

On the Monge-Ampère volume of holomorphic vector bundles

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Analysis of Monge-Ampère, a tribute to Ahmed Zeriahi Conference AMAZER 2021, Université Paul Sabatier, Toulouse May 31 – June 4, 2021

Let X be a projective n-dimensional manifold and $E \to X$ a holomorphic vector bundle of rank $r \ge 1$.

Let X be a projective n-dimensional manifold and $E \to X$ a holomorphic vector bundle of rank $r \ge 1$.

Ample vector bundles

 $E \to X$ is said to be ample in the sense of Hartshorne if the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is ample.

Let X be a projective n-dimensional manifold and $E \to X$ a holomorphic vector bundle of rank $r \ge 1$.

Ample vector bundles

 $E \to X$ is said to be ample in the sense of Hartshorne if the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is ample.

By Kodaira, this is equivalent to the existence of a smooth hermitian metric on $\mathcal{O}_{\mathbb{P}(E)}(1)$ with positive curvature (equivalently, a negatively curved Finsler metric on E^*).

Let X be a projective n-dimensional manifold and $E \to X$ a holomorphic vector bundle of rank $r \ge 1$.

Ample vector bundles

 $E \to X$ is said to be ample in the sense of Hartshorne if the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is ample.

By Kodaira, this is equivalent to the existence of a smooth hermitian metric on $\mathcal{O}_{\mathbb{P}(E)}(1)$ with positive curvature (equivalently, a negatively curved Finsler metric on E^*).

Chern curvature tensor

This is $\Theta_{E,h} = i\nabla^2_{E,h} \in C^{\infty}(\Lambda^{1,1}T_X^* \otimes \operatorname{Hom}(E,E))$, which can be written

$$\Theta_{E,h} = i \sum_{1 \leq j,k \leq n,\, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} dz_j \wedge d\overline{z}_k \otimes e_\lambda^* \otimes e_\mu$$

in terms of an orthonormal frame $(e_{\lambda})_{1 \leq \lambda \leq r}$ of E.

Griffiths and (dual) Nakano positivity

One looks at the associated quadratic form on $S = T_X \otimes E$

$$\widetilde{\Theta}_{E,h}(\xi \otimes v) := \langle \Theta_{E,h}(\xi, \overline{\xi}) \cdot v, v \rangle_h = \sum_{1 \leq j,k \leq n, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \xi_j \overline{\xi}_k v_\lambda \overline{v}_\mu.$$

Griffiths and (dual) Nakano positivity

One looks at the associated quadratic form on $S = T_X \otimes E$

$$\widetilde{\Theta}_{E,h}(\xi \otimes v) := \langle \Theta_{E,h}(\xi,\overline{\xi}) \cdot v, v \rangle_h = \sum_{1 \leq j,k \leq n, 1 \leq \lambda,\mu \leq r} c_{jk\lambda\mu} \xi_j \overline{\xi}_k v_\lambda \overline{v}_\mu.$$

Then E is said to be

• Griffiths positive (Griffiths 1969) if at any point $z \in X$ $\widetilde{\Theta}_{E,h}(\xi \otimes v) > 0$, $\forall \xi \in T_{X,z} \setminus \{0\}$, $\forall v \in E_z \setminus \{0\}$

Griffiths and (dual) Nakano positivity

One looks at the associated quadratic form on $S = T_X \otimes E$

$$\widetilde{\Theta}_{E,h}(\xi \otimes v) := \langle \Theta_{E,h}(\xi, \overline{\xi}) \cdot v, v \rangle_h = \sum_{1 \leq j,k \leq n, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \xi_j \overline{\xi}_k v_\lambda \overline{v}_\mu.$$

Then E is said to be

- Griffiths positive (Griffiths 1969) if at any point $z \in X$ $\widetilde{\Theta}_{E,h}(\xi \otimes v) > 0$, $\forall \xi \in T_{X,z} \setminus \{0\}$, $\forall v \in E_z \setminus \{0\}$
- Nakano positive (Nakano 1955) if at any point $z \in X$

$$\widetilde{\Theta}_{E,h}(\tau) = \sum c_{jk\lambda\mu}\tau_{j,\lambda}\overline{\tau}_{k,\mu} > 0, \ \forall \underset{\neq 0}{\tau} = \sum \tau_{j,\lambda}\frac{\partial}{\partial z_j} \otimes e_{\lambda} \in T_{X,z} \otimes E_z.$$

ullet dual Nakano positive if at any point $z \in X$

$${}^{T}\widetilde{\Theta}_{E,h}(\tau) = \sum c_{jk\mu\lambda}\tau_{j,\lambda}\overline{\tau}_{k,\mu} > 0, \ \forall \underset{\neq 0}{\tau} = \sum \tau_{j,\lambda}\frac{\partial}{\partial z_{j}}\otimes e_{\lambda}^{*} \in T_{X,z}\otimes E_{z}^{*}.$$

Griffiths and (dual) Nakano positivity

One looks at the associated quadratic form on $S = T_X \otimes E$

$$\widetilde{\Theta}_{E,h}(\xi \otimes v) := \langle \Theta_{E,h}(\xi, \overline{\xi}) \cdot v, v \rangle_h = \sum_{1 \leq j,k \leq n, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \xi_j \overline{\xi}_k v_\lambda \overline{v}_\mu.$$

Then E is said to be

- Griffiths positive (Griffiths 1969) if at any point $z \in X$ $\widetilde{\Theta}_{E,h}(\xi \otimes v) > 0$, $\forall \xi \in T_{X,z} \setminus \{0\}$, $\forall v \in E_z \setminus \{0\}$
- Nakano positive (Nakano 1955) if at any point $z \in X$

$$\widetilde{\Theta}_{E,h}(\tau) = \sum c_{jk\lambda\mu} \tau_{j,\lambda} \overline{\tau}_{k,\mu} > 0, \ \forall \underset{\neq 0}{\tau} = \sum \tau_{j,\lambda} \frac{\partial}{\partial z_j} \otimes e_{\lambda} \in T_{X,z} \otimes E_z.$$

ullet dual Nakano positive if at any point $z \in X$

$${}^{T}\widetilde{\Theta}_{E,h}(\tau) = \sum c_{jk\mu\lambda}\tau_{j,\lambda}\overline{\tau}_{k,\mu} > 0, \ \forall \underset{\neq 0}{\tau} = \sum \tau_{j,\lambda}\frac{\partial}{\partial z_{j}}\otimes e_{\lambda}^{*} \in T_{X,z}\otimes E_{z}^{*}.$$

$$\Theta_{E^*,h} = -{}^T\Theta_{E,h} = -\sum c_{jk\mu\lambda}dz_j \wedge d\overline{z}_k \otimes (e_{\lambda}^*)^* \otimes e_{\mu}^*.$$

Easy and well known facts

E (dual) Nakano positive $\Rightarrow E$ Griffiths positive $\Rightarrow E$ ample.

Easy and well known facts

E (dual) Nakano positive $\Rightarrow E$ Griffiths positive $\Rightarrow E$ ample.

In fact *E* Griffiths positive $\Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ positive:

$$\Theta_{\mathcal{O}_{\mathbb{P}(E)}(1)} = \omega_{\mathrm{FS}}([v]) + \sum_{j \in \mathcal{S}} c_{jk\lambda\mu} \frac{v_{\lambda} \overline{v}_{\mu}}{|v|^2} dz_j \wedge d\overline{z}_k, \quad z \in X, \ v \in E_z.$$

Easy and well known facts

E (dual) Nakano positive $\Rightarrow E$ Griffiths positive $\Rightarrow E$ ample.

In fact *E* Griffiths positive $\Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ positive:

$$\Theta_{\mathcal{O}_{\mathbb{P}(E)}(1)} = \omega_{\mathrm{FS}}([v]) + \sum_{j \in \mathcal{S}} c_{jk\lambda\mu} \frac{v_{\lambda} \overline{v}_{\mu}}{|v|^2} dz_j \wedge d\overline{z}_k, \quad z \in X, \ v \in E_z.$$

Remark: dual Nakano positivity is somewhat better behaved

E dual Nakano (semi)positive \Rightarrow any quotient Q = E/S is also dual Nakano (semi)positive.

