

On the Monge-Ampère volume of holomorphic vector bundles

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes \& Académie des Sciences de Paris

Analysis of Monge-Ampère, a tribute to Ahmed Zeriahi Conference AMAZER 2021, Université Paul Sabatier, Toulouse

May 31 - June 4, 2021

Positive and ample vector bundles

Let X be a projective n-dimensional manifold and $E \rightarrow X$ a holomorphic vector bundle of rank $r \geq 1$.

Ample vector bundles

$E \rightarrow X$ is said to be ample in the sense of Hartshorne if the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is ample.
By Kodaira, this is equivalent to the existence of a smooth hermitian metric on $\mathcal{O}_{\mathbb{P}(E)}(1)$ with positive curvature (equivalently, a negatively curved Finsler metric on E^{*}).

Chern curvature tensor

This is $\Theta_{E, h}=i \nabla_{E, h}^{2} \in C^{\infty}\left(\wedge^{1,1} T_{X}^{*} \otimes \operatorname{Hom}(E, E)\right)$, which can be written

$$
\Theta_{E, h}=i \sum_{1 \leq j, k \leq n, 1 \leq \lambda, \mu \leq r} c_{j k \lambda \mu} d z_{j} \wedge d \bar{z}_{k} \otimes e_{\lambda}^{*} \otimes e_{\mu}
$$

in terms of an orthonormal frame $\left(e_{\lambda}\right)_{1 \leq \lambda \leq r}$ of E.

Positivity concepts for vector bundles

Griffiths and (dual) Nakano positivity

One looks at the associated quadratic form on $S=T_{X} \otimes E$

$$
\widetilde{\Theta}_{E, h}(\xi \otimes v):=\left\langle\Theta_{E, h}(\xi, \bar{\xi}) \cdot v, v\right\rangle_{h}=\sum_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} v_{\lambda} \bar{v}_{\mu}
$$

Then E is said to be $1 \leq j, k \leq n, 1 \leq \lambda, \mu \leq r$

- Griffiths positive (Griffiths 1969) if at any point $z \in X$

$$
\widetilde{\Theta}_{E, h}(\xi \otimes v)>0, \quad \forall \xi \in T_{X, z} \backslash\{0\}, \forall v \in E_{z} \backslash\{0\}
$$

- Nakano positive (Nakano 1955) if at any point $z \in X$

$$
\widetilde{\Theta}_{E, h}(\tau)=\sum c_{j k \lambda \mu} \tau_{j, \lambda} \bar{\tau}_{k, \mu}>0, \underset{\neq 0}{\forall \tau}=\sum \tau_{j, \lambda} \frac{\partial}{\partial z_{j}} \otimes e_{\lambda} \in T_{X, z} \otimes E_{z} .
$$

- dual Nakano positive if at any point $z \in X$

$$
T \widetilde{\Theta}_{E, h}(\tau)=\sum c_{j k \mu \lambda} \tau_{j, \lambda} \bar{\tau}_{k, \mu}>0, \underset{\neq 0}{\forall \tau}=\sum \tau_{j, \lambda} \frac{\partial}{\partial z_{j}} \otimes e_{\lambda}^{*} \in T_{X, z} \otimes E_{z}^{*}
$$

$$
\Theta_{E^{*}, h}=-{ }^{T} \Theta_{E, h}=-\sum c_{j k \mu \lambda} d z_{j} \wedge d \bar{z}_{k} \otimes\left(e_{\lambda}^{*}\right)^{*} \otimes e_{\mu}^{*} .
$$

Relationships between these positivity concepts

Easy and well known facts

E (dual) Nakano positive $\Rightarrow E$ Griffiths positive $\Rightarrow E$ ample.
In fact E Griffiths positive $\Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ positive:

$$
\Theta_{\mathcal{O}_{\mathbb{P}(E)}(1)}=\omega_{\mathrm{FS}}([v])+\sum c_{j k \lambda \mu} \frac{v_{\lambda} \bar{v}_{\mu}}{|v|^{2}} d z_{j} \wedge d \bar{z}_{k}, \quad z \in X, \quad v \in E_{z} .
$$

Remark: dual Nakano positivity is somewhat better behaved

E dual Nakano (semi)positive \Rightarrow any quotient $Q=E / S$ is also dual Nakano (semi)positive.
E generated by global sections $\Rightarrow E$ dual Nakano semipositive.

