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Introduction

This master thesis is the product of the work done during the internship of my Master
2 in Fundamental Mathematics under the supervision of Dr. Pierre Dehornoy. The
subject belongs to the field of low-dimensional topology, and more precisely to the study
of intersection of curves on surfaces. The internship mostly consisted in studying a recent
family of norms that are similar to the Thurston norm, but for 2-manifolds and with a
multi-curve as a parameter, called intersection norms.

Let us explain quickly intersection norms: for Σ a compact surface and γ a finite
collection of curves on Σ, the norm xγ is defined on H1(Σ;Z) by minimizing, for curves
in the considered class, the number of intersection points with γ. It extends uniquely to
a semi-norm on H1(Σ;R).

My work was twofold. On the one hand, I studied general properties of such norms
and especially focused on the case of the torus which is the simplest one. On the other
hand, I developed a program that allows to compute examples of intersection norms.

The first section of this report introduces particular norms called integral norms (that
include intersection norms) and studies some of their properties . The intersection norms
are then introduced in the second section and we give combinatorial tools to study them.
In the third section, we focus our study on the particular case of the torus and prove the
main theorem of this master. The latter stipulates that any integral norm on the plane
can be realized by a collection of geodesics on the torus and we explicit such a collection.
The fourth and last section of this master thesis is dedicated to present the program I
developed during this internship and give a quick guide on how to use it.

I would also like to take some few lines to thank my tutor Dr. Dehornoy for his patience
and his availability all along this internship and for having always been there to answer
my interrogations.
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1 INTEGRAL NORMS OVER RN

1 Integral norms over Rn

1.1 Definition

Definition 1. A norm µ : Rn → R is said to be integral if and only if it takes integral
values on the integral lattice, i.e., for every x ∈ Zn we have µ(x) ∈ Z.

The general study of such norms is interesting because they appear when studying
Thurston norms or intersection norms, those two being integral norms by definition. The
following section is dedicated to proving a fundamental result (Theorem 6) due to William
Thurston [Thu86] in the article defining the Thurston norm. Thurston gave a proof in
dimensions 2 and 3, and declares that an induction works in higher dimensions.

1.2 Properties

1.2.1 Characterization of the unit ball of integral norms

The first three lemmas of this section are introduced to simplify the main result. They
respectively give information on the asymptotic evolution of the intersection norm over
”offset rays” (Lemma 2), on the local evolution of the intersection norm over ”offset rays”
(Lemma 3 and Corollary 4) and a sufficient condition for a simplex to be a part of the
unit sphere of a norm (Lemma 5)). In this section, µ denotes an arbitrary integral norm.

Lemma 2. For every a0, b0 ∈ (Rn)∗ we have µ(a0 + nb0) ∼ nµ(b0)

Proof. By convexity of µ, we have −µ(−a0) +nµ(b0) ≤ µ(a0 +nb0) ≤ µ(a0) +nµ(b0).

Lemma 3. For every a0, b0 ∈ (Zn)∗ the sequence ∆ : n→ µ(a0 + (n+ 1)b0)−µ(a0 +nb0)
is increasing.

Proof. We have ∆n+1−∆n = (µ(a0 + (n+ 2)b0)−µ(a0 + (n+ 1)b0))− (µ(a0 + (n+ 1)b0)−
µ(a0 + nb0)). By rearranging the terms we then have ∆n+1 −∆n = µ(a0 + (n + 2)b0) +
µ(a0 + nb0)− µ(2a0 + 2(n+ 1)b0). The latter is positive by convexity of µ.

Corollary 4. For every a0, b0 ∈ (Zn)∗, there exists n0 ∈ N such that for all n ≥ n0 we
have µ(a0 + nb0) = µ(a0 + n0b0) + (n− n0)µ(b0).

Proof. The sequence ∆ from Lemma 3 is Z-valued, increasing and bounded by µ(b0),
hence there exists a rank n0 and an integer δ such that for all n ≥ n0, ∆n = δ. From
Lemma 2, we have δ = µ(b0) which proves the corollary.

Lemma 5. Let µ : Rn → R be a norm on Rn, n > 1. Let σ = [x1, . . . , xn] be a (n − 1)-

simplex in Rn such that for all i ∈ [1;n], µ(xi) = 1. If for some x ∈ ◦σ we have µ(x) = 1,
then the restriction of µ over σ is constant and equal to 1.

Proof. Consider x a point in σ = [x1, . . . , xn]. Since µ is sub-additive, we have µ(x) ≤ 1.
There exists a set of indices I with |I| = n− 1 such that x ∈ 〈x, (xi)i∈I〉. We rewrite this
family as J = (x′1, . . . , x

′
n), and denote by (λ1, . . . , λn) the barycentric coordinate of x

with respect to J . We have 1 = µ(x) = µ

(
n∑
i=1

λix
′
i

)
≤

n∑
i=1

λiµ(x′i) = λ1µ(x) + (1− λ1).

Hence we either have µ(x) = 1 or λ1 = 0. Since x is not contained in any face of σ we
have λ1 6= 0 and therefore µ(x) = 1.