Easy and well known facts

E (dual) Nakano positive $\Rightarrow E$ Griffiths positive $\Rightarrow E$ ample.

In fact *E* Griffiths positive $\Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ positive:

$$\Theta_{\mathcal{O}_{\mathbb{P}(E)}(1)} = \omega_{\mathrm{FS}}([v]) + \sum_{j \in \mathcal{S}} c_{jk\lambda\mu} \frac{v_{\lambda} \overline{v}_{\mu}}{|v|^2} dz_j \wedge d\overline{z}_k, \quad z \in X, \ v \in E_z.$$

Remark: dual Nakano positivity is somewhat better behaved

E dual Nakano (semi)positive \Rightarrow any quotient Q = E/S is also dual Nakano (semi)positive.

E generated by global sections \Rightarrow E dual Nakano semipositive.

Easy and well known facts

E (dual) Nakano positive $\Rightarrow E$ Griffiths positive $\Rightarrow E$ ample.

In fact *E* Griffiths positive $\Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ positive:

$$\Theta_{\mathcal{O}_{\mathbb{P}(E)}(1)} = \omega_{\mathrm{FS}}([v]) + \sum_{j \in \mathcal{S}} c_{jk\lambda\mu} \frac{v_{\lambda} \overline{v}_{\mu}}{|v|^2} dz_j \wedge d\overline{z}_k, \quad z \in X, \ v \in E_z.$$

Remark: dual Nakano positivity is somewhat better behaved

E dual Nakano (semi)positive \Rightarrow any quotient Q = E/S is also dual Nakano (semi)positive.

E generated by global sections $\Rightarrow E$ dual Nakano semipositive.

Proposition

E ample $\Rightarrow S^m E$ Nakano and dual Nakano > 0 for $m \gg 1$.

Easy and well known facts

E (dual) Nakano positive $\Rightarrow E$ Griffiths positive $\Rightarrow E$ ample.

In fact *E* Griffiths positive $\Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ positive:

$$\Theta_{\mathcal{O}_{\mathbb{P}(E)}(1)} = \omega_{\mathrm{FS}}([v]) + \sum_{j \in \mathcal{S}} c_{jk\lambda\mu} \frac{v_{\lambda} \overline{v}_{\mu}}{|v|^2} dz_j \wedge d\overline{z}_k, \quad z \in X, \ v \in E_z.$$

Remark: dual Nakano positivity is somewhat better behaved

E dual Nakano (semi)positive \Rightarrow any quotient Q = E/S is also dual Nakano (semi)positive.

E generated by global sections $\Rightarrow E$ dual Nakano semipositive.

Proposition

E ample $\Rightarrow S^m E$ Nakano and dual Nakano > 0 for $m \gg 1$.

Berndtsson (2007): $E \text{ ample} \Rightarrow S^m E \otimes \det E \text{ Nakano} > 0, \forall m \geq 0.$

First (well known) observation

E Griffiths positive \neq *E* Nakano positive.

First (well known) observation

E Griffiths positive $\not\Rightarrow E$ Nakano positive.

For instance, $T_{\mathbb{P}^n}$ is easy shown to be ample and Griffiths positive for the Fubini-Study metric, but it is not Nakano positive.

First (well known) observation

E Griffiths positive $\not\Rightarrow E$ Nakano positive.

For instance, $T_{\mathbb{P}^n}$ is easy shown to be ample and Griffiths positive for the Fubini-Study metric, but it is not Nakano positive. Otherwise the Nakano vanishing theorem would then yield

$$H^{n-1,n-1}(\mathbb{P}^n,\mathbb{C})=H^{n-1}(\mathbb{P}^n,\Omega^{n-1}_{\mathbb{P}^n})=H^{n-1}(\mathbb{P}^n,\mathcal{K}_{\mathbb{P}^n}\otimes\mathcal{T}_{\mathbb{P}^n})=0.$$

First (well known) observation

E Griffiths positive $\not\Rightarrow E$ Nakano positive.

For instance, $T_{\mathbb{P}^n}$ is easy shown to be ample and Griffiths positive for the Fubini-Study metric, but it is not Nakano positive. Otherwise the Nakano vanishing theorem would then yield

$$H^{n-1,n-1}(\mathbb{P}^n,\mathbb{C})=H^{n-1}(\mathbb{P}^n,\Omega^{n-1}_{\mathbb{P}^n})=H^{n-1}(\mathbb{P}^n,\mathcal{K}_{\mathbb{P}^n}\otimes\mathcal{T}_{\mathbb{P}^n})=0.$$

Second observation (Liu, Sun, Yang, 2013)

E Griffiths positive \neq *E* dual Nakano positive.

First (well known) observation

E Griffiths positive $\not\Rightarrow E$ Nakano positive.

For instance, $T_{\mathbb{P}^n}$ is easy shown to be ample and Griffiths positive for the Fubini-Study metric, but it is not Nakano positive. Otherwise the Nakano vanishing theorem would then yield

$$H^{n-1,n-1}(\mathbb{P}^n,\mathbb{C})=H^{n-1}(\mathbb{P}^n,\Omega^{n-1}_{\mathbb{P}^n})=H^{n-1}(\mathbb{P}^n,\mathcal{K}_{\mathbb{P}^n}\otimes\mathcal{T}_{\mathbb{P}^n})=0.$$

Second observation (Liu, Sun, Yang, 2013)

E Griffiths positive $\not\Rightarrow$ *E* dual Nakano positive.

In fact, a variant of the Nakano vanishing theorem gives that E dual Nakano $> 0 \Rightarrow H^0(X, \Omega_X^p \otimes E^*) = 0$ for $p < n = \dim X$.

First (well known) observation

E Griffiths positive $\not\Rightarrow E$ Nakano positive.

For instance, $T_{\mathbb{P}^n}$ is easy shown to be ample and Griffiths positive for the Fubini-Study metric, but it is not Nakano positive. Otherwise the Nakano vanishing theorem would then yield

$$H^{n-1,n-1}(\mathbb{P}^n,\mathbb{C})=H^{n-1}(\mathbb{P}^n,\Omega^{n-1}_{\mathbb{P}^n})=H^{n-1}(\mathbb{P}^n,\mathcal{K}_{\mathbb{P}^n}\otimes\mathcal{T}_{\mathbb{P}^n})=0.$$

Second observation (Liu, Sun, Yang, 2013)

E Griffiths positive $\not\Rightarrow E$ dual Nakano positive.

In fact, a variant of the Nakano vanishing theorem gives that E dual Nakano $> 0 \Rightarrow H^0(X, \Omega_X^p \otimes E^*) = 0$ for $p < n = \dim X$.

Take e.g. a smooth compact quotient $X = \mathbb{B}^n/\Gamma$ of the ball, $n \geq 2$. Then $E = \Omega^1_X$ is Griffiths positive, but $\mathrm{Id} \in H^0(X, \Omega^1_X \otimes E^*) \neq 0$, so E cannot be dual Nakano positive.

Definition of a few thresholds

Let $E \to X$ be a holomorphic vector bundle such that $\det E = \bigwedge^r E$ is ample.

Definition of a few thresholds

Let $E \to X$ be a holomorphic vector bundle such that $\det E = \bigwedge^r E$ is ample.

One can introduce respectively the ample threshold $\tau_A(E)$, the Griffiths threshold $\tau_G(E)$, the Nakano threshold $\tau_N(E)$, the dual Nakano threshold $\tau_N(E)$ to be the infimum of $t \in \mathbb{Q}$ such that $E \otimes (\det E)^t$ is ample, i.e. $S^m(E \otimes (\det E)^t)$ is ample, resp. Griffiths, Nakano, dual Nakano positive.

