorname{dim}_{\mathbb{C}} X=n$. (S. Diverio, J. Merker, E. Rousseau [DMR09])
If $X \subset \mathbb{P}^{n+1}$ is a generic n-fold of degree $d \geq d_{n}:=2^{n^{5}}$, then $\exists Y \subsetneq X$ s.t. every non constant $f: \mathbb{C} \rightarrow X$ satisfies $f(\mathbb{C}) \subset Y$.
[also $d_{3}=593, d_{4}=3203, d_{5}=35355, d_{6}=172925$.]
- Additional result. (S. Diverio, S. Trapani, 2009) One can get $\operatorname{codim}_{\mathbb{C}} Y \geq 2$ and therefore a generic hypersurface $X \subset \mathbb{P}^{4}$ of degree $d \geq 593$ is hyperbolic.

Algebraic structure of differential rings

- Although very interesting, results are currently limited by lack of knowledge on jet bundles and differential operators
- Unknown! Is the ring of germs of invariant differential operators on $\left(\mathbb{C}^{n}, T_{\mathbb{C}^{n}}\right)$ at the origin

$$
\mathcal{A}_{k, n}=\bigoplus_{m} E_{k, m} T_{\mathbb{C}^{n}}^{*} \quad \text { finitely generated ? }
$$

Algebraic structure of differential rings

- Although very interesting, results are currently limited by lack of knowledge on jet bundles and differential operators
- Unknown! Is the ring of germs of invariant differential operators on $\left(\mathbb{C}^{n}, T_{\mathbb{C}^{n}}\right)$ at the origin

$$
\mathcal{A}_{k, n}=\bigoplus E_{k, m} T_{\mathbb{C}^{n}}^{*} \quad \text { finitely generated ? }
$$

- At least this is $\stackrel{m}{\mathrm{O}} \mathrm{K}$ for $\forall n, k \leq 2$ and $n=2, k \leq 4$:

$$
\begin{aligned}
& \mathcal{A}_{1, n}=\mathcal{O}\left[f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right] \\
& \mathcal{A}_{2, n}=\mathcal{O}\left[f_{1}^{\prime}, \ldots, f_{n}^{\prime}, W^{[i j]}\right], \quad W^{[i j]}=f_{i}^{\prime} f_{j}^{\prime \prime}-f_{j}^{\prime} f_{i}^{\prime \prime} \\
& \mathcal{A}_{3,2}=\mathcal{O}\left[f_{1}^{\prime}, f_{2}^{\prime}, W_{1}, W_{2}\right][W]^{2}, \quad W_{i}=f_{i}^{\prime} D W-3 f_{i}^{\prime \prime} W \\
& \mathcal{A}_{4,2}=\mathcal{O}\left[f_{1}^{\prime}, f_{2}^{\prime}, W_{11}, W_{22}, S\right][W]^{6}, \quad W_{i i}=f_{i}^{\prime} D W_{i}-5 f_{i}^{\prime \prime} W_{i}
\end{aligned}
$$

where $W=f_{1}^{\prime} f_{2}^{\prime \prime}-f_{2}^{\prime} f_{1}^{\prime \prime} \quad$ is 2-dim Wronskian and $S=\left(W_{1} D W_{2}-W_{2} D W_{1}\right) / W . \quad$ Also known:
$\mathcal{A}_{3,3}$ (E. Rousseau [Rou06a]), $\mathcal{A}_{5,2}$ (J. Merker, [Mer08])

Strategy : evaluate growth of differential operators

- The strategy of the proofs is that the algebraic structure of $\mathcal{A}_{k, n}$ allows to compute the Euler characteristic $\chi\left(X, E_{k, m} \otimes A^{-1}\right)$, e.g. on surfaces

$$
\chi\left(X, E_{k, m} \otimes A^{-1}\right)=\frac{m^{4}}{648}\left(13 c_{1}^{2}-9 c_{2}\right)+O\left(m^{3}\right)
$$

Strategy : evaluate growth of differential operators

- The strategy of the proofs is that the algebraic structure of $\mathcal{A}_{k, n}$ allows to compute the Euler characteristic $\chi\left(X, E_{k, m} \otimes A^{-1}\right)$, e.g. on surfaces

$$
\chi\left(X, E_{k, m} \otimes A^{-1}\right)=\frac{m^{4}}{648}\left(13 c_{1}^{2}-9 c_{2}\right)+O\left(m^{3}\right)
$$