7



1.2 Properties 1 INTEGRAL NORMS OVER RN

The next theorem is due to Thurston [Thu86]. Thurston’s proof is a bit heavy, and he
only wrote it explicitly in dimension 3. We provide an alternative proof that is easier to
write in every dimension.

Theorem 6 (Characteristic of the unit ball of integral norms). Assume that µ is an
integral norm. Then the unit sphere ∂Bµ is composed of finitely many faces given by
linear 1-forms with integral coefficients.

Proof. Let (e1, . . . , en) be a basis of Zn contained in the strict upper half space. We set for
all n ∈ N a1

n = e1+ne2. Thanks to Lemma 4 there exists a rank n2 such that for all n ≥ n2

we have µ(a1
n) = µ(a1

n2
) + (n− n2)µ(e2). Furthermore, µ(a1

n2+1) = µ(a1
n2

) + µ(e2).
We then have

a1
n2+1

µ(a1
n2+1)

=
a1
n2

+ e2

µ(a1
n2

) + µ(e2)
=

µ(a1
n2

)

µ(a1
n2

) + µ(e2)

a1
n2

µ(a1
n2

)
+

µ(e2)

µ(a1
n2

) + µ(e2)

e2

µ(e2)

.

So a1
n2+1 belongs to

◦[
a1
n2
, e2

]
, hence µ is constant and equal to 1 over the simplex

σ2 =
[
a1
n2
, e2

]
.

Using the same process, we construct recursively a simplex σi, i ≥ 3 by considering
the sequence ain = ai−1

ni−1+1 + nei, ni−1 being defined similarly to n2. The dimension
of σi increases by 1 at each step since (e1, . . . , en) is a basis. The construction of the
simplex ensures that, for all i, the restriction of µ over σi is equal to 1, hence the (n− 1)-
simplex σn is a part of ∂Bµ. Hence over the cone supported by σn in Sn (we remind that
since all ei are contained in a half space, by construction, σn also is), µ coincide with
a 1-form with integral coefficients. By a change of basis, we can deduce that ∂Bµ is a
composed of simplices given by 1-forms with integral coefficients. Since there exists a ball
with diameter r > 0 centered at 0 strictly contained in Bµ, there exists finitely many
1-forms with integral coefficients that determine a face in ∂Bµ (since there exists finitely
many norms that do not intersect B‖.‖2(r, 0)) and therefore, ∂Bµ is composed of finitely
many simplices so ∂Bµ is polyhedral.

Equivalently, this means that the closed unit ball of the dual norm on (Rn)∗ ' Rn is
the convex hull of finitely many integer points.

Another proof of this theorem that relies on a dual approach is due to Mikaël de la
Salle [Sal16].

Corollary 7. Let µ be an integral norm. Then the unit dual sphere ∂B∗µ is polyhedral
(eventually degenerated) and the vertex belongs to the integral lattice.

1.2.2 Decomposition theorem

Concerning intersection norms, a natural question is: considering two closed multi-
curves γ1 and γ2, can one compute the unit ball Bγ1∪γ2 using only Bγ1 and Bγ2 . We will
see that there exists an easy way to express B∗γ1∪γ2

as a function of B∗γ1
and B∗γ2

if the
norm is additive with regards to the union i.e. µγ1∪γ2 = µγ1 + µγ2 . Denote by ⊕ the
Minkowski sum (Definition 24). This is actually a consequence of a more generic theorem
that does not involve intersection norms and that we prove here:

Proposition 8. Let µ1 and µ2 be two semi-norms over Rn. Then for the unit balls of the
dual norms we have

B∗µ1+µ2
= B∗µ1

⊕B∗µ2
.

8



2 INTERSECTION NORMS

Proof. Since the case where one of the semi-norms is null is trivial, we only consider the
case where both µ1 and µ2 are non-null.

We first prove the right inclusion B∗µ1+µ2
⊆ B∗µ1

⊕ B∗µ2
. Consider ϕ ∈ B∗µ1+µ2

⊆
H1(Σ, ∂Σ;R)∗ = Rn. By definition we have (µ1 + µ2)∗(ϕ) ≤ 1. By hypothesis, we then
have µ∗1(ϕ) + µ∗2(ϕ) ≤ 1. We directly deduce that µ∗γ1

(ϕ) ≤ 1 and µ∗γ2
(ϕ) ≤ 1. Which

leads to the first inclusion: B∗µ1+µ2
⊆ B∗µ1

⊕B∗µ2
.

Now we prove the converse inclusion. Recall that by definition we have

B∗µ1
⊕B∗µ2

=
{
ϕ+ ψ

∣∣ϕ ∈ B∗µ1
, ψ ∈ B∗µ2

}
.

Consider ϕ ∈ B∗µ1
, ψ ∈ B∗µ2

. Then we have

(µ1 + µ2)∗(ϕ+ ψ) = sup
(µ1+µ2)(x)≤1

|(ϕ+ ψ)(x)| = sup
µ1(x)+µ2(x)≤1

|(ϕ+ ψ)(x)| .