Definition of a few thresholds

Let $E \to X$ be a holomorphic vector bundle such that $\det E = \bigwedge^r E$ is ample.

One can introduce respectively the ample threshold $\tau_A(E)$, the Griffiths threshold $\tau_G(E)$, the Nakano threshold $\tau_N(E)$, the dual Nakano threshold $\tau_{N^*}(E)$ to be the infimum of $t \in \mathbb{Q}$ such that $E \otimes (\det E)^t$ is ample, i.e. $S^m(E \otimes (\det E)^t)$ is ample, resp. Griffiths, Nakano, dual Nakano positive.

Assume that E is ample. One has $\tau_N(E) < 1$ (Berndtsson), $\tau_{N^*}(E) < 1$ (Liu-Sun-Yang), and the Griffiths conjecture E ample $\Rightarrow E$ Griffiths > 0 is equivalent to asserting that $\tau_G(E) < 0$.

Definition of a few thresholds

Let $E \to X$ be a holomorphic vector bundle such that $\det E = \bigwedge^r E$ is ample.

One can introduce respectively the ample threshold $\tau_A(E)$, the Griffiths threshold $\tau_G(E)$, the Nakano threshold $\tau_N(E)$, the dual Nakano threshold $\tau_{N^*}(E)$ to be the infimum of $t \in \mathbb{Q}$ such that $E \otimes (\det E)^t$ is ample, i.e. $S^m(E \otimes (\det E)^t)$ is ample, resp. Griffiths, Nakano, dual Nakano positive.

Assume that E is ample. One has $\tau_N(E) < 1$ (Berndtsson), $\tau_{N^*}(E) < 1$ (Liu-Sun-Yang), and the Griffiths conjecture E ample $\Rightarrow E$ Griffiths > 0 is equivalent to asserting that $\tau_G(E) < 0$.

The previous counterexamples show that one may have $\tau_N(E) \geq 0$ and $\tau_{N^*}(E) \geq 0$, but it could still wonder whether

$$E \text{ ample} \Rightarrow \tau_N(E) \leq 0, \ \tau_{N^*}(E) \leq 0$$
 ?

If the Chern curvature tensor $\Theta_{E,h}$ is Nakano positive, one can introduce the $(n \times r)$ -dimensional determinant of the Hermitian quadratic form on $T_X \otimes E$

 $\det_{\mathcal{T}_X\otimes \mathcal{E}}(\Theta_{\mathcal{E},h})^{1/r}:=\det(c_{jk\lambda\mu})_{(j,\lambda),(k,\mu)}^{1/r}\mathit{id}z_1\wedge d\overline{z}_1\wedge ...\wedge \mathit{id}z_n\wedge d\overline{z}_n.$

If the Chern curvature tensor $\Theta_{E,h}$ is Nakano positive, one can introduce the $(n \times r)$ -dimensional determinant of the Hermitian quadratic form on $T_X \otimes E$

$$\mathsf{det}_{\mathcal{T}_X \otimes \mathcal{E}} (\Theta_{\mathcal{E},h})^{1/r} := \mathsf{det} (c_{jk\lambda\mu})_{(j,\lambda),(k,\mu)}^{1/r} \mathit{idz}_1 \wedge \mathit{d}\overline{z}_1 \wedge \, ... \, \wedge \mathit{idz}_n \wedge \mathit{d}\overline{z}_n.$$

On the other hand, if $\Theta_{E,h}$ is dual Nakano positive, one can consider the $(n \times r)$ -dimensional determinant of the "dual" Hermitian quadratic form on $T_X \otimes E^*$

$$\mathsf{det}_{\mathcal{T}_X \otimes \mathcal{E}^*} (\ ^{\mathcal{T}} \Theta_{\mathcal{E},h})^{1/r} := \mathsf{det}(c_{jk\mu\lambda})_{(j,\lambda),(k,\mu)}^{1/r} \mathit{idz}_1 \wedge \mathit{d}\overline{z}_1 \wedge \, ... \, \wedge \mathit{idz}_n \wedge \mathit{d}\overline{z}_n.$$

If the Chern curvature tensor $\Theta_{E,h}$ is Nakano positive, one can introduce the $(n \times r)$ -dimensional determinant of the Hermitian quadratic form on $T_X \otimes E$

$$\mathsf{det}_{\mathcal{T}_X \otimes \mathcal{E}} (\Theta_{\mathcal{E},h})^{1/r} := \mathsf{det} (c_{jk\lambda\mu})_{(j,\lambda),(k,\mu)}^{1/r} \mathit{idz}_1 \wedge \mathit{d}\overline{z}_1 \wedge \, ... \, \wedge \mathit{idz}_n \wedge \mathit{d}\overline{z}_n.$$

On the other hand, if $\Theta_{E,h}$ is dual Nakano positive, one can consider the $(n \times r)$ -dimensional determinant of the "dual" Hermitian quadratic form on $T_X \otimes E^*$

$$\mathsf{det}_{T_X \otimes E^*}(\ ^T\Theta_{E,h})^{1/r} := \mathsf{det}(c_{jk\mu\lambda})_{(j,\lambda),(k,\mu)}^{1/r} \mathit{id}z_1 \wedge \mathit{d}\overline{z}_1 \wedge \, ... \, \wedge \mathit{id}z_n \wedge \mathit{d}\overline{z}_n.$$

These (n, n)-forms do not depend on the choice of coordinates (z_j) on X, nor on the choice of the orthonormal frame (e_{λ}) on E.

If the Chern curvature tensor $\Theta_{E,h}$ is Nakano positive, one can introduce the $(n \times r)$ -dimensional determinant of the Hermitian quadratic form on $T_X \otimes E$

$$\mathsf{det}_{\mathcal{T}_X\otimes \mathcal{E}}(\Theta_{\mathcal{E},h})^{1/r} := \mathsf{det}(\mathit{c}_{\mathit{jk}\lambda\mu})^{1/r}_{(j,\lambda),(k,\mu)} \mathit{idz}_1 \wedge \mathit{d}\overline{z}_1 \wedge \, ... \, \wedge \mathit{idz}_n \wedge \mathit{d}\overline{z}_n.$$

On the other hand, if $\Theta_{E,h}$ is dual Nakano positive, one can consider the $(n \times r)$ -dimensional determinant of the "dual" Hermitian quadratic form on $T_X \otimes E^*$

$$\mathsf{det}_{\mathcal{T}_X \otimes E^*} (\ ^T \Theta_{E,h})^{1/r} := \mathsf{det} (c_{jk\mu\lambda})^{1/r}_{(j,\lambda),(k,\mu)} \ \textit{idz}_1 \wedge \textit{d}\overline{z}_1 \wedge \ ... \ \wedge \textit{idz}_n \wedge \textit{d}\overline{z}_n.$$

These (n, n)-forms do not depend on the choice of coordinates (z_j) on X, nor on the choice of the orthonormal frame (e_{λ}) on E.

In case $\Theta_{E,h}$ is Griffiths > 0, we have a functional

$$\operatorname{Grif}(\Theta_{E,h})(z) = \inf_{v \in E_z, \ |v|_h = 1} \langle \Theta_{E,h}(z)v, v \rangle^n.$$

Monge-Ampère volumes for vector bundles

If $E \to X$ is an ample vector bundle of rank r that is Nakano positive (resp. dual Nakano positive), one can introduce its Monge-Ampère volume to be

$$\operatorname{MAVol}(E) = \sup_{h} \int_{X} \det_{T_{X} \otimes E} \left((2\pi)^{-1} \Theta_{E,h} \right)^{1/r},$$
$$\operatorname{MAVol}^{*}(E) = \sup_{h} \int_{X} \det_{T_{X} \otimes E^{*}} \left((2\pi)^{-1} \Theta_{E,h} \right)^{1/r},$$

where the supremum is taken over all smooth metrics h on E such that $\Theta_{E,h}$ is Nakano positive (resp. dual Nakano positive).

