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The theory of dynamical systems is a major mathematical discipline closely
intertwined with all main areas of mathematics. It has greatly stimulated re-
search in many sciences and given rise to the vast new area variously called
applied dynamics, nonlinear science, or chaos theory. This introduction
for senior undergraduate and beginning graduate students of mathemat-
ics, physics, and engineering combines mathematical rigor with copious
examples of important applications. It covers the central topological and
probabilistic notions in dynamics ranging from Newtonian mechanics to
coding theory. Readers need not be familiar with manifolds or measure
theory; the only prerequisite is a basic undergraduate analysis course.

The authors begin by describing the wide array of scientific and mathe-
matical questions that dynamics can address. They then use a progression
of examples to present the concepts and tools for describing asymptotic
behavior in dynamical systems, gradually increasing the level of complex-
ity. In the final chapters the panorama introduces modern developments
and applications of dynamics, discussing logistic maps, hyperbolic dynam-
ics, strange attractors, twist maps, closed geodesics, and applications to
number theory.
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Preface

This book provides a self-contained introductory course on dynamical systems for
advanced undergraduate students as well as a selection of recent developments
in dynamical systems that serve to illustrate applications and refinements of the
ideas from this course. The parts differ fundamentally in pedagogical approach but
are closely interrelated. Either part can stand on its own; the course is complete
without the panorama, and the panorama does not require this specific course as
background. Scientists and engineers may use this book by picking and choosing,
from both the panorama and the course text. Errata and other pertinent information
can be found by visiting the first author’s web page.

Introduction. The book begins with an introduction to pique interest in dynamics
and to present samples of what scientific and mathematical problems dynamics
can address. It adds motivation to the course but it is not a required part of it.

The Course. The undergraduate course assumes only knowledge about linear maps
and eigenvalues, multivariable differential calculus, and Riemann integration with
proofs. Some background is developed in Chapter 9 and the Appendix. Occasionally
somewhat more involved portions of the text are set off with this different font to
emphasize that the course will remain self-contained when these are omitted.
These portions do not assume any more prior knowledge. Dynamics provides
the concepts and tools to describe and understand complex long-term behavior
in systems that evolve in time. The course accordingly develops these ideas in a
gradual progression toward ever greater complexity, with proofs. Both topological
and statistical points of view are developed. We know of no other text that makes
both accessible at the undergraduate level.

Panorama. The panorama of dynamical systems assumes slightly stronger mathe-
matical background in some places, but this is balanced by a more relaxed standard
of proof that serves to outline and explain further developments carefully with-
out carrying all of them out. It provides applications of the ideas in the course
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and connects them to topics of current interest, including ample references in the
text.

Further Reading. The most natural continuation of the course presented here and
of some subjects in the panorama is our book, Introduction to the Modern Theory of
Dynamical Systems (Cambridge University Press, 1995), which also provides some
reading to complement this course. We offer reading suggestions at the end of the
book.

Acknowledgments. Many of the figures were produced by Boris Katok, Serge
Ferleger, Roland Gunesch, Ilie Ugarcovici, and Alistair Windsor. Figure 4.4.3 was
kindly provided by Sebastian van Strien, Figure 5.2.1 is due to Daniel Keesing, and
Figure 13.3.2 was created by Mattias Lindkvist. The exposition of this book bene-
fited from the Mathematics Advanced Study Semesters at The Pennsylvania State
University, where early drafts were tested and many exercises developed in the fall of
1996. Thanks are also due to the Center for Dynamical Systems at The Pennsylvania
State University for substantial financial support for almost all the time of collab-
oration. It has been a privilege and distinct pleasure to work with our editor at
Cambridge University Press, Lauren Cowles. She combined patience and prodding
ideally, and she procured very helpful evaluation of the text that determined the
course of our work in the last year.

Finally, most thanks are due to Kathleen Hasselblatt and Svetlana Katok for their
support and unlimited patience.
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CHAPTER 1

Introduction

This chapter is a prelude to this book. It first describes in general terms what the
discipline of dynamical systems is about. The following sections contain a large
number of examples. Some of the problems treated later in the book appear here
for the first time.

1.1 DYNAMICS

What is a dynamical system? It is dynamical, something happens, something
changes over time. How do things change in nature? Galileo Galilei and Isaac Newton
were key players in a revolution whose central tenet is Nature obeys unchanging
laws that mathematics can describe. Things behave and evolve in a way determined
by fixed rules. The prehistory of dynamics as we know it is the development of
the laws of mechanics, the pursuit of exact science, and the full development of
classical and celestial mechanics. The Newtonian revolution lies in the fact that
the principles of nature can be expressed in terms of mathematics, and physical
events can be predicted and designed with mathematical certainty. After mechanics,
electricity, magnetism, and thermodynamics, other natural sciences followed suit,
and in the social sciences quantitative deterministic descriptions also have taken a
hold.

1.1.1 Determinism Versus Predictability

The key word is determinism: Nature obeys unchanging laws. The regularity of
celestial motions has been the primary example of order in nature forever:

God said, let there be lights in the firmament of the heavens to divide the day from the
night and let them be for signs and for seasons and for days and years.

The successes of classical and especially celestial mechanics in the eighteenth and
nineteenth centuries were seemingly unlimited, and Pierre Simon de Laplace felt
justified in saying (in the opening passage he added to his 1812 Philosophical Essay

1
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on Probabilities):

We ought then to consider the present state of the universe as the effects of its pre-
vious state and as the cause of that which is to follow. An intelligence that, at a given
instant, could comprehend all the forces by which nature is animated and the respec-
tive situation of the beings that make it up, if moreover it were vast enough to submit
these data to analysis, would encompass in the same formula the movements of the
greatest bodies of the universe and those of the lightest atoms. For such an intelli-
gence nothing would be uncertain, and the future, like the past, would be open to its
eyes.1

The enthusiasm in this 1812 overture is understandable, and this forceful descrip-
tion of determinism is a good anchor for an understanding of one of the ba-
sic aspects of dynamical systems. Moreover, the titanic life’s work of Laplace in
celestial mechanics earned him the right to make such bold pronouncements.
There are some problems with this statement, however, and a central mission
of dynamical systems and of this book is to explore the relation between de-
terminism and predictability, which Laplace’s statement misses. The history of
the modern theory of dynamical systems begins with Henri Jules Poincaré in
the late nineteenth century. Almost 100 years after Laplace he wrote a summary
rejoinder:

If we could know exactly the laws of nature and the situation of the universe at the
initial instant, we should be able to predict exactly the situation of this same universe
at a subsequent instant. But even when the natural laws should have no further secret
for us, we could know the initial situation only approximately. If that permits us to
foresee the subsequent situation with the same degree of approximation, this is all we
require, we say the phenomenon has been predicted, that it is ruled by laws. But this
is not always the case; it may happen that slight differences in the initial conditions
produce very great differences in the final phenomena; a slight error in the former
would make an enormous error in the latter. Prediction becomes impossible and we
have the fortuitous phenomenon.2

His insights led to the point of view that underlies the study of dynamics as it is
practiced now and as we present it in this book: The study of long-term asymptotic
behavior, and especially that of its qualitative aspects, requires direct methods that
do not rely on prior explicit calculation of solutions. And in addition to the qual-
itative (geometric) study of a dynamical system, probabilistic phenomena play a
role.

A major motivation for the study of dynamical systems is their pervasive im-
portance in dealing with the world around us. Many systems evolve continuously
in time, such as those in mechanics, but there are also systems that naturally
evolve in discrete steps. We presently describe models of, for example, butterfly
populations, that are clocked by natural cycles. Butterflies live in the summer, and

1 Pierre Simon marquis de Laplace, Philosophical Essay on Probabilities, translated from the fifth
French edition of 1925 by Andrew I. Dale, Springer-Verlag, New York, 1995, p. 2.

2 Henri Jules Poincaré, Science et méthode, Section IV.II., Flammarion 1908; see The Foundations of
Science; Science and Hypothesis, The Value of science, Science and Method, translated by George Bruce
Halsted, The Science Press, Lancaster, PA, 1946, pp. 397f; The Value of Science: Essential Writings of
Henri Poincaré, edited by Stephen Jay Gould, Modern Library, 2001.
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we discuss laws describing how next summer’s population size is determined by
that of this summer. There are also ways of studying a continuous-time system
by making it look like a discrete-time system. For example, one might check on
the moon’s position precisely every 24 hours. Or one could keep track of where
it rises any given day. Therefore we allow dynamical systems to evolve in dis-
crete steps, where the same rule is applied repeatedly to the result of the previous
step.

This is important for another reason. Such stepwise processes do not only oc-
cur in the world around us, but also in our minds. This happens whenever we go
through repeated steps on our way to the elusive perfect solution. Applied to such
procedures, dynamics provides insights and methods that are useful in analysis. We
show in this book that important facts in analysis are consequences of dynamical
facts, even of some rather simple ones: The Contraction Principle (Proposition 2.2.8,
Proposition 2.2.10, Proposition 2.6.10) gives the Inverse-Function Theorem 9.2.2
and the Implicit-Function Theorem 9.2.3. The power of dynamics in situations of
this kind has to do with the fact that various problems can be approached with an
iterative procedure of successive approximation by improved guesses at an answer.
Dynamics naturally provides the means to understand where such a procedure
leads.

1.1.2 Dynamics in Analysis

Whenever you use a systematic procedure to improve a guess at a solution you are
likely to have found a way of using dynamics to solve your problem exactly. To begin
to appreciate the power of this approach it is important to understand that the iter-
ative processes dynamics can handle are not at all required to operate on numbers
only. They may manipulate quite complex classes of objects: numbers, points in
Euclidean space, curves, functions, sequences, mappings, and so on. The possibil-
ities are endless, and dynamics can handle them all. We use iteration schemes on
functions in Section 9.4, mappings in Section 9.2.1 and sequences in Section 9.5.
The beauty of these applications lies in the elegance, power, and simplicity of the
solutions and insights they provide.

1.1.3 Dynamics in Mathematics

The preceding list touches only on a portion of the utility of dynamical systems
in understanding mathematical structures. There are others, where insights into
certain patterns in some branches of mathematics are most easily obtained by
perceiving that underlying the structure in question is something of a dynamical
nature that can readily be analyzed or, sometimes, has been analyzed already. This
is a range of applications of dynamical ideas that is exciting because it often involves
phenomena of a rich subtlety and variety. Here the beauty of applying dynamical
systems lies in the variety of behaviors, the surprising discovery of order in bewil-
dering complexity, and in the coherence between different areas of mathematics
that one may discover. A little later in this introductory chapter we give some simple
examples of such situations.
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� EXERCISES

In these exercises you are asked to use a calculator to play with some simple iterative
procedures. These are not random samples, and we return to several of these in
due course. In each exercise you are given a function f as well as a number x0. The
assignment is to consider the sequence defined recursively by the given initial value
and the rule xn+1 = f (xn). Compute enough terms to describe what happens in the
long run. If the sequence converges, note the limit and endeavor to determine a
closed expression for it. Note the number of steps you needed to compute to see
the pattern or to get a good approximation of the limit.

� Exercise 1.1.1 f (x) = √
2 + x, x0 = 1.

� Exercise 1.1.2 f (x) = sin x, x0 = 1. Use the degree setting on your calculator –
this means that (in radians) we actually compute f (x) = sin(πx/180).

� Exercise 1.1.3 f (x) = sin x, x0 = 1. Use the radian setting here and forever after.

� Exercise 1.1.4 f (x) = cos x, x0 = 1.

� Exercise 1.1.5

f (x) = x sin x + cos x
1 + sin x

, x0 = 3/4.

� Exercise 1.1.6 f (x) = {10x} = 10x − �10x	 (fractional part), x0 = √
1/2.

� Exercise 1.1.7 f (x) = {2x}, x0 = √
1/2.

� Exercise 1.1.8

f (x) = 5 + x2

2x
, x0 = 2.

� Exercise 1.1.9 f (x) = x − tan x, x0 = 1.

� Exercise 1.1.10 f (x) = kx(1 − x), x0 = 1/2, k = 1/2, 1, 2, 3.1, 3.5, 3.83, 3.99, 4.

� Exercise 1.1.11 f (x) = x + e−x, x0 = 1.

1.2 DYNAMICS IN NATURE

1.2.1 Antipodal Rabbits

Rabbits are not indigenous to Australia, but 24 wild European rabbits were intro-
duced by one Thomas Austin near Geelong in Southern Victoria around 1860, with
unfortunate consequences. Within a decade they were rampant across Victoria,
and within 20 years millions had devastated the land, and a prize of £25,000 was
advertized for a solution. By 1910 their descendants had spread across most of the
continent. The ecological impact is deep and widespread and has been called a
national tragedy. The annual cost to agriculture is estimated at AU$600 million.
The unchecked growth of their population makes an interesting example of a
dynamical system.

In modeling the development of this population we make a few choices. Its
large size suggests to count it in millions, and when the number of rabbits is
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expressed as x million then x is not necessarily an integer. After all, the initial value
is 0.000024 million rabbits. Therefore we measure the population by a real number
x. As for time, in a mild climate rabbits – famously – reproduce continuously.
(This is different for butterflies, say, whose existence and reproduction are strictly
seasonal; see Section 1.2.9.) Therefore we are best served by taking the time variable
to be a real number as well, t, say. Thus we are looking for ways of describing the
number of rabbits as a function x(t) of time.

To understand the dependence on time we look at what rabbits do: They eat
and reproduce. Australia is large, so they can eat all they want, and during any given
time period �t a fixed percentage of the (female) population will give birth and a
(smaller) percentage will die of old age (there are no natural enemies). Therefore
the increment x(t + �t) − x(t) is proportional to x(t)�t (via the difference of birth
and death rates). Taking a limit as �t → 0 we find that

dx
dt

= kx,(1.2.1)

where k represents the (fixed) relative growth rate of the population. Alternatively,
we sometimes write ẋ = kx, where the dot denotes differentiation with respect to
t. By now you should recognize this model from your calculus class.

It is the unchanging environment (and biology) that gives rise to this unchang-
ing evolution law and makes this a dynamical system of the kind we study. The
differential equation (1.2.1), which relates x and its rate of change, is easy to solve:
Separate variables (all x on the left, all t on the right) to get (1/x)dx = k dt and
integrate this with respect to t using substitution:

log |x| =
∫

1
x

dx =
∫

k dt = kt + C,

where log is the natural logarithm. Therefore, |x(t)| = eC ekt with eC = |x(0)| and we
find that

x(t) = x(0)ekt.(1.2.2)

� Exercise 1.2.1 Justify the disappearance of the absolute value signs above.

� Exercise 1.2.2 If x(0) = 3 and x(4) = 6, find x(2), x(6), and x(8).

1.2.2 The Leaning Rabbits of Pisa

In the year 1202, Leonardo of Pisa considered a more moderate question regarding
rabbits, which we explore in Example 2.2.9 and Section 3.1.9. The main differences
to the large-scale Australian model above are that the size of his urban yard limited
him to small numbers of rabbits and that with such a small number the population
growth does not happen continuously, but in relatively substantial discrete steps.
Here is the problem as he posed it:3

How many pairs of rabbits can be bred from one pair in one year?

3 Leonardo of Pisa: Liber abaci (1202), published in Scritti di Leonardo Pisano, Rome, B. Boncompagni,
1857; see p. 3 of Dirk J. Struik, A Source Book in Mathematics 1200–1800, Princeton, NJ, Princeton
University Press, 1986.
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A man has one pair of rabbits at a certain place entirely surrounded by a wall. We
wish to know how many pairs can be bred from it in one year, if the nature of these
rabbits is such that they breed every month one other pair and begin to breed in the
second month after their birth. Let the first pair breed a pair in the first month, then
duplicate it and there will be 2 pairs in a month. From these pairs one, namely the first,
breeds a pair in the second month, and thus there are 3 pairs in the second month.
From these in one month two will become pregnant, so that in the third month 2 pairs
of rabbits will be born. Thus there are 5 pairs in this month. From these in the same
month 3 will be pregnant, so that in the fourth month there will be 8 pairs . . . [We
have done this] by combining the first number with the second, hence 1 and 2, and the
second with the third, and the third with the fourth . . .

In other words, he came up with a sequence of numbers (of pairs of rabbits)
governed by the recursion bn+1 = bn + bn−1 and chose starting values b0 = b1 = 1,
so the sequence goes 1, 1, 2, 3, 5, 8, 13, . . . . Does this look familiar? (Hint: As the son
of Bonaccio, Leonardo of Pisa was known as filius Bonacci or “son of good nature”;
Fibonacci for short.) Here is a question that can be answered easily with a little bit of
dynamics: How does his model compare with the continuous exponential-growth
model above?

According to exponential growth one should expect that once the terms get
large we always have bn+1 ≈ abn for some constant a independent of n. If we pretend
that we have actual equality, then the recursion formula gives

a2bn = abn+1 = bn+2 = bn+1 + bn = (a + 1)bn,

so we must have a2 = a + 1. The quadratic formula then gives us the value of the
growth constant a.

� Exercise 1.2.3 Calculate a.

Note, however, that we have only shown that if the growth is eventually
exponential, then the growth constant is this a, not that the growth is eventually
exponential. (If we assume the recursion bn+1 = 1 leads to exponential growth, we
could come up with a growth parameter if we are quick enough to do it before get-
ting a contradiction.) Dynamics provides us with tools that enable us to verify this
property easily in various different ways (Example 2.2.9 and Section 3.1.9). In Propo-
sition 3.1.11 we even convert this recursively defined sequence into closed form.

The value of this asymptotic ratio was known to Johannes Kepler. It is the
golden mean or the divine proportion. In his 1619 book Harmonices Mundi he
wrote (on page 273):

there is the ratio which is never fully expressed in numbers and cannot be demon-
strated by numbers in any other way, except by a long series of numbers gradually
approaching it: this ratio is called divine, when it is perfect, and it rules in various ways
throughout the dodecahedral wedding. Accordingly, the following consonances begin
to shadow forth that ratio: 1:2 and 2:3 and 3:5 and 5:8. For it exists most imperfectly
in 1:2, more perfectly in 5:8, and still more perfectly if we add 5 and 8 to make 13 and
take 8 as the numerator . . . .4

4 Johannes Kepler, Epitome of Copernican Astronomy & Harmonies of the World, Amherst, NY,
Prometheus Books, 1995.
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We note in Example 15.2.5 that these Fibonacci ratios are the optimal rational
approximations of the golden mean.

� Exercise 1.2.4 Express 1 + 1 + 2 + 3 + · · · + bn in terms of bn+2.

1.2.3 Fine Dining

Once upon a time lobsters were so abundant in New England waters that they
were poor man’s food. It even happened that prisoners in Maine rioted to demand
to be fed something other than lobsters for a change. Nowadays the haul is less
abundant and lobsters have become associated with fine dining. One (optimistic?)
model for the declining yields stipulates that the catch in any given year should
turn out to be the average of the previous two years’ catches.

Using again an for the number of lobsters caught in the year n, we can express
this model by a simple recursion relation:

an+1 = an−1/2 + an/2.(1.2.3)

As initial values one can take the Maine harvests of 1996 and 1997, which were
16,435 and 20,871 (metric) tons, respectively. This recursion is similar to the one for
the Fibonacci numbers, but in this case no exponential growth is to be expected.
One can see from the recursion that all future yields should be between the two
initial data. Indeed, 1997 was a record year. In Proposition 3.1.13 we find a way of
giving explicit formulas for future yields, that is, we give the yield in an arbitrary
year n in a closed form as a function of n.

This situation as well as the Fibonacci rabbit problem are examples where time
is measured in discrete steps. There are many other examples where this is natural.
Such a scenario from population biology is discussed in Section 1.2.9. Other biolog-
ical examples arise in genetics (gene frequency) or epidemiology. Social scientists
use discrete-time models as well (commodity prices, rate of spread of a rumor,
theories of learning that model the amount of information retained for a given
time).

1.2.4 Turning Over a New Leaf

The word phyllotaxis comes from the words phyllo=leaf and taxis=order or arrange-
ment. It refers to the way leaves are arranged on twigs, or other plant components
on the next larger one. The seeds of a sunflower and of a pine cone are further
examples. A beautiful description is given by Harold Scott Macdonald Coxeter in
his Introduction to Geometry. That regular patterns often occur is familiar from
sunflowers and pineapples.

In some species of trees the leaves on twigs are also arranged in regular patterns.
The pattern varies by species. The simplest pattern is that of leaves alternating
on opposite sides of the twig. It is called (1, 2)-phyllotaxis: Successive leaves are
separated by a half-turn around the twig. The leaves of elms exhibit this pattern, as
do hazel leaves.5 Adjacent leaves may also have a (2/3) turn between them, which
would be referred to as (2, 3)-phyllotaxis. Such is the case with beeches. Oak trees

5 On which the first author of this book should be an expert!
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show a (3, 5)-pattern, poplars a (5, 8), and willows, (8, 13)-phyllotaxis. Of course,
the pattern may not always be attained to full precision, and in some plants there
are transitions between different patterns as they grow.

The diamond-shaped seeds of a sunflower are packed densely and regularly.
One may perceive a spiral pattern in their arrangement, and, in fact, there are
always two such patterns in opposite directions. The numbers of spirals in the two
patterns are successive Fibonacci numbers. The seeds of a fir cone exhibit spirals
as well, but on a cone rather than flat ones. These come in two families, whose
numbers are again successive Fibonacci numbers.

Pineapples, too, exhibit spiral patterns, and, because their surface is composed
of approximately hexagonal pieces, there are three possible directions in which
one can perceive spirals. Accordingly, one may find 5, 8, and 13 spirals: 5 sloping
up gently to the right, say, 8 sloping up to the left, and 13 sloping quite steeply
right.

The observation and enjoyment of these beautiful patterns is not new. They
were noticed systematically in the nineteenth century. But an explanation for why
there are such patterns did not emerge particularly soon. In fact, the case is not
entirely closed yet.

Here is a model that leads to an explanation of how phyllotaxis occurs. The basic
growth process of this type consists of buds (primordia) of leaves or seeds growing
out of a center and then moving away from it according to three rules proposed in
1868 by the self-taught botanist Wilhelm Friedrich Benedikt Hofmeister, while he
was professor and director of the botanical garden in Heidelberg:

(1) New buds form at regular intervals, far from the old ones.
(2) Buds move radially from the center.
(3) The growth rate decreases as one moves outward.

A physical experiment designed to mimic these three Hofmeister rules produces
spiral patterns of this Fibonacci type, so from these rules one should be able to
infer that spiral patterns must occur. This has been done recently with methods of
the kind that this book describes.6

Here is a description of how dynamics may help. To implement the Hofmeister
rules we model the situation by a family of N + 1 concentric circles of radius
rk (k = 0, . . . , N ), where r stands for growth rate, and we put a bud on each circle.
The angle (with respect to the origin) between one bud and the next is θk. Possible
patterns are now parametrized by angles (θ0, . . . , θN). This means that the “space
of plants” is a torus; see Section 2.6.4. When a new bud appears on the unit circle,
all other buds move outward one circle. The angle of the new bud depends on all
previous angles, so we get a map sending old angles θk to new angles �k by

�0 = f (θ0, . . . , θN), �1 = θ0, . . . , �N = θN−1.

Now f has to be designed to reflect the first Hofmeister rule. One way to do this is to
define a natural potential energy to reflect “repulsion” between buds and choosing

6 Pau Atela, Christophe Golé, and Scott Hotton: A dynamical system for plant pattern formation:
A rigorous analysis, Journal of Nonlinear Science 12 (2002), no. 6, pp. 641–676.



book 0521583047 April 21, 2003 16:55 Char Count= 0

1.2 Dynamics in Nature 9

f (θ0, . . . , θN) to be the minimum. A natural potential is

W(�) =
N∑

k=0

U(‖rkeiθk − ei�‖),

where U(x) = 1/xs for some s > 0. A simpler potential that gives the same qual-
itative behavior is W(�) = max0≤k≤N U(‖rkeiθk − ei�‖). With either choice one
can show that regular spirals (that is, θ0 = · · · = θN) are attracting fixed points
(Section 2.2.7) of this map. This means that spirals will appear naturally. A result of
the analysis is furthermore that the Fibonacci numbers also must appear.

1.2.5 Variations on Exponential Growth

In the example of a rabbit population of Section 1.2.1 it is natural to expect a
positive growth parameter k in the equation ẋ = kx. This coefficient, however, is
the difference between rates of reproduction and death. For the people of some
western societies, the reproduction rate has declined so much as to be lower
than the death rate. The same model still applies, but with k < 0 the solution
x(t) = x(0)ekt describes an exponentially shrinking population.

The same differential equation ẋ = kx comes up in numerous simple models
because it is the simplest differential equation in one variable.

Radioactive decay is a popular example: It is an experimental fact that of a par-
ticular radioactive substance a specific percentage will decay in a fixed time period.
As before, this gives ẋ = kx with k < 0. In this setting the constant k is often
specified by the half-life, which is the time T such that x(t + T) = x(t)/2. Depend-
ing on the substance, this time period may be minute fractions of a second to
thousands of years. This is important in regard to the disposal of radioactive waste,
which often has a long half-life, or radioactive contamination. Biology laboratories
use radioactive phosphorus as a marker, which has a half-life of a moderate
number of days. A spill on the laboratory bench is usually covered with plexiglas
for some two weeks, after which the radiation has sufficiently diminished. On the
other hand, a positive effect of radioactive decay is the possibility of radioisotope
dating, which can be used to assess the age of organic or geologic samples. Unlike
in population biology, the exponential decay model of radioactivity needs no
refinements to account for real data. It is an exact law of nature.

� Exercise 1.2.5 Express the half-life in terms of k, and vice versa.

The importance of the simple differential equation ẋ = kx goes far beyond the
collection of models in which it appears, however many of these there may be.
It also comes up in the study of more complicated differential equations as an
approximation that can illuminate some of the behavior in the more complicated
setting. This approach of linearization is of great importance in dynamical systems.

1.2.6 The Doomsday Model

We now return to the problem of population growth. Actual population data show
that the world population has grown with increasing rapidity. Therefore we should
consider a modification of the basic model that takes into account the progress of
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civilization. Suppose that with the growth of the population the growing number
of researchers manages to progressively decrease the death rate and increase
fertility as well. Assuming, boldly, that these improvements make the relative rate
of increase in population a small positive power xε of the present size x (rather
than being constant k), we find that

dx
dt

= x1+ε .

As before, this is easy to solve by separating variables:

t + C =
∫

x−1−ε dx = −x−ε/ε

with C = −x(0)−ε/ε, so x(t) = (x(0)−ε − εt)−1/ε , which becomes infinite for
t = 1/(εx(0)ε). Population explosion indeed!

As far as biology is concerned, this suggests refining our model. Clearly, our
assumptions on the increasing growth rate were too generous (ultimately, resources
are limited). As an example in differential equations this is instructive, however:
There are reasonable-looking differential equations that have divergent solutions.

1.2.7 Predators

The reason rabbits have not over taken over the European continent is that there
have always been predators around to kill rabbits. This has interesting effects on the
population dynamics, because the populations of predators and their prey interact:
A small number of rabbits decreases the predator population by starvation, which
tends to increase the rabbit population. Thus one expects a stable equilibrium – or
possibly oscillations.

Many models of interacting populations of predator and prey were proposed
independently by Alfred Lotka and Vito Volterra. A simple one is the Lotka–Volterra
equation:

dx
dt

= a1x + c1xy

dy
dt

= a2x + c2xy,

where a1, c2 > 0 and a2, c1 < 0, that is, x is the prey population, which would grow
on its own (a1 > 0) but is diminished by the predator (c1 < 0), while y is the predator,
which would starve if alone (a2 < 0) and grows by feeding on its prey (c2 > 0).
Naturally, we take x and y positive. This model assumes that there is no delay
between causes and effects due to the time of gestation or egg incubation. This is
reasonable when the time scale of interest is not too short. Furthermore, choosing
time continuously is most appropriate when generations overlap substantially.
Populations with nonoverlapping generations will be treated shortly.

There is an equilibrium of species at (a2/c2, a1/c1). Any other initial set of
populations turns out to result in oscillations of the numbers of predator and prey.
To see this, use the chain rule to verify that

E(x, y) := x−a2 e−c2 x ya1 ec1 y

is constant along orbits, that is, (d/dt)E(x(t), y(t)) = 0. This means that the
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solutions of the Lotka–Volterra equation must lie on the curves E(x, y) = const.
These curves are closed.

1.2.8 Horror Vacui

The Lotka–Volterra equation invites a brief digression to a physical system that
shows a different kind of oscillatatory behavior. Its nonlinear oscillations have gen-
erated much interest, and the system has been important for some developments
in dynamics.

The Dutch engineer Balthasar van der Pol at the Science Laboratory of the
Philips Light Bulb Factory in Eindhoven modeled a vacuum tube circuit by the
differential equation

d2x
dt2

+ ε(x2 − 1)
dx
dt

+ x = 0,

which can be rewritten using y = dx/dt as

dx
dt

= y

dy
dt

= ε(1 − x2)y − x.

If ε = 1, the origin is a repeller (Definition 2.3.6). However, solutions do not grow
indefinitely, because there is a periodic solution that circles around the origin.
Indeed, for ε = 0 there are only such solutions, and for ε = 1 one of these circles
persists in deformed shape, and all other solutions approach it ever more closely
as t → +∞. The numerically computed picture in Figure 1.2.1 shows this clearly.
The curve is called a limit cycle.

As an aside we mention that there is also the potential for horrifying complexity
in a vacuum tube circuit. In 1927, van der Pol and J. van der Mark reported on
experiments with a “relaxation oscillator” circuit built from a capacitor and a neon
lamp (this is the nonlinear element) and a periodic driving voltage. (A driving
voltage corresponds to putting a periodic term on the right-hand side of the van
der Pol equation above.) They were interested in the fact that, in contrast to a linear
oscillator (such as a violin string), which exhibits multiples of a base frequency,
these oscillations were at “submultiples” of the basic frequency, that is, half that
frequency, a third, and so on down to 1/40th, as the driving voltage increased. They

Figure 1.2.1. The van der Pol equation.
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obtained these frequencies by listening “with a telephone coupled loosely in some
way to the system” and reported that

Often an irregular noise is heard in the telephone receivers before the frequency
jumps to the next lower value. However, this is a subsidiary phenomenon, the main
effect being the regular frequency demultiplication.

This irregular noise was one of the first experimental encounters with what was to
become known as chaos, but the time was not ripe yet.7

1.2.9 The Other Butterfly Effect8

Population dynamics is naturally done in discrete-time steps when generations
do not overlap. This was imposed somewhat artificially in the problem posed by
Leonardo of Pisa (Section 1.2.2). For many populations this happens naturally,
especially insects in temperate zones, including many crop and orchard pests. A
pleasant example is a butterfly colony in an isolated location with a fairly constant
seasonal cycle (unchanging rules and no external influence). There is no overlap at
all between the current generation (this summer) and the next (next summer). We
would like to know how the size of the population varies from summer to summer.
There may be plenty of environmental factors that affect the population, but by
assuming unchanging rules we ensure that next summer’s population depends
only on this summer’s population, and this dependence is the same every year.
That means that the only parameter in this model that varies at all is the population
itself. Therefore, up to choosing some fixed constants, the evolution law will specify
the population size next summer as a function of this summer’s population only.
The specific evolution law will result from modeling this situation according to our
understanding of the biological processes involved.

1. Exponential growth. For instance, it is plausible that a larger population is likely
to lay more eggs and produce a yet larger population next year, proportional, in fact,
to the present population. Denoting the present population by x, we then find that
next year’s population is f (x) = kx for some positive constant k, which is the average
number of offspring per butterfly. If we denote the population in year i by xi , we
therefore find that xi+1 = f (xi) = kxi and in particular that x1 = kx0, x2 = kx1 = k2x0,
and so on, that is, xi = ki x0; the population grows exponentially. This looks much
like the exponential–growth problem as we analyzed it in continuous time.

2. Competition. A problem familiar from public debate is sustainability, and the
exponential growth model leads to large populations relatively rapidly. It is more
realistic to take into account that a large population will run into problems with
limited food supplies. This will, by way of malnutrition or starvation, reduce the

7 B. van der Pol, J. van der Mark, Frequency demultiplication, Nature 120 (1927), 363–364.
8 This is a reference to the statement of Edward Lorenz (see Section 13.3) that a butterfly may flutter

by in Rio and thereby cause a typhoon in Tokyo a week later. Or maybe to butterfly ballots in the
2000 Florida election?
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number of butterflies available for egg-laying when the time comes. A relatively
small number of butterflies next year is the result.

The simplest rule that incorporates such more sensible qualitative properties
is given by the formula f (x) = k(1 − αx)x, where x is the present number of
butterflies. This rule is the simplest because we have only adduced a linear
correction to the growth rate k. In this correction α represents the rate at which
fertility is reduced through competition. Alternatively, one can say that 1/α is the
maximal possible number of butterflies; that is, if there are 1/α butterflies this year,
then they will eat up all available food before getting a chance to lay their eggs;
hence they will starve and there will be no butterflies next year. Thus, if again xi

denotes the butterfly population in the year i, starting with i = 0, then the evolution
is given by xi+1 = kxi(1 − αxi) =: f (xi). This is a deterministic mathematical model
in which every future state (size of the butterfly colony) can be computed from
this year’s state. One drawback is that populations larger than 1/α appear to give
negative populations the next year, which could be avoided with a model such
as xi+1 = xiek(1−xi ). But tractability makes the simpler model more popular, and it
played a significant role in disseminating to scientists the important insight that
simple models can have complicated long-term behaviors.9

One feature reminiscent of the exponential-growth model is that, for popula-
tions much smaller than the limit population, growth is indeed essentially
exponential: If αx � 1, then 1 − αx ≈ 1 and thus xi+1 ≈ kxi ; hence xn ≈ knx0 –
but only so long as the population stays small. This makes intuitive sense: The
population is too small to suffer from competition for food, as a large population
would.

Note that we made a slip in the previous paragraph: The sequence xn ≈ knx0

grows exponentially if k > 1. If this is not the case, then the butterfly colony
becomes extinct. An interesting interplay between reproduction rates and the
carrying capacity influences the possibilities here.

3. Change of variable. To simplify the analysis of this system it is convenient to
make a simple change of variable that eliminates the parameter α. We describe it
with some care here, because changing variables is an important tool in dynamics.

Write the evolution law as x′ = kx(1 − αx), where x is the population in one year
and x′ the population in the next year. If we rescale our units by writing y = αx,
then we must set

y′ = αx′ = αkx(1 − αx) = ky(1 − y).

In other words, we now iterate the map g(y) = ky(1 − y). The relationship between
the maps f and g is given by g(y) = h−1( f (h(y))), where h(y) = y/α = x. This can
be read as “go from new variable to old, apply the old map, and then go to the new
variable again.”

9 As its title shows, getting this message across was the aim of an influential article by Robert M. May,
Simple Mathematical Models with Very Complicated Dynamics, Nature 261 (1976), 459–467. This
article also established the quadratic model as the one to be studied. A good impression of the effects
on various branches of biology is given by James Gleick, Chaos, Making a New Science, Viking Press,
New York, 1987, pp. 78ff.
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The effect of this change of variable is to normalize the competition factor α to
1. Since we never chose specific units to begin with, let’s rename the variables and
maps back to x and f .

4. The logistic equation. We have arrived at a model of this system that is
represented by iterations of

f (x) = kx(1 − x).

This map f is called the logistic map (or logistic family, because there is a pa-
rameter), and the equation x′ = kx(1 − x) is called the logistic equation. The term
logistic comes from the French logistique, which in turn derived from logement, the
lodgment of soldiers. We also refer to this family of maps as the quadratic family. It
was introduced in 1845 by the Belgian sociologist and mathematician Verhulst.10

From the brief discussion before the preceding subsection it appears that the
case k ≤ 1 results in inevitable extinction. This is indeed the case. For k < 1, this is
clear because kx(1 − x) < kx, and for k = 1 it is not hard to verify either, although
the population decay is not exponential in this case. By contrast, large values of
k should be good for achieving a large population. Or maybe not. The problem is
that too large a population will be succeeded by a less numerous generation. One
would hope that the population settles to an agreeable size in due time, at which
there is a balance between fertility and competition.

� Exercise 1.2.6 Prove that the case k = 1 results in extinction.

Note that, unlike in the simpler exponential growth model, we now refrained
from writing down an explicit formula for xn in terms of x0. This formula is given
by polynomials of order 2n. Even if one were to manage to write them down for a
reasonable n, the formulas would not be informative. We will, in due course, be able
to say quite a bit about the behavior of this model. At the moment it makes sense to
explore it a little to see what kind of behavior occurs. Whether the initial size of the
population matters, we have not seen yet. But changing the parameter k certainly is
likely to make a difference, or so one would hope, because it would be a sad model
indeed that predicts certain extinction all the time. The reasonable range for k is
from 0 to 4. [For k > 4, it predicts that a population size of 1/2 is followed two years
later by a negative population, which makes little biological sense. This suggests that
a slightly more sophisticated (nonlinear) correction rule would be a good idea.]

5. Experiments. Increasing kshould produce the possibility of a stable population,
that is, to allow the species to avoid extinction. So let’s start working out the model
for some k > 1. A simpleminded choice would be k = 2, halfway between 0 and 4.

� Exercise 1.2.7 Starting with x = 0.01, iterate 2x(1 − x) until you discern a clear
pattern.

10 Pierre-François Verhulst, Récherches mathématiques sur la loi d’accroissement de la population,
Nouvelles Mémoires de l’Academie Royale des Sciences et Belles-Lettres de Bruxelles 18 (1845), 1–38.
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Starting from a small population, one obtains steady growth and eventually the
population levels off at 1/2. This is precisely the behavior one should expect from
a decent model. Note that steady states satisfy x = 2x(1 − x), of which 0 and 1/2
are the only solutions.

� Exercise 1.2.8 Starting with x = 0.01 iterate 1.9x(1 − x) and 2.1x(1 − x) until
you discern a clear pattern.

If k is a little less than 2, the phenomenon is rather the same, for k a little bigger
it also goes that way, except for slightly overshooting the steady-state population.

� Exercise 1.2.9 Starting with x = 0.01, iterate 3x(1 − x) and 2.9x(1 − x) until you
discern a clear pattern.

For k = 3, the ultimate behavior is about the same, but the way the population
settles down is a little different. There are fairly substantial oscillations of too large
and too small population that die out slowly, whereas for k near 2 there was only a
hint of this behavior, and it died down fast. Nevertheless, an ultimate steady state
still prevails.

� Exercise 1.2.10 Starting with x = 0.01, iterate 3.1x(1 − x) until you discern a
clear pattern.

For k = 3.1, there are oscillations of too large and too small as before. They do
get a little smaller, but this time they do not die down all the way. With a simple
program one can iterate this for quite a while and see that no steady state is attained.

� Exercise 1.2.11 Starting with x = 0.66, iterate 3.1x(1 − x) until you discern a
clear pattern.

In the previous experiment, there is the possibility that the oscillations die down
so slowly that the numerics fail to notice. Therefore, as a control, we start the same
iteration at the average of the two values. This should settle down if our diagnosis
is correct. But it does not. We see oscillations that grow until their size is as it was
before.

These oscillations are stable! This is our first population model that displays
persistent behavior that is not monotonic. No matter at which size you start, the
species with fertility 3.1 is just a little too fertile for its own good and keeps running
into overpopulation every other year. Not by much, but forever.

Judging from the previous increments of k there seems only about k = 4 left,
but to be safe let’s first try something closer to 3 first. At least it is interesting to see
whether these oscillations get bigger with increasing k. They should. And how big?

� Exercise 1.2.12 Starting with x = 0.66, iterate 3.45x(1 − x) and 3.5x(1 − x) until
you discern a clear pattern.
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The behavior is becoming more complicated around k = 3.45. Instead of the
simple oscillation between two values, there is now a secondary dance around each
of these values. The oscillations now involve four population sizes: “Big, small, big,
Small” repeated in a 4-cycle. The period of oscillation has doubled.

� Exercise 1.2.13 Experiment in a manner as before with parameters slightly
larger than 3.5.

A good numerical experimenter will see some pattern here for a while: After
a rather slight parameter increase the period doubles again; there are now eight
population sizes through which the model cycles relentlessly. A much more minute
increment brings us to period 16, and it keeps getting more complicated by powers
of two. This cascade of period doublings is complementary to what one sees in a
linear oscillator such as a violin string or the column of air in wind instruments or
organ pipes: There it is the frequency that has higher harmonics of double, triple,
and quadruple the base frequency. Here the frequency is halved successively to
give subharmonics, an inherently nonlinear phenomenon.

Does this period doubling continue until k = 4?

� Exercise 1.2.14 Starting with x = .5, iterate 3.83x(1 − x) until you discern a clear
pattern.

When we look into k = 3.83 we find something rather different: There is a
periodic pattern again, which we seem to have gotten used to. But the period is 3,
not a power of 2. So this pattern appeared in an entirely different way. And we don’t
see the powers of 2, so these must have run their course somewhat earlier.

� Exercise 1.2.15 Try k = 3.828.

No obvious pattern here.

� Exercise 1.2.16 Try k = 4.

There is not much tranquility here either.

6. Outlook. In trying out a few parameter values in the simplest possible nonlinear
population model we have encountered behavior that differs widely for different
parameter values. Where the behavior is somewhat straightforward we do not have
the means to explain how it evolves to such patterns: Why do periods double for
a while? Where did the period-3 oscillation come from? And at the end, and in
experiments with countless other values of the parameter you may choose to try,
we see behavior we cannot even describe effectively for lack of words. At this stage
there is little more we can say than that in those cases the numbers are all over the
place.

We return to this model later (Section 2.5, Section 7.1.2, Section 7.4.3 and
Chapter 11) to explain some of the basic mechanisms that cause these diverse
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behaviors in the quadratic family fk(x) = kx(1 − x). We do not provide an exhaus-
tive analysis that covers all parameter values, but the dynamics of these maps is
quite well understood. In this book we develop important concepts that are needed
to describe the complex types of behavior one can see in this situation, and in many
other important ones.

Already this purely numerical exploration carries several lessons. The first one
is that simple systems can exhibit complex long-term behavior. Again, we arrived at
this example from the linear one by making the most benign change possible. And
immediately we ran into behavior so complex as to defy description. Therefore
such complex behavior is likely to be rather more common than one would have
thought.

The other lesson is that it is worth learning about ways of understanding,
describing, and explaining such rich and complicated behavior. Indeed, the impor-
tant insights we introduce in this book are centered on the study of systems where
explicit computation is not feasible or useful. We see that even in the absence of
perfectly calculated results for all time one can make precise and useful qualitative
and quantitative statements about such dynamical systems. Part of the work is to
develop concepts adequate for a description of phenomena of such complexity
as we have begun to glimpse in this example. Our study of this particular example
begins in Section 2.5, where we study the simple behaviors that occur for small pa-
rameter values. In Section 7.1.2 and Section 7.4.3 we look at large parameter values.
For these the asymptotic behavior is most chaotic. In Chapter 11 we present some
of the ideas used in understanding the intermediate parameter regime, where the
transitions to maximal complexity occur.

As an interesting footnote we mention that the analogous population with
continuous time (which is quite reasonable for other species) has none of this
complexity (see Section 2.4.2).

1.2.10 A Flash of Inspiration

As another example of dynamics in nature we can take the flashing of fireflies.
Possibly the earliest report of a remarkable phenomenon is from Sir Francis Drake’s
1577 expedition:

[o]ur general . . . sailed to a certaine little island to the southwards of Celebes, . . .
throughly growen with wood of a large and high growth. . . . Among these trees night
by night, through the whole land, did shew themselves an infinite swarme of fiery
wormes flying in the ayre, whose bodies beeing no bigger than our common English
flies, make such a shew of light, as if every twigge or tree had been a burning candle.11

A clearer description of what is so remarkable about these fireflies was given by
Engelbert Kämpfer, a doctor from eastern Westphalia who made a 10-year voyage
through Russia, Persia, southeast Asia, and Japan. On July 6, 1690, he traveled down
the Chao Phraya (Meinam) River from Bangkok and observed:

The glowworms (Cicindelae) represent another shew, which settle on some trees,
like a fiery cloud, with this surprising circumstance, that a whole swarm of these

11 Richard Hakluyt (pronounced Hack-loot), A Selection of the Principal Voyages, Traffiques and
Discoveries of the English Nation, edited by Laurence Irving, Knopf, New York, 1926.
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insects, having taken possession of one tree, and spread themselves over its branches,
sometimes hide their light all at once, and a moment after make it appear again
with the utmost regularity and exactness, as if they were in perpetual systole and
diastole.12

So, in some locations large numbers of the right species of flashing fireflies in
a bush or a collection of bushes synchronize, turning their arboreal home into
a remarkable christmas-tree-like display. Or do they? This is such a striking
phenomenon that for a long time reports of it had a status not entirely unlike that
of tales of dragons and sea monsters. As late as 1938 they were not universally
accepted among biologists. Only with increased affordability and speed of travel
could doubters see it for themselves.13 Once there was some belief that this
really happens, it took many decades to develop an understanding of how this
is possible. Early on it was supposed that some subtle and undetected external
periodic influence caused this uniform behavior, but it is the fact that these fireflies
naturally flash at close to the same rate combined with a tendency to harmonize
with the neighbors that causes an entire colony to wind up in perfect synchrony.

An analogous situation much closer to home is the study of circadian rhythms,
where periodic changes in our body (the sleep cycle) synchronize with the external
cues of day and night. In the absence of clocks and other cues to the time of day,
the human wake–sleep cycle reverts to its natural period, which is for most people
slightly longer than 24 hours. Those external cues affect the system of neurons and
hormones that make up our complicated internal oscillator and gently bring it
up to speed. In this case, the rate at which the adjustment happens is fairly quick.
Even the worst jet lag usually passes within a few days, that is, a few cycles.

These systems are instances of coupled oscillators, which also appear in nu-
merous other guises. The earth–moon system can be viewed as such a system when
one looks for an explanation why we always see the same side of the moon, that is,
why the moon’s rotation and revolution are synchronized. Here simple tidal friction
is the coupling that has over eons forced the moon’s rotation into lockstep with its
revolution and will eventually synchronize the earth’s rotation as well, so a day will
be a month long – or a month a day long, making the moon a geostationary satellite.
It is amusing to think that at some intermediate time the longer days may match up
with our internal clocks, as if human evolution is slightly ahead of its time on this
count.

12 Engelbert Kämpfer, The history of Japan, edited by J. G. Scheuchzer, Scheuchzer, London, 1727.
The translation is not too good. The German original apparently remained unpublished for cen-
turies: “Einen zweiten sehr angenehmen Anblik geben die Lichtmücken (cicindelae), welche einige
Bäume am Ufer mit einer Menge, wie eine brennende Wolke, beziehn. Es war mir besonders hiebei
merkwürdig, daß die ganze Schaar dieser Vögel, so viel sich ihrer auf einem Baume verbunden,
und durch alle Aeste desselben verbreitet haben, alle zugleich und in einem Augenblik ihr Licht
verbergen und wieder von sich geben, und dies mit einer solchen Harmonie, als wenn der Baum
selbst in einer beständigen Systole und Diastole begriffen wäre.” (Geschichte und Beschreibung
von Japan (1677–79). Internet Edition by Wolfgang Michel. In: Engelbert-Kaempfer-Forum, Kyushu
University, 1999.).

13 An account of this sea change is given by John Buck, Synchronous rhythmic flashing of fireflies,
Quarterly Review of Biology 13, no. 3 (September 1938), 301–314; II, Quarterly Review of Biology
63, no. 3 (September 1988), 265–289. The articles include the quotes given here and many more
reports of flashing fireflies from various continents.
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We will look at systems made up of two simple oscillators in Section 4.4.5,
where relatively simple considerations suggest that this kind of synchronization is
somewhat typical.14

� EXERCISES

� Exercise 1.2.17 In 1900, the global human population numbered 1.65 million,
and in 1950 it was 2.52 billion. Use the exponential growth model (Equation 1.2.2)
to predict the population in 1990, and to predict when the population will reach
6 billion. (The actual 1990 population was some 5.3 billion, and around July 1999
it reached 6 billion. Thus the growth of the world population is accelerating.)

� Exercise 1.2.18 Denote by an the number of sequences of 0’s and 1’s of length n
that do not have two consecutive 0’s. Show that an+1 = an + an−1. (Note that this is
the same recursion as for the Fibonacci numbers, and that a1 = 2 and a2 = 3.)

� Exercise 1.2.19 Show that any two successive Fibonacci numbers are relatively
prime.

� Exercise 1.2.20 Determine limn→∞ an in (1.2.3) if a0 = 1 and a1 = 0.

1.3 DYNAMICS IN MATHEMATICS

In this section we collect a few examples of a range of mathematical activity where
knowledge of dynamical systems provides novel insights.

1.3.1 Heroic Efforts with Babylonian Roots

Sometime before 250 a.d., in his textbook Metrica, Heron of Alexandria (often
latinized to Hero of Alexandria) computed the area of a triangle with sides 7, 8, and
9 by first deriving the formula area2 = s(s − a)(s − b)(s − c), where a, b, c are the
sides and 2s = a + b + c. To compute the resulting square root of 12 · 5 · 4 · 3 = 720
he took the following approach, which may have been known to the Babylonians
2000 years before:

Since [z =]720 has not its side rational [that is, 720 is not a perfect square], we can
obtain its side within a very small difference as follows. Since the next succeeding
square number is 729, which has [x =]27 for its side, divide 720 by 27. This gives
[y =]26 2

3 . Add 27 to this, making 53 2
3 , and take half of this or [x′ = 1

2 (x + y) =]26 1
2

1
3 .

The side of 720 will therefore be very nearly 26 1
2

1
3 . . . If we desire to make the difference

still smaller . . . we shall take [x′ = 1
2 (x + y) = 26 1

2
1
3 = 26 5

6 instead of x = 27] and by
proceeding in the same way we shall find that the resulting difference is much less. . .15

Heron used that, in order to find the square root of z, it suffices to find a square
with area z; its sides have length

√
z. A geometric description of his procedure is

14 We omit a full treatment of coupled linear oscillators. The subject of fireflies is treated by Renato
Mirollo and Steven Strogatz, Synchronization of Pulse-Coupled Biological Oscillators, SIAM Journal
of Applied Mathematics 50 no. 6 (1990), 1645–1662.

15 Thomas L. Heath, History of Greek Mathematics: From Aristarchus to Diophantus, Dover, 1981,
p. 324. This sequence of approximations also occurs in Babylonian texts; as related by Bartels van
der Waerden: Science awakening, Oxford University Press, Oxford, 1961, p. 45, who gives a geometric
interpretation on pp. 121ff. Some variant was known to Archimedes.
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that as a first approximation of the desired square we take a rectangle with sides
x and y, where x is an educated guess at the desired answer and xy = z. (If z is not
as large as in Heron’s example, one can simply take x = 1, y = z.) The procedure
of producing from a rectangle of correct area another rectangle of the same area
whose sides differ by less is to replace the sides x and y by taking one side to
have the average length (x + y)/2 (arithmetic mean) and the other side to be such
as to get the same area as before: 2xy/(x + y) (this is called the harmonic mean
of x and y). The procedure can be written simply as repeated application of the
function

f (x, y) =
(

x + y
2

,
2xy

x + y

)
(1.3.1)

of two variables starting with (x0, y0) = (z, 1) [or (x0, y0) = (27, 26 2
3 )] in Heron’s

example). Archimedes appears to have used a variant of this. One nice thing about
this procedure is that the pairs of numbers obtained at every step lie on either side
of the true answer (because xy = z at every step), so one has explicit control over
the accuracy. Even before starting the procedure Heron’s initial guess bracketed
the answer between 26 2

3 and 27.

� Exercise 1.3.1 To approximate
√

4, calculate the numbers (xi, yi) for 0 ≤ i ≤ 4
using this method, starting with (1, 4), and give their distance to 2.

� Exercise 1.3.2 Carry Heron’s approximation of
√

720 one step further and use a
calculator to determine the accuracy of that approximation.

� Exercise 1.3.3 Starting with initial guess 1, how many steps of this procedure
are needed get a better approximation of

√
720 than Heron’s initial guess of 27?

What happens after a few steps of this procedure is that the numbers xn and yn

that one obtains are almost equal and therefore close to
√

z. With Heron’s intelligent
initial guess his first approximation was good enough (26 5

6 is within .002% of√
720), and he never seems to have carried out the repeated approximations he

proposed. It is a remarkable method not only because it works, but because it works
so quickly. But why does it work? And why does it work so quickly? And exactly how
quickly does it work? These are questions we can answer with ease after our start
in dynamical systems (Section 2.2.8).

1.3.2 The Search for Roots

Many problems asking for a specific numerical solution can be easily and profitably
rephrased as looking for a solution of f (x) = 0 for some appropriate function f .
We describe two well-known methods for addressing this question for functions of
one variable.

1. Binary Search. There is a situation where we can be sure that a solution exists:
The Intermediate-Value Theorem from calculus tells us that if f : [a, b] → R is
continuous and f (a) < 0 < f (b) [or f (b) < 0 < f (a), so we could say f (a) f (b) < 0],
then there is some c ∈ (a, b) such that f (c) = 0.



book 0521583047 April 21, 2003 16:55 Char Count= 0

1.3 Dynamics in Mathematics 21

� Exercise 1.3.4 Show that this statement of the Intermediate-Value Theorem is
equivalent to the standard formulation.

Knowing that a solution exists is, however, not quite the same as knowing the
solution or at least having a fairly good idea where it is. Here is a simple reliable
method for getting to a root.

Given that f (a) < 0 < f (b), consider the midpoint z = (a + b)/2.

CASE 0: If f (z) = 0, we have found the root. Otherwise, there are two cases.

CASE 1: If f (z) > 0, replace the interval [a, b] by the interval [a, z], which is
half as long and contains a root by the Intermediate-Value Theorem because
f (a) < 0 < f (z). Repeat the procedure on this interval.

CASE 2: If f (z) < 0, replace [a, b] by [z, b], which is also half as long, and apply
the procedure here.

This binary search produces a sequence of nested intervals, cutting the length
in half at every step. Each interval contains a root, so we obtain ever-better
approximations and the limit of the right (or left) endpoints is a solution.

Note that this procedure is iterative, but it does not define a dynamical system.
Not one that operates on numbers anyway. One could view it as a dynamical
system operating on intervals on whose endpoints f does not have the same sign.

� Exercise 1.3.5 Carry out three steps of this procedure for f (x) = x − cos x on
[0, 1]. Conclude with an approximate solution and its accuracy.

This method is reliable: It gives ever-better approximations to the solution at
a guaranteed rate, and this rate is respectable and the error can be calculated. For
example, nine steps give an error less than (b − a)/1000.

2. The Newton Method. The Newton Method (or Newton–Raphson Method) was
devised as a solution of the same problem of finding zeros of functions. It is more
flamboyant than the binary search: It is ingenious and can work rapidly, but it is
not always reliable.

For this method we need to assume that the function f , whose zero we are to
find, is differentiable, and, of course, that there is a zero someplace. One begins by
making an educated guess x0 at the solution. How to make this guess is up to the
user and depends on the problem. A reasonable graph might help, or maybe the
situation is such that the binary search can be applied. In the latter case a few steps
give an excellent initial guess.

Newton’s method endeavors to give you a vastly improved guess. If the function
is linear, then your initial guess combined with the slope of the graph immediately
gives the exact solution. Being differentiable, the function f is well approximated
by tangent lines. Therefore the initial guess x0 and the equation of the tangent line
to the graph of f tell us the x-intercept of the tangent line. This is the improved
guess. In terms of formulas the calculation amounts to

x1 = F (x0) := x0 − f (x0)
f ′(x0)

.
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� Exercise 1.3.6 Verify that this formula encodes the geometric description above.

� Exercise 1.3.7 Apply this method four times to x2 − 4 = 0 with initial guess 1.
Compare with Exercise 1.3.1. (Look also at Exercise 1.3.18 and Exercise 1.3.19.)

This simple procedure can be applied repeatedly by iterating F . It gives a
sequence of hopefully ever-better guesses. In Section 2.2.8 we give a simple
criterion to ensure that the method will succeed.

� Exercise 1.3.8 Several of the exercises in Section 1.1 are examples of Newton’s
method at work. Find the ones that are and give the equation whose solution they
find.

Since this method defines a dynamical system, it has been studied as such. This
is in large part because some initial choices provide situations where the asymptotic
behavior is complicated. Especially when this is done with complex numbers, one
can produce beautiful pictures by numerical calculations. An important devel-
opment was an adaptation of this method to work on points in function spaces
usually called the Kolmogorov–Arnol’d–Moser or KAM method, which provided
a tool for one of the furthest advances in studying whether our solar system is
stable. This is an outstanding example where knowledge about simple asymptotics
of a dynamical system in an auxiliary space gives insight into another dynamical
system.

1.3.3 Closed Geodesics

If an airplane pilot were to tie down the wheel16 and had a lot of fuel, the plane
would go around the earth all the way along a great circle, returning precisely to the
starting point, and repeat. One could try the same with a vehicle on the surface, but
some more attention would be required because of intervening mountains, oceans,
rainforests, and such. The idealized model of this kind of activity is that of a particle
moving freely on the surface of a sphere. Because there are no external forces (and
no friction, we assume), such a particle moves at constant speed with no change
of direction. It is quite clear that the particle always returns to the starting point
periodically. So there are infinitely many ways of traveling (freely) in a periodic
fashion.

What if your sphere is not as round and shiny as the perfect round sphere? It
may be slightly dented, or maybe even badly deformed. One could adorn it with a
mushroom-like appendage or even make it look like a barbell. Only, no tearing or
glueing of the surface is allowed. And no crimping. A smooth but not ball-shaped
“sphere.” Now a freely moving particle has no obvious reason to automatically
return home. Almost any way of deforming the sphere produces many nonperiodic
motions. Here is a hard question: Are there still infinitely many ways, on a given
deformed sphere, of moving freely and periodically?

16 This means that the plane flies horizontally and straight, and the proper technical term would be
“yoke” instead of “wheel”.
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One beautiful aspect of free particle motion is that the path of motion is always
the shortest connection between any two points on it that are not too far apart.
(Obviously, a closed path is not the shortest curve from a point to itself.) This is
familiar for the round sphere when these paths are great circles, but it is universally
true, and such paths are called geodesics. Therefore, the above question can also
be asked in terms of geodesics: On any sphere, no matter how deformed, are there
always infinitely many closed geodesics?

This is a question from geometry, and it was posed long ago. It was solved (not
so long ago) by dynamicists using the theory of dynamical systems. We explain
how geodesics are related to dynamics in Section 6.2.8 and outline an approach to
this question in Section 14.5.

1.3.4 First Digits of the Powers of 2

As an illustration of the power of dynamics to discern patterns even of a subtle and
intricate nature, consider the innocuous sequence of powers of 2. Here are the first
50 terms of this sequence:

2
4
8

16
32
64

128
256
512

1024

2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576

2097152
4194304
8388608

16777216
33554432
67108864

134217728
268435456
536870912

1073741824

2147483648
4294967296
8589934592

17179869184
34359738368
68719476736

137438953472
274877906944
549755813888

1099511627776

2199023255552
4398046511104
8796093022208

17592186044416
35184372088832
70368744177664

140737488355328
281474976710656
562949953421312

1125899906842624.