Hence there exists a sequence (xn)n∈N ∈ (Bµ1+µ2)N such that lim
n→+∞

|(ϕ+ ψ)(xn)| = (µ1 +

µ2)∗(ϕ+ ψ). We can choose (xn)n∈N such that for all n ∈ N, µ1(xn) 6= 0 and µ2(xn) 6= 0.
We then have

ϕ(xn) + ψ(xn) = µ1(xn)ϕ

(
xn

µ1(xn)

)
+ µ2(xn)ψ

(
xn

µ2(xn)

)
.

Since ϕ ∈ B∗µ1
and ψ ∈ B∗µ2

, we have ϕ

(
xn

µ1(xn)

)
≤ 1 and ψ

(
xn

µ2(xn)

)
≤ 1 which leads

to
ϕ(xn) + ψ(xn) ≤ µ1(xn) + µ2(xn) ≤ 1.

By taking the limit, we have (µ1 +µ2)∗(ϕ+ψ) ≤ 1, hence ϕ+ψ ∈ B∗µ1+µ2
which completes

the proof for the second inclusion, and therefore completes the proof of the theorem.

We will apply Proposition 8 to intersection norms in the some case where one can
check that the norm is additive with respect to the union of curves, as we will see is the
case of geodesic collections on the torus.

2 Intersection norms

2.1 Intersection number

2.1.1 Definitions

Definition 9. Let Σ be a real compact surface with or without boundaries. A curve on Σ
is the image of an immersion of the circle S1 into Σ which is ambient isotopic to a poly
line on Σ.

Definition 10. Let Σ be a real compact surface with or without boundaries. A closed
multi-curve (or multi-curve for short) on Σ is a finite collection of closed curves in general
position, that is, such that the curves are transversal with respect to themselves and to
each other.

Definition 11. Let γ denote a fixed multi-curve on a compact surface Σ. For α another
multi-curve on Σ, the geometric intersection iγ(α) is the minimal number of intersections
between γ and a multi-curve ρ homotopic to α.

Remark 12. Beware that this definition is not symmetric since γ is fixed and not allowed
to change in its homotopy class.

9



2.1 Intersection number 2 INTERSECTION NORMS

Figure 1: The chain of circle is composed of null homotopic curves but there always be at least two
intersections with any curves homotopic with the red one.

Given a closed multi-curve γ this definition induces a function xγ : H1(Σ, ∂Σ;Z)→ N
defined by

xγ(a) := min
[α]=a

iγ(α)

Since the number of intersections is always an integer number, xγ is effectively defined
by a minimum, the lower bound being always realized by a closed multi-curve.

Definition 13. Consider γ a closed multi-curve on Σ. A multi-curve α is said to be
minimizing (or minimal) with respect to xγ if and only if,

iγ(α) = xγ(α).

If there is no ambiguity, we will just say that a closed multi-curve α is minimizing.

Lemma 14 (Geometric simplification). For any closed mutli-curve γ and any homotopy
class a in H1(Σ, ∂Σ;Z), there exist a simple curve α such that [α] = a and xγ(a) = iγ(α).

2.1.2 General properties

Lemma 15 (Linearity). xγ is linear over the rays i.e.

∀a ∈ H1(Σ, ∂Σ;Z), ∀n ∈ N, xγ(n.a) = n.xγ(a)

Proof. The inequality xγ(n.a) ≤ n.xγ(a) is immediate since a closed multi-curve composed
of n parallel copies of α have an intersection number iγ(n.a) = n.iγ(a). Reciprocally, if
we consider a minimizing closed multi-curve α in the homotopy class a. Lemma 14
allows us to choose a simple one. Since [α] is a class divisible by n, the class of α is
null in H1(Σ, ∂Σ;Z/nZ). This implies that the connected regions of Γ\α can be labeled
from 0, . . . , n−1 mod n, such that the label increase when we go from one region to another
by crossing α positively. The closed multi-curve α can then be seen as the reunion of n
close multi-curves: the ones that separate the region 0 from the region 1, the region 1
from the region 2, and so on. Each of these closed multi-curves has a as homology class.
If one of these was not minimal, we could replace it by a minimal one, which would be
incompatible with α being minimal. Hence, each one of these closed multi-curves cross γ
xγ(a) times and therefore xγ(n.a) = n.xγ(a).

Lemma 16 (Triangular inequality). xγ is subadditive, i.e.

∀(a, b) ∈ H1(Σ, ∂Σ;Z), xγ(a+ b) ≤ xγ(a) + xγ(b)

10



2 INTERSECTION NORMS 2.2 Intersection norms

Proof. The union of two closed multi-curves realizing xγ(a) and xγ(b) intersect γ xγ(a) +
xγ(b) times.

Lemma 17. For all a in H1(Σ, ∂Σ;Z), xγ(a) = xγ(−a).

Proof. The intersection number is a geometric definition and does not depend on the
orientation of the closed multi-curve.

Corollary 18. The intersection number xγ of a curve is the absolute value of a Z-linear
function i.e.

∀a ∈ H1(Σ, ∂Σ;Z), ∀n ∈ Z, xγ(n.a) = |n.xγ(a)|

The property of xγ reminds us of semi-norms and in fact we are going to show that xγ
can be extended into a semi-norm on H1(Σ, ∂Σ;R).