- Hence for $13 c_{1}^{2}-9 c_{2}>0$, using Bogomolov's vanishing theorem $H^{2}\left(X,\left(T_{X}^{*}\right)^{\otimes m} \otimes A^{-1}\right)=0$ for $m \gg 0$, one gets

$$
h^{0}\left(X, E_{k, m} \otimes A^{-1}\right) \geq \chi=h^{0}-h^{1}=\frac{m^{4}}{648}\left(13 c_{1}^{2}-9 c_{2}\right)+O\left(m^{3}\right)
$$

Strategy : evaluate growth of differential operators

- The strategy of the proofs is that the algebraic structure of $\mathcal{A}_{k, n}$ allows to compute the Euler characteristic $\chi\left(X, E_{k, m} \otimes A^{-1}\right)$, e.g. on surfaces

$$
\chi\left(X, E_{k, m} \otimes A^{-1}\right)=\frac{m^{4}}{648}\left(13 c_{1}^{2}-9 c_{2}\right)+O\left(m^{3}\right)
$$

- Hence for $13 c_{1}^{2}-9 c_{2}>0$, using Bogomolov's vanishing theorem $H^{2}\left(X,\left(T_{X}^{*}\right)^{\otimes m} \otimes A^{-1}\right)=0$ for $m \gg 0$, one gets

$$
h^{0}\left(X, E_{k, m} \otimes A^{-1}\right) \geq \chi=h^{0}-h^{1}=\frac{m^{4}}{648}\left(13 c_{1}^{2}-9 c_{2}\right)+O\left(m^{3}\right)
$$

- Therefore many global differential operators exist for surfaces with $13 c_{1}^{2}-9 c_{2}>0$, e.g. surfaces of degree large enough in $\mathbb{P}^{3}, d \geq 15$ (end of proof uses stability)

Trouble / more general perspectives

- Trouble is, in higher dimensions n, intermediate cohomology groups $H^{q}\left(X, E_{k, m} T_{X}^{*}\right), 0<q<n$, don't vanish !!

Trouble / more general perspectives

- Trouble is, in higher dimensions n, intermediate cohomology groups $H^{q}\left(X, E_{k, m} T_{X}^{*}\right), 0<q<n$, don't vanish !!
- Main conjecture (Generalized GGL) If (X, V) is directed manifold of general type, i.e. det V^{*} big, then $\exists Y \subsetneq X$ such that every non-constant $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ is contained in Y.

Trouble / more general perspectives

- Trouble is, in higher dimensions n, intermediate cohomology groups $H^{q}\left(X, E_{k, m} T_{X}^{*}\right), 0<q<n$, don't vanish !!
- Main conjecture (Generalized GGL) If (X, V) is directed manifold of general type, i.e. $\operatorname{det} V^{*}$ big, then $\exists Y \subsetneq X$ such that every non-constant $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ is contained in Y.
- Strategy. OK by Ahlfors-Schwarz lemma if $r=\mathrm{rk} V=1$. First try to get differential equations $f_{[k]}(\mathbb{C}) \subset Z \subsetneq X_{k}$. Take minimal such k. If $k=0$, we are done! Otherwise $k \geq 1$ and $\pi_{k, k-1}(Z)=X_{k-1}$, thus $W=V_{k} \cap T_{Z}$ has rank $<\mathrm{rk} V_{k}=r$ and should have again det W^{*} big (unless some degeneration occurs ?). Use induction on r !

Trouble / more general perspectives

- Trouble is, in higher dimensions n, intermediate cohomology groups $H^{q}\left(X, E_{k, m} T_{X}^{*}\right), 0<q<n$, don't vanish !!
- Main conjecture (Generalized GGL) If (X, V) is directed manifold of general type, i.e. $\operatorname{det} V^{*}$ big, then $\exists Y \subsetneq X$ such that every non-constant $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ is contained in Y.
- Strategy. OK by Ahlfors-Schwarz lemma if $r=\mathrm{rk} V=1$. First try to get differential equations $f_{[k]}(\mathbb{C}) \subset Z \subsetneq X_{k}$. Take minimal such k. If $k=0$, we are done! Otherwise $k \geq 1$ and $\pi_{k, k-1}(Z)=X_{k-1}$, thus $W=V_{k} \cap T_{Z}$ has rank $<\mathrm{rk} V_{k}=r$ and should have again det W^{*} big (unless some degeneration occurs ?). Use induction on r !
- Needed induction step. If (X, V) has det V^{*} big and $Z \subset X_{k}$ irreducible with $\pi_{k, k-1}(Z)=X_{k-1}$, then (Z, W), $W=V_{k} \cap T_{Z}$ has $\mathcal{O}_{Z_{\ell}}(1)$ big on $\left(Z_{\ell}, W_{\ell}\right), \ell \gg 0$.

