L3B – Topologie Contrôle continu du 8 décembre 2014 10h30-12h30

Documents, Calculatrices, Téléphones interdits.

Argumenter vos réponses et énoncer avec précision les théorèmes utilisés.

Le barème n'est qu'indicatif de l'importance relative des exercices.

Questions de cours [4 points]

- 1) Soit (E, ||.||) un espace vectoriel normé.
 - a) Donner une définition d'une partie compacte A de E.
- **b)** Soit $f:(E,||.||) \to \mathbb{R}$ continue et une partie compacte K de E. Montrer que f(K) est une partie compacte de \mathbb{R} .
- 2) Soit A une partie fermée et bornée de $(\mathbb{R}^2, ||.||_{\infty})$ ($||(x,y)||_{\infty} = \max(|x|, |y|)$). En admettant le théorème de Bolzano-Weierstrass dans \mathbb{R} , montrer que A est compacte.

Exercice 1. [8 points] On considère l'espace vectoriel normé $(\mathbb{C}, |.|)$: le plan complexe \mathbb{C} muni de la norme donnée par le module défini par $|z| = \sqrt{x^2 + y^2}$ si z = x + iy avec $x, y \in \mathbb{R}$.

Pour $0 \le t \le 2$, on définit la partie $A_t \subset \mathbb{C}$ par $A_t = B_f(i, 1) \cup [t, 2]$ $(A_t \text{ est donc la réunion de la boule fermé } B_f(i, 1) \text{ et de l'intervalle de réels } [t, 2]).$

- 1) Dessiner A_t dans les deux cas particuliers t = 0 et t = 1.
- 2) Déterminer selon la valeur de $t \in [0, 2]$ l'intérieur $\overset{\circ}{A}_t$.
- 3) Faire la même chose pour l'adhérence \bar{A}_t . Pour quels $t \in [0, 2]$, la partie A_t est-elle compacte?
- 4) Soit la fonction $f(z) = \sup_{a \in A_0} |z a|$.
 - a) Pourquoi f(z) est bien définie pour tout $z \in \mathbb{C}$?
 - b) Montrer que f est continue.
 - c) Justifier l'existence de $\delta = \sup_{a \in A_0} f(z)$.
 - d) Est-ce que δ est atteint? Que vaut δ ?

Exercice 2. [6 points] Soit $E = C^0[0,1]$ l'espace des fonctions continues sur [0,1] muni de la norme de la convergence uniforme $||.||_{\infty}$ définie par $||f||_{\infty} = \sup\{|f(t)| | t \in [0,1]\}$.

On considère l'application $\varphi \colon f \in E \mapsto \int_0^1 f(t) \, dt \in \mathbb{R}$.

- 1) Montrer que φ est linéaire et continue. Est-ce que $F=\operatorname{Ker}\varphi$ est fermé ? complet ?
- 2) Montrer que l'ensemble $A = \{ f \in E \mid -2 < \int_0^1 f(t) dt < 2 \}$ est ouvert.
- 3) Donner son adhérence \overline{A} et sa frontière ∂A .
- 4) Montrer que \overline{A} n'est pas compacte [on pourra montrer que A n'est pas borné].
- **5)** Donner un nombre r > 0 pour lequel $B_f(0, r) \subset A$.
- **6)** Est-ce que la partie $B = \overline{A} \cap \{f \in E \mid ||f||_{\infty} \le 3\}$ est compacte?

Exercice 3. [4 points] On note $E = l^1$ l'espace vectoriel des suites $(u_n)_{n \in \mathbb{N}}$ réelles dont la série $\sum |u_n|$ converge muni de la norme $||\cdot||_1$ définie par $||(u_n)||_1 = \sum_{n=0}^{\infty} |u_n|$.

On considère l'application $\varphi:(u_n)\in (E,||.||_1)\mapsto (v_n)\in (E,||.||_1),$ où $v_n=u_{n+1},\ \forall n\in\mathbb{N}.$

- 1) Montrer que φ est une application linéaire continue et déterminer la norme $|||\varphi|||$.
- 2) On considère l'application linéaire $\psi = \varphi id$. Déterminer la norme $|||\psi|||$. [on pourra considérer pour chaque $k \in \mathbb{N}$ la suite $u_{k,n} = (-1)^n$ si $n \leq k$ et $u_{k,n} = 0$ si n > k].

Questions de cours Soit (E, ||.||) un espace vectoriel normé.

1)a) Une partie A de E est compacte si et seulement si de toute suite (a_n) d'éléments de A on peut extraire une suite convergente c'est-à-dire : il existe une application strictement croissante $\varphi : \mathbb{N} \to \mathbb{N}$ telle que la suite $(a_{\varphi(n)})$ converge.