Monge-Ampère volumes for vector bundles

If $E \to X$ is an ample vector bundle of rank r that is Nakano positive (resp. dual Nakano positive), one can introduce its Monge-Ampère volume to be

$$\begin{aligned} \operatorname{MAVol}(E) &= \sup_{h} \int_{X} \det_{T_{X} \otimes E} \left((2\pi)^{-1} \Theta_{E,h} \right)^{1/r}, \\ \operatorname{MAVol}^{*}(E) &= \sup_{h} \int_{X} \det_{T_{X} \otimes E^{*}} \left((2\pi)^{-1} \Theta_{E,h} \right)^{1/r}, \end{aligned}$$

where the supremum is taken over all smooth metrics h on E such that $\Theta_{E,h}$ is Nakano positive (resp. dual Nakano positive).

This supremum is always finite, and in fact

Proposition

For any (dual) Nakano positive vector bundle E, one has

$$MAVol(E) \le r^{-n}c_1(E)^n$$
, $MAVol^*(E) \le r^{-n}c_1(E)^n$.

Equality occurs if and only if E is projectively flat.

Proof of the volume inequality

Assume e.g. E nakano positive. Take $\omega_0 = \Theta_{\det E} > 0$ as a Kähler metric on X, and let $(\lambda_j)_{1 \leq j \leq nr}$ be the eigenvalues of $\tilde{\Theta}_{E,h}$ as a hermitian form on $T_X \otimes E$, with respect to $\omega_0 \otimes h$.

Proof of the volume inequality

Assume e.g. E nakano positive. Take $\omega_0 = \Theta_{\det E} > 0$ as a Kähler metric on X, and let $(\lambda_j)_{1 \leq j \leq nr}$ be the eigenvalues of $\tilde{\Theta}_{E,h}$ as a hermitian form on $T_X \otimes E$, with respect to $\omega_0 \otimes h$. We have

$$\det_{T_X \otimes E} \left((2\pi)^{-1} \Theta_{E,h} \right)^{1/r} = \left(\prod_j \lambda_j \right)^{1/r} \omega_0^n$$

The inequality between geometric and arithmetic means $(\prod \lambda_j)^{1/nr} \leq \frac{1}{nr} \sum \lambda_j$ implies, after raising to power n

$$\det_{T_X \otimes E} \left((2\pi)^{-1} \Theta_{E,h} \right)^{1/r} \leq \left(\frac{1}{nr} \sum \lambda_j \right)^n \omega_0^n = \frac{\omega_0^n}{r^n} = \frac{1}{r^n} (\Theta_{\det E})^n.$$

Equality occurs iff all λ_j are equal, i.e. E projectively flat.

In case E is Griffiths > 0, one can define

$$\mathrm{MAVol}_{\mathrm{Grif}}(E) = \sup_{h} \int_{z \in X} \inf_{v \in E_{z}, \ |v|_{h} = 1} \left((2\pi)^{-1} \langle \Theta_{E,h} v, v \rangle \right)^{n}.$$

Proof of the volume inequality

Assume e.g. E nakano positive. Take $\omega_0 = \Theta_{\det E} > 0$ as a Kähler metric on X, and let $(\lambda_j)_{1 \leq j \leq nr}$ be the eigenvalues of $\tilde{\Theta}_{E,h}$ as a hermitian form on $T_X \otimes E$, with respect to $\omega_0 \otimes h$. We have

$$\det_{\mathcal{T}_X \otimes \mathcal{E}} \left((2\pi)^{-1} \Theta_{\mathcal{E},h} \right)^{1/r} = \left(\prod_j \lambda_j \right)^{1/r} \omega_0^n$$

The inequality between geometric and arithmetic means $(\prod \lambda_j)^{1/nr} \leq \frac{1}{nr} \sum \lambda_j$ implies, after raising to power n

$$\det_{\mathcal{T}_X \otimes \mathcal{E}} \left((2\pi)^{-1} \Theta_{\mathcal{E},h} \right)^{1/r} \leq \left(\frac{1}{nr} \sum \lambda_j \right)^n \omega_0^n = \frac{\omega_0^n}{r^n} = \frac{1}{r^n} (\Theta_{\det \mathcal{E}})^n.$$

Equality occurs iff all λ_j are equal, i.e. E projectively flat.

In case E is Griffiths > 0, one can define

$$\mathrm{MAVol}_{\mathrm{Grif}}(E) = \sup_{h} \int_{z \in X} \inf_{v \in E_{z}, \ |v|_{h} = 1} \left((2\pi)^{-1} \langle \Theta_{E,h} v, v \rangle \right)^{n}.$$

The Teissier-Hovanskii inequalities imply again $\text{MAVol}_{\text{Grif}}(E) \leq \frac{1}{r^n} c_1(E)^n$ with equality iff E is projectively flat.

Further remarks

• In the split case $E = \bigoplus_{1 \le j \le r} E_j$ and $h = \bigoplus_{1 \le j \le r} h_j$, the inequality reads

$$\left(\prod_{1\leq j\leq r}c_1(E_j)^n\right)^{1/r}\leq r^{-n}c_1(E)^n,$$

Further remarks

• In the split case $E = \bigoplus_{1 \le j \le r} E_j$ and $h = \bigoplus_{1 \le j \le r} h_j$, the inequality reads

$$\left(\prod_{1\leq j\leq r}c_1(E_j)^n\right)^{1/r}\leq r^{-n}c_1(E)^n,$$

with equality iff $c_1(E_1) = \cdots = c_1(E_r)$.

Further remarks

• In the split case $E = \bigoplus_{1 \le j \le r} E_j$ and $h = \bigoplus_{1 \le j \le r} h_j$, the inequality reads

$$\left(\prod_{1\leq j\leq r}c_1(E_j)^n\right)^{1/r}\leq r^{-n}c_1(E)^n,$$

with equality iff $c_1(E_1) = \cdots = c_1(E_r)$.

In the split case, it seems natural to conjecture that

$$MAVol(E) = \left(\prod_{1 \le j \le r} c_1(E_j)^n\right)^{1/r},$$

i.e. that the supremum is reached for split metrics $h = \bigoplus h_j$.

Further remarks

• In the split case $E = \bigoplus_{1 \le j \le r} E_j$ and $h = \bigoplus_{1 \le j \le r} h_j$, the inequality reads

$$\left(\prod_{1\leq j\leq r}c_1(E_j)^n\right)^{1/r}\leq r^{-n}c_1(E)^n,$$

with equality iff $c_1(E_1) = \cdots = c_1(E_r)$.

• In the split case, it seems natural to conjecture that

$$MAVol(E) = \left(\prod_{1 \le j \le r} c_1(E_j)^n\right)^{1/r},$$

i.e. that the supremum is reached for split metrics $h = \bigoplus h_j$.

• The Euler-Lagrange equation for the maximizer is complicated (4th order!). It somehow extends the equation characterizing cscK metrics.

On the Fulton Lazarsfeld inequalities (S. Finski)

A fundamental result due to Fulton-Lazarsfeld asserts that if $E \to X$ is an ample vector bundle, then all Schur polynomials $P(c_{\bullet}(E))$ in the Chern classes are numerically positive, i.e.

$$\int_Y P(c_\bullet(E)) > 0$$

for all irreducible cycles Y of the appropriate dimension in X.

On the Fulton Lazarsfeld inequalities (S. Finski)

A fundamental result due to Fulton-Lazarsfeld asserts that if $E \to X$ is an ample vector bundle, then all Schur polynomials $P(c_{\bullet}(E))$ in the Chern classes are numerically positive, i.e.

$$\int_Y P(c_\bullet(E)) > 0$$

for all irreducible cycles Y of the appropriate dimension in X. Recently, Siarhei Finski has shown

Theorem (Finski 2020)

If (E, h) is a (dual) Nakano positive vector bundle, then all Schur polynomials $P(c_{\bullet}(E, h))$ in the Chern forms are pointwise positive (k, k)-forms (in the sense of the weak positivity of forms).