2.2 Intersection norms

The main goal of this section is to extend the concept of intersection numbers defined
over H1(Σ, ∂Σ;Z) to a semi-norm defined over H1(Σ, ∂Σ;R). We extend xγ on H1(Σ, ∂Σ;R).

2.2.1 Extension over H1(Σ, ∂Σ;R)

Definition 19. We define the semi-norm xγ on H1(Σ, ∂Σ;Q) by

∀q ∈ Q, ∀a ∈ H1(Σ, ∂Σ;Q), xγ(q.a) = q.xγ(a)

The linearity on the rays (Lemma 15) assures that this extension is well-defined. The
triangular inequality (Lemma 16) will allow us to extend this definition over H1(Σ, ∂Σ;R).

Proposition 20. Let Σ be a compact oriented surface and γ a multi-curve on Σ. The
function xγ extends canonically into a continuous function xγ : H1(Σ, ∂Σ;R)→ R+ which
is convex and linear on rays through the origin. If, furthermore, the multi-curve γ fills Σ
in the sense that the complement Σ\γ is the union of topological discs, then xγ is a norm.

Proof. The vector space H1(Σ, ∂Σ;Q) is finite dimensional. We will note n its dimen-
sion. By the equivalency of norms on finite dimensional vector spaces, we just have to
show the continuity of xγ from (H1(Σ, ∂Σ;Q), ‖ · ‖∞) to R endowed with its Euclidean

metric. Consider x ∈ H1(Σ, ∂Σ;Q), ‖x‖∞ ∈ Q, we then have, xγ(x)

‖x‖∞ = xγ

(
x
‖x‖∞

)
. Con-

sider ρ ∈ H1(Σ, ∂Σ;Q) such that ‖ρ‖∞ = 1, ρ belongs to the unit ball of ‖ · ‖∞ which is
simply a n-hypercube. Let denote by (ei)i∈1...2n the vertices of this hypercube. We then

have ρ =
2n∑
i=1

aiei with
∑
i

ai = 1, ai ≥ 0. By sub-additivity (Lemma 15) we get xγ(ρ) ≤

maxi (xγ(ei)). Let denote δγ this real. Hence for all x ∈ H1(Σ, ∂Σ;Q) we have xγ(x) ≤
δγ‖x‖∞. xγ is then Lipschitz continuous, hence continuous and can therefore be continu-
ously extended to H1(Σ, ∂Σ;R) by the density of H1(Σ, ∂Σ;Q) into H1(Σ, ∂Σ;R).

The extension of xγ is the norm if for every non-null homotopy class, the intersection
number is null. Consider α a minimizing closed multi-curve for a non-null homotopy class a
in H1(Σ, ∂Σ;Z), since Σ/γ decomposes into a union of topological discs, α crosses γ at
least once since it is non-null homotopic.

11



2.3 Intersection norms and Eulerian coorientations 2 INTERSECTION NORMS

2.3 Intersection norms and Eulerian coorientations

A natural question is whether the vertices of B∗γ (or equivalently the faces of Bγ) have
a nice interpretation. Pierre Dehornoy gave such an interpretation in [Deh16] in terms of
Eulerian coorientations (Theorem 21). This gives a combinatorial interpretation of the
dual unitary ball of an intersection norm which is convenient for algorithmic applications.

Considering the multi-curve γ as a graph whose vertices are the double-points and
whose edges are the simple arcs of γ, a coorientation of γ is the a choice of a coorien-
tation for every edge of γ. A given multi-curve has only finitely many coorientations.
A coorientation is Eulerian if around every double point, there are two positively and
two negatively cooriented edges. A coorientation ν can be algebraically paired with an
oriented curve α using signed intersection. If ν is Eulerian, it turns out that the pairing
ν(α) depends only on the homology class of α, so that a Eulerian coorientation ν induces
an integral cohomology class [ν] ∈ H1(Σ;Z). One can wonder which classes are repre-
sented by such Eulerian coorientations. A first remark is that representing a class a by
a curve α which minimizes the geometric intersection with γ, one sees that |ν(a)| is not
larger than xγ(a). A second remark is that the parity of ν(a) is fixed by γ: indeed, since
all intersection points are counted with a coefficient ±1, the parity of ν(α) is determined
by the parity of iγ(α) and does not depend on ν; since γ is a graph of even degree, the
parity of iγ(α) does not change if we replace α by a homologous curve. Our second result
states that these restrictions are the only ones: the classes of the Eulerian coorientations
are exactly the integer points in B∗γ that are congruent to [γ]2 mod 2. More interestingly,
the extremal points of B∗γ correspond to some Eulerian coorientations.

Theorem 21. Let Σ be a compact oriented surface and γ a multi-curve on Σ. The dual
unit ball B∗γ in H1(Σ;R) is the convex hull of the points in H1(Σ;Z) given by all Eulerian
coorientations of γ. Equivalently, for every a in H1(Σ, ∂Σ;Z), we have

xγ(a) = min
[α]=a

iγ(α) = max
ν Eulerian
coor. of γ

ν(a).