This list looks rather complicated beyond the trivial pattern that these numbers
grow. There are some interesting features to be observed, however. For example, the
last digits repeat periodically: 2, 4, 8, 6. That this must be so is quite obvious: The last
digit of the next power is determined by the last digit of the previous one; so once
a single repetition appears, it is bound to reproduce the pattern. (Furthermore, the
last digit is always even and never 0.)

A similar argument shows that the last two digits jointly must also eventually start
repeating periodically: By the previous observation there are at most 40 possibilities
for the last two digits, and since the last two digits of the next power are determined
by those of the previous one, it is sufficient to have one repetition to establish a
periodic pattern. Looking at our sequence we see that, indeed, the last two digits
form the following periodic sequence with period 20 beginning from the second
term: 04 08 16 32 64 28 56 12 24 48 96 92 84 68 36 72 44 88 76 52.

Note that this sequence has a few interesting patterns. Adding its first and
eleventh terms gives 100, as does adding the second and twelfth, the third and thir-
teenth, and so on. One way of developing this sequence is to start from 04 and apply
the following rule repeatedly: If the current number is under 50, double it; otherwise,
double the difference to 100. The simpler 2,4,8,6 above exhibits analogous patterns.
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Now look at the sequence of the first digits. Reading off the same list:

2
4
8
16
32
64
128
256
512
1024

2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824

2147483648
4294967296
8589934592
17179869184
34359738368
68719476736
137438953472
274877906944
549755813888
1099511627776

2199023255552
4398046511104
8796093022208
17592186044416
35184372088832
70368744177664
140737488355328
281474976710656
562949953421312
1125899906842624

one finds the first digits of the 50 entries to be

2481361251
2481361251
2481361251
2481361251
2481371251.

This is tantalizingly close to being periodic, but a small change creeps in at the end,
so no truly periodic pattern appears – and there is no reason to expect any. (If you
calculate further entries in this sequence, this behavior continues; little changes
keep appearing here and there.)

Since this sequence is not as regular as the previous one, a statistical approach
might be helpful. Look at the frequency of each digit – how often does a particular
digit figure in this list? We have:

digit : 1 2 3 4 5 6 7 8 9
number of times : 15 10 5 5 5 4 1 5 0.

These frequencies look somewhat uneven. In particular, seven and nine seem to
be disfavored. Seven appears for the first and only time at the 46th place in our
sequence, and nine appears for the first time as the first digit of 253. Calculation
of the first 100 entries gives slightly less lopsided frequencies, but they seem to be
smaller for larger digits.

Thus, all nine digits appear as the first digit of some power of 2. We would like
to know more, however. Does every digit appear infinitely many times? If yes, do
they appear with any regularity? Which of the digits appear most often?

In order to discuss them we need to formulate these questions precisely. To
that end we count for each digit d and every natural number n the number Fd(n) of
those powers 2m, m = 1, . . . , n that begin with d. Thus, we just listed the 10 values
of Fd(50). The frequency with which d appears as the first digit among the first n
powers of 2 is Fd(n)/n. Thus, one of our questions is whether each of these quantities
has a limit as n goes to infinity and how these limits, if they exist, depend on d.
Once these questions have been answered, one can also ask them about powers of
3 and compare the limit frequencies.
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In Proposition 4.2.7 we obtain existence of these limits and give a formula for
them which in particular implies that all limit frequencies are positive and that they
decrease as d increases. Thus, contrary to the evidence from the first 50 powers (but
in agreement with what one sees among the first 100), seven eventually appears
more often than eight. The relationship between these limits for powers of 3 versus
powers of 2 is also striking.

1.3.5 Last Digits of Polynomials

In the previous example we had immediate success in studying patterns of last
digits and noted that some dose of dynamics provides the tools for understanding
the behavior of the first digits. Let us look at another problem of integer sequences
where similar questions can be asked about last digits.

Instead of an exponential sequence consider the sequence xn = n2 for n ∈ N0.
The last digits come out to be 01496569410 and repeat periodically thereafter.

� Exercise 1.3.9 Prove that these digits repeat periodically.

� Exercise 1.3.10 Explain why this sequence is palindromic, that is, unchanged
when reversed.

This is about as simple as it was earlier, so let’s try xn = n2 p/q instead, for some
p, q ∈ N. Unless q = 1, these won’t all be integers, so we make explicit that we are
looking at the digit before the decimal point. You may want to experiment a little,
but it is easy to see directly that we still get a periodic pattern, with period at most
10q. The reason is that

an+10q − an = (n + 10q)2 p/q − n2 p/q = 10(2np + 10 pq)

is an integer multiple of 10, so the digit before the decimal point (as well as all the
ones after) is the same for an+10q and an.

� Exercise 1.3.11 Prove that the initial 10q results form a palindromic string.

This was interesting, but not subtle. It is natural to replace p/q by an irrational
number, because that should cause an “infinite period,” as it were, that is, no
periodicity at all.

So, consider xn = n2
√

2. The sequence of last digits (before the decimal point)
begins with the following 100 terms: 47764935641602207257751690074812184811
07379985035540580084923206134316133205911072577527011950343171.

There are no obvious reasons for periodicity, nor is any such pattern apparent.
Certainly all digits make an appearance. However, the questions we asked about first
digits of powers of 2 are also appropriate here: Do all digits appear infinitely often? Do
they appear with well-defined relative frequencies? Relative frequencies are defined
as before: Let Pn(d ) be the number of times the last digit is d in the set {n2

√
2}n−1

i=0

and consider Pn(d )/n for large n. Among the first 100 values we get the frequencies

i : 0 1 2 3 4 5 6 7 8 9
P100(i)/100 : 0.14 0.15 0.09 0.10 0.09 0.11 0.06 0.13 0.06 0.07.
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This list does not suggest any answer to this question, and the same list for larger
n might not either.

Dynamics is able to address these questions as well as many similar ones
completely and rigorously. In this particular example it turns out that all relative
frequencies converge to 1/10. Thus we have an example of uniform distribution,
which is one of the central paradigms in dynamics as well as in nature. We outline
a solution of the problem of distribution of last digits in Section 15.1.

1.3.6 Cellular Automata

A game of sorts called the game of life was popular in the 1980s. It is intended
to model a simple population of somethings that live in fixed locations. Each of
the “organisms” is at a point of a fixed lattice, the points in the plane with integer
coordinates, say, and can have several states of health. In the simplest version such
organisms might have only the two states “present” and “not there” (or 1 and 0). But
one may also take a model with a larger number of possible states, including, for
example, “sickly” or “happy.” The rule of the game is that the population changes
in discrete time steps in a particular way. Each organism checks the states of some
of its neighbors (up to some distance) and, depending on all these, changes its own
state accordingly. For example, the rule might say that if all immediate neighbors are
present, the organism dies (overpopulation). Maybe the same happens if there are
no neighbors at all (too lonely or exposed). This game was popular because from rel-
atively simple rules one could find (or design) intriguing patterns, and because com-
puters, even early ones, could easily go through many generations in a short time.

If the number of cells is finite, then from our perspective of asymptotic
long-term behavior there is not too much to say about the system. It has only
finitely many states, so at some point some state must be attained for a second
time. Because the rules are unchanged, the pattern thereafter cycles again through
the same sequence of states since the last time, and again and again. No matter
how interesting the patterns may be that emerge, or how long the cycle, this is a
complete qualitative description of the long-term behavior.

When there are infinitely many cells, however, there is no reason for this kind
of cycling through the same patterns, and there may be all kinds of long-term
behaviors.

Systems of this kind are called cellular automata. Since the rules are so clearly
described, one can easily make mathematics out of them. To keep the notation
simple we look not at the integer points in the plane, but only those on the line.
Accordingly, a state of the system is a sequence, each entry of which has one of
finitely many values (states). If the states are numbered 0, . . . , N − 1, then we can
denote the space of these sequences by N. All organisms have the same rule for
their development. It is given by a function f : {0, . . . , N − 1}2n+1 → {0, . . . , N − 1},
that is, a function that maps 2n + 1-characters-long strings of states (0, . . . , N − 1)
to a state. The input consists of the states of all neighbors up to distance n in
either direction, and the output is the future state of the individual. Therefore,
each step of the evolution of the whole system is given by a map � : N → N

such that (�(ω))i = f (ωi−n, . . . , ωi+n). By way of example, take N = n = 1 and
f (x−1, x0, x1) = x1. This means that every individual just chooses to follow its
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right neighbor’s lead (today’s x1 is tomorrow’s x0). You might call this example “the
wave,” because whatever pattern you begin with, it will relentlessly march leftward.

This is a general description of cellular automata, whose interest goes well
beyond the game of life. The same mathematical concept admits a rather different
interpretation. If one thinks of each of these sequences as a stream of data, then
the map � transforms these data – it is a code. This particular class of codes is
known as sliding block codes, and this kind is suitable for real-time streaming data
encoding or decoding. For us, it is a transformation on a nice space that can be
repeated, a dynamical system. The general class of dynamical systems whose states
are given by sequences (or arrays) is called symbolic dynamics, and some of our
most useful models are of this kind. “The wave” is actually our favorite, and we call
it the (left) shift. As a class, sliding block codes play an important role, although
under a different name (conjugacies).

Symbolic dynamics is introduced in Section 7.3.4 and studied in Section 7.3.7.
It provides a rich supply of examples that are simple to describe but produce a
variety of complicated dynamical phenomena.

� EXERCISES

� Exercise 1.3.12 Prove that in the binary search for a root the sequences of left
and right endpoints both converge and that they have the same limit.

� Exercise 1.3.13 In the binary search for a root assume a = 0, b = 1 and that the
procedure never terminates. Keep track of the choices at each step by noting a 0
whenever Case 1 occurs and noting a 1 whenever Case 2 occurs. Prove that the
string of 0’s and 1’s thus obtained gives the binary representation of the solution
found by the algorithm.

� Exercise 1.3.14 In the preceding exercise assume that the search terminates.
How does the finite string of 0’s and 1’s relate to the binary representation of the root?

� Exercise 1.3.15 Solve cos x = x with the Newton Method and the initial guess
x0 = 3/4.

� Exercise 1.3.16 Approximate
√

5 to the best possible accuracy of your calculator
by the Newton Method with initial guess 2.

� Exercise 1.3.17 Use the Newton Method to solve sin x = 0 with initial guess 1
and note the pattern in the size of the absolute error.

� Exercise 1.3.18 Try to solve 3
√

x = 0 with the Newton Method, not taking 0 as
initial guess.

� Exercise 1.3.19 For the Greek method of arithmetic/harmonic mean, express
the successive arithmetic means as the iterates of some function, that is, write
down a recursive formula for the first components alone.

� Exercise 1.3.20 Finding the root of a number z can be done in various ways.
Compare the Greek method of arithmetic/harmonic mean with the Newton
Method, taking 1 as the initial guess.
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� Exercise 1.3.21 Find the lowest power of 2 such that, among all the powers up
to this one, the first digit is 7 more often than 8.

� Exercise 1.3.22 Consider the sequence (an)n∈N defined by the last two digits of
powers of 2. Prove that an + an+10 = 100 for every n ≥ 2.

� Exercise 1.3.23 Prove that the sequence defined by the last three digits of
powers of 2 (starting with 008) is periodic with period 100.

� Exercise 1.3.24 Consider the sequence (an)n∈N defined by the last three digits of
powers of 2. Prove that an + an+50 = 1000 for every n ≥ 3.
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PART 1

A COURSE IN DYNAMICS: FROM SIMPLE

TO COMPLICATED BEHAVIOR

Dynamics provides the concepts and tools to describe and understand complicated
long-term behavior in systems that evolve in time. An excellent way to acquire
and appreciate these concepts and tools is in a gradual progression from simple
to complex behavior during which examples, concepts, and tools all evolve toward
greater sophistication.

Accordingly, the course begins with the most simple dynamical behavior (a
universal steady state), which turns out to be a fundamental tool as well. (This
latter theme is developed in detail in Chapter 9.) Chapter 2 gently progresses to also
include systems with several steady states. Chapter 3 studies linear maps as slightly
more complicated yet quite tractable systems that double as a central tool later.

Complexity first appears in Chapter 4 (and moves to higher dimension in
Chapter 5). We encounter orbits whose long-term behavior involves close but not
exact returns to the initial state (recurrence), as well as distribution throughout the
space of states. However, this potential complexity is tempered by the regularity of
individual asymptotics and uniformity of behavior across orbits. This is also borne
out by statistical analysis, which is introduced here. Mechanical systems (Chapter 6)
provide natural examples where some complexity (recurrence) is forced while the
intrinsic structure often limits complexity to the level of the previous two chapters.

The highest level of complexity is reached in Chapter 7, where complicated
recurrence is highly irregular for individual orbits and the asymptotic behavior
of orbits is thoroughly heterogeneous and inextricably intertwined. Concepts
appropriate for this level of complexity are developed throughout this chapter and
the next, including fundamental aspects of statistical behavior.

Although it is part of the Panorama, Chapter 9 is a natural continuation of the
course, and it is written to the same standard of proof as the course.
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CHAPTER 2

Systems with Stable Asymptotic Behavior

This chapter prepares the ground for much of this book in several ways. On one
hand, it provides the simplest examples of dynamical behavior, with the first hints
as to how more complicated behavior can arise. On the other hand, it provides
some important tools and concepts that we will need frequently. There are two
kinds of dynamical systems we present here as “simple”. There are linear maps,
whose simplicity lies in the possibility of breaking them down into components
that one can study separately. Contracting maps are simple because everything
moves toward a single point. We introduce linear maps briefly here and concentrate
on a preview of their utility for studying nonlinear dynamical systems. Linear maps
are studied systematically in Chapter 3. We present the facts about contracting
maps that will be used throughout this course. Applications pervade this book and
are featured prominently in Chapter 9.

2.1 LINEAR MAPS AND LINEARIZATION

2.1.1 Scalar Linear Maps

The primitive discrete-time population model xi+1 = f (xi) = kxi (with k > 0)
introduced in Section 1.2.9.1 has simple dynamics: Starting with any x0 �= 0, the
sequence (xi)i∈N diverges if k > 1 and goes to 0 if k < 1. Part of the simplicity is
that the asymptotic behavior is independent of the initial condition; scaling x0 by
a factor a scales all xi by the same factor. Furthermore, the allowed asymptotic
behaviors are quite simple.

So long as k �= 1, this changes little if we replace f (x) = kx by g(x) := kx + b.
Indeed, changing variables to y = x − (b/1 − k) leads to the recursion yi+1 = kyi .
Therefore we have by now fully described the dynamical possibilities for linear
maps. (Except for f (x) = kx when k = ±1.)

Linear maps in higher dimension admit more complex behavior of individual
orbits. However, one important aspect of simplicity remains. Although not all
orbits have the same long-term behavior, knowledge of the dynamics of a small
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number of orbits is sufficient to develop the dynamics of all of the others. This is
studied systematically in Chapter 3.

2.1.2 Linearization

Some important dynamical systems studied in this book are rather directly derived
from a linear one, but most interesting dynamical systems are not linear. Yet,
knowledge of linear dynamical systems can be useful for studying nonlinear
ones. The key ingredient is differentiability, that is, the existence of a good linear
approximation near any given point.

Differentiability and linear approximation are discussed in Section 2.2.4.1 and
Section A.2. The central feature of differentiability is that it guarantees a good linear
approximation of a map near any given point. A simple example is the approxima-
tion of f (x) := √

x near x = 16 by L(x) = f (16) + f ′(16)(x − 16) = 4 + 1
8 (x − 16), in

particular,
√

17 ≈ 4 1
8 . This corresponds to the first step in the Newton method for

approximating
√

17 (see Section 1.3.2.2).
Such linear approximation can sometimes be useful for dynamics when the

orbits of a nonlinear map stay near enough to the reference point for the linear
approximation to be relevant. There are examples of this throughout the book. For
now we give a special case of Proposition 2.2.17:

Proposition 2.1.1 Suppose F is a differentiable map of the line and F (b) = b. If all
orbits of the linearization of F at b are asymptotic to b, then all orbits of F that start
near enough to b are asymptotic to b as well.

The quintessential linearization result in analysis is the Mean Value
Theorem A.2.3 (see also Lemma 2.2.12), and it is already used numerous times in
the next section (for example, Proposition 2.2.3 and Section 2.2.4.4). Linearization
also plays an important role in highly complicated dynamical systems (see
for example, Chapter 7 and Chapter 10.

� EXERCISES

� Exercise 2.1.1 Show that for k �= 1 the change of variable y = x − (b/1 − k)
transforms the recursion xi+1 = f (xi) = kxi + b to the recursion yi+1 = kyi .

� Exercise 2.1.2 Describe what asymptotic behaviors appear for the maps
f (x) = kx when k = ±1.

� Exercise 2.1.3 Describe what asymptotic behaviors appear for the maps f (x) =
kx + b when k = ±1 and b �= 0.

2.2 CONTRACTIONS IN EUCLIDEAN SPACE

Traditionally, scientists and engineers have had a preference for dynamical systems
that have stable asymptotic behavior, ideally settling into a steady state, maybe after
a short period of “transient behavior.” Simple real-life examples abound. A desk
lamp, when turned on, settles into the “on” state of constant light intensity instantly
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(after a very short heating period for the filament). Unless it is broken, it does
not blink or flicker erratically. Likewise escalators are preferred in a steady state of
constant speed. Radios, when first turned on, have complicated transient behavior
for a remote fraction of a second but then settle into a steady state of reception. Our
tour of dynamical systems begins with those that display such simple behavior.

Corresponding to the above continuous-time real-world examples, the simplest
imaginable kind of asymptotic behavior of a discrete-time dynamical system is
represented by the convergence of iterates of any given point to a particular point,
a steady state. There is an important general class of situations where this kind of
behavior can be established, namely, for contracting maps. These are presented
here not only because their simple dynamics provides an ideal starting point,
but also because we will use contractions as a tool in numerous problems in
analysis and differential equations, as well as for studying dynamical systems with
more complicated behavior. These applications appear throughout this book, and
Chapter 9 concentrates on such applications.

We now define contractions and clarify the usage of the words “map” and
“function.”

2.2.1 Definitions

When we use the word “map” we usually mean that the domain and range lie in
the same space, and even more often that the range is in the domain – we iterate
maps and in this way they generate a dynamical system. Fibonacci’s rabbits,
Maine lobsters, phyllotaxis, butterflies, and methods for finding roots all provided
examples of such dynamical systems. Time is discrete, and the laws of nature (or
of an algorithm) have been distilled into a rule that determines present data from
prior data, and the next “state” of the system from the present state. All of this is
achieved by applying one map that encodes these laws. So, discrete-time dynamical
systems are maps of a space to itself. Maps are almost always continuous.

“Functions,” on the other hand, have numerical values even if they are defined
on a rather different space, and they are not iterated. Still, we will sometimes use the
conventional word “function” to denote a map of the real line or a subset of it into
itself. There is a third possibility of transformations used for a change of variables.
These are called coordinate changes or conjugacies (and maybe sometimes also
maps). One map that we always have at our disposal is the identity, which we
denote by Id. It is defined by Id(x) = x.

Now we define contracting maps with respect to the Euclidean distance
d(x, y) :=

√∑n
i=1(xi − yi)2.

Definition 2.2.1 A map f of a subset X of Euclidean space is said to be Lipschitz-
continuous with Lipschitz constant λ, or λ-Lipschitz if

d( f (x), f (y)) ≤ λd(x, y)(2.2.1)

for any x, y ∈ X . f is said to be a contraction or a λ-contraction if λ < 1. If a map f
is Lipschitz-continuous, then we define Lip( f ) := supx �=y d( f (x), f (y))/d(x, y).
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Example 2.2.2 The function f (x) = √
x defines a contraction on [1, ∞). To prove

this, we show that for x ≥ 1 and t ≥ 0 we have
√

x + t ≤ √
x + (1/2)t (why is this

enough?). This is most easily seen by squaring:(√
x + t

2

)2

= x + xt + t2

4
≥ x + xt ≥ x + t.

2.2.2 The Case of One Variable

We now give an easy way of checking the contraction condition that uses the
derivative.

Proposition 2.2.3 Let I be an interval and f : I → R a differentiable function with
| f ′(x)| ≤ λ for all x ∈ I . Then f is λ-Lipschitz.

Proof By the Mean Value Theorem A.2.3, for any two points x, y ∈ I there exists a
point c between x and y such that

d( f (x), f (y)) = | f (x) − f (y)| = | f ′(c)(x − y)| = | f ′(c)|d(x, y) ≤ λd(x, y). �

Note that we need no information about f ′ at the endpoints of I .

Example 2.2.4 This criterion makes it easier to check that f (x) = √
x defines a

contraction on I = [1, ∞) because f ′(x) = 1/2
√

x ≤ 1/2 for x ≥ 1.

Let us point out that by Problem 2.2.14 the weaker condition | f ′(x)| < 1 does
not suffice to obtain (2.2.1). However, sometimes it does:

Proposition 2.2.5 Let I be a closed bounded interval and f : I → I a continuously
differentiable function with | f ′(x)| < 1 for all x ∈ I . Then f is a contraction.

Proof The maximum λ of | f ′(x)| is attained at some point x0 because f ′ is
continuous. It is less than 1 because | f ′(x0)| < 1. �

The difference is that the real line is not closed and bounded (see also
Problem 2.2.13 for a related fact).

In calculus, a favorite example of a recursively defined sequence is of the form
an+1 = f (an), with a0 given and f a function with | f ′| ≤ λ < 1. This is a simple
dynamical system given by the map f . For each initial value a0 a sequence is
uniquely defined by an+1 = f (an). If f is invertible, then this sequence is defined for
all n ∈ Z.

Definition 2.2.6 For a map f and a point x, the sequence x, f (x), f ( f (x)), . . . ,
f n(x), . . . (if f is not invertible) or the sequence . . . f −1(x), x, f (x), . . . is called the
orbit of x under f . A fixed point is a point such that f (x) = x. The set of fixed points
is denoted by Fix( f ). A periodic point is a point x such that f n(x) = x for some
n ∈ N, that is, a point in Fix( f n). Such an n is said to be a period of x. The smallest
such n is called the prime period of x.
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Example 2.2.7 If f (x) = −x3 on R, then 0 is the only fixed point and ±1 is a
periodic orbit, that is, 1 and −1 are periodic points with prime period 2.

The reason the calculus examples of such sequences always converge is the
following important fact:

Proposition 2.2.8 (Contraction Principle) Let I ⊂ R be a closed interval, possibly
infinite on one or both sides, and f : I → I a λ-contraction. Then f has a unique
fixed point x0 and | f n(x) − x0| ≤ λn|x − x0| for every x ∈ R, that is, every orbit of f
converges to x0 exponentially.

Proof By iterating | f (x) − f (y)| ≤ λ|x − y|, one sees that

| f n(x) − f n(y)| ≤ λn|x − y|(2.2.2)

for x, y ∈ R and n ∈ N; so for x ∈ I and m ≥ n we can use the triangle inequality to
show

| f m(x) − f n(x)| ≤
m−n−1∑

k=0

| f n+k+1(x) − f n+k(x)|

≤
m−n−1∑

k=0

λn+k| f (x) − x| ≤ λn

1 − λ
| f (x) − x|.

(2.2.3)

Here we used the familiar fact

(1 − λ)
n−1∑
k=l

λk = λl + λl+1 + · · · + λn−1 − λl+1 + λl+2 + · · · + λn = (λl − λn)

about partial sums of geometric series. Since the right-hand side of (2.2.3) becomes
arbitrarily small as n gets large, (2.2.3) shows that ( f n(x))n∈N is a Cauchy sequence.
Thus for any x ∈ I the limit of f n(x) as n → ∞ exists because Cauchy sequences con-
verge. The limit is in I because I is closed. By (2.2.2), this limit is the same for all x. We
denote this limit by x0 and show that x0 is a fixed point for f . If x ∈ I and n ∈ N, then

|x0 − f (x0)| ≤ |x0 − f n(x)| + | f n(x) − f n+1(x)| + | f n+1(x) − f (x0)|
≤ (1 + λ)|x0 − f n(x)| + λn|x − f (x)|.

(2.2.4)

Since |x0 − f n(x)| → 0 and λn → 0 as n → ∞, we have f (x0) = x0.
That | f n(x) − x0| ≤ λn|x − x0| for every x ∈ R follows from (2.2.2) with y = x0. �

Example 2.2.9 In contemplating his rabbits, Leonardo of Pisa, also known as
Fibonacci, came up with a model according to which the number of rabbit pairs in
the nth month is given by the number bn, defined by the recursive relation b0 = 1,
b1 = 2, bn = bn−1 + bn−2 for n ≥ 2 (Section 1.2.2). Expecting that the growth of these
numbers should be exponential, we would like to see how fast these numbers grow
by finding the limit of an := bn+1/bn as n → ∞. To that end we use the Contraction
Principle. Since

an+1 = bn+2

bn+1
= bn+1 + bn

bn+1
= 1

bn+1/bn
+ 1 = 1

an
+ 1,

(an)∞
n=1 is the orbit of 1 under iteration of the map g(x) := (1/x) + 1. Since g(1) = 2,

we are in fact considering the orbit of 2 under g. Now g′(x) = −x−2. This tells us
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that g is not a contraction on (0, ∞). Therefore we need to find a suitable (closed)
interval where this is the case and that is mapped inside itself.

Since g′ < 0, g is decreasing on (0, ∞). This implies that g([3/2, 2]) ⊂ [3/2, 2] be-
cause 3/2 < g(3/2) = 5/3 < 2 and g(2) = 3/2. Furthermore, |g′(x)| = 1/x2 ≤ 4/9 < 1
on [3/2, 2], so g is a contraction on [3/2, 2]. By the Contraction Principle, the orbit
of 2 and hence that of 1 is asymptotic to the unique fixed point x of g in [3/2, 2].
Thus limn→∞ bn+1/bn = limn→∞ an exists. To find the limit we solve the equation
x = g(x) = 1 + 1/x = (x + 1)/x, which is equivalent to x2 − x − 1 = 0. There is only
one positive solution: x = (1 + √

5)/2. (This solves Exercise 1.2.3.) Another way of
obtaining this ratio and an explicit formula for the Fibonacci numbers is given in
Section 3.1.9.

2.2.3 The Case of Several Variables

We now show that the Contraction Principle holds in higher dimension as well,
and we use the same proof, replacing absolute values by the Euclidean distance.

Proposition 2.2.10 (Contraction Principle) Let X ⊂ Rn be closed and f : X → X a
λ-contraction. Then f has a unique fixed point x0 and d( f n(x), x0) = λnd(x, x0) for
every x ∈ X.

Proof Iterating d( f (x), f (y)) ≤ λd(x, y) shows

d( f n(x), f n(y)) ≤ λnd(x, y)(2.2.5)

for x, y ∈ X and n ∈ N. Thus ( f n(x))n∈N is a Cauchy sequence because

d( f m(x), f n(x)) ≤
m−n−1∑

k=0

d( f n+k+1(x), f n+k(x))

≤
m−n−1∑

k=0

λn+kd( f (x), x) ≤ λn

1 − λ
d( f (x), x)

(2.2.6)

for m ≥ n, and λn → 0 as n → ∞. Thus limn→∞ f n(x) exists (because Cauchy
sequences in Rn converge) and is in X because X is closed (see Figure 2.2.1). By
(2.2.5) it is the same for all x. Denote this limit by x0. Then

d(x0, f (x0)) ≤ d(x0, f n(x)) + d( f n(x), f n+1(x)) + d( f n+1(x), f (x0))

≤ (1 + λ)d(x0, f n(x)) + λnd(x, f (x))
(2.2.7)

for x ∈ X and n ∈ N. Now f (x0) = x0 because d(x0, f n(x)) −−−→
n→∞ 0. �

x

f(x)
f2(x)

f3(x)

y

f(y)

f2(y)

f3(y)

Figure 2.2.1. Convergence of iterates.
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Taking the limit in (2.2.6) as m → ∞ we obtain d( f n(x), x0) ≤ (λn/1 − λ)
d( f (x), x). This means that, after n iterations, we can say with certainty that the
fixed point is in the (λn/1 − λ)d( f (x), x)-ball around f n(x). In other words, if we
make numerical computations, then we can make a rigorous conclusion about
where the fixed point must be (after accounting for roundoff errors).

Definition 2.2.11 We say that two sequences (xn)n∈N and (yn)n∈N of points in Rn

converge exponentially (or with exponential speed ) to each other if d(xn, yn) < cdn

for some c > 0, d < 1. In particular, if one of the sequences is constant, that is,
yn = y, we say that xn converges exponentially to y.

2.2.4 The Derivative Test

We now show, similarly to the case of one variable, that the contraction property
can be verified using the derivative.

To that end we recall some pertinent tools from the calculus of several variables,
namely, the differential and the Mean Value Theorem.

1. The Differential. Let f : Rn → Rm be a map with continuous partial derivatives.
Then at each point one can define the derivative or differential of f = ( f1, . . . , fm)
as the linear map defined by the matrix of partial derivatives

Df :=



∂ f1

∂x1

∂ f1

∂x2
. . .

∂ f1

∂xn

∂ f2

∂x1

∂ f2

∂x2
. . .

∂ f2

∂xn
...

...
. . .

...
∂ fm

∂x1

∂ fm

∂x2
. . .

∂ fm

∂xn


.

We say that the map is regular at x0 if this map is invertible. We define the norm
(see Definition A.1.29) of the differential by the norm of the matrix Df . In linear
algebra the norm of a matrix A is defined by looking at its action as a linear map:

‖A‖ := max
v �=0

‖A(v)‖
‖v‖ = max

‖v‖=1
‖A(v)‖.(2.2.8)

Geometrically, this is easy to visualize by considering the second of these ex-
pressions: Consider the unit sphere {v ∈ Rn ‖v‖ = 1} and notice that the second
maximum is just the size of the largest vectors in the image of this unit sphere. The
image of the unit sphere under a linear map is an ellipsoidal figure, and in a picture
the largest vector is easy to find. Calculating this norm in particular cases may not
always be easy, but there are easy ways of finding upper bounds (see Exercise 2.2.9
and Lemma 3.3.2).

2. The Mean Value Theorem

Lemma 2.2.12 If g : [a, b] → Rm is continuous and differentiable on (a, b), then
there exists t ∈ [a, b] such that

‖g(b) − g(a)‖ ≤
∥∥∥∥ d

dt
g(t)

∥∥∥∥ (b − a).
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Proof Let v = g(b) − g(a), ϕ(t) = 〈v, g(t)〉. By the Mean Value Theorem A.2.3 for one
variable there exists a t ∈ (a, b) such that ϕ(b) − ϕ(a) = ϕ′(t)(b − a), and so

(b − a)‖v‖
∥∥∥∥ d

dt
g(t)

∥∥∥∥ ≥ (b − a)
〈
v,

d
dt

g(t)
〉

= d
dt

ϕ(t)(b − a) = ϕ(b) − ϕ(a)

= 〈v, g(b)〉 − 〈v, g(a)〉 = 〈v, v〉 = ‖v‖2.

Divide by ‖v‖ to finish the proof. �

3. Convexity. A further notion we need is that of a convex set.

Definition 2.2.13 A convex set in Rn is set C such that for all a, b ∈ C the line
segment with endpoints a, b is entirely contained in C . It is said to be strictly convex
if for any points a, b in the closure of C the segment from a to b is contained in C ,
except possibly for one or both endpoints (see Figure 2.2.2).

For example, the disk {(x, y) ∈ R2 x2 + y2 < 1} is strictly convex. The open
upper half-plane {(x, y) ∈ R2 y > 0} is convex but not strictly convex. A kidney
shape {(r, θ) 0 ≤ r ≤ 1 + (1/2) sin θ} (in polar coordinates) is not convex. Neither
is the annulus {(x, y) ∈ R2 1 < x2 + y2 < 2}.

4. The Derivative Test. We can now give two versions of a derivative test for
contractions in several variables.

Theorem 2.2.14 If C ⊂ Rn is convex and open and f : C → Rm is differentiable
with ‖Df (x)‖ ≤ M for all x ∈ C, then ‖ f (x) − f (y)‖ ≤ M‖x − y‖ for x, y ∈ C.

Proof The line segment connecting x and y is given by c(t) = x + t(y − x) for t ∈
[0, 1], and it is contained in C by convexity. Let g(t) := f (c(t)). Then by the chain rule∥∥∥∥ d

dt
g(t)

∥∥∥∥ =
∥∥∥∥Df (c(t))

d
dt

c(t)

∥∥∥∥ = ‖Df (c(t))(y − x)‖ ≤ M‖y − x‖.

By Lemma 2.2.12, this implies ‖ f (y) − f (x)‖ = ‖g(1) − g(0)‖ ≤ M‖y − x‖. �

Corollary 2.2.15 If C ⊂ Rn is a convex open set, f : C → C a map with continuous
partial derivatives, and ‖Df ‖ ≤ λ < 1 at every point x ∈ Rn, then f is a λ-contraction.

Figure 2.2.2. A convex, strictly convex, and nonconvex set.



book 0521583047 April 21, 2003 16:55 Char Count= 0

2.2 Contractions in Euclidean Space 39

The role of convexity in Theorem 2.2.14, and hence in Corollary 2.2.15, is
elucidated in Problem 2.2.12. In particular, it is not sufficient to assume that any
two points of C can be connected by a curve, however nice. It is really necessary to
use a single line segment.

The preceding corollary does not quite seem to be geared toward applying the
Contraction Principle because an open set may not contain the limits of Cauchy
sequences in it. Therefore we give a result that holds for the closure of such a set.
It is proved exactly like Theorem 2.2.14.

Theorem 2.2.16 If C ⊂ Rn is an open strictly convex set, C its closure, f : C → Rn

differentiable on C and continuous on C with ‖Df ‖ ≤ λ < 1 on C, then f has a
unique fixed point x0 ∈ C and d( f n(x), x0) ≤ λnd(x, x0) for every x ∈ C.

Proof For x, y ∈ C we parameterize the line segment connecting x and y by
c(t) = x + t(y − x) for t ∈ [0, 1] and let g(t) := f (c(t)). Then c((0, 1)) is contained in
C by strict convexity and∥∥∥∥ d

dt
g(t)

∥∥∥∥ =
∥∥∥∥Df (c(t))

d
dt

c(t)

∥∥∥∥ = ‖Df (c(t))(y − x)‖ ≤ λ‖y − x‖.

By Lemma 2.2.12 this implies ‖ f (y) − f (x)‖ ≤ λ‖y − x‖. Thus f is a λ-contraction
and has a unique fixed point x0. Furthermore, d( f n(x), x0) = λnd(x, x0) for every
x ∈ C . �

2.2.5 Local Contractions

Now we discuss maps that are not contracting on their entire domain but on a
part of it. A prime example of a map that contracts only locally is given by the
following:

Proposition 2.2.17 Let f be a continuously differentiable map with a fixed
point x0 where ‖D fx0‖ < 1. Then there is a closed neighborhood U of x0 such
that f (U ) ⊂ U and f is a contraction on U.
Definition 2.2.18 By a closed neighborhood of x we mean the closure of an open
set containing x.

Proof Since D f is continuous, there is a small closed ball U = B(x0, η)
around x0 on which ‖D fx‖ ≤ λ < 1 (Exercise 2.2.11). If x, y ∈ U , then
d( f (x), f (y)) ≤ λd(x, y) by Corollary 2.2.15; so f is contraction on U . Further-
more, taking y = x0 shows that if x ∈ U , then d( f (x), x0) = d( f (x), f (x0)) ≤
λd(x, x0) ≤ λη < η and hence f (x) ∈ U . �

Unfortunately the definition of ‖D f ‖ is inconvenient for calculations.
However, one can avoid having to use it if one is willing to either adjust the
metric or pass to an iterate. We carry this out in the next chapter.

Proposition 2.2.19 Let f be a continuously differentiable map with a fixed
point x0 such that all eigenvalues of D fx0 have absolute value less than 1. Then
there is a closed neighborhood U of x0 such that f (U ) ⊂ U and f is a con-
traction on U with respect to an adapted norm.
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Proof In the next chapter (Proposition 3.3.3) we will show that the assumption
on the eigenvalues implies that one can choose a norm that we denote by ‖ · ‖′ for
which ‖D f ‖′ < 1. Now Proposition 2.2.17 applies. In other words, a sufficiently
small closed “ball” around x0 with respect to the norm ‖ · ‖′ can be chosen as
the set U . This ball is in fact an ellipsoid in Rn. �

This particular situation is interesting because of some robustness under
perturbation.

2.2.6 Perturbations

We now study what happens to the fixed point when one perturbs a contraction.

Proposition 2.2.20 Let f be a continuously differentiable map with a fixed
point x0 where ‖D fx0‖ < 1, and let U be a closed neighborhood of x0 such that
f (U ) ⊂ U. Then any map g sufficiently close to f is a contraction on U.

Specifically, if ε > 0, then there is a δ > 0 such that any map g with
‖g(x) − f (x)‖ ≤ δ and ‖Dg(x) − D f (x)‖ ≤ δ on U maps U into U and is a
contraction on U with its unique fixed point y0 in B(x0, ε).

Proof Since the linear map D fx depends continuously on the point x, there
is a small closed ball U = B(x0, η) around x0 on which ‖D fx‖ ≤ λ < 1
(Exercise 2.2.11). Assume η, ε < 1 and take δ = εη(1 − λ)/2. Then

‖Dg‖ ≤ ‖Dg − D f ‖ + ‖D f ‖ ≤ δ + λ ≤ λ + (1 − λ)/2 = (1 + λ)/2 =: µ < 1

on U , so g is a contraction on U by Corollary 2.2.15. If x ∈ U , then d(x, x0) ≤ η

and

(2.2.9) d(g(x), x0) ≤ d(g(x), g(x0)) + d(g(x0), f (x0)) + d( f (x0), x0)

≤ µd(x, x0) + δ + 0 ≤ µη + δ ≤ η(1 + λ)/2 + η(1 − λ)/2 = η,

so g(x) ∈ U also, that is, g(U ) ⊂ U . Finally, since gn(x0) → y0, we have

d(x0, y0) ≤
∞∑

n=0

d(gn(x0), gn+1(x0)) ≤ d(g(x0), x0)
∞∑

n=0

µn ≤ δ

1 − µ
= εη(1 − λ)

1 − λ
,

which is less than ε. �

The previous result in particular tells us that the fixed point of a contraction
depends continuously on the contraction. This part can be proved without
differentiability:

Proposition 2.2.21 If f : R × (a, b) → R is continuous and fy := f (·, y) satis-
fies | fy(x1) − fy(x2)| ≤ λ|x1 − x2| for all x1, x2 ∈ R and all y ∈ (a, b), then the
fixed point g(y) of fy depends continuously on y (see Figure 2.2.3).

Proof Since

|x − g(y)| ≤
∞∑

i=0

∣∣ f i
y(x), f i+1

y (x)
∣∣ ≤ 1

1 − λ
|x − fy(x)|,
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Figure 2.2.3. Continuous dependence of the
fixed point.

we take x = g(y ′) = fy ′(g(y ′)) to get

|g(y ′) − g(y)| ≤ 1
1 − λ

| fy ′(g(y ′)) − fy(g(y ′))|. �

This also works in greater generality (Proposition 2.6.14), and an even
stronger result in this direction is given by Theorem 9.2.4.

2.2.7 Attracting Fixed Points

At this point we have encountered two kinds of stability: Given a contraction, each
individual orbit exhibits stable behavior in that every nearby orbit (actually, every
orbit) has precisely the same asymptotics. Put differently, a little perturbation of the
initial point has no effect on the asymptotic behavior. This constitutes the stability
of orbits. On the other hand, Proposition 2.2.20 and Proposition 2.2.21 tell us that
contractions are stable as a system; that is, when we perturb the contracting map
itself, then the qualitative behavior of all orbits remains the same, and the fixed
point changes only slightly.

This is a good time to make precise what we mean by a stable fixed point. As we
said, we want every nearby orbit to be asymptotic to it. However, this is not all we
want, as Figure 2.2.4 shows, where we have a semistable fixed point. Such a map
can be given, for example, as f (x) = x + (1/4) sin2 x if the circle is represented as
R/Z (see Section 2.6.2). We need to make sure that no nearby points ever stray far.
But, as the example

f (x) =
{

−2x x ≤ 0

−x/4 x > 0

(or Figure 3.1.3) shows, we must allow points to go a little further for a while.

Definition 2.2.22 A fixed point p is said to be Poisson stable if, for every ε > 0, there
is a δ > 0 such that if a point is within δ of pthen its positive semiorbit is within ε of p.
The point p is said to be asymptotically stable or an attracting fixed point if it is Pois-
son stable and there is an a > 0 such that every point within a of p is asymptotic to p.
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x f(x)f -1(x)0 1
Figure 2.2.4. Not an attracting fixed point.

2.2.8 The Newton Method

A refined application of linear approximation to an otherwise difficult problem is
the Newton method for finding roots of equations (see Figure 2.2.5), which we saw
in Section 1.3.2.2. Doing this exactly is often difficult or impossible, and the roots are
rarely expressible in closed form. The Newton method can work well to find a root
in little computational time given a reasonable initial guess. To see how, consider a
function f on the real line and suppose that we have a reasonable guess x0 for a root.
Unless the graph intersects the x-axis at x0, that is, f (x0) = 0, we need to improve
our guess. To that end we take the tangent line and see at which point x1 it intersects
the x-axis by setting f (x0) + f ′(x0)(x1 − x0) = 0. Thus the improved guess is

x1 = x0 − f (x0)
f ′(x0)

.

Example 2.2.23 When we start from x0 = 4 for the function x2 − 17, this improved
guess is

x1 = x0 − x2
0 − 17

2x0
= x0

2
+ 17

2x0
= 33

8
.

x0x1x2

Figure 2.2.5. The Newton method.
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Figure 2.2.6. A superattracting fixed point.

One further step gives

x2 = 33
16

+ 17 · 8
2 · 33

= 332 + 17 · 64
16 · 33

.

Iteratively one can improve the guess to x3, . . . using the same formula. With a
good initial guess few steps usually give a rather accurate solution. (Indeed, x2 is
already off by less than 10−6.) It is easy to see why: We are applying the map F (x) :=
x − ( f (x)/ f ′(x)) repeatedly, and the desired point has the following property:

Definition 2.2.24 A fixed point x of a differentiable map F is said to be superat-
tracting if F ′(x) = 0 (see Figure 2.2.6).

Proposition 2.2.25 If | f ′(x)| > δ and | f ′′(x)| < M on a neighborhood of the root r,
then r is a superattracting fixed point of F (x) := x − f (x)/ f ′(x).

Proof F (r) = r and F ′(x) = f (x) f ′′(x)/( f ′(x))2. �

Remark 2.2.26 A small first derivative might cause the intersection of the tangent
line with the x-axis to go quite far from x0. The hypothesis | f ′′(x)| < M holds
whenever f ′′ is continuous.

At a superattracting fixed point we have quadratically (that is, superexponen-
tially) converging iterates, as in the case of the fixed point of the quadratic map f2

in Section 2.5. In other words, the error is approximately squared in every iteration.
This argument only works if the initial guess is fairly good. With an unfortunate

initial choice the iterates under F can behave rather erratically. In other words, F
has an attracting fixed point but may otherwise have quite complicated dynamics.

The special case of extracting roots by the Newton method had an ancient
precursor.

Proposition 2.2.27 Approximating
√

z by the Newton method with initial guess 1 is
the same as using the first components of the Greek root extraction method in (1.3.1).

Proof With initial guess 1 the Newton method gives the recursion

x0 = 1, xn+1 = xn − x2
n − z
2xn

= 1
2

(
xn + z

xn

)
.
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The Greek method starts with (x0, y0) = (1, z), and the recursion (xn+1, yn+1) =
f (xn, yn) defined by (1.3.1) has the property that yn = z/xn. Therefore we have

xn+1 = xn + yn

2
= 1

2

(
xn + z

xn

)
. �

2.2.9 Applications of the Contraction Principle

The foremost tool we introduced in this chapter is the Contraction Principle. It is
one of the most important individual facts in analysis and dynamical systems. Its
applications are both diverse and fundamental. We do not only have numerous
applications of it in the course of our development of dynamics, but several
basic facts that underly the theory are consequences of the Contraction Principle.
Chapter 9 is devoted to such applications. While it is located in the Panorama,
it is closely connected to the present material and maintains the same standard
of rigor. It provides the Inverse- and Implicit-Function Theorems, which are
fundamental to analysis (Theorem 9.2.2 and Theorem 9.2.3). As we mentioned,
the fixed point of a contraction persists under perturbations, and Chapter 9 gives
the most general condition on a fixed point for such persistence (Proposition 9.3.1).
Also, the theory concerning existence and uniqueness of differential equations, on
which in a manner of speaking half of dynamics is based, is derived there from
the Contraction Principle (Theorem 9.4.3). A result central to dynamical systems
of the type discussed in Chapter 7 is the Stable Manifold Theorem (Theorem 9.5.2;
see the comments at the end of Section 10.1). It also depends crucially on the
Contraction Principle.

� EXERCISES

� Exercise 2.2.1 Show that entering any number on a calculator and repeatedly
pressing the sin button gives a sequence that goes to zero. Prove that convergence
is not exponential if we use the radian setting and exponential if we use the degree
setting. In the latter case, find out how many iterates are needed to obtain a number
less than 10−10 times the initial input.

� Exercise 2.2.2 If one enters a number greater than 1 on a calculator and
repeatedly hits the square root key, the resulting numbers settle down eventually.
Prove that this always happens and determine the limit. If the calculator keeps k
binary digits internally, roughly how long does it take for the sequence to settle
down to this limit of accuracy?

� Exercise 2.2.3 Do the previous exercise for initial values in (0, 1].

� Exercise 2.2.4 Show that x2 defines a λ-contraction on [−λ/2, λ/2].

� Exercise 2.2.5 This is a variation on Fibonacci’s problem of rabbit populations,
taking mortality into account.

A population of polar lemmings evolves according to the following rules. There
are equal numbers of males and females. Each lemming lives for two years and
dies in the third winter of its life. Each summer, each female lemming produces an
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offspring of four. In the first summer there is one pair of one-year old lemmings.
Let xn be the total number of lemmings during the nth year. Use the Contraction
Principle to show that xn+1/xn converges to a limit ω > 1. Calculate ω.

� Exercise 2.2.6 Let x be a fixed of point of a map f on the real line such that
| f ′(x)| = 1 and f ′′(x) �= 0. Show that arbitrarily close to x there is a point y such
that the iterates of y do not converge to x.

� Exercise 2.2.7 Which of the following are convex? {(x, y) ∈ R2 xy > 1},
{(x, y) ∈ R2 xy < 1}, {(x, y) ∈ R2 x + y > 1}, {(x, y) ∈ R2 x > y2}.

� Exercise 2.2.8 Prove that the norm of a matrix defined in (2.2.8) is a norm in
the sense of Definition A.1.29.

� Exercise 2.2.9 Show that ‖A‖ ≤
√∑

i, j a2
i j for any n × n matrix A = (ai j )1≤i, j≤n.

� Exercise 2.2.10 Show that ‖A‖ ≥ | det A|1/n for any n × nmatrix A = (ai j )i, j=1,...,n.

� Exercise 2.2.11 Prove that the norm of a matrix is a continuous function of its
coefficients.

� PROBLEMS FOR FURTHER STUDY

� Problem 2.2.12 Construct an example of an open connected subset U of the
plane R2 and a continuously differentiable map f : U → U such that ‖Dfx‖ < λ < 1
for all x ∈ U but f is not a contraction. (Such a set cannot be convex.)

� Problem 2.2.13 Suppose that I is a closed bounded interval and f : I → I is
such that d( f (x), f (y)) < d(x, y) for any x �= y (this is weaker than the assumption
of the Contraction Principle). Prove that f has a unique fixed point x0 ∈ I and
limn→∞ f n(x) = x0 for any x ∈ I .

� Problem 2.2.14 Show that the assertion of the previous exercise is not valid for
I = R by constructing a map f : R → R such that d( f (x), f (y)) < d(x, y) for x �= y,
f has no fixed point, and d( f n(x), f n(y)) does not converge to zero for some x, y.

2.3 NONDECREASING MAPS OF AN INTERVAL AND BIFURCATIONS

As a next step we look at maps that may have several fixed points. Although the
behavior of any such map is hardly more complicated than that of a contraction,
it may, unlike that of contractions, change radically under perturbations.

2.3.1 Nondecreasing Interval Maps

We now study the situation where the dynamics is similar to that of a contraction,
but there is no guarantee of exponentially fast convergence to a fixed point. This
situation is instructive because it demonstrates an important method in low-
dimensional dynamics, the systematic use of the Intermediate-Value Theorem.

Definition 2.3.1 If I ⊂ R is an interval, then f : I → R is said to be increasing if x >

y =⇒ f (x) > f (y) and decreasing if x > y =⇒ f (x) < f (y). We say that f is non-
decreasing if x ≥ y =⇒ f (x) ≥ f (y) and nonincreasing if x ≥ y =⇒ f (x) ≤ f (y).
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The simple example situation, and a useful building block in the theory of
nondecreasing maps, is the following observation.

Lemma 2.3.2 If I = [α, β] ⊂ R is a closed bounded interval and f : I → I a
nondecreasing map without fixed points in (α, β), then one endpoint of I is fixed
and all orbits converge to it, except for the other endpoint if it is fixed as well. If
f is invertible, then both endpoints are fixed and all orbits of points in (α, β) are
positively asymptotic to one endpoint and negatively asymptotic to the other.

Remark 2.3.3 (Cobweb Pictures/Graphical Computing) For any particular
example of such a function this is quite obvious when one draws a picture. For the
picture it helps to use the device of “cobweb pictures” or “graphical computing.”
It goes like this: To determine the orbit of a point x, find x on the horizontal axis
and draw a vertical line segment that connects it to the graph. This locates the
point (x, f (x)) on the graph. The x-coordinate of the next point of the orbit is
f (x), and therefore a horizontal line from (x, f (x)) to the diagonal [that is, to the
point ( f (x), f (x))] gives the new x-coordinate. Now draw again a vertical line to
the graph followed by a horizontal line to the diagonal and repeat. Figure 2.3.1
shows how easy this is even for a slightly less simple function than in this
lemma.

The idea behind this lemma is that, since the graph is not allowed to intersect
the diagonal over (α, β) (no fixed points), it is either entirely above or below it. If it
is above, then f (x) > x; so every orbit is an increasing sequence, and points move
inexorably to the right. Since every orbit is bounded above, it must converge, and
then one has to see that the limit is always β. If f is invertible, then points should
move in the opposite direction (towards α) when one iterates the inverse. Drawing
pictures helps to figure out or understand a proof, but it is not quite a substitute.
Here is the proof.

Figure 2.3.1. Dynamics of an increasing interval map.
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Proof f (α) ≥ α and f (β) ≤ β since f (I ) ⊂ I , so ( f − Id)(α) ≥ 0 and ( f − Id)(β) ≤ 0,
where Id is the identity. On the other hand, by the Intermediate-Value Theorem,
the continuous function f − Id cannot change sign on I because it is never zero on
(α, β) by assumption. Thus we must have either f (α) = α (if f (x) < x on (α, β)) or
f (β) = β (if f (x) > x on (α, β), or both. To be specific, suppose f (x) > x on (α, β)
and hence that β is a fixed point. Then for any x ∈ (α, β) the sequence xn := f n(x)
is increasing and bounded above by β; hence it is convergent to some x0 ∈ (α, β].
But then by continuity

f (x0) = f
(

lim
n→∞ xn

) = lim
n→∞ f (xn) = lim

n→∞ xn+1 = x0,(2.3.1)

so x0 ∈ Fix( f ) ∩ (α, β] = {β}. In case f (y) < y on (α, β), we would similarly conclude
that f n(x) → α for all x ∈ (α, β) as n → ∞.

If f is invertible, then z := f (y) > y implies f −1(z) = y < f (y) = z; so if f (x) > x
on (α, β) and hence f n(x) → β as n → ∞, then f −1(x) < x on (α, β) and f −n(x) → α

as n → ∞ by the above arguments, so every x ∈ (α, β) is positively and negatively
asymptotic to opposite ends of [α, β]. �

This behavior suggests the following useful terminology:

Definition 2.3.4 If f : X → X is an invertible map and x ∈ X a point such that
limn→∞ f −n(x) = a and limn→∞ f n(x) = b, then x is said to be heteroclinic to a and
b. If a = b, then x is said to be a homoclinic point of a.

At this point we have no examples of homoclinic points. There are none in the
case of nondecreasing interval maps because all orbits are monotonic. Figure 2.2.4
shows how homoclinic points can arise on the circle.

After the situation of Lemma 2.3.2, the next simple type of asymptotic behavior
is the convergence of every orbit to a fixed point, but with the possibility that
different orbits converge to different fixed points. This occurs in the case of
increasing functions of a real variable viewed as maps.

Proposition 2.3.5 If I ⊂ R is a closed bounded interval and f : I → I is a non-
decreasing continuous map, then all x ∈ I are either fixed or asymptotic to a fixed
point of f . If f is increasing (hence invertible), then all x ∈ I are either fixed or
heteroclinic to adjacent fixed points.

Proof Figure 2.3.1 shows how to prove this. The direction of motion is indicated
by the sign of f − Id: If ( f − Id)(x) < 0, then f (x) − x < 0; so f (x) < x and x moves
left. Conversely when ( f − Id)(x) > 0.

We first show that there are fixed points. Write I = [a, b] and consider the
continuous map f − Id : I → R given by f (x) − x. Since f (I ) ⊂ I we have f (a) ≥ a
and f (b) ≤ b; hence ( f − Id)(a) ≥ 0 and ( f − Id)(b) ≤ 0, so ( f − Id)(x) = 0 for some
x ∈ I by the Intermediate-Value Theorem. But then f (x) = x and x is a fixed point.

The set Fix( f ) of fixed points of f is closed because it is the set of zeros of the
continuous function f − Id. If Fix( f ) = I , then each point is fixed and we are done.
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Otherwise, I � Fix( f ) is a nonempty open set and can be written as a disjoint
union of open intervals. Consider an interval (α, β) from this collection. Either
α, β ∈ Fix( f ) or one of α, β is an endpoint of I , so f (α) ≥ α and f (β) ≤ β regardless.
If y ∈ [α, β], then α ≤ f (α) ≤ f (y) ≤ f (β) ≤ β because f is nondecreasing. This
shows that f ([α, β]) ⊂ [α, β]. Thus all orbits in [α, β] are asymptotic to a fixed point
by Lemma 2.3.2. If f is increasing, hence invertible, then Lemma 2.3.2 shows that
all points of (α, β) are heteroclinic to the endpoints. of [α, β]. �

In Figure 2.3.1 the left one of the marked fixed points is an attracting fixed
point (Definition 2.2.22); the other one is of the opposite kind. This other kind is as
common as attracting fixed points and deserves a name also.

Definition 2.3.6 A fixed point x is said to be a repelling fixed point (or a repeller)
if for every ε > 0 and every y within ε of x there is an n ∈ N such that the positive
semiorbit of f n(y) has no points within ε of x.

2.3.2 Bifurcations

For contracting maps the individual stability of orbits coexisted with the stability
of the behavior of the whole system under perturbation. This is not necessarily
the case in the present context, where the dynamics can have different qualitative
features. Here, there are several fixed points, and orbits may be attracted to any
given one, or not. And the number of fixed points is not prescribed either. This
makes it interesting to look into the way the qualitative picture can change as
one changes the map. That is, one can look for the transitions between different
behaviors in families of nondecreasing maps depending on a parameter and find
the values of the parameter where such changes occur.

These transitions are called bifurcations. An example is given by the family of
maps illustrated in Figure 2.3.2. Here we first have two fixed points (left picture),
one attracting and one repelling. At one specific parameter value, the bifurcation
parameter, the two merge into one (middle picture), which immediately disappears
(right picture) for larger values of the parameter. Of course, outside the pictured
portion there must be another fixed point because we saw in the last proof that
there always must be at least one by the Intermediate-Value Theorem. This is some-
times called a saddle-node bifurcation. This terminology comes from differential
equations, where the corresponding bifurcation in the more visually distinctive

Figure 2.3.2. Basic (tangent) bifurcation.
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two-dimensional situation consists of the merging of two equililibria, a saddle
(Figure 3.1.6) and a node (Figure 3.1.2), which cancel each other and disappear.

We initially have one new stable and unstable fixed point each, and the single
fixed point present for the bifurcation parameter is semistable (as in Figure 2.2.4);
that is, points approach it from one side and leave from the other. For higher values
of the parameter this fixed point is gone, but for moderate amounts of time this
has little effect, because it takes an orbit a long time to pass by the “bottleneck”
between the diagonal and the graph (lots of zigzags in a cobweb diagram).

� EXERCISES

� Exercise 2.3.1 Prove that the set of zeros of a continuous function is closed.

� Exercise 2.3.2 Let f : [0, 1] → [0, 1] be a nonincreasing continuous map. What
are the possible periods for periodic points for such a map?

� Exercise 2.3.3 In the proof of Proposition 2.2.8, show that one can prove that
the limit is a fixed point using an argument like (2.3.1) (no exponential estimates)
in place of (2.2.4).

� Exercise 2.3.4 Prove that for any closed set E ⊂ R there is a continuous strictly
increasing map f : R → R such that Fix( f ) = E .

� PROBLEMS FOR FURTHER STUDY

� Problem 2.3.5 Prove that for a closed set E ⊂ R there is a continously
differentiable strictly increasing map f : R → R such that Fix( f ) = E .

� Problem 2.3.6 Looking at Figure 2.2.4, we remarked that for nondecreasing
interval maps a fixed point to which all other points are positively asymptotic must
be an attractor. Prove that this is true even if the map is not monotone.

2.4 DIFFERENTIAL EQUATIONS

In this section we develop the simple dynamics of maps hitherto observed in the
context of differential equations. First we show the counterpart to nondecreasing
interval maps, differential equations on the line. We include a specific discussion of
a continuous-time logistic growth model. Both parts contain instances of attracting
fixed points, the obvious analog to those for maps. However, there is a second
analog to attracting fixed points for maps, and we introduce it in Section 2.4.3.

2.4.1 Differential Equations on the Line

We now prove a result analogous to Proposition 2.3.5 in the continuous-time
situation. Consider the first-order differential equation ẋ = f (x), where we assume
that f is Lipschitz-continuous (see Definition 2.2.1). Consider the set of zeros of f ,
which are the constant solutions (equilibria).

Remark 2.4.1 The set of zeros is a closed set because f is continuous. Therefore its
complement is open and can be written as a disjoint union of (“complementary’’)
open intervals.
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If we consider one of these intervals at a time, then the following result gives a
full description of what happens, in perfect analogy to Lemma 2.3.2.

Lemma 2.4.2 Consider a Lipschitz-continuous function f and suppose f �= 0 on
(a, b) and f (a) = f (b) = 0. Then, for any initial condition x0 ∈ I , the corresponding
solution of ẋ = f (x) is monotone. It is increasing (and asymptotic to b) if f > 0 on I ,
decreasing (and asymptotic to a) otherwise.

Proof Suppose f (x0) > 0 to be definite (the other case works the same way). It is
easy to see that the solution increases so long as it is in (a, b). The point is to show
that it can’t leave that interval.