On the Fulton Lazarsfeld inequalities (S. Finski)

A fundamental result due to Fulton-Lazarsfeld asserts that if $E \to X$ is an ample vector bundle, then all Schur polynomials $P(c_{\bullet}(E))$ in the Chern classes are numerically positive, i.e.

$$\int_Y P(c_\bullet(E)) > 0$$

for all irreducible cycles Y of the appropriate dimension in X. Recently, Siarhei Finski has shown

Theorem (Finski 2020)

If (E,h) is a (dual) Nakano positive vector bundle, then all Schur polynomials $P(c_{\bullet}(E,h))$ in the Chern forms are pointwise positive (k,k)-forms (in the sense of the weak positivity of forms).

This is a compelling motivation to investigate the relationships between ampleness, Griffiths and Nakano positivity!

When $E \to X$ is an ample vector bundle, the symmetric powers $S^m E$ have enough sections to generate 1-jets for $m \ge m_0 \gg 1$, and one can immediately derive from there that

E ample $\Rightarrow S^m E$ dual-Nakano positive for $m \ge m_0 \gg 1$.

When $E \to X$ is an ample vector bundle, the symmetric powers $S^m E$ have enough sections to generate 1-jets for $m \ge m_0 \gg 1$, and one can immediately derive from there that

E ample $\Rightarrow S^m E$ dual-Nakano positive for $m \ge m_0 \gg 1$.

Then it makes sense to wonder whether there is an asymptotic formula for the monge-Ampère volume $MAVol(S^mE)$.

When $E \to X$ is an ample vector bundle, the symmetric powers $S^m E$ have enough sections to generate 1-jets for $m \ge m_0 \gg 1$, and one can immediately derive from there that

E ample $\Rightarrow S^m E$ dual-Nakano positive for $m \ge m_0 \gg 1$.

Then it makes sense to wonder whether there is an asymptotic formula for the monge-Ampère volume $\mathrm{MAVol}(S^mE)$. S. Finski obtained more generally an asymptotic formula for the Monge-Ampère volume of direct images $E_m = \pi_*(L^m \otimes G)$ by any proper morphism $\pi: Y \to X$ of any line bundle $(L, h_L) > 0$ on Y.

When $E \to X$ is an ample vector bundle, the symmetric powers $S^m E$ have enough sections to generate 1-jets for $m \ge m_0 \gg 1$, and one can immediately derive from there that

E ample
$$\Rightarrow S^m E$$
 dual-Nakano positive for $m > m_0 \gg 1$.

Then it makes sense to wonder whether there is an asymptotic formula for the monge-Ampère volume $\mathrm{MAVol}(S^mE)$. S. Finski obtained more generally an asymptotic formula for the Monge-Ampère volume of direct images $E_m = \pi_*(L^m \otimes G)$ by any proper morphism $\pi: Y \to X$ of any line bundle $(L, h_L) > 0$ on Y.

Theorem (S. Finski 2020)

Given any volume form $d\nu$ on X, the direct images satisfy

$$\mathrm{MAVol}(E_m, h_{E_m}) \sim m^{\dim X} \int_X \exp\left(\frac{\int_Y \log\left(\omega_H^{\dim X}/\pi^*\nu\right)\omega^{\dim Y}}{\int_Y c_1(L)^{\dim Y}}\right) d\nu,$$

where $\omega = \Theta_{L,h_l} > 0$ on Y, and ω_H is its horizontal part.

Basic idea

Assigning a "matrix Monge-Ampère equation"

$$\det_{T_X \otimes E}(\Theta_{E,h})^{1/r} = f > 0$$
 or $Grif(\Theta_{E,h}) = f > 0$

where f is a positive (n, n)-form, may enforce the Nakano (resp. Griffiths) positivity of $\Theta_{E,h}$, especially if that assignment is combined with a continuity technique from an initial starting point where positivity is known.

Basic idea

Assigning a "matrix Monge-Ampère equation"

$$\det_{\mathcal{T}_X\otimes \mathcal{E}}(\Theta_{\mathcal{E},h})^{1/r}=f>0$$
 or $\mathrm{Grif}(\Theta_{\mathcal{E},h})=f>0$

where f is a positive (n, n)-form, may enforce the Nakano (resp. Griffiths) positivity of $\Theta_{E,h}$, especially if that assignment is combined with a continuity technique from an initial starting point where positivity is known.

Also, in order to compute thresholds, one could instead replace E by $E \otimes (\det E)^t$ for a large value t_0 and try to decrease t as much as possible.

Basic idea

Assigning a "matrix Monge-Ampère equation"

$$\det_{T_X \otimes E}(\Theta_{E,h})^{1/r} = f > 0$$
 or $Grif(\Theta_{E,h}) = f > 0$

where f is a positive (n, n)-form, may enforce the Nakano (resp. Griffiths) positivity of $\Theta_{E,h}$, especially if that assignment is combined with a continuity technique from an initial starting point where positivity is known.

Also, in order to compute thresholds, one could instead replace E by $E \otimes (\det E)^t$ for a large value t_0 and try to decrease t as much as possible.

In case $r = \operatorname{rank} E = 1$ and $h = h_0 e^{-\varphi}$, this is the same as solving a complex Monge-Ampère equation

$$(\Theta_{E,h})^n = (\omega_0 + i\partial \overline{\partial} \varphi)^n = f.$$

Basic idea

Assigning a "matrix Monge-Ampère equation"

$$\det_{T_X\otimes E}(\Theta_{E,h})^{1/r}=f>0$$
 or $\mathrm{Grif}(\Theta_{E,h})=f>0$

where f is a positive (n, n)-form, may enforce the Nakano (resp. Griffiths) positivity of $\Theta_{E,h}$, especially if that assignment is combined with a continuity technique from an initial starting point where positivity is known.

Also, in order to compute thresholds, one could instead replace E by $E \otimes (\det E)^t$ for a large value t_0 and try to decrease t as much as possible.

In case $r = \operatorname{rank} E = 1$ and $h = h_0 e^{-\varphi}$, this is the same as solving a complex Monge-Ampère equation

$$(\Theta_{E,h})^n = (\omega_0 + i\partial \overline{\partial} \varphi)^n = f.$$

Assuming E to be ample of rank r > 1, the equation

$$(**) \qquad \det_{T_X \otimes E} (\Theta_{E,h})^{1/r} = f > 0$$

becomes underdetermined, as the real rank of the space of hermitian matrices $h=(h_{\lambda\mu})$ on E is equal to r^2 , while (**) provides only 1 scalar equation.

Assuming E to be ample of rank r > 1, the equation

$$(**) \qquad \det_{T_X \otimes E} (\Theta_{E,h})^{1/r} = f > 0$$

becomes underdetermined, as the real rank of the space of hermitian matrices $h=(h_{\lambda\mu})$ on E is equal to r^2 , while (**) provides only 1 scalar equation.

(Solutions might still exist, but lack uniqueness and a priori bounds.)

Assuming E to be ample of rank r > 1, the equation

$$(**) \qquad \det_{T_X \otimes E} (\Theta_{E,h})^{1/r} = f > 0$$

becomes underdetermined, as the real rank of the space of hermitian matrices $h=(h_{\lambda\mu})$ on E is equal to r^2 , while (**) provides only 1 scalar equation.

(Solutions might still exist, but lack uniqueness and a priori bounds.)

Conclusion

In order to recover a well determined system of equations, one needs an additional "matrix equation" of rank $(r^2 - 1)$.

Assuming E to be ample of rank r > 1, the equation

$$(**) \qquad \det_{T_X \otimes E} (\Theta_{E,h})^{1/r} = f > 0$$

becomes underdetermined, as the real rank of the space of hermitian matrices $h=(h_{\lambda\mu})$ on E is equal to r^2 , while (**) provides only 1 scalar equation.