Moreover every point in B∗γ∩H1(Σ;Z) that is congruent to [γ]2 mod 2 is the class of some
Eulerian coorientation.

Proof. Proof in [Deh16]

Figure 2: Illustration of Theorems 21. On the left a collection γ of four geodesics on the torus T2, and
a Eulerian coorientation (blue arrows). On the right the dual unit ball B∗

γ ⊂ H1(T2;Z) of the associated
intersection norm. The empty circle denotes the origin. The big dots denote those classes in H1(T2;Z)
congruent to [γ]2 mod 2.

12



3 INTERSECTION NORMS ON THE FLAT TORUS

Remark 22. From an algorithmic point of view, this theorem gives a combinatorial way
to compute the dual unit ball of an intersection norm if we know the curve that induces
it. However, since the problem of counting Eulerian paths is ]P-complete [Bri04], the
approach consisting in generating all possible Eulerian orientations is not in P under the
assumption P 6= NP. Indeed, if it was, the BEST Theorem [Aar51] would provide a
polynomial time algorithm to resolve the counting problem and P would be equal to NP.

3 Intersection norms on the flat torus

3.1 Normal polygons and Minkowski sum

The aim of this section is to present a simple decomposition of every normal polygon as
a Minkowski sum (Theorem 30). A normal polygon is a convex polygon symmetric about
the origin. Simple examples of such polygon are dual unitary ball of any intersection
norm where H1(Σ, ∂Σ;Z) is a Z-module of rank two.

3.1.1 Definitions

Definition 23 (Normal polygon). A convex polygon in R2 is called normal if it is sym-
metric with respect to the origin.

Definition 24 (Minkowski sum). Let E be a vector space, consider A and B two subsets
of E. The Minkowski sum A⊕B is defined as

A⊕B = {x+ y |x ∈ A, y ∈ B}

Definition 25. Given a finite family of non-null and non-pairwise collinear vectors

{γi}i∈[| 1;n |] such that
n∑
i=1

γi = 0 there exists one and only one convex polygon up to transla-

tion denoted P
({
{γi}i∈[| 1;n |]

})
such that the faces of P

({
{γi}i∈[| 1;n |]

})
are of the form

{x0 + λγi |λ ∈ [0; 1], x0 ∈ R2}.

Figure 3: Illustration of Definition 25: On the right we see the convex polygon composed of the family
of vectors on the left

.

Definition 26. Consider Γ a polygon in R2 and σ a face of Γ. We call support vectors
of σ a vector −→σ such that σ = {x0 + λ−→σ |λ ∈ [0; 1], x0 ∈ R2} (a face admits exactly two
support vectors which are opposite). Given a face σ we associate the centered face of σ
denoted defined by

∨
σ=

{
λ−→σ

∣∣∣∣λ ∈ [−1

2
;
1

2

]}
The centered face

∨
σ does not depend on the choice of −→σ .
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3.1 Normal polygons and Minkowski sum 3 INTERSECTION NORMS ON THE FLAT TORUS

Remark 27. If Γ is a normal polygon, then two opposite faces correspond to the same
centered face. In fact the set of (non-redundant) centered faces characterize a normal
polygon.

Notation 1. Given Γ a normal polygon, we will denote by FΓ the set of non-redundant
centered face of Γ.

Definition 28 (Contraction of centered face). Let Γ be a normal polygon, given a centered
face σ ∈ FΓ, we define the contraction CΓ(σ) of σ over Γ by

CΓ(σ) =

{
x− 1

2
−→σ
∣∣∣∣x ∈ Γ, 〈x | −→σ 〉 ≥ 1

2

}
∪
{
x+

1

2
−→σ
∣∣∣∣x ∈ Γ, 〈x | −→σ 〉 ≤ −1

2

}
This operation does not depend on the choice of −→σ .

This operation simply corresponds to the contraction of the red band in Figure 4:{
x ∈ Γ

∣∣ |〈x | −→σ 〉| ∈ [−1
2
; 1

2

]}
. The result of this operation, CΓ(σ) corresponds to the nor-

mal polygon supported by FΓ\ {σ}.

Figure 4: Illustration of the contraction of the face that supports the transparent red band of the normal
polygon. From left to right, one can see the polygon before and after the contraction

Notation 2. Given Γ a normal polygon, given a centered face σ ∈ FΓ(σ), given −→σ a
support vector of σ, we denote by ΓU the set

ΓU =

{
x− 1

2
−→σ
∣∣∣∣x ∈ Γ, 〈x | −→σ 〉 ≥ 1

2

}
and by ΓD the set

ΓD =

{
x+

1

2
−→σ
∣∣∣∣x ∈ Γ, 〈x | −→σ 〉 ≤ −1

2

}
We hereby have CΓ(σ) = ΓU ∪ ΓD. The choice of the opposite support vector exchanges
the sets ΓU and ΓD.