Use holomorphic Morse inequalities !

- Simple case of Morse inequalities (Demailly, Siu, Catanese, Trapani) If $L=\mathcal{O}(A-B)$ is a difference of big nef divisors A, B, then L is big as soon as

$$
A^{n}-n A^{n-1} \cdot B>0
$$

Use holomorphic Morse inequalities !

- Simple case of Morse inequalities
(Demailly, Siu, Catanese, Trapani) If $L=\mathcal{O}(A-B)$ is a difference of big nef divisors A, B, then L is big as soon as

$$
A^{n}-n A^{n-1} \cdot B>0
$$

- My PhD student S. Diverio has recently worked out this strategy for hypersurfaces $X \subset \mathbb{P}^{n+1}$, with

$$
\begin{aligned}
& L=\bigotimes_{1 \leq j<k} \pi_{k, j}^{*} \mathcal{O}_{X_{j}}\left(2 \cdot 3^{k-j-1}\right) \otimes \mathcal{O}_{X_{k}}(1) \\
& B=\pi_{k, 0}^{*} \mathcal{O}_{X}\left(2 \cdot 3^{k-1}\right), \quad A=L+B \Rightarrow L=A-B
\end{aligned}
$$

In this way, one obtains equations of order $k=n$, when $d \geq d_{n}$ and $n \leq 6$ (although the method might work also for $n>6$). One can check that

$$
d_{2}=15, \quad d_{3}=82, \quad d_{4}=329, \quad d_{5}=1222, \quad d_{6} \text { exists. }
$$

A differentiation technique by Yum-Tong Siu

One uses an important idea due to Yum-Tong Siu, itself based on ideas of Claire Voisin and Herb Clemens, and then refined by M. Păun [Pau08], E. Rousseau [Rou06b] and J. Merker [Mer09].
The idea consists of studying vector fields on the relative jet space of the universal family of hypersurfaces of \mathbb{P}^{n+1}.

A differentiation technique by Yum-Tong Siu

One uses an important idea due to Yum-Tong Siu, itself based on ideas of Claire Voisin and Herb Clemens, and then refined by M. Păun [Pau08], E. Rousseau [Rou06b] and J. Merker [Mer09].
The idea consists of studying vector fields on the relative jet space of the universal family of hypersurfaces of \mathbb{P}^{n+1}. Let $\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_{d}}$ be the universal hypersurface, i.e.

$$
\mathcal{X}=\left\{(z, a) ; a=\left(a_{\alpha}\right) \text { s.t. } P_{a}(z)=\sum a_{\alpha} z^{\alpha}=0\right\},
$$

$\Omega \subset \mathbb{P}^{N_{d}}$ the open subset of a's for which $X_{a}=\left\{P_{a}(z)=0\right\}$ is smooth, and let

$$
p: \mathcal{X} \rightarrow \mathbb{P}^{n+1}, \quad \pi: \mathcal{X} \rightarrow \Omega \subset \mathbb{P}^{N_{d}}
$$

be the natural projections.