(Solutions might still exist, but lack uniqueness and a priori bounds.)

Conclusion

In order to recover a well determined system of equations, one needs an additional "matrix equation" of rank $(r^2 - 1)$.

Observation 1 (from the Donaldson-Uhlenbeck-Yau theorem)

Take a Hermitian metric η_0 on $\det E$ so that $\omega_0 := \Theta_{\det E, \eta_0} > 0$. If E is ω_0 -polystable, $\exists h$ Hermitian metric h on E such that

$$\omega_0^{n-1} \wedge \Theta_{E,h} = \frac{1}{r} \omega_0^n \otimes \operatorname{Id}_E$$
 (Hermite-Einstein equation, slope $\frac{1}{r}$).

Resulting trace free condition

Observation 2

The trace part of the above Hermite-Einstein equation is "automatic", hence the equation is equivalent to the trace free condition

$$\omega_0^{n-1} \wedge \Theta_{E,h}^{\circ} = 0,$$

when decomposing any endomorphism $u \in \text{Herm}(E, E)$ as

$$u = u^{\circ} + \frac{1}{r}\operatorname{Tr}(u)\operatorname{Id}_{E} \in \operatorname{Herm}^{\circ}(E, E) \oplus \mathbb{R}\operatorname{Id}_{E}, \operatorname{tr}(u^{\circ}) = 0.$$

Resulting trace free condition

Observation 2

The trace part of the above Hermite-Einstein equation is "automatic", hence the equation is equivalent to the trace free condition

$$\omega_0^{n-1} \wedge \Theta_{E,h}^{\circ} = 0,$$

when decomposing any endomorphism $u \in \operatorname{Herm}(E, E)$ as

$$u = u^{\circ} + \frac{1}{r}\operatorname{Tr}(u)\operatorname{Id}_{E} \in \operatorname{Herm}^{\circ}(E, E) \oplus \mathbb{R}\operatorname{Id}_{E}, \operatorname{tr}(u^{\circ}) = 0.$$

Observation 3

The trace free condition is a matrix equation of rank $(r^2 - 1)$!!!

Resulting trace free condition

Observation 2

The trace part of the above Hermite-Einstein equation is "automatic", hence the equation is equivalent to the trace free condition

$$\omega_0^{n-1} \wedge \Theta_{E,h}^{\circ} = 0,$$

when decomposing any endomorphism $u \in \text{Herm}(E, E)$ as

$$u = u^{\circ} + \frac{1}{r}\operatorname{Tr}(u)\operatorname{Id}_{E} \in \operatorname{Herm}^{\circ}(E, E) \oplus \mathbb{R}\operatorname{Id}_{E}, \operatorname{tr}(u^{\circ}) = 0.$$

Observation 3

The trace free condition is a matrix equation of rank $(r^2 - 1)$!!!

Remark

In case $\dim X = n = 1$, the trace free condition means that E is projectively flat, and the Umemura proof of the Griffiths conjecture proceeds exactly in that way, using the fact that the graded pieces of the Harder-Narasimhan filtration are projectively flat.

In general, one cannot expect E to be ω_0 -polystable, but Uhlenbeck-Yau have shown that there always exists a smooth solution q_ε to a certain "cushioned" Hermite-Einstein equation.

In general, one cannot expect E to be ω_0 -polystable, but Uhlenbeck-Yau have shown that there always exists a smooth solution q_ε to a certain "cushioned" Hermite-Einstein equation.

To make things more precise, let $\operatorname{Herm}(E)$ be the space of Hermitian (non necessarily positive) forms on E. Given a reference Hermitian metric $H_0 > 0$, let $\operatorname{Herm}_{H_0}(E, E)$ be the space of H_0 -Hermitian endomorphisms $u \in \operatorname{Hom}(E, E)$; denote by

 $\operatorname{Herm}(E) \xrightarrow{\simeq} \operatorname{Herm}_{H_0}(E, E), \quad q \mapsto \widetilde{q} \text{ s.t. } q(v, w) = \langle \widetilde{q}(v), w \rangle_{H_0}$ the natural isomorphism.

In general, one cannot expect E to be ω_0 -polystable, but Uhlenbeck-Yau have shown that there always exists a smooth solution q_ε to a certain "cushioned" Hermite-Einstein equation.

To make things more precise, let $\operatorname{Herm}(E)$ be the space of Hermitian (non necessarily positive) forms on E. Given a reference Hermitian metric $H_0 > 0$, let $\operatorname{Herm}_{H_0}(E, E)$ be the space of H_0 -Hermitian endomorphisms $u \in \operatorname{Hom}(E, E)$; denote by

 $\operatorname{Herm}(E) \xrightarrow{\simeq} \operatorname{Herm}_{H_0}(E, E), \quad q \mapsto \widetilde{q} \text{ s.t. } q(v, w) = \langle \widetilde{q}(v), w \rangle_{H_0}$ the natural isomorphism. Let also

$$\operatorname{Herm}_{H_0}^{\circ}(E,E) = \left\{ q \in \operatorname{Herm}_{H_0}(E,E); \operatorname{tr}(q) = 0 \right\}$$

be the subspace of "trace free" Hermitian endomorphisms.

In general, one cannot expect E to be ω_0 -polystable, but Uhlenbeck-Yau have shown that there always exists a smooth solution q_ε to a certain "cushioned" Hermite-Einstein equation.

To make things more precise, let $\operatorname{Herm}(E)$ be the space of Hermitian (non necessarily positive) forms on E. Given a reference Hermitian metric $H_0 > 0$, let $\operatorname{Herm}_{H_0}(E, E)$ be the space of H_0 -Hermitian endomorphisms $u \in \operatorname{Hom}(E, E)$; denote by

 $\operatorname{Herm}(E) \xrightarrow{\simeq} \operatorname{Herm}_{H_0}(E, E), \quad q \mapsto \widetilde{q} \text{ s.t. } q(v, w) = \langle \widetilde{q}(v), w \rangle_{H_0}$ the natural isomorphism. Let also

$$\operatorname{Herm}_{H_0}^{\circ}(E,E) = \left\{ q \in \operatorname{Herm}_{H_0}(E,E) ; \operatorname{tr}(q) = 0 \right\}$$

be the subspace of "trace free" Hermitian endomorphisms. In the sequel, we fix H_0 on E such that

$$\Theta_{\det E, \det H_0} = \omega_0 > 0.$$

A basic result from Uhlenbeck and Yau

Uhlenbeck-Yau 1986, Theorem 3.1

For every $\varepsilon > 0$, there always exists a (unique) smooth Hermitian metric q_{ε} on E such that

$$\omega_0^{n-1} \wedge \Theta_{E,q_{\varepsilon}} = \omega_0^n \otimes \left(\frac{1}{r} \operatorname{Id}_E - \varepsilon \log \widetilde{q}_{\varepsilon}\right),$$

where $\widetilde{q}_{\varepsilon}$ is computed with respect to H_0 , and $\log g$ denotes the logarithm of a positive Hermitian endomorphism g.

A basic result from Uhlenbeck and Yau

Uhlenbeck-Yau 1986, Theorem 3.1

For every $\varepsilon>0$, there always exists a (unique) smooth Hermitian metric q_{ε} on E such that

$$\omega_0^{n-1} \wedge \Theta_{E,q_{\varepsilon}} = \omega_0^n \otimes \left(\frac{1}{r} \operatorname{Id}_E - \varepsilon \log \widetilde{q}_{\varepsilon}\right),$$

where $\widetilde{q}_{\varepsilon}$ is computed with respect to H_0 , and $\log g$ denotes the logarithm of a positive Hermitian endomorphism g.

The reason is that the term $-\varepsilon \log \widetilde{q}_{\varepsilon}$ is a "friction term" that prevents the explosion of the a priori estimates, similarly what happens for Monge-Ampère equations $(\omega_0 + i\partial \overline{\partial} \varphi)^n = e^{\varepsilon \varphi + f} \omega_0^n$.