Lemma 29. Let Γ be a normal polygon, let σ ∈ FΓ be a centered face of Γ, then we have

Γ = CΓ(σ)⊕ σ

Proof. We fix a support vector −→σ . This choice will not influence the demonstration
because we work with symmetrical sets and it will just exchange ΓU and ΓD

• Consider x ∈ Γ and write x = ασ + βδ where σ is the normalization of −→σ and
δ = rotπ

2
(σ)

14



3 INTERSECTION NORMS ON THE FLAT TORUS 3.2 Case of geodesics on the flat torus

– If |〈x | −→σ 〉| < 1
2
, then α belongs to

]
−‖
−→σ ‖
2

;
‖−→σ ‖

2

[
. Without loss of generality,

we will consider that α ≥ 0. Hence we have

〈
x+

(
‖−→σ ‖

2
− α

)
σ

∣∣∣∣−→σ 〉 = 1
2

which gives x +

(
‖−→σ ‖

2
− α

)
σ ∈ ΓU . This gives the following decomposition:

x = x+

(
‖−→σ ‖

2
− α

)
σ︸ ︷︷ ︸

∈ΓU

−1

2
−→σ

︸ ︷︷ ︸
∈CΓ(σ)

+

(
1

2
+ α− ‖

−→σ ‖
2

)
︸ ︷︷ ︸

∈[− 1
2

; 1
2 ]

σ

︸ ︷︷ ︸
∈σ

– If x ∈ ΓU then x = x− 1

2
−→σ︸ ︷︷ ︸

∈CΓ(σ)

+
1

2
−→σ︸︷︷︸
∈σ

.

– The case x ∈ ΓD is treated similarly.

Hence we have Γ ⊆ CΓ(σ)⊕ σ.

• Consider x ∈ CΓ(σ)⊕σ and write x = x1 +x2 with x1 ∈ CΓ(σ), x2 ∈ σ. Without loss
of generality, we can assume x1 = a− 1

2
−→σ with a ∈ ΓU , x2 = λ−→σ where λ ∈

[
−1

2
; 1

2

]
.

Since 〈x |σ〉 =
〈
a− 1

2
−→σ + λ−→σ

∣∣σ〉, we have

−1

2
≤ 〈x |σ〉 =

〈
a+

(
λ− 1

2

)
−→σ
∣∣∣∣σ〉 ≤ 〈a |σ〉

Since
〈
x
∣∣ rotπ

2
(σ)
〉

=
〈
a
∣∣ rotπ

2
(σ)
〉

we deduce that x belongs to Γ.
This leads to Γ ⊆ CΓ(σ)⊕ σ which achieve the demonstration.

We immediately obtain

Theorem 30 (Decomposition of normal polygon). Let Γ be a normal polygon, Γ decom-
poses into the Minkowski sum of its centered faces, i.e.

Γ =
⊕
σi∈FΓ

σi

3.2 Case of geodesics on the flat torus

Geodesics form a particular class of curves on a Riemanian surface that are the
”straightest” curves on the surface. In this section, we explore the properties of in-
tersection norms when the closed multi-curve γ is made of a collection of geodesics on
the torus. We will prove the main theorem of this Master’s thesis which says that the
geodesic are full for intersection norms in the sense that for every closed multi-curve γ,
there exists a collection of geodesics such that the intersection norm induces by γ and the
geodesic collection are the same. We will even give a simple way to express this collection
using the dual unit ball of µγ.

3.2.1 Geodesics and minimality

In this section we show that if we consider the intersection norm for a union of geodesics,
then geodesic are minimizing for any homology class in H1(T2;Z). We will first prove the
case of intersection norms of a unique geodesic γ.
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3.2 Case of geodesics on the flat torus 3 INTERSECTION NORMS ON THE FLAT TORUS

Proposition 31 (Weak Geodesic Minimality Theorem). For any a in H1(T2;Z), for any
geodesic α in the homology class a and for any geodesic γ, we have

µγ(a) = iγ(α)

Proof. Since γ is a geodesic, it is represented by a straight line in the universal covering R2

of T2. Hence, there exists a transformation of T2 in SL2(R) such that its action on R2

brings the representation of γ on the abscissa. In this case, for any homotopy class a, the
intersection number is the minimum of number of time a curve in a crosses the abscissa
which can be achieved by a geodesic.

From this we immediately deduce a stronger theorem which applies to a finite collection
of geodesics.

Theorem 32 (Geodesic Minimality Theorem). For any a in H1(T2;Z), for any geodesic α
in the homology class a, and for any collection of geodesics γ1, . . . , γn we have

µγ1∪...∪γn(a) = iγ1∪...∪γn(α)

Proof. For every geodesic γj, the minimal intersection number iγj(a) is accomplished by α.
Hence α minimizes all intersection number for all the geodesic and hence minimizes the
intersection number of the whole collection which proves the theorem.

This theorem is important because it allows to decompose the dual unitary ball of the
intersection norm of a collection of geodesic into the Minkowski sum of all the unitary
ball of every geodesic in the collection. This theorem implies indeed the additivity of
the intersection norms for geodesic which combined with Proposition 8 brings us the
decomposition.