Proposition

E ample $\Rightarrow S^{m} E$ Nakano and dual Nakano >0 for $m \gg 1$.
Berndtsson (2007): E ample $\Rightarrow S^{m} E \otimes \operatorname{det} E$ Nakano $>0, \forall m \geq 0$.

Some counterexamples

First (well known) observation

$$
E \text { Griffiths positive } \nRightarrow E \text { Nakano positive. }
$$

For instance, $T_{\mathbb{P}^{n}}$ is easy shown to be ample and Griffiths positive for the Fubini-Study metric, but it is not Nakano positive. Otherwise the Nakano vanishing theorem would then yield

$$
H^{n-1, n-1}\left(\mathbb{P}^{n}, \mathbb{C}\right)=H^{n-1}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{n-1}\right)=H^{n-1}\left(\mathbb{P}^{n}, K_{\mathbb{P}^{n}} \otimes T_{\mathbb{P}^{n}}\right)=0
$$

Second observation (Liu, Sun, Yang, 2013)

E Griffiths positive $\nRightarrow E$ dual Nakano positive.

In fact, a variant of the Nakano vanishing theorem gives that E dual Nakano $>0 \Rightarrow H^{0}\left(X, \Omega_{X}^{p} \otimes E^{*}\right)=0$ for $p<n=\operatorname{dim} X$.
Take e.g. a smooth compact quotient $X=\mathbb{B}^{n} / \Gamma$ of the ball, $n \geq 2$.
Then $E=\Omega_{X}^{1}$ is Griffiths positive, but Id $\in H^{0}\left(X, \Omega_{X}^{1} \otimes E^{*}\right) \neq 0$, so E cannot be dual Nakano positive.

Positivity thresholds

Definition of a few thresholds

Let $E \rightarrow X$ be a holomorphic vector bundle such that $\operatorname{det} E=\Lambda^{r} E$ is ample.
One can introduce respectively the ample threshold $\tau_{A}(E)$, the Griffiths threshold $\tau_{G}(E)$, the Nakano threshold $\tau_{N}(E)$, the dual Nakano threshold $\tau_{N^{*}}(E)$ to be the infimum of $t \in \mathbb{Q}$ such that $E \otimes(\operatorname{det} E)^{t}$ is ample, i.e. $S^{m}\left(E \otimes(\operatorname{det} E)^{t}\right)$ is ample, resp. Griffiths, Nakano, dual Nakano positive.

Assume that E is ample. One has $\tau_{N}(E)<1$ (Berndtsson), $\tau_{N^{*}}(E)<1$ (Liu-Sun-Yang), and the Griffiths conjecture
E ample $\Rightarrow E$ Griffiths >0 is equivalent to asserting that $\tau_{G}(E)<0$.
The previous counterexamples show that one may have $\tau_{N}(E) \geq 0$ and $\tau_{N^{*}}(E) \geq 0$, but it could still wonder whether

$$
E \text { ample } \Rightarrow \tau_{N}(E) \leq 0, \tau_{N^{*}}(E) \leq 0 \quad ?
$$

Determinantal functionals of the curvature tensor

If the Chern curvature tensor $\Theta_{E, h}$ is Nakano positive, one can introduce the $(n \times r)$-dimensional determinant of the Hermitian quadratic form on $T_{X} \otimes E$

$$
\operatorname{det}_{T_{X} \otimes E}\left(\Theta_{E, h}\right)^{1 / r}:=\operatorname{det}\left(c_{j k \lambda \mu}\right)_{(j, \lambda),(k, \mu)}^{1 / r} i d z_{1} \wedge d \bar{z}_{1} \wedge \ldots \wedge i d z_{n} \wedge d \bar{z}_{n} .
$$