Since ẋ(0) = f (x(0)) = f (x0) > 0, the solution initially increases. If it ever
becomes decreasing, then we must have a maximum x(t0) = c at that time, which
implies that f (c) = 0 and therefore c = b. We need to check that this never happens,
that is, x(t) �= b for all time. For this there are two ways, the honest one and the easy
one. We begin with the honest one.

We can write the solution of a differential equation ẋ = f (x) as x(t) =
x(0) + ∫ t

0 f (x(s)) ds [because differentiating both sides gives ẋ = f (x) by the
Fundamental Theorem of Calculus]. For our problem write dx/dt = f (x) and by the
Inverse-Function Theorem dt/dx = 1/ f (x), so in integral form t(x) = ∫ x

x0
(1/ f (s)) ds.

Since f is Lipschitz-continuous, we have f (s) = f (s) − f (b) ≤ C(b − s) for some
constant C . Therefore,

t(x) =
∫ x

x0

1
f (s)

ds ≥
∫ x

x0

1
C(b − s)

ds.

If x = b, then this integral diverges, that is, t(x) = ∞. This shows that x(t) < b for
all (finite) t and furthermore that x(t) → b as t → ∞.

The easy way to do the last portion is to use existence and uniqueness of
solutions to differential equations, which we only get to in Theorem 9.4.3. Because
x̃(t) = b for all t ∈ R is a solution that takes the value b at some time (any time), any
solution that ever reaches b is of the form x̃(t − t0) = b. Since we did not start from
b, our solution is not this one, so it never reaches b. �

Therefore also in this situation every solution has simple asymptotics: As t → ∞,
or t → −∞ the solution either converges to a fixed point or diverges to infinity.

By Lemma 2.4.2 it is now easy to piece together a full qualitative picture of the
behavior of any differential equation in one variable. On the real line mark the
points where f = 0. These are the fixed points. On each complementary interval
determine the sign of f . If f > 0 on that interval, draw an arrow to the right,
otherwise an arrow to the left. Figure 2.4.1 gives an example.

The type of fixed points can be classified by considering f ′:

Proposition 2.4.3 When f (x0) = 0 and f ′(x0) < 0, then x0 is an attracting fixed
point of ẋ = f (x): Every nearby orbit is positively asymptotic to x0. Likewise, fixed
points x0 with f ′(x0) > 0 are repelling: Nearby points move away from x0.
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Figure 2.4.1. Solutions and phase portrait of a differential equation.

Proof If f ′(x0) < 0, then f (x) < 0 for x > x0 nearby, so such points move toward x0,
and vice versa for x < x0. Thus every nearby orbit is positively asymptotic to x0. �

Therefore, the phase portrait of ẋ = f (x) is immediately evident whenever all
zeros of f are known and are nondegenerate (nonzero derivative). Mark all of these
points and draw arrows toward those with a negative derivative and away from
those with a positive derivative. The word “phase portrait” derives from physics;
see Section 6.2.

Remark 2.4.4 The simple ingredient that replaces the monotonicity assumption
in discrete time is that different solutions of a differential equation cannot cross.
This means that order is preserved, as it is by increasing maps. We formulate this
more crisply in Section 2.4.2.5.

2.4.2 The Logistic Differential Equation

In Chapter 1 we saw that some problems in population biology are naturally mod-
eled by using discrete time; our example of a butterfly colony involved discrete-
time steps of one year. Starting with Section 1.2.1, however, and from Section 1.2.5
to Section 1.2.7 we saw situations where it is appropriate to use continuous-time
models for populations, notably when one tries to understand the growth of a pop-
ulation in a setting that changes slowly compared to the reproductive cycle of the
population. Insects give typical examples again, because many species have short
reproductive cycles of about a day, which makes it reasonable to study the popula-
tion growth during a single summer with a continuous-time model.

1. Exponential Population Growth. The simplest model of this nature is one
involving exponential growth (see Section 1.2.1): Suppose that at any given time
the rate of births and deaths is a constant percentage of the total population at
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that time, that is, there is a constant k such that if the real variable x denotes the
population then ẋ = kx or (d/dt)x = kx.

Lemma 2.4.5 The solution of ẋ = kx is x(t) = x(0)ekt.

Proof Write ẋ/x = k and integrate over t to get log |x| = kt + C or |x| = ekt+C , which
we can rewrite as x = Aekt. Inserting t = 0 shows that A = x(0), that is, x(t) =
x(0)ekt. �

The argument above is incorrect when x(0) = 0, but the statement still holds.

2. The Logistic Model. Of course, any model with such unchecked and rapid
growth is likely to be somewhat unrealistic, and indeed it should not be the case
that the birth and death rates as a fraction of the population are independent of the
population itself, that is, that k should be independent of the size of the population.
For relatively small populations this is a good approximation, but, as in the earlier
butterfly example, for larger populations the limited amount of food and possibly
other resources play a role. Thus there should be a saturation population that does
not grow any more; and if the population were to start out at a higher number, it
should shrink to the saturation level. Thus, in a manner of speaking, k should be
a function of x that is zero at a (positive) saturation value L of x (no growth) and
negative for larger values of x (shrinking population). If we take a linear function
k = a(L − x) with a > 0 to do this, then we get the differential equation

d
dt

x = ax(L − x).(2.4.1)

The qualitative behavior of the solutions is easy to develop using Proposition 2.4.3.
However, this situation is so simple that we can even solve the differential equation
explicitly.

Lemma 2.4.6 The solution of ẋ = ax(L − x) is

x(t) = Lx(0)
x(0) + (L − x(0))e−Lat

.

Proof We separate variables, that is, bring all x’s to one side:

a = dx/dt
x(L − x)

.

Integrating over t gives

at + C =
∫

1
x(L − x)

dx
dt

dt =
∫

1
x(L − x)

dx =
∫

1
Lx

dx +
∫

1
L(L − x)

dx

using partial fractions. Thus

at + C = log |x|
L

− log |L − x|
L

= 1
L

log

∣∣∣∣ x
L − x

∣∣∣∣ .
Taking t = 0 shows that

C L = log

∣∣∣∣ x(0)
L − x(0)

∣∣∣∣ , hence e−C L =
∣∣∣∣ L

x(0)
− 1

∣∣∣∣ .
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Changing sign and exponentiating gives

e−Lat

∣∣∣∣ L − x(0)
x(0)

∣∣∣∣ = e−L(at+C) =
∣∣∣∣ L

x
− 1

∣∣∣∣ =
∣∣∣∣ L − x(t)

x(t)

∣∣∣∣ =
∣∣∣∣ L

x(t)
− 1

∣∣∣∣ .
The quantities in absolute value signs turn out to always agree in sign, so we can
drop the absolute values. This gives

x(t) = Lx(0)
x(0) + (L − x(0))e−Lat

. �

3. Asymptotic Behavior. We develop the asymptotic behavior of the solutions
to this differential equation. For x(0) = L we get the expected constant solution
x(t) = L. When t → +∞, the exponential term goes to zero; hence x(t) → L for any
positive initial condition. If x(0) < L, then as t → −∞ the exponential term diverges
and x(t) → 0. For x(0) > L or x(0) < 0 (the latter is biologically meaningless) the
denominator is zero (the solution has a singularity) for

t = log(1 − [L/x(0)])
La

,

which is negative for x(0) > L and positive for x(0) < 0.
Therefore the asymptotic behavior for positive time is simple: If the initial pop-

ulation is zero, then it remains zero forever. If the initial population is positive but
below saturation (that is, less than L), then the population increases and in the long
run creeps up to the saturation population. The increase is most rapid when the
population is L/2 because x(L − x) is maximal at L/2. Initial populations larger than
L shrink to L asymptotically. The qualitative behavior is reflected in Figure 2.4.1.

In the language of dynamical systems we have found that the fixed point L is
stable: All nearby solutions tend to it in positive time. The opposite is true for the
constant solution zero. Any nearby solution diverges from it, either toward the
equilibrium solution L or (for biologically meaningless negative solutions) to a
negative singularity.

4. Interpretation of the Blowup. The fact that solutions starting with x(0) > L
have a singularity for negative time is not entirely “ugly.” To be specific, if x(0) = 2L,
the singularity occurs for t = − log2

/La. This means that no matter how large
the initial condition x(0) is, we always have x(t) < 2L for + ≥ log 2/La, that is, no
matter how huge the initial population x(0), it shrinks to reasonable size (2L, say)
within a period of time that is bounded independently of x(0): The more there
are the faster they starve. This also makes clear that populations larger than L
cannot arise from this model intrinsically. The excessive population must have
been transplanted into the ecosystem from the outside at some recent time.

5. One-Dimensional Flow. Let us look back at these two models (exponential and
logistic) in a slightly different fashion. In both cases we obtained the solutions as
functions of time that depend on the initial condition, so the set of solutions is
described as a family of functions of time with a parameter from the phase space.
In the first example this family is given by x0ekt, where x0 is this parameter. On the
other hand, we can look at this formula and decide to view x0 as variable and t as a
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parameter, or as fixed for the moment. Then instead we obtain a family of functions
φt(x) = xekt, which is now parametrized by t and has x as an independent variable.
That there is something interesting about this viewpoint becomes apparent when
one notices that the dependence on the parameter t is not entirely arbitrary;
we have φt+s(x) = xek(t+s) = (xekt)eks = φs(φt(x)). This is a simple consequence of
ea+b = eaeb and may therefore look like an accident; but the same property holds in
the second example as well, where one would not expect it at first glance: If we let

φt(x) := Lx
x + (L − x)e−Lat

,

then we also get φt+s(x) = φs(φt(x)) (Exercise 2.4.5). This property means that if we
follow a solution for time t and then further from that value for time s, then this is
the same as following the solution for time t + s in the first place. We present this
point of view of time-t-maps in detail in Section 9.4.7 (p. 271).

Note here simply that Remark 2.4.4 tells us that in the present situation these
maps are increasing in x (for fixed t).

2.4.3 Limit Cycles

We now produce the less obvious continuous-time analog of attracting fixed
points for maps. We use properties of flows. These appear in Section 3.2, but
the definitive treatment is in Section 9.4.7. While the proof here is somewhat
formidable, the facts and pictures should provide good insight.

The obvious analogs are attracting fixed points for flows such as the saturation
population L in the previous example. The second analog cannot be found on
the line. It is an attracting periodic orbit (periodic solution) for a differential
equation in the plane or in higher dimension, such as the van der Pol equation
in Section 1.2.8.

We now give a simple criterion that establishes that a periodic orbit is
attracting, and this criterion is a consequence of the Contraction Principle,
specifically Proposition 2.2.19. We show that if φt is flow and p a periodic point
with period T, then from the differential of φT at p one can infer that the orbit
O(p) of p is attracting.

As a first step we show that the flow direction is irrelevant for the study of
stability.

Lemma 2.4.7 If p is T-periodic and not fixed for ẋ = f (x), then 1 is an
eigenvalue of DφT

p (see Section 2.2.4.1).

Proof f (p) = f (φT(p)) = (d/ds)φs(p)|s=T
= (d/ds)φT ◦ φs(p)|s=0

= DφT
p f (p).

Thus, f (p) is an eigenvector for D�T
p with eigenvalue 1. �

Therefore we ignore this eigenvalue from now on:

Definition 2.4.8 If p is a T-periodic point and the eigenvalues of DφT
p are

λ1, . . . , λn−1, 1 (not necessarily distinct), then λ1, . . . , λn−1 are called the eigen-
values at p.
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Figure 2.4.2. Limit cycle.

Remark 2.4.9 These eigenvalues depend only on the orbit: If q = φs(p), then
φT ◦ φs = φs ◦ φT implies DφT

q Dφs
p = Dφs

pDφT
p , that is, the linear maps DφT

q

and DφT
p are conjugate via Dφs

p; hence the eigenvalues at p and q coincide.

Here is the promised criterion.

Proposition 2.4.10 If p is a periodic point with all eigenvalues of absolute
value less than 1, then the orbit O(p) of p is a limit cycle, that is, it has a
neighborhood whose every point is positively asymptotic to O(p).

Proof In order to apply Proposition 2.2.19 we construct a map that reflects
the dynamics and the eigenvalue information. To that end consider the flow
direction at p and pick a small piece from its orthogonal subspace. This is a little
disk S containing p such that the orbit of p crosses it, as shown in Figure 2.4.2.
We need to use continuity up to time 1.1 · T, say (Proposition 9.4.5) several
times, which can be stated thus:

Lemma 2.4.11 Given ε > 0, there is a δ > 0 such that any point within δ of
O(p) will remain within ε of O(p) for time 1.1 · T.

Taking ε such that S contains an ε-disk around p we find that, whenever
q ∈ S is sufficiently close to p, its orbit again intersects S after time less than
1.1 · T. This means that on a neighborhood of p in S there is a well-defined
return map F S

p . By smoothness (Proposition 9.4.6) and the Implicit-Function
Theorem 9.2.3 F S

p is smooth.

Proposition 2.4.12 The eigenvalues at p coincide with those of DF S
p .

Proof If we denote the projection to S parallel to f (p) by π : Rn → S (see
Figure 2.4.3) then the differential of F S(x) = φtx (x)�S

as a map into S is

DF S
p = π

(
Dφ

tp
p �S

+ φ̇tp(p)Dtp�S

)
.

Applying π to φ̇tp(p)Dtp�S
= f (φtp(p))Dtp�S

= f (p)Dtp�S
gives zero, so

DF S
p = π Dφ

tp
p �S

=: A. But, on the other hand, extending a basis of S to one of

Rn by adding f (p) gives the coordinate representation Dφ
tp
p = ( A 0

∗ 1 ). �
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Figure 2.4.3. Projection to a section.

This means that, by Proposition 2.2.19, p is an attracting fixed point of F S

with a neighborhood U ⊂ S of attraction. By Lemma 2.4.11, every point close
enough to the orbit of p will encounter U and from then on do so at intervals less
than 1.1 · T. The resulting return points converge to p. Again by Lemma 2.4.11,
the entire positive semiorbit of q then converges to p. �

Remark 2.4.13 Proposition 2.2.20 and Proposition 2.2.21 tell us that the fixed
point of a contraction persists under perturbation. Because they are obtained
from the Contraction Principle, limit cycles have the same property. If in the
situation of Proposition 2.4.10 the dynamical system is perturbed slightly, then
the map F S

p on S defined above will be slightly perturbed. Since it is a contraction
on V ⊂ S, the same goes for its perturbation. Accordingly, there is still a unique
fixed point in S, which gives rise to a periodic point for the flow, and the last
paragraph of the proof of Proposition 2.4.10 then shows that this produces a
limit cycle.

� EXERCISES

� Exercise 2.4.1 Explain the disappearance of the absolute value signs in the
proof of Lemma 2.4.5.

� Exercise 2.4.2 Consider the differential equation ẋ = −xk for k > 1. Denote the
solution with initial condition x0 > 0 by x(t). Prove that there is a number s > 0
such that the limit limt→∞ x(t)/ts is finite and not zero.

� Exercise 2.4.3 Give an example of a differential equation with a right-hand side
for which a nonconstant solution coincides with a constant one after finite time,
that is, where a nonfixed point approaches a fixed point in finite time.

� Exercise 2.4.4 Give an example of a differential equation for which a solution
diverges to infinity in finite time.

� Exercise 2.4.5 Show that if

φt(x) := Lx
x + (L − x)e−Lat

,

then φt+s(x) = φs(φt(x)).
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� Exercise 2.4.6 Consider the differential equation ẋ = f (x) and suppose that
f (x0) = 0 and f ′(x0) < 0. Show that for any point x �= x0 near x0 the orbit of x
converges exponentially fast to x0.

� PROBLEM FOR FURTHER STUDY

� Problem 2.4.7 Give an example of a differential equation on the plane with
a differentiable right-hand part that has a limit cycle such that convergence of
nearby orbits to it is not exponential.

2.5 QUADRATIC MAPS

After this study of the logistic differential equation it is inviting to revisit the
discrete-time logistic equation that was discussed in the introduction. Although
this map has complicated dynamics for large values of the “fertility’’ parameter,
for smaller values of the parameter it is possible to make some deductions about
its behavior using ideas from this chapter. The discussion of interval maps in the
previous section depended on monotonicity and is therefore not directly applicable
to the map f (x) = λx(1 − x). Nevertheless, it is sometimes possible to establish
simple dynamics without monotonicity by combining local monotonicity with the
concept of contraction to study the dynamics.

2.5.1 Attracting Fixed Points for Small Parameter Values

The family of maps fλ : [0, 1] → [0, 1], fλ(x) := λx(1 − x) for 0 ≤ λ ≤ 4 is called
the quadratic family. It is the most popular model in one-dimensional dynamics,
both real and complex (in the latter case the maps are extended to C, and often
complex values of the parameter λ are considered). These maps are evidently not
monotonic but increase on [0, 1/2] and decrease on [1/2, 0]. On the other hand,
for λ < 3 the dynamics are simple, according to the next two results. Recall that
experimentation recommended in the introduction suggests this.

Proposition 2.5.1 For 0 ≤ λ ≤ 1 all orbits of fλ(x) = λx(1 − x) on [0, 1] are
asymptotic to 0 (see Figure 2.5.1).

Proof fλ(x) = λx(1 − x) ≤ x(1 − x) < x for x �= 0 so ( f n(x))n∈N decreases and is
bounded below by zero; hence it is convergent by completeness (Section A.1.2).
The limit is a fixed point by (2.3.1), and hence must be 0. (Another approach is to
notice that fλ([0, 1]) ⊂ [0, λ/4] ⊂ [0, 1/2] and that fλ is monotonic on [0, 1/2], so

Figure 2.5.1. The map f1.
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we could use the arguments for monotone maps after the first application of fλ.)
For λ < 1 we can use the Contraction Principle because | f ′

λ(x)| = λ|1 − 2x| ≤ λ < 1.
This shows in addition that all orbits for 0 ≤ λ < 1 (but not for λ = 1) are asymptotic
to the fixed point 0 with exponential speed. �

For λ > 1 the situation changes slightly.

Proposition 2.5.2 For 1 < λ ≤ 3 all orbits of fλ(x) = λx(1 − x) on [0, 1], except for
0 and 1, are asymptotic to the fixed point xλ = 1 − (1/λ).

Proof fλ(x) = x is equivalent to the quadratic equation 0 = λx(1 − x) − x =
λx(1 − x − (1/λ)) with the nonzero solution xλ = 1 − (1/λ), which is a new fixed
point in [0, 1] ifλ > 1. (Notice that forλ < 1 this solution is also present but negative.)

Case 1: 1 < λ ≤ 2 In this case, xλ < 1/2 (Figure 2.5.2) and fλ is an increasing map
of the interval [0, xλ] to itself with fλ(x) = λx(1 − x) > x, and thus every point x of
[0, xλ] is positively asymptotic to xλ.

Now look at points to the right of xλ. Notice that fλ(1 − x) = fλ(x), that is,
the function fλ is symmetric around x = 1/2. Therefore, fλ([1 − xλ, 1]) ⊂ [0, xλ],
and every x ∈ (1 − xλ, 1] is also asymptotic to xλ. It remains to examine points in
(xλ, 1 − xλ). Again, since fλ is symmetric,

fλ([xλ, 1 − xλ]) ⊂ [xλ, f (1/2)] = [xλ, λ/4] ⊂ [xλ, 1 − xλ],

so f maps this interval into itself. Furthermore,

| f ′
λ(x)| = λ|1 − 2x| ≤ λ|1 − 2xλ| = λ

∣∣∣∣1 − 2
(

1 − 1
λ

)∣∣∣∣ = |2 − λ| < 1

for 1 < λ ≤ 3 and x ∈ [xλ, 1 − xλ], so fλ is a contraction of [xλ, 1 − xλ]. Hence all
points of this interval are asymptotic to the only fixed point xλ in this interval. In
conclusion, we have shown that every orbit of the map fλ for 1 < λ ≤ 2 (other than
0 and 1) is asymptotic to the nonzero fixed point of this map.

Case 2: 2 < λ < 3. In this case (see Figure 2.5.3) we can apply a similar
argument, but it is rather more involved.

Figure 2.5.2. The maps f1.5 and f2.5.
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Figure 2.5.3. The maps f 2
2 and f 2

3 .

The above calculation shows that the fixed point is attracting, but to show
that it attracts all points is harder and we do not use the Contraction Principle.
In this case the nonzero fixed point xλ = 1 − 1/λ of fλ is to the right of 1/2, so fλ
is no longer increasing on [0, xλ]. First we show that, if I := [1 − xλ, fλ(1/2)] =
[1/λ, λ/4], then fλ(I) ⊂ I. To that end observe that fλ(x) ≤ fλ(1/2) = λ/4 for
x ∈ [0, 1]; hence for x ∈ I. On the other hand, f (λ/4) = (λ2/4) − (λ3/16) >

1/λ ∈ I because the derivative of the function q(λ) = λ3/4 − λ4/16 is positive
for 2 < λ < 3, and hence q(λ) > q(2) = 1. But f (λ/4) is the minimum of
f on I because λ/4 is the point in I furthest from 1/2. [λ/4 > xλ because
0 ≤ ((λ/2) − 1)2/λ = (λ/4 − (1 − (1/λ))).] This shows f (I) ⊂ I.

We want to show that every orbit except those of 0 and 1 eventually enters I.
For x ∈ I there is nothing to show. For x ∈ (0, 1/λ) let xn := f n

λ (x) and note that
f ([0, 1/λ]) = [0, xλ]; so if (xn)n∈N has no terms contained in I, then we must
have xn ≤ 1/λ for all n ∈ N, which implies that xn+1 > xn for all n ∈ N because
f (x) > x on [0, 1/λ]. Being increasing and bounded above, this sequence
converges to a limit x0 ∈ (0, 1/λ], which is a fixed point by (2.3.1). But there is
no fixed point in this interval. Finally, fλ(x) ∈ [0, 1/λ] for any x ∈ [λ/4, 1] and
hence these points also enter I by falling into the preceding case after one step.

Next we show that f n(x) → xλ as n → ∞ for x ∈ I. Unfortunately, f is not a
contraction on I because f ′

λ(λ/4) = λ(1 − 2(λ/4)) < −1 for λ > 1 + √
3 < 3. To

overcome this difficulty we consider f 2. Note that f 2
λ (I) ⊂ I, and furthermore

fλ([1/λ, xλ]) ⊂ [xλ, λ/4], and vice versa; that is, [1/λ, xλ] is f 2-invariant. Let
us locate y(λ) := f 2

λ (1/2) = λ2(4 − λ)/16 in relation to 1/2. For λ = 2 we have
equality and for λ = 3 we have y(λ) = 9/16 > 1/2. Furthermore,

d2

dλ2
y(λ) = 8 − 6λ

16
< 0

for λ ≥ 2, so y(λ) is concave down, and hence f 2
λ (1/2) > 1/2 for 2 < λ ≤ 3. This

implies, that the interval J := [1/2, xλ] is strictly invariant under f 2, that is,
f 2(J) ⊂ (1/2, xλ]. On this interval f 2

λ is increasing, and hence all of its points are
asymptotic to a fixed point of f 2

λ by Lemma 2.3.2. The only available fixed point is
xλ. This shows that for x ∈ I we have f 2n

λ (x) → xλ or f 2n+1
λ (x) → xλ as n → ∞.

But in the first case, for example, we have f 2n+1
λ (x) → fλ(xλ) = xλ as well, ending

the proof. This long argument becomes quite obvious when looking at the graph of
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Figure 2.5.4. The map f 2
2.5.

f 2
2.5 in Figure 2.5.4. Note also that for λ < 3 the convergence to xλ is exponential

by Proposition 2.2.17, even though we did not use the Contraction Principle.�

The case distinction around λ = 2 corresponds to the fact that, for this particular
value of the parameter, the fixed point xλ has derivative zero, and for larger values
of λ it has negative derivative. Thus, from then on nearby points approach the fixed
point by alternating around it, rather than monotonically as in the case λ < 2.

The case λ = 2 is interesting also because for f2 the point 1/2 is superattracting
(Definition 2.2.24). Because the derivative of f2 vanishes at 1/2, nearby points
approach 1/2 faster than exponentially, in fact, | f2(x) − 1/2| = |x − 1/2|2, that is,
the error gets squared with every step (see Figure 2.2.6). One can most conveniently
see this by changing the variable x to x′ = 1/2 − x. This quadratic convergence also
appears in the Newton method in Section 2.2.8.

The dynamics changes substantially when λ ≥ 3; this is explored in Chapter 11.

2.5.2 Stable Asymptotic Behavior

The common feature to the examples in this chapter is that all asymptotic behavior
is stable; every orbit is asymptotic to a fixed point or limit cycle. In the case of
contracting maps this is due to a strong assumption that forces all orbits toward
the fixed point. For monotone interval maps there is the possibility of mildly more
complex behavior because various fixed points are available as ultimate rest points.
In this situation we saw a mechanism for increasing the dynamical complexity
slightly: Bifurcations can increase the number of fixed points. Yet they do not
fundamentally increase the range of behaviors. The limitations imposed by the
Intermediate-Value Theorem and monotonicity prevail. Our study of the quadratic
family so far has not produced much extra complexity. However, in this case this
is related to the restricted range of parameters considered. The reason there is no
fundamental limitation of complexity is that quadratic maps are not invertible and
hence do not preserve order. This allows orbits to trade places and is geometrically
reflected in the “folding” of the interval by the map. For larger parameter values
this new facet produces ever more complicated dynamics.

For differential equations in the plane the complexity of the dynamics is limited
in a way similar to that of nondecreasing interval maps. Any orbit that does not
accumulate on a fixed point is asymptotic to a limit cycle. This Poincaré–Bendixson
Theorem is related to the fact that, for flows in the plane, sections such as the S
in the proof of Proposition 2.4.10 are intervals, and the return map F S to them is,
roughly speaking, a monotone map. (A material ingredient for this that depends also
on dimension is the Jordan Curve Theorem, which says that, analogously to points
dividing the line into two pieces, a closed curve divides the plane into two pieces.)
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� EXERCISES

� Exercise 2.5.1 Show that f 2
λ is a contraction on [1/2, xλ] for 2 ≤ λ < 3.

� Exercise 2.5.2 (Alternate form of the quadratic family) Given gα(x) := α − x2

and hλ = λ(x − 1
2 ), show that hλ( fλ(x)) = gα(hλ(x)), where α = (λ2/4) − (λ/2).

� Exercise 2.5.3 Suppose f : [0, 1] → [0, 1] is differentiable and | f ′(x)| ≤ 1 for all
x. Show that the set of fixed points of f is nonempty and connected (that is, it is a
single point or an interval).

� Exercise 2.5.4 Suppose f : [0, 1] → [0, 1] is differentiable and | f ′(x)| ≤ 1 for all
x. Show that every periodic point has period 1 or 2.

2.6 METRIC SPACES

Some interesting dynamical systems do not naturally “live” in Euclidean space,
and there are occasions where the study of a dynamical system benefits from
considerations in an auxiliary space. Therefore we now introduce metric spaces in
some generality with emphasis on three specific ones, the circle, cylinder, and torus.
They are the phase spaces for many natural dynamical systems, in particular many
that arise from classical mechanics (Section 5.2) and billiards. Subsequent sections
pay attention to Cantor sets and “devil’s” staircases. These may look pathological
but appear naturally in various dynamical systems (see Proposition 4.3.19 and
Section 7.4.4 for the Cantor set and the discussion near Definition 4.4.1 as well as
Proposition 4.4.13 for the devil’s staircase).

2.6.1 Definitions

In the arguments about contractions in Euclidean spaces we did not use the
particular properties of the Euclidean distance. Indeed, we could apply the same
reasoning if we were to use a different way of measuring distance on Rn, for
example, the maximum distance d(x, y) = max1≤i≤n |xi − yi |.

Naturally, the notion of a contraction depends on the way distances are mea-
sured, so some maps that are not contractions with respect to the Euclidean distance
may turn out to be contractions with respect to the maximum distance or yet another
distance function on Rn. This is useful when one is able to cleverly choose a metric
that makes a given map a contraction. We come back to this reasoning in the next
chapter, when we find a necessary and sufficient condition for a linear map to allow
us to apply the Contraction Principle for an appropriately chosen distance function.

Even the fact that our space is a vector space or a subset of one is not important
for the arguments in the proof of Proposition 2.2.10. We essentially use only the
most basic properties of the Euclidean metric, such as the triangle inequality and
the fact that Cauchy sequences converge. Reducing our assumptions to such basic
facts brings about a fruitful generalization of the earlier situation.

Definition 2.6.1 If X is a set, then d : X × X → R is said to be a metric or distance
function if

(1) d(x, y) = d(y, x) (symmetry),
(2) d(x, y) = 0 ⇔ x = y (positivity),
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(3) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Putting z = x in (3) and using (1) and (2) shows that d(x, y) ≥ 0. If d is a metric, then
(X, d) is said to be a metric space.

A subset of a metric space is itself a metric space by using the metric d.
We need a few basic notions related to metric spaces, which generalize

familiar concepts from Euclidean space. Metric spaces are discussed further in the
Appendix.

Definition 2.6.2 The set B(x, r) := {y ∈ X d(x, y) < r} is called the (open) r-ball
around x. A sequence (xn)n∈N in X is said to converge to x ∈ X if for all ε > 0 there
exists an N ∈ N such that for every n ≥ N we have d(xn, x) < ε.

Now we define a property of a metric space that distinguishes it from all those
with “holes” or otherwise “missing” points.

Definition 2.6.3 A sequence (xi)i∈N is said to be a Cauchy sequence if for all ε > 0
there exists an N ∈ N such that d(xi, xj ) < ε whenever i, j ≥ N. A metric space X is
said to be complete if every Cauchy sequence converges.

In the proofs of the Contraction Principle (Proposition 2.2.8 and Proposi-
tion 2.2.10) the fixed point is obtained as the limit of a Cauchy sequence. Therefore
we assume completeness in Proposition 2.6.10 in order to be able to use the same
argument.

Definition 2.6.4 Let (X, d), (Y, d′) be metric spaces. A map f : X → Y is said to be an
isometry if d′( f (x), f (y)) = d(x, y) for all x, y ∈ X . It is said to be continuous at x ∈ X
if for every ε > 0 there exists a δ > 0 such that d(x, y) < δ implies d′( f (x), f (y)) < ε.
A continuous bijection (one-to-one and onto map) with continuous inverse is said
to be a homeomorphism. A map f : X → Y is said to be Lipschitz-continuous (or
Lipschitz) with Lipschitz constant C , or C-Lipschitz, if d′( f (x), f (y)) ≤ Cd(x, y).
A map is said to be a contraction (or, more specifically, a λ-contraction) if it is
Lipschitz-continuous with Lipschitz constant λ < 1. We say that two metrics are
isometric if the identity establishes an isometry between them. Two metrics are
said to be uniformly equivalent (sometimes just equivalent) if the identity and its
inverse are Lipschitz maps between the two metric spaces.

2.6.2 The Circle

The unit circle S1 = {x ∈ R2 ‖x‖ = 1} in the plane can also be described as the set of
complex numbers of modulus 1. It is the phase space for the example in Section 2.2.7
as well as for many dynamical systems that we intend to study in due time.

On the circle one can in a natural way introduce several metrics. The first choice
that comes to mind is to measure the distance of two points of S1 using the Eu-
clidean metric of R2. This is in accordance with our earlier observation that a subset
of a metric space is itself a metric space. Let us refer to this metric as the Euclidean
metric d.
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dl(x, y)

d(x, y)

x

y

Figure 2.6.1. d and dl on S1.

On the other hand, one may decide that the distance between two points of S1

should be the distance traveled when moving from one point to the other along the
circle, that is, the length of the shorter arc connecting the two points. This we call the
length metric dl , because it measures lengths of arcs in order to compute distance.
While these two metrics are not the same, they are not very different either.

Lemma 2.6.5 d and dl are uniformly equivalent.

Proof d(x, y) = 2 sin(dl(x, y)/2), dl(x, y) ∈ [0, π/2], and 2t/π ≤ 2 sin(t/2) ≤ t for
t ∈ [0, π/2]. Thus the identity map from the circle (S1, d) with the Euclidean metric
to the circle (S1, dl) with the length metric is Lipschitz-continuous with Lipschitz
constant π/2 (see Figure 2.6.1). Its inverse (also the identity, but “in the other
direction”) is Lipschitz-continuous with Lipschitz constant 1. Therefore these two
metrics are uniformly equivalent. �

It will be useful later and is instructive now to see how a different construction
gives rise to a metric space homeomorphic to S1 and, in fact, isometric to (S1, dl)
up to a constant scaling factor.

Consider the real line R and define the equivalence relation ∼ by setting x ∼ y
if x − y ∈ Z, that is, we define points to be equivalent if they differ by an integer.
We define the equivalence class of x ∈ R by [x] := {y ∈ R y ∼ x}. The equivalence
class of 0 is just Z itself, and every equivalence class is a translate of Z by a member
of the class, that is, [x] = x + Z. To define a new metric space we consider the set
X = R/Z := {[x] x ∈ R} of all equivalence classes.

Remark 2.6.6 The notation [·] for equivalence classes is virtually universal, and
unfortunately it looks similar to that for the integer part, �·	, which is almost the
opposite notion. [·] is closely related to the fractional part {·}.

A metric on R/Z is induced from that on R:

Proposition 2.6.7 d(x, y) := min{|b − a| a ∈ x, b ∈ y} defines a metric on X =
R/Z.

Proof d is clearly symmetric. To check d(x, y) = 0 ⇒ x = y, note first that the metric
does not change if instead we take the minimum over a ∈ x only for a fixed b ∈ y,
because the least distance from b to elements of x is the same as the least distance
from any integer translate of b to elements of x. But obviously min{|b − a| a ∈ x}
is actually attained, and hence is only zero if b ∈ x and hence x = y.
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To prove the triangle inequality take x, y, z ∈ R/Z and a ∈ x, b ∈ y such that
d(x, y) = |b − a|. Then for any c ∈ z we have d(x, z) ≤ |c − a| ≤ |c − b| + |b − a| =
|c − b| + d(x, y). Taking the minimum over c ∈ z then shows that d(x, z) ≤
d(y, z) + d(x, y). �

Example 2.6.8 d([π ], [3/2]) = 7/2 − π = 0.5 − 0.14159265 · · · = 0.3584073 . . . and
d([0.9], [0]) = 0.1.

Thus we obtain a metric space. To see what it looks like, note that every equiv-
alence class has exactly one representative (that is, member) in [0, 1). Therefore, as
a set of points, we can naturally identify R/Z with [0, 1).

Lemma 2.6.9

(1) If a, b ∈ [0, 1) with |a − b| ≤ 1/2, then d([a], [b]) = |a − b|.
(2) If |a − b| ≥ 1/2, then d([a], [b]) = 1 − |a − b|.

Proof

(1) d([a], [b]) ≤ |a − b| by definition, but the inequality cannot be strict because
every integer translate of b is further from a than b itself.

(2) d([a], [b]) = 1 − |a − b| because this is the smaller of |a − (b − 1)| and
|a − (b + 1)|. �

For example, the distance between the classes [1 − ε] and [0] is ε, if ε < 1/2.
Therefore, this construction intuitively corresponds to taking the interval [0, 1)
and “attaching” the open end to 0. Or, referring to the identification on the entire
line R, the construction amounts to “rolling up” the entire line onto a circle of
circumference 1, so that integer translates of the same number all end up on the
same point of the circle (see Figure 2.6.2). Conversely, going from the circle to the
line is like rolling a bicycle wheel along and leaving periodic tire prints.

This description can be made analytically as well: To map R onto the unit circle
in the complex plane C in this fashion we can employ the map given by f (x) = e2πix.
Then f (x + k) = e2πi(x+k) = e2πixe2πik = e2πix = f (x), so this function depends only
on the equivalence class [x] of x under integer translations and therefore defines
a map from R/Z to S1 by F ([x]) = f (x). If we use the metric dl/2π on S1, then F is

Figure 2.6.2. Rolling up the real line.
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an isometry, justifying our claim of having given an alternate construction of the
metric space (S1, dl).

Our point of view is that we regard the identification space R/Z as the circle,
and the unit circle in the plane as a convenient and often physically motivated and
appropriate representation of the circle.

In dynamics and various applications of mathematics the circle, defined as R/Z,
naturally arises because one may want to study periodic functions. Any collection
of functions with a common period is, in fact, a collection of functions on a circle,
because one can scale the independent variable to make the common period equal
to 1, and the values of 1-periodic functions depend only on the equivalence class
(mod Z) of the variable. So these functions are well defined on R/Z. A particularly
important class of this kind is (e2kπix)k∈Z. In problems where periodic functions
naturally arise, this may introduce a helpful geometric component.

2.6.3 The Cylinder

The cylinder is a space naturally visualized as a tube or pipe. There are several ways
of defining it from more basic ingredients.

One of these is motivated by a natural parametrization of a cylinder as follows:

(cos 2πt, sin 2πt, z) for t ∈ R and − 1 ≤ z ≤ 1.

Of course, taking 0 ≤ t ≤ 1 suffices to get the whole cylinder, and by periodicity
of the trigonometric functions the points (0, z) and (1, z) are mapped to the same
point in R3. Therefore this parametrization can be visualized as taking a unit square
and rolling it up into a tube. This is illustrated in the left half of Figure 2.6.3.

On the other hand, the previous section discussed rolling up R to get S1. The
present parametrization does the same, except that there is an inert variable z
added in. Therefore we can also describe the cyclinder as a product of a circle
(t-variable) with an interval (z-variable). This is an instance of the product
construction described in Section A.1.6.

2.6.4 The Torus

The torus is the surface usually visualized as the surface of a doughnut. One can
think of this surface as obtained by taking a circle in the xz-plane of R3 that does
not intersect the z-axis and sweeping out a surface by revolving it around the z-axis,
that is, by moving its center around a circle in the xy-plane. Doing this with the
circle parametrized by

(R + r cos 2πθ, 0, sin 2πθ)

Figure 2.6.3. The torus.
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gives the parametrization

((R + r cos 2πθ) cos 2πφ, (R + r cos 2πθ) sin 2πφ, sin 2πθ)

of the torus. Seeing that the angles θ and φ show up in periodic functions only,
it is natural to directly think of the torus as the cartesian product of two circles
in R2 embedded in R4. Once we view the torus as T2 = S1 × S1, however, we can
utilize the description of S1 as R/Z just given and describe T2 directly as R2/Z2

by considering equivalence classes of points (x1, x2) ∈ R2 under translations by
integer vectors (k1, k2) ∈ Z2, that is, [(x, y)] = ([x], [y]). As before, the Euclidean
metric on R2 induces a metric on T2, which is the same as the product metric
d((x1, x2), (y1, y2)) =

√
(d(x1, y1))2 + (d(x2, y2))2. Continuing the rolling-up con-

struction of the cylinder one more step (to roll the z-interval up into a circle as well)
we obtain a description of T2 by taking the unit square [0, 1) × [0, 1) and gluing the
right and left edges together to obtain a cylinder, and then gluing the top and bottom
circles together as well to get the torus. One can picture the “seams” as the equator
of the doughnut hole and a meridian around the ring. Likewise, we can construct
and describe tori Tn of any dimension as n-fold products of circles or as Rn/Zn.

As with the circle, we regard the unit square (or cube) with the identifications
described above as the torus, whereas the “doughnut” surface is a canonical
representation of the abstract torus as a concrete surface. This is contrary to viewing
the unit square merely as a convenient domain for a parametrization of the torus.

Here, too, periodic functions are naturally related: A function f : R2 → R such
that f (x + i, y + k) = f (x, y) whenever i, k ∈ Z is naturally defined on the torus.
Analogously to a circle, a torus may give rise to helpful visualizations when such dou-
bly periodic functions arise prominently in applications. Such cyclic coordinates
often appear in mechanics, and this is why tori often play a role in that context.

We repeat that cylinders and tori are both examples of products of metric
spaces as described generally in Section A.1.6.

2.6.5 Contracting and Eventually Contracting Maps

Having defined the necessary general notions, we can now show that the
Contraction Principle holds in any complete metric space:

Proposition 2.6.10 (Contraction Principle)

Let X be a complete metric space. Under the action of iterates of a contrac-
tion f : X → X, all points converge with exponential speed to the unique fixed
point of f .

Proof As in Euclidean space, iterating d( f (x), f (y)) ≤ λd(x, y) gives

d( f n(x), f n(y)) → 0 as n → ∞,

so the asymptotic behavior of all points is the same. On the other hand, (2.2.6)
shows that for any x ∈ X the sequence ( f n(x))n∈N is a Cauchy sequence. Thus
for any x ∈ X the limit of f n(x) as n → ∞ exists if the space is complete, and
by (2.2.5) this limit is the same for all x. Equation (2.2.7) shows that it is a
fixed point x0 of f . (Note that uniqueness of the fixed point does not depend on
completeness.) �
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As in the Euclidean case, we see that d( f n(x), x0) ≤ (λn/1 − λ)d( f (x), x),
that is, all orbits converge to x0 exponentially fast. If x0 is already known or
an estimate in terms of initial data is not required, then one can use (2.2.5)
to see that d( f n(x), x0) ≤ λnd(x, x0) to get the same conclusion in a more
straightforward way.

It is at times useful that the Contraction Principle can be applied under
weaker hypotheses than the one we used. Indeed, looking at the proof one can
see that it would suffice to assume the following property:

Definition 2.6.11 A map f of a metric space is said to be eventually contracting
if there are constants C > 0, λ ∈ (0, 1) such that

d( f n(x), f n(y)) ≤ Cλnd(x, y)(2.6.1)

for all n ∈ N.

It is, however, not only possible to reproduce the proof of the Contraction
Principle under this weakened hypothesis, but we can find a metric for which
such a map becomes a contraction. Indeed, this metric is uniformly equivalent
to the original one.

The change of metric that turns an eventually contracting map into a
contraction has an analog for maps that are not necessarily contracting, so we
prove a useful and slightly more general statement.

Proposition 2.6.12 If f : X → X is a map of a metric space and there are
C, λ > 0 such that d( f n(x), f n(y)) ≤ Cλnd(x, y) for all x, y ∈ X, n ∈ N0, then
for every µ > λ there exists a metric dµ uniformly equivalent to d such that
dµ( f (x), f (y)) ≤ µd(x, y) for all x, y ∈ X.

Proof Take n ∈ N such that C(λ/µ)n < 1 and set

dµ(x, y) :=
n−1∑
i=0

d( f i (x), f i (y))/µi .

This is called an adapted or Lyapunov metric for f . The two metrics are
uniformly equivalent:

d(x, y) ≤ dµ(x, y) ≤
n−1∑
i=0

C(λ/µ)i d(x, y) ≤ C
1 − (λ/µ)

d(x, y).

Note now that

dµ( f (x), f (y)) =
n∑

i=1

d( f i (x), f i (y))
µi−1

= µ(dµ(x, y) + d( f n(x), f n(y))
µn

− d(x, y))

≤ µdµ(x, y) − (1 − C(λ/µ)n)d(x, y) ≤ µdµ(x, y). �

As an immediate consequence we see that eventually contracting maps can be
made contracting by a change of metric because for λ < 1 as in Definition 2.6.11
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we can take µ ∈ (λ, 1) in Proposition 2.6.12:

Corollary 2.6.13 Let X be a complete metric space and f : X → X an eventually
contracting map (Definition 2.6.11). Then, under the iterates of f , all points
converge to the unique fixed point of f with exponential speed.

Let us point out one of the major strengths of the notion of an eventually
contracting map. As we just found, whether or not a map is a contraction can
depend on the metric. This is not the case for eventually contracting maps: If a
map f satisfies (2.6.1) and d′ is a metric uniformly equivalent to d, specifically
md′(x, y) ≤ d(x, y) ≤ Md′(x, y), then

d′( f n(x), f n(y)) ≤ Md( f n(x), f n(y)) ≤ MCλnd(x, y) ≤ MC
m

λnd′(x, y).

In other words, only the constant C depends on the metric, not the existence of
such a constant.

Even without considering smooth maps, as we did in Proposition 2.2.20,
the fixed point of a contraction depends continuously on the contraction. This
is useful in applications, and therefore it is worthwhile to develop this idea
further. The natural way to express continuous dependence is to consider
families of contractions parametrized by a member of another metric space.

Proposition 2.6.14 If X, Y are metric spaces, X is complete, f : X × Y → X a
continuous map such that fy := f (·, y) is λ-contraction for all y ∈ Y, then the
fixed point g(y) of fy depends continuously on y.

Proof Apply

d(x, g(y)) ≤
∞∑

i=0

d
(

f i
y(x), f i+1

y (x)
) ≤ 1

1 − λ
d(x, fy(x))

to x = g(y ′) = f (g(y ′), y ′) to get

d(g(y), g(y ′)) ≤ 1
1 − λ

d( f (g(y ′), y ′), f (g(y ′), y)). �

� EXERCISES

� Exercise 2.6.1 Show that an open r-ball is an open set.

� Exercise 2.6.2 Show that any union (not necessarily finite or countable) of open
sets is open, and that any intersection of closed sets is closed.

� Exercise 2.6.3 Consider the set Z of integers as a metric space with the
Euclidean metric d(n, m) = |n − m|. Describe the balls {n ∈ Z d(n, 0) < 1} and
{n ∈ Z d(n, 0) ≤ 1}. Which of these is open and which is closed?

� Exercise 2.6.4 Describe all open sets of Z [with the Euclidean metric d(n, m) =
|n − m|].
� Exercise 2.6.5 Show that the interior of any set is open and that the closure of
any set is closed.
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� Exercise 2.6.6 Show that the boundary of a subset of a metric space is a closed
set and that the boundary of an open set is nowhere dense. Conclude that the
boundary of a boundary is nowhere dense.

� Exercise 2.6.7 Decide, with proof, which of the following are complete metric
spaces (with the usual metric): R, Q, Z, [0, 1].

� Exercise 2.6.8 Prove that a closed subset of a complete metric space is complete.

� PROBLEMS FOR FURTHER STUDY

� Problem 2.6.9 Suppose that X is a compact metric space (see Definition A.1.17)
and f : X → X is such that d( f (x), f (y)) < d(x, y) for any x �= y. Prove that f has a
unique fixed point x0 ∈ I and limn→∞ f n(x) = x0 for any x ∈ I .

� Problem 2.6.10 Suppose that X is a complete metric space such that the
distance function is at most 1, and f : X → X is such that d( f (x), f (y)) ≤ d(x, y) −
1/2(d( f (x), f (y)))2. Prove that f has a unique fixed point x0 ∈ I and limn→∞ f n(x) =
x0 for any x ∈ I .

2.7 FRACTALS

2.7.1 The Cantor Set

We next consider a space that is often seen as an oddity in an analysis course, the
Cantor set. We will see, however, that sets like this arise naturally and frequently in
dynamics and constitute one of the most important spaces that we encounter.

1. Geometric Definition. The ternary Cantor set or middle-third Cantor set is
described as follows. Consider the unit interval C0 = [0, 1] and remove from it the
open middle third (1/3, 2/3) to retain two intervals of length 1/3 whose union
we denote by C1. Apply the same prescription to these intervals, that is, remove
their middle thirds. The remaining set C2 consists of four intervals of length 1/9
from each of which we again remove the middle third. Continuing inductively we
obtain nested sets Cn consisting of 2n intervals of length 3−n [for a total length of
(2/3)n → 0]. The intersection C of all of these sets is nonempty (because they are
closed and bounded, and by Proposition A.1.24) and closed and bounded because
all Cn are. It is called the middle-third or ternary Cantor set (see Figure 2.7.1).

2. Analytic Definition. It is useful to describe this construction analytically as
follows.

Lemma 2.7.1 C is the collection of numbers in [0, 1] that can be written in ternary
expansion (that is, written with respect to base 3 as opposed to base 10) without
using 1 as a digit.

Figure 2.7.1. The ternary Cantor set.
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Proof The open middle third (1/3, 2/3) is exactly the set of numbers that must
have a 1 as the first digit after the (ternary) point, that is, that cannot be written
in base 3 as 0.0 . . . or 0.2 . . . . (Note that 1/3 can be written as 0.02222 . . . and 2/3
as 0.20000000 . . . .) Correspondingly, the middle thirds of the remaining intervals
are exactly those remaining numbers whose second digit after the point must be
1, and so on. �

3. Properties. This set is clearly small in some sense (being the intersection of
sets consisting of intervals whose lengths add up to ever smaller numbers) and
certainly cannot contain any interval. Moreover, we have:

Lemma 2.7.2 The ternary Cantor set is totally disconnected (see Definition A.1.8).

Proof Any two points of C are in different components of some Cn. Taking a
sufficiently small open neighborhood of one of these together with the interior
of its complement gives two disjoint open sets whose union contains C and each
contains one of the points in question. �

In contrast, we have

Lemma 2.7.3 The ternary Cantor set is uncountable.

Proof Mapping each point x = 0.α1α2α3 · · · = ∑∞
i=1(αi/3i) ∈ C (αi �= 1) to the num-

ber f (x) := ∑∞
i=1(αi/2/2i) = ∑∞

i=1 αi2−i−1 ∈ [0, 1] defines a surjective map because
all binary expansions indeed occur here. The fact that the image is uncountable
implies that C is uncountable. �

Deformed versions of the ternary Cantor set abound in this book. Hence we
attach the same name to these:

Definition 2.7.4 A set homeomorphic to the ternary Cantor set will be referred to
as a Cantor set.

Proposition A.1.7 shows that Cantor sets can be described intrinsically.

4. Self-Similarity. There is an interesting example of a contraction on the middle-
third Cantor set, namely, f : [0, 1] → [0, 1], f (x) = x/3. Since f is a contraction, it
is also a contraction on every invariant subset, and in particular on the Cantor set.
The unique fixed point is obviously 0. This property of invariance under a linear
contraction is often referred to as self-similarity or rescaling property. Its meaning is
quite clear and rather striking: The microscopic structure of the Cantor set is exactly
the same as its global structure; it does not become any simpler at any smaller scale.

5. The Devil’s Staircase. The only points whose ternary expansion is not unique
are those that can be written with a terminating expansion, that is, the ternary
rationals. These are exactly the countably many endpoints involved in the construc-
tion of the Cantor set. Consider the function f (

∑∞
i=1 αi3−i) = ∑∞

i=1 αi2−i−1 from the
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Figure 2.7.2. The square and triangular Sierpinski carpets.

proof of Lemma 2.7.3. Then f (1/3) = f (0.02222222 . . . ) = 0.011111 . . . (binary) =
0.1 (binary) = 1/2. At the same time, f (2/3) = f (0.2000000 . . . ) = 0.1 (binary) =
1/2 also. Likewise, one sees that all endpoints are identified in corresponding
pairs under this map. It is also not hard to see that f is nondecreasing. Sometimes
it is interesting to extend the map f to [0, 1] by taking it to be constant on
complementary intervals. The resulting continuous function has several exotic
properties and is therefore called a “devil’s staircase.” As is the case with Cantor
sets, it turns out that such functions arise naturally in the study of dynamical
systems (see Definition 4.4.1 and Figure 4.4.1 (p. 136)).

2.7.2 Other Self-Similar Sets

Let us describe some other interesting self-similar metric spaces that are of a differ-
ent form. The Sierpinski carpet (see Figure 2.7.2) is obtained from the unit square
by removing the “middle-ninth” square (1/3, 2/3) × (1/3, 2/3), then removing
from each square (i/3, i + 1/3) × ( j/3, j + 1/3) its “middle ninth,” and so on. This
construction can easily be described in terms of ternary expansion in a way that
immediately suggests higher-dimensional analogs (Exercise 2.7.4). Alternatively,
one can start from an equilateral triangle with the bottom side horizontal, say, and
divide it into four congruent equilateral triangles of which the central one has a
horizontal top side. Then one deletes this central triangle and continues this con-
struction on the remaining three triangles. The von Koch snowflake is obtained from
an equilateral triangle by erecting on each side an equilateral triangle whose base

Figure 2.7.3. The Koch snowflake.
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is the middle third of that side and continuing this process iteratively with the sides
of the resulting polygon (see Figure 2.7.3). It is attributed to Helge von Koch (1904).
A three-dimensional variant of the Sierpinski carpet S is the Sierpinski sponge
or Menger curve defined by {(x, y, z) ∈ [0, 1]3 (x, y) ∈ S, (x, z) ∈ S (y, z) ∈ S}. It
is obtained from the solid unit cube by punching a 1/3-square hole through the
center from each direction, then punching, in each coordinate direction, eight
1/9-square holes through in the right places, and so on.

� EXERCISES

� Exercise 2.7.1 Decide, with proof, whether the ternary Cantor set is a complete
metric space (with the usual metric).

� Exercise 2.7.2 Show that the map x !→ f (x) = 1 − (x/3) on [0, 1] is a contraction
and maps the ternary Cantor set into itself. Where is its fixed point?

� Exercise 2.7.3 Repeat the previous exercise with the map given by f (x) =
(x + 2)/3.

� Exercise 2.7.4 Prove that the square Sierpinski carpet is the set of points in
the unit square of which at least one coordinate can be represented by a ternary
expansion without the digit 1.

� PROBLEMS FOR FURTHER STUDY

� Problem 2.7.5 Prove that the ternary Cantor set C is homeomorphic to its
cartesian double C × C . (This appears naturally in Section 7.3.3.)

� Problem 2.7.6 If f is the function in the proof of Lemma 2.7.3 and
(h1, h2) : C → C × C the homeomorphism from the previous exercise, then
F (x) := ( f (h1(x)), f (h2(x))) defines a surjective map F : C → [0, 1] × [0, 1]. Show
that f (and hence F ) is continuous and that F extends to a continuous map on
[0, 1]. (The resulting map is a continuous surjective map [0, 1] → [0, 1] × [0, 1],
that is, a space-filling curve or Peano curve.)

� Problem 2.7.7 Show that the set C
′

of those x ∈ [0, 1] that have a base-5
expansion without odd digits is a Cantor set.

� Problem 2.7.8 Decide whether the set of those x ∈ [0, 1] that have a base-10
expansion without odd digits is a Cantor set.
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CHAPTER 3

Linear Maps and Linear Differential Equations

In this chapter the complexity of the dynamical behavior increases slightly over
that observed in the examples in Chapter 2. In particular, periodic motions are now
present in both discrete and continuous time. At the same time, in most linear sys-
tems, that is, linear maps and linear differential equations, the orbit structure is easy
to understand (the limited elliptic complexity that arises from complex eigenvalues
on the unit circle is discussed in the first sections of the next two chapters). We de-
scribe it carefully here. This involves linear algebra, but it is not simply a repetition of
it because we investigate the dynamical aspects of linear systems, paying attention
to the asymptotic behavior under iteration. Thus, this chapter serves to augment
the range of asymptotic behaviors that we are able to describe. Our development
takes place first in the plane and then in Euclidean spaces of any dimension.

Aside from widening our horizons in terms of the possibilities for asymptotic
behavior, understanding linear maps is useful for the study of nonlinear maps by
way of linearization, which was first discussed in Section 2.1.2. This is most directly
the case when one wants to understand the asymptotic behavior of orbits near a
fixed point of a nonlinear dynamical system, but it can also help study the relative
behavior of orbits and help describe the global orbit structure. One place where
this is discussed explicitly is in Section 6.2.2.7.

3.1 LINEAR MAPS IN THE PLANE

In trying to understand linear maps as dynamical systems, that is, to understand
how points move under iteration of these maps, we do not need to understand all
details of the dynamics of the linear maps in question. The primary attention is to
the coarse aspects of behavior, such as going to the origin, diverging, asymptotic
to a line, and spiraling.

3.1.1 The Line

We begin with dimension one. Linear maps of the line are easily described: They are
of the form x !→ λx and either |λ| < 1, in which case the map is contracting with 0 as

73
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the attracting fixed point, or |λ| > 1, in which case all nonzero orbits tend to infinity,
or, finally, |λ| = 1, which means that the map is the identity or x !→ −x, when all or-
bits have period 2. Thus these maps are (eventually) contracting if and only if |λ| < 1.

3.1.2 Eigenvalues

Now consider maps x !→ Ax in the plane from the same viewpoint of examining
the asymptotic behavior under repeated application of the map. In this case there
are more possibilities, and we will use some simple linear algebra to understand
them. The crucial role in the analysis is played by the eigenvalues of the 2 ×
2 matrix A representing a map with respect to a basis. For a matrix

A =
(

a b
c d

)

the real eigenvalues are those numbers λ for which there is a nonzero vector ( x
y )

such that (
a b
c d

)
= λ

(
x
y

)
(an eigenvector).

Geometrically this means that there is a line [the subspace spanned by ( x
y )] that

is preserved by A. The dynamics on this line is then an instance of what was just
discussed in Section 3.1.1, which thus becomes a building block for the planar
picture. Complex eigenvalues are defined by the same formulas but allowing
complex vectors w. In this situation the real vectors w + w and i(w − w) span a real
subspace (eigenspace).

The condition (
a b
c d

) (
x
y

)
= λ

(
x
y

)
is equivalent to

(
a − λ b

c d − λ

) (
x
y

)
= 0.

This last equation always holds for (
x
y

)
= 0,

and there is a nonzero solution as well if and only if(
a − λ b

c d − λ

)
is not invertible. Thus, nonzero eigenvectors exist precisely for those λ that make(

a − λ b
c d − λ

)
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noninvertible, that is, for which its determinant is zero. These are the roots of the
characteristic polynomial

(a − λ)(d − λ) − bc = λ2 − (a + d )λ + ad − bc = λ2 − (tr A)λ + det A,

where tr A := a + d and det A := ad − bc. From the quadratic formula

2λ = − tr A ±
√

(tr A)2 − 4 det A(3.1.1)

we know that there are three cases: We can have two real solutions, or a single
one, or two complex conjugate ones, according to whether the discriminant
(tr A)2 − 4 det A is positive, zero, or negative.

3.1.3 Distinct Real Eigenvalues

Let us consider the first case. When there are two different real eigenvalues λ and µ,
the equations Av = λv and Aw = µw can be solved for nonzero eigenvectors v and
w. Then A preserves the eigenspaces Rv = {tv t ∈ R} and Rw = {tw t ∈ R} and
thus reduces to a one-dimensional linear map on each of these lines. We would like
these two lines to be the coordinate axes of a new coordinate system. This means
that we want to express our matrix A with respect to the basis consisting of v and
w instead of the standard unit vectors e1 and e2. From Av = λv and Aw = µw it is
clear that this representation of A is given by the matrix

B =
(

λ 0
0 µ

)
.

Proposition 3.1.1 A linear map with real eigenvalues λ �= µ can be diagonalized to

B =
(

λ 0
0 µ

)

by a linear coordinate change.

It is good to be aware of how this coordinate change looks in terms of matrix
calculations. The required coordinate change is the one sending v to e1 and w
to e2. Its inverse therefore has matrix C (with respect to standard coordinates)
whose columns are v and w – this matrix sends e1 to v and e2 to w. Thus, the
representation of A with respect to these coordinates is B = C−1 AC . C changes
from new coordinates to old, A then gives the transformation, and C−1 changes
coordinates back. This is analogous to the discussion in Section 1.2.9.3 (p. 13).

Example 3.1.2 Consider

A =
(

2 1
1 2

)
.
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Then 2λ = 4 ± √
16 − 4 · 3 = 4 ± 2 by (3.1.1), so λ = 1, µ = 3. An eigenvector v for

λ = 1 is found by (
1 1
1 1

) (
x
y

)
= 0,

for example,

x = −y = 1; v =
(

1
−1

)
.