A basic result from Uhlenbeck and Yau

Uhlenbeck-Yau 1986, Theorem 3.1

For every $\varepsilon > 0$, there always exists a (unique) smooth Hermitian metric q_{ε} on E such that

$$\omega_0^{n-1} \wedge \Theta_{E,q_{\varepsilon}} = \omega_0^n \otimes \left(\frac{1}{r} \operatorname{Id}_E - \varepsilon \log \widetilde{q}_{\varepsilon}\right),$$

where $\widetilde{q}_{\varepsilon}$ is computed with respect to H_0 , and $\log g$ denotes the logarithm of a positive Hermitian endomorphism g.

The reason is that the term $-\varepsilon \log \widetilde{q}_{\varepsilon}$ is a "friction term" that prevents the explosion of the a priori estimates, similarly what happens for Monge-Ampère equations $(\omega_0 + i\partial \overline{\partial} \varphi)^n = e^{\varepsilon \varphi + f} \omega_0^n$.

The above matrix equation is equivalent to prescribing $\det q_{\varepsilon} = \det H_0$ and the trace free equation of rank $(r^2 - 1)$

$$\omega_0^{n-1} \wedge \Theta_{E,q_{\varepsilon}}^{\circ} = -\varepsilon \, \omega_0^n \otimes \log \widetilde{q}_{\varepsilon}.$$

Search for an appropriate evolution equation

General setup

In this context, given $\alpha>0$ large enough, it is natural to search for a time dependent family of metrics $h_t(z)$ on the fibers E_z of E, $t\in[0,1]$, satisfying a generalized Monge-Ampère equation

$$(D) \quad \det_{\mathcal{T}_X \otimes \mathcal{E}} \left(\Theta_{\mathcal{E}, h_t} + (1-t) \alpha \, \omega_0 \otimes \operatorname{Id}_{\mathcal{E}} \right)^{1/r} = f_t \, \omega_0^n, \quad f_t > 0,$$

Search for an appropriate evolution equation

General setup

In this context, given $\alpha>0$ large enough, it is natural to search for a time dependent family of metrics $h_t(z)$ on the fibers E_z of E, $t\in[0,1]$, satisfying a generalized Monge-Ampère equation

(D)
$$\det_{T_X \otimes E} \left(\Theta_{E,h_t} + (1-t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right)^{1/r} = f_t \,\omega_0^n, \quad f_t > 0,$$

and trace free, rank $r^2 - 1$, Hermite-Einstein conditions

$$(T) \quad \omega_t^{n-1} \wedge \Theta_{E,h_t}^{\circ} = g_t$$

with smoothly varying families of functions $f_t \in C^{\infty}(X, \mathbb{R})$, Hermitian metrics $\omega_t > 0$ on X and sections

$$g_t \in C^{\infty}(X, \Lambda_{\mathbb{R}}^{n,n} T_X^* \otimes \operatorname{Herm}_{h_t}^{\circ}(E, E)), \quad t \in [0, 1].$$

Search for an appropriate evolution equation

General setup

In this context, given $\alpha>0$ large enough, it is natural to search for a time dependent family of metrics $h_t(z)$ on the fibers E_z of E, $t\in[0,1]$, satisfying a generalized Monge-Ampère equation

(D)
$$\det_{T_X \otimes E} \left(\Theta_{E,h_t} + (1-t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right)^{1/r} = f_t \,\omega_0^n, \quad f_t > 0,$$

and trace free, rank $r^2 - 1$, Hermite-Einstein conditions

$$(T) \quad \omega_t^{n-1} \wedge \Theta_{E,h_t}^{\circ} = g_t$$

with smoothly varying families of functions $f_t \in C^{\infty}(X, \mathbb{R})$, Hermitian metrics $\omega_t > 0$ on X and sections

$$g_t \in C^{\infty}(X, \Lambda_{\mathbb{R}}^{n,n} T_X^* \otimes \operatorname{Herm}_{h_t}^{\circ}(E, E)), \quad t \in [0, 1].$$

Observe that this is a determined (not overdetermined!) system.

Choice of the initial state (t = 0)

We start with the Uhlenbeck-Yau solution $h_0=q_\varepsilon$ of of the "cushioned" trace free Hermite-Einstein equation, so that $\det h_0=\det H_0$, and take $\alpha>0$ so large that

 $\Theta_{E,h_0} + \alpha \, \omega_0 \otimes \mathrm{Id}_E > 0$ in the sense of Nakano.

Choice of the initial state (t = 0)

We start with the Uhlenbeck-Yau solution $h_0=q_\varepsilon$ of of the "cushioned" trace free Hermite-Einstein equation, so that $\det h_0=\det H_0$, and take $\alpha>0$ so large that

$$\Theta_{E,h_0} + \alpha \, \omega_0 \otimes \mathrm{Id}_E > 0$$
 in the sense of Nakano.

If conditions (D) and (T) can be met for all $t \in [0, t_0]$, thus without any discontinuity or explosion of the solutions h_t , we infer from (D) that

 $\Theta_{E,h_t}+(1-t)lpha\,\omega_0\otimes \mathrm{Id}_E>0$ in the sense of Nakano for all $t\in[0,t_0].$

Choice of the initial state (t = 0)

We start with the Uhlenbeck-Yau solution $h_0=q_\varepsilon$ of of the "cushioned" trace free Hermite-Einstein equation, so that $\det h_0=\det H_0$, and take $\alpha>0$ so large that

$$\Theta_{E,h_0} + \alpha \,\omega_0 \otimes \mathrm{Id}_E > 0$$
 in the sense of Nakano.

If conditions (D) and (T) can be met for all $t \in [0, t_0]$, thus without any discontinuity or explosion of the solutions h_t , we infer from (D) that

 $\Theta_{E,h_t}+(1-t)lpha\,\omega_0\otimes \mathrm{Id}_E>0$ in the sense of Nakano for all $t\in[0,t_0].$

Question

Is the maximal existence time t_0 of the solution such that $(1 - t_0)\alpha = \tau_N(E)$ (Nakano threshold of E)?

Possible choices of the right hand side

One still has the freedom of adjusting f_t , ω_t and g_t in the general setup. There are in fact many possibilities:

Possible choices of the right hand side

One still has the freedom of adjusting f_t , ω_t and g_t in the general setup. There are in fact many possibilities:

Proposition

Let (E, H_0) be a smooth Hermitian holomorphic vector bundle such that E is ample and $\omega_0 = \Theta_{\det E, \det H_0} > 0$. Then the system of determinantal and trace free equations

(D)
$$\det_{\mathcal{T}_X \otimes \mathcal{E}} \left(\Theta_{E,h_t} + (1-t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right)^{1/r} = F(t,z,h_t,D_z h_t)$$

$$(T) \ \omega_t^{n-1} \wedge \Theta_{E,h_t}^{\circ} = G(t,z,h_t,D_zh_t,D_z^2h_t) \in \mathrm{Herm}^{\circ}(E,E)$$

(where F > 0), is a well determined system of PDEs.

Possible choices of the right hand side

One still has the freedom of adjusting f_t , ω_t and g_t in the general setup. There are in fact many possibilities:

Proposition

Let (E, H_0) be a smooth Hermitian holomorphic vector bundle such that E is ample and $\omega_0 = \Theta_{\det E, \det H_0} > 0$. Then the system of determinantal and trace free equations

$$(D) \det_{\mathcal{T}_X \otimes \mathcal{E}} \left(\Theta_{E,h_t} + (1-t)\alpha \, \omega_0 \otimes \operatorname{Id}_E \right)^{1/r} = F(t,z,h_t,D_z h_t)$$

$$(T) \ \omega_t^{n-1} \wedge \Theta_{E,h_t}^{\circ} = G(t,z,h_t,D_zh_t,D_z^2h_t) \in \mathrm{Herm}^{\circ}(E,E)$$

(where F > 0), is a well determined system of PDEs.