On the other hand, if $\Theta_{E, h}$ is dual Nakano positive, one can consider the ($n \times r$)-dimensional determinant of the "dual" Hermitian quadratic form on $T_{X} \otimes E^{*}$
$\operatorname{det}_{T_{X} \otimes E^{*}}\left({ }^{T} \Theta_{E, h}\right)^{1 / r}:=\operatorname{det}\left(c_{j k \mu \lambda}\right)_{(j, \lambda),(k, \mu)}^{1 / r} i d z_{1} \wedge d \bar{z}_{1} \wedge \ldots \wedge i d z_{n} \wedge d \bar{z}_{n}$.
These (n, n)-forms do not depend on the choice of coordinates $\left(z_{j}\right)$ on X, nor on the choice of the orthonormal frame $\left(e_{\lambda}\right)$ on E.
In case $\Theta_{E, h}$ is Griffiths >0, we have a functional

$$
\operatorname{Grif}\left(\Theta_{E, h}\right)(z)=\inf _{v \in E_{z},|v|_{h}=1}\left\langle\Theta_{E, h}(z) v, v\right\rangle^{n} .
$$

Monge-Ampère volumes for vector bundles

If $E \rightarrow X$ is an ample vector bundle of rank r that is
Nakano positive (resp. dual Nakano positive), one can introduce its Monge-Ampère volume to be

$$
\begin{aligned}
\operatorname{MAVol}(E) & =\sup _{h} \int_{X} \operatorname{det}_{T_{X} \otimes E}\left((2 \pi)^{-1} \Theta_{E, h}\right)^{1 / r}, \\
\operatorname{MAVol}^{*}(E) & =\sup _{h} \int_{X} \operatorname{det}_{T_{X} \otimes E^{*}}\left((2 \pi)^{-1} T^{T} \Theta_{E, h}\right)^{1 / r},
\end{aligned}
$$

where the supremum is taken over all smooth metrics h on E such that $\Theta_{E, h}$ is Nakano positive (resp. dual Nakano positive).
This supremum is always finite, and in fact

Proposition

For any (dual) Nakano positive vector bundle E, one has

$$
\operatorname{MAVol}(E) \leq r^{-n} c_{1}(E)^{n}, \quad \operatorname{MAVol}^{*}(E) \leq r^{-n} c_{1}(E)^{n}
$$

Equality occurs if and only if E is projectively flat.

Proof of the volume inequality

Assume e.g. E nakano positive. Take $\omega_{0}=\Theta_{\operatorname{det} E}>0$ as a Kähler metric on X, and let $\left(\lambda_{j}\right)_{1 \leq j \leq n r}$ be the eigenvalues of $\tilde{\Theta}_{E, h}$ as a hermitian form on $T_{X} \otimes E$, with respect to $\omega_{0} \otimes h$. We have

$$
\operatorname{det}_{T_{X} \otimes E}\left((2 \pi)^{-1} \Theta_{E, h}\right)^{1 / r}=\left(\prod_{j} \lambda_{j}\right)^{1 / r} \omega_{0}^{n}
$$

The inequality between geometric and arithmetic means $\left(\prod \lambda_{j}\right)^{1 / n r} \leq \frac{1}{n r} \sum \lambda_{j}$ implies, after raising to power n

$$
\operatorname{det}_{T_{X} \otimes E}\left((2 \pi)^{-1} \Theta_{E, h}\right)^{1 / r} \leq\left(\frac{1}{n r} \sum \lambda_{j}\right)^{n} \omega_{0}^{n}=\frac{\omega_{0}^{n}}{r^{n}}=\frac{1}{r^{n}}\left(\Theta_{\operatorname{det} E}\right)^{n}
$$

Equality occurs iff all λ_{j} are equal, i.e. E projectively flat. In case E is Griffiths >0, one can define

$$
\operatorname{MAVol}_{\text {Grif }}(E)=\sup _{h} \int_{z \in X} \inf _{v \in E_{z},|v|_{h=1}}\left((2 \pi)^{-1}\left\langle\Theta_{E, h} v, v\right\rangle\right)^{n}
$$

The Teissier-Hovanskii inequalities imply again $\operatorname{MAVol}_{\text {Grif }}(E) \leq \frac{1}{r^{n}} c_{1}(E)^{n}$ with equality iff E is projectively flat.

Further remarks

- In the split case $E=\bigoplus_{1 \leq j \leq r} E_{j}$ and $h=\bigoplus_{1 \leq j \leq r} h_{j}$, the inequality reads

$$
\left(\prod_{1 \leq j \leq r} c_{1}\left(E_{j}\right)^{n}\right)^{1 / r} \leq r^{-n} c_{1}(E)^{n}
$$

with equality iff $c_{1}\left(E_{1}\right)=\cdots=c_{1}\left(E_{r}\right)$.