Likewise,

w =
(

1
1

)
is an eigenvector for the second eigenvalue µ = 3, so

C =
(

1 1
−1 1

)
will do and

B = C−1 AC =
(

1 0
0 3

)
.

The particular case |λ| < 1 < |µ| (or vice versa) has a name.

Definition 3.1.3 A linear map of R2 with one eigenvalue in (−1, 1) and one
eigenvalue of absolute value greater than 1 is said to be hyperbolic.

3.1.4 Single Real Eigenvalue

In the second case of a single real eigenvalue λ the map A − λ Id is noninvertible
and there are two possibilities: The first is that it is zero, in which case A = λ Id.
These scalings are simple but important.

Definition 3.1.4 A map A = λ Id is called a homothety or a scaling.

The other case is that in which up to a scale factor one has only one nonzero
solution v to Av = λv. Let C be an invertible matrix with v as the first column. Then
the first column of B = C−1 AC is ( λ

0 ) and the other diagonal entry is also λ (it is an
eigenvalue). Thus

B =
(

λ s
0 λ

)
for some s �= 0 and

Bn =
(

λn nsλn−1

0 λn

)
= λn

(
1 ns/λ
0 1

)
.



book 0521583047 April 21, 2003 16:55 Char Count= 0

3.1 Linear Maps in the Plane 77

Actually, we can go further. Given any a �= 0 we can take

C ′ =
(

1 0
0 1/sa

)
to get

B′ := C ′−1 BC =
(

1 0
0 sa

) (
λ s
0 λ

) (
1 0
0 1/sa

)
=

(
λ a
0 λ

)
.

Proposition 3.1.5 Suppose a �= 0 and A is any linear map of the plane with a double
eigenvalue λ but only one linearly independent eigenvector. Then A is conjugate to(

λ a
0 λ

)
.

In particular, A is conjugate to (
λ 1
0 λ

)
.

The case λ = 1 has distictive asymptotic behavior and a special name.

Definition 3.1.6 A map conjugate to (
1 s
0 1

)
for some s ∈ R is called a shear or a parabolic linear map.

3.1.5 Complex Conjugate Eigenvalues

In the case of a complex conjugate pair of roots of the characteristic polynomial,
consider the matrix A as representing a map of the two-dimensional complex space
C2. This is the set of pairs of complex numbers with addition and multiplication
by (complex) scalars defined componentwise. Any linear map of R2 defines a map
of C2 by using matrix multiplication in the same way as for real vectors. (One can
view C2 as a four-dimensional real vector space in much the same way as one can
view C as a two-dimensional real vector space, but we do not need this here.)

On C2 the map A − λ Id is noninvertible and thus there are nonzero complex
solutions to Av = λv and Aw = λw, which can be taken as a complex conjugate
pair, w = v (because A = A). Taking C with columns v and w as before would give
a diagonal matrix B = C−1 AC with complex entries. So instead we take the real
vectors v + v and −i(v − v) in R2 as columns of a matrix C (which is invertible).
One can calculate that

B := C−1 AC = ρ

(
cos θ sin θ

− sin θ cos θ

)
,

where λ = ρeiθ . This is the rotation by an angle θ followed by the scaling map ρ Id.
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Proposition 3.1.7 A linear map of R2 with a complex eigenvalue ρeiθ is conjugate
to the map

ρ

(
cos θ sin θ

− sin θ cos θ

)
.

Again ρ = 1 gives following important case:

Definition 3.1.8 A linear map of R2 conjugate to a rotation(
cos θ sin θ

− sin θ cos θ

)
is said to be elliptic.

Note that if θ/π is rational than all orbits are periodic.

Example 3.1.9 For

A =
(

7 8
−4 −1

)
we find

C =
(

1 1
−1 0

)
and B =

(
3 4

−4 3

)
.

Figure 3.1.1 shows the action of(
2 0
0 1/2

)
,

(
1 1
0 1

)
, and

(
1 1

−1 1

)
/
√

2

on a square. These are hyperbolic, parabolic, and elliptic, respectively.

3.1.6 Asymptotic Behavior

Let us see what the asymptotic behavior of orbits of such maps can look like. To that
end it is useful to clarify the relation between changing coordinates and changing
norms, because in all matrix calculations we use the Euclidean norm for the coordi-
nate representations of the vectors involved. Consider, then, a vector v and its image
Cv under an invertible map (the coordinate change). Often ‖Cv‖ �= ‖v‖. But we can
simply define a new norm ‖v‖′ := ‖Cv‖ (this is a norm because C is linear and invert-
ible; see Section 2.6.1 for this “pullback” construction). In this way we see that taking

Figure 3.1.1. Hyperbolic, parabolic, and elliptic maps.
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the Euclidean norm in our matrix calculations with respect to a different basis simply
reflects a different choice of norm. Therefore, any conclusions obtained from such
calculations that are independent of the choice of norm will give us statements about
the map with respect to the Euclidean norm and independent of a choice of basis.

Proposition 3.1.10 A linear map of R2 is eventually contracting (Definition 2.6.11)
if and only if all eigenvalues are of absolute value less than one.

Proof There are three cases to consider: distinct real eigenvalues, a double real
eigenvalue, and complex eigenvalues. In all three cases the map can only be
eventually contracting if the eigenvalues are of absolute value less than one. This
is clear when one considers the canonical forms in each case, that is, diagonal
matrices, upper triangular matrices, and a rotation with scaling. Since the condition
of being eventually contracting is independent of the norm (because all norms are
equivalent), the general case then follows.

We need to show that having eigenvalues of absolute value less than one is a
sufficient condition. In the first case this is clear by diagonalization: The change of
coordinates that diagonalizes the matrix defines a pullback norm equivalent to the
standard one. But the diagonalized matrix is clearly contracting, and the property
of being eventually contracting is unaffected by changing to an equivalent metric.

In the case of only one real eigenvalue, consider the matrix

B =
(

λ a
0 λ

)
with 0 < 2a < 1 − |λ| (Proposition 3.1.5). Then∥∥∥∥∥B

(
x
y

)∥∥∥∥∥ =
∥∥∥∥∥
(

λx + ay
λy

)∥∥∥∥∥ ≤ |λ|
∥∥∥∥∥
(

x
y

)∥∥∥∥∥ + a

∥∥∥∥∥
(

0
y

)
≤ (|λ| + a)‖

(
x
y

)∥∥∥∥∥ ,

so B is a contraction and in particular eventually contracting. As we noted before,
the same then goes for a matrix A conjugate to B, that is, any matrix with eigenvalue
λ only, because conjugation amounts to changing the norm to an equivalent one.
As we noted after Corollary 2.6.13, a change in norm does not affect the property
of being eventually contracting.

In the case of complex eigenvalues, note that the rotation by θ does not change
the Euclidean norm of any vector and the subsequent application of ρ Id reduces
their norm by a factor ρ < 1 if the eigenvalues have absolute value ρ < 1. Again,
every matrix with complex eigenvalues is conjugate to a rotation with scaling. �

3.1.7 Structure at the Origin

We can study the way in which points approach the origin under any of these
contractions in some more detail.

1. Distinct Real Eigenvalues. In the first case of two distinct real eigenvalues we
note that

Bn

(
x
y

)
=

(
λnx
µny

)
.
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Figure 3.1.2. A node, |y| = C |x|log |µ|/ log |λ|.

Suppose |µ| < |λ| < 1 and rewrite(
λnx
µny

)
= λn

(
x

(µ/λ)nx

)
to see that all orbits off the y-axis approach zero at a rate |λn|, the “slower” of
the two. In fact, in this case all orbits of points ( x

y ) with x �= 0 move along curves
preserved by B, which are tangent to the x-axis at zero. Indeed, these curves are
given by the equation |y| = C |x|log |µ|/ log |λ|. For each value of C this gives four
“branches,” one per quadrant. Altogether we get a picture with symmetry about
both axes, called a node. If one or both of the eigenvalues are negative, then orbits
will alternate between two branches (see Figure 3.1.2).

To verify that these are indeed invariant, take x, y, λ, µ > 0 for simplicity and
note that invariance of y = C x α implies

µn · (C x α) = µny = C(λnx)α = Cλαnx α,

and hence µ = λα , which gives log µ = α log λ.
Note that these curves are smooth (infititely differentiable) when |µ| = |λ|n

for some n ∈ N (otherwise they are only differentiable finitely many times). This
coincidence is called a resonance.

2. Single Real Eigenvalue. In the case of one real eigenvalue λ and A �= λ Id we
conjugate A to

B =
(

λ λ

0 λ

)
as described above to get

Bn = λn

(
1 n
0 1

)
.
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Figure 3.1.3. A degenerate node, x = C y +
y log |y|
log |λ| .

Here we find that the second coordinate of Bn ( x
y ) is λny, which converges mono-

tonically to zero; whereas the first coordinate λn(x + ny) also converges to 0 but
not necessarily monotonically, as is the case when x = 0. We will see shortly that
there are invariant curves in this case as well, given by

x = C y + y log |y|
log |λ| .(3.1.2)

This family of curves is symmetric with respect to the origin, and a fixed point of
this kind is called a degenerate node. Here, too, a negative eigenvalue produces
orbits that alternate between branches.

3. Complex Eigenvalues. In the case of complex conjugate eigenvalues ρe±iθ , the
orbits lie on spirals r = const. e−(θ−1 log ρ)φ in polar coordinates (r, φ); this is called a
focus (see Figure 3.1.4).

3.1.8 The Noncontracting Case

We now consider these maps in the noncontracting case, beginning with the cases
in which the eigenvalues are real.

Figure 3.1.4. Foci, r = const. e−(θ−1 log ρ)φ .
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Figure 3.1.5. Eigenvalues ±1.

1. Nonexpanding Maps. If we have two distinct real eigenvalues, then they could
be 1 and −1, which corresponds to a reflection (see Figure 3.1.5), or there could
be one of absolute value 1 or none with absolute value 1. If one eigenvalue λ

has absolute value 1 and the other eigenvalue µ has absolute value less than 1,
then the eigenspace for λ consists of fixed or period-2 points, and all other points
are approaching this eigenspace along lines parallel to the eigenspace for µ.
Another way of putting this is to say that in this case R2 decomposes into two
one-dimensional subspaces and on one of them the map A is a linear contraction;
on the other neither A nor A−1 are contracting.

2. One Expanding and One Neutral Direction. If |µ| > 1, then all other points
move away from this eigenspace along these lines and we get a similar decompo-
sition of R2 into an expanding and a neutral subspace in this case.

3. Hyperbolic Cases. If both eigenvalues have absolute value greater than one,
then all orbits diverge to infinity along the same invariant curves described for the
contracting case (because these arise for the inverse map).

The most novel remaining possibility is that of |λ| > 1 and |µ| < 1, called the
hyperbolic (saddle) case. Diagonalizing as before we find that points on the x-axis
diverge along the x-axis under

Bn =
(

λn 0
0 µn

)
,

and all points off the y-axis diverge to the right or left while their y-coordinate is
approaching 0, that is, all orbits approach the x-axis asymptotically. Conversely,
under B−n all orbits off the x-axis diverge and have the y-axis as an asymptote.
Again, orbits move along invariant curves y = C xlog |µ|/ log |λ|. Note that here the
exponent is negative. This picture is called a saddle. In the special case of µ = 1/λ,
these curves are the standard hyperbolas y = 1/x, justifying the term hyperbolicity.
Thus, in this case R2 decomposes into two subspaces, one contracting and one
expanding, corresponding to the eigenspaces for µ and λ, respectively. As in the
node cases, negative eigenvalues produce orbits that alternate between branches.
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Figure 3.1.6. A saddle.

4. Complex Eigenvalues. Finally, the case, of complex eigenvalues is quite simple:
Either both eigenvalues lie on the unit circle, in which case the map is conjugate
to a rotation. In this case, the dynamics turns out to be rather interesting even
when restricted to any (invariant) circle r = const. This is analyzed in the next
chapters. If the eigenvalues are outside the unit circle, all orbits spiral outward. The
calculations are the same as for the contracting case.

3.1.9 Fibonacci Revisited

1. A Hyperbolic Matrix. A particular example of a hyperbolic map is worth a
closer look. The matrix

A :=
(

0 1
1 1

)

has characteristic polynomial

det

(
−λ 1
1 1 − λ

)
= λ2 − λ − 1,

so the eigenvalues are (1 ± √
5)/2. Since 2 <

√
5 < 3, one of these is greater than

1 and the other is in (−1, 0), which makes this a hyperbolic matrix. Since the two
eigenvectors are orthogonal (because A is symmetric, or by explicit verification),
this implies that the orbit picture for this map looks like a rotated version of
Figure 3.1.6. The eigenvector for the “expanding” eigenvalue is obtained by solving

0 = (A − λ Id)

(
x
y

)
=

(
(−1 − √

5)x/2 + y
x + (1 − √

5)y/2

)
,

Thus the eigenspace is the line given by y = (1 + √
5)x/2.

Under repeated application of a hyperbolic map all points approach the
expanding subspace ever more closely, as illustrated in Figure 3.1.6. In particular,
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if we start with ( 1
1 ) and set (

xn

yn

)
:= An

(
1
1

)
,

then limn→∞ yn/xn = (1 + √
5)/2.

Notice the successive values of xn: 1, 1, 2, 3, 5, 8, 13, . . . . This is the Fibonacci
sequence we encountered in Section 1.2.2 and Example 2.2.9. The reason is
interesting in itself.

2. Fibonacci Numbers. As in Example 2.2.9, denote the Fibonacci numbers by bn

and remember that bn+2 = bn+1 + bn. This implies that(
bn+1

bn+2

)
=

(
bn+1

bn+1 + bn

)
=

(
0 1
1 1

) (
bn

bn+1

)
= A

(
bn

bn+1

)
.(3.1.3)

This shows that xn = bn and yn = bn+1. And the observation that limn→∞ yn/xn =
(1 + √

5)/2 gives a new proof of the asymptotic ratio we first derived in Example 2.2.9.
Take another look at (3.1.3). It converted the original two-step recursion

bn+2 = bn+1 + bn in one variable into a one-step recursion in two variables. This is
an example of reduction to first order that is useful in differential equations. In this
discrete-time situation we can use this conversion to develop an explicit (that is,
nonrecursive) formula for the Fibonacci numbers.

Proposition 3.1.11 The Fibonacci numbers b0 = 1, b1 = 1, . . . are given by

bn = (1 + √
5)n+1 − (1 − √

5)n+1

2n+1
√

5
.

Proof As in Section 3.1.7.1, we diagonalize A by taking the matrix C whose columns
are the eigenvalues of A:

C = 1
2

(
2 2

1 + √
5 1 − √

5

)
, C−1 = 1

2
√

5

(√
5 − 1 2√
5 + 1 −2

)
,

C−1 AC = 1
2

(
1 + √

5 0
0 1 − √

5

)
.

Conversely, this gives

A = 1
2

(
2 2

1 + √
5 1 − √

5

)
1
2

(
1 + √

5 0
0 1 − √

5

)
1

2
√

5

(√
5 − 1 2

1 + √
5 −2

)
and

An = 1

2n+2
√

5

(
2 2

1 + √
5 1 − √

5

) (
1 + √

5 0
0 1 − √

5

)n (√
5 − 1 2

1 + √
5 −2

)

=
(

2(1 + √
5)n(

√
5 − 1) + 2(1 − √

5)n(1 + √
5) 4(1 + √

5)n − 4(1 − √
5)n

(1 + √
5)n+1(

√
5 − 1) − (1 − √

5)n+1(1 + √
5) 2(1 + √

5)n+1 − 2(1 − √
5)n+1

)
.
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Consequently,(
bn

bn+1

)
=

(
xn

yn

)
= An

(
1
1

)
= 1√

5


(1 + √

5
2

)n+1
−

(1 − √
5

2

)n+1

(1 + √
5

2

)n+2
−

(1 − √
5

2

)n+2

 . �

Remark 3.1.12 Proposition 3.1.11 shows that bn is the nearest integer to
(1/

√
5)((1 + √

5)/2)n+1 (and lies alternatingly above and below). In that sense,
the Fibonacci sequence is as close to a strict exponential growth model as one can
get with integers. Example 15.2.5 embeds this in a general pattern.

3. Second-Order Difference Equations. What we just did with the Fibonacci
recursion is, of course, a general method. Whenever a sequence is defined using
a linear second-order recursion an+1 = pan−1 + qan, one can convert this to a
first-order vector recursion(

an

an+1

)
=

(
0 1
p q

) (
an−1

an

)
.

In most cases these recursions are as easy to solve as they were in the case of the
Fibonacci sequence. To see this, note that the closed form of the Fibonacci numbers
is a linear combination of like powers of the two eigenvalues. This is not surprising:

Proposition 3.1.13 If ( 0 1
p q ) has two distinct eigenvalues λ and µ, then every solution

of the recursion an+1 = pan−1 + qan is of the form an = xλn + yµn.

Proof Let v and w be eigenvectors for λ and µ, respectively, and write(
a0

a1

)
= αv + βw.

Then (
an

an+1

)
= αλnv + βµnw,

that is, x = αv1 and y = βw1 are as required. �

Remark 3.1.14 Note that x and y can be determined from the initial conditions
directly, without finding eigenvectors.

Example 3.1.15 The recursion an+1 = an−1/2 + an/2 from Section 1.2.3 corresponds
to the matrix (

0 1
1/2 1/2

)
with eigenvalues 1, −1/2, so the lobster harvests modeled by it are expected to
be given by an = x + (−1/2)ny for some x, y. This corresponds to a relatively rapid
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stabilization with oscillations and also occurs in the logistic population model for
parameters between 2 and 3 (see Case 2 of Proposition 2.5.2).

� EXERCISES

� Exercise 3.1.1 Show that ‖ · ‖′ defined in Section 3.1.6 is a norm.

� Exercise 3.1.2 Suppose A is a symmetric matrix and λ �= µ are eigenvalues with
eigenvectors v, w, respectively. Show that v ⊥ w, that is, v and w are orthogonal.

� Exercise 3.1.3 Show that every 2 × 2 matrix with real eigenvalues and two ortho-
gonal eigenvectors is symmetric.

� Exercise 3.1.4 State and prove an analog of Proposition 3.1.13, for the case of a
double eigenvalue with a single eigenvector.

� Exercise 3.1.5 Suppose you have an unlimited supply of tiles with side lengths
1 × 2 and 2 × 2 that can be shifted but not rotated. In how many different ways can
you tile a strip of dimensions n × 2?

3.2 LINEAR DIFFERENTIAL EQUATIONS IN THE PLANE

The continuous-time companions to linear maps are linear differential equations.
We begin to study these now, with a view to asymptotic behavior.

The appearance of invariant curves in the above examples is not accidental. The
linear maps we described above arise from solutions of closely related differential
equations, whose solutions interpolate iterates of the maps above. These are of the
form (

ẋ
ẏ

)
= A

(
x
y

)
,

or, more explicitly,

ẋ = a11x + a12 y

ẏ = a21x + a22 y.

3.2.1 Node

The case of a right-hand side with two distinct positive (real) eigenvalues is repre-
sented by the differential equation(

ẋ
ẏ

)
=

(
log λ 0

0 log µ

) (
x
y

)
,

where λ, µ > 0, whose solutions are given by(
x(t)
y(t)

)
=

(
x(0)et log λ

y(0)et log µ

)
=

(
x(0)λt

y(t)µt

)
=

(
λt 0
0 µt

) (
x(0)
y(0)

)
.

At this point it is natural to look back to Section 2.4.2.5, where we took the point of
view that the set of solutions should be considered as a family of maps of the space
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with t as a parameter. In this example the maps are given by the matrices(
λt 0
0 µt

)
.

For t = 1 we get the map (
λ 0
0 µ

)
,

and therefore the solution curves parametrize the invariant curves that we found
before. As in the corresponding discrete-time case, this orbit picture is called a node.

For the special case A = log λ Id and t = 1 we get λ Id.

3.2.2 Degenerate Node

Corresponding to the linear map (
λ 1
0 λ

)
with λ > 1 consider the differential equation(

ẋ
ẏ

)
=

(
log λ 1

0 log λ

) (
x
y

)
whose solutions are given by(

x(t)
y(t)

)
=

(
x(0)et log λ + y(0)tet log λ

y(0)et log λ

)
=

(
λt tλt

0 λt

) (
x(0)
y(0)

)
= λt

(
x(0) + ty(0)

y(0)

)
.

Here the maps of the space with parameter t are given by the matrices(
λt tλt

0 λt

)
,

and for t = n this gives the action of (
λ 1
0 λ

)n

.

From here it is easy to obtain the invariant curves (3.1.2): Take absolute values and
logarithms of the second component to solve for t and substitute this t into the first
component.

3.2.3 Focus

Linear maps with eigenvalues ρe±iθ arise from the linear differential equation(
ẋ
ẏ

)
=

(
log ρ θ

−θ log ρ

) (
x
y

)
with solutions(

x(t)
y(t)

)
= ρt

(
x(0) cos θt + y(0) sin θt
y(0) cos θt − x(0) sin θt

)
= ρt

(
cos θt sin θt

− sin θt cos θt

) (
x(0)
y(0)

)
.
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Figure 3.2.1. Node, degenerate node, and focus.

Here the solution family gives maps with matrices

ρt

(
cos θt sin θt

− sin θt cos θt

)
,

the expected rotation with scaling, and these solutions parametrize the invariant
spirals. Following the discrete-time case, this picture is called a focus. The ex-
ceptional case is |ρ| = 1, where the solutions are pure rotations and every circle
r = const. is a periodic orbit and is called a center. Thus, unlike the discrete-time
case (Section 3.1.8.4), the dynamics is completely understood at this point.

3.2.4 Saddle

The continuous-time picture of a saddle is obtained from(
ẋ
ẏ

)
= A

(
x
y

)
,

where A has one positive and one negative eigenvalue, that is, by considering the
differential equation (

ẋ
ẏ

)
=

(
log λ 0

0 log µ

) (
x
y

)
,

whose solutions are given by(
x(t)
y(t)

)
=

(
x(0)et log λ

y(0)et log µ

)
=

(
x(0)λt

y(t)µt

)
=

(
λt 0
0 µt

) (
x(0)
y(0)

)
.

For t = 1 this is the map ( λ 0
0 µ

), and therefore the solution curves that parametrize
the invariant curves that we found before. As in the corresponding discrete-time
case, this orbit picture is called a saddle.

Notice that we obtained all pictures for the case of linear maps as pictures for
solutions of differential equations, except that from solutions of differential equa-
tions we never get maps with simple negative eigenvalues. This cannot be, because
a solution of a differential equation that starts on an eigenspace cannot leave the
eigenspace, yet it cannot pass through 0 either (by uniqueness of solutions).
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3.2.5 The Matrix Exponential

The connection between linear maps on the plane and two-dimensional linear
differential equations with constant coefficients can be made explicit by recalling
that the solution to the differential equation ẋ = ax with x(0) = x0 is given by
x(t) = eat x0. Analogously, the solution of ẋ = Ax with x ∈ Rn and an n × nmatrix A is

x(t) = eAt x(0), where eAt :=
∞∑

i=0

Ait i

i!
.

Each term of the series is an n × n matrix, so the addition makes sense. The series
converges absolutely because every entry of Ai is bounded in absolute value by
‖An‖ ≤ ‖A‖n. For example, if

A =
(

log λ 0
0 log µ

)
,

then

eAt =
(

λt 0
0 µt

)

because

∞∑
i=0

(
(log λ)i 0

0 (log µ)i

)
ti

i!
=


∞∑

i=0

(log λ)i ti

i!
0

0
∞∑

i=0

(log µ)i ti

i!

 =
(

et log λ 0
0 et log µ

)
.

It is only slightly less straightforward to check that

e
(

0 θ
−θ 0

)
t =

(
cos θt sin θt

− sin θt cos θt

)
and e

(
log ρ θ

−θ log ρ

)
t = ρt

(
cos θt sin θt

− sin θt cos θt

)
.

3.2.6 Periodic Coefficients

In the previous situation the (linear) time-1-map is eA. For an initial condition x(0)
it gives the solution x(1) at time 1. To get x(n), we iterate this map n times. This
works because the differential equations do not involve the time parameter, or
eAi = (eA)i .

This also works when time enters as a parameter in the differential equation in
a periodic way. If ẋ = A(t)x, where A(t + 1) = A(t) and M is such that x(1) = Mx(0)
for any solution x(·), then we find x(2) from x(0) by solving the differential
equation ẋ = A(t + 1)x = A(t)x with initial condition x(1) for time 1; hence
x(2) = M2x(0) and inductively x(i) = Mi x(0). Therefore differential equations with
periodic coefficients are within the scope of our methods.

Notice that this observation did not use linearity of the differential equation.
The same reasoning and conclusion apply to differential equations ẋ = f (x, t) with
f (x, t + 1) = f (x, t) for x ∈ Rn.
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� EXERCISES

� Exercise 3.2.1 For each of the following matrices A determine which, if any, of
the above cases the differential equation(

ẋ
ẏ

)
= A

(
x
y

)
belongs to, and sketch the phase portrait (including arrows) analogously to
Figure 3.2.1. (Note that the preferred axes will be askew.)

a)

(
0 2

−1 3

)
b)

(
1 1
3 −1

)
c)

(
3 −2
2 3

)
d)

(
1 −1
1 3

)
� Exercise 3.2.2 Obtain the invariant curves (3.1.2) for ( λt tλt

0 λt ).

� Exercise 3.2.3 Derive an equation for the invariant spirals of a focus in polar
coordinates.

� Exercise 3.2.4 Consider the differential equations(
ẋ
ẏ

)
=

(
2 0
0 6

) (
x
y

)
,

(
ẋ
ẏ

)
=

(√
2 0

0
√

3

) (
x
y

)
,

(
ẋ
ẏ

)
=

(
3 0
0 10

) (
x
y

)
and consider the solution curves as graphs of the form y = ϕ(x). In each case
determine how many times the corresponding function can be differentiated at 0.

� PROBLEMS FOR FURTHER STUDY

� Problem 3.2.5 Suppose a linear map with a double negative eigenvalue arises
from the solution of a linear differential equation. Show that it is proportional to
the identity.

3.3 LINEAR MAPS AND DIFFERENTIAL EQUATIONS

IN HIGHER DIMENSION

Next we study linear maps in higher-dimensional spaces. There is greater
variety here than for maps of the plane because there are more possibilities for
the combinations of eigenvalues – real and complex ones may coexist, and there
can be multiple real or complex eigenvalues, possibly coexisting with simple or
other multiple ones. Therefore it is reasonable not to attempt a classification as
fine as we achieved for planar maps, but rather to divide the possible behaviors
into sufficiently distinct ones according to asymptotic behavior. In fact, for most
applications, this is entirely sufficient.

The first step is suggested by Proposition 3.1.10, but it takes a little more
effort in this general case. We first establish the basic pertinent notions more
carefully.

3.3.1 Spectral Radius

Definition 3.3.1 Let A : Rn → Rn be a linear map. We call the set of eigenvalues
the spectrum of A and denote it by sp A. We denote the maximal absolute value of
an eigenvalue of A by r(A) and call it the spectral radius of A (see Figure 3.3.1).



book 0521583047 April 21, 2003 16:55 Char Count= 0

3.3 Linear Maps 91

�

i�

r(A)

Figure 3.3.1. Eigenvalues and spectral radius.

For any choice of norm (Definition A.1.29) the spectral radius is bounded
above by the norm of A as defined in (2.2.8): r(A) ≤ ‖A‖ by considering an
eigenvector for the eigenvalue of largest absolute value, if this eigenvalue is
real, or otherwise taking a complex eigenvector w for the (complex) eigenvalue
of largest absolute value and applying A to v := w + w. With respect to the
Euclidean norm we have ‖A‖ = r(A) whenever A is diagonal (or diagonalizable
over the complex numbers). It is occasionally useful to have some estimates
relating ‖A‖ and the size of the entries of A:

Lemma 3.3.2 For an n × n matrix A denote its entries by ai j and define the
norm |A| := maxi j |ai j|. Then |A| ≤ ‖A‖ ≤ √

n|A|.

Proof ‖Av‖ =
√∑n

i=1(
∑n

i=1 ai jv j)2 ≤ |A|
√∑n

i = 1(
∑n

j=1 vj)2 = √
n|A|‖v‖, and

conversely |ai j| = 〈ei , Ae j〉 ≤ ‖A‖. �

The following fact is useful for the understanding of dynamics of linear
maps, even if they cannot be diagonalized.

Proposition 3.3.3 For every δ > 0 there is a norm in Rn such that ‖A|| <

r(A) + δ.

The proof uses a lemma that is analogous to Proposition 2.6.12.

Lemma 3.3.4 Consider Rn with any norm ‖ · ‖ and a linear map A : Rn → Rn.
If C, λ > 0 are constants such that ‖An‖ ≤ Cλn for all n ∈ N, and if µ > λ,
then there is a norm ‖ · ‖′ on Rn with respect to which ‖A‖ ≤ µ.

Proof If n ∈ N is such that C(λ/µ)n < 1, then ‖v‖′ := ∑n−1
i=0 ‖Ai v‖/µi defines a

norm with

‖Av‖′ =
n∑

i=1

‖Ai v‖/µi−1 = µ

(
‖Av‖′ + ‖Anv‖

µn
− ‖v‖

)

≤ µ‖Av‖′ −
(

1 − C
λn

µn

)
‖v‖ ≤ µ‖Av‖′.

�
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Figure 3.3.2. Attracting fixed point with real and complex eigenvalues.

Proof of Proposition 3.3.3 By the lemma it suffices to show that there is a
coordinate change and a norm for which ‖An‖ ≤ C(r(A) + (δ/2))n for all
n ∈ N.

For each real eigenvalue λ (with multiplicity k) consider the generalized
eigenspace or root space Eλ := {v (A − λ Id)kv = 0}. With a little linear
algebra one can see that dim(Eλ) = k. [This makes sense because the image of
the unit cube under A − t Id has volume det(A − t Id) ≈ (t − λ)k, so there must
be k directions of “collapse” as t → λ.] Thus, these spaces generate the whole
space. Alternatively, this follows from the Jordan normal form.

On Eλ the binomial formula gives

An = (λ Id +�)n =
k−1∑
l=0

(
n
l

)
λn−l�l = λn

k−1∑
l=0

(
n
l

)
λ−l�l .

The entries of �n := ∑k−1
l=0

(n
l

)
λ−l�l are polynomials in n, so Lemma 3.3.2

implies that ‖An‖/|λ|n is bounded by a polynomial p(n) in n. If δ >

0, then p(n)|λ|n/(|λ| + δ)n → 0; so there is a C > 0 such that ‖An‖/|λ|n ≤ p(n) ≤
C(|λ| + (δ/2))n/|λ|n for all n.

One can analyze complex eigenvalues separately, or one can look at A as a
linear map of Cn by allowing complex numbers as components of vectors. Then
the preceding analysis applies to the root spaces for complex eigenvalues as well.

To deduce the complete result from the result for root spaces we use a
norm of the desired kind on each of these root spaces. If we write vectors v as
(v1, . . . , vl) with every vl in a different root space with norm ‖ · ‖l, then we can
define the desired norm by ‖v‖ := ∑l

i=1 ‖vl‖l. �

Exercise 3.3.2 shows that any norm has the property obtained in the proof,
although C depends on the norm. However, the norm in Proposition 3.3.3
is special. One could also obtain it from an argument as above without using
the lemma by employing finer tools from linear algebra (Jordan normal form
plus a linear coordinate change that makes the off-diagonal terms as small as
desired).



book 0521583047 April 21, 2003 16:55 Char Count= 0

3.3 Linear Maps 93

Corollary 3.3.5 If r(A) < 1, then A is eventually contracting. In particular, the
positive iterates of every point converge to the origin with exponential speed.
If, in addition, A is an invertible map, that is, if zero is not an eigenvalue for
A, then negative iterates of every point go to infinity exponentially.

The reverse result evidently applies to maps all of whose eigenvalues have
absolute value greater than one.

3.3.2 Nonlinear Contractions

Our insights into the asymptotics of linear maps can sometimes be transferred
to nonlinear systems. Chapter 9 uses this many times. A useful simple ex-
ample arises from the fact that for an appropriate norm we can arrange for
‖An‖ ≤ C(r(A) + (δ/2))n (proof of Proposition 3.3.3, or a consequence of the
statement of Proposition 3.3.3). Invoking the Mean Value Theorem 2.2.14 as in
the proof of Proposition 2.2.17, we get

Lemma 3.3.6 Let f be a continuously differentiable map with a fixed point
x0 where r(D fx0 ) < 1. Then there is a closed neighborhood U of x0 such that
f (U ) ⊂ U and f is eventually contracting on U.

3.3.3 The Noncontracting Case

It remains to understand the mixed situations with only some eigenvalues inside
or outside the unit circle. Analogously to the two-dimensional situation, it
is possible to decompose Rn into subspaces that are contracting, expanding,
or neutral, except that now all three possibilities can coexist. As in the two-
dimensional case, these subspaces correspond to sets of eigenvalues inside,
outside, and on the unit circle, respectively. But, similarly to the case of only
one real eigenvalue in R2, it does not quite suffice to consider eigenspaces only.
Instead, we have to consider the generalized eigenspaces or root spaces of A
introduced in the preceding proof for the case of real eigenvalues (while this
much generality is desirable, the reader may choose to assume diagonalizability
to make the argument more transparent). For a pair of complex conjugate
eigenvalues λ, λ we let Eλ,λ be the intersection of Rn with the sum of root
spaces corresponding to Eλ and Eλ for the complexification of A (that is, the
extension to the complex space Cn). For brevity we call Eλ,λ a root space,
too. Let

E− = E−(A) =
⊕

−1<λ<1

Eλ ⊕
⊕
|λ|<1

Eλ,λ(3.3.1)

be the space jointly spanned by all root spaces for eigenvalues inside the unit
circle and similarly

E+ = E+(A) =
⊕
|λ|>1

Eλ ⊕
⊕
|λ|>1

Eλ,λ.(3.3.2)
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Figure 3.3.3. Stack of saddles and spirals onto a plane.

If the map A is invertible, then E+(A) = E−(A−1). Finally, let

E0 = E0(A) = E1 ⊕ E−1 ⊕
⊕
|λ|=1

Eλ,λ.(3.3.3)

The spaces E−, E+, E0 are obviously invariant with respect to A and Rn = E− ⊕
E+ ⊕ E0. Since the restriction of A to the space E−(A) is a linear map with all
eigenvalues of absolute value less than one, Corollary 3.3.5 and Proposition 3.3.3
imply

Corollary 3.3.7 The restriction A�E−(a)
of a linear map A to the space E−(A)

is eventually contracting. If A is invertible, then in addition A−1�E+(A)
is even-

tually contracting. Furthermore, for any δ > 0 there is a norm with respect to
which ‖A�E−(a)

‖ ≤ r(A�E−(a)
) + δ and ‖A−1�E+(A)

‖ ≤ r(A−1�E+(A)
) + δ.

To obtain this Lyapunov norm apply Proposition 3.3.3 on E−(A) and E+(a)
separately to get norms ‖ · ‖− and ‖ · ‖+, respectively, on these sub-
spaces. Then define a norm for points x = (x−, x0, x+) by ‖(x−, x0, x+)‖ :=
‖x−‖− + ‖x0‖ + ‖x+‖+.

Definition 3.3.8 The space E−(A) above is called the contracting subspace
and the space E+(A), the expanding subspace. We say that A is hyperbolic if
E0 = {0} or, equivalently, if Rn = E+ ⊕ E−.

� EXERCISES

� Exercise 3.3.1 For each of the following matrices determine the spectral radius
of the corresponding linear map and describe the possible long-term behaviors of



book 0521583047 April 21, 2003 16:55 Char Count= 0

3.3 Linear Maps 95

orbits (Anv)n∈N.

a)

 0 −2 2
1 3 −2
2 4 −3

 b)
1
2

−1 −1 0
2 −1 1
0 1 −1

 c)


2 0 1 0
0 1 0 1
0 0 2 1
0 −1 0 1

 .

� Exercise 3.3.2 Given a linear map A show that for any norm there is a C such
that ‖An‖ ≤ C(r(A) + (δ/2))n for all n ∈ N.

� Exercise 3.3.3 Prove that r(A) = limn→∞ ‖An‖1/n.

� Exercise 3.3.4 Suppose the linear map x !→ Ax is a contraction on Rn.
Prove that tr A < n.

� Exercise 3.3.5 Suppose A is a 3 × 3 matrix with det A = 1/10 and tr A = 2.7.
Show that A does not define a contraction.

� PROBLEMS FOR FURTHER STUDY

� Problem 3.3.6 Suppose all eigenvalues of a 3 × 3 matrix A have absolute value
one. Prove that there exists a constant C , such that for any v ∈ R3 and n �= 0,
‖Anv‖ ≤ Cn2‖v‖.

� Problem 3.3.7 Generalize the statement of the previous problem to n × n
matrices.

� Problem 3.3.8 The norm obtained in the proof of Lemma 3.3.4 does not arise
from an inner product. Show that there is an “adapted” inner product whose norm
||x|| = √〈x, x〉 is an adapted norm.
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CHAPTER 4

Recurrence and Equidistribution on the Circle

So far we concentrated on dynamical systems where the asymptotic behavior can
be described simply: Every orbit was either fixed (sometimes periodic) or was
attracted to (possibly different) fixed points as the time approached positive and
negative infinity. In several situations, such as Proposition 2.3.5, we showed that
no other behavior is possible.

In this chapter we study a fundamentally different type of behavior. Analysts
use the rather innocuous term “quasiperiodic” to describe it and to signify that it is
not much more than a generalization of periodic behavior. But from the dynamical
point of view this is a starting point for the understanding of nontrivial recurrence,
the central paradigm of the theory of dynamical systems.

We begin with a careful study of this phenomenon in the simplest possible
situation, circle rotations. In the second section this already gives a remarkable
array of interesting applications. The final section extends some of our insights to
nonlinear circle maps.

4.1 ROTATIONS OF THE CIRCLE

The description of our first example is surprisingly simple; it is, in fact, closely
related to some of the linear dynamical systems that appeared in Chapter 3,
specifically Section 3.1.8.4 with ρ = 1: For a linear system with a pair of complex
conjugate eigenvalues of absolute value 1, complex behavior may appear on the
invariant circles r = const. We now study these rotations of a circle.

4.1.1 Circle Rotations

In Section 2.6.2 we saw two different convenient ways to represent the circle that al-
low us to write various formulas in a nice fashion. One can use either multiplicative
notation, in which the circle is represented as the unit circle in the complex plane

S1 = {z ∈ C |z| = 1} = {e2πiφ φ ∈ R},
96
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or additive notation, where

S1 = R/Z

consists of the real numbers with integer translates identified (recall Figure 2.6.2).
In multiplicative notation all algebraic operations make sense as operations over
complex numbers. In additive notation we can use addition and subtraction (but
not multiplication or division) just as the usual operations over real numbers,
but we have to keep in mind that all equalities make sense up to an integer. It is
customary to add “(mod 1)” to such equalities. Thus, the expression a = b (mod 1),
where a and b are real numbers, means that a − b is an integer.

The logarithm map

e2πiφ !→ φ

establishes an isomorphism between these representations. Let us measure the
length of arcs on the circle by the parameter φ; that is, the length of the whole circle
is equal to one. Let �(�) denote the length of the arc � measured in such a way. To
similarly define a distance introduce a metric on the set X = R/Z := {[x] x ∈ R}
of equivalence classes by setting d(x, y) := min{|b − a| a ∈ x, b ∈ y} as in
Proposition 2.6.7.

We use the symbol Rα to denote the rotation by the angle 2πα. In multiplicative
notation

Rα(z) = z0z with z0 = e2πiα.

Not surprisingly, in additive notation we have

Rα(x) = x + α (mod 1).(4.1.1)

The iterates of the rotation are correspondingly

Rn
α(z) = Rnα(z) = zn

0z

in multiplicative notation and

Rn
α(x) = x + nα (mod 1).

in additive notation.
A crucial distinction in the dynamics of rotations appears between the cases of

the rotation parameter α being rational and irrational.
In the former case, write α = p/q, where p, q are relatively prime integers. Then

Rq
α(x) = x for all x, so Rq

α is the identity map and after q iterates the transformation
simply repeats itself. Thus the total orbit of any point is a finite set and all orbits
are q-periodic.

4.1.2 Density of Orbits

The case of irrational α is much more interesting. First, it is clear from the above
formulas for the iterates that the orbit of every point is an infinite set. We can,
however, say much more.

Proposition 4.1.1 If α /∈ Q, then every positive semiorbit of Rα is dense.
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Figure 4.1.1. Periodic orbit and segment of a dense orbit.

Proof Suppose x, z ∈ S1. To show that z is in the closure of the positive semiorbit
of x, let ε > 0. The positive semiorbit of x is infinite and no set of k ≥ �1/ε	 + 1
points has pairwise distances all exceeding ε. Thus there are l, k ∈ N such that
l < k ≤ �1/ε	 and d(Rk

α(x), Rl
α(x)) < ε. Then d(Rk−l

α (x), x) < ε because R−l
α preserves

distances. By the way, this latter distance is independent of x because, if y ∈ S1, then
y = Ry−x(x) and

d
(

Rk−l
α (y), y

) = d
(

Rk−l
α (Ry−x(x)), Ry−x(x)

) = d
(

R(k−l)α+y−x(x)
)
, Ry−x(x)

)
= d

(
Ry−x

(
Rk−l

α (x)
)
, Ry−x(x)

) = d
(

Rk−l
α (x), x

)
;

so k and l can be chosen independently of x.
Take θ ∈ [−1/2, 1/2] such that θ = (k − l)α (mod 1). Then ρ := |θ | < ε and

Rk−l
α = Rθ . Let N = �1/ρ	 + 1 (independently of x). Then the subset {Riθ (x) i =

0, 1, . . . , N} of the positive semiorbit of x divides the circle into intervals of length
less than ρ < ε, so there is an n ≤ N(k − l) such that d(Rn

α(x), z) < ε. �

Remark 4.1.2 Since the negative semiorbit of Rα is the positive semiorbit of R−α ,
we also proved the density of negative semiorbits.

An alternate proof of minimality shows the absence of proper invariant closed
subsets by contradiction:

Alternate proof of Proposition 4.1.1 Let A ⊂ S1 be an invariant closed set. The
complement S1 � A is a nonempty open invariant set that consists of disjoint
intervals. Let I be the longest of those intervals (or one of the longest, if there are
several of the same length). Since rotation preserves the length of any interval, the
iterates Rn

α(I ) do not overlap. Otherwise, S1 � A would contain an interval longer
than I . Since α is irrational, no iterates of I can coincide, because then an endpoint
x of an iterate of I would come back to itself and we would have x + kα = x (mod 1)
with kα = l an integer and α = l/k a rational number. Thus the intervals Rn

α(I ) are
all of equal length and all disjoint, but this is impossible because the circle has finite
length and the sum of lengths of disjoint intervals cannot exceed the length of the
circle. �
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Proposition 4.1.1 motivates the following general definitions.

Definition 4.1.3 A homeomorphism (see Definition A.1.16) f : X → X is said
to be topologically transitive if there exists a point x ∈ X such that its orbit
O f (x) := ( f n(x))n∈Z is dense in X . Equivalently, every f -invariant open invariant
set is dense. A noninvertible map f is said to be topologically transitive if there
exists a point x ∈ X such that its (positive) orbit O+

f (x) := ( f n(x))n∈N0 is dense in X .

The definitions for continuous-time systems are similar.

Definition 4.1.4 A homeomorphism f : X → X is said to be minimal if the orbit of
every point x ∈ X is dense in X or, equivalently, if f has no proper closed invariant
sets. A closed invariant set is said to be minimal if it contains no proper closed
invariant subsets or, equivalently, if it is the orbit closure of any of its points.

Thus Proposition 4.1.1 establishes that any rotation of the circle by an angle
incommensurable with π , that is, by an irrational number of degrees (we shall call
such a rotation simply an irrational rotation), is minimal and hence topologically
transitive.

While minimality always implies topological transitivity, the converse is by
no means true. Chapter 7 contains various examples that combine topological
transitivity (existence of some dense orbits) with the existence of many orbits of
different types, for example, infinitely many periodic (finite) orbits whose union is
in turn dense.

4.1.3 Dense Orbits

It may be interesting to get a good picture of how an orbit fills the circle densely. We
do this in a specific example by following the orbit of 0 under a rotation Rα, where
we take

α = 1

3 + 1

5 + 1

c

for some c > 1. α ∈ Q if and only if c ∈ Q. The unusual form of α will seem more
natural at the end.

Since 1/4 < α < 1/3 and hence 3α < 1 < 4α, the first time the orbit returns
more closely to 0 than ever before is after three steps. The first three points, α, 2α,
and 3α, are evenly spaced, and since 4α > 1, 3α is closer to an integer than the
previous points. The precise distance is

δ := 1 − 3α = 1 − 3

3 + 1

5 + 1

c

=

1

5 + 1

c

3 + 1

5 + 1

c

= 1

16 + 3

c

.
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To find the next time of closest return we start from the fourth step, using 4α = α − δ

(mod 1). So three α-steps take us from α to α − δ. How many of these 3α-steps does
it take to get the next closest approach? As before, it should be about α/δ, and the
desired number n must satisfy nδ < α < (n + 1)δ. Indeed, n = 5 works:

5δ = 5

15 +
(

1 + 3
c

) = 1

3 +
(

1
5

+ 3
5c

) <
1

3 + 1
5

<
1

3 + 1

5 + 1
c

= α,

and

6δ = 6

16 + 3

c

>
6

18
= 1

3
> α.

These five 3α-steps evenly fill the interval (0, α) and simultaneously its three image
intervals. When this next closest return is reached, the orbit segment is a δ-dense
subset of the circle spaced evenly (except for the smaller interval of the new closest
return). The next closest return after this is determined by c, and it is safe to guess
that it will happen after about c steps.

If c were about a billion, this would mean that it takes about a billion 5δ-steps
until the next closest return, which is some 15 billion iterations of Rα. In particular,
the first 7 billion iterations are guaranteed to leave gaps of δ/2 > 1/35. So large
entries in this continued fraction form of α are not a good thing for filling the circle
well. Continued fractions are discussed in greater detail in Section 15.2.

In conclusion, there is a natural sequence of ever longer time scales during each
of which the orbit achieves a finer degree of density in a fairly homogeneous way.
Thus, the behavior of an orbit is periodic, except for a little error δ, which produces
a perturbation with much higher period – up to an even smaller error, and so on.

4.1.4 Uniform Distribution for Intervals

The preceding discussion suggests that we look into the way orbits of an irrational
rotation are distributed on the circle in a quantitative fashion by finding the
frequencies with which iterates of a point visit various parts of a circle. To be
specific, fix an arc � ⊂ S1, and for x ∈ S1 and n ∈ N let

F�(x, n) := card
{

k ∈ Z 0 ≤ k < n, Rk
α(x) ∈ �

}
.

This function is nondecreasing in n for fixed x and �. Since the positive semiorbit
of any point is dense, there are arbitrarily large positive iterates of x that belong to
�. Hence

F�(x, n) → ∞, as n → ∞.

The natural measure of how often these visits happen is the relative frequency of
visits:

F�(x, n)
n

.(4.1.2)
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Figure 4.1.2. Frequencies.

Recall that �(�) denotes the length of the arc � measured by the parameter φ

introduced at the beginning of Section 4.1.1.
The argument from the proof of Proposition 4.1.1 gives

Proposition 4.1.5 Suppose α is irrational and consider the rotation Rα. Let �, �′ be
arcs such that �(�) < �(�′). Then there exists an N0 ∈ N such that, if x ∈ S1, N ≥ N0,
and n ∈ N, then

F�′ (x, n + N ) ≥ F�(x, n).

Proof By the density of the positive semiorbit of the left end of the arc � we can
find an N0 ∈ N such that RN0

α (�) ⊂ �′. Then Rn
α(x) ∈ � implies Rn+N0

α (x) ∈ �′ and
F�′ (x, n + N) ≥ F�′ (x, n + N0) ≥ F�(x, n) for N ≥ N0. �

So far we have not specified what kinds of arcs we consider: open, closed, or half-
open. There is no difference as far as limit behavior of the frequencies is concerned,
since the difference between the number of visits for an open arc and its closure is
at most two. So it is convenient to always take arcs closed on the left and open on
the right. For such arcs we have the following additivity property: If the right end of
�1 coincides with the left end of �2, then �1 ∩ �2 = ∅, �1 ∪ �2 is an arc and

F�1 (x, n) + F�2 (x, n) = F�1∪�2 (x, n).

It is also convenient to define FA(x, n) := card{k ∈ Z 0 ≤ k < n, Rk
α(x) ∈ A} for

any set A that is a union of disjoint arcs. So far we do not know that the limits of
relative frequencies exist. However, one can consider the upper limits:

fx(A) := lim sup
n→∞

FA(x, n)
n

.

These quantities are obviously subadditive:

fx(A1 ∪ A2) ≤ fx(A1) + fx(A2).

In particular, if
⋃n

i=1 Ai = S1, then
∑n

i=1 fx(Ai) ≥ 1. Proposition 4.1.5 implies
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Corollary 4.1.6 If �(�) < �(�′), then fx(�) ≤ fx(�′).

Similarly we introduce the lower asymptotic frequencies:

f
x
(A) := lim inf

n→∞
FA(x, n)

n
.

Obviously, for any set A we have FA(x, n) = n − FAc (x, n), where Ac denotes the
complement S1 � A of A and hence

fx(A) = lim sup
n→∞

FA(x, n)
n

= 1 − lim inf
n→∞

FAc (x, n)
n

= 1 − f
x
(Ac).(4.1.3)

Now we can formulate our main statement about asymptotic frequencies:

Proposition 4.1.7 For any arc � ⊂ S1 and any x ∈ S1

f(�) := lim
n→∞

F�(x, n)
n

= �(�),

and the limit is uniform in x.

Remark 4.1.8 The property of the sequence an := Rn
α(x), n = 0, 1, 2, . . . expressed

by this proposition is called uniform distribution or equidistribution: The asymp-
totic frequency of visits is the same for arcs of equal length, regardless of where on
the circle they are.

Proof First we show that the frequency of visits cannot be too high.

Lemma 4.1.9 If �(�) = 1/k , then fx(�) ≤ 1/(k − 1).

Proof Consider k − 1 disjoint arcs �1, �2, . . . , �k−1 of length 1/(k − 1) each. For
1 ≤ i < k, Proposition 4.1.5 gives natural numbers Ni such that, if x ∈ S1, then

F�i (x, n + Ni) ≥ F�(x, n);

hence F�i (x, n + N) ≥ F�(x, n), where N = maxi Ni and

(k − 1)F�(x, n) ≤
k−1∑
i=1

F�i (x, n + N).

Since N is fixed, we let n → ∞ to obtain

(k − 1)fx(�) ≤ fx

(
k−1⋃
i=1

�i

)
= 1. �

Figure 4.1.3. Upper asymptotic frequencies.
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For an arc � and ε > 0 find k and an arc �′ ⊃ � of length l/k < �(�) + ε. Then

fx(�) < fx(�′) <
l

k − 1
< (�(�) + ε)

k
k − 1

by Lemma 4.1.9. Letting ε → 0 and thus k → ∞ gives fx(�) ≤ �(�). Combined with
(4.1.3) for A = �c, this also gives f

x
(�) ≥ �(�). This proves that the limit exists and

equals �(�). �

4.1.5 Uniform Distribution for Functions

Clearly, frequencies also can be defined for any set A that is a finite union of
arcs. To do this in a suggestive way we call

χA(x) :=
{

1 if x ∈ A
0 if x /∈ A

the characteristic function of A. Then we define

FA(x, n) :=
n−1∑
k=0

χA
(
Rk

α(x)
)
,

and accordingly the relative frequency is
∑n−1

k=0 χA(Rk
α(x))/n. Since, by definition

of the integral, �(�) = ∫
S1 χ�(φ)dφ, Proposition 4.1.7 can be reformulated as

lim
n→∞

1
n

n−1∑
k=0

χA
(
Rk

α(x)
) =

∫
S1

χ�(φ)dφ.(4.1.4)

1. Birkhoff Averaging. We can also consider similar expressions for functions
ϕ other than characteristic functions.

Definition 4.1.10 The Birkhoff averaging operator Bn is the operator that
associates to a function ϕ the function Bn(ϕ) := ∑n−1

k=0 ϕ ◦ Rk
α/n given by

Bn(ϕ) (x) = 1
n

n−1∑
k=0

ϕ
(
Rk

α(x)
)
.(4.1.5)

Remark 4.1.11 Some useful properties of Bn are

(1) Bn is linear: Bn(aϕ + bψ) = aBn(ϕ) + bB(ψ).
(2) Bn is nonnegative: If ϕ ≥ 0, then Bn(ϕ) ≥ 0. Also, Bn is positive (or

monotone): If ϕ > 0, then B(ϕ) > 0.
(3) Bn is nonexpanding: supx∈S1 Bn(ϕ)(x) ≤ supx∈S1 ϕ(x).
(4) Bn preserves the average:

∫
S1 Bn(ϕ) (φ) dφ = ∫

S1 ϕ(φ) dφ.

This leads to the following conclusions:

Proposition 4.1.12

(1) For any step function ϕ that is a linear combination of characteristic
functions of arcs, limn→∞ Bn(ϕ) = ∫

S1 ϕ(φ) dφ.
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(2) For any function ϕ that is a uniform limit of step functions we also have
limn→∞ Bn(ϕ) = ∫

S1 ϕ(φ) dφ.

Proof Since the map associating to an integrable function its integral over S1

has properties analogous to those in the remark, we can start from (4.1.4), pass
to linear combinations and uniform limits, and compare results.

For the second claim fix ε > 0, take a step function ϕε with supφ∈S1 |ϕ(φ) −
ϕε(φ)| < ε, and apply the operators Bn to ϕ = ϕε + (ϕ − ϕε) to get∫

S1
ϕ(φ) dφ − 2ε ≤

∫
S1

ϕ(φ) − ε dφ − ε ≤
∫

S1
ϕε(φ) dφ − ε(4.1.6)

= lim
n→∞ Bn(ϕε) − ε ≤ lim inf

n→∞ Bn(ϕ) ≤ lim sup
n→∞

Bn(ϕ) ≤ lim
n→∞ Bn(ϕε) + ε

=
∫

S1
ϕε(φ) dφ + ε ≤

∫
S1

ϕ(φ) + ε dφ + ε ≤
∫

S1
ϕ(φ) dφ + 2ε

for any ε > 0. �

Lemma 4.1.13 Every continuous function is the uniform limit of step functions,
as is every function with finitely many discontinuity points and with one-sided
limits at these points (piecewise continuous functions).

Proof Every continuous function on S1 is uniformly continuous; that is, for
every ε > 0 one can find an n ∈ N such that, on every arc of length 1/n,
the function varies by less than ε. Dividing S1 into n such arcs gives a step
function that is constant on each arc and differs from the given function by less
than ε. Essentially the same argument applies to functions with finitely many
discontinuity points and one-sided limits at these points. �

The last two results give:

Proposition 4.1.14 If α is irrational and ϕ is continuous, then

lim
n→∞

1
n

n−1∑
k=0

ϕ
(
Rk

α(x)
) =

∫
S1

ϕ(φ) dφ

uniformly in x.

There is a more general class of functions for which the Birkhoff average
converges to the integral, namely, all functions integrable in the usual (Riemann)
sense.

Theorem 4.1.15 If α is irrational and ϕ is Riemann integrable, then

lim
n→∞

1
n

n−1∑
k=0

ϕ
(
Rk

α(x)
) =

∫
S1

ϕ(φ) dφ(4.1.7)

uniformly in x.
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Figure 4.1.4. Approximation by step functions, Riemann sums.

Proof Pick a partition of S1 into a finite number of arcs Ii . The corresponding
lower and upper Riemann sums

∑
i min ϕ�Ii

l(Ii ) and
∑

i max ϕ�Ii
l(Ii ) can be

interpreted as integrals of step functions ϕ1 and ϕ2 defined by ϕ1 = min ϕ�Ii
on

Ii and ϕ2 = max ϕ�Ii
on Ii . By definition of Riemann integrability, the partition

can be chosen such that∫
S1

ϕ(φ) dφ − ε ≤
∫

S1
ϕ1(φ) dφ ≤

∫
S1

ϕ2(φ) dφ. ≤
∫

S1
ϕ(φ) dφ + ε.

This implies that∫
S1

ϕ(φ) dφ − ε ≤
∫

S1
ϕ1(φ) dφ = lim

n→∞ Bn(ϕ1) ≤ lim inf
n→∞ Bn(ϕ)

≤ lim sup
n→∞

Bn(ϕ) ≤ lim
n→∞ Bn(ϕ2) =

∫
S1

ϕ2(φ) dφ ≤
∫

S1
ϕ(φ) dφ + ε.

(4.1.8)

Letting ε → 0 gives the result. �

Remark 4.1.16 The condition of Riemann integrability is essential. To see
this, take a point x0 and define the set A as the union of the arcs of length
2−k+2 centered at Rk

α(x0) for k ≥ 0. Although some of these arcs overlap,
A is a union of arcs the sum of whose lengths is less than 1/2, whereas
limn→∞ 1

n

∑n−1
k=0 χA(Rk

α(x)) = 1. Of course, χA is not Riemann integrable.

2. Time Average and Space Average. The quantities on either side of (4.1.7)
are averages.

Definition 4.1.17 Given a function ϕ, we call

lim
n→∞

1
n

n−1∑
k=0

ϕ
(
Rk

α(x)
)

its time average as sampled by following the orbit of x under the iterates of
the rotation Rα. (Figure 4.1.5 illustrates this for ϕ = x(0,1/2).) The integral∫

S1 ϕ(φ) dφ is called the space average of the function ϕ.
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Figure 4.1.5. Time average.

These notions are both borrowed from physics, which is concerned with the
measurement of observable quantities associated with a dynamical system. This
means that there is a (measurable) quantity associated with the dynamical system
in question that varies with the state of the dynamical system – in other words,
one has a function defined on phase space whose value at a particular state of the
dynamical system is displayed by the measuring device. Especially for systems
that behave in unpredictable ways, it is quite natural to take a large number
of successive measurements and average them. The limit of these averages is
exactly the time average for the initial condition at which the measurements were
begun.

The space average is more likely obtained as a result of calculations with
a mathematical model of the physical system at hand. If one knows, as we do
in our simple example, that space averages and time averages are supposed
to coincide for the model one is testing, then the space average constitutes a
prediction of the time average that is being measured, thus providing a means
of verifying or falsifying the proposed model.

Returning to our situation, we note that the preceding result says that for any
Riemann-integrable function the time average exists for the orbit of any point x
and always coincides with the space average. This important property of irra-
tional rotations is equivalent to uniform distribution and is referred to as unique
ergodicity. This notion can be defined in the abstract setting of a continuous
map of a compact metric space, even though there is no notion of an integral.