3.2.2 Intersection norms of family of geodesic

Theorem 33 (Additivity of intersection norms of geodesics). Let γ1, . . . , γn be a finite
collection of geodesics over the flat torus, then we have

µγ1∪...∪γn =
n∑
i=1

µγi

Proof. Consider a in H1(T2;Z) and α a geodesic in the homology class a. Using Theo-

rem 32 we get µγ1∪...∪γn(a) = iγ1∪...∪γn(α) =
n∑
i=0

iγi(α) since for every γi we have iγi(α) =

µγ(α) (Proposition 31), we obtain µγ1∪...∪γn =
n∑
i=1

µγi .

As we said previously using Proposition 8 we immediately get

Corollary 34 (Geodesic dual decomposition theorem). Let γ1, . . . , γn be a finite collection
of geodesics over the flat torus, then we have

B∗γ1∪...∪γn =
n⊕
i=1

B∗γi
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3 INTERSECTION NORMS ON THE FLAT TORUS 3.2 Case of geodesics on the flat torus

3.2.3 Intersection norm and dual unitary ball of the intersection norm of a geodesic

Notation For any homology class a in H1(T2;Z), we denote by ã the segment [−a, a]
in H1(T2;Z).

Proposition 35. Consider γ a geodesic on T2, then we have B∗γ = ˜[γ].

Proof. This is a simple application of Theorem 21 by considering the curve as a graph
with one vertex and one edge.

This immediatively gives

Corollary 36. Consider γ a geodesic on T2. For every homology class a in H1(T2;Z) we
have xγ(a) = |det (a, [γ])|

3.2.4 Fulness theorem on the torus

This section proves two important theorems on intersection norms on the torus.

Notation 3. For any centered segment σ = [−a, a], a 6= 0 in H1(T2;Z), we denote by
∗
σ

the homology class a such that arg(a) is minimal (the argument precision is only here to
ensures that this operation is well defined).

Theorem 37. For any closed multi-curve γ on T2, there exists a finite collection of
geodesics γ1, . . . , γn on T2 such that µγ = µγ1∪...∪γn. Moreover one collection is given by

a collection of geodesic with
{ ∗
σ∈ H1(T2;Z)

∣∣∣σ ∈ FB∗γ

}
as homology classes. In the case

where one
∗
σ has its coordinates not coprime, we denote by n the greatest common divider

of those coordinates and we consider n parallel copies of a geodesic with
∗
σ /n as homology

class. Such decomposition is unique up to translations of the geodesics and reversing
orientations of those.

Proof. Consider the normal polygon B∗γ, for every centered face σ in FB∗γ , σ is of the
form [−a, a] with a being a homology class with integral coefficients. This comes from
Theorem 21 which ensures that the extremities of one face have the same parity. In-
deed, this implies that when centered, the vertices of the face keep integral coefficients.

Hence the centered faces are the dual unit ball of geodesics in homology class
∗
σ. The

recomposition of B∗γ is assured by Corollary 34.

Associated with Corollary 36 we immediately get

Corollary 38 (Explicit formula for intersection norms on the torus). For any closed
multi-curve γ on T2 we have

∀a ∈ H1(T2;Z), µγ =
∑
σ∈FB∗γ

∣∣∣det
(
a,
[ ∗
σ
])∣∣∣ .

Theorem 39. Any normal polygon with integral vertices of same parity is realizable by a
family of geodesic. Moreover, those are the only polygons realizable as intersection norms
of closed multi-curve on T2.

Proof. This is a direct consequence of Corollary 34 along with the restriction of the parity
of the vertices of the dual unit ball given by Theorem 21.

Remark 40. Most of the consideration used in the proof of theorems on the geodesic
collections on the torus are no longer true in higher genus and hence the generalization
of these theorems are not trivial.
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4 SOFTWARE

4 Software

4.1 Presentation

Disclaimer: All technical content written is this document represents the state of the
software and the technology as it is on June the 10th 2016. The source code of the
software is available at https://github.com/PCottalorda/MT/.

Figure 5: The software at runtime. One can see from the background to the foreground Microsoft Visual
Studio, and the console user interface and the control window

The largest part of the internship consisted in developing a program allowing to com-
pute examples of intersection norms. The development included different approaches and
the development of different algorithms but the final version only kept the Eulerian ap-
proach allowed by Theorem 21. The project was developed under Microsoft Visual Studio
Ultimate 2013 and hence has the structure of a Microsoft Visual Studio project but an
adaptation to be cross-platform using a Makefile is expected. The source code and soft-
ware are distributed under the Apache License Version 2.0 [Apache2.0]. The software
depends on two external libraries Boost [Boost] and SFML [SFML] which are both cross-
platform. The program compiles with any compiler supporting the C++14 standard and
the preprocessor instruction ”#pragma once”. This is the case for most of the main C++
compiler such as Clang [1], GCC [2], Microsoft Visual C++ Compiler [3], Intel C++
Compiler [4], IBM XL C/C++ [5], etc. with the main notable exception being Solaris
Studio C/C++ [6].

4.1.1 Limitations

• The software only works with orientable 2-manifolds without boundaries.

• The general complexity of the algorithm is exponential.

• No generic catcher at the highest level of the program.

• Possible overwrite of previous computed files (even it is VERY unlikely -(number of
files already computed)/232 on x86 64 architectures-).