- In the split case, it seems natural to conjecture that

$$
\operatorname{MAVol}(E)=\left(\prod_{1 \leq j \leq r} c_{1}\left(E_{j}\right)^{n}\right)^{1 / r}
$$

i.e. that the supremum is reached for split metrics $h=\bigoplus h_{j}$.

- The Euler-Lagrange equation for the maximizer is complicated (4th order!). It somehow extends the equation characterizing cscK metrics.

On the Fulton Lazarsfeld inequalities (S. Finski)

A fundamental result due to Fulton-Lazarsfeld asserts that if $E \rightarrow X$ is an ample vector bundle, then all Schur polynomials $P\left(c_{\bullet}(E)\right)$ in the Chern classes are numerically positive, i.e.

$$
\int_{Y} P\left(c_{\bullet}(E)\right)>0
$$

for all irreducible cycles Y of the appropriate dimension in X.
Recently, Siarhei Finski has shown

Theorem (Finski 2020)

If (E, h) is a (dual) Nakano positive vector bundle, then all Schur polynomials $P\left(c_{\bullet}(E, h)\right)$ in the Chern forms are pointwise positive (k, k)-forms (in the sense of the weak positivity of forms).

This is a compelling motivation to investigate the relationships between ampleness, Griffiths and Nakano positivity!

Further recent results by Siarhei Finski

When $E \rightarrow X$ is an ample vector bundle, the symmetric powers $S^{m} E$ have enough sections to generate 1 -jets for $m \geq m_{0} \gg 1$, and one can immediately derive from there that

$$
E \text { ample } \Rightarrow S^{m} E \text { dual-Nakano positive for } m \geq m_{0} \gg 1
$$

Then it makes sense to wonder whether there is an asymptotic formula for the monge-Ampère volume $\operatorname{MAVol}\left(S^{m} E\right)$. S. Finski obtained more generally an asymptotic formula for the Monge-Ampère volume of direct images $E_{m}=\pi_{*}\left(L^{m} \otimes G\right)$ by any proper morphism $\pi: Y \rightarrow X$ of any line bundle $\left(L, h_{L}\right)>0$ on Y.

Theorem (S. Finski 2020)

Given any volume form $d \nu$ on X, the direct images satisfy

$$
\operatorname{MAVol}\left(E_{m}, h_{E_{m}}\right) \sim m^{\operatorname{dim} X} \int_{X} \exp \left(\frac{\int_{Y} \log \left(\omega_{H}^{\operatorname{dim} X} / \pi^{*} \nu\right) \omega^{\operatorname{dim} Y}}{\int_{Y} c_{1}(L)^{\operatorname{dim} Y}}\right) d \nu,
$$

where $\omega=\Theta_{L, h_{L}}>0$ on Y, and ω_{H} is its horizontal part.

Matrix Monge-Ampère equations

Basic idea

Assigning a "matrix Monge-Ampère equation"

$$
\operatorname{det}_{T_{X} \otimes E}\left(\Theta_{E, h}\right)^{1 / r}=f>0 \quad \text { or } \quad \operatorname{Grif}\left(\Theta_{E, h}\right)=f>0
$$

where f is a positive (n, n)-form, may enforce the Nakano (resp.
Griffiths) positivity of $\Theta_{E, h}$, especially if that assignment is combined with a continuity technique from an initial starting point where positivity is known.
Also, in order to compute thresholds, one could instead replace E by $E \otimes(\operatorname{det} E)^{t}$ for a large value t_{0} and try to decrease t as much as possible.

In case $r=\operatorname{rank} E=1$ and $h=h_{0} e^{-\varphi}$, this is the same as solving a complex Monge-Ampère equation

$$
\left(\Theta_{E, h}\right)^{n}=\left(\omega_{0}+i \partial \bar{\partial} \varphi\right)^{n}=f
$$

Underdeterminacy of the equation

Assuming E to be ample of rank $r>1$, the equation

$$
\begin{equation*}
\operatorname{det}_{T_{X} \otimes E}\left(\Theta_{E, h}\right)^{1 / r}=f>0 \tag{**}
\end{equation*}
$$

becomes underdetermined, as the real rank of the space of hermitian matrices $h=\left(h_{\lambda \mu}\right)$ on E is equal to r^{2}, while $(* *)$ provides only 1 scalar equation.
(Solutions might still exist, but lack uniqueness and a priori bounds.)