Definition 4.1.18 If X is a compact metric space and f : X → X a continuous
map, then f is said to be uniquely ergodic if

1
n

n−1∑
k=0

ϕ( f k(x))

converges to a constant uniformly (in x) for every continuous function ϕ.
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4.1.6 The Kronecker–Weyl Method

In our arguments step functions played a special role. One can prove unique
ergodicity of an irrational rotation in a much simpler, yet less elementary, way
by using trigonometric polynomials to approximate continuous functions. This
is possible due to the classical theorem of Weierstraß that says that continuous
functions are uniform limits of trigonometric polynomials. This theorem is a
close counterpart of a more familiar Weierstraß theorem that deals with the
uniform approximation of a continuous function on an interval by polynomials.
In this argument it is more convenient to use complex-valued functions.

Alternate proof of Proposition 4.1.14 Define the characters cm(x) := e 2π imx =
cos 2πmx + i sin 2πmx. If m �= 0, then

cm(Rα(x)) = e 2π im (x+α) = e 2π imαe 2π im x = e 2π imαcm(x)

and∣∣∣∣∣1
n

n−1∑
k=0

cm
(
Rk

α(x)
)∣∣∣∣∣ =

∣∣∣∣∣1
n

n−1∑
k=0

e2π imkα

∣∣∣∣∣ = |1 − e2π imnα|
n|1 − e2π imα| ≤ 2

n|1 − e2π imα| → 0

as n → ∞, because
∑n

k=0 xk = (1 − xn+1)/(1 − x).
Birkhoff averaging operators are linear; so if p(x) = ∑l

i=−l ai ci (x) is a
trigonometric polynomial, then limn→∞ Bn(p)(x) exists and is constant. It is a0

because this constant has to be the integral of p over S1 (the operators Bn do not
change the integral). The same arguments as above allow us to pass to uniform
limits of trigonometric polynomials, that is, all continuous functions. �

This argument is more analytic and involves a much more straightforward
calculation than the proof using step functions. Notice, however, that it does
not give the original uniform distribution statement (Proposition 4.1.7), since
characteristic functions are obviously not the uniform limit of trigonometric
polynomials. To obtain uniform distribution for intervals from that for func-
tions one can use the argument from the proof of Theorem 4.1.15 backwards:
Approximate χA by continuous functions ϕ1 ≤ χA ≤ ϕ2 such that

∫
(ϕ2 − ϕ1) < ε

(Figure 4.1.6) and repeat the calculation (4.1.8).

4.1.7 Group Translations

Irrational rotations serve as the starting point for a number of fruitful
generalizations. Let us discuss one of them. The circle is a compact abelian
group, and the rotation can be represented in group terms as the group

Figure 4.1.6. Approximation by continuous functions.
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multiplication or translation

Lg0 : G → G, Lg0 g = g0g.

The orbit of the unit element e ∈ G is the cyclic subgroup {gn
0 }n∈Z. Proposi-

tion 4.1.1 is closely related to the fact that the circle does not have proper
infinite closed subgroups. To say that an orbit is dense requires a notion of
approximation, so we define a topological group to be a group with a metric for
which every Lg is a homeomorphism and taking inverses is continuous.

Proposition 4.1.19 If the translation Lg0 on a topological group G is topologi-
cally transitive, then it is minimal.

Proof For g, g′ ∈ G denote by A, A′ ⊂ G the closures of the orbits of g and g′,
respectively. Now gn

0 g′ = gn
0 g(g−1g′), so A′ = Ag−1g′ and A′ = G if and only if

A = G. �

� EXERCISES

� Exercise 4.1.1 Prove that for the metric d(x, y) := min{|b − a| a ∈ x, b ∈ y}
on the set X = R/Z := {[x] x ∈ R} every rotation is an isometry (as in
Definition A.1.16).

� Exercise 4.1.2 Take c = 7.1 in Section 4.1.3 and determine the next closest return.

� Exercise 4.1.3 Prove the properties in Remark 4.1.11.

� Exercise 4.1.4 For a rotation Rα find N ∈ N in terms of α such that F(0,1/2)(x, n)/
n ≥ 0.45 for all n ≥ N (see Section 4.1.4).

� Exercise 4.1.5 Suppose the motion of the sun and moon as observed from a
specific place on earth are strictly periodic and that the time difference between
sunrise and moonrise is never twice the same. Prove that this difference is uniformly
distributed.

� Exercise 4.1.6 Give an example of a homeomorphism of a complete metric
space that has a dense orbit but no dense semiorbit.

� Exercise 4.1.7 Give an example of a homeomorphism of a compact metric
space that has a dense orbit but no dense semiorbit.

� Exercise 4.1.8 Prove that two minimal sets (Definition 4.1.4) are either disjoint
or equal.

� Exercise 4.1.9 Prove that a contracting map of a compact space is uniquely
ergodic

� Exercise 4.1.10 Give an example of a continuous map f of a compact metric
space X such that

1
n

n−1∑
k=0

ϕ( f k(x))

converges uniformly (in x) for every continuous function ϕ, but f is not uniquely
ergodic.
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� Exercise 4.1.11 Using enough digits of the decimal expansion of π , find the clas-
sical approximations 21/7 and 355/113 and write the result in the form described
in Section 4.1.3. Find the fourth term in the continued-fraction approximation and
explain how the size of this number is reflected in the quality of the approximation.

� PROBLEMS FOR FURTHER STUDY

� Problem 4.1.12 Let G be a metrizable compact topological group. Suppose for
some g0 ∈ G the translation Lg0 is topologically transitive. Prove that G is abelian.

� Problem 4.1.13 Show that a finite abelian group has a uniquely ergodic
translation if and only if it is cyclic.

� Problem 4.1.14 Prove that the circle map x !→ x + (1/4) sin2πx shown in
Figure 2.2.4 is uniquely ergodic.

� Problem 4.1.15 Define the following metric d2 on the group Z of all integers:
d2(m, n) = ‖m− n‖2, where

‖n‖2 = 2−k if n = 2kl with an odd number l.

The completion of Z with respect to that metric is called the group of 2-adic or
dyadic integers and is usually denoted by Z2. It is a compact topological group.
Let Z+

2 be the closure of the even integers with respect to the metric d2. Z+
2 is a

subgroup of Z2 of index two.
Prove that for g0 ∈ Z2 the translation Lg0 : Z2 → Z2 is topologically transitive if

and only if g0 ∈ Z2 � Z+
2 .

This is an example of a class of systems called adding machines. An equiva-
lent description is given in Definition 11.3.10, and Theorem 11.3.11 shows that
this dynamical system is a subsystem of the quadratic map fλ : [0, 1] → [0, 1],
fλ(x) := λx(1 − x) from Section 2.5 for a particular value of λ.

4.2 SOME APPLICATIONS OF DENSITY AND UNIFORM DISTRIBUTION

There are numerous situations in which one would like to obtain information
of some asymptotic nature and where the dynamics of circle rotations or toral
translations, which are considered in the next chapter, plays a role, possibly behind
the scenes, that makes it possible to obtain this asymptotic information from the
knowledge we have acquired so far. In this section we show some such examples.

4.2.1 Distribution of Values for Periodic Functions

Let (xn)n∈N be a sequence of real numbers. A natural way to describe the distribution
of values of such a sequence would be to consider the asymptotic frequencies with
which this sequence “visits” various intervals.

Definition 4.2.1 Given a sequence (xn)n∈N and a < b, let Fa,b(n) be the number of
integers k such that 1 ≤ k ≤ n and a < xk < b. We say that (xn)n∈N has an asymptotic
distribution if for any a, b, −∞ ≤ a < b ≤ ∞ the limit

lim
n→∞

Fa,b(n)
n
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exists. In this case the function

�(xn)n∈N
(t) := lim

n→∞
F−∞,t(n)

n

is called the distribution function of the sequence.

For sequences of the form yn = ϕ(xn), we can give the distribution function in
terms of information about ϕ.

Definition 4.2.2 If A ⊂ R is a finite union of disjoint intervals, then we define its
measure m(A) to be the sum of the lengths of these intervals.

A function ϕ on an interval is said to be piecewise monotone if the domain can
be partitioned into finitely many intervals on which ϕ is monotone. In this case
the preimage of every interval I is a finite union of intervals, and so we can define
mϕ(I ) := m(ϕ−1(I )). For a piecewise monotone function we define the distribution
function �ϕ : R → R of ϕ by �ϕ(t) := mϕ((−∞, t)).

Note that �ϕ(t) is the sum of lengths of the intervals comprising the set
ϕ−1((−∞, t)) or, equivalently, �ϕ(t) = ∫

χϕ−1((−∞,t)).
Theorem 4.1.15 can be used to show that sequences obtained by calculating

values of periodic functions along arithmetic progressions have asymptotic
distribution and to calculate the distribution functions of such sequences:

Theorem 4.2.3 Let ϕ be a function on the real line of period T such that the
restriction ϕT := ϕ�[0,T ]

of ϕ to the interval [0, T ] is piecewise monotone. If α /∈ Q

and t0 ∈ R, then the sequence xn := ϕ(t0 + nαT) has an asymptotic distribution with
distribution function �ϕT /T.

Proof By introducing the new variable s = t/T we may assume that T = 1. The
periodic function ϕ can be viewed as a function on the circle. It will not cause any
confusion to call this function ϕ. Then the sequence xn coincides with the sequence
of values of this function on the circle along the orbit of the irrational rotation
Rα. Theorem 4.1.15 applied to the characteristic function of the set ϕ−1((a, b))
shows that the sequence xn has an asymptotic distribution: ϕ(s0 + nα) ∈ ϕ−1((a, b))
if and only if a < xn < b. This also implies the statement about the distribution
function. �
Example 4.2.4 Consider the sequence (sin n)n∈N. Since sin is a 2π-periodic
function and π /∈ Q, we can apply Theorem 4.2.3 with ϕ(t) = sin(t), T = 2π , t0 = 0,
α = (2π)−1 to establish the existence of the asymptotic distribution. In this case
the distribution function � can be calculated explicitly (see Figure 4.2.1):

�(sin n)n∈N
(t) = �sin2π

(t)/(2π) =


0 for t < −1
1
2 + 1

π
arcsin(t) for t ∈ [−1, 1]

1 for t > 1.

(4.2.1)
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Figure 4.2.1. The distribution function.

4.2.2 Distribution of the First Digits of Powers

As an interesting arithmetic application of Theorem 4.2.3, or actually Proposi-
tion 4.1.7, we can now answer the questions posed in Section 1.3.4 about the distri-
bition of the first digits of powers of 2 – in fact powers of any integer. Furthermore, we
can answer an analogous question when an entire string of initial digits is prescribed.

If k is a power of 10, then its powers have leading digit 1, so we need not discuss
this case further. We now show that otherwise any given string of digits does indeed
occur as the initial string of digits of some power of k.

Proposition 4.2.5 Let k ∈ N be a natural number other than a power of 10 and
p ∈ N. Then there exists an n ∈ N such that p gives the initial digits of the decimal
expansion of kn.

Example 4.2.6 To clarify the conclusion take k = 2 and p = 81. Then n = 13 works
because 213 = 8192.

Proof of Proposition 4.2.5 The conclusion can be rephrased by saying that there is
an l ∈ N for which kn = 10l p + q, where 0 ≤ q < 10l . This, in turn, is equivalent to
10l p ≤ kn < 10l( p + 1) or

l + lg p ≤ n lg k < l + lg( p + 1),

where lg = log10 is the logarithm to base 10. Now let m = �lg p	 + 1 be the number
of digits of p. Then

0 ≤ lg p − (m− 1) ≤ n lg k − l − (m− 1) < lg( p + 1) − (m− 1) ≤ 1,

which can be rewritten as

lg( p/10m−1) ≤ {n lg k} ≤ lg(( p + 1)/10m−1),(4.2.2)

where {·} denotes the fractional part. Since lg k is irrational,1 the sequence
([n lg k])∞

n=1 in R/Z (see Section 4.1.1 or Section 2.6.2) is dense on the circle by

1 If lg k = p/q, then 2p5p = 10p = kq = 2mq5nq using prime factorization. Then n = m and k = 10m.
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0.30

0.17

0.12
0.10

0.08 0.07 0.06 0.05 0.04

Figure 4.2.2. Distribution of first digits of 2n.

Proposition 4.1.1 and hence {{n lg k} n ∈ N} is dense in [0, 1). In particular, it
contains points from the interval [lg( p/10m−1), lg(( p + 1)/10m−1]. �

Our uniform distribution results give not only the existence of a given string of
first digits, but also the asymptotic frequency:

Proposition 4.2.7 For k ∈ N not a power of 10 and p ∈ N, let F k
p(n) be the number

of integers i between 0 and n − 1 such that p gives the initial digits of the decimal
expansion of ki. Then

lim
n→∞

F k
p(n)

n
= lg( p + 1) − lg p,

independently of k.

Proof We use either Proposition 4.1.7 or Theorem 4.2.3 for the function
ϕ(t) := {t} to see from the condition (4.2.2) that limn→∞ (F k

p(n)/n) = lg(( p + 1)/
10m−1) − lg( p/10m−1) = lg( p + 1) − lg p. �

Figure 4.2.2 shows approximate values of the asymptotic frequencies of the first
digits of powers of 2 (or 3, or 7, . . . ), which Section 1.3.4 asked about.

4.2.3 Linear Flow on the 2-Torus

Some further applications of uniform distribition appear in conjunction with flows
related to rotations and toral translations. In particular, our analysis of irrational
rotations has immediate implications for the following system of differential
equations on the 2-torus (we use additive notation; see Section 2.6.4)

dx1

dt
= ω1,

dx2

dt
= ω2.(4.2.3)

This system of differential equations can be easily solved explicitly. The resulting
flow (T t

ω)t∈R has the form

T t
ω(x1, x2) = (x1 + ω1t, x2 + ω2t) (mod 1).(4.2.4)

We present a geometric picture of this flow in Figure 4.2.3. As we already mentioned
in Section 2.6.4, the torus T2 = R2/Z2 can be represented as the unit square
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Figure 4.2.3. Linear flow on the embedded torus.

I 2 = {(x1, x2) 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} with pairs of opposite sides identified:
(x, 0) ∼ (x, 1) and (0, x) ∼ (1, x). In this representation the integral curves of the
system (4.2.3) are pieces of straight lines with slope γ = ω2/ω1. The motion along
the orbits is uniform with instantaneous “jumps” to the corresponding points
when the orbit reaches the boundary of the square.

Proposition 4.2.8 If γ is irrational, every orbit is dense in T2 and the flow is minimal
in a sense analogous to that of Definition 4.1.4. If γ is rational, then every orbit is
closed.

Proof The circle C1 = {x1 = 0} defines what is called a global section. This means
that every positive and negative semiorbit crosses it infinitely often. Therefore we
can define a return map to C1 by assigning to each point of C1 the point at which
its positive semiorbit first returns to C1.

This map is exactly the rotation Rγ , because between successive moments at
which an orbit intersects C1 the x2-coordinate changes by exactly γ (mod 1). Thus,
by Proposition 4.1.1, if γ is irrational, the closure of every orbit contains the circle
C1; and since the images of this circle under the flow {T t

ω} cover the whole torus,
every orbit is dense in T2. Thus, the flow is minimal in a sense analogous to that of
Definition 4.1.4. If γ is rational, then every orbit is closed by (4.2.4). �

4.2.4 Linear Differential Equations and Lissajous Figures

Flows on the 2-torus appear naturally in many problems from ordinary differential
equations. Often a proper choice of coordinates brings a system of differential
equations to the standard form (4.2.3). The most direct connection appears with
certain systems of linear differential equations with constant coefficients. Let A
be a 4 × 4 real matrix with two pairs of distinct, purely imaginary eigenvalues
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±iα1, ±iα2. Consider the system of ordinary differential equations

dx
dt

= Ax.(4.2.5)

By a coordinate change the matrix A can be transformed into
0 α1 0 0

−α1 0 0 0
0 0 0 α2

0 0 −α2 0

 .

This system is, in fact, the linearization (Section 6.2.2.7) of the spherical pendulum
discussed in Section 6.2.7, and it reflects the behavior of the spherical pendulum
for small oscillations.

Now let x = (x1, x2, x3, x4) ∈ R4 and consider two quadratic functions x2
1 + x2

2

and x2
3 + x2

4 . A direct calculation of the time derivatives of these functions shows
that both of them are invariant under (4.2.5). Thus, for any two positive numbers
r1, r2, the torus Tr1,r2 determined by the equations x2

1 + x2
2 = r2

1 , x2
3 + x2

4 = r2
2 is

invariant. In the natural normalized angular coordinates ϕ1, ϕ2 on the torus defined
by x1 = r1 cos 2πϕ1, x2 = r1 sin 2πϕ1, x3 = r2 cos 2πϕ2, x4 = r2 sin 2πϕ2 and with
α1/2π = ω1, α2/2π = ω2, (4.2.5) becomes

dϕ1

dt
= −ω1,

dϕ2

dt
= −ω2,

and the solutions of (4.2.5) have the form

x1(t) = r1 cos ω1(t − t0), x2(t) = r1 sin ω1(t − t0),

x3(t) = r2 cos ω2(t − t0), x4(t) = r2 sin ω2(t − t0).
(4.2.6)

Thus if the ratio α2/α1 = ω2/ω1 is irrational, then on each torus Tr1,r2 the flow
defined by (4.2.5) is minimal.

Figure 4.2.4. Nested tori.
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Figure 4.2.5. Lissajous figures.

Now consider the projection of solutions of (4.2.6) to the x1, x3-plane. The result-
ing curves are called Lissajous figures. From (4.2.6) we obtain the parametric repre-
sentation of a Lissajous figure (we use coordinates x and y rather than x1 and x3):

x(t) = r1 cos ω1(t − t0), y(t) = r2 cos ω2(t − t0).

A simple physical interpretation of a Lissajous figure is as the configuration trajec-
tory x(t), y(t) of a pair of independent linear or harmonic oscillators (Example 6.2.2,
Section 6.2.2) given by second-order differential equations

ẍ = ω1x, ÿ = ω2 y.

For commensurable frequencies ω1, and ω2, the Lissajous figures are families of
closed curves usually self-intersecting and fairly complicated (Figure 4.2.5). But if
the frequencies are incommensurable, then any Lissajous figure fills the rectangle
|x| ≤ r1, |y| ≤ r2 densely. Moreover, by using a proper version of Theorem 4.2.3 one
can prove existence and calculate the limit density of a Lissajous figure.

A physical simulation is easy to achieve by connecting simple oscillating circuits
to the x and y inputs of an oscilloscope. With a little tuning one can reproduce
various Lissajous figures easily. When one tunes away slightly from commensurate
frequencies the picture twists slowly. One sees a figure such as one on the right of
Figure 4.2.5, and it looks like a curve projected from a slowly rotating cylinder.2

4.2.5 Particles on the Interval and Billiards

There are various mechanical problems whose analysis can be reduced to that of
rotations of the circle and linear flows on T2. This subsection analyzes a simple
one carefully.

1. Particles on the Interval. Consider two point masses confined to an interval
that collide elastically with the ends of the interval and with each other. Assume
that the interval is the standard unit interval [0, 1] and consider the case of both

2 A careful description can be found in V. I. Arnold, Mathematical Methods in Classical Mechanics,
Section 2.5. (Springer-Verlag, New York, Berlin, Heidelberg, 1978.)
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Figure 4.2.6. Two particles on an interval.

(0, 0) (1, 0)

(0, 1)

Figure 4.2.7. The configuration space.

masses equal to one. The configuration space of this system is the two-dimensional
set T = {(x1, x2) 0 ≤ x1 ≤ x2 ≤ 1}, which is a right isosceles triangle, as shown in
Figure 4.2.7. The motion of both masses can now be described as the motion of a
point inside T .

The next few pages are dedicated to this system and contain a proof of the
following

Proposition 4.2.9 For any initial condition the system exhibits at most eight differ-
ent values of the ratio of the velocities at any time. If the initial ratio is rational, then
the motion is periodic; if it is irrational, then the motion eventually comes arbitrarily
close to any specified configuration and has a uniform distribution property.

The developments that lead to this result are a rich source of ideas for other
questions about this system, and for other models to study. For example, it will
afterwards be geometrically evident that the case of unequal masses is different in
a fundamental way.

2. Billiard Flow. Between collisions both particles move at constant speed. This
means that the “configuration” point in T that represents both of them has constant
vertical and horizontal speed and hence traces out straight lines with constant
speed. When it reaches the horizontal or vertical component of the boundary, which
corresponds to a collision with one of the endpoints of the interval, the normal
component of the velocity vector changes sign. At a collision with the hypothenuse
the two components of the velocity change places (in an elastic collision two
particles exchange momenta, that is, since the masses are equal, velocity). Thus in
all three collision cases the configuration point (x1, x2) reflects from the boundary
according to the rule “the angle of incidence is equal to the angle of reflection”.
In other words, the motion of the configuration point is like that of a small
billiard ball inside the triangular table T . This is the reason why the continuous-
time dynamical system describing this motion is usually called the billiard
flow.
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To study the billiard flow we first describe its phase space. Evidently, it consists
of tangent vectors with footpoints in T . We need some conventions about the
vectors at the boundary. Since the velocity changes instantanously at a collision, we
consider only outgoing velocities, so of the vectors with footpoint at the boundary,
only those belong to the phase space that point inside the triangle. The corners
correspond to simultaneous collisions, and we should see whether the further
motion can be defined for a configuration point that hits a corner. The point (0, 1),
that is, the vertex at the right angle, corresponds to the simultaneous collision of
two particles with the ends of the interval and presents no problem; each particle
changes the sign of its velocity, so the velocity vector simply reverses itself. Thus in
this case the outgoing velocity vector also points inside T . The other two vertices
are more tricky. They correspond to a simultaneous collision of the particles with
the same endpoint. A natural way to see how the motion can be extended is to
approximate this event by a series of simple collisions and take the limit of the
outcomes if it exists. It turns out that such a series always contains four collisions
and the limit does exist. Rather than doing this tedious analysis directly, we ignore
the two corners until we obtain the desired extension as a byproduct of geometric
considerations that will give us better insight into the picture of the motion.

To summarize, the billiard flow is a continuous-time dynamical system in the
phase space described above. A vector moves with speed equal to its length along
its line and reflects from the sides. It is clearly sufficient to consider only vectors of
a fixed, say, unit, length.

3. Unfolding. Now imagine that, when a point reaches the boundary, rather than
reflecting the velocity vector we reflect the domain T and consider the motion with
the same speed inside the reflected copy, as shown in Figure 4.2.8. This can be
repeated when the point reaches the boundary (of the reflected copy) again and so
on. Thus, instead of a complicated broken line inside T we obtain a straight-line
motion that passes from one copy of T to another. Naturally, the original motion can
be recovered by folding these copies back onto the original triangle. Different initial
vectors lead to different sequences of reflections and produce different strings of
copies of the triangle T along the unfolding trajectory. So one should try to consider
all possible sequences of reflections at the same time. While for domains other than
this triangle the result could be a mess with copies of the domain returning and

Figure 4.2.8. Unfolding the triangle.
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Figure 4.2.9. The total unfolding.

overlapping with the original one without coinciding with it, in this case any overlap
with the interior of the original domain leads to exact matching. Thus, we obtain a
tiling of the plane R2 by copies of the triangle T obtained by various compositions of
reflections. Not all of those compositions are themselves reflections. For example,
a reflection in the vertical side followed by a reflection in the horizontal side of the
image produces a rotation by π around the vertex with the right angle. Again, careful
inspection shows that the elements of the tiling come in eight different orientations
(see Figure 4.2.9); all triangles in each of the eight classes are obtained from each
other by parallel translations. As representatives of the eight classes one can take the
original triangle T , its reflection in the hypotenuse, and the triangles obtained by
the reflections of the unit square in the coordinate axes as well as their composition
(these commute). In other words, the eight representatives exactly fill the square
S = {(x, y) max{|x|, |y|} ≤ 1}, and any other element of the tiling is obtained from
one of the eight by parallel translation. The parallel translations that appear in the
process are compositions of the iterates of the vertical and horizontal translations
by two. We call S a fundamental domain for the translation group of the tiling.

4. Identification Space. Now replace the complete unfolding of a billiard flow
orbit on R2 described above with a partial unfolding by forcing it to stay within
the square S as follows. Each time the unfolded orbit reaches the boundary of S,
instead of moving away to a triangle T1 move to the unique triangle T2 in S that is ob-
tained from T1 by parallel translation (see Figure 4.2.10). This creates discontinuities
in the orbit when it is considered on the plane, namely, translation by (0, −2) for the
top horizontal side, by (0, 2) for the bottom one, by (2, 0) for the left, and by (−2, 0)
for the right. But these are precisely the identifications described in Section 4.2.3 for
the linear flow on the torus, albeit of twice the size. The linear flow thus obtained
depends on the initial direction of the billiard flow orbit in T . For initial directions
with rational slopes all orbits are closed, and for those with irrational slopes they
are dense and uniformly distributed on the torus.

The folded orbit in T consists of pieces of no more than eight different directions
obtained from the original one by those compositions of reflections that produce
the eight triangles in the square S. Four of these transformations act on the
directions as reflections, namely, in the horizontal, vertical, and two diagonal lines;
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Figure 4.2.10. Partial unfolding.

the remaining ones are rotations by multiples of π/2. Thus, if the original angle
with the positive horizontal direction is α, the allowable angles are ±α + (kπ/2);
k = 0, 1, 2, 3. (See Figure 4.2.11.)

Density (corr. periodicity) of the orbits on the torus for initial directions with
irrational (corr. rational) slopes translates into density (corr. periodicity) of the
billiard orbits in the triangle. The same applies to the uniform distribution of the
billiard orbits with initial directions with irrational slopes.

We also resolved the problem of extension of billiard orbits that hit a corner.
On the torus such an extension is unambiguous, and after folding we obtain the
precise prescription: An orbit that hits the origin under the angle α with the positive
direction on the real axis bounces back under the angle π − α, that is, it retraces
itself exactly as in the case of the vertex (0, 1).

Let us transfer our conclusion to the original mechanical problem. The slope of
the phase vector in the billiard is the ratio of the velocities of the two particles on

Figure 4.2.11. Eight allowable angles.
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the interval. Thus, from any initial velocity ratio only eight different values of the
ratio can be reached. If the initial ratio is rational, then the motion is periodic; if it
is irrational, it will eventually come arbitrarily close to any specified configuration.
Furthermore, in the latter case there is a natural uniform distribution property.
This in particular gives Proposition 4.2.9.

5. Unequal Masses. There are natural generalizations related to two different as-
pects of this problem, mechanical and geometric. In the mechanical problem the
masses of the particles may not be equal. At a collision the change in velocities of the
two particles is inversely proportional to their masses m1 and m2. With respect to
coordinatesq1 = √

m1x1,q2 = √
m2x2, preservation of momentum and energy trans-

lates into the billiard law in the billiard table {(q1, q2) 0 ≤ q1 ≤ √
m1/m2q2 ≤ √

m1}.
(See Figure 4.2.12.) For the billiard flow in this triangle the unfoldings for different
sequences of reflections overlap without creating any recognizable structure unless
m1 = m2, m1 = 3m2, or m2 = 3m1. The latter two cases correspond to the billiard in
the right triangle with the smallest angleπ/6. Some other cases can be analyzed fairly
well using similar ideas and this development. The first nontrivial case would be that
of a right triangle with one angle π/8. This corresponds to a mass ratio of 3 + 4

√
2

and is described in Section 14.4 of Katok and Hasselblatt, Introduction to the Modern
Theory of Dynamical Systems, (New York, Cambridge University Press, 1995).

Now we turn to a generalization suggested by the geometric structure of our
problem.

6. Polygonal Billiards. We now list those polygons where the approach we
outlined works equally well as for the equal-masses model.

Consider billiard flows inside a polygon P with the property that the images of
of P under the compositions of reflections in the sides of P tile the plane. For such
polygons it is possible to unfold simultaneously all of the orbits of the billiard flow
in a way similar to that for the right isosceles triangle. After that, we need to find a
counterpart of the square S, that is, a nice fundamental domain of the translation
group of the tiling to replace the complete unfolding into the infinite plane by a
partial unfolding confined to a compact set.

The list of polygons satisfying this property is rather short. In addition to the
right isosceles triangle it includes rectangles, the equilateral triangle, and the right
triangle with an angle π/6. In order to find the counterpart of the square S for these

Figure 4.2.12. Two unequal masses.
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Figure 4.2.13. Tilings.

cases, consider classes of domains in each tiling that differ by a parallel translation
and then group one representative from each class in a nice way. The results are
presented in Figure 4.2.13. There are four classes in the first case, six in the second,
and twelve in the last. Natural fundamental domains are the twice dilated rectangle
R in the first case and the regular hexagons in the other two (Figure 4.2.14).

We study these systems case by case. The analysis of the billiard flow in the
triangle T translates to the case of a rectangle essentially verbatim, with a slight
simplification. Indeed, the double rectangle R is naturally identified with the torus
by identifying the pairs of opposite sides via corresponding parallel translations, and
the billiard orbit in the original rectangle unfolds into a linear flow on that torus.

The other two cases can also be reduced to the linear flow on the torus because
a torus may be obtained from any parallelogram by identifying pairs of opposite
sides via translations. This is just a matter of a proper linear coordinate change on
the plane. One can find a fundamental domain of the translation group of the two
tilings in the shape of a parallelogram with an angle π/3 (Figure 4.2.15), so the
billiard flow in the triangles reduces to the linear flows on the respective domains.

Remark 4.2.10 The classical example of a linear flow on the 2-torus arising from
nonlinear systems of differential equations is the Kepler problem of a point mass in
an inverse-square central gravitational field (Section 6.2.5). Such a point mass has
three degrees of freedom, but preservation of angular momentum (Section 6.2.7)
confines it to a plane, reducing the number of degrees of freedom to two. Since the
equation of motion is of second order, this gives a four-dimensional phase space.

Figure 4.2.14. Fundamental domains.
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Figure 4.2.15. Parallelogram.

Energy conservation reduces this to three dimensions, and conservation of the
size of angular momentum to two. These two dimensions are parametrized by a
time parameter along an ellipse and a perihelion angle. This is therefore a system
similar to the mathematical pendulum (Section 6.2.2) where one gets flows on
circles, that is, one-dimensional invariant tori. However, the Kepler problem for
several planets without mutual interaction gives higher-dimensional invariant tori
with linear flows on them. This is the central feature of complete integrability in
Hamiltonian dynamical systems.

� EXERCISES

� Exercise 4.2.1 Give a detailed proof of (4.2.1).

� Exercise 4.2.2 Verify directly that for any fixed number mthe sum of lg( p + 1) −
lg pover all pwith exactly mdigits is 1, as it should be according to Proposition 4.2.7.

� Exercise 4.2.3 Verify the calculation needed to deduce Proposition 4.2.7 from
Proposition 4.1.7 or Theorem 4.2.3.

� Exercise 4.2.4 Referring to Proposition 4.2.7, determine limn→∞ F 2
10(n)/n

and find the asymptotic frequencies of 0 and 9, respectively, as the second digit of
powers of 2.

� Exercise 4.2.5 Referring to the proof of Proposition 4.2.8, assume γ �= 0 and
replace the section C1 by the section C2 := {x2 = 0}. Prove that the resulting return
map is a rotation and determine the rotation angle in terms of γ .

� Exercise 4.2.6 Verify by direct calculation of the time derivatives that the
functions x2

1 + x2
2 and x2

3 + x2
4 are invariant under (4.2.5).

� Exercise 4.2.7 Formulate the natural uniform distribution property referred to
in Proposition 4.2.9 and proved in Section 4.2.5.4.

� Exercise 4.2.8 Prove that any closed proper subgroup � of R is cyclic, that is,
� = {na}n∈Z for some a ∈ R.
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� Exercise 4.2.9 Given an initial direction, how many slopes are there for the
billiard flow in a square and in each of the two triangles, and what are they?

� Exercise 4.2.10 Suppose a horizontal light beam enters a circular room with
mirrored walls. Describe the possibilities for which areas of the room will be best lit.

� Exercise 4.2.11 Prove that a complete unfolding of a regular pentagon covers
every point of the plane infinitely many times.

� Exercise 4.2.12 Obtain the continuation of orbits in the billiard description of
the 2-particle system by interpreting double collisions as limits of a series of simple
collisions.

4.3 INVERTIBLE CIRCLE MAPS

The success in analyzing circle rotations is due in large part to the fact that
these come from linear dynamical systems, namely, from rotations of the plane
(Section 3.1). This causes the great homogeneity of the orbit structure that gives
uniform density of orbits and uniform distribution. However, another ingredient,
perhaps less apparent, is the simple structure of the circle itself. Analogously to
the study of interval homeomorphisms (Section 2.3.1) this makes it possible to
give a fairly satisfactory analysis of the orbit structure of any invertible map of
the circle. One-dimensionality of the circle provides two (related) features that
make a fairly detailed analysis possible: the (cyclic) ordering of its points and the
Intermediate-Value Theorem. These have the effect of tying together different
orbits tightly enough to make the possible orbit structures relatively easy to
describe. The importance of the order structure will become particularly apparent
in Proposition 4.3.11 and Proposition 4.3.15.

For noninvertible maps of an interval or of the circle the order of points may not
be preserved and hence use of this first property fails, while the Intermediate-Value
Theorem can still be used so long as we have continuity. Accordingly, the structural
features are much more complicated while still amenable to rather extensive
analysis. Chapter 11 outlines this for some interval maps.

One principle that will manifest itself in various guises throughout this section is
that while, unlike the situation with rotations, the orbit structure of invertible circle
maps is not always entirely homogeneous, the asymptotic behavior is in various
different ways about as homogeneous, or at least coherent, as the entire orbit
structure of a rotation and, in fact, ultimately turns out to look much like a rotation.

In this section a fundamental dichotomy is central: A circle homeomorphism
(Definition A.1.16) may or may not have periodic points. Every orbit has the same
type of asymptotic behavior, and it corresponds in a precise sense to the behavior
of an orbit of a rational or an irrational rotation, respectively. The tool that leads to
this conclusion is a parameter that reflects asymptotic rotation rates and is rational
or not according to whether there are periodic points.

4.3.1 Lift and Degree

Recall the relation between the circle S1 = R/Z and the line R (see Section 2.6.2).
There is a projection π : R → S1, x !→ [x], where [x] is the equivalence class of x in
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Figure 4.3.1. A lift and degree.

R/Z as in Section 2.6.2. Here [·] denotes an equivalence class, whereas the integer
part of a number is written �·	. We use {·} for the fractional part.

Proposition 4.3.1 If f : S1 → S1 is continuous, then there exists a continuous
F : R → R, called a lift of f to R, such that

f ◦ π = π ◦ F,(4.3.1)

that is, f ([z]) = [F (z)]. Such a lift is unique up to an additive integer constant, and
deg( f ) := F (x + 1) − F (x) is an integer independent of x ∈ R and the lift F . It is
called the degree of f . If f is a homeomorphism, then | deg( f )| = 1.

Proof Existence: Pick a point p ∈ S1. Then p = [x0] for some x0 ∈ R and f ( p) = [y0]
for some y0 ∈ R. From these choices of x0 and y0 define F : R → R by requiring that
F (x0) = y0, F is continuous, and f ([z]) = [F (z)] for all z ∈ R. One can construct
such an F by varying the initial point p continuously, which causes f ( p) to vary
continuously. Then there is no ambiguity of how to vary x and y continuously, and
thus F (x) = y defines a continuous map.3

Uniqueness: Suppose F̃ is another lift. Then [F̃ (x)] = f ([x]) = [F (x)] for all x,
meaning F̃ − F is always an integer. Because it is continuous it must be constant.

Degree: F (x + 1) − F (x) is an integer (now evidently independent of the
choice of lift) because [F (x + 1)] = f ([x + 1]) = f ([x]) = [F (x)]. By continuity,
F (x + 1) − F (x) =: deg( f ) must be a constant.

Invertibility: If deg( f ) = 0, then F (x + 1) = F (x) and thus F is not monotone.
Then f is noninvertible because it cannot be monotone. If | deg( f )| > 1, then
|F (x + 1) − F (x)| > 1 and, by the Intermediate-Value Theorem, there exists a

3 To elaborate, take δ > 0 such that d([x], [x′]) ≤ δ implies d( f ([x]), f ([x′])) < 1/2. Then define F on
[x0 − δ, x0 + δ] as follows: If |x − x0| ≤ δ, then d( f ([x]), q) < 1/2 and there is a unique y ∈ (y0 −
1/2, y0 + 1/2) such that [y] = f ([x]). Define F (x) = y. Analogous steps extend the domain by another
δ at a time, until F is defined on an interval of unit length. Then f ([z]) = [F (z)] defines F on R.
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y ∈ (x, x + 1) with |F (y) − F (x)| = 1. Then f ([y]) = f ([x]) and [y] �= [x], so f is
noninvertible. �

Definition 4.3.2 Suppose f is invertible. If deg( f ) = 1, then we say that f is
orientation-preserving; if deg( f ) = −1, then f is said to reverse orientation.

Remark 4.3.3 The function F (x) − x deg( f ) is periodic because

F (x + 1) − (x + 1) deg( f ) = F (x) + deg( f ) − (x + 1) deg( f ) = F (x) + x deg( f )

for all x. In particular, if f is an orientation-preserving homeomorphism, then
F (x) − x is periodic and so F − Id is bounded. A slightly stronger observation will
come in handy soon.

Lemma 4.3.4 If f is an orientation-preserving circle homeomorphism and F a lift,
then F (y) − y ≤ F (x) − x + 1 for all x, y ∈ R.

Proof Let k = �y − x	. Then

F (y) − y = F (y) + F (x + k) − F (x + k) + (x + k) − (x + k) − y(4.3.2)

= (F (x + k) − (x + k)) + (F (y) − F (x + k)) − (y − (x + k)).

Now F (x + k) − (x + k) = F (x) − x and 0 ≤ y − (x + k) < 1 by choice of k, so F (y) −
F (x + k) ≤ 1. Thus the right-hand side above is at most F (x) − x + 1 − 0. �

4.3.2 Rotation Number

The presence or absence of periodic points is determined by a single parameter
called the rotation number. It also tells us which rotation to compare a circle
homeomorphism to.

Proposition 4.3.5 Let f : S1 → S1 be an orientation-preserving homeomorphism
and F : R → R a lift of f . Then

ρ(F ) := lim
|n|→∞

1
n

(F n(x) − x)(4.3.3)

exists for all x ∈ R. ρ(F ) is independent of x and well defined up to an integer; that
is, if F̃ is another lift of f , then ρ(F ) − ρ(F̃ ) = F − F̃ ∈ Z. ρ(F ) is rational if and
only if f has a periodic point.

The fact that the rotation number is independent of the point is the first
manifestation of the coherent asymptotic behavior of orbits that we will come to
expect. This proposition justifies the following terminology:

Definition 4.3.6 ρ( f ) := [ρ(F )] is called the rotation number of f .
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Figure 4.3.2. Subadditivity.

A sequence (an)n∈N with an+m ≤ an + am is said to be subadditive. Existence of
the rotation number is due to a similar property of the right-hand side of (4.3.3).

Lemma 4.3.7 If a sequence (an)n ∈N satisfies am+n ≤ an + am+k + L for all m, n ∈ N

and some k and L, then limn→∞ an/n ∈ R ∪ {−∞} exists.

Proof am+k ≤ am + a2k + L gives am+n ≤ am + an + a2k + 2L = am + an + L ′, so we
may take k = 0. Let a := lim n→∞an/n ∈ R ∪ {−∞}.

If a < b < c and n > 2L/(c − b) such that an/n < b, then for any l ≥ n that
satisfies l(c − b) > 2 maxr<n ar we can write l = nk + r with r < n. This implies
al/l ≤ (kan + ar + kL)/l ≤ an/n + ar/l + (L/n) < c, so lim l→∞al/l ≤ c. Since c > a
was arbitrary, this proves the lemma. �

Proof of Proposition 4.3.5 Independence of x: Remark 4.3.3 gives F (x + 1) = F (x) + 1.
If |x − y| < 1, then |F (y) − F (x)| < 1 and∣∣∣∣1

n
|F n(x) − x| − 1

n
|F n(y) − y|

∣∣∣∣ ≤ 1
n

(|F n(x) − F n(y)| + |x − y|) ≤ 2
n

.

Thus the rotation numbers of x and y coincide, if one of them exists.
Existence: Take x ∈ R and an := F n(x) − x. Then

am+n = F m+n(x) − x = F m(F n(x)) − F n(x) + an ≤ am + 1 + an

by Lemma 4.3.4 applied to f m and F m. Thus Lemma 4.3.7 shows that an/n
converges, but possibly, to −∞. However,

an

n
= 1

n

n−1∑
i=0

(F i+1(x) − F i(x)) = 1
n

n−1∑
i=0

(F (xi) − xi) ≥ min F (y) − y,

so the limit is a real number ρ(F ).
Also, ρ(F + m) = lim|n|→∞(1/n)(F n(x) + nm− x) = ρ(F ) + m for m ∈ Z, that is,

ρ(F ) is well defined (mod 1).
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Periodic points: If f has a q-periodic point, then F q(x) = x + p for a lift x of it
and some p ∈ Z. If m ∈ N, then

F mq(x) − x
mq

= 1
mq

m−1∑
i=0

F q(F iq(x)) − F iq(x) = mp
mq

= p
q

;

so ρ(F ) = p/q.
Conversely, for any lift F the definition of rotation number yields

ρ(F m) = lim
n→∞

1
n

((F m)n(x) − x) = m lim
n→∞

1
mn

(F mn(x) − x) = mρ(F );

so if ρ( f ) = p/q ∈ Q, then ρ( f q) = 0 since the rotation number is defined up to an
integer. Therefore we need only show:

Claim If ρ( f ) = 0, then f has a fixed point.

Suppose f has no fixed point and let F be a lift such that F (0) ∈ [0, 1). Then
F (x) − x /∈ Z for all x ∈ Rsince F (x) − x ∈ Zwould imply that [x] is a fixed point for f .
Therefore, 0 < F (x) − x < 1 for all x ∈ R. Since F − Id is continuous and periodic,
it attains its minimum and maximum and therefore there exists a δ > 0 such
that

0 < δ ≤ F (x) − x ≤ 1 − δ < 1

for all x ∈ R. In particular, we can take x = F i(0) and use F n(0) = F n(0) − 0 =∑n−1
i=0 F i+1(0) − F i(0) to get

nδ ≤ F n(0) ≤ (1 − δ)n

or

δ ≤ F n(0)
n

≤ 1 − δ.

As n → ∞, this gives ρ(F ) �= 0, which proves the claim by contraposition. �

All periodic orbits, if any, have the same period:

Proposition 4.3.8 Let f : S1 → S1 be an orientation-preserving homeomorphism.
Then all periodic orbits have the same period.

In fact, if ρ( f ) = [ p/q] with p, q ∈ Z relatively prime, then the lift F of f , with
ρ(F ) = p/q satisfies F q(x) = x + p whenever [x] is a periodic point, that is, the set of
periodic points of f lifts to the set of fixed points of F q − Id −p.

Proof If [x] is a periodic point, then F r (x) = x + s for some r, s ∈ Z and
p
q

= ρ(F ) = lim
n→∞

F n (x) − x
nr

= lim
n→∞

ns
nr

= s
r
.

This means that s = mp and r = mq and that therefore F mq(x) = x + mp.

Claim F q(x) = x + p.

If F q(x) − p > x, then monotonicity of F implies

F 2q(x) − 2 p = F q(F q(x) − p) − p ≥ F q(x) − p > x

and inductively F mq(x) − mp > x, which is impossible. Likewise, F q(x) − p < x is
impossible because it implies F mq(x) − mp < x. This proves the claim. �
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4.3.3 Conjugacy Invariance

The notion of topological conjugacy is central to many aspects of dynamics and
will be introduced later (Definition 7.3.3). The rotation number provides the
first nontrivial example of a conjugacy invariant, due to the following result:

Proposition 4.3.9 If f, h : S1 → S1 are orientation-preserving homeomor-
phisms, then ρ(h−1 f h) = ρ( f ).

Proof Let F and H be lifts of f and h, respectively, that is, π F = f π and
π H = hπ . Then π H−1 = h−1hπ H−1 = h−1π H H−1 = h−1π , so H−1 is a lift of
h−1. Also, H−1 F H is a lift of h−1 f h since π H−1 F H = h−1π F H = h−1 f π H =
h−1 f hπ .

Suppose H is such that H(0) ∈ [0, 1). We need to estimate

|H−1 Fn H(x) − Fn(x)| = |(H−1 F H)n(x) − Fn(x)|.
(1) For x ∈ [0, 1) we have 0 − 1 < H(x) − x < H(x) < H(1) < 2, and by

periodicity |H(x) − x| < 2 for x ∈ R. Similarly, |H−1(x) − x| < 2 for
x ∈ R.

(2) If |y − x| < 2, then |Fn(y) − Fn(x)| < 3 since |[y] − [x]| ≤ 2 and thus

−3 ≤ [y] − [x] − 1 = Fn([y]) − Fn([x] + 1) < Fn(y) − Fn(x)

< Fn([y] + 1) − Fn([x]) = [y] + 1 − [x] ≤ 3.

Those two estimates yield

|H−1 Fn H(x) − Fn(x)| ≤ |H−1 Fn H(x) − Fn H(x)| + |Fn H(x) − Fn(x)| < 2 + 3,

so |(H−1 F H)n(x) − Fn(x)|/n < 5/n and ρ(H−1 F H) = ρ(F) by (4.3.3). �

The behavior of the rotation number under orientation-reversing conjugacies
is the subject of Exercise 4.3.6.

4.3.4 Circle Homeomorphisms with Periodic Points

The orbit structure of a circle homeomorphism can be described in a fairly
complete fashion. We first do this for the case with periodic points.

The first level of description is that each periodic orbit is ordered in the same
way as those of the corresponding rotation. This means that the periodic orbits
of an orientation-preserving circle homeomorphism behave like those of the
circle rotation with the same rotation number. So not only is there an internal
coherence of the various periodic orbits as described by Proposition 4.3.8, but
they also are qualitatively compatible with those of a rotation. This was, in fact,
presaged by the proof of Proposition 4.3.8.

Before proving this, the “ordering” of an orbit has to be defined. It is the
sequence in which one encounters the points of the orbit when moving from its
initial point in the positive direction. Formally, one can define this using lifts:

Definition 4.3.10 Given x0, . . . , xn−1 ∈ S1, take x̃0, . . . , x̃n−1 ∈ [x̃0, x̃0 + 1) ⊂ R

such that [x̃i ] = xi . Then the ordering of (x0, . . . , xn−1) on S1 is the permutation
σ of {1, . . . , n − 1} such that x̃0 < x̃σ (1) < · · · < x̃σ (n−1) < x̃0 + 1.
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As a warmup, we find the ordering σ of π ({0, p/q, 2p/q, . . . , (q − 1)p/q})
on S1, to which we later compare that of a periodic orbit. Define k ∈ N by
0 < k < q and kp ≡ 1(mod q). Then k minimizes the fractional part {ip/q} for
0 < i < q and hence k = σ (1). Inductively, ki ≡ σ (i) (mod q). This defines the
ordering σ of

π

({
0,

p
q

,
2p
q

, . . . ,
(q − 1)p

q

})
.

Therefore, we want to prove:

Proposition 4.3.11 Let f : S1 → S1 be an orientation-preserving homeomor-
phism. Suppose p and q are relatively prime and there is an x ∈ S1 such that
f q(x) = x. Then the ordering of {x, f (x), f 2(x), . . . , f q−1(x)} on S1 is given by
σ (i) = ki (mod q), where kp ≡ 1 (mod q).

Proof Fix x̃ ∈ π−1([x]) and a lift F of f such that Fq(x̃) = x̃ + p (Proposi-
tion 4.3.8). Then [x̃, x̃ + p] is partitioned (up to common endpoints) into p · q
subintervals by A := π−1({x, f (x), f 2(x), . . . , f q−1(x)}), and into q subintervals
Ii = [Fi (x̃), Fi+1(x̃)], i = 0 . . . q − 1. Since F is a bijection between any Ii

and Ii+1 and preserves A, each Ii contains p + 1 points of A. Take k, r ∈ Z

such that the right neighbor of x̃ in A is x̃1 = Fk(x̃) − r. Since F = Fk − r is
increasing on R and preserves A, the facts that x̃1 = F(x̃) is the nearest right
neighbor of x̃ in A and that [x̃, F(x̃)] is divided into p subintervals by A show
that F p(x̃) = F(x̃) and hence f kp(x) = f (x). Therefore k is the unique integer
between 0 and q − 1 such that kp ≡ 1 (mod q), and the ordering of the orbit
{x, f (x), f 2(x), . . . , f q−1(x)} is given by ki ≡ σ (i) (mod q). �

The next proposition says that for circle homeomorphisms with rational
rotation number all nonperiodic orbits are asymptotic to periodic orbits. This
yields a complete classification of possible orbits with rational rotation numbers.

Proposition 4.3.12 Let f : S1 → S1 be an orientation-preserving homeomor-
phism with rational rotation number ρ( f ) = p/q ∈ Q. Then there are two
possible types of nonperiodic orbits for f :

(1) If f has exactly one periodic orbit, then every other point is heteroclinic
under f q to two points on the periodic orbit (Definition 2.3.4). These
points are different if the period is greater than one. (If the period
is one, then all orbits are homoclinic to the fixed point, as shown in
Figure 4.3.3.)

(2) If f has more than one periodic orbit, then each nonperiodic point is
heteroclinic under f q to two points on different periodic orbits.

Proof We can identify f q with a homeomorphism of an interval by taking a
lift z of a fixed point of f q and restricting a lift Fq(·) − p of f to [z, z + 1].
Then the statement follows from Proposition 2.3.5 applied to this interval
map, except for the last part of (2), that the two periodic orbits in question



book 0521583047 April 21, 2003 16:55 Char Count= 0

130 4. Recurrence and Equidistribution on the Circle

x FFf 10
Figure 4.3.3. A semistable point.

are different. But if there is an interval I = [a, b] ⊂ R such that a and b are
adjacent zeros of Fq − Id −p and a, b project to the same periodic orbit, then
f has only one periodic orbit because, if [a] = x ∈ S1, [b] = f k(x) ∈ S1, then⋃q−1

n=0 f nk(π ((a, b))) covers the complement of { f n(x)}q−1
n=0 in S1 and contains no

periodic points. By invariance, f nk(π ((a, b))) does not either. �

Remark 4.3.13 This means that the asymptotic behavior is highly coherent for
all orbits, not only periodic ones, and also coherent with the structure of the
corresponding rotation.

As a particular case, if there is only one periodic orbit, then it is semistable.
It “repels on one side and attracts on the other”, as, for example, the point x = 0
under the diffeomorphism f : S1 → S1 induced by the map

x !→ x + 1
4

sin2 πx (mod 1).

Nonperiodic points are not just individually asymptotic to periodic points,
but this behavior is coherent for iterates of points under f ; so for a nonperiodic
point x the points x, f (x), . . . , f q−1(x) are all forward asymptotic to the corre-
sponding iterate y, f (y), . . . , f q−1(y) of a periodic point, and they are moving
in the same direction. This follows immediately from monotonicity (compare
Lemma 2.3.2):

Lemma 4.3.14 If I ⊂ R is an interval whose endpoints are adjacent zeros of
Fq − Id −p, then Fq − Id −p has the same sign on the interiors of I and F(I).

Proof If Fq − Id −p > 0 on I, then Fq(x) > x + p for all x ∈ I, and monotonic-
ity of F implies Fq(F(x)) = F(Fq(x)) > F(x + p) = F(x) + p for all x ∈ I.
Therefore Fq − Id −p > 0 on F(I).

The case of Fq − Id − p < 0. is similar. �

Thus for a circle homeomorphism with a periodic point all orbits are
asymptotically periodic with the same period and in a coherent way.
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4.3.5 Circle Homeomorphisms Without Periodic Points

We show, analogously to Proposition 4.3.11, that the orbits of a circle home-
omorphism without periodic points are ordered as those for the corresponding
rotation.

Proposition 4.3.15 Let F : R → R be a lift of an orientation-preserving home-
omorphism f : S1 → S1 with ρ := ρ(F) /∈ Q. Then, for n1, n2, m1, m2 ∈ Z and
x ∈ R,

n1ρ + m1 < n2ρ + m2 if and only if Fn1 (x) + m1 < Fn2 (x) + m2.

The left of these inequalities is the special case of the one on the right when
F is the rotation by ρ.
Proof We do not have equality on the right for any x because this would
imply Fn1 (x) − Fn2 (x) ∈ Z, and hence that [x] is periodic. Thus, for given
n1, n2, m1, m2 ∈ Z, the continuous expression Fn1 (x) + m1 − Fn2 (x) − m2 never
changes sign and the second inequality is independent of x.

Now assume Fn1 (x) + m1 < Fn2 (x) + m2 for all x. Substituting y := Fn2 (x)
shows that this is equivalent to

Fn1−n2 (y) − y < m2 − m1 for all y ∈ R.

In particular, for y = 0 we get Fn1−n2 (0) < m2 − m1, and y = Fn1−n2 (0) gives
F2(n1−n2)(0) < (m2 − m1) + Fn1−n2 (0) < 2(m2 − m1).

Inductively, Fn(n1−n2)(0) < n(m2 − m1) and

ρ = lim
n→∞

Fn(n1−n2)(0)
n(n1 − n2)

< lim
n→∞

n(m2 − m1)
n(n1 − n2)

= m2 − m1

n1 − n2

(with strict inequality since ρ /∈ Q). Consequently, n1ρ + m1 < n2ρ + m2. This
proves “if”. Reversing all inequalities proves the converse. �

The preceding proposition bears some resemblance to the earlier result
that periodic orbits are ordered like those for the corresponding rotation. It is
stronger because it applies to every orbit, rather than a naturally distinguished
subset.

This helps us in our study of the asymptotic behavior of orbits for
homeomorphisms without periodic points.

Lemma 4.3.16 Let f : S1 → S1 be an orientation-preserving homeomorphism
without periodic points, m, n ∈ Z, m �= n, x ∈ S1, and I ⊂ S1 a closed interval
with endpoints f m(x) and f n(x). Then every semiorbit meets I.

Remark 4.3.17 For x �= y ∈ S1 there are exactly two intervals in S1 with
endpoints x and y. The lemma holds for either choice. Since x is not periodic,
I is not a point.

Proof Consider positive semiorbits ( f n(y))n∈N. The proof for negative semiorbits
is exactly the same. To prove the lemma it suffices to show that the backward
iterates of I cover S1, that is, S1 ⊂ ⋃

k∈N
f −k(I).
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Let Ik := f −k(n−m)(I) and note that these are all contiguous: If k ∈ N, then
Ik and Ik−1 have a common endpoint. Consequently, if S1 �= ⋃

k∈N
Ik, then the

sequence of endpoints converges to some z ∈ S1. But then

z = lim
k→∞

f −k(n−m)( f m(x)) = lim
k→∞

f (−k+1)(n−m)( f m(x))

= lim
k→∞

f (n−m)( f −k(n−m)( f m(x))
) = f (n−m)( lim

k→∞
f −k(n−m)( f m(x))

)
= f (n−m)(z)

is periodic, contrary to the assumption. �

If there are periodic points, they provide all the accumulation points of orbits.
Now we see what set plays this role when the rotation number is irrational.

Definition 4.3.18 The set ω(x) := ⋂
n∈N

{ f i (x) i ≥ n} of accumulation points
of the positive semiorbit of x is called the ω-limit set of x.

If there are periodic points, all ω-limit sets are periodic orbits. If there are
no periodic points, the ω-limit sets for different orbits still look the same; in
fact, they are the same.

Proposition 4.3.19 Let f : S1 → S1 be an orientation-preserving homeomor-
phism of S1 without periodic points. Then ω(x) is independent of x and
E := ω(x) is perfect and either S1 or nowhere dense (see Definition A.1.5).

By Proposition A.1.7, perfect nowhere dense sets are Cantor sets, that is,
they are homeomorphic to the standard middle-third Cantor set. Therefore, this
result produces Cantor sets directly from the dynamics of a circle map – at least
when we give an example where this is the possibility that is actually realized.

Proof Independence of x: We need to show that ω(x) = ω(y) for x, y ∈ S1. Let
z ∈ ω(x). Then there is a sequence ln in N such that f ln(x) → z. If y ∈ S1, then
by Lemma 4.3.16 there exist km ∈ N such that f km (y) ∈ Im := [ f lm (x), f lm+1 (x)].
But then limm→∞ f km (y) = z and thus z ∈ ω(y).

Therefore ω(x) ⊂ ω(y) for all x, y ∈ S1 and by symmetry ω(x) = ω(y) for all
x, y ∈ S1.

E := ω(x) is either S1 or nowhere dense: Let us first show that E is the smallest
closed nonempty f -invariant set. If ∅ �= A ⊂ S1 is closed and f -invariant and
x ∈ A, then { f k(x)}k∈Z ⊂ A since A is invariant and E = ω(x) ⊂ { f k(x)}k∈Z ⊂ A
since A is closed. Thus any closed invariant set A is either empty or contains E.
In particular, ∅ and E are the only closed invariant subsets of E itself. Since
E is closed, it contains its boundary, which is itself a closed set (Exercise 2.6.6).
The boundary is also invariant because a boundary point is a point for any
neighborhood U of which we have U ∩ E �= ∅ and U \ E �= ∅, a property that
persists when we apply a homeomorphism. Therefore the boundary ∂ E of E is a
closed invariant subset of E and as such we must have either ∂ E = ∅ and hence
E = S1, or else ∂ E = E, which implies that E is nowhere dense (Exercise 2.6.6).
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It remains to show that E is perfect. Let x ∈ E. Since E = ω(x), there is a
sequence kn such that limn→∞ f kn(x) = x. Since there are no periodic orbits,
f kn(x) �= x for all n. Consequently, x is an accumulation point of E since
f kn(x) ∈ E for all n by invariance. �

4.3.6 Comparison and Classification

Both in Proposition 4.3.12 and in Proposition 4.3.19 there is a set of distin-
guished orbits (either periodic or in E) to which all others are asymptotic.
This distinguished set corresponds most closely to the rotation with the same
rotation number (for irrational rotation number this becomes clear with
Theorem 4.3.20). Thus if there are periodic points, there is a remnant of the
rotation that may be as small as a single periodic orbit or a finite set of them;
otherwise, the corresponding remnant is at least a Cantor set. It is in this dis-
tinction that Proposition 4.3.19 shows that the orbit structure of maps without
periodic points is quite different from that of maps with periodic points. If there
are periodic points, all orbits are either periodic or asymptotic to a periodic
orbit; otherwise, either all orbits are dense or all orbits are asymptotic to or in a
Cantor set. Moreover, a further difference appears when we compare the orbit
structure of a circle map with that of a rotation with the same rotation number.
The vast majority of circle maps with periodic points possess nonperiodic
orbits – Proposition 4.4.10 and Lemma 4.4.12 show that having nonperiodic
orbits occurs over entire parameter intervals in a family of maps, whereas
having all orbits periodic happens only for an instant. (Furthermore, similar
arguments show that even having infinitely many periodic points is unstable,
and hence rare.) Thus, the presence of nonperiodic orbits, which is a qualitative
difference to a rational rotation, is the most common behavior for maps with
rational rotation number.