La compacité est aussi équivalente à la propriété de Borel-Lebesgue : de tout recouvrement ouvert $O_i, i \in I$ (i.e. les $O_i \subset E$ sont ouverts et $A \subset \bigcup_{i \in I} O_i$) on peut extraire un sous-recouvrement fini (i.e. \exists un sous-ensemble fini $J \subset I$ tel que $A \subset \bigcup_{i \in J} O_i$).

- 1)b) Soit K une partie compacte de E. Soit (y_n) une suite de f(K), par définition pour chaque n, on peut choisir x_n tel que $f(x_n) = y_n$. La proprité de Bolzano-Weierstrass satisfaite par K dit qu'on peut extraire une suite $(x_{\varphi(n)})$ $(\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante) convergeant vers $x \in K$. La continuité de f entraine que $y_{\varphi(n)} = f(x_{\varphi(n)})$ converge vers $f(x) \in f(K)$. La proprité de Bolzano-Weierstrass est donc satisfaite par f(K) qui est bien compact.
- 2) Soit une suite $u_n = (x_n, y_n) \in A$. Comme A est bornée, les suites de réels x_n et y_n sont bornées. D'après le théorème de Bolzano-Weierstrass dans \mathbb{R} , on peut extraire une suite convergente $x_{\varphi(n)}$. Par le même théorème, de la suite bornée $y_{\varphi(n)}$, on peut extraire une suite $y_{\varphi(\psi(n))}$ convergente. La suite $x_{\varphi(\psi(n))}$ extraite de la une suite convergente $x_{\varphi(n)}$ reste convergente. Au total, la suite $u_{\varphi(\psi(n))} = (x_{\varphi(\psi(n))}, y_{\varphi(\psi(n))})$ est une suite extraite de u_n convergente. Sa limite est dans A car A est fermé. Donc la propiété de Bolzano-Weierstrass est satisfaite par A et donc A est compacte.

Exercice 1.1)

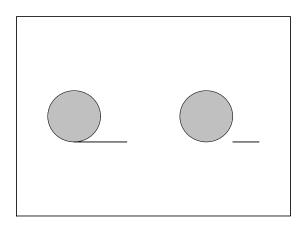


FIGURE 1 – Les parties A_0 et A_1 .

- 2) Pour tout $t \in [0,2]$ l'intérieur $A_t = B(i,1)$. En effet, on a toujours que l'intérieur d'une réunion de deux ensembles contient la réunion des intérieurs et on vérifie sans difficulté que pour un point z du cercle $\partial \bar{B}(i,1)$ il n'y a aucune boule ouverte $B(z,\varepsilon)$ centrée en ce point incluse dans A_t .
- 3) De manière générale l'adhérence d'une réunion de deux ensembles est la réunion des adhérences de ces ensembles. Donc pour tout $t \in [0,2]$ l'adhérence $\bar{A}_t = B_f(i,1) \cup [t,2]$.

Dans $(\mathbb{C}, |.|)$ la partie bornée A_t explicitement $|a| \leq 2$ pour tout $a \in A$ est compacte ssi elle est fermée c'est à dire si $\bar{A}_t = B_f(i, 1) \cup [t, 2] = A_t = B_f(i, 1) \cup [t, 2]$ ce qui revient à $t \in B_f(i, 1)$ et donc t = 0.

- **4)a)** Pour $z \in \mathbb{C}$ fixé, on a $|z a| \le |z| + |a| \le |z| + 2$ pour tout $a \in A_0$ donc $f(z) = \sup_{a \in A_0} |z a|$ est bien défini et $f(z) \le |z| + 2$.
- **4)b)** Montrons que f est 1-lipschitzienne. Soit $z, z' \in \mathbb{C}$, par définition des bornes supérieures, $\forall \varepsilon > 0, \ \exists a, a' \in A_0$ tels que $f(z) \varepsilon \le |z a|$ et $f(z') \varepsilon \le |z' a'|$ donc on a $\forall \varepsilon > 0, \ f(z) \varepsilon \le |z a| = |(z z') + (z' a)| \le |z z'| + |z' a| \le |z z'| + f(z')$ donc $f(z) \le |z z'| + f(z')$ en changeant le rôle de z et z' de même $f(z') \le |z z'| + f(z)$ qui donne $|f(z) f(z')| \le |z z'|$. Donc f est 1-lipschitzienne et donc continue.
- **4)c)** Comme f est continue et A_0 compact $\delta = \sup_{a \in A_0} f(z)$ existe et est atteint.