Conclusion

In order to recover a well determined system of equations, one needs an additional "matrix equation" of rank $\left(r^{2}-1\right)$.

Observation 1 (from the Donaldson-Uhlenbeck-Yau theorem)

Take a Hermitian metric η_{0} on det E so that $\omega_{0}:=\Theta_{\operatorname{det} E, \eta_{0}}>0$. If E is ω_{0}-polystable, $\exists h$ Hermitian metric h on E such that

$$
\omega_{0}^{n-1} \wedge \Theta_{E, h}=\frac{1}{r} \omega_{0}^{n} \otimes \operatorname{Id}_{E} \quad\left(\text { Hermite-Einstein equation, slope } \frac{1}{r}\right) .
$$

Resulting trace free condition

Observation 2

The trace part of the above Hermite-Einstein equation is "automatic", hence the equation is equivalent to the trace free condition

$$
\omega_{0}^{n-1} \wedge \Theta_{E, h}^{\circ}=0,
$$

when decomposing any endomorphism $u \in \operatorname{Herm}(E, E)$ as

$$
u=u^{\circ}+\frac{1}{r} \operatorname{Tr}(u) \operatorname{Id}_{E} \in \operatorname{Herm}^{\circ}(E, E) \oplus \mathbb{R} \operatorname{Id}_{E}, \quad \operatorname{tr}\left(u^{\circ}\right)=0 .
$$

Observation 3

The trace free condition is a matrix equation of rank $\left(r^{2}-1\right)!!!$

Remark

In case $\operatorname{dim} X=n=1$, the trace free condition means that E is projectively flat, and the Umemura proof of the Griffiths conjecture proceeds exactly in that way, using the fact that the graded pieces of the Harder-Narasimhan filtration are projectively flat.

Towards a "cushioned" Hermite-Einstein equation

In general, one cannot expect E to be ω_{0}-polystable, but Uhlenbeck-Yau have shown that there always exists a smooth solution q_{ε} to a certain "cushioned" Hermite-Einstein equation.

To make things more precise, let $\operatorname{Herm}(E)$ be the space of Hermitian (non necessarily positive) forms on E. Given a reference Hermitian metric $H_{0}>0$, let $\operatorname{Herm}_{H_{0}}(E, E)$ be the space of H_{0}-Hermitian endomorphisms $u \in \operatorname{Hom}(E, E)$; denote by

$$
\operatorname{Herm}(E) \stackrel{\simeq}{\rightrightarrows} \operatorname{Herm}_{H_{0}}(E, E), \quad q \mapsto \widetilde{q} \text { s.t. } \quad q(v, w)=\langle\widetilde{q}(v), w\rangle_{H_{0}}
$$

the natural isomorphism. Let also

$$
\operatorname{Herm}_{H_{0}}^{\circ}(E, E)=\left\{q \in \operatorname{Herm}_{H_{0}}(E, E) ; \operatorname{tr}(q)=0\right\}
$$

be the subspace of "trace free" Hermitian endomorphisms.
In the sequel, we fix H_{0} on E such that

$$
\Theta_{\operatorname{det} E, \operatorname{det} H_{0}}=\omega_{0}>0
$$

A basic result from Uhlenbeck and Yau

Uhlenbeck-Yau 1986, Theorem 3.1

For every $\varepsilon>0$, there always exists a (unique) smooth Hermitian metric q_{ε} on E such that

$$
\omega_{0}^{n-1} \wedge \Theta_{E, q_{\varepsilon}}=\omega_{0}^{n} \otimes\left(\frac{1}{r} \operatorname{Id}_{E}-\varepsilon \log \widetilde{q}_{\varepsilon}\right)
$$

where $\widetilde{q}_{\varepsilon}$ is computed with respect to H_{0}, and $\log g$ denotes the logarithm of a positive Hermitian endomorphism g.