Meromorphic vector fields on jet spaces

Let

$$
p_{k}: \mathcal{X}_{k} \rightarrow \mathcal{X} \rightarrow \mathbb{P}^{n+1}, \quad \pi_{k}: \mathcal{X}_{k} \rightarrow \Omega \subset \mathbb{P}^{N_{d}}
$$

be the relative Green-Griffiths k-jet space of $\mathcal{X} \rightarrow \Omega$. Then J. Merker [Mer09] has shown that global sections η_{j} of

$$
\mathcal{O}\left(T_{\mathcal{X}_{k}}\right) \otimes p_{k}^{*} \mathcal{O}_{\mathbb{P}^{n+1}}\left(k^{2}+2 k\right) \otimes \pi_{k}^{*} \mathcal{O}_{\mathbb{P}^{N_{d}}}(1)
$$

generate the bundle at all points of $\mathcal{X}_{k}^{\text {reg }}$ for $k=n=\operatorname{dim} X_{a}$. From this, it follows that if P is a non zero global section over Ω of $E_{k, m}^{\mathrm{GG}} T_{\mathcal{X}}^{*} \otimes p_{k}^{*} \mathcal{O}_{\mathbb{P}^{n+1}}(-s)$ for some s, then for a suitable collection of $\eta=\left(\eta_{1}, \ldots, \eta_{m}\right)$, the m-th derivatives

$$
D_{\eta_{1}} \ldots D_{\eta_{m}} P
$$

yield sections of $H^{0}\left(\mathcal{X}, E_{k, m}^{\mathrm{GG}} T_{\mathcal{X}}^{*} \otimes p_{k}^{*} \mathcal{O}_{\mathbb{P}^{n+1}}\left(m\left(k^{2}+2 k\right)-s\right)\right)$ whose joint base locus is contained in $\mathcal{X}_{k}^{\text {sing }}$, whence the result.

References

[Demailly85] Demailly, J.-P.: Champs Magnétiques et Inégalités de Morse pour la d" -cohomologie. Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 189-229.
[Demailly95] Demailly, J.-P.: Algebraic Criteria for Kobayashi Hyperbolic Projective Varieties and Jet Differentials. Algebraic geometry - Santa Cruz 1995, 285-360, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
[D-EG00] Demailly, J.-P., El Goul, J.: Hyperbolicity of Generic Surfaces of High Degree in Projective 3-Space. Amer. J. Math. 122 (2000), no. 3, 515-546.
[Div09] Diverio, S.: Existence of global invariant jet differentials on projective hypersurfaces of high degree. Math. Ann. 344 (2009) 293-315.
[DMR09] Diverio, S., Merker, J., Rousseau, E.: Effective algebraic degeneracy. e-print arXiv:0811.2346v5.
[DT9] Diverio, S., Trapani, T.: A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree. e-print arXiv:0902.3741v2.
[F-H91] Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991, xvi +551 pp .
[G-G79] Green, M., Griffiths, P.: Two Applications of Algebraic Geometry to Entire Holomorphic Mappings. The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), pp. 41-74, Springer, New York-Berlin, 1980.
[Kobayashi70] Kobayashi S.: Hyperbolic Manifolds and Holomorphic Mappings. Marcel Dekker, Inc., New York 1970 $\mathrm{ix}+148 \mathrm{pp}$.
[Lang86] Lang S.: Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. 14 (1986), no. 2, 159-205.
[Mer08] An algorithm to generate all polynomials in the k-jet of a holomorphic disc $D \rightarrow \mathbb{C}^{n}$ that are invariant under source reparametrization, arxiv.org:math.CV/0808.3547.
[Mer09] Merker, J.: Low pole order frames on vertical jets of the universal hypersurface. Ann. Inst. Fourier (Grenoble) 59 (2009) 1077-1104.
[Pau08] Păun, M.: Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity. Math. Ann. 340 (2008), 875-892.
[Rou05] Rousseau, E: Weak Analytic Hyperbolicity of Generic Hypersurfaces of High Degree in the Complex Projective Space of Dimension 4. arXiv:math/0510285v1 [math.AG].
[Rou06a] Rousseau, E.: Étude des Jets de Demailly-Semple en Dimension 3. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 2, 397-421.
[Rou06b] Rousseau, E: Équations Différentielles sur les

Hypersurfaces de \mathbb{P}^{4}. J. Math. Pures Appl. (9) 86 (2006), no. 4, 322-341.
[Siu04] Siu, Y.-T.: Hyperbolicity in Complex Geometry. The legacy of Niel Henrik Abel, 543-566, Springer, Berlin, 2004.
[Tra95] Trapani, S.: Numerical criteria for the positivity of the difference of ample divisors, Math. Z. 219 (1995), no. 3, 387-401.
[Voj87] Vojta, P.: Diophantine Approximations and Value Distribution Theory, Springer-Verlag, Lecture Notes in Mathematics no. 1239, 1987.