For irrational rotation number the picture is different. The greatest qual-
itative similarity to an irrational rotation occurs when E = S1 in Proposi-
tion 4.3.19. In this case all orbits are dense (ω(x) = S1 for all x ∈ S1), which
is the same situation as for an irrational rotation. Unlike in the case of ratio-
nal rotation number, there is no indication that the alternative situation (E
is a Cantor set) occurs more frequently (in fact, it never happens at all for C2

maps). Indeed, a map with irrational rotation number ρ is either equivalent to or
“contains” Rρ, up to some distortion, according to whether its orbits are dense:

Theorem 4.3.20 (Poincaré Classification Theorem) Let f : S1 → S1 be an
orientation-preserving homeomorphism with irrational rotation number ρ.
Then there is a continuous monotone map h : S1 → S1 with h ◦ f = Rρ ◦ h.

(1) If f is transitive, then h is a homeomorphism.
(2) If f is not transitive, then h is noninvertible.

The map h here plays the role of the changes of variable or conjugacies that
we encountered in Section 1.2.9.3 and Section 3.1.3, except that it may not be
invertible. Section 4.3.3 rules out the nontransitive case for smooth f .
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Proof We first construct the lift of h only on the lift of a single orbit and show
that it is monotone. We then extend it to the closure of that lift and, using mono-
tonicity, “fill in” any gaps that may be left. Finally we define h as the projection.

Pick a lift F : R → R of f and x ∈ R. Let B := {Fn(x) + m}n,m∈Z be the
total lift of the orbit of [x]. Define H : B → R, Fn(x) + m !→ nρ + m, where
ρ := ρ(F). By Proposition 4.3.15, this map is monotone, and H(B) is dense in R

by Proposition 4.1.1. If we write R̃ρ : R → R, x !→ x + ρ, then H ◦ F = R̃ρ ◦ H
on B because

H ◦ F(Fn(x) + m) = H(Fn+1(x) + m) = (n + 1)ρ + m

and

R̃ρ ◦ H(Fn(x) + m) = R̃ρ(nρ + m) = (n + 1)ρ + m.

Lemma 4.3.21 H has a continuous extension to the closure B of B.

Proof If y ∈ B, then there is a sequence (xn)n∈N in B such that y = limn→∞ xn.
To show that H(y) := limn→∞ H(xn) exists and is independent of the choice of
a sequence approximating y, observe first that the left and right limits exist and
are independent of the sequence since H is monotone. If the left and right limits
disagree, then R � H(B) contains an interval, which contradicts the density of
H(B). �

H can now easily be extended to R: Since H : B → R is monotone and
surjective [because H is monotone and continuous on B, B is closed, and H(B)
is dense in R] there is no choice in defining H on the intervals complementary to
B: Set H = const. on those intervals, choosing the constant equal to the values
at the endpoints. This gives a map H : R → R such that H ◦ F = R̃ρ ◦ H and
thus the desired map h : S1 → S1 since for z ∈ B we have

H(z + 1) = H(Fn(x) + m + 1) = nρ + m + 1 = H(z) + 1,

and this property persists under continuous extension.
To decide invertibility note that in the transitive case we start from a dense

orbit and so B = R and h is a bijection. In the nontransitive case, H is constant
on the intervals complementary to the orbit closure that we used. �

Remark 4.3.22 In the transitive case of Theorem 4.3.20, when h is invertible
we say that h conjugates f to Rρ; in the case of noninvertible h we say that Rρ is
a factor of f via h. These notions are explored in Chapter 7 (Definition 7.3.3).

� EXERCISES

� Exercise 4.3.1 For which values of a does the function F (x) = 2x + a define the
lift of a circle map?

� Exercise 4.3.2 Referring to (4.1.1), prove that ρ(Rα) = [α].

� Exercise 4.3.3 Consider F (x) := x + (1/2) sin x. Decide whether F is the lift of a
circle homeomorphism.



book 0521583047 April 21, 2003 16:55 Char Count= 0

4.4 Cantor Phenomena 135

� Exercise 4.3.4 Consider F (x) := x + (1/4π) sin 2πx. Decide whether F is the lift
of a circle homeomorphism, and, if so, decide whether that homeomorphism is
orientation-preserving. If it is, determine the rotation number.

� Exercise 4.3.5 Let f : S1 → S1 be a monotone (but not necessarily invertible)
map of degree one, that is, its lift is a monotone function F : R → R such that
F (x + 1) = F (x) + 1. Prove that the assertions of Proposition 4.3.5, Proposition 4.3.8
and Proposition 4.3.9 hold for f .

� Exercise 4.3.6 Referring to Proposition 4.3.9, what happens with the rotation
number under an orientation-reversing conjugacy?

� Exercise 4.3.7 Let f : S1 → S1 be a continuous map of degree one (not
necessarily monotone) and F : R → R its lift. Prove that

ρ+(F ) := lim
n→∞ max

x∈S1

F n(x) − x
n

and ρ−(F ) := lim
n→∞ min

x∈S1

F n(x) − x
n

both exist.

� PROBLEMS FOR FURTHER STUDY

� Problem 4.3.8 Under the assumptions of the previous exercise call

R(F ) :=
{
ρ ∈ R ∃ x ∈ R lim

n→∞
F n(x) − x

n
= ρ

}
the rotation set of F . Prove that R(F ) �= ∅.

� Problem 4.3.9 Prove that a circle homeomorphism with finitely many fixed
points and an attracting fixed point has a repelling fixed point.

Show that there exists a circle homeomorphism with an attracting fixed point
and without repelling fixed points.

4.4 CANTOR PHENOMENA

In Proposition 4.3.19, a Cantor set appears naturally for some circle homeomor-
phisms without periodic points. There are several other ways in which Cantor sets
and related structures appear in this context. The conjugacy above is a case in point
in the nontransitive case. The dependence of the rotation number on a parameter
is an example with interesting physical implications.

4.4.1 Devil’s Staircases

In the nontransitive case the map h in Theorem 4.3.20 is necessarily an example of
the following interesting phenomenon:

Definition 4.4.1 A monotone continuous function φ : [0, 1] → R (or φ : [0, 1] → S1)
is called a devil’s staircase if there exists a family {Iα}α∈A of disjoint closed subinter-
vals of [0,1] of nonzero length with dense union such that φ takes distinct constant
values on these subintervals. (See Figure 4.4.1.)
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Figure 4.4.1. Devil’s staircasse.

Example 4.4.2 A devil’s staircase can be constructed in a fairly explicit way.
For x = 0.α1α2α3 · · · = ∑∞

i=1 αi3−i (αi �= 1) in the ternary Cantor set C define
f (x) := ∑∞

i=1 αi2−i−1 ∈ [0, 1] as in Lemma 2.7.3. In Section 2.7.1 we found that f is
surjective and nondecreasing, and that the two endpoints of a deleted interval are
mapped to the same point. It is not hard to see that f is continuous (this is used in
Problem 2.7.6). We can extend f to a nondecreasing continuous map on [0, 1] by
defining it to be constant on each deleted interval, the constant being the common
value of f at the endpoints. This is then a devil’s staircase, also called a Cantor
function.

The graph of this function has some self-similarity: The transformation given
by (1/3 0

0 1/2
) in the plane maps the graph to a proper subset of itself because

f (x) = f (3x)/2 on [0, 1/3].
The terminology “devil’s staircase” refers to the odd situation that the graph of

this function consists entirely of “steps”, namely, the horizontal portions over the
deleted intervals, yet there are no jumps at all; the function is continuous. Thus the
tops of the steps are there, but not their “faces”. In analysis this provides a quaint
example with several odd properties, but we have now seen that in dynamics such
functions come up rather naturally.

Let us revisit the construction of the map h above in order to understand
the nontransitive case better. Since the set B from the proof of Theorem 4.3.20
projects to the closure of the orbit of [x], it contains the ω-limit set E = ω([x])
of [x], and, by choosing x ∈ π−1(E), we obtain π (B) = E, where E is the
universal ω-limit set discussed previously. In the transitive case B = R and
E = S1, but in the nontransitive case we find that if x ∈ π−1(E), then π (B) = E
is a Cantor set. Consequently, in the nontransitive case h is a bijection of the
identification space E/∼ (identifying the two endpoints of each complementary
interval) to S1 and conjugates f �E/∼ to Rρ( f ). All orbits of f in E are dense in
E (by the definition of E). On the other hand, the construction of E = ω(x)
yields that all points outside E are attracted to E in both positive and negative
time because iterates of such a point have to stay inside disjoint complementary
intervals of E and the length of these goes to zero.
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4.4.2 Wandering Domains

Conversely, one can think of the nontransitive map as being obtained from
an irrational rotation by “blowing up” some orbits to intervals whose union
then makes up the complement of E. These complementary intervals are thus
permuted like the points on an orbit for an irrational rotation. All interior
points in those intervals are “wandering” in the sense below since they stay
within those intervals whose images are all disjoint. The next subsection has an
explicit construction of such an example.

Definition 4.4.3 A point is said to be wandering if it has a neighborhood all of
whose images and preimages are pairwise disjoint.

This behavior is the extreme opposite of recurrence, which we introduce in
Definition 6.1.8.

To return to our comparison with the case of rational rotation number we
note that in that case a map f is only conjugate to a rotation if all orbits are
periodic with the same period and hence f q = Id for some q ∈ Z. Furthermore,
a rational rotation can only be a factor when there are infinitely many periodic
points, which, as we noted earlier, is unstable.

4.4.3 The Denjoy Example

We now give an example of a nontransitive circle diffeomorphism without
periodic points. The construction starts with an irrational rotation and replaces
the points of one orbit by suitably chosen intervals. The resulting map is not
transitive. This example due to Arnaud Denjoy proves:

Proposition 4.4.4 For ρ ∈ R � Q there is a nontransitive C1 diffeomorphism
f : S1 → S1 with ρ( f ) = ρ.

Proof If ln := (|n| + 3)−2 and cn := 2 ((ln+1/ ln) − 1) ≥ −1, then∑
n∈Z

ln < 2
∞∑

n=0

ln = 2
∞∑

n=3

1
n2

< 2
∫ ∞

2

1
x2

dx = 1.

To “blow up” the orbit xn = Rn
ρx of the irrational rotation Rρ to intervals In of

length ln, insert the intervals In into S1 so that they are ordered in the same way
as the points xn and the space between any two such intervals Im and In is(

1 −
∑
n∈Z

ln

)
d (xm, xn) +

∑
xk∈(xm,xn)

lk .

(This is the sum of the lengths of the intervals Ik inserted in between and the length
of the arc of the circle between xm and xn, appropriately scaled to reflect the fact
that the total length of S1 �

⋃
n∈Z

In is 1 − ∑
n∈Z

ln.) To define a circle homeomor-
phism f such that f (In) = In+1 and f �S1�

⋃
n∈Z

In
is semiconjugate to a rotation it

suffices to specify the derivative f ′(x) since f is then obtained by integration.
On the interval [a, a + l] define the tent function

h(a, l, x) := 1 − 1
l
|2(x − a) − l|.
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Then h(a, l, a + l/2) = 1 and
∫ a+l

a h(a, l, x) dx = l/2. Denote the left endpoint
of In by an and let

f ′(x) =
{

1 for x ∈ S1 �
⋃

n∈Z
In,

1 + cnh(an, ln, x) for x ∈ In.

The choice cn = 2 ((ln+1/ ln) − 1) = 2 (ln+1 − ln) / ln implies∫
In

f ′(x) dx =
∫

In

(1 + cnh(an, ln, x)) dx = ln + ln

2
cn = ln+1,

so indeed f (In) = In+1. �

Close inspection of this proof reveals that the derivative of the function f
has to be somewhat distorted in order to contract intervals fast enough to fit into
the interstices of the universal Cantor set. A systematic careful analysis shows
that no sufficiently smooth circle homeomorphism exhibits this phenomenon.

A C2 diffeomorphism f : S1 → S1 with irrational rotation number
ρ( f ) ∈ R � Q is transitive and hence topologically conjugate to Rρ( f ).

In fact, slightly weaker regularity hypotheses suffice. The most natural weak-
ening is to assume merely that the derivative has bounded variation. A function
g : S1 → R is said to be of bounded variation if its total variation Var(g) :=
sup

∑n
k=1 |g(xk) − g(x′

k)| is finite. Here the sup is taken over all finite collections
{xk, x′

k}n
k=1 such that xk, x′

k are endpoints of an interval Ik and Ik ∩ Ij = ∅ for
k �= j. Every Lipschitz function and hence every continuously differentiable
function has bounded variation.

4.4.4 Dependence of the Rotation Number on a Parameter

Here we examine the dependence of the rotation number on the map as the map
is varied. To begin with, it is continuous and monotone.

Proposition 4.4.5 ρ(·) is continuous in the uniform topology.
Proof If ρ( f ) = ρ, take p′/q ′, p/q ∈ Q such that p′/q ′ < ρ < p/q. Pick the
lift F of f for which −1 < Fq(x) − x − p ≤ 0 for some x ∈ R. Then Fq(x) <

x + p for all x ∈ R, since otherwise Fq(x) = x + p for some x ∈ R by the
Intermediate-Value Theorem and ρ = p/q. Since the function Fq − Id is pe-
riodic and continuous, it attains its maximum. Thus there exists δ > 0 such that
Fq(x) < x + p − δ for all x ∈ R. This implies that every sufficiently small pertur-
bation F of F in the uniform topology also satisfies Fq(x) < x + p for all x ∈ R

and thus ρ(F) < p/q. A similar argument involving p′/q ′ completes the proof. �

The definition of the rotation number further suggests that it is monotone:
If F1 > F2, then ρ(F1) ≥ ρ(F2) follows from the definition. This leads to the
following concepts of ordering on the circle and for maps of the circle:

Definition 4.4.6 Define “<” on S1 by [x] < [y] :⇔ y − x ∈ (0, 1/2) (mod 1)
and define a partial ordering “≺” on the collection of orientation-preserving
circle homeomorphisms by f0 ≺ f1 :⇔ f0(x) < f1(x) for all x ∈ S1.

Notice that neither of these orderings is transitive. Indeed, [0] < [1/3] <

[2/3] < [0] and correspondingly R0 ≺ R1/3 ≺ R2/3 ≺ R0, where Rα is the
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rotation as in Section 4.1. The definition of rotation number now immediately
implies:

Proposition 4.4.7 ρ(·) is monotone: If f1 ≺ f2, then ρ( f1) ≤ ρ( f2).

Remark 4.4.8 In particular, if { ft} is a family of orientation-preserving circle
homeomorphisms such that ft(x) is increasing in t for every x ∈ R, then ρ( ft)
is nondecreasing in t.

At irrational values the rotation number is strictly increasing:

Proposition 4.4.9 If f0 ≺ f1 and ρ( f0) /∈ Q, then ρ( f0) < ρ( f1).

Proof If F0 and F1 are lifts with 0 < F1(x) − F0(x) < 1/2 for all x ∈ R,
then by continuity and periodicity F1(x) − F0(x) > δ for some δ > 0
and all x ∈ R. Take p/q ∈ Q such that p/q − δ/q < ρ(F0) < p/q.
Then there exists x0 ∈ R such that Fq

0 (x0) − x0 > p − δ [because otherwise
ρ(F0) = limn→∞(Fnq

0 (x) − x/nq) ≤ limn→∞(n(p − δ)/nq) = p/q − δ/q]. Since

Fq
1 (x0) = F1

(
Fq−1

1 (x0)
)

> F0
(
Fq−1

1 (x0)
) + δ

> F0
(
Fq−1

0 (x0)
) + δ = Fq

0 (x0) + δ > x0 + p,

we either have Fq
1 (x) > x + p for all x ∈ R or Fq

1 (x1) = x1 + p for some x1 ∈ R.
In either case ρ(F0) < p/q ≤ ρ(F1). �

While Proposition 4.4.9 shows that having irrational rotation number is not
stable, the situation is different for rational rotation number:

Proposition 4.4.10 Let f : S1 → S1 be an orientation-preserving homeomor-
phism with rational rotation number ρ( f ) = p/q and some nonperiodic points.
Then all sufficiently nearby perturbations f̄ with f̄ ≺ f or all sufficiently
nearby perturbations f̄ with f ≺ f̄ (or both) have rotation number p/q.

The basic issue is whether the graph of Fq − p has portions above and below
the diagonal, in which case small perturbations either way cannot get rid of
intersections with the diagonal (Figure 4.4.2). The borderline case, in which
the graph lies entirely on one side, is exactly the one where the bifurcation to
different dynamics occurs (see also Figure 2.3.2).

Proof Since f has nonperiodic points, Fq − Id −p does not vanish identically
for any lift F of f . (It does have zeros by assumption.) If there exists x ∈ R with

Figure 4.4.2. One-sided and two-sided stability.
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Fq(x) − x − p > 0, then for any sufficiently small perturbation f̄ ≺ f the
corresponding lift F of f̄ is such that Fq(x) − x − p > 0 and hence ρ( f̄ ) ≥
p/q; so ρ( f̄ ) = p/q by Proposition 4.4.7. Otherwise, the same holds for
perturbations with f ≺ f̄ . �

Remark 4.4.11 The proof shows that circle maps that have an attracting or
repelling periodic orbit (an orbit that lifts to a point where Fq − Id −p changes
sign) can be perturbed (in either direction) without changing the rotation
number.

On the other hand, if Fq − Id −p does not change sign, for example, Fq −
Id −p ≥ 0, then any perturbation f̄ with f ≺ f̄ has rotation number
ρ( f̄ ) > p/q since Fq − Id −p ≥ δ > 0. In this case the zeros of Fq − Id −p
project to “parabolic” or semistable periodic orbits. These are orbits p
that attract on one side and repel on the other side; that is, there is some
open neighborhood U of p such that for all x in one component of U � {p}
we have limn→∞ d( f n(x), f n(p)) = 0, and for all x in the other component
limn→−∞ d( f n(x), f n(p)) = 0 (see Figure 4.3.3).

Here is an extreme case.

Lemma 4.4.12 If all points of a map f : S1 → S1 are periodic, then the rotation
number is strictly increasing at f .

To see that the rotation number depends on f in a nonsmooth way we re-
formulate these conclusions: The rotation number as a function of a parameter
can (and usually will) be a devil’s staircase (see Definition 4.4.1).

Proposition 4.4.13 Suppose that ( ft)t∈[0,1] is a monotone continuous family
of orientation-preserving circle homeomorphisms such that ρ : t !→ ρ( ft) is
nonconstant and there exists a dense set S ⊂ Q such that, for each map ft,
either ρ( ft) �∈ S or ft has some nonperiodic points. Then ρ is a devil’s staircase.

Proof By Proposition 4.4.5, ρ is monotone and continuous. Together with Propo-
sition 4.4.10, this also implies that ρ−1(S) is a disjoint union of closed intervals
of positive length.

We need to show that ρ−1(S) is dense. Assume, by enlarging S if necessary,
that whenever ρ( ft) = p/q ∈ Q � S, ft has only periodic points. Then Propo-
sition 4.4.9 and Lemma 4.4.12 imply that ρ is strictly monotone at points t ∈
ρ−1([0, 1] � S). Thus for t ∈ [0, 1) � ρ−1(S) and ε > 0 we have ρ(t) �= ρ(t + ε),
and hence by the density of S, the continuity of ρ, and the Intermediate
Value-Theorem there exists a t1 ∈ ρ−1(S) ∩ [t, t + ε]. This proves density. �

In closing we remark that the results of this section depend on the mono-
tonicity and continuity of f , but not on invertibility. Thus it suffices to assume
that f : S1 → S1 is a continuous order-preserving map of degree one, that is, its
lift F is nondecreasing and F(x + 1) = F(x) + 1 (Exercise 4.3.5). Such a map
may take constant values on a finite or countable set of intervals.
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4.4.5 Frequency Locking

The understanding gained in the preceding subsection about the dependence
of the rotation number on a parameter also leads to insights about flows on the
2-torus, and in particular about some systems of differential equations arising in
applications. The phenomenon that we are able to shed some light on now is that
coupled oscillators tend to become synchronized, that is, their frequencies will
coincide or be at least rationally related.

Where do we stand? The problems of flashing fireflies and circadian rhythms
were introduced in Section 1.2.10 as situations that one might model as coupled
oscillators. We can simplistically model those biological clocks as a harmonic
oscillator or something close. Indeed, the harmonic oscillator is a good starting
point, as we will see by linearization in Section 6.2.2.

Now, in Section 4.2.4 we found that two uncoupled harmonic oscillators
produce, on a joint level set, a linear toral flow. This linear flow on T2 satisfies the
differential equations

ẋ1 = ω1

ẋ2 = ω2.

To get an impression of the effects of coupling the two oscillators, modify the
preceding differential equations by including “mixed” terms:

ẋ1 = ω1 + c1 sin 2π(x2 − x1)

ẋ2 = ω2 + c2 sin 2π(x1 − x2).
(4.4.1)

This is not exactly the same as coupling the original second-order equations in
Section 4.2.4, but it is a good way to get some insight.

A small detail here is the choice of sines to produce the mixed terms. This makes
sense because both variables are only defined mod 1. The constants c1 and c2

indicate the strength of the coupling. When they are both zero, there is no coupling
and we are back to a linear flow on the 2-torus. If they are positive, the right-hand
side acts to increase the slower rate of change of the two ω’s and to slow down the
faster one, which could plausibly lead to synchronization.

In Section 4.2.3 we learned to study flows on the 2-torus by looking at the section
map of the flow of (4.4.1) for the section x2 = 0, say. In the absence of the coupling
terms, that is, when c1 = c2 = 0, this section map is just the rotation with rotation
number ω1/ω2. For small values of the coupling constants the section map is there-
fore a perturbation of this rotation. In “most” cases this perturbation has a rational
rotation number, because this is the stable situation. And whenever the rotation
number is rational all asymptotic behavior is periodic (with the same period).

To explore this a little more carefully, suppose that ω1 and ω2 are close to each
other. In fact, assume first that ω1 = ω2 =: ω. In that case, x(t) = y(t) = ωt is a
solution of (4.4.1). This particular solution works for all values of c1 and c2, so the
section map always has a fixed point, and hence rotation number 0.

For (c1, c2) �= (0, 0), the section maps are not conjugate to rotations and therefore
their rotation number persists under small perturbations by Proposition 4.4.10.
In particular, when we fix c1 and c2, then for small values of ω1 − ω2 the flow of
(4.4.1) has a section map with a fixed point, all of whose orbits are asymptotic to a
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fixed one (or fixed). This means that the corresponding solutions of (4.4.1) are all
asymptotic to a periodic solution with equal frequencies; that is, experimentally,
the two a priori different frequencies of the oscillators are locked into a common
compromise frequency by the coupling. Thus the two oscillators synchronize as
long as their natural frequencies are sufficiently close to each other.

Observe, by the way, that there should be a phase difference (that is, x − y) of
size comparable to the difference in natural frequencies.

� EXERCISES

� Exercise 4.4.1 Consider the set C of monotone functions f : [0, 1] → [0, 1] with
f (0) = 0 and f (1) = 1. Define a map T on C as follows. Fix f ∈ C and denote its
graph by G. Let G1 be the image of G under the transformation given by (1/3 0

0 1/2
) in

the plane, and let G2 = G1 + (
2/3 1/2

)
. Let G ′ be the union of G1, G2 and the line

segment from
(
1/3 1/2

)
to

(
2/3 1/2

)
. Prove that G ′ is the graph of some f ′ ∈ C and

set T( f ) = f ′. Next prove that T is a contraction of C with respect to the norm of
uniform convergence. (Since C is a closed subset of a complete space, the Contrac-
tion Principle then applies. Since the ternary Cantor function is a fixed point, this
gives an effective approximation procedure. This was used to create Figure 4.4.1.)

� Exercise 4.4.2 Prove Lemma 4.4.12.

� PROBLEMS FOR FURTHER STUDY

The following few exercises contain a brief introduction into a more detailed
explanation of frequency locking for a typical example.

� Problem 4.4.3 (Arnold Tongues) For a, b ∈ [0, 1], let fa,b : S1 → S1, x !→ x +
a + b sin 2πx (mod 1). Show that for p/q ∈ Q ∩ [0, 1] the regions Ap/q := {(a, b) ∈
[0, 1] × [0, 1/2π ] ρ( fa,b) = p/q} are closed. These regions intersect [0, 1] × {0} in
the point p/q. (See Figure 4.4.3.)

� Problem 4.4.4 Show that Ap/q intersects every line b = const. in a nonempty
closed interval and that this interval has nonzero length except for b = 0.

� Problem 4.4.5 Are the Ap/q connected?

� Problem 4.4.6 Show that the union of the Ap/q is dense in [0, 1] × [0, 1].

0.15

0.1

0.05

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.4.3. Arnold tongues.
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CHAPTER 5

Recurrence and Equidistribution

in Higher Dimension

5.1 TRANSLATIONS AND LINEAR FLOWS ON THE TORUS

5.1.1 The Torus

Consider the n-dimensional torus

Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

= Rn/Zn = R/Z × · · · × R/Z︸ ︷︷ ︸
n times

,

which, for n = 2, was first mentioned in Section 2.6.4. We already had several
opportunities to represent the 2-torus in various ways. Now we discuss the n-torus
in more detail. A natural fundamental domain for Rn/Zn is the unit cube:

I n = {(x1, . . . , xn) ∈ Rn 0 ≤ xi ≤ 1 for i = 1, . . . , n}.

This means that, to represent the torus, we identify opposite faces of I n, that
is, we identify (x1, . . . , xi−1, 0, xi+1, . . . , xn) with (x1, . . . , xi−1, 1, xi+1, . . . , xn). (See
Figure 5.1.1.) These two points represent the same element of the torus. Similar to
the case of the circle, there are two convenient coordinate systems on Tn, namely,

(1) multiplicative, where the elements of Tn are represented as (z1, . . . , zn) with
zi ∈ C and |zi | = 1 for i = 1, . . . , n ; and

(2) additive, when they are represented by n-vectors (x1, . . . , xn), where each
coordinate is defined mod 1.

The correspondence (x1, . . . , xn) !→ (e 2πix1 , . . . , e 2πixn) establishes an isomorphism
between these two representations. By the way, these coordinate systems are
called multiplicative and additive, respectively, because there is a “group” structure
on the torus that can be viewed as multiplication or as addition: For any two
elements x = (x1, . . . , xn), y = (y1, . . . , yn) there is an element x + y defined by
x + y = (x1 + y1, . . . , xn + yn) (in additive notation), and this addition has negatives,
just like that in Rn. In multiplicative notation, the same structure is defined by taking
products coordinatewise, and inverses are just reciprocals. In fact, the additive inter-
pretation of this structure is just addition modulo 1 and hence “inherited” from Rn

143
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1

1
Figure 5.1.1. The 3-torus.

under the identification of vectors modulo 1. (Thus, this is a “factor” of the additive
group Rn.)

In additive notation let γ = (γ1, . . . , γn) ∈ Tn. Consider the natural multidimen-
sional generalization of rotations given by the translation

Tγ (x1, . . . , xn) = (x1 + γ1, . . . , xn + γn) (mod 1).

If all coordinates of the vector γ are rational numbers, say γi = pi/qi with relatively
prime pi and qi for each i = 1, . . . , n, then Tγ is periodic. Its minimal period is the
least common multiple of the denominators q1, . . . , qn.

However, unlike the cases of the circle and linear flows on the 2-torus, mini-
mality is not the only alternative to periodicity. For example, if n = 2 and γ = (α, 0),
where α is an irrational number, then the torus T2 splits into a family of invariant
circles x2 = const., and every orbit stays on one of these circles and fills it densely.

5.1.2 Criterion for Minimality

The right condition for minimality (see Definition 4.1.4 and Proposition 4.1.1)
for the translation Tγ is a sort of mutual irrationality of the coordinates of the
translation vector γ . The numbers γ1, . . . , γn and 1 must be rationally independent.

Definition 5.1.1 A set A ⊂ R is said to be rationally independent if x1, . . . , xn ∈ A
and (k1, . . . , kn) ∈ Zn+1 � {0} imply

∑n
i=1 kiγi �= 0.

Rational independence of γ1, . . . , γn and 1 means that k0 + ∑n
i=1 kiγi �= 0

for (k0, k1, . . . , kn) ∈ Zn+1 � {0}. Equivalently,
∑n

i=1 kiγi is not an integer for any
collection of integers k1, . . . , kn, except for k1 = k2 = · · · = kn = 0. Note that in the
case of a single number this is exactly irrationality.

Proposition 5.1.2 The translation Tγ on T2 is minimal if and only if the numbers
γ1, γ2, and 1 are rationally independent, that is, there are no two nonzero integers
k1, k2 such that k1γ1 + k2γ2 ∈ Z.

We postpone the proof to Section 5.1.5 because the arguments are a bit long, al-
though they are elementary. We only carry the proof out in dimension 2 to make the
notation and arguments a bit easier and allow for suggestive geometric illustrations.

The reason for the requirement on the translation vector is not so hard to
see, however. In Section 4.2.3 we saw that a linear flow (T t

γ )t∈R on the 2-torus is
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minimal if its translation vector γ has irrational slope. Therefore, a translation Tγ

can only be minimal if γ1/γ2 /∈ Q or k1γ1 + k2γ2 �= 0 for any (k1, k2) ∈ Z2 � {0}. On
the other hand, this is not quite sufficient, because if γ1 is rational, say, then the
first coordinate of any orbit can only take finitely many values and the orbit cannot
be dense. To rule out such problems requires the minimality condition above.

5.1.3 Linear Flows

In Section 4.2.3 we introduced linear flows on the 2-torus. On the n-torus linear
flows are likewise given as a one-parameter group of translations

T t
ω(x1, . . . , xn) = (x1 + tω1, . . . , xn + tωn) (mod 1).

Since the flow {T t
ω} is minimal if for some t0 the transformation T t0

ω is minimal,
Proposition 5.1.2 allows us to establish the criterion for minimality for this case.

Proposition 5.1.3 The flow {T t
ω} is minimal if and only if the numbers ω1, . . . , ωn

are rationally independent.

Proof Since T t
ω = Ttω, minimality follows from Proposition 5.1.2 once we find

t ∈ R such that
∑n

i=1 tkiωi /∈ Z for any nonzero integer vector (k1, . . . , kn). To
this end note that if k ∈ Z then s

∑n
i=1 kiωi = k implies s = k/

∑
kiωi (because∑n

i=1 kiωi �= 0 by rational independence). Only countably many such s’s arise, so
any t ∈ R � {k/

∑
kiωi k1, . . . , kn, k ∈ Z, (k1, . . . , kn) �= 0} is as required.

On the other hand, if
∑n

i=1 kiωi = 0 for some nonzero vector (k1, . . . , kn), then
the function ϕ(x) = sin 2π

(∑n
i=1 ki xi

)
is continuous, nonconstant, and invariant

under the flow {T t
ω}. Therefore the flow is not minimal, because ϕ−1([0, 1]) is a

closed invariant set (Definition 4.1.4). �

5.1.4 Uniform Distribution: Elementary Proof

Similarly to Section 4.1.4 we can look at the frequencies with which an orbit of a
minimal translation visits various parts of the torus. In the one-dimensional case we
used arcs (intervals) as natural “windows” through which to measure the frequency
of visits. A natural counterpart for the n-torus will be n-parallelepipeds, � =
�1 × · · · × �n, where �1, . . . , �n are arcs. For n = 2 it is natural to call a paral-
lelepiped a rectangle. The volume vol(�) of � is defined as the product of the
lengths of the arcs �1, . . . , �n. Thus we arrive at the following natural general-
ization of the notion of uniform distribution, which appeared in the remark after
Proposition 4.1.7.

Definition 5.1.4 A sequence (xm)m∈N in T n is said to be uniformly distributed if

lim
m→∞

card{k ∈ {1, . . . , m} | xk ∈ �}
m

= vol(�).

for every n-parallelepiped � ⊂ Tn.

The proof of Proposition 4.1.7 uses only that an irrational rotation is minimal
and isometric. Specifically, one needs that arcs are taken into arcs of the same
length and that the circle can be decomposed into a union of arbitrarily short
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isometric arcs with disjoint interiors. Toral translations are isometries, and a
counterpart of the decomposition property holds for the torus with arcs replaced
by parallelepipeds; so it is not surprising that the proof of Proposition 4.1.7 can
be adapted to this situation. We give a detailed argument in the two-dimensional
case. Unlike in the case of minimality, where this assumption brings a genuine
simplification, this is purely a matter of keeping notation simple. The extension of
the statement “minimality implies uniform distribution” to translations in arbitrary
dimension is completely straightforward.

Theorem 5.1.5 If (γ1, γ2, 1) are rationally independent, then every semiorbit of the
translation T(γ1,γ2) is uniformly distributed.

As in Section 4.1.4, define

F�(x, n) := card
{

k ∈ Z 0 ≤ k < n, T k
γ (x) ∈ �

}
for any x ∈ T2 and any rectangle �. This definition extends to unions of disjoint
rectangles. By Proposition 5.1.2, the translation Tγ is minimal, where γ = (γ1, γ2).
This allows us to extend Proposition 4.1.5:

Proposition 5.1.6 Consider two rectangles � = �1 × �2 and �′ = �′
1 × �′

2 such
that �(�i) < �(�′

i), i = 1, 2. There is an N0 ∈ N, which depends on �, �′, and γ , such
that if x ∈ T2, N ≥ N0, and n ∈ N, then F�′ (x, n + N ) ≥ F�(x, n).

Proof By assumption there is a translation Tβ of the rectangle � that lies inside
�′. By minimality of Tγ we can find N0 ∈ N such that the translation T N0

γ �

is so close to Tβ� that T N0
γ � ⊂ �′. Thus T n

γ (x) ∈ � implies T n+N0
γ (x) ∈ �′ and

F�′ (x, n + N ) ≥ F�′ (x, n + N0) ≥ F�(x, n) for n ≥ N0. �

Proof of Theorem 5.1.5 Now, similarly to the one-dimensional case, take a rectangle
� = �1 × �2, where �(�1) = �(�2) = 1/k. Divide the torus T2 into (k − 1)2 disjoint
rectangles, each being the product of two arcs of length 1/k − 1 (Figure 5.1.2), and

Figure 5.1.2. Torus with rectangles.
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apply Proposition 5.1.6 in exactly the same way as in the proof of Lemma 4.1.9 to get

f(�) := lim sup
n→∞

F�(x, n)
n

≤ 1/(k − 1)2.(5.1.1)

Finally, let � = �1 × �2 be an arbitrary rectangle. Fix ε > 0 and a rectangle
�′ = �′

1 × �′
2 such that �i ⊂ �′

i for i = 1, 2; the lengths of �′
i are li/k; and

vol �′ < vol � + ε. By using (5.1.1) and the subadditivity of f we obtain

f(�) ≤ f(�′) ≤
( k

k − 1

)2
vol �′ <

( k
k − 1

)2
(vol � + ε).

Since ε is arbitrarily small and k arbitrarily large, this implies that f(�) ≤ vol � for
any rectangle � and hence (by subadditivity of f) for any finite union of disjoint
rectangles. In particular, since T2 � � is the union of three disjoint rectangles, this
implies that

f(�) := lim inf
n→∞

F�(x, n)
n

= 1 − f(T2 � �) ≥ 1 − vol(T2 � �) = vol �,

and hence f(�) = f(�) = vol �. �

There is an obvious extension of Theorem 4.1.15 from rotations of the circle to
translations of the torus:

Theorem 5.1.7 Let γ = (γ1, γ2) and ϕ any Riemann-integrable function on T2. If
the numbers 1, γ1, γ2 are rationally independent, then

lim
n→∞

1
n

n−1∑
k=0

ϕ
(
T k

γ (x1, x2)
) =

∫
T2

ϕ(θ1, θ2) dθ1 dθ2

uniformly in (x1, x2) ∈ T2.

Proof The passage from uniform distribution for rectangles to uniform distribution
for continuous and, more generally, Riemann-integrable functions goes exactly
as in the one-dimensional case (Proposition 4.1.14 and Theorem 4.1.15). If � is a
rectangle, then

vol � =
∫

T2
χ�(θ1, θ2) dθ1 dθ2,

and, by definition, a function ϕ is Riemann-integrable if for any ε > 0 there exist
finite linear combinations ϕ1, ϕ2 of characteristic functions of rectangles such that
ϕ1 ≤ ϕ ≤ ϕ2 and ∫

T2
ϕ1(θ1, θ2) dθ1 dθ2 <

∫
T2

ϕ2(θ1, θ2) dθ1 dθ2 + ε.

(In particular, any continuous function or any bounded function with finitely many
discontinuity points is Riemann integrable.) �

5.1.5 Proof of the Minimality Criterion

Now we prove that toral translations are minimal if and only if the translation
vector is “completely irrational”. This condition implies that γ1 and γ2 as well
as their ratio are irrational. However, the condition is stronger than that, as
the simple example of γ2 = 1 − γ1 with any irrational γ1 shows.
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The proof is considerably more elaborate than the simple argument from
the proof of Proposition 4.1.1. The main idea, however, is the same: Unless the
points on an orbit are aligned in a particular fashion, they will crowd all around,
and this produces minimality. The main difference with the one-dimensional case
is that then a “special alignment” simply meant finiteness of the orbit and hence
periodicity, while now we have to capture an intermediate case and show that
it appears only if orbits lie on parallel rational lines spiraling around the torus.

Proof of Proposition 5.1.2 We use additive notation. Such a translation is minimal
if and only if the orbit of 0 is dense, because if x ∈ T2, then

Tγ (x) = x + γ = 0 + γ + x = Tγ (0) + x (mod 1);

that is, the orbit O(x) of x is Tx(O(0)), and therefore it is dense if and only if
O(0) is because Tx is a homeomorphism. (This argument is the same as that in
the proof of the more general Proposition 4.1.19.)

Pick ε > 0 and consider the set Dε of all iterates Tm
γ (0) that are in the ε-ball

B(0, ε) around 0. There are two possibilities:

(1) For some ε > 0 the set Dε is linearly dependent (that is, lies on a line).
(2) For any ε > 0 the set Dε contains two linearly independent vectors.

Below we prove three corresponding lemmas.

Lemma 5.1.8 (2) ⇒ minimality.

Lemma 5.1.9 (1) ⇒ rational dependence.

Lemma 5.1.10 Rational dependence ⇒ (1).

Minimality clearly excludes (1) and hence implies (2), so minimality is
equivalent to (2). Thus minimality ⇐⇒ (2) ⇐⇒ not (1) ⇐⇒ rational
independence. �

Proof of Lemma 5.1.8 This argument is similar to the proof of Proposition 4.1.1,
albeit more complicated. It suffices to show that the orbit of 0 is dense. Take

Figure 5.1.3. Dependent versus independent.
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ε > 0 and suppose v1, v2 ∈ Dε are linearly independent. This means that they
span a small parallelogram {av1 + bv2 a, b ∈ [0, 1]}. The vertices of this
parallelogram are all part of O(0): This is already known for 0, v1, and v2, and
for v1 + v2 this is easy to see by representing v1 and v2 as V1 = 0 + m1γ − k(m1)
and V2 = 0 + m2γ − k(m2) in R2, respectively, where k(m1) and k(m2) are those
integer vectors for which ‖V1‖ < ε and ‖V2‖ < ε. Then V1 + V2 = 0 + (m1 +
m2)γ − (k(m1) + k(m2)) = Tm1+m 2

γ (0) (mod 1) and hence v1 + v2 = Tm1+m2
γ (0).

Furthermore, the orbit of 0 contains all integer linear combinations of v1 and
v2 [because kV1 + lV2 = Tkm1+lm2

γ (0) (mod 1)]. Therefore, consider the tiling of
the plane defined by the translates of R := {aV1 + bV2 a, b ∈ [0, 1]} by integer
multiples of V1 and V2. This covers the plane with similar parallelograms, which
have only boundary points in common, and every point of the plane is within ε

of one of the vertices of these tiles (Figure 5.1.3). In particular, every point of
[0, 1] × [0, 1] is within ε of some vertex, that is, every point of T2 is within ε of
some point of O(0). According to the hypothesis of case (2), this is the case for
any ε > 0, that is, O(0) is dense in T2. �

Proof of Lemma 5.1.9 If 0 is periodic, then γ1 and γ2 are rational and we are done.
From now on assume that the orbit of 0 is infinite. Then for any ε > 0

it contains two points p = Tm
γ (0) and q = Tn

γ (0) such that ‖q − p‖ < ε.
Then there are points P = mγ ∈ R2 and Q = nγ + k ∈ R2 such that
ε > ‖P − Q‖ = ‖mγ − nγ − k‖ = ‖(m − n)γ − k‖, which means that
Tm−n

γ (0) − k ∈ B(0, ε) and Dε �= {0} for all ε > 0.
If ε > 0 is as in (1), then {0} �= Dε′ ⊂ Dε is linearly dependent for all ε′ < ε.

Thus Dε lies on a unique line L through 0 given by an equation ax + by = 0.

Claim O(0) is dense on the projection of L. (See Figure 5.1.4.)

Figure 5.1.4. Density.
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Since Dε′ �= {0} for all ε′ < ε, there are points 0 �= pε′ ∈ Dε′ and hence
points P = nγ − k ∈ L ∩ B(0, ε′) (with n ∈ Z, k ∈ Z2). But then {mP m ∈ Z}
is ε′-dense in L and projects into O(0).

Now a and b are rationally dependent because otherwise the slope of L
is irrational, so the projection of L to T2 is dense and by the claim so is
O(0). Therefore there exists (k1, k2) ∈ Z2 � {0} such that ak1 − bk2 = 0. If
a = 0 (or b = 0), then ax + by = 0 ⇔ y = 0 (or x = 0). Otherwise, multiply
ax + by = 0 by k1/b = k2/a to get k2x + k1 y = 0, that is, we may take a, b ∈ Z.
If nγ − k lies on the line ax + by = 0, then anγ1 − k1 + bnγ2 − k2 = 0 or
anγ1 + bnγ2 = k1 + k2, which gives rational dependence. �

Proof of Lemma 5.1.10 Suppose k1γ1 + k2γ2 = N ∈ Z and divide by γ1 to get
γ2/γ1 = (N − k1)/k2 =: s ∈ Q (if k2 �= 0), that is, the iterates (nγ1, nγ2) of 0
under repeated translation by γ lie on the line y = sx with rational slope s.
This projects to the torus as an orbit of the linear flow Tt

γ , which we found in
Section 4.2.3 to be closed and hence not dense when γ2/γ1 ∈ Q. Therefore the
orbit of 0 under Tγ is not dense either, implying (1). (If k2 = 0, then k1 �= 0 and
the same argument works after exchanging x and y.) �

5.1.6 Uniform Distribution: The Kronecker–Weyl Method

The Kronecker–Weyl method of proving uniform distribution starting from
trigonometric polynomials, then proceeding to continuous functions, and finally
to characteristic functions, described in Section 4.1.6 also works in higher
dimension. Again, to simplify notation we consider the two-dimensional case,
leaving the extension to arbitrary dimension to the reader.

The characters corresponding to those in Section 4.1.6 are defined as group
“homomorphisms” of T2 to S1, where we view T2 as an additive group (as de-
scribed at the beginning of this chapter) and S1 is considered as the group of
complex numbers of absolute value one with multiplication as the group opera-
tion. A homomorphism is a map that preserves this group structure, that is, the
image of the sum of two elements is the product of their images. To be specific, if we
use additive notation for the torus, then the characters have the following form:

cm1,m2 (x1, x2) = e 2π i(m1x1+m 2x2) = cos 2π (m1x1 + m2x2) + i sin 2π (m1x1 + m2x2),

where (m1, m2) is any pair of integers. Finite linear combinations of characters
are called trigonometric polynomials beacause they also can be expressed as
finite linear combinations of sines and cosines. Characters are eigenfunctions
for the translation because

cm1,m2 (Tγ (x1, x2)) = e 2π i(m1(x1+γ1)+m 2(x2+γ2)) = e 2π i(m1γ1+m 2γ2)cm1,m2 (x1, x2).

A crucial observation for our purposes is that, since γ1, γ2, and 1 are rationally
independent, that is, m1γ1 + m2γ2 is never an integer unless m1 = m2 = 0, the
eigenvalue e 2π i(m1γ1+m 2γ2) �= 1 unless m1 = m2 = 0.
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The trivial character c 0,0 = 1 is not changed by averaging. For the other
characters we use summation of the geometric series as in Section 4.1.6 to obtain∣∣∣∣∣1

n

n−1∑
k=0

cm1,m2

(
Tk

γ (x1, x2)
)∣∣∣∣∣ =

∣∣∣∣∣1
n

n−1∑
k=0

e 2π ik(m1γ1+m 2γ2)

∣∣∣∣∣ ∣∣cm1,m2 (x1, x2)
∣∣

=
∣∣∣∣∣ 1 − e 2π in(m1γ1+m 2γ2)

n
(
1 − e 2π i(m1γ1+m 2γ2)

) ∣∣∣∣∣
≤ 2

n
(
1 − e 2π i(m1γ1+m 2γ2)

) −−−→
n→∞ 0 =

∫
T2

cm1,m 2 .

Using linearity of the integral one deduces that, for any finite linear combination
ϕ of characters, that is, for any trigonometric polynomial, we have

lim
n→∞

1
n

n−1∑
k=0

ϕ
(
Tk

γ (x1, x2)
) =

∫
T2

ϕ.(5.1.2)

Now we can invoke a multidimensional version of the Weierstraß Approxima-
tion Theorem (a continuous function on the plane that is 1-periodic in both
variables is a uniform limit of trigonometric polynomials) to deduce that (5.1.2)
holds for any continuous function. Finally, uniform distribution for rectangles
follows exactly as in the one-dimensional case by finding continuous functions
ϕ1 ≤ χ� ≤ ϕ2 such that

∫
(ϕ2 − ϕ1) < ε. It is also easy to see within this frame-

work that if 1, γ1, and γ2 are rationally dependent, then the translation Tγ is
not minimal, as was pointed out at the end of Section 5.1.2: If m1γ1 + m2γ2 = k
with m1, m2, k ∈ Z, and m2

1 + m2
2 > 0, then e 2π i(m1γ1+m 2γ2) = 1 and the values

of the nonconstant character cm1,m2 do not change under translation.
The use of the Kronecker–Weyl method allows us to bypass a comparatively

subtle argument, which was required in Section 5.1.2 to establish the condition
for minimality. With this approach uniform distribution is deduced directly and
rather straightforwardly from the rational independence of γ1, γ2, and 1. Also,
the extension of the proof to arbitrary dimension using this method is completely
routine.

� EXERCISES

� Exercise 5.1.1 Show that 1,
√

3, and
√

5 are rationally independent.

� Exercise 5.1.2 Suppose n, m ∈ Z are such that 1,
√

n, and
√

m are rationally
dependent. What does this imply about n and m?

� Exercise 5.1.3 Describe the orbit closures for the translation by (α, 1/4 + 2α) on
T2, where α /∈ Q.

� Exercise 5.1.4 (This explains the origin of the term “rational indepen-
dence.”) The real line R can be viewed as a linear space over the field Q of rational
numbers (that is, the rationals are the scalars). Show that a set of numbers in R is
rationally independent if and only if it is linearly independent in the linear space
R over Q.



book 0521583047 April 21, 2003 16:55 Char Count= 0

152 5. Recurrence and Equidistribution in Higher Dimension

� Exercise 5.1.5 Show that if all coordinates of the vector γ are rational numbers,
say γi = pi/qi with relatively prime pi and qi for each i = 1, . . . , n, then Tγ is periodic
and its minimal period is the least common multiple of the denominators q1, . . . , qn.

� Exercise 5.1.6 Show that the closure of the orbit of a nonminimal translation
on T2 is either a finite set or a finite union of circles.

� Exercise 5.1.7 Show that every closed proper subgroup � of R2 is equivalent to
one of the following by a linear coordinate change: R, Z, Z × Z, Z × R.

� PROBLEMS FOR FURTHER STUDY

� Problem 5.1.8 Generalize Exercise 5.1.6 to Rn.

� Problem 5.1.9 Generalize Exercise 5.1.7 to Rn.

� Problem 5.1.10 Write a detailed proof of the minimality criterion as in
Section 5.1.5 in n dimensions.

� Problem 5.1.11 Formulate the uniform distribution property for a translation
on the group Z2 of d-adic integers (Problem 4.1.15) and prove that minimality
implies uniform distribution.

5.2 APPLICATIONS OF TRANSLATIONS AND LINEAR FLOWS

We now give several examples of dynamical systems where the dynamics can
naturally be analyzed in terms of linear flows (or translations) on tori.

5.2.1 Linear Maps and Flows

An understanding of linear maps and flows on tori provides a tool for describing the
dynamics of an important class of linear systems, namely, maps with eigenvalues
of absolute value one and linear differential equations with constant coefficients
whose coefficient matrix has purely imaginary eigenvalues (and whose time-T-
maps thus have eigenvalues of absolute value 1). Section 4.2.4 gave particular
examples of flows in R4 that arose from linear differential equations with constant
coefficients. There tori naturally occurred as invariant sets on which we observe
a linear flow. More generally, consider a linear map of R2m whose eigenvalues
form m distinct complex conjugate pairs e±iν j . As before, each pair corresponds
to a two-dimensional invariant subspace in which the map acts as a rotation
with respect to proper coordinates. The eigenspace and these coordinates are
obtained by taking a complex eigenvector wi and then choosing the real vectors
vj = wj + wj and v′

j = i(wj − wj ) as a basis. Doing this for each pair of eigenvalues
gives a basis of R2m with respect to which the map has a block diagonal matrix
representation in which each block is a 2 × 2 block representing a rotation. This
map then leaves invariant the sets given by the equations x2

2 j−1 + x2
2 j = r2

j for
j = 1 . . . m. These sets are tori whose dimension depends on the number of r j ’s
that are zero. Specifically, such a torus can be parametrized by polar coordinates
x2 j−1 = r j cos ϕ j , x2 j = r j sin ϕ j , and the map then acts by rotations that shift ϕ j to
ϕ j + ν j . Clearly any r j = 0 reduces the dimension of the torus.
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Therefore the minimality criterion Proposition 5.1.2 (applied to Tk) tells
us that the restriction of the flow to such an invariant torus is minimal when
{ν j r j �= 0} ∪ {1} is rationally independent.

More generally, one can draw conclusions about the action of a linear map
inside its neutral space E 0 defined in (3.3.3) when the restriction to this subspace
has sufficiently many distinct eigenvalues.

5.2.2 Free Particle Motion on the Torus

The motion of a point mass on the flat torus Tn = Rn/Zn without external forces
is described by the second-order ordinary differential equation ẍ = 0, where x is
defined modulo Zn. Alternatively we can write

ẋ = v,

v̇ = 0

to see that the motion is along straight lines with constant speed, since v is
preserved. This means that the n components of v are integrals (or constants) of
motion. For any given v the motion corresponds to the linear flow T t

v . Thus the
phase space is Rn × Tn with dynamics described as follows: The tori {v} × Tn are
invariant and the motion on {v} × Tn is given by {v} × T t

v . This flow is also called
the geodesic flow on Tn. The geodesics are the paths traced out on Tn by the orbits.
They are projections of straight lines in Rn to Tn. While for different initial velocity
vectors v these curves may be variously dense, periodic, or neither, the orbits of
the flow are never dense in the phase space.

One way of studying this flow via a discrete-time dynamical system is to restrict
attention to vectors with footpoint on the circle y = 0 and pointing upward. Each of
these vectors defines an orbit of the flow that returns to this set. If α is the cotangent
of the angle of such a vector, then the return map is given by (x, α) !→ (x + α, α).
This integrable twist will reappear several times (Example 6.1.2, Section 6.3.4.1).

5.2.3 Many-Particle System on the Interval

A straightforward generalization of the simple mechanical model discussed in
Section 4.2.5 is given by a finite number of point particles with equal masses
moving on the interval with elastic collisions among themselves and with the
endpoints. Since the order of the particles cannot change, their positions
x1, . . . , xn satisfy 0 ≤ x1 ≤ · · · ≤ xn ≤ 1; that is, the configuration space of this
mechanical system is the simplex Tn := {(x1, . . . , xn) 0 ≤ x1 ≤ · · · ≤ xn ≤ 1},
and the phase space is the space of tangent vectors with footpoints in Tn with
appropriate conventions on the boundary. (See Figure 5.2.1.)

The n-dimensional analogs of the geometric considerations from Section 4.2.5
show that the system can be described as the motion of a single point particle
bouncing off the faces of Tn with an n-dimensional analog of the reflection law
“angle of incidence equals angle of reflection.’’ This means that one determines
the continuation of a trajectory after an impact on a face by taking the plane
spanned by the incoming trajectory and the normal vector to the face and
applies the two-dimensional reflection law in this plane. This prescription



book 0521583047 April 21, 2003 16:55 Char Count= 0

154 5. Recurrence and Equidistribution in Higher Dimension

Figure 5.2.1. Three particles on a line and their configuration space.

does not determine motions that involve collisions with an edge or vertex, that
is, multiple or simultaneous collisions.

The partial unfolding, which helped describe the billiard in the triangle in
terms of the linear flow on the 2-torus, works here as well, with the funda-
mental domain being the n-dimensional cube of twice the linear size, that is,
max |xi | ≤ 1. The n!2n reflected copies of Tn tile this cube, and, in turn, the
translated copies of this cube tile Rn. Thus the complete unfolding of this motion
on Tn produces the free particle motion on Rn. After reducing this motion to the
fundamental domain (the cube, which we identify with the n-torus) we obtain
the free particle motion on the n-torus. Hence we can describe this motion in
terms of the linear flow on the n-torus.

The mechanical equivalent of the geometric unfolding is the observation
that, upon collision, any two particles exchange momenta and therefore one can
consider only the transfer of momenta, which makes it appear as if the particles
go through each other and only reverse direction at the boundary.

� EXERCISES

� Exercise 5.2.1 Consider the billiard ball motion in the unit cube. How many
directions can the velocity vector take along one orbit?

� Exercise 5.2.2 Reduce the billiard ball motion in the unit cube I to the free
particle motion on the torus and decompose it into toral translations.

� PROBLEMS FOR FURTHER STUDY

� Problem 5.2.3 Describe the reduction to a billiard problem of the motion of
several particles with unequal masses on the interval.

� Problem 5.2.4 Describe the distribution of values of the function sin n +
cos

√
2n + sin

√
3n.
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CHAPTER 6

Conservative Systems

6.1 PRESERVATION OF PHASE VOLUME AND RECURRENCE

We will see that preservation of phase volume is a natural property that holds, for
example, in dynamical systems arising from mechanics, and that this property is a
direct cause for ubiquitous nontrivial recurrence.

6.1.1 Criteria for Preservation of Volume

So far we have been concerned with the asymptotic behavior of individual orbits
of a dynamical system. The basic examples discussed in Chapter 4 and Chapter 5
exhibit recurrent behavior of orbits: All orbits are either periodic, that is, return
exactly to the initial position, or come arbitrarily close to the initial position, as in an
irrational rotation of the circle, a nonperiodic translation of the torus, or in free parti-
cle motion on the torus. This type of behavior is different from most of the phenom-
ena observed in Chapter 2 and Chapter 3. There, typically a nonperiodic orbit was
attracted to periodic ones, and recurrence appeared only for periodic orbits, which
in all nonlinear and most linear examples were few in number.

A key to understanding this difference is given by a property that is not directly
observed by looking at individual orbits but by considering the evolution of large
sets of initial conditions simultaneously, the preservation of phase volume.

1. Preservation of Phase Volume. This property is simply that the map defining a
discrete-time dynamical system (or, in the case of flows, each time-t map) preserves
the volume of sets in the phase space. It is quite obvious why this property is not
compatible with some of the simple types of behavior observed in earlier chapters.
For example, if x is a contracting fixed (or periodic) point of a map f , then a small
enough ball around x is mapped by f (or an iterate of f ) inside an even smaller
ball. Hence the volume of that ball decreases. This justifies another name for the
preservation of volume, incompressibility.

Example 6.1.1 Any translation of the torus is an isometry; it preserves the size
and shape of sets. In particular, the image of any rectangle � is a rectangle with

155
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Figure 6.1.1. Distorted parallelogram.

sides of the same length; hence it has the same volume as �. Since every Riemann
measurable set can be approximated by a finite union of rectangles, we see that
volumes of such sets are also preserved.

Example 6.1.2 The linear twist T : S1 × [0, 1] → S1 × [0, 1] of the cylinder
(Section 2.6.3), T(x, y) = (x + y, y), where x + y is defined modulo 1, appears
naturally as a section map for the free particle motion on the 2-torus discussed in
Section 5.2.2. It is not an isometry. In fact, the image of a rectangle � gets tilted and
becomes a parallelogram with angles π/4 and 3π/4. (See Figure 6.1.1.) Nevertheless,
the dynamics of individual orbits can be understood in terms of isometries because
we can restrict attention to any horizontal circle, where the twist acts as a rota-
tion. When the map is iterated the parallelogram f n(�) gets longer and longer and
more “horizontal”. Thus, the shape of � changes beyond recognition. However, the
volume (that is, the area in this case) of f (�) [and of f n(�) for any n ∈ N] is the
same as for � because the base and height of the parallelogram are unchanged.
Alternatively, note that area( f (�)) = ∫ 1

0 l( f (�) ∩ S1 × {t}) dt and that on every
circle Ct = S1 × {t} the map T acts as a rotation and hence l( f (�) ∩ Ct) = l(� ∩ Ct),
and by integration area( f (�)) = area(�).

This argument also holds for more complicated sets.

2. The Linear Case. The previous arguments were, of course, ad hoc, and we need
a more systematic method of checking whether the phase volume is preserved. As
is usual in analysis, we develop an infinitesimal condition corresponding to the
desired property. Since such conditions are based on the linear approximation of
nonlinear objects, it is instructive to look at linear maps first. For linear maps the
answer is provided by elementary linear algebra. If a linear map of Rn is represented
in Euclidean coordinates by a matrix L, then the image of the standard unit cube
� = {(x1, . . . , xn) 0 ≤ xi ≤ 1} is a parallelepiped of volume | det L|. More generally,
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the ratio of the volume of the image of a parallelepiped P to the volume of P
itself is equal to | det L|. The same follows for more general sets by approximation.
Thus, a linear map preserves volume if and only if it is represented by a matrix
with determinant ±1. Notice that this property does not depend on the choice of
basis: With respect to a different basis the same map is represented by the matrix
L ′ = C−1 LC , with an invertible matrix C , and det L ′ = det C−1 det L det C = det L.
Alternatively note that the determinant is the product of the eigenvalues, which do
not change under conjugation.

3. The Criterion. Now consider a (nonlinear) differentiable map f defined near
a point x0 ∈ Rn. We have f (x) = f (x0) + Dfx0 (x − x0) + Rx0 (x), where Dfx0 is the
derivative of f at x0, that is, the linear map represented in standard coordinates
by the matrix of partial derivatives of f , and Rx0 (x) = o(‖x − x0‖). Thus, if one
fixes ε > 0 and takes a small enough parallelepiped � centered at x0, then its
image under f lies inside the parallelepiped f (x0) + (1 + ε)Dfx0 (� − x0) and
contains the parallelepiped f (x0) + (1 − ε)Dfx0 (� − x0). Hence, the volume of a
small parallelepiped is approximately preserved if and only if | det Dfx0 | = 1. The
determinant of Df is sometimes called the Jacobian of f and is denoted by J f .

Now it is easy to deduce the criterion for preservation of phase volume.

Proposition 6.1.3 Let O ⊂ Rn be an open set. A differentiable map f : O → Rn

preserves volume if and only if |J f | = ±1.