4.1.2 Features

• A minimal User Interface in a consol (Figure 6).
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4 SOFTWARE 4.2 Quick guide

Figure 6: Screenshot of the output of one execution of the program

• A control window allowing to enter and set the multi-curve from which we want to
compute the intersection norm (Figure 7).

Figure 7: The control Window

• A LATEX generator joined with a picture generator that allows to generate LATEXfiles
to save the norm computed. We can see on Figure 8 an example of the output of the
software.

Figure 8: LATEX file generated by the software

4.2 Quick guide

This section is a guide on how to use the software.
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4.2 Quick guide 4 SOFTWARE

4.2.1 Choosing the genus

When one launch the program, a consol window open (if it hasn’t been launched from
a terminal) and a message is displayed on the standard output. The images from this
guide has been made on the operating system Windows 10.

The program asks to enter the genus of the surface on which you will enter your
closed multi-curves (”Enter the genus (or quit with <q> or <quit>):”). You can
also choose to quit by typing q or quit. If you enter a negative or null number or if you
type a non-numeric chain of character other than q or quit, then an error message is
displayed and the program asks once again to enter the genus of the surface.

4.2.2 Entering the closed multi-curves

Once one has entered a valid input for the genus, a new window is displayed (the
Control Window). One can see different parts on this window. First of all, the big blue
square corresponds to the fundamental polygon of the closed compact surface with the
genus chosen on the previous step (here a torus (genus 1), but on Figure 7 one can see an
example with a genus 4 surface).

Figure 9: The program at runtime: Opening of the control window.

Four main pieces of information are displayed on the window:
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4 SOFTWARE 4.2 Quick guide

1. The fundamental polygon here in blue.

2. The internal state of the program here framed in the green box on the top left of the
screen. It provides:

• The genus of the surface.

• The position of the cursor within the fundamental polygon.

• The state of the cursor (binded or not to the window), which means that the
cursor is forced to stay on the fundamental polygon. This is the only state where
you can enter a curve on the program.

• Whether the cursor is on the first point of the current curve being entered
(onClosure) or not.

• Whether the cursor is on a boundary of the fundamental polygon or not (onBoundiary).
In the positive case, the index of the boundary is displayed.

3. An instruction part here framed in the pink box on the top right of the screen.

4. The cursor here framed in the red box on the center of the screen.
On this picture, the cursor is displayed as a green ball. This is the way it is displayed
when it is binded to the window and not on a boundary of the fundamental polygon.
When the cursor is on a boundary of the fundamental polygon, the cursor is displayed
in red (pink circle on Figure 11).

Figure 10: The program at runtime: Beginning to set the polylines.

Once the curve is binded one can click to place the points of the polyline that will
be used to represent the closed multi-curves. The first point is always displayed in red
(brown rhombus on Figure 11), and for every click the program sets a new point of the
polyline. This first point can not be placed on a boundary.
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Figure 11: The program at runtime, with the cursor on the boundary.

When a point is fixed to the boundary, the corresponding boundary is displayed in
yellow (orange squares on Figure 11), the boundaries attract the cursor if it is near which
is more comfortable to the user. When a point is fixed on the boundary, the cursor is
immediately transported at the opposite border which is topologically the same (green
hexagon on Figure 11). When the user wants to close one curve he only has to put the
cursor on the initial point of the curve. The initial point as well as the boundaries attracts
the cursor in order to facilitate the closing process.

Figure 12: The program at runtime: Setting of multiple curves.

Once a polyline has been set, the user can enter another one using the same process as
for the first one (Figure 12). Once the user has finished setting all the polyline representing
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the desire closed multi-curve, he can press <ESC> to compute the associated intersection
norm. Once the escape key has been pressed, the norm is computed (output on Figure 14),
the window is closed and a LATEXfile is generated on the GenData folder (which needs to
be created first). In this example, the program was generated in under 2 second in Debug

compilation option.

Figure 13: The program at runtime: Output of the program.

Figure 14: File generated by the program.
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4.3 Performances

This section introduces four quick examples with their computation time. The tests
has been realized on an Intel Core i7 5500U 2.4GHz and 16Go of RAM. The computation
times given are internal.

Example 41.

• Output:

• Number of points: 2

• Number of Eulerian orientations: 2

• Computation time: 17ms

Example 42.

• Output:

• Number of points: 22

• Number of Eulerian orientations: 834

• Computation time: 6410ms
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Example 43.
We here give an example with a surface of gender 5.

• Output:

• Number of points: 17

• Number of Eulerian orientations: 156

• Computation time: 4890ms

Example 44.

• Output:

• Number of points: 29
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• Number of Eulerian orientations: 2750

• Computation time: 42277ms (42s).

4.4 Possible improvement

• The main battle neck of the program is the generation of Eulerian coorientations. In
order to have a working version has soon as possible, I made a non-optimal version
of the coorientations generator. A faster version using pre-computed material can
greatly increase the computing speed.

• Support of the boundaries.

• Documentation for the program.

• A file management system.

• A generator of a C++ functor (eventually serialized) of the intersection norm using
formula of Corollary 38.

• A parallelized version of the program.
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