The reason is that the term $-\varepsilon \log \widetilde{q}_{\varepsilon}$ is a "friction term" that prevents the explosion of the a priori estimates, similarly what happens for Monge-Ampère equations $\left(\omega_{0}+i \partial \bar{\partial} \varphi\right)^{n}=e^{\varepsilon \varphi+f} \omega_{0}^{n}$.
The above matrix equation is equivalent to prescribing $\operatorname{det} q_{\varepsilon}=\operatorname{det} H_{0}$ and the trace free equation of rank $\left(r^{2}-1\right)$

$$
\omega_{0}^{n-1} \wedge \Theta_{E, q_{\varepsilon}}^{\circ}=-\varepsilon \omega_{0}^{n} \otimes \log \widetilde{q}_{\varepsilon}
$$

Search for an appropriate evolution equation

General setup

In this context, given $\alpha>0$ large enough, it is natural to search for a time dependent family of metrics $h_{t}(z)$ on the fibers E_{z} of $E, t \in[0,1]$, satisfying a generalized Monge-Ampère equation
(D) $\quad \operatorname{det}_{T_{X} \otimes E}\left(\Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E}\right)^{1 / r}=f_{t} \omega_{0}^{n}, \quad f_{t}>0$, and trace free, rank $r^{2}-1$, Hermite-Einstein conditions

$$
\begin{equation*}
\omega_{t}^{n-1} \wedge \Theta_{E, h_{t}}^{\circ}=g_{t} \tag{T}
\end{equation*}
$$

with smoothly varying families of functions $f_{t} \in C^{\infty}(X, \mathbb{R})$, Hermitian metrics $\omega_{t}>0$ on X and sections

$$
g_{t} \in C^{\infty}\left(X, \Lambda_{\mathbb{R}}^{n, n} T_{X}^{*} \otimes \operatorname{Herm}_{h_{t}}^{\circ}(E, E)\right), \quad t \in[0,1]
$$

Observe that this is a determined (not overdetermined!) system.

Choice of the initial state $(t=0)$

We start with the Uhlenbeck-Yau solution $h_{0}=q_{\varepsilon}$ of of the "cushioned" trace free Hermite-Einstein equation, so that $\operatorname{det} h_{0}=\operatorname{det} H_{0}$, and take $\alpha>0$ so large that

$$
\Theta_{E, h_{0}}+\alpha \omega_{0} \otimes \operatorname{Id}_{E}>0 \text { in the sense of Nakano. }
$$

If conditions (D) and (T) can be met for all $t \in\left[0, t_{0}\right]$, thus without any discontinuity or explosion of the solutions h_{t}, we infer from (D) that

$$
\Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E}>0 \quad \text { in the sense of Nakano }
$$

for all $t \in\left[0, t_{0}\right]$.

Question

Is the maximal existence time t_{0} of the solution such that $\left(1-t_{0}\right) \alpha=\tau_{N}(E) \quad$ (Nakano threshold of E)?

Possible choices of the right hand side

One still has the freedom of adjusting f_{t}, ω_{t} and g_{t} in the general setup. There are in fact many possibilities:

Proposition

Let $\left(E, H_{0}\right)$ be a smooth Hermitian holomorphic vector bundle such that E is ample and $\omega_{0}=\Theta_{\operatorname{det} E, \operatorname{det}} H_{0}>0$. Then the system of determinantal and trace free equations
(D) $\operatorname{det}_{T_{X} \otimes E}\left(\Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E}\right)^{1 / r}=F\left(t, z, h_{t}, D_{z} h_{t}\right)$
(T) $\omega_{t}^{n-1} \wedge \Theta_{E, h_{t}}^{\circ}=G\left(t, z, h_{t}, D_{z} h_{t}, D_{z}^{2} h_{t}\right) \in \operatorname{Herm}^{\circ}(E, E)$
(where $F>0$), is a well determined system of PDEs.
It is elliptic whenever the symbol η_{h} of the linearized operator $u \mapsto D G_{D^{2} h}\left(t, z, h, D h, D^{2} h\right) \cdot D^{2} u$ has an Hilbert-Schmidt norm

$$
\sup _{\xi \in T_{x}^{*},|\xi| \omega_{t}=1}\left\|\eta_{h_{t}}(\xi)\right\|_{h_{t}} \leq\left(r^{2}+1\right)^{-1 / 2} n^{-1}
$$

for any metric h_{t} involved, e.g. if G does not depend on $D^{2} h$.

Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized system of equations, starting from the curvature tensor formula

$$
\Theta_{E, h}=i \bar{\partial}\left(h^{-1} \partial h\right)=i \bar{\partial}\left(\widetilde{h}^{-1} \partial_{H_{0}} \widetilde{h}\right),
$$

where $\partial_{H_{0}} s=H_{0}^{-1} \partial\left(H_{0} s\right)$ is the $(1,0)$-component of the Chern connection on $\operatorname{Hom}(E, E)$ associated with H_{0} on E.
Let us recall that the ellipticity of an operator

$$
P: C^{\infty}(V) \rightarrow C^{\infty}(W), \quad f \mapsto P(f)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} f(x)
$$

means the invertibility of the principal symbol

$$
\sigma_{P}(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha} \in \operatorname{Hom}(V, W)
$$

whenever $0 \neq \xi \in T_{X, x}^{*}$.
For instance, on the torus $\mathbb{R}^{n} / \mathbb{Z}^{n}, f \mapsto P_{\lambda}(f)=-\Delta f+\lambda f$ has an invertible symbol $\sigma_{P_{\lambda}}(x, \xi)=-|\xi|^{2}$, but P_{λ} is invertible only for $\lambda>0$.

A more specific choice of the right hand side

Theorem

The elliptic differential system defined by
$\operatorname{det}_{T_{X} \otimes E}\left(\Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E}\right)^{1 / r}=\left(\frac{\operatorname{det} H_{0}(z)}{\operatorname{det} h_{t}(z)}\right)^{\lambda} a_{0}(z)$, $\omega_{t}^{n-1} \wedge \Theta_{E^{\circ}, h_{t}}=-\varepsilon\left(\frac{\operatorname{det} H_{0}(z)}{\operatorname{det} h_{t}(z)}\right)^{\mu}\left(\log \widetilde{h}_{t}^{\circ}\right) \omega_{0}^{n}$ w.r.t. Kähler metric $\omega_{t}=\frac{1}{r \alpha+1} \operatorname{tr}\left(\Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E}\right)>0$,
possesses an invertible elliptic linearization for $\varepsilon \geq \varepsilon_{0}\left(h_{t}\right)$ and $\lambda \geq \lambda_{0}\left(h_{t}\right)\left(1+\mu^{2}\right)$, with $\varepsilon_{0}\left(h_{t}\right)$ and $\lambda_{0}\left(h_{t}\right)$ large enough.

Corollary

Under the above conditions, starting from the Uhlenbeck-Yau solution h_{0} such that $\operatorname{det} h_{0}=\operatorname{det} H_{0}$ at $t=0$, the PDE system still has a solution for $t \in\left[0, t_{0}\right]$ and $t_{0}>0$ small.
Proof. Compute total symbol of linearized system + linear algebra.

Joyeuse et active retraite, Ahmed !

References

[Ber09] Berndtsson B.: Curvature of vector bundles associated to holomorphic fibrations, Annals of Math., 169 (2009), 531-560.
[Dem21] Demailly J.-P: Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles, Mat. Sbornik 212 (2021) 39-53.
[Fin20a] Finski, S. On characteristic forms of positive vector bundles, mixed discriminants and pushforward identities, arXiv:2009.13107.
[Fin20b] Finski, S. On Monge-Ampère volumes of direct images arXiv:2010.01839.
[LSY13] Liu, Kefeng, Sun, Xiaofeng, Yang, Xiaokui: Positivity and vanishing theorems for ample vector bundles, J. Algebraic Geom. 22 (2013), 303-331.

References (continued)

[Pin20] Pingali, V.P.: A vector bundle version of the Monge-Ampère equation, Adv. in Math. $\mathbf{3 6 0}$ (2020), 40 pages, https://doi.org/10.1016/j.aim.2019.106921.
[Pin21] Pingali, V.P.: A note on Demailly's approach towards a conjecture of Griffiths, arXiv:2102.02496 [math.DG], to appear in Comptes Rendus Math. Acad. Sc. Paris.
[UhY86] Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math. 39 (1986) 258-293.
[Ume73] Umemura, H.: Some results in the theory of vector bundles, Nagoya Math. J. 52 (1973), 97-128.