It is elliptic whenever the symbol η_h of the linearized operator $u \mapsto DG_{D^2h}(t, z, h, Dh, D^2h) \cdot D^2u$ has an Hilbert-Schmidt norm

$$\sup_{\xi \in T_{\star}^{*}, \, |\xi|_{\omega_{t}} = 1} \|\eta_{h_{t}}(\xi)\|_{h_{t}} \leq (r^{2} + 1)^{-1/2} \, n^{-1}$$

for any metric h_t involved, e.g. if G does not depend on D^2h .

20/25

Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized system of equations, starting from the curvature tensor formula

$$\Theta_{E,h} = i\overline{\partial}(h^{-1}\partial h) = i\overline{\partial}(\widetilde{h}^{-1}\partial_{H_0}\widetilde{h}),$$

where $\partial_{H_0} s = H_0^{-1} \partial(H_0 s)$ is the (1,0)-component of the Chern connection on Hom(E,E) associated with H_0 on E.

Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized system of equations, starting from the curvature tensor formula

$$\Theta_{E,h} = i\overline{\partial}(h^{-1}\partial h) = i\overline{\partial}(\widetilde{h}^{-1}\partial_{H_0}\widetilde{h}),$$

where $\partial_{H_0} s = H_0^{-1} \partial(H_0 s)$ is the (1,0)-component of the Chern connection on Hom(E,E) associated with H_0 on E.

Let us recall that the ellipticity of an operator

$$P: C^{\infty}(V) \to C^{\infty}(W), \quad f \mapsto P(f) = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} f(x)$$

means the invertibility of the principal symbol

$$\sigma_P(x,\xi) = \sum_{|\alpha|=m} a_{\alpha}(x) \, \xi^{\alpha} \in \mathsf{Hom}(V,W)$$

whenever $0 \neq \xi \in T_{X,x}^*$.

Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized system of equations, starting from the curvature tensor formula

$$\Theta_{E,h} = i\overline{\partial}(h^{-1}\partial h) = i\overline{\partial}(\widetilde{h}^{-1}\partial_{H_0}\widetilde{h}),$$

where $\partial_{H_0} s = H_0^{-1} \partial(H_0 s)$ is the (1,0)-component of the Chern connection on Hom(E,E) associated with H_0 on E.

Let us recall that the ellipticity of an operator

$$P: C^{\infty}(V) \to C^{\infty}(W), \quad f \mapsto P(f) = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} f(x)$$

means the invertibility of the principal symbol

$$\sigma_P(x,\xi) = \sum_{|\alpha|=m} a_{\alpha}(x) \, \xi^{\alpha} \in \mathsf{Hom}(V,W)$$

whenever $0 \neq \xi \in T_{X,x}^*$.

For instance, on the torus $\mathbb{R}^n/\mathbb{Z}^n$, $f\mapsto P_\lambda(f)=-\Delta f+\lambda f$ has an invertible symbol $\sigma_{P_\lambda}(x,\xi)=-|\xi|^2$, but P_λ is invertible only for $\lambda>0$.

A more specific choice of the right hand side

Theorem

The elliptic differential system defined by

$$\det_{\mathcal{T}_X \otimes E} \left(\Theta_{E,h_t} + (1-t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right)^{1/r} = \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\lambda} a_0(z),$$

$$\omega_t^{n-1} \wedge \Theta_{E^{\circ},h_t} = -\varepsilon \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\mu} (\log \widetilde{h}_t^{\circ}) \omega_0^n \quad \text{w.r.t. K\"ahler metric}$$

$$\omega_t = \frac{1}{r\alpha + 1} \operatorname{tr} \left(\Theta_{E,h_t} + (1 - t) \alpha \, \omega_0 \otimes \operatorname{Id}_E \right) > 0,$$

possesses an invertible elliptic linearization for $\varepsilon \geq \varepsilon_0(h_t)$ and $\lambda \geq \lambda_0(h_t)(1+\mu^2)$, with $\varepsilon_0(h_t)$ and $\lambda_0(h_t)$ large enough.

A more specific choice of the right hand side

Theorem

The elliptic differential system defined by

$$\det_{\mathcal{T}_X \otimes E} \left(\Theta_{E,h_t} + (1-t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right)^{1/r} = \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\lambda} a_0(z),$$

$$\omega_t^{n-1} \wedge \Theta_{E^{\circ},h_t} = -\varepsilon \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\mu} (\log \widetilde{h}_t^{\circ}) \omega_0^n \text{ w.r.t. K\"ahler metric}$$

$$\omega_t = \frac{1}{r\alpha + 1} \operatorname{tr} \left(\Theta_{E,h_t} + (1 - t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right) > 0,$$

possesses an invertible elliptic linearization for $\varepsilon \geq \varepsilon_0(h_t)$ and $\lambda \geq \lambda_0(h_t)(1 + \mu^2)$, with $\varepsilon_0(h_t)$ and $\lambda_0(h_t)$ large enough.

Corollary

Under the above conditions, starting from the Uhlenbeck-Yau solution h_0 such that det $h_0 = \det H_0$ at t = 0, the PDE system still has a solution for $t \in [0, t_0]$ and $t_0 > 0$ small.

A more specific choice of the right hand side

Theorem

The elliptic differential system defined by

$$\det_{\mathcal{T}_X \otimes E} \left(\Theta_{E,h_t} + (1-t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right)^{1/r} = \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\lambda} a_0(z),$$

$$\omega_t^{n-1} \wedge \Theta_{E^{\circ},h_t} = -\varepsilon \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\mu} (\log \widetilde{h}_t^{\circ}) \omega_0^n \text{ w.r.t. K\"ahler metric}$$

$$\omega_t = \frac{1}{r\alpha + 1} \operatorname{tr} \left(\Theta_{E,h_t} + (1 - t)\alpha \,\omega_0 \otimes \operatorname{Id}_E \right) > 0,$$

possesses an invertible elliptic linearization for $\varepsilon \geq \varepsilon_0(h_t)$ and $\lambda \geq \lambda_0(h_t)(1 + \mu^2)$, with $\varepsilon_0(h_t)$ and $\lambda_0(h_t)$ large enough.

Corollary

Under the above conditions, starting from the Uhlenbeck-Yau solution h_0 such that det $h_0 = \det H_0$ at t = 0, the PDE system still has a solution for $t \in [0, t_0]$ and $t_0 > 0$ small.

Proof. Compute total symbol of linearized system + linear algebra.

The end

Joyeuse et active retraite, Ahmed!

References

- [Ber09] Berndtsson B.: Curvature of vector bundles associated to holomorphic fibrations, Annals of Math., 169 (2009), 531–560.
- [Dem21] Demailly J.-P: Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles, Mat. Sbornik 212 (2021) 39–53.
- [Fin20a] Finski, S. On characteristic forms of positive vector bundles, mixed discriminants and pushforward identities, arXiv:2009.13107.
- [Fin20b] Finski, S. On Monge-Ampère volumes of direct images arXiv:2010.01839.
- [LSY13] Liu, Kefeng, Sun, Xiaofeng, Yang, Xiaokui: Positivity and vanishing theorems for ample vector bundles, J. Algebraic Geom. 22 (2013), 303-331.

References (continued)

- [Pin20] Pingali, V.P.: A vector bundle version of the Monge-Ampère equation, Adv. in Math. 360 (2020), 40 pages, https://doi.org/10.1016/j.aim.2019.106921.
- [Pin21] Pingali, V.P.: A note on Demailly's approach towards a conjecture of Griffiths, arXiv:2102.02496 [math.DG], to appear in Comptes Rendus Math. Acad. Sc. Paris.
- [UhY86] Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math. 39 (1986) 258–293.
- [Ume73] Umemura, H.: Some results in the theory of vector bundles, Nagoya Math. J. **52** (1973), 97–128.