4)d) Déterminons le diamètre $\delta = \sup_{u,v \in A_0} |u-v|$: il est clair géométriquement (et justifiable à l'aide de l'inégalité triangulaire) que tout point de l'ensemble A_0 est contenu dans le disque D de diamètre ab où a=2 et $b=-\frac{2}{\sqrt{5}}+(1+\frac{1}{\sqrt{5}})i$ qui donne $\delta=1+\sqrt{5}$.

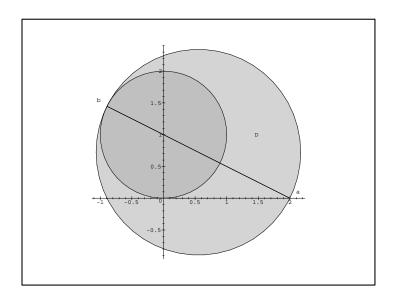


FIGURE 2 – Détermination de δ .

Exercice 2.1) φ est clairement une forme linéaire et on a

 $|\varphi(f)| = \left| \int_0^1 f(t) \, dt \right| \le \int_0^1 |f(t)| \, dt \le \int_0^1 ||f||_{\infty} \, dt = ||f||_{\infty} \, \operatorname{donc} \, \varphi \, \operatorname{est \, continue}.$

Donc $F = \operatorname{Ker} \varphi = \varphi^{-1}(\{0\})$ est fermé comme image réciproque d'un fermé par une application continue. Comme d'après le cours, $(E, ||.||_{\infty})$ est complet il en est de même du sous espace fermé F.

- 2) $A = \{f \in E \mid -2 < \int_0^1 f(t) dt < 2\} = \varphi^{-1}(] 2, 2[)$ est ouvert comme image réciproque d'un ouvert par une application continue.
- 3) $A \subset \varphi^{-1}([-2,2])$ qui est fermé comme image réciproque d'un fermé par une application continue. Donc $\overline{A} \subset A' = \varphi^{-1}([-2,2])$. Montrons qu'on a aussi $A' \subset \overline{A}$. En effet, si $f \in A'$, pour tout entier n > 0 on a $f_n = (1 1/n)f \in A$ du fait que

 $-2 \le \varphi(f) \le 2 \Rightarrow -(1-1/n) \le \varphi(f_n) = (1-1/n)\varphi(f) \le (1-1/n) \Rightarrow -2 \le \varphi(f_n) \le 2.$ Or $f_n \to f$ lorsque $n \to \infty$ donc $f \in \overline{A}$. On a donc $\partial A = \varphi^{-1}(\{-2,2\})$.

- 4) Le sous espace vectoriel F est inclus dans \overline{A} et dim F > 0 (par exemple la fonction f(x) = 2x 1 est dans $F \setminus \{0\}$) et donc F n'est pas borné donc \overline{A} n'est pas compacte.
- 5) D'après 1) $|\varphi(f)| \le ||f||_{\infty}$ donc si $f \in B_f(0,1)$ alors $|\varphi(f)| \le 1$ donc $f \in A$. On a donc $B_f(0,1) \subset A$.
- 6) $B_f(0,1) \subset B = \overline{A} \cap \{f \in E \mid ||f||_{\infty} \leq 3\}$. Si B était compact, $B_f(0,1)$ qui est fermé le serait aussi. Or comme E est de dimension infinie, le théorème de Rietz assure que la boule fermée $B_f(0,1)$ n'est pas compacte donc B n'est pas compact.

Exercice 3. 1) On a $||(v_n)||_1 = \sum_{n=0}^{\infty} |u_{n+1}| = \sum_{n=0}^{\infty} |u_{n+1}| = \sum_{n=1}^{\infty} |u_n| \le ||(u_n)||_1$ donc φ qui est évidemment linéaire est continue de norme $|||\varphi||| \le 1$. Pour toute suite $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = 0$, on a $||(v_n)||_1 = \sum_{n=1}^{\infty} |u_n| = ||(u_n)||_1$ donc $|||\varphi||| = 1$.

2) On a $|||\psi||| \le |||\varphi||| + |||id||| = 2$ (inégalité triangulaire satisfaite par |||.||| norme sur l'espace des applications continues de $(E, ||.||_1)$ dans lui-même).

Considérons pour chaque $k \in \mathbb{N}$ la suite $u_{k,n} = (-1)^n$ si $n \le k$ et $u_{k,n} = 0$ si n > k.

Pour k fixé, $||(u_{k,n})||_1 = k+1$ et $||\psi((u_{k,n}))||_1 = \sum_{n=0}^{k-1} |u_{k,n+1} - u_{k,n}| + |u_{k,k}| = 2k+1 \le ||(u_n)||_1$ donc $|||\psi||| = \sup \frac{||\psi(u)||_1}{||u||_1} \ge \frac{2k+1}{k+1}$ pour tout entier k et donc finalement $|||\psi||| = 2$.