Proof If |J f | �= 1 at some point x0, then, by the above argument for any sufficiently
small parallelepiped, the volume must change. If, on the other hand, |J f | = 1,
then, by approximating a set A by a union of parallelepipeds, we can ensure that
the volume does not change by more than a fraction ε. Since such ε can be taken
arbitrarily small, volume must be preserved. �

Of course, what we have derived is a particular case of the well-known change
of variables formula from multidimensional calculus. If we treat the map f as a
change of variables and take the characteristic function χA, then

vol f (A) =
∫

Rn
χ f −1(A)(x) dx =

∫
Rn

χA(y) det
(∂ f

∂x

)−1
(y) dy.

Thus, if det ∂ f /∂x ≡ ±1, then vol( f (A)) = vol(A).

Definition 6.1.4 Let O ⊂ Rn be an open set. A differentiable map f : O → Rn is
said to preserve orientation if |J f | > 0.

4. Differential Equations. Now consider the case of differential equations. To find
the condition for incompressibility of the solutions ϕt of the system ẋ = f (x) in Rn,
consider how the volume of small parallelepipeds is changed by a small shift ϕ�t.
As before, we write ϕ�t(x) = x + �t f (x) + R(x, �t), where R(x, �t) = o(�t). Thus,
if we are only interested in the change to order �, we should consider the Jacobian
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Figure 6.1.2. Incompressibility.

of the map ϕ̃(x) = x + �t f (x). But then we have

∂ϕ̃i(x)
∂xj

= δ
j

i + �t
∂ fi

∂xj
,

where (δ j
i )i j is the identity matrix.

For a vector field u(x) = (u1(x1, . . . , xm), u2(x1, . . . , xm), . . . , um(x1, . . . , xm)) the
divergence is defined as

div(u) = ∂u1

∂x1
+ ∂u2

∂x2
+ · · · + ∂um

∂xm
.(6.1.1)

This appears when we look for terms of order �t:

J ϕ̃ = 1 + �t
n∑

i=1

∂ fi

∂xi
+ o(�t) = 1 + �t div f + o(�t).

By differentiating with respect to t at t = 0 we obtain

d vol(ϕt(A))
dt |t=0

=
∫

A
div f dx,

a well-known formula from vector calculus. In particular,

Proposition 6.1.5 If ẋ = f (x) with div f ≡ 0, then the flow generated by the vector
field f preserves the phase volume.

Corollary 6.2.3 uses this to provide us with an important natural class of
examples of volume-preserving systems.

6.1.2 The Poincaré Recurrence Theorem

Now we show that the preservation of volume by a dynamical system whose phase
space has finite total volume implies recurrent behavior. First, we prove a special
case of a famous result by Poincaré.1 We state it for maps on a domain, that is, an
open set or the closure of an open set.

1 This appeared in the prize memoir by Henri Poincaré, Sur le problème des trois corps et les
equations de la dynamique, Acta Mathematica 13 (1890), 1–270.
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Theorem 6.1.6 Let X be a domain of finite volume in Rn or Tn and f : X → X an
invertible differentiable volume-preserving map. Then for any x ∈ X and r > 0 there
exists an n ∈ N such that

f n(Br (x)) ∩ Br (x) �= ∅.(6.1.2)

Proof If there are x ∈ X , r > 0 such that f n(Br (x)) ∩ Br (x) = ∅ for all n ∈ N, then
f n+k(Br (x)) ∩ f k(Br (x)) = ∅ for all n, kj ∈ N since f k is invertible. Thus all images
of Br (x) are pairwise disjoint and

vol(X) ≥ vol

(
n−1⋃
k=0

f k(Br (x))

)
=

n−1∑
k=0

vol( f k(Br (x))) = nvol(Br (x))

for all n ∈ N because f k preserves volume. Then vol(X) = ∞, since vol(Br (x)) > 0.
This proves the contrapositive. �

Corollary 6.1.7 Let f : X → X be an invertible volume-preserving differentiable
map, where X is a domain of finite volume inRn orTn. Then for any x ∈ X there exists a
sequence of points yk ∈ X and a sequence mk → ∞ such that yk → x and f mk(yk) → x
as k → ∞.

Proof Let m0 = 1. Define yk and mk inductively. Applying Theorem 6.1.6 to f −2mk−1

yields an m ∈ N for which there exists a yk ∈ f −2mmk−1 (B1/k(x)) ∩ B1/k(x). Let
mk := 2mmk−1. Then mk → ∞, d(x, yk) < 1/k and d(x, f mk(yk)) < 1/k. �

Now we study the recurrent behavior of individual orbits.

Definition 6.1.8 Let X be a metric space and f : X → X a continuous map. A point
x ∈ X is said to be positively recurrent with respect to f if there exists a sequence
nk → ∞ such that f nk(x) → x. If f is invertible, then x is said to be negatively
recurrent if it is positively recurrent for f −1 and recurrent if it is both positively and
negatively recurrent.

Alternatively one can describe recurrence in terms of the notion of an ω-limit
set from Definition 4.3.18: A point is positively recurrent if and only if it is in its
own ω-limit set. In general, one cannot expect that, for a volume-preserving map,
all points are recurrent, even though this happens in all of the examples that we
considered so far, such as rotations of the circle, translations of the torus, or the
linear twist. In Section 6.2.2 we consider the mathematical pendulum, which has
some nonrecurrent orbits, namely, those on the homoclinic loop, which converge
to the unstable equilibrium. In Chapter 7 we encounter volume-preserving systems
with much more complicated orbit structure, where many types of behavior,
including nonrecurrent ones, coexist. In general, one can only assert the existence
of many recurrent orbits in a volume-preserving systems.

Theorem 6.1.9 Let X be a closed domain of finite volume in Rn or Tn and f : X → X
an invertible volume-preserving map. Then the set of recurrent points for f is dense
in X.
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Proof Given ε > 0 and N ∈ N a point, x ∈ X is said to be (ε, N)-recurrent if there
exists n > N such that d( f n(x), x) < ε. By Corollary 6.1.7, the set of (ε, N)-recurrent
orbits is dense in X for any N ∈ N and ε > 0: Given x ∈ X , δ, ε > 0, and N ∈ N, take
k such that d(yk, x) < δ, nk > N, and d(yk, x) + d( f nk(yk), x) < ε. It is also open by
continuity of f and its iterates. On the other hand, x is positively recurrent if and
only if it is (1/n, k)-recurrent for all n, k ∈ N [take nk > k such that d( f nk(x), x) < 1/k
to get nk → ∞ and f nk(x) → x]. Thus, the set of all positively recurrent points is the
intersection of the open dense sets of (1/n, k)-recurrent points for n, k ∈ N. That this
intersection is dense follows from the Baire Category Theorem (Lemma A.1.15). �

We have established the density of positively recurrent points. In the same
way we obtain the density of negatively recurrent points by considering (2−k, N)-
recurrent points for f −1. Finally, the density of recurrent points follows by consid-
ering points that are (2−k, N)-recurrent for both f and f −1. This is an open dense
set, and the (countable) intersection over all k, N ∈ N is therefore also dense by
Lemma A.1.15.

6.1.3 Uniformity of Recurrence

The kind of recurrence established by Theorem 6.1.9 is irregular in two
different ways. First, as we already noticed, it may not be uniform in space:
Some points may be recurrent, while others are not. Second, it says nothing
about the set of moments for which a point returns approximately. One way to
sharpen and specify a notion of recurrence is to ask how regular (or uniform) it
is with respect to time. So far the only case where we can answer this is that of
periodic points. If x ∈ X is a periodic point with minimal period n, then the orbit
O(x) = {x, f (x), . . . , f n−1(x)} of x is a finite (hence discrete) set consisting of
n points; and if r is so small that d( f k(x), f l(x)) > r for k �= l ∈ {0, . . . , n − 1},
then d( f n(y), y) < r implies f n(y) = y for any point y ∈ O(x), and hence the set
{n ∈ Z d( f n(y), y) < r} is the arithmetic progression nZ.

One of the properties of an arithmetic progression is that it overlaps with
any set of consecutive integers that has more elements than the difference n
defining the progression. Put differently, all gaps have the same length. One
way of relaxing this condition is to impose a bound on the length of the gaps.

Definition 6.1.10 A subset S of N or Z is said to be syndetic if there is an N ∈ N

such that {n + k 1 ≤ k ≤ N} ∩ S �= ∅ for all n.

This property provides a key to studying the uniformity of recurrence for
nonperiodic points.

Definition 6.1.11 Let f : X → X be a continuous map of a metric space X. A point
x ∈ X is said to be uniformly recurrent if, for any r > 0, the set
{n d(x, f n(x)) < r} is syndetic, that is, there exists N = N(r) such that,
among any N successive iterates f n+k(x), k = 0, . . . , N − 1, there is at least one
for which d(x, f n+k(x)) < r.

Obviously any periodic point is uniformly recurrent. The proof of
Proposition 4.1.1 shows that this holds for an irrational rotation with
N = �1/r	 + ε. Since periodic points are uniformly recurrent, we have
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Proposition 6.1.12 For a circle rotation all points are uniformly recurrent.

While the periodic case shows that the uniform recurrence of all points does
not imply minimality, there is a close connection between the two notions.

Theorem 6.1.13 Suppose X is compact and f : X → X is a homeomorphism.
Then a point is uniformly recurrent if and only if its orbit closure is a compact
minimal set (see Definition 4.1.4).

Proof Suppose x is uniformly recurrent and let U be a neighborhood of x with
compact closure. Then R := {n ∈ Z f n(x) ∈ U } is syndetic, so we can take
N ∈ N such that among any N successive iterates f n+k(x), k = 0, . . . , N − 1,
there is at least one for which f n+k(x) ∈ U . Then O(x) = { f n(x) n ∈ Z} =
{ f n+k(x) n ∈ R, 0 ≤ k < N} ⊂ ⋃N−1

k=0 f n(U ) =: UN. Since the closure of UN is
compact, so is that of O(x). Furthermore, for y ∈ O(x) this gives y ∈ UN; hence
O(y) ∩ U �= ∅. Since U is arbitrary, this implies x ∈ O(y), which then gives
O(y) = O(x).

Conversely, suppose O(x) is a compact minimal set and take a neighborhood
U of x. Since O(x) � { f n(U ) n ∈ Z} is a closed proper invariant subset of
O(x), it must be empty by minimality. This shows that O(x) ⊂ { f n(U ) n ∈ Z},
and the definition of compactness implies that there is a finite subcover, so
O(x) ⊂ O(x) ⊂ f m(UN ) for some N ∈ N and m ∈ Z.

As before, let R := {n ∈ Z f n(x) ∈ U }. Now O(x) ⊂ f m(UN ), so for any i ∈
Z there is a y ∈ U and a nonnegative k < N such that f i (x) = f m( f k(y)). Thus
f i−m−k(x) ∈ U and i − m − k ∈ R. Since m is fixed and 0 ≤ k < N, this proves
that R is syndetic, as required. �

Uniform recurrence implies that closures partition the phase space:

Proposition 6.1.14 Suppose X is compact and f : X → X is a homeomorphism.
Then the orbit closures define a partition of X by compact sets if and only if
every point is uniformly recurrent.

Proof By Theorem 6.1.13 and Exercise 4.1.8, uniform recurrence of all points
implies that orbit closures are disjoint or equal (as well as compact). Conversely,
the disjoint-or-equal dichotomy implies the minimality of orbit closures, so
compactness and Theorem 6.1.13 imply the uniform recurrence of all orbits. �

The linear twist (Example 6.1.2) illustrates these results nicely.

� EXERCISES

� Exercise 6.1.1 Prove that an orientation- and volume-preserving (that is,
length-preserving) homeomorphism of the circle is a rotation.

� Exercise 6.1.2 Show that a volume-preserving map does not have an attracting
fixed point.

� Exercise 6.1.3 Decide whether the twist T : S1 × [0, 1] → S1 × [0, 1], T(x, y) =
(x + f (y), y), where the sum is defined modulo 1 and f is differentiable, preserves
area.
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� Exercise 6.1.4 Decide whether the flow generated by the differential equation(
ẋ
ẏ

)
=

(
y

−x

)
preserves area.

� Exercise 6.1.5 Decide whether the flow generated by the differential equation(
ẋ
ẏ

)
=

(
y

− sin x

)
preserves area.

� Exercise 6.1.6 Decide whether the flow generated by the differential equation(
ẋ
ẏ

)
=

(
y

−y − sin x

)
preserves area.

� Exercise 6.1.7 Let X be a closed domain of finite volume in Rn or Tn and
f : X → X an invertible map with an attracting fixed point. Show that the set of
recurrent points for f is not dense in X .

� Exercise 6.1.8 Give an example of a metric space and of countably many open
dense sets in it whose intersection is empty.

� Exercise 6.1.9 Prove the statement of Theorem 6.1.9 for an open domain with
compact closure.

� PROBLEMS FOR FURTHER STUDY

� Problem 6.1.10 Let X be a metric space and f : X → X topologically transitive.
Show that the set of points whose orbit is not dense is the union of countably many
nowhere dense sets.

� Problem 6.1.11 If an interval is represented as a countable union of closed sets,
then one of those sets contains an interval.

6.2 NEWTONIAN SYSTEMS OF CLASSICAL MECHANICS

The discovery that mechanical systems are described by differential equations
(the force affects the second derivative of the position) and the development of
calculus constituted one of the most profound revolutions of human thought and
in particular created an enterprise of describing, predicting, and designing physical
systems that has been spectacularly successful over the past three centuries. We
present some of the methods of describing and solving such systems.

In a mechanical system a set of data such as positions (or configurations; these
may include angles) and velocities of its parts describe its state completely in the
sense of the following determinacy principle: The present state of a mechanical
system determines its future evolution uniquely. [In our terminology: A mechanical
system defines a dynamical system on its state space.] If, for example, our me-
chanical system consists only of a single point mass, then the state is given by the
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position x in Euclidean space and the velocity v = ẋ, the derivative of x with respect
to time t. In particular, if the entire evolution is determined by these data, that is,
x is determined as a function of t, then so is the second derivative ẍ of x. Therefore
ẍ is given in terms of t, x, and ẋ: ẍ = f (t, x, ẋ). Thus, such mechanical systems are
described by differential equations. [The existence and uniqueness of solutions
of differential equations (Theorem 9.4.1) in turn then implies the determinacy
principle.] In fact, the “state” of a mechanical system is always described in terms
of positions and velocities, and accordingly the differential equations that arise
in mechanics are always of second order. The set of positions, or configurations,
is called the configuration space, and the space of states the state space or
phase space.2

This section is an excursion into mechanics. This is an important subject, and
it belongs here because there are two aspects of mechanical systems that can
make their dynamics simpler than systems of other differential equations with as
many variables may be: The confinement of orbits to energy levels in conservative
systems effectively reduces the dimension, and, on the other hand, dissipation of
energy due to friction may make the dynamics asymptotically simple.

We begin with the Newton equation and its basic properties, and introduce
some mechanical ideas using the mathematical pendulum. We also discuss the
central force problem (and Kepler’s second law), which is at the heart of celestial
mechanics, from which in turn dynamics derived some of its most important
motivation. Finally, we introduce the Lagrangian approach to mechanics, which
is related to the principle that the path of a mechanical system through its phase
space solves an optimization problem.

6.2.1 The Newton Equation

The central law of classical mechanics is Newton’s Law that an external force acting
on a mechanical system, such as a point mass, a rigid body, a planet, and so on,
causes a proportional change in velocity:

f = ma.

It describes, for example, the motion in Rn of a point of mass m under the influence
of a force f by giving the acceleration a. It also describes a pendulum, where
constraint forces are present.

1. Second-Order Differential equations. The Newton equation gives rise to a
second-order differential equation: If the position of the point is taken to be a point
x ∈ Rn, then the acceleration is a := ẍ = d2x/dt2. If the force f is a function of x
only (this rules out friction), then we get the equation

m
d2x
dt2

= f (x).

2 See also Chapter 6 of Poincare’s Science and Hypothesis: The Foundations of Science; Science and
Hypothesis, The Value of Science, Science and Method, translated by George Bruce Halsted, The
Science Press, Lancaster, PA, 1946.
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Example 6.2.1 For an apple falling off a tree, the force is the constant gravitational
force mg (where g is some 10m/s2 or 32ft/s2) and hence ẍ = −g, where x is the
height. (Apple trees are not tall enough for air resistance to matter.)

Integrating twice we get x(t) = −gt2/2 + v(0)t + x(0).

Example 6.2.2 (Harmonic Oscillator) For a mass attached to a spring and
displaced from the equilibrium (rest) position by x, Hooke’s law states that the
force exerted by the spring is −kx, where k is the spring constant (which measures
the stiffness of the spring). Thus we obtain ẍ = −kx.

We get the solutions x(t) = a sin(
√

kt) + b cos(
√

kt) by educated guessing and
linear combination.

2. Conversion to First Order. To study such second-order systems of differential
equations in any generality it makes sense to convert the equations to first order
by defining the velocity as an extra independent variable, that is, by setting
v := ẋ = (dx/dt) ∈ Rn. Then md2x/dt2 = f (x) becomes

d
dt

x = v

d
dt

mv = f (x).

This is an autonomous first-order system of differential equations in the new
variables ( x

v ). Its general solution defines a dynamical system on Rn × Rn (or
a subset) in coordinates (x, v) (Section 9.4.7). These equations have a number
of special properties that set them apart from general autonomous systems of
differential equations in R2n.

3. Volume Preservation. Since the pertinent derivatives are all zero, the vector
field in R2n defined by a Newtonian equation is divergence free, that is, it has zero
divergence [see (6.1.1)].

By Proposition 6.1.5, this implies that Newtonian systems preserve phase
volume:

Corollary 6.2.3 Newtonian systems preserve the volume given by dx dv in the phase
space.

4. Energy and Momentum. The quantity p := mv is called momentum. The
kinetic energy is given by 1

2 m〈v, v〉.
If the force f is a gradient vector field f = −∇V := −(∂V/∂x1, . . . , ∂V/∂xm), then

d
dt

mv = −∇V.(6.2.1)

The function V : Rn → R is called potential energy and the total energy H =
1
2 m〈v, v〉 + V is preserved because

dH
dt

= 〈v, mv̇〉 + dV
dt

= 〈v, mv̇〉 + 〈ẋ, ∇V 〉 = 〈v, mv̇ + ∇V 〉 = 0,
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and a function with zero derivative along a curve is constant on that curve. This is
a useful simple principle in analysis, and it can be used to advantage in connection
with continuous-time systems. Energy is also conserved in constrained systems
(although momentum may not be). Because of the conservation of energy, these
systems are said to be conservative.

5. Geodesic Flow. The entire preceding discussion can be carried out for free par-
ticle motion, that is, when the force is zero. In Euclidean space this yields constant
velocity motion along a line. In spaces other than Euclidean space, the resulting mo-
tions have constant speed, but the concept of a line has to be generalized to that of a
geodesic. Therefore, this is also known as the geodesic flow. Examples are the sphere
whose geodesic flow is constant speed motion along great circles, these being the
geodesics on the sphere, and the torus, where the motion is along projections of
lines. Geometrically and physically one can determine geodesic on a surface in R3

from a direction by intersecting the surface with the plane spanned by the normal
vector and the desired direction. This geometry corresponds to the fact that, for
motion along a geodesic with constant speed, the acceleration is perpendicular
to the surface because the only available force is the constraint force that keeps a
particle on the surface. This constraint force is orthogonal to the surface because
any tangent component would result in a net force on the particle in the surface.

Geodesic flows appear in a few other places in this book, such as Section 5.2.2
and Section 6.2.8.

6.2.2 The Mathematical Pendulum

As an example consider a pendulum consisting of a point mass in the plane
attached by a rod to a fixed joint, like the pendulum in a grandfather clock.

1. The Model. If we take 2πx to be the angle of deviation from the vertical, then
the pendulum is subject to a downward gravitational force mg (where m is the mass
of the pendulum and g is the gravitational acceleration of 9.81m/s2) whose angular
component is −mg sin 2πx. Equating this with mass times acceleration, that is,
with m · 2π Lẍ, shows that the pendulum is described by the differential equation

2πmLẍ + mg sin 2πx = 0.

Figure 6.2.1. The mathematical pendulum.
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2. Nondimensionalizing. It is often useful to unclutter such differential equations
by nondimensionalizing them, that is, by choosing, for example, a time scale in
such a way that the coefficients of the differential equation are dimensionless, and
maybe fewer in number as well. The first step to this end is to pick some time T to be
determined later in such a way that the derivatives of x in τ are roughly of size one
when we replace the time t by a dimensionless time τ := t/T . Note that by the chain
rule dx/dt = dx/dτ dτ/dt = (1/T )dx/dτ and likewise d2x/dt2 = (1/T 2)d2x/dτ 2.
Thus, the differential equation becomes

2πmL/T 2 d2x
dτ 2

+ mg sin 2πx = 0.

Both terms are forces and will therefore become dimensionless if we divide by the
force mg, yielding

2π L
gT 2

d2x
dτ 2

+ sin 2πx = 0.(6.2.2)

The dimensionless coefficient 2π L/(gT 2) should be of order one if d2x/dτ 2 is to be
of order one, so we take T = √

2π L/g and finally obtain the differential equation

ẍ + sin 2πx = 0,

where the dot now denotes differentiation with respect to τ . Physically, the choice
of T is natural, because it is directly related to the period of the harmonic oscillator
that arises from linearizing the mathematical pendulum (Section 6.2.2.7).

3. Conversion to First Order. This differential equation is equivalent to the system
of first-order differential equations

ẋ = v,

v̇ = − sin 2πx
(6.2.3)

for x ∈ S1, v ∈ R. A particular interest of this elementary example lies in the fact
that, due to the periodicity of the angular coordinate (but not the velocity!), the
phase space is a cylinder S1 × R.

The total energy is given by H(x, v) = (1/2)v2 − (1/2π) cos 2πx. Since there
is a constraint, it is useful to explicitly verify energy conservation: dH/dt = vv̇ +
(1/2π) sin 2πxẋ = 0. Thus the orbits are on level curves H = const.

4. Orbits. For −1/2π < H < 1/2π , each energy level consists of a single closed
curve corresponding to oscillations around the stable equilibrium (x, v) = (0, 0).
Those orbits are separated from higher-energy orbits corresponding to full and
repeated rotations around the joint by a homoclinic loop (see Definition 2.3.4) with
H = 1/2π containing the unstable equilibrium (x, v) = (1/2, 0). (See Figure 6.2.2.)
We do not recommend to verify these homoclinic orbits with the pendulum in a
grandfather clock. First of all, these orbits are so unstable that (because of friction,
however small) one does not actually observe them, and, second, you would break
the clock. For H > 1/2π , each energy level consists of two orbits, corresponding to
rotation in opposite directions. Thus almost all orbits of this system are periodic,
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Figure 6.2.2. Phase portrait of the mathematical pendulum.

but there are two distinct families of these. The lower-energy orbits encircle the
equilibrium (0, 0). Any two of these can be continuously deformed into each
other. The high-energy orbits go around the cylinder (like a rubber band around
a rolled-up poster), and these can be deformed into each other also. But none of
the lower-energy orbits can be deformed into any high-energy orbit. Accordingly,
these two families are separated by the singular orbits homoclinic to the unstable
equilibrium (1/2, 0).

5. The Global Picture. Qualitatively, this situation corresponds to the situation of
a cylinder bent into the shape of a U-tube (like the drain pipe under a sink) with H
being the height function (Figure 6.2.3). The level curves are then horizontal slices.
The stable equilibrium (0, 0) corresponds to the lowest point on this tube, and the
unstable equilibrium is the saddle of the pipe. The energy levels above 1/2π consist
of pairs of closed curves above the saddle that can be slid up and down freely, but
not to below the saddle. The lower-energy levels are below the saddle and can be

Figure 6.2.3. Energy as height function.
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contracted down all the way to the lowest point. The figure eight curve at the level
of the saddle cannot be moved at all. Altogether, then, the phase space decomposes
into a union of regular curves and one singular figure-eight curve. Any time-t map
of this system translates the parameter in each of these invariant (deformed) circles.
Thus, we have found that the dynamics decomposes into rotations of (deformed)
circles, in particular that rotations of circles occur naturally in simple mechanical
systems.

6. Integrability, Invariant Length Element. Having decomposed the phase space
into level curves is not only useful for obtaining a good qualitative and intuitive
understanding, but it also provides the means for writing down exact solutions in
terms of functions obtainable from elementary functions by integration, inversion,
and algebraic operations. For example, in this case the solutions involve elliptic
integrals, which cannot be expressed directly in terms of elementary functions.

Proposition 6.2.4 provides a mechanism for producing the solutions. To briefly
describe it in our context, we can write the standard area element in the phase
space as dHdl, where dH is flow invariant since H is flow invariant, and dl is the
length element along the curves H = const., divided by ‖∇ H‖. By (6.2.3), ‖∇ H‖ is
the speed of motion along H = const., so dl is also flow invariant and hence the
flow also preserves the area. As we noted in Section 6.1, the last fact is equivalent
to the vanishing of divergence and hence is common to all Newtonian systems.

7. Linearization. This is a good opportunity to see how linearization affects a
phase portrait, or how well the linearized system reflects the actual dynamics. Since
linearization is supposed to provide a good local approximation of the behavior
of the nonlinear system, it is of most interest near an equilibrium. We consider
motions near the stable equilibrium, that is, small oscillations.

We mean to compare our picture to the explicit solutions of the differential
equation

ẋ = v

v̇ = −2πx

obtained from (6.2.3) by replacing the right-hand side with its linear part at (0, 0).
This is the harmonic oscillator (Example 6.2.2).

The total energy of the harmonic oscillator is H(x, v) = v2/2 + πx2. Note that
for the Hamiltonian

H(x, v) = 1
2

v2 − 1
2π

cos 2πx

the second-order Taylor expansion is

1
2

v2 − 1
2π

(1 − 1
2

(2πx)2) = 1
2

v2 − 1
2π

+ πx2,

that is, the same as that of the linearized system (up to the additive constant −1/2π ,
which changes neither level sets nor derivatives). The level curves for the harmonic
oscillator are v2/2 + πx2 = const., that is, ellipses centered at the origin. From the
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explicit solution

A

(
sin(

√
2π(t + c))/

√
π

cos(
√

2π(t + c))
√

2

)
we know that all solutions have the same period.

Qualitatively, this simple phase portrait looks much like that for the mathe-
matical pendulum near the origin and accordingly the linearized system provides
a sensible approximation here. Note, however, two differences. Away from the
origin the phase portraits become qualitatively different due to the presence of
a second equilibrium and the homoclinic loop for the mathematical pendulum.
Furthermore, the periodic solutions encircling (0, 0) have longer periods for larger
energy, because the speed near the unstable equilibrium is small. In particular,
the nonlinear system does not have constant periods of the solutions near (0, 0),
that is, the period depends on the amplitude of the oscillation. This is one of the
issues that affects the design of pendulum clocks. The amplitude has to be kept
constant (or the pendulum needs to be equipped with cycloidal cheeks to remove
the dependence on amplitude).

Note that the phase space of the mathematical pendulum and harmonic
oscillator decomposes into invariant (deformed) circles and the time-one map of
the dynamics simply shifts the parameter on each circle by a constant amount
depending on the circle. Thus, a detailed qualitative description of this time-1 map
is naturally obtained by studying each of these circles separately, hence by studying
circle rotations (Section 4.1.1).

6.2.3 Invariant Volume on Energy Levels

In addition to preserving phase volume, as we just noted, Newtonian systems
also preserve the level sets of the Hamiltonian energy function H. In Sec-
tion 6.2.2.6 we observed that in the case of the mathematical pendulum the
flow also preserves a length parameter on energy level curves. We obtained
this directly from the equations of motion (6.2.3), and used it to deduce area
preservation. Now we show that any map that preserves volume and the level
sets of a function also preserves a volume on these level sets. To see the idea
most clearly let us first study the two-dimensional case with some care, which
will in particular illuminate our conclusions about the pendulum.

Proposition 6.2.4 Suppose f : R2 → R2 preserves area and H is an invariant
function, that is, H( f (p)) = H(p) for all p ∈ R2. Then each level set that is non-
critical, that is, contains no critical points, can be decomposed into curves cz :=
{p H(p) = z} each of which can be parametrized as cz(t) such that f (cz(t)) =
cz(t + s(z)) for some function s depending only on the level set. In other words,
with respect to this parameter f acts on each curve like a translation.

Proof We parametrize cz in such a way that ‖c ′
z(t)‖‖DHcz(t)‖ = 1 for a all t.

Consider a unit tangent vector v and the unit normal vector w = DH/‖DH‖
to cz at a point p = cz(t). Then the area of the rectangle P spanned by εv
and εw is ε2. As illustrated in Figure 6.2.4, its image f (P) under f has area
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ε

ε
P

p = cz(t) f(p) = cz(t)

f(P )

δ

v′

w′

v

w

∼

Figure 6.2.4. Motion on level sets.

(up to a small relative error that goes to zero as ε → 0) equal to that of the
parallelogram at f (p) = cz(t̃ ) spanned by the images εv ′ and εw ′ of εv and εw
under D f . With εv ′ as the base of the parallelogram, its height δ is the length
of the projection of εw ′ to the normal to cz at f (p). By linear approximation

H(p + εw) ≈ H(p) + ε‖DHp‖
H( f (p) + εw ′) ≈ H( f (p)) + δ‖DHf (p)‖.

Since f preserves H, the left sides are equal, as are the first terms on the right.
Therefore δ ≈ ε‖DHp‖/‖DHf (p)‖ and f (P) has area δε‖v ′‖ ≈ ‖v ′‖ε2‖DHp‖/
‖DHf (p)‖, which by area preservation must equal ε2. This implies that ‖v ′‖
‖DHf (p)‖ = ‖DHp‖ and hence v′‖DHf (p)‖ = v‖DHp‖. (Note that ε does not
appear in these last equations, and that they are therefore exact.) If we take the
unit vector v = c′

z(t)‖DHp‖, then v ′ = D f (c ′
z(t))‖DHp‖ and thus

c ′
z(t̃ )

dt̃
dt

= d
dt

cz(t̃ ) = D f (c ′
z(t)) = v ′

‖DHp‖ = v
‖DHf (p)‖ = c ′

z(t)‖DHp‖
‖DHf (p)‖ = c ′

z(t̃ )

because c ′
z‖DH‖ = 1 everywhere. This evidently implies that dt̃/dt = 1 and

hence t̃ = t + s(z) for some function s depending only on z, that is, depending
only on the invariant curve. �

We note again that this description corresponds exactly to the situation
encountered with the mathematical pendulum. A further common feature is
that here, too, the calculations are entirely local. This shows that it is not
necessary to have a map defined on all of R2, nor a function H defined on the
entire phase space. With appropriate qualifications, then, our result is valid
for a map of an open subset of R2, say, that preserves area and a function H
on this open set. Likewise, we can also apply this result to maps of the cylinder
S1 × R, for example, because these local calculations work just as well in that
setting. The basic reason can be explained geometrically: Consider a flow box,
that is, a small area swept out by flowing a local transversal for a small amount
of time. If one follows this flow box further along to an area where level sets
are close together (large gradient of H ), then these level sets “squeeze” the flow
box in the transverse direction, and so it has to elongate by area preservation
(see Figure 6.1.2). This elongation corresponds to increased speed in regions
of large gradient of H. This picture works in higher dimension as well, but now
the elongation corresponds to volume expansion on level sets.
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Theorem 6.2.5 If f : Rn → Rn is volume-preserving and H is an invariant
function, then on each level set one can define a volume function Ivol that is
invariant under f . That is, if for any open subset O of a noncritical level set we
define Ivol(O) := ∫

O1/‖ grad H‖, then Ivol(O) = Ivol( f (O)) for any such O.

Proof Analogously to before pick a point p (not critical for H) in a level set
Ah := {p H(p) = h} of H and take an orthonormal set v1, . . . , vn−1 of tangent
vectors to Ah at p. Let vn be a unit normal vector to Ah at p (in the same
direction as grad H). Consider the parallelepiped P spanned by εv1, . . . , εvn

of volume εn and denote the parallelepiped spanned by εv1, . . . εvn−1 by Q.
The image f (P) under f of P is essentially the parallelepiped spanned by
εD f v1, . . . , εD f vn. The volume of this latter parallelepiped does not change
if we replace εD f vn by its projection to the normal vector v ′

n to Ah at f (p)
(because volume equals base times height). Denote the length of this projection
by δ. By linear approximation we have

H(p + εvn) ≈ H(p) + ε‖ grad Hp‖
H( f (p) + v ′

n) ≈ H( f (p)) + δ‖ grad Hf (p)‖.
The left sides and the first terms on the right are equal, so (up to small error)
we have δ = ε‖ grad Hp‖/‖ grad Hf (p)‖. Since the volume δ vol( f (Q)) of f (P) is
equal to the volume ε vol(Q) of P, we must have

Ivol(Q) = vol(Q)
‖ grad Hp‖ = vol( f (q))

‖ grad Hf (p)‖ = Ivol( f (Q)). �

6.2.4 Constants of Motion

The key observation for our analysis of the mathematical pendulum was the
fact that the total energy was preserved, that is, it is a constant of motion, or a
first integral. Hence the two-dimensional phase space of the system splits into
invariant one-dimensional-level curves of constant energy. On each such curve
there are only several simple possibilities for the behavior of solutions since we are
essentially dealing with first-order autonomous differential equations. Namely, for
regular energy levels, that is, noncritical values of the total energy, the vector field
does not vanish. Hence, if a solution is bounded, it must be periodic; and if it is
unbounded, it goes to infinity along the particular noncritical level curve of energy.
As we saw in the pendulum case, the nonconstant solutions on a critical energy
level are attracted asymptotically, as time goes to +∞ and to −∞, to (possibly
different) constant solutions (compare with the discussion in Section 2.3). While a
pathological situation is also possible in principle when a critical solution does not
converge to a fixed point but wanders near a whole curve of fixed solutions instead,
this situation does not appear in natural models. Thus for Newtonian systems
with one degree of freedom the simple description above gives a fairly complete
qualitative analysis of the orbit behavior.

6.2.5 Central Forces

Among the main subjects of classical mechanics is that of celestial mechanics, that
is, the description of the motion of the planets around the sun, or of the moons
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Figure 6.2.5. Central force.

around the planets and such like. Its simplest model has two bodies moving freely,
but subject to mutual gravitational attraction. One may either pass to coordinates
centered at the center of mass of the system or assume that one of them (the sun) is
much heavier than the other and hence essentially stationary (or rather, moving
with constant velocity). Either way one can write the position of the second body
(the planet) as x ∈ R3 � {0} and its velocity as v ∈ R3. The potential energy of
the gravitational field is given by V (x) = −1/‖x‖, so Newton’s equation becomes

ẍ = ∇ 1
‖x‖ = − x

‖x‖3
or

ẋ = v,

v̇ = − x
‖x‖3

.

The kinetic energy is 〈v, v〉/2, as usual. Thus the total energy is E(x, v) =
〈v, v〉/2 − 1/‖x‖. It is conserved since our equations have the form (6.2.1).
There are other constants of motion, namely, the components of angular
momentum x × v = (x2v3 − x3v2, x3v1 − x1v3, x1v2 − x2v1). To check this, note,
for example, that

d
dt

(x1v2 − x2v1) = ẋ1v2 + x1v̇2 − ẋ2v1 − x2v̇1(6.2.4)

= v1v2 − x1x2

‖x‖3
− v2v1 + x2x1

‖x‖3
= 0.

(See also Lemma 6.2.6.) We will describe the dynamics by explicitly solving the
equations of motion. Since v ⊥ x × v, the motion is in a plane perpendicular to
x × v. Thus for any given direction of x × v the problem reduces to a problem
in R2 � {0}, that is, with x3 = v3 = 0 after a suitable coordinate change.

Figure 6.2.6. Kepler’s Second Law.
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In passing we note that x1v2 − x2v1 is twice the area of the triangle with
vertices 0, x, x + v. Thus x1v2 − x2v1 is twice the derivative of the area swept
out by x. The fact of this being constant is known as Kepler’s Second Law:
The ray from the sun to a planet sweeps out equal areas in equal amounts of
time. If A := x1v2 − x2v1 �= 0, then we can show that the orbits are on conics.
Recall from analytic geometry that in polar coordinates conics are given by
r = ed/(1 + e cos(θ − θ0)) with eccentricity e ∈ (0, 1) for ellipses, e = 1 for
parabolas, and e > 1 for hyperbolas. If we write r = ‖x‖, then

d
dt

(x1

r

)
= v1r2 − x1〈x, v〉

r3
= −(x1v2 − x2v1)

x2

r3
= Av̇2,

so Av2 = x1/r + C for some C ∈ R. Likewise, Av1 = −x2/r − D. Then

Cx1 + Dx2 + r = Ax1v2 − x2
1

r
− Ax2v1 − x2

2

r
+ r = A(x1v2 − x2v1) = A2,

and in polar coordinates x1 = r cos α, x2 = r sin α one has

r(α) = r A2

r + Cx1 + Dx2
= A2

1 + C cos α + D sin α
(6.2.5)

= A2

1 + √
C2 + D2 cos(α − β)

,

where cos β = C/
√

C2 + D2 and sin β = D/
√

C2 + D2, that is, β is such that
r(β) is minimal (the perihelion angle). Equation (6.2.5) is the equation of a
conic with eccentricity e = √

C2 + D2, which is determined by E and A, that
is, the values of energy and angular momentum:

e2 = C2 + D2 =
( Av2 − x1

r

)2
+

( Av1 + x2

r

)2
(6.2.6)

= x2
1 + x2

2

r2
+ 2A2 v2

1 + v2
2

2
− 2A

x1v2 − x2v1

r
= 1 + 2E A2.

Thus the orbit is an ellipse if E < 0, a hyperbola if E > 0, and a parabola if E =
0. In qualitative terms we should emphasize two main properties of the solutions
to the central force problem. All bounded orbits are periodic (elliptic orbits). All
unbounded orbits go to infinity in both positive and negative time (hyperbolic
and parabolic orbits). This simple dichotomy is a specific property of the gravita-
tional potential; that is, it depends crucially on the power of r = ‖x‖ that appears
in the potential V . For other powers of r bounded orbits tend to be nonperiodic.
In fact, as a consequence of the theory of general relativity, the planet Mercury ef-
fectively experiences a slightly different power of r in the potential. Accordingly,
its perihelion angle changes slowly over time, that is, its orbit is essentially an
ellipse but does not quite close up. This slow drift of the perihelion angle is called
precession. In fact, the interaction with Venus produces some drift that can be
perfectly accounted for by Newtonian theory. However, observational accuracy
was good enough in the nineteenth century to detect a further drift: There is a dif-
ference between observed precession (5.70”/year) versus precession attributable
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to planetary interaction by Newtonian gravity (5.27”/year). (It helps that the or-
bit is more elliptic than others in the solar system: The eccentricity is 0.2056,
and the perihelion and aphelion distances are 4.59 · 107km and 6.97 · 107km,
respectively.) General relativity produces the minute required correction.3

6.2.6 Harmonic Oscillator

A simple central force problem is given by the potential V (x) = ‖x‖2 in the plane.
Newton’s equation becomes

ẍ = −∇‖x‖2 = −x,

and the components decouple into a harmonic oscillators. Therefore the solutions
are independent oscillations with the same frequency in either coordinate. The
planar orbits accordingly trace out ellipses centered at the origin.

Only the inverse-square and square potential allow periodic solutions. This was
one ingredient in Newton’s deduction that gravity is (at least very nearly) given by
an inverse-square potential force.

6.2.7 Spherical Pendulum

A simple-looking central force system is given by the spherical pendulum, that is,
a point mass attached to a point by a rod and subject to gravity. (See Figure 6.2.7.)
The equations of motion are easy to write if we note that we can use the potential
energy V as in Section 6.2.1.4. The potential energy is given by the height of the

mass above its rest position, which is U(x) = 1 −
√

1 − x2
1 − x2

2 . In this case a second
integral of motion independent of energy is the angular momentum with respect
to the vertical axis, that is, the third coordinate of the angular momentum. (This is
related to the natural rotational symmetry of the system.) To describe the motion
for fixed values of both integrals we use polar coordinates. These are adapted to the
rotational symmetry and to the fact that the force −∇U is radial, that is, directed
toward the origin. We write x = (x1, x2) = (r cos θ, r sin θ).

Lemma 6.2.6 In a central force field, angular momentum is preserved.

Proof Angular momentum is defined as the cross product M := x × ẋ. By the
product rule, Ṁ = ẋ × ẋ + x × ẍ = x × ẍ = 0, because in a central force field x and
ẍ are collinear. �

Figure 6.2.7. The spherical pendulum.

3 Albert Einstein, Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie,
Sitzungsberichte der königlich preußischen Akademie der Wissenschaften XLVII (1915), 831–839.
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To express angular momentum in polar coordinates we choose a time-
dependent basis of a radial unit vector vr and an angular unit vector vθ perpendicular
to it and pointing in the direction of increasing θ . Then v̇r = θ̇vθ and v̇θ = − θ̇vr ,
so ẋ = (d/dt)(‖x‖vr ) = d‖x‖/dt vr + ‖x‖v̇r = ṙvr + r θ̇vθ , and hence the angular
momentum is

M = x × ẋ = x × ṙvr + x × r θ̇vθ = r θ̇x × vθ = r2θ̇vr × vθ .

By Lemma 6.2.6, r2θ̇ is constant.
We can use this to reduce the problem by finding an equation of motion for r

that does not involve θ .
Differentiating ẋ = ṙvr + r θ̇vθ by using v̇r = θ̇vθ and v̇θ = −θ̇vr gives

−∂U
∂r

vr = −∇U = ẍ = (r̈ − r θ̇)vr + (2ṙ θ̇ + r θ̈)vθ ,

so r̈ − r θ̇ = −∂U/∂r and 2ṙ θ̇ + r θ̈ = 0. Inserting θ̇ = ‖M‖/r2 (angular momen-
tum) gives r̈ = −∂U/∂r + ‖M‖/r3, the promised equation without θ . Since
U = 1 − √

1 − r2, we have ∂U/∂r = r/
√

1 − r2, and consequently r̈ = (‖M‖/r3) −
(r/

√
1 − r2), where ‖M‖ is determined from initial conditions.

This is the desired equation of motion for r alone.

6.2.8 The Lagrange Equation and the Variational Approach

Using

L(x, v) = 1
2

m 〈v, v〉 − V (x),(6.2.7)

the Newton equation (6.2.1) becomes

d
dt

∂L
∂v

= ∂L
∂x

.(6.2.8)

This is called the Lagrange equation or the Euler–Lagrange equation. One
reason Lagrange introduced his formalism was that using f = m a as described
earlier can become rather laborious when one considers constrained systems.
For example, a three-dimensional mathematical pendulum consists of a mass
attached by a rod to a fixed point and thus constrains the mass point to a sphere
(see Section 6.2.7). To deal with this, one has to develop notions of constraint
forces – forces that are at all times just such that the system will obey the
constraint. Here Lagrange’s approach greatly simplifies the problem, because
it is coordinate-independent.

Theorem 6.2.7 If L is a smooth function of (x, v) ∈ Rn × Rn, x, y ∈ Rn, and
T > 0, define the Lagrange action functional

F(c) :=
∫ T

0
L(c(t), ċ(t)) dt(6.2.9)

on parametrized smooth curves c : [0, T] → Rn with c(0) = x, c(T) = y. A
curve c is a critical point of F if and only if c satisfies (6.2.8).

Proof If L is a smooth function of (x, v) ∈ Rn × Rn, x, y ∈ Rn, and T > 0,
consider smooth curves c : [0, T] → Rn with c(0) = x, c(T) = y. Then the
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Lagrange action functional (6.2.9) is well defined. To find a curve c so that F(c)
is minimal consider curves cs : [0, T] → Rn depending smoothly on s ∈ (−ε, ε)
such that c0 = c and cs(0) = x, cs(T) = y. Then F(cs) is a real-valued function
of s and, if F(c0) is minimal, then c is a critical point of F because for any such
curves cs integration by parts gives

0 = d
ds

F(cs)|s=0
= d

ds |s=0

∫ T

0
L(cs(t), ċs(t))dt

=
∫ T

0

(
∂L
∂x

dcs

ds |s=0
+ ∂L

∂v
d
ds |s=0

ċs(t)
)

dt

=
[
∂L
∂v

dcs

ds |s=0

]T

0
−

∫ T

0

(
d
dt

∂L
∂v

− ∂L
∂x

)
dcs

ds |s=0
dt

= −
∫ T

0

(
d
dt

∂L
∂v

− ∂L
∂x

)
dcs

ds |s=0
dt,

using (dcs/ds)|s=0
= 0 for t = 0, T. The last integral vanishes regardless of the

values of dcs/ds along c0. Then
d
dt

∂L
∂v

− ∂L
∂x

= 0

because otherwise there is a time t ∈ (0, T) such that this expression is nonzero
at c0(t); choosing cs such that

dcs

ds
(t) = d

dt
∂L
∂v

(c0(t)) − ∂L
∂x

(c0(t)) and
dcs

ds
= 0

outside a small neighborhood of t makes this integral nonzero, contrary to our
choice of c0 as a critical point.

Thus the Lagrange equation (6.2.8) arises from minimizing integrals along
curves, and, if L is chosen as in (6.2.7), then the critical points are exactly the
solutions of Newton’s equation. �

Thus, solving the Lagrange equation (6.2.8) – and hence describing
Newtonian dynamics – amounts to solving a variational problem, that is,
finding critical points of a certain functional. This corresponds to the heuristic
principle that many natural processes are optimized in some way. The natural
action functional that gives (6.2.8) is defined on an infinite-dimensional space.
That leads to considerable technical complications. Therefore, we do not put
this approach to use in this setting. In the discrete-time situation of billiards,
which were introduced in Section 6.3, however, we are led to consider an
action function of finitely many variables, and we will gather significant
information from this variational approach. This theme is developed further in
Chapter 14.

Consider a freely moving particle where the Lagrangian has no term
corresponding to potential energy. The Lagrange equation (6.2.8) implies that
orbits minimize action, which is related to energy. This happens to imply that
orbits also minimize the length between any of its points (so long as these are not
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too far apart). Therefore the orbits are geodesics, that is, curves that locally
minimize length. Intuitively this corresponds to the fact that a freely moving
particle follows the next best thing to a straight line, and geodesics are the
“straight lines” of a curved space. The resulting flow is called the geodesic flow.

� EXERCISES

� Exercise 6.2.1 A pebble is dropped in a well and hits the bottom in one second.
How deep is the well?

� Exercise 6.2.2 Consider a particle that is subject to gravity but no other force.
Set up the Newton equation for its coordinates (x, y, z) as functions of time (where
z is the height) and solve the resulting differential equation.

� Exercise 6.2.3 A football is punted with an initial vertical velocity of 30 m/s.
How high does it fly?

� Exercise 6.2.4 Prove Lemma 6.2.6 using computations in coordinates like (6.2.4).

� Exercise 6.2.5 Using elementary spherical geometry, describe the dynamics of
the geodesic flow on the round sphere (that is, the unit sphere in R3).

� PROBLEMS FOR FURTHER STUDY

� Problem 6.2.6 Consider the system of n point masses in R3 whose pairwise
interaction depends only on their mutual distances, that is, V (x) = ∑

Vi j (‖xi − xj‖).
Show that the coordinates of the velocity of the center of gravity and of the angular
momentum are first integrals (that is, constants of motion).

� Problem 6.2.7 (Two-Body Problem in the Plane) Show that for the system
of two point masses in the plane with interaction as in the previous exercise the
four integrals (energy, angular momentum, and coordinates of the velocity of the
center of gravity) are independent. Describe the motion relative to the center of
gravity.

� Problem 6.2.8 Obtain the solutions for the mathematical pendulum using the
recipe described in Section 6.2.2.6.

� Problem 6.2.9 Prove that the linear and inverse-square central forces are the
only ones for which all orbits are closed.

6.3 BILLIARDS: DEFINITION AND EXAMPLES

In Section 4.2.5 we studied a class of dynamical systems that can be viewed as
either mechanical or optical. The mechanical model is that of a particle moving
in a confined region and bouncing elastically off the walls. Hence such systems
are called billiard flows. In Section 4.2.5 they arose from a simple two-particle
system on an interval. There are many more situations when billiards arise; but
independently of whether they are obtained from a concrete model, studying
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Figure 6.3.1. A billiard.

billiards is very illuminating for the following reason:

In this problem the formal side, usually so formidable in dynamics, almost completely
disappears, and only the interesting qualitative questions need to be considered.4

Thus they are more feasible to study in detail, yet they are representative of the
dynamical complexity of less tractable systems. While in Section 4.2.5 a billiard sys-
tem arose in connection with a physical system of two particles on a line segment,
we saw in Section 5.2.3 that this works for any number of particles in an interval.

The main object of this and the subsequent section is to study billiards of a
type different from those in Section 4.2.5 or even Section 5.2.3. These are convex
billiards, that is, billiards where the table has a smooth convex boundary, such as a
circle or ellipse (Figure 2.2.2). Not all remarks in this section, however, depend on
convexity.

6.3.1 The Billiard Flow

Consider the motion of a point mass (or a light ray) in a bounded region D in the
plane with boundary B. In the case of a traditional (pool) billiard, the region would
be a rectangle, in the case of the example from Section 4.2.5 it is a triangle. The orbits
of the motion are sequences of line segments in D where each two successive
segments share a boundary point, and at this point the two segments make the
same angle with the tangent to the boundary. So the angle of incidence equals the
angle of reflection, just as with a mirror (see Figure 6.3.1). If the orbit encounters a
corner of the boundary, then it ends there (because reflection is not well defined in
that case). One can think of the table having pockets in the corners. The speed of the
motion is constant (no friction). Every orbit is completely determined by specifying
an initial location as well as an initial direction of motion; that is, the phase space of
this system is the set of all tangent vectors of fixed length (for example, unit length)
supported at points of the interior of D together with vectors at boundary points

4 George David Birkhoff, Dynamical Systems, American Mathematical Society Colloquium
Publications 9, American Mathematical Society, Providence, RI, 1966, Section VI.6, p. 170
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pointing inward. We can describe such points by using the Euclidean coordinates
(x1, x2) of the base point and the cyclic angular coordinate α of the direction
vector.

6.3.2 The Billiard Map

A billiard flow is a system with a continuous time-parameter, but at those
times where a reflection occurs there is a discontinuous change in direction. In
Section 4.2.5.3 this motivated the unfolding construction for polygonal billiards.
For convex billiards this is not possible, and it is better to describe the system in a
different way by ignoring the times between collisions with the boundary and using
discrete time, that is, by constructing a section map, which assigns to a collision
configuration (boundary point with inward vector) the next collision configuration
that it determines. There is no loss of information because two successive collision
sites determine the line between them. Therefore we only consider boundary
points with attached inward vectors and define a map φ on the set C of these by
assigning to one of these initial conditions the place of the next collision together
with the reflected direction. This description is reasonable even if there are corners
in the boundary, but is undefined at those places.

The map φ : C → C is usually called the billiard-ball map or simply the billiard
map and can be more carefully described as follows: A vector v ∈ C supported at
p ∈ B determines an oriented line l, which intersects B in two points p and p′.
Then φ(v) is a vector at p′ pointing inward in the direction of the line obtained
by reflecting l in the line tangent to B at p′. The natural coordinates in the phase
space C are the cyclic length parameter s ∈ [0, L) on B, where L is the total length
of B (recall from Section 2.6.2 that the identification of L with 0 makes this interval
into a circle), and the angle θ ∈ (0, π) with the direction of the positively oriented
tangent direction. Thus, the phase space is a cylinder (Section 2.6.3). Note that
keeping p fixed while increasing the angle of a vector results in monotonically
increasing p′ (see Figure 6.3.2). This means that the map thus defined on the
cylinder has the twist property, which is introduced in Definition 14.2.1. We saw a
special instance of this in Example 6.1.2.

The billiard map on the cylinder does not describe the billiard flow completely
because it does not provide the times between collisions. But these can be
calculated as the lengths of the segments between impacts.

Figure 6.3.2. Phase space of the billiard.
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6.3.3 Billiard Models

In Section 4.2.5 we first encountered a billiard system when it arose from the system
of two particles on a line segment. Convex billiards, the subject of this chapter, also
arise as pertinent models for other problems. Birkhoff’s statement quoted at the
beginning of Section 6.3 was made in connection with the following analogy. Con-
sider a particle moving freely on a convex surface, without external forces. That is,
the particle is constrained only to the surface and otherwise moves solely according
to its inertial forces. A physical realization of this could be given (expensively) by a
cavity in the shape of the surface, which is stationary in a gravity-free environment.
A drop of mercury in this cavity moves in the described manner (being constrained
to the cavity wall by centrifugal force). A different way of describing this mixture
of constrained and free motion is to say that the acceleration is always normal
to the surface (because the only force acting on the particle is the constraint
force).

If the surface in question is a triaxial ellipsoid and we squash it flat by making
one axis ever shorter, then the limiting dynamics, as the shortest axis shrinks to
length zero, is the same as that in the resulting elliptic billiard table. While this
is not an exact model of the free motion on any ellipsoid, our description of the
dynamics of the elliptic billiard has many similarities to that of the free particle
motion on the ellipsoid, yet it is more easily obtained. There are similar analogies
between other billiard tables and free particle motion on corresponding surfaces.
Billiard models have led to discoveries of which analogs could afterwards be proved
for the corresponding surfaces.

6.3.4 The Circle

The simplest convex billiard is the circle. Let D be the unit disk with boundary
B = {(x, y) x2 + y2 = 1}. The billiard map can be written explicitly in terms of
the cyclic length parameter s along the circle and the angle θ ∈ (0, π) with the
positive tangent direction. Thus, the phase space of the billiard map is a cylinder
C = S1 × (0, π) with s playing the role of the angle coordinate on C .

1. The Billiard Map. The billiard map φ is given by (s ′, θ ′) = (s + 2θ, θ), so the
angle θ is a constant of motion (that is, constant along each orbit). Note that this
is essentially the linear twist from Example 6.1.2 that is shown in Figure 6.1.1
and that also arose from free particle motion on the torus in Section 5.2.2.

Figure 6.3.3. The billiard map in the circle.
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Figure 6.3.4. Rational orbit and segment of an irrational orbit of the circle billiard.

This means that the phase cylinder C splits into φ-invariant circles θ = θ0. The
dynamics on this invariant circle is a rotation by 2θ0, and for any billiard orbit
the successive encounters with the boundary B lie on the orbit of a rotation of
B by 2θ0. Consequently, if θ0 is commensurable with 2π (that is, θ0/π ∈ Q or θ0

is a rational number of degrees), then the billiard map on the circle is periodic
and the orbits correspond to inscribed star-shaped polygons. If θ0 is incommen-
surable with 2π , then by Proposition 4.1.1 all orbits are dense on the circle. (See
Figure 6.3.4.)

2. Caustics. The invariant circle θ = θ0 corresponds to all those rays making an
angle θ0 with the boundary B = {(x, y) x2 + y2 = 1}. The union of these rays
is the annulus cos2 θ ≤ x2 + y2 ≤ 1. Its inner boundary x2 + y2 = cos2 θ is called
the caustic associated to the invariant circle. The complement of this annulus is
the intersection of all the left half-planes to these rays. A caustic is in particular the
envelope of the rays defining it; that is, it is a smooth curve tangent to every ray in
the family, or, in this case, with the property that if a ray is tangent to it, then so is
its reflection in the boundary of the billiard table.

An extreme case of this is the point in the center of the circular billiard table.
Any ray through the center is reflected right back, and to the extent that there
is any caustic at all, it is this single point, that is, it is a focus. This suggests that
caustics are natural generalizations of a focus in case of imperfect focussing. The
corresponding invariant circle for the billiard map on the cylinder, by the way, is
θ = π/2 and consists of period-2 orbits. This is apparent from both the geometry
and the formula for the billiard map.

3. The Variational Approach. It is well to note at this point an alternative descrip-
tion of how successive points of impact of a billiard trajectory on the boundary
are related. If two of them are given, with the intermediate one only known
approximately, then one can find the intermediate point exactly by using the law
of reflection (without knowing the approximate location of the intermediate point
there would be two opposite choices). A way of describing the rule of the equality of
angles at the intermediate point is that this choice of intermediate point minimizes
the sum of the lengths of the two resulting rays. Indeed, if the angles were not equal,
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the sum of the lengths could be decreased by moving toward the smaller angle. Note
that this observation does not depend on being in a circle. Indeed, this approach of
finding an orbit by minimizing something with given endpoints occurred already in
the context of Lagrangian mechanics, where we minimized an action. This is no co-
incidence at all, but related to the mechanical nature of billiards. Viewing a billiard
system as an optical arrangement, we can also describe this variational approach as
Fermat’s principle of the “hurried light ray” that reaches its target along the shortest
route.

6.3.5 The Ellipse

Consider an elliptic region D with boundary

B =
{

(x, y) | x2

a2
+ y 2

b2
= 1

}
.

1. Periodic Points. Unlike the circle, the elliptic billiard does not have an invariant
circle of period-2 orbits going through the center, but there are two special orbits
of period 2 on the symmetry axes of the ellipse. These are the only two lines that
intersect the ellipse with two right angles. Accordingly, the endpoints of the longer
symmetry axis can be characterized by being the only pair of boundary points
with maximum mutual distance. Likewise, the endpoints of the shorter symmetry
axis can be characterized by being saddle points for the distance between the
endpoints. The length of the longer axis is equal to the diameter of the ellipse, that
is, the maximum distance between any two points in the domain. The length of
the shorter axis is equal to the width, which is defined to be the minimal width of a
strip (between two parallel lines) that contains the ellipse, that is, the width of the
narrowest hallway through which this elliptic table can be pushed.

2. The Generating Function. The extremal property of these special orbits will
come up again and suggests the following definition: Parametrize the boundary B
by the arc length parameter s and consider two points p and p ′ with corresponding
coordinates s and s ′ on B. Let H(s, s ′) to be the negative of the Euclidean distance
between p and p ′. H is called the generating function for the billiard (and will be
discussed in general in Section 6.4.2). (See Figure 6.3.5.) Thus, the long period-2
orbit corresponds to a minimum of H, whereas the short orbit corresponds to a
saddle of H. We will see that any convex billiard has at least two orbits of period 2

y

x

dl(x, y)

−H (x, y)

Figure 6.3.5. The generating function of the
circle.
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that can be described similarly in terms of diameter and width. Note again the
similarity to the variational approach in Lagrangian mechanics.

For the circle, by the way, the generating function is H(s, s ′) = −2 sin 1
2 (s ′ − s).

As should be expected, it has many critical points, namely, any (s, s ′) with s ′ − s = π ,
corresponding to all diameters.

3. Caustics. The elliptic billiard table has many caustics:

Proposition 6.3.1 Every smaller confocal ellipse (that is, having the same foci) is a
caustic.

Proof To see this, consider Figure 6.3.6. It shows an elliptic billiard table with foci
f1 and f2 as well as a ray p0 p1 disjoint from the segment connecting the foci and
its image p1 p2 under the billiard map. These two rays thus make the same angle
with the tangent line at p1. The same goes for the rays f1 p1 and p1 f2, being part
of an orbit as well. Therefore the angles p0 p1 f1 and f2 p1 p2 are equal, as indicated.
Now reflect f1 p1 in p0 p1 to get f ′

1 p1, and f2 p1 in p2 p1 to get f ′
2 p1. By construction

the two new angles are equal to the two previously studied. Therefore the triangle
f1 p1 f ′

2 is obtained from the triangle f ′
1 p1 f2 by rotation around p1, and hence

l( f1 f ′
2) = l( f ′

1 f2) =: L.
Now p0 p1 is tangent to a confocal ellipse at the point a because the reflection

of af ′
1 in p0 p1 is af1, which occurs only for reflection in the tangent to the confocal

ellipse defined by l( f2x) + l(x f1) = l( f2 f ′
1) = L on which a lies. Likewise, b is a point

of tangency with the same ellipse l( f1x) + l(x f2) = l( f1 f ′
2) = L. �

Therefore there is a family of invariant circles in the phase space C of this
billiard, corresponding to the families of rays tangent to a given confocal ellipse.
These circles can be parametrized, for example by the (positive) eccentricity of the
corresponding elliptic caustic.

p0

p1

p2

f1

f ′
1

f ′
2

b
a

f2

Figure 6.3.6. Confocal ellipses are caustics.
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p0

p1

p2

f1 f ′
1

f ′
2

b

a

f2

Figure 6.3.7. Confocal hyperbolae are caustics.

This is only half the picture:

Proposition 6.3.2 There is a caustic corresponding to any ray that goes between the
foci. It consists of (both pieces of) a hyperbola with the same foci.

Proof The proof is almost the same, and Figure 6.3.7 shows the required diagram in
which the same construction is performed. Note that again l( f1 f ′

2) = l( f ′
1 f2) =: �

by rotating the corresponding triangles around p1, and that a and b both are
points of tangency with the hyperbola l( f1x) − l( f2x) = ±� (a and b correspond to
opposite signs here). �

Successive tangencies are always with opposite branches of the hyperbola.
(See Figure 6.3.8) Correspondingly, then, each of these caustics produces a
pair of closed invariant arcs in C [parametrized by the (negative) eccentricity
of the corresponding hyperbola], which are interchanged by the billiard map.
This family of invariant sets is separated from those corresponding to positive

Figure 6.3.8. Elliptic billiard with confocal ellipses and hyperbolas.
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Figure 6.3.9. Phase portrait of the elliptic
billiard.

eccentricity by the curve corresponding to the family of rays going through the
foci. (See Figure 6.3.9.) The only orbit not accounted for by this classification is the
period-2 orbit corresponding to the minor axis of the ellipse.

4. Invariant Circles. To study the motion on an invariant circle corresponding
to a confocal elliptic caustic we use the fact that the billiard map preserves
area if we take − cos θ instead of θ as the second coordinate (Proposition 6.4.2).
Because invariant circles come in a family corresponding to elliptic caustics, the
corresponding eccentricity is an invariant function on this part of the phase space.
As explained after Proposition 6.2.4, area preservation and the presence of an
invariant function allow us to parametrize these invariant curves in such a way
that the motion (under the billiard map) along each of them is a circle rotation.
Therefore the dynamics of the billiard map can be understood completely on this
set: It is an open set of pairwise disjoint invariant circles each of which is rotated
rigidly with respect to an appropriate parametrization.

Remark 6.3.3 The rotation number varies (by checking extreme cases and by
continuity).

� EXERCISES

� Exercise 6.3.1 Describe the billiard map in a rectangle.

� Exercise 6.3.2 Describe the billiard map in a right triangle.

� Exercise 6.3.3 Describe the billiard-ball motion in the annulus between two
concentric circles.

� Exercise 6.3.4 Describe the billiard-ball motion in the quarter-circle {(x, y) ∈
R2 x > 0, y > 0, x2 + y2 ≤ 1}.

� Exercise 6.3.5 Show that a billiard orbit through the foci of an ellipse accumu-
lates on the major axis. (Since the same holds for the reversed orbit, these orbits
make up a heteroclinic loop, or separatrix, for the period-2 orbit through both foci.)

� PROBLEMS FOR FURTHER STUDY

� Problem 6.3.6 Find a first integral for the billiard flow in the ellipse that is a
quadratic function of both the coordinates and the velocities.
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6.4 CONVEX BILLIARDS

The study of the billiard in a circular and in an elliptic table has shown several
features to look for when studying other billiard tables, notably periodic points
and caustics, and has provided us with several notions to help organize our
investigations. For example, we will be studying the orbit structure to some extent
by discussing the qualitative properties of the billiard map on the phase cylinder, as
opposed to reasoning exclusively by directly apparent geometry. This was presaged
by the absence of an explicit description of the billiard map for the ellipse, where
we described important qualitative features of the map, namely, a decomposition
into invariant sets that are easily studied individually.

6.4.1 Smooth Convexity

The billiards we want to study now are those whose boundary is given by a smooth
closed curve B that is convex in a stronger sense than that of Definition 2.2.13. We
require the boundary to have nonzero curvature. An equivalent way of expressing
this is that, if B is parametrized by arc length, then the second derivative is never zero.

This implies (strict) convexity as in Definition 2.2.13; that is there are no turning
points and therefore no “inward bulges”, and we have the defining property that
every line that enters the interior of the table enters and exits transversely [with an
angle in (0, π)] and intersects the boundary in exactly two points. Often it suffices
to satisfy this latter geometric assumption and to allow isolated points of zero
second derivative.

There are occasions where the derivative condition is necessary, and we call
billiards satisfying it strictly differentiably convex. This is a stronger notion of
convexity than the “strict convexity” introduced in Definition 2.2.13.

Thus, as in the case of circles and ellipses, the phase space is a cylinder C
parametrized by a parameter s on the boundary (usually arc-length) and the angle
θ ∈ (0, π).

6.4.2 The Generating Function

As in the case of the circle and the ellipse, define a function H by taking two points p
and p ′ on B with corresponding arc-length coordinates s and s ′ and letting H(s, s ′) be
the negative of the Euclidean distance between p and p ′. H is called the generating
function for the billiard. Although we do not usually have an explicit formula H, as
in the case of the circular billiard, it is nevertheless amenable to analytic treatment.

Lemma 6.4.1 If θ ′ is the angle of the segment joining p and p ′ with the negative
tangent at p ′ and θ is the angle of the segment joining p and p ′ with the positive
tangent at p, then

∂

∂s ′ H(s, s ′) = − cos θ ′,

∂

∂s
H(s, s ′) = cos θ.

(6.4.1)

(See Figure 6.4.1.)
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θ′

s′

p

p′

s

θ

Figure 6.4.1. Derivatives of the generating function.

Proof

∂

∂s ′ H(s, s ′) = − d
dt

d( p, c(t)) = − d
dt

√
〈c(t) − p, c(t) − p〉

= − 1

2
√〈c(t) − p, c(t) − p〉2〈c′(t), c(t) − p〉 = −〈c(t) − p, c(t) − p〉

‖c(t) − p‖ .

For t = s ′, the last expression is exactly −cosθ ′ because c′ is a unit vector. The
second equation is proved in the same way. �

The generating function helps to decide when a sequence of boundary points
lies on an orbit. Any two certainly do, but, unlike a pair of points, a triple does not
always lie on part of an orbit. Those triples that do can be described as critical points
of a certain functional. Consider three points p−1, p0, and p1 with corresponding
coordinates s−1, s0, and s1 on B. If they are part of a billiard orbit, then by definition
the segments joining p−1 with p0 and p0 with p1 make the same angles with the
tangent at p0. Consequently, by Lemma 6.4.1,

d
ds

H(s−1, s) + d
ds

H(s, s1) = 0 at s = s0,(6.4.2)

that is, p0 is obtained as a critical point of the functional s !→ H(s−1, s) + H(s, s1)
on triples of boundary points. As in the Lagrange formulation, this describes an
orbit segment of a dynamical system as a critical point of a functional defined on
a space of “potential” orbit segments of the dynamical system. The procedure can
be iterated to produce orbit segments as critical points of functionals depending
on several variables.

6.4.3 Area Preservation

The explicit form (6.4.1) of the derivatives of the generating function is in turn
directly useful for the study of the billiard map. It implies that the billiard map pre-
serves area on the phase cylinder C if instead of θ we use the coordinate r = −cosθ .

Proposition 6.4.2 In the coordinates (s, r) the billiard ball map φ(s, r) = (S(s, r),
R(s, r)) is area- and orientation-preserving (see Section 6.1.1.3).
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Proof Equation (6.4.1) simplifies to
∂

∂s ′ H(s, s ′) = r ′,

∂

∂s
H(s, s ′) = −r,

(6.4.3)

where r ′ = − cos θ ′. Define H̃(s, r) := H(s, S(s, r)). Then

∂ H̃
∂s

= ∂ H
∂s

+ ∂ H
∂s ′

∂S
∂s

= −r + R
∂S
∂s

and
∂ H̃
∂r

= ∂ H
∂s ′

∂S
∂r

= R
∂S
∂r

;

so by calculating ∂2 H̃/∂s∂r two ways we get

−1 + ∂ R
∂r

∂S
∂s

+ R
∂2 S
∂s∂r

= ∂2 H̃
∂s∂r

= ∂2 H̃
∂r∂s

= ∂ R
∂s

∂S
∂r

+ R
∂2 S
∂r∂s

and
∂ R
∂r

∂S
∂s

− ∂ R
∂s

∂S
∂r

= 1.

This means that the Jacobian determinant of φ is 1 and hence that φ preserves area
and orientation (see Proposition 6.1.3 and Definition 6.1.4). �

6.4.4 Smoothness of the Billiard Map

The equations (6.4.3) are not only useful for showing that area is preserved. They
also code the dynamics because they locally determine the functions S and R. This
has various uses. The first is smoothness of the billiard map:

Proposition 6.4.3 Assume the curve B is Ck, that is, the Euclidean coordinates are Ck

functions of the length parameter. Then the functions S and R are Ck−1 for 0 < r < 1.

Proof Apply the Implicit-Function Theorem 9.2.3 to

0 = F (s, s ′, r, r ′) :=

 ∂

∂s ′ H(s, s ′) − r ′

∂

∂s
H(s, s ′) + r

 .

The hypotheses of the Implicit-Function Theorem 9.2.3 are satisfied because the
total derivative  ∂2

∂s ′2 H(s, s ′) −1

∂2

∂s∂s ′ H(s, s ′) 0


of F with respect to (s ′, r ′) is invertible: Its determinant (∂2/∂s∂s ′)H(s, s ′) = ∂r ′/∂s is
clearly nonzero for geometrical reasons: Increasing s while s ′ is constant decreases
θ ′ (see Figure 6.4.2) and hence r ′, so

∂2

∂s∂s ′ H(s, s ′) = ∂r ′

∂s
< 0.(6.4.4)

If B is Ck, then the generating function is also Ck, and by the Implicit-Function
Theorem 9.2.3 the functions S and R are Ck−1 for 0 < r < 1. �
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s θ s′

Figure 6.4.2. Increasing s while s ′ is constant.

6.4.5 Special Period-2 Orbits in Convex Billiards

Now we generalize our previous observation that in an elliptic billiard two orbits
of period 2 can be obtained by a geometric description via the diameter and width
of the region (see Section 6.3.5.1). This uses only a bit of knowledge about the
generating function. Intuitively, the following result is quite obvious.

Proposition 6.4.4 Let D be a convex bounded region whose boundary B is C2

with nonzero curvature. Then the associated billiard map has at least two distinct
period-2 orbits that are described as follows: For one of them, the distance between the
corresponding boundary points is the diameter of D; for the other, it is the width of D.

Proof The generating function H(s, s ′) is defined and continuous on the torus B ×
B and differentiable except on the diagonal. Since it is zero on the diagonal and
negative elsewhere, it attains its minimum d away from the diagonal. Let (s, s ′) be
such that H(s, s ′) = d. Since it is a critical point, (6.4.1) implies that θ = θ ′ = π/2, so
we obtain the first of these period-2 orbits. (The preceding argument only depends
on convexity, by the way, and can easily be made to work for C1 curves.) Now
consider the curve (s, g(s)) on the torus, where s ′ = g(s) is the coordinate of the
boundary point other than s on the line through s for which θ = −θ ′. (This line is the
one connecting two points with parallel tangents, so the minimal length of such lines
is the width; see Figure 6.4.3.) On this curve H is bounded from above by a negative
number and thus attains a negative maximum w. Parametrize s and s ′ by the angle α

Figure 6.4.3. Finding the width.
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that the connecting line makes with some reference direction. Then θ = −θ ′ implies

∂ H(s(α), s ′(α))
∂α

= ∂ H
∂s

ds
dα

+ ∂ H
ds ′

ds ′

dα
= cos θ

(
ds
dα

+ ds ′

dα

)
.

If s is the arc length parameter, then dα/ds is the curvature of B at the point
corresponding to s; hence it is nonzero (and finite). Therefore ds/dα is positive.
The same goes for ds ′/dα, and therefore at a critical point of H(s(α), s ′(α)) we have
cos θ = 0. Consequently, there is a line of the desired kind for which θ = π/2, and
we have obtained the second point of period 2. �

A period-3 counterpart of the first orbit from Proposition 6.4.4 can be constructed
by considering the inscribed triangle with the largest perimeter. A similar con-
struction works for orbits of period 4. For higher periods there are different types
of orbits, for example inscribed pentagons versus pentagrams.

The construction of these orbits in the more general setting of area-preserving
twist maps is carried out in Section 14.1. There are also counterparts of the second
type of orbit.

In the case of an ellipse (and, of course, also of a circle) all orbits of period
higher than 2 come in continuous families corresponding to their invariant circle,
but this is a rather exceptional property.

6.4.6 The Mirror Equation of Geometric Optics

We now look for caustics in convex billiards. Recall that these are envelopes of
families of orbits for which the reflected family of rays has the same envelope.
We presently define these a little more carefully, but it is clear that in order to
be able to study caustics it is important that we understand how the envelope
of a family of rays and the envelope of the reflected family are related. Or,
alternatively, given a smooth arc in the billiard table and a family of tangent
rays, consider all of the arcs obtained from reflecting each tangent ray in the
boundary of the billiard table. What is their envelope? To obtain a caustic, it is,
of course, necessary that the new envelope be another part of the same curve.

To bring elementary differential geometry to bear on this question we need to
define an envelope given a parametrization of a family of rays. To parametrize
a family of rays in the plane choose a curve c parametrized by s ∈ (−ε, ε)
and a family v(·) of unit vectors also parametrized by s ∈ (−ε, ε). Denote the
parameter along a ray by t to obtain r(s, t) = c(s) + tv(s) as a parametrization
of a family of rays. The envelope of this family is a curve that intersects each
ray once (and tangent to the rays; see Figure 6.4.4), so it can be parametrized
as r(s, f (s)) for some function f . Being tangent to these rays means that

d
ds

r(s, f (s)) = c′(s) + f ′(s)v(s) + f (s)v′(s)

Figure 6.4.4. An envelope.
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is parallel to v, that is, it has no component normal to v. We can express this
by taking v′ as the normal vector to v (because v is a family of unit vectors).
Thus, if v′ �= 0 (the rays are not supposed to be parallel in order to admit an
envelope), the tangency condition is

(6.4.5) 0 =
〈

d
ds

r(s, f (s)), v ′(s)
〉

= 〈c ′(s) + f ′(s)v(s) + f (s)v ′(s), v ′(s)〉

= 〈c ′(s) + f (s)v ′(s), v ′(s)〉 = 〈c ′(s), v ′(s)〉 + f (s)〈v ′(s), v ′(s)〉.
Thus f is uniquely determined:

f (s) = −〈c ′(s), v ′(s)〉
〈v ′(s), v ′(s)〉 .

Notice as a special case that if c is constant, then c is the focus of the family
of rays and indeed, by the above formula, f ≡ 0 also parametrizes the focus:
r(s, f (s)) = r(s, 0) = c(s). To relate an envelope with that of the family of
rays reflected in (a part of) the boundary of a billiard table it is convenient
to parametrize the family of rays in this fashion and to take the curve c to be
the segment of the boundary to be studied. The advantage is that the family of
reflected rays can be parametrized using the same curve c.

Thus, we parametrize a piece of the boundary of a billiard table by a curve
c using the arc length parameter s, that is, such that T := c ′ is a unit vector. If
we choose the normal vector N to c to point to the inside of the billiard table,
then we can define the curvature κ of c by T′(s) = κ(s)N(s). This implies, by
the way, that N ′(s) = −κ(s)T(s). With these choices we have κ ≥ 0 for a convex
billiard. If c′′(s) �= 0, then κ(s) > 0. In particular, strictly differentiably convex
billiard tables have nonzero boundary curvature everywhere.

Parametrize a family of rays by

r(s, t) = c(s) + tv(s),

with v pointing inward and making an angle α(s) ∈ [0, π] with T(s). Then the
reflected family can be parametrized by

r(s, t) = c(s) + tv(s),

with v pointing inward and making an angle π − α(s) with T(s). The effect of
reflection in the boundary on an envelope is succinctly described by the mirror
equation in geometric optics (see Figure 6.4.5):

α
c

-v

-
f

f

v

α

Figure 6.4.5. The mirror equation.
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Theorem 6.4.5 If f and f̄ are the envelopes of these two families, respectively,
then

1
f

+ 1

f̄
= 2κ

sin α
.

Proof As in the statement we drop the variable s. We can write

v = cos α T + sin α N

v = − cos α T + sin α N.

and differentiate to get

v′ = − sin α · α′ T + cos α T′ + cos α · α′ N + sin α N ′

= −(α′ + κ) sin α T + (α′ + κ) cos α N

v′ = sin α · α′ T − cos α T′ + cos α · α′ N + sin α N ′

= (α′ − κ) sin α T + (α′ − κ) cos α N.

Then

f = −〈T, v′〉
〈v′, v′〉 = −−(α′ + κ) sin α

(α′ + κ)2
= sin α

α′ + κ

and likewise f̄ = − sin α/(α′ − κ), and hence
1
f

+ 1

f̄
= (α′ + κ) − (α′ − κ)

sin α
= 2κ

sin α
. �

This result still holds in the extreme case where an envelope degenerates to
a single point, as in a circular billiard table with a family of rays through the
center being reflected back to the center. In this case, f = f̄ = ρ, the radius,
and sin α = 1, so κ = 1/ρ. Another extreme test case is that of a parallel bundle
of lines encountering the boundary of the circular billiard. In this case we can
take 1/ f = 0 in the mirror equation (taking the point p where the ray through
the center meets the boundary) to find that f̄ = ρ/2, that is, this bundle focuses
(approximately) at the midpoint between the center and p.

6.4.7 Caustics

Now we can study caustics using the mirror equation. For circles and ellipses we
found them to be sometimes associated with invariant circles, and other times
not. It is worthwhile to maintain this distinction. Thus we now carefully define
caustics and also delineate the notion of an invariant circle.

Definition 6.4.6 An invariant circle � for φ is a φ-invariant set in C that is the
graph of a continuous function (other than 0 or π ) from B to [0, π]. A caustic
is a piecewise smooth curve γ , all of whose tangents are part of a billiard orbit
and such that, whenever a ray of a billiard orbit defines a line tangent to γ ,
so does its image under the billiard map φ. A caustic is said to come from an
invariant circle if the family of rays defining it constitutes an invariant circle of
φ in C. A caustic is said to be convex if it is a convex curve.
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Figure 6.4.6. A nonconvex caustic.

A caustic does not necessarily have to be inside the billiard table (the
hyperbolas for the elliptic billiard are not), but that this is certainly the case
for convex caustics (otherwise they would have tangent lines that do not meet
the billiard table).

A convex caustic comes from the invariant circle defined by its tangent lines,
and it can be alternatively described as follows: The intersection of all of the left
half-planes to these rays or the intersection of the right half-planes is nonempty
and the boundary of this region is the caustic.

There are nonconvex caustics, and they may be contained in the billiard ta-
ble. An example is shown in Figure 6.4.6. It is obtained by perturbing a circular
billiard and relies on the fact that the center of a circular billiard is a degenerate
caustic. The existence of convex caustics restricts the geometry of a billiard table.

Theorem 6.4.7 A convex C2 billiard table with a point of zero curvature has
no convex caustics.

Proof To see this, suppose that in Figure 6.4.7 γ is a convex caustic, and
consider two rays tangent to it with a common point p ∈ B and such that one of
these rays is the image of the other under the billiard map. The caustic is the

Figure 6.4.7. A convex caustic.
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envelope of the family of rays defined by the invariant circle, as well as for their
images (by invariance). Thus, if fp and f̄ p denote the distances from p to the
points of tangency, we can apply the mirror equation to conclude that

1
f

+ 1

f̄
= 2κ

sin α
,

where κ is the curvature of B at p and α is the angle that the two rays make with
the tangent line to B at p. The left-hand side of this last equation is positive, so
κ �= 0. �

This shows that billiards with a boundary point of zero curvature (those that
are “barely convex”) are far from the integrable ones such as the ellipse, where
the phase space decomposes nicely into invariant curves on which the dynamics
is easy to understand. These billiards are therefore likely to be dynamically far
more complicated.

It is a remarkable fact that this is the only way to avoid convex caustics.
A strictly differentiably convex billiard always has infinitely many caustics,
indeed a nonnull set of them.5

6.4.8 The String Construction

On the other hand, the same considerations enable us to produce many tables
with convex caustics. In fact, we can prescribe a convex curve and construct
a family of billiard tables having this caustic. To that end we denote the length
of the caustic between the points of tangency (and on the side away from p) in
Figure 6.4.7 by �p. Then we have

Proposition 6.4.8 S(γ ) := fp + f̄ p + �p is independent of p.

Proof Differentiate the right-hand side with respect to the length parameter s on
B that parametrizes p. Denoting the length parameter on γ by t and its values
at the points of tangency by tp and t̄ p, we get

d
ds

fp = cos α − d
ds

tp
d
ds

f̄ p = − cos α + d
ds

t̄ p
d
ds

�p = d
ds

tp − d
ds

t̄ p.

The sum of these is zero. �

The number L(γ ) := S(γ ) − l(γ ) is called the Lazutkin parameter of the
caustic γ .

The preceding proposition enables us to construct billiard tables having a
given convex curve γ as a caustic. This string construction uses a closed loop of
string of some length S > l(γ ) pulled tight around the curve γ using the tip of a
pencil to pull the loop away from the curve (in Figure 6.4.7, the tip of the pencil
would be at the top right). Moving the pencil around γ while keeping the string
taut traces out a billiard table that has γ as a caustic (with S(γ ) = S). Different
values of S give different billiard tables with γ as a caustic (and the Lazutkin

5 This is a related to KAM theory. See Vladimir F. Lazutkin, The Existence of a Caustics for a Billiard
Problem in a Convex Domain, Mathematics of the USSR, Isvestia 7 (1973), 185–214.
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parameter measures the excess length of the loop of string). A familiar case of
this is the prescription of obtaining an ellipse by pulling a loop of string tautly
around a line segment (whose endpoints are then the foci). Of course this is not
a smoothly convex caustic. Strings of different lengths give confocal ellipses.

This string construction enables us to find many billiard tables with a given
caustic. It does not give us any billiard table for which we know that there
are many caustics. There is, in fact, a long-standing open problem raised by
Birkhoff: Suppose a billiard table has an open set of caustics (as opposed to
only isolated ones). Must it necessarily be an elliptic table?

� EXERCISES

� Exercise 6.4.1 Show that, if a convex billiard table has two perpendicular
symmetry axes, then the billiard ball map has a period-4 orbit.

� Exercise 6.4.2 Generalize the statement of the previous exercise to the case of
two symmetry axes subtending an angle of 2π/n.

� Exercise 6.4.3 For an equilateral triangle, a square, and a regular pentagon
describe the billiard tables obtained from the string construction.

� Exercise 6.4.4 Write a functional of several variables whose critical points
produce periodic orbits of a billiard.

� Exercise 6.4.5 Give an example of a convex billiard table other than a circle that
has a continuous family of period-2 orbits.

� PROBLEMS FOR FURTHER STUDY

� Problem 6.4.6 Give an example of a billiard table other than a circle that has a
period-2 orbit in any direction.

� Problem 6.4.7 Show that the family from the previous problem defines a
nonconvex caustic as its envelope.

� Problem 6.4.8 Develop the ideas of Section 6.2.3 to prove area preservation of
the billiard map from considerations of the flux of the billiard flow through the
section defined by the boundary. The flux through a surface is the integral of the
normal velocity.

� Problem 6.4.9 Construct a smooth curve for which the astroid is a nonconvex
caustic as in Figure 6.4.6.
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CHAPTER 7

Simple Systems with Complicated

Orbit Structure

This chapter presents a rich array of properties of a collection of examples. Its
coherence derives from the fact that it is part of a general theory we outline in
Chapter 10. The examples (other than the quadratic map f4) are instances of hyper-
bolic dynamical systems (or symbolic dynamical systems), and the properties we
derive here are largely properties common to hyperbolic and symbolic dynamical
systems.

7.1 GROWTH OF PERIODIC POINTS

Periodic orbits represent the most distinctive special class of orbits. So far we have
mostly encountered maps with few periodic orbits or, as in the case of a rational
rotation, only periodic orbits. In these basic examples different periods did not
appear for the same map. Even the most complex situations so far still involve
periodic orbits neatly organized by period in families such as invariant curves in
plane rotations, linear twists, the time-1 map for the mathematical pendulum, or
billiards. There we placed more emphasis on coherence than complexity. Now we
encounter the first examples with a different periodic pattern. In these cases, when
periodic points of different periods are present, we want to count them.

Definition 7.1.1 For a map f : X → X , let Pn( f ) be the number of periodic points of
f with (not necessarily minimal) period n, that is, the number of fixed points for f n.

This section introduces numerous new examples of dynamical systems. For
now they are introduced with a view to their periodic orbit structure, but in due
time numerous other fascinating features of their orbit structure will emerge.

7.1.1 Linear Expanding Maps

Consider the noninvertible map E2 of the circle given in multiplicative notation by

E2(z) = z2, |z| = 1,

196
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Figure 7.1.1. Periodic points for an expanding map.

and in additive notation by

E2(x) = 2x (mod 1).(7.1.1)

Proposition 7.1.2 Pn(E2) = 2n − 1 and periodic points for E2 are dense in S1.

Proof If E n
2 (z) = z, then z2n = z, and z2n−1 = 1. Thus every root of unity of order

2n − 1 is a periodic point for E2 of period n. There are exactly 2n − 1 of these, and
they are uniformly spread over the circle with equal intervals. In particular, when
n becomes large these intervals become small. (See Figure 7.1.1) �

We see from Proposition 7.1.2 that a natural measure of asymptotic growth of
the number of periodic points is the exponential growth rate p( f ) for the sequence
Pn( f ):

p( f ) = lim
n→∞

log+ Pn( f )

n
,(7.1.2)

where log+(x) = log(x) for x ≥ 1, 0 otherwise. In particular, Proposition 7.1.2 shows
that p(E2) = limn→∞(log 2n + log(1 − 2−n))/n = log 2.

The maps

Em: x !→ mx (mod 1),

where m is an integer of absolute value greater than one, represent a straightforward
generalization of the map E2. Not surprisingly, these maps also have dense sets of
periodic orbits. The proof of Proposition 7.1.2 holds verbatim with the replacement
of 2 by m:

Proposition 7.1.3 Pn(Em) = |mn − 1| and periodic points for Em are dense.

Proof z = E n
m(z) = zmn

has |mn − 1| solutions that are evenly spaced. �

See also Section 7.1.3.
Another property of the maps Em worth noticing is preservation of length

similar to the property of preservation of phase volume discussed in Section 6.1.
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Naturally, the length of an image of any arc increases; however, if one considers the
complete preimage of an arc � under Em, one immediately sees that it consists
of |m| arcs of length l(�)/|m| each, placed along the circle at equal distances.
The analysis in Section 6.1.2 can be extended to noninvertible volume-preserving
maps, so recurrent points are dense in this situation as well.

7.1.2 Quadratic and Quadratic-Like Maps

For λ ∈ R, let fλ : R → R, fλ(x) := λx(1 − x). For 0 ≤ λ ≤ 4, the fλ map the unit
interval I = [0, 1] into itself. The family fλ is referred to as the quadratic family.
For λ ≤ 3, this family was discussed in detail in Section 2.5, and the asymptotic
behavior for any such λ is fairly simple and changes with λ only a few times.
As it turns out, for the remaining interval of parameter values the quadratic
family develops a bewildering array of complicated but different types of behav-
ior, which change with caleidoscopic speed (see Figure 7.1.2 and Chapter 11).
Note that Pn( fλ) ≤ 2n because the nth iterate of fλ is a polynomial of degree 2n,
and hence the equation ( fλ)n(x) = x has at most 2n solutions. While one may
expect that in the complex plane this equation would indeed have exactly 2n

solutions for most values of the parameter λ, this is certainly not the case for real
solutions.

Here we consider the behavior of the quadratic family for large values of the
parameter, namely, λ ≥ 4. While for λ > 4 the interval [0, 1] is not preserved, the
set of points that remains in that interval is still quite interesting.

The analysis of the behavior of the quadratic family on the unit interval for
0 ≤ λ ≤ 3 carried out in Section 2.5 showed simple periodic patterns: Only points of
periods 1 and 2 appear, and their number is small. With moderate effort this analysis
can be extended as far as λ = 1 + √

6 (Proposition 11.2.1). On the other hand, we
have:

Proposition 7.1.4 For λ ≥ 4 we have Pn( fλ) = 2n.

Proof Since Pn( fλ) ≤ 2n, it suffices to prove the reverse inequality. To that end we use
the following observation: If f : R → R is continuous and � ⊂ [0, 1] is an interval
such that one endpoint is mapped to 0 and the other to 1, then by the Intermediate-
Value Theorem there is a fixed point of f in �. Now [0, 1] ⊂ [ fλ(0), fλ(1/2)] and
[0, 1] ⊂ [ fλ(1/2), fλ(1)], so there are intervals �0 ⊂ [0, 1/2] and �1 ⊂ [1/2, 1] whose
images under fλ are exactly [0, 1], giving us two fixed points for f . The nonzero fixed

Figure 7.1.2. Bifurcation diagram.
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Figure 7.1.3. Periodic points of f4.

point is indeed in the interior of �1 because the right endpoint of �1 is 1 and hence
is mapped to 0, so the other endpoint is mapped to 1 and therefore neither are fixed.

Furthermore, the preimages of �0 and �1 under f consist of two intervals
each, so there are four intervals whose images under f 2 are exactly [0, 1]. Each
contains a fixed point of f 2

λ , again every one except 0 being in the interior of the
corresponding interval, so no two of these fixed points coincide.

Repeating this argument successively for higher iterates of fλ we obtain 2n

intervals whose images under f n
λ are [0, 1], and each of which therefore contains at

least one fixed point, giving 2n distinct orbits of period n for fλ. �

It is useful that the argument to show that Pn( fλ) ≥ 2n applies to any continuous
map f : [0, 1] → R with f (0) = f (1) = 0 and such that there is a c ∈ [0, 1] with
f (c) ≥ 1. In this more general case it is somewhat more convenient, however,
to talk about intervals whose images under f n contain [0, 1] rather than being
exactly [0, 1].

In the quadratic case (for λ > 4) one can refine the preceding argument slightly
to show that there are exactly 2n periodic points (rather than using that the degree
of f n is 2n). This also works for some continuous maps f of this more general
nature, which are monotone on [0, c] as well as [c, 1]. A continuous map defined
on an interval that is increasing to the left of an interior point and decreasing
thereafter is said to be unimodal. Thus we have found

Proposition 7.1.5 If f : [0, 1] → R is continuous, f (0) = f (1) = 0, and there exists
c ∈ [0, 1] such that f (c) > 1, then Pn( f ) ≥ 2n. If, in addition, f is unimodal and
expanding (that is, | f (x) − f (y)| > |x − y|) on each interval of f −1((0, 1)), then
Pn( f ) = 2n.

The heart of the proof is the following lemma:

Lemma 7.1.6 Denote by Mk the collection of continuous maps f : [0, 1] → R such
that f −1((0, 1)) = ⋃k

i=1 Ii with Ii ⊂ [0, 1] open intervals, f monotonic on Ii , and
f (Ii) = (0, 1). Then f ◦ g ∈ Mkl whenever f ∈ Mk and g ∈ Ml .
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Proof If f ∈ Mk and g ∈ Ml , then f −1((0, 1)) = ⋃k
i=1 Ii and g−1(Ii) = ⋃l

j=1 Ji j with
{Ji j 1 ≤ i ≤ k, 1 ≤ j ≤ l} pairwise disjoint and ( f ◦ g)−1((0, 1)) = ⋃

i j Ji j . The
composition f ◦ g is monotonic on Ji j and f ◦ g(Ji j ) = (0, 1). �

Proof of Proposition 7.1.5 The lemma shows that Pn( f ) ≥ k n for f ∈ Mk because
f n ∈ Mkn. If f is expanding on every interval of f −1((0, 1)), then the same holds
for iterates of f . This shows that on each of those intervals there is at most one
solution of f n(x) = x. Therefore, Pn( f ) ≤ k n, proving equality. �

7.1.3 Expanding Maps and Degree

Next we consider a nonlinear generalization of the expanding maps Em. We use
additive notation for circle maps. In this notation derivatives of maps can be
expressed as real-valued functions.

Definition 7.1.7 A continuously differentiable map f : S1 → S1 is said to be an
expanding map if | f ′(x)| > 1 for all x ∈ S1.

Since f ′ is continuous and periodic, the minimum of | f ′| is attained and hence
is greater than 1.

Proposition 4.3.1 gives us a function F : R → R that satisfies [F (x)] = f ([x])
and F (s + 1) = F (s) + deg( f ), where deg( f ) is the degree of f . It has the following
simple property:

Lemma 7.1.8 If f, g : S1 → S1 are continuous, then deg(g ◦ f ) = deg( f ) deg(g), in
particular deg( f n) = deg( f )n.

Proof If F, G are lifts of f and g, respectively, then G(s + k) = G(s + k − 1) +
deg(g) = · · · = G(s) + k deg(g) and G(F (s + 1)) = G(F (s) + deg( f )) = G(F (s)) +
deg(g) deg( f ). �

This property is useful for counting periodic points.

Proposition 7.1.9 If f : S1 → S1 is an expanding map, then | deg( f )| > 1 and
Pn( f ) = | deg( f )n − 1|.
Proof | f ′| > 1 implies |F ′| > 1 for any lift, so, by the Mean-Value Theorem A.2.3,
| deg( f )| = |F (x + 1) − F (x)| > 1. By the chain rule an iterate of an expanding map
is itself expanding, so by Lemma 7.1.8 it suffices to consider the case n = 1. Take a lift
F of f and consider it on the interval [0, 1]. The fixed points of f are the projections
of the points x for which F (x) − x ∈ Z. The function g(x) := F (x) − x satisfies
g(1) = g(0) + deg( f ) − 1, so by the Intermediate-Value Theorem there are at least
| deg( f ) − 1| points x where g(x) ∈ Z. If g(0) ∈ Z, then there are | deg( f ) − 1| + 1
such points, but 0 and 1 project to the same point on S1. Now g′(x) �= 0, so g is
strictly monotone and hence takes every value at most once. Thus there are exactly
| deg( f ) − 1| fixed points on S1. �

This proposition in particular establishes part of the analog of Proposition 7.1.2
for Em.



book 0521583047 April 21, 2003 16:55 Char Count= 0

7.1 Growth of Periodic Points 201

Similarly to quadratic maps, the argument that shows Pn( f ) ≥ | deg( f )n − 1|
works for any continuous map. It is trivial for maps of degree 1 because the assertion
is vacuous. Indeed, irrational rotations do not have any fixed or periodic points. For
maps of degree 0 it merely guarantees a fixed point. For maps f with | deg( f )| > 1,
however, this result gives exponential growth of the number of periodic points:
p( f ) ≥ log+(| deg( f )|).

7.1.4 Hyperbolic Linear Map of the Torus

The previous examples were all one-dimensional, but the patterns of the growth
and distribution of periodic points observed in those examples also appear in
higher dimension.

A convenient model to demonstrate this is built from the following linear map
of R2:

L(x, y) = (2x + y, x + y) =
(

2 1
1 1

) (
x
y

)
.

If two vectors (x, y) and (x′, y′) represent the same element of T2, that is, if
(x − x′, y − y′) ∈ Z2, then L(x, y) − L(x′, y′) ∈ Z2, so L(x, y) and L(x′, y′) also
represent the same element of T2. Thus L defines a map FL : T2 → T2:

FL (x, y) = (2x + y, x + y) (mod 1).

The map FL is, in fact, an automorphism of the torus viewed as an additive group. It
is invertible because the matrix

(
2 1
1 1

)
has determinant one, so L−1 also has integer

entries [in fact
(

2 1
1 1

)−1 = (
1 −1

−1 2

)
] and hence defines a map FL−1 = F −1

L on T2 by the
same argument. The eigenvalues of L are

λ1 = 3 + √
5

2
> 1 and λ−1

1 = λ2 = 3 − √
5

2
< 1.(7.1.3)

Figure 7.1.4 gives an idea of the action of FL on the fundamental square I =
{(x, y) 0 ≤ x < 1, 0 ≤ y ≤ 1}. The lines with arrows are the eigendirections. For
any matrix L with determinant±1, the map FL preserves the area of sets on the torus.

Proposition 7.1.10 Periodic points of FL are dense and Pn(FL ) = λn
1 + λ−n

1 − 2.

Proof To obtain density we show that points with rational coordinates are periodic
points. Let x, y ∈ Q. Taking the common denominator write x = s/q, y = t/q, where
s, t, q ∈ Z. Then FL (s/q, t/q) = ((2s + t)/q, (s + t)/q) is a rational point whose coor-
dinates also have denominator q. But there are only q2 different points on T2 whose
coordinates can be represented as rational numbers with denominator q, and all
iterates F n

L (s/q, t/q), n = 0, 1, 2 . . . , belong to that finite set. Thus they must repeat,
that is, F n

L (s/q, t/q) = F m
L (s/q, t/q) for some n, m ∈ Z. But since FL is invertible,

F n−m
L (s/q, t/q) = (s/q, t/q) and (s/q, t/q) is a periodic point, as required. This gives

density. (By contrast, not all rational points are periodic for Em. See Exercise 7.1.1.)
Next we show that points with rational coordinates are the only periodic

points for FL . Write F n
L (x, y) = (ax + by, cx + dy) (mod 1), where a, b, c, d ∈ Z. If
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Figure 7.1.4. The hyperbolic toral map.

F n
L (x, y) = (x, y), then

ax + by = x + k,

cx + dy = y + l

for k, l ∈ Z. Since 1 is not an eigenvalue for Ln, we can solve for (x, y):

x = (d − 1)k − bl
(a − 1)(d − 1) − cb

, y = (a − 1)l − ck
(a − 1)(d − 1) − cb

.

Thus x, y ∈ Q.
Now we calculate Pn(FL ). The map

G = F n
L − Id : (x, y) !→ ((a − 1)x + by, cx + (d − 1)y) (mod 1)

is a well-defined noninvertible map of the torus onto itself. As before, if
F n

L (x, y) = (x, y), then (a − 1)x + by and cx + (d − 1)y are integers; hence G(x, y) = 0
(mod 1), that is, the fixed points of F n

L are exactly the preimages of the point (0, 0)
under G. Modulo 1 these are exactly the points of Z2 in (Ln − Id)([0, 1) × [0, 1)). We
presently show that their number is given by the area of (Ln − Id)([0, 1) × [0, 1)),
which is |det(Ln − Id)| = |(λn

1 − 1)(λ−n
1 − 1)| = λn

1 + λ−n
1 − 2. �

Lemma 7.1.11 The area of a parallelogram with integer vertices is the number of
lattice points it contains, where points on the edges are counted as half, and all
vertices count as a single point.

Proof Denote the area of the parallelogram by A. Adding the number of lattice
points it contains in the prescribed way gives an integer N, which is the same for
any translate of the parallelogram.

Now consider the canonical tiling of the plane by copies of this parallelogram
translated by integer multiples of the edges. Denote by l the longest diagonal. The
area of the tiles can be determined in a backward way by determining how many
tiles lie in the square [0, n) × [0, n) for n > 2l. Those that lie inside cover the smaller
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square [l, n − l) × [l, n − l) completely, so there are at least

(n − 2l)2

A
≥ n2

A

(
1 − 4l

n

)
.

Since any tile that intersects the square is contained in [l, n − l) × [l, n − l), there
are at most

(n + 2l )2

A
= n2

A

(
1 + 4l

n

(
1 + l

n

))
<

n2

A

(
1 + 6l

n

)
.

The number n2 of integer points in the square is at least the number of points
in tiles in the square and at most the number of points in tiles that intersect the
square. Therefore

N · n2

A

(
1 − 4l

n

)
≤ n2 ≤ N · n2

A

(
1 + 6l

n

)
and 1 − 4l

n
≤ A

N
≤ 1 + 6l

n

for all n > 2l.

This shows that N = A. �

7.1.5 Inverse Limits

The closest invertible analog to E2 so far is the toral automorphism induced by(
2 1
1 1

)
. We digress briefly to describe a general construction that “makes a map

invertible”, that is, it that produces an invertible map from a noninvertible one in
a standard way. The way to overcome noninvertibility is to replace the points of
the given space by sequences (xn)n∈Z with f (xn) = xn+1. This way the ambiguity
about preimages is resolved by listing the entire orbit explicitly. Indeed, the map
F ((xn)n∈Z) := (xn+1)n∈Z is clearly invertible.

Definition 7.1.12 If X is a metric space and f : X → X continuous, then the inverse
limit is defined on the space

X ′ := {(xn)n∈Z xn ∈ X and f (xn) = xn+1 for all n ∈ Z}
by F ((xn)n∈Z) := (xn+1)n∈Z.

Consider explicitly f = E2 on S1. Then the inverse limit is the space

S := {(xn)n∈Z xn ∈ X and f (xn) = xn+1 for all n ∈ Z}
with the map F ((xn)n∈Z) := (xn+1)n∈Z = (2xn)n∈Z (mod 1). This is called the solenoid.

Compared to listing the whole sequence, there is a more economical way to
identify a point in S. Once an entry, such as x0, is specified, all subsequent entries
are uniquely determined (by the orbit of x0 ∈ S1 under E2). In order to specify
all previous members of the sequence, one need only choose (recursively) one
of two preimages at each step. For any given x0 this can be coded by a one-sided
0-1-sequence. Since the space 2 of these is a Cantor set (Section 7.3.5), the solenoid
S is locally the product of an interval (points on S1 near x0) and a Cantor set.

There is a beautiful way to visualize the inverse limit construction. Beginning
with a circle of “initial conditions” x0, there are “twice as many” possible preimages
x−1, so the circle has to be doubled up like a rubber band around a newspaper. But
there are twice as many second preimages, and so on, so it is necessary to double
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up ad infinitum. This is analogous to the construction of the ternary Cantor set,
where an interval becomes two, then four, and so on.

The definitive geometric realization is carried out in Section 13.2 and illustrated
in Figure 13.2.1 and on the cover of this book. This picture is representative of a
great wealth of ideas in dynamics and deserves to be an icon for chaotic dynamics.
Together with the horseshoe and linear toral automorphisms, the expanding map
E2 and the solenoid are the most tractable representatives of hyperbolic dynamical
systems, and these have provided the framework of concepts and techniques within
which each chaotic dynamical system is studied and described. This framework is
developed in this chapter and the next, and it is described further in Chapter 10.

� EXERCISES

� Exercise 7.1.1 Prove that for the expanding map Em(|m| ≥ 2) rational points are
preimages of periodic points (“eventually periodic”).

� Exercise 7.1.2 Find a necessary and sufficient condition for a rational point to
be periodic under Em.

� Exercise 7.1.3 Carry out the proof of Proposition 7.1.3 for the case m < −1.

� Exercise 7.1.4 Prove that for any n ∈ N and λ ≥ 4 the quadratic map fλ has a
periodic point whose minimal period (Definition 2.2.6) is n.

� Exercise 7.1.5 Give an example of a continuous map f : [0, 1] → R with
f (0) = f (1) = 0 for which there exists c ∈ [0, 1] such that f (c) > 1, and such that
Pn( f ) > 2n.

� Exercise 7.1.6 Give an example of a smooth unimodal map f such that
Pn( f ) < 2n.

� Exercise 7.1.7 Show that a continuous map f of S1 can be deformed to Edeg( f ),
that is, that there is a continuous map F : [0, 1] × S1 → S1 with F (0, ·) = Edeg( f )

and F (1, ·) = f .

� Exercise 7.1.8 Show that maps of different degrees cannot be deformed into
each other, that is, that there is no continuous map F : [0, 1] × S1 → S1 such that
deg(F (0, ·)) �= deg(F (1, ·)).

� Exercise 7.1.9 Suppose f : S1 → S1 has degree 2 and 0 is an attracting fixed
point. Show that Pn( f ) > 2n.

� Exercise 7.1.10 Consider the Fibonacci sequence from Section 1.2.2,
Example 2.2.9, and Section 3.1.9. Show that the sequence obtained from tak-
ing the last digit of each Fibonacci number is periodic.

� Exercise 7.1.11 Apply the inverse limit construction to a homeomorphism and
prove that the result is naturally equivalent to the original system.

� PROBLEMS FOR FURTHER STUDY

� Problem 7.1.12 Prove that the solenoid in Section 7.1.5 is connected but not
path-connected.
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7.2 TOPOLOGICAL TRANSITIVITY AND CHAOS

We will show that some of the examples considered in the previous section
are topologically transitive in the sense of Definition 4.1.3, that is, they have
dense orbits. That there are at the same time infinitely many periodic points makes
these examples different from irrational rotations and the other topologically
transitive examples of Chapter 4 and Chapter 5. In expanding maps and hyper-
bolic linear maps of the torus we even found that the union of the periodic points
is dense, which means that dense and periodic orbits are inextricably intertwined.

Thus, the global orbit structure is far more complex in these examples. This
intertwining of density and periodicity is an essential feature of the complexity
of the orbit structure. It causes sensitive dependence of any orbit on its initial
conditions (see Definition 7.2.11 and Theorem 7.2.12), which is regarded as an
essential ingredient of chaos.

Definition 7.2.1 A continuous map f : X → X of a metric space is said to be chaotic
if it is topologically transitive and its periodic points are dense.1

Circle rotations show that neither condition alone gives much complexity.
We will show presently that expanding and hyperbolic maps are chaotic. In

fact, we show the stronger property of topological mixing (Definition 7.2.5), which
is absent in the minimal examples of Chapter 4 and Chapter 5. Before introducing the
mixing property, we give an alternative definition of topological transitivity.

7.2.1 A Criterion for Topological Transitivity

We defined topological transitivity as the existence of a dense orbit. However, it is
useful to have an alternate characterization in terms of subsets of phase space. In
order to include noninvertible maps, we say that a sequence (xi)i∈Z is an orbit of f
if f (xi) = xi+1 for all i ∈ Z. However, we simply write f i(x) for i ∈ Z anyway to keep
the notations more familiar.

Proposition 7.2.2 Let X be a complete separable (that is, there is a countable dense
subset) metric space with no isolated points. If f : X → X is a continuous map, then
the following four conditions are equivalent:

(1) f is topologically transitive, that is, it has a dense orbit.
(2) f has a dense positive semiorbit.
(3) If ∅ �= U, V ⊂ X, then there exists an N ∈ Z such that f N(U ) ∩ V �= ∅.
(4) If ∅ �= U, V ⊂ X, then there exists an N ∈ N such that f N(U ) ∩ V �= ∅.

Of course, the implications (4) ⇒ (3) and (2) ⇒ (1) are clear. To show
which hypotheses are needed for which of the remaining directions, we prove
Proposition 7.2.2 in the following form.

1 There is no universally accepted definition of chaos, but this definition is equivalent to the one most
commonly found in expository literature, which was put forward by Robert Devaney.
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V1

U1

f −N1(U2)

U2

fN1(U1)

Figure 7.2.1. Construction for the proof.

Lemma 7.2.3 Let X be a metric space and f : X → X a continuous map. Then (1)
implies (3). If X has no isolated points, then (1) implies (4). If X is separable, then
(3) implies (1) and (4) implies (2).

Proof Let f be topologically transitive and suppose the orbit of x ∈ X is dense.
Then there exists an n ∈ Z such that f n(x) ∈ U, and there is an m ∈ Z such that
f m(x) ∈ V ; hence f m−n(U ) ∩ V �= ∅. This implies (3).

If we can choose m > n, then by taking N := m −n we have even established (4).
Otherwise we use the assumption that X has no isolated points, so f m(x) is not
an isolated point and therefore there are nk ∈ Z such that |nk| → ∞, f nk(x) ∈ V ,
and f nk(x) → f m(x) as k → ∞. Indeed, nk → −∞ since nk ≤ n by assumption
(otherwise we are in the first case), so we can choose an m ′ < 2m− n from
among the nk such that f m ′

(x) ∈ f m−n(U ). Then x ′ := f n−m( f m ′
(x)) ∈ U and

f 2m−n−m ′
(x ′) = f m(x) ∈ V , so f N(U ) ∩ V �= ∅ with N := 2m− n − m ′ ∈ N. Thus (1)

⇒ (4) if X has no isolated points.
Now assume separability and one of the intersection conditions (3) and (4). We

give one argument to prove both that (3) implies (1) and (4) implies (2). For a count-
able dense subset S ⊂ X , let U1, U2, . . . be the countable collection of balls centered
at points of S with rational radius. We need to construct an orbit or semiorbit that
intersects every Un. By (3) there exists N1 ∈ Z such that f N1 (U1) ∩ U2 �= ∅. If (4) holds,
we can take N1 ∈ N. Let V1 be an open ball of radius at most 1/2 such that V1 ⊂ U1 ∩
f −N1 (U2). (See Figure 7.2.1.) There exists N2 ∈ Z such that f N2 (V1) ∩ U3 is nonempty,
and, if (4) holds, we can take N2 ∈ N. Again, take an open ball V2 of radius at most 1/4
such that V2 ⊂ V1 ∩ f −N2 (U3). By induction, we construct a nested sequence of open
balls Vn of radii at most 2−n such that Vn+1 ⊂ Vn ∩ f −Nn+1 (Un+2). The centers of these
balls form a Cauchy sequence whose limit x is the unique point in the intersection
V = ⋂∞

n=1 Vn = ⋂∞
n=1 Vn. Then f Nn−1 (x) ∈ Un for every n ∈ N, and all Nn ∈ N if (4)

holds.
If f is noninvertible, the last step may involve choices for negative values of Nn:

Take ik such that Nik < 0 for all k and Nik+1 < Nik . Choose x0 = x and xNik
∈ Uik+1.

Together with f (xk) = xk+1, this defines an orbit of x. �

Corollary 7.2.4 A continuous open (Definition A.1.16) map f of a complete separa-
ble metric space without isolated points is topologically transitive if and only if there
are no two disjoint open nonempty f -invariant sets.
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Proof If U, V ⊂ X are open, then the invariant sets Ũ := ⋃
n∈Z

f n(U ) and Ṽ :=⋃
n∈Z

f n(V ) are open because f is an open map, and therefore not disjoint by
assumption, so f n(U ) ∩ f m(V ) �= ∅ for some n, m ∈ Z. Then f n−m(U ) ∩ V �= ∅ and
f is topologically transitive by Proposition 7.2.2. The other direction is obvious: A
dense orbit visits every open set. �

7.2.2 Topological Mixing

There is a property of a dynamical system that immediately implies this criterion
but is indeed much stronger:

Definition 7.2.5 A continuous map f : X → X is said to be topologically mix-
ing if for any two nonempty open sets U, V ⊂ X there is an N ∈ N such that
f n(U ) ∩ V �= ∅ for every n > N.

By Proposition 7.2.2, every topologically mixing map is topologically transitive.
On the other hand, our simple examples are not mixing. No translation Tγ , in
particular no circle rotation, is topologically mixing. This follows from the fact
that translations preserve the natural metric on the torus induced by the standard
Euclidean metric on Rn and from the following general criterion.

Lemma 7.2.6 Isometries are not topologically mixing.

Proof Let f : X → X be an isometry (that is, a map that preserves the metric on X ).
Take distinct points x, y, z ∈ X , and let δ := min(d(x, y), d(y, z), d(z, x))/4. Let
U, V1, V2 be δ-balls around x, y, z correspondingly. Since f preserves the diameter
of any set, the diameter of f n(U ) is at most 2δ whereas the distance between any
p ∈ V1 and q ∈ V2 is greater than 2δ. Thus for each n either f n(U ) ∩ V1 = ∅ or
f n(U ) ∩ V2 = ∅. �

7.2.3 Expanding Maps

For expanding maps we prove topological mixing by showing the stronger fact
that, for any open set, its image under some iterate of the map contains S1. For the
linear expanding maps Em this is obvious: Every open set contains an interval of
the form [l/|m|k, (l + 1)/|m|k] for some integers k and l ≤ |m|k. The image of this
interval under E k

m is S1.

Proposition 7.2.7 Expanding maps of S1 are topologically mixing.

Proof Let f : S1 → S1 such that | f ′(x)| ≥ λ > 1 for all x. Consider a lift F of f to R.
Then |F ′(x)| ≥ λ for x ∈ R. If [a, b] ⊂ R is an interval, then by the Mean-Value Theo-
rem A.2.3 there exists a c ∈ (a, b) such that |F (b) − F (a)| = |F ′(c)(b − a)| ≥ λ(b − a)
and so the length of any interval is increased by a factor at least λn under F n.
Consequently, for every interval I there exists n ∈ N such that the length of F (I )
exceeds 1. Thus the image of the projection of I to S1 under f n contains S1. Since
every open set of S1 contains an interval, this shows that every open set has an
image under an iterate of f that contains S1. �
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Corollary 7.2.8 Linear expanding maps of S1 are chaotic.

Proof Transitivity follows from Proposition 7.2.7 and the density of periodic points
from Proposition 7.1.3. �

For nonlinear expanding maps, this result also holds by invoking Theorem 7.4.3
(which is only stated for degree 2 in the following, but holds for any expanding map).

7.2.4 Hyperbolic Linear Map on the Torus

The hyperbolic linear map FL of the torus induced by the linear map L with matrix
( 2 1

1 1 ) was introduced in Section 7.1.4. The eigenvectors corresponding to the first
eigenvalue belong to the line y = (

√
5 − 1/2)x. The family of lines parallel to it is

invariant under L, and L uniformly expands distances on those lines by a factor λ1.
Similarly, there is an invariant family of contracting lines y = (−√

5 − 1/2)x + const.

Proposition 7.2.9 The automorphism FL is topologically mixing.

Proof Fix open sets U, V ⊂ T2. The L-invariant family of lines

y =
√

5 − 1
2

x + const.(7.2.1)

projects to T2 as an FL -invariant family of orbits of the linear flow T t
ω with irrational

slope ω = (1, (
√

5 − 1)/2). By Proposition 5.1.3, this flow is minimal. Thus the
projection of each line is everywhere dense on the torus, and hence U contains
a piece J of an expanding line; furthermore, for any ε > 0, there exists T = T(ε)
and a segment of an expanding line of length T that intersects any ε-ball on the
torus. Since all segments of a given length are translations of one another, this
property holds for all segments. Now take ε such that V contains an ε-ball and
N ∈ N such that f N(J ) has length at least T . Then f n(J ) ∩ V �= ∅ for n ≥ N and
thus f n(U ) ∩ V �= ∅ for n ≥ N. �

Corollary 7.2.10 The automorphism FL is chaotic.

Proof Combine Proposition 7.2.9, and Proposition 7.1.10. �

U

V

Figure 7.2.2. Topological mixing.
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7.2.5 Chaos

At the outset of this section we motivated our definition of a chaotic map by saying
that it implies sensitive dependence on initial conditions. We now justify this claim
by defining and verifying sensitive dependence.

Definition 7.2.11 A map f : X → X of a metric space is said to exhibit sensitive
dependence on initial conditions if there is a � > 0, called a sensitivity constant,
such that for every x ∈ X and ε > 0 there exists a point y ∈ X with d(x, y) < ε and
d( f N(x), f N(y)) ≥ � for some N ∈ N.

This means that the slightest error (ε) in any initial condition (x) can lead to a
macroscopic discrepancy (�) in the evolution of the dynamics. Accordingly, � tells
us at what scale these errors show up. Suppose I start a dynamical system in a state
x, let it evolve for a while, and try to reproduce this experiment. Even if I reproduce
x to within a billionth of an inch, the initial minuscule error may magnify to a large
difference in behavior in finite (often relatively short) time, that is, I may find that
the second run of the same experiment bears little resemblance to the first. This is
what Poincaré meant by his comment quoted in Section 1.1.1.

For linear expanding maps this property is clearly true: Any initial error of an
orbit for Em grows exponentially (by a factor of |m| at every iteration) until it has
grown to more than 1/2|m|. In particular, δ = 1/2|m| is a sensitivity constant. On
the other hand, this property clearly fails for isometries because points do not
move apart at all under iteration.

It is important for the definition that � does not depend on x, nor on ε, but only
on the system. Thus, the smallest error anywhere can lead to discrepancies of size
� eventually.2

Theorem 7.2.12 Chaotic maps exhibit sensitive dependenceon initial conditions,
except when the entire space consists of a single periodic orbit.

Proof Unless the entire space consists only of a single periodic orbit, the density
of periodic points implies that there are two distinct periodic orbits. Since they
have no common point, there are periodic points p, q such that � := min{d( f n( p),
f m(q)) n, m ∈ Z}/8 > 0. (Note that n and m need not agree.) We now show that �

is a sensitivity constant.
If x ∈ X , the orbit of one of these two points keeps a distance at least 4� from

x: If they were both within less than 4� of x, then their mutual distance would be
less than 8�. Suppose this point is q.

Take any ε ∈ (0, �). By the density of periodic points, there is a periodic point
p ∈ B(x, ε) whose period we call n. Then the set

V :=
n⋂

i=0

f −i(B( f i(q), �))

2 The meteorologist Edward Lorenz described this as the “butterfly effect”: Weather appears to be a
chaotic dynamical system, so it is conceivable that a butterfly that flutters by in Rio may cause a
typhoon in Tokyo a few days later.
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of points whose first n iterates track those of q up to � is an open neighborhood of
q. By Proposition 7.2.2 (used in the direction that does not require completeness)
there exists a k ∈ N such that f k(B(x, ε)) ∩ V �= ∅, that is, there exists a y ∈ B(x, ε)
such that f k(y) ∈ V . If j := �k/n	 + 1, then k/n < j ≤ (k/n) + 1 and

k = n · k
n

< nj ≤ n
(

k
n

+ 1
)

= k + n.

If we take N := nj, then this shows that 0 < N − k ≤ n. Since f N( p) = p, the triangle
inequality gives

d( f N( p), f N(y)) = d( p, f N(y))

≥ d(x, f N−k(q)) − d( f N−k(q), f N(y)) − d( p, x)

≥ 4� − � − � = 2�

(7.2.2)

because p ∈ B(x, ε) ⊂ B(x, �) and

f N(y) = f N−k( f k(y)) ∈ f N−k(V ) ⊂ B( f N−k(q), �)

by definition of V . Both p and y are in B(x, ε) and either d( f N( p), f N(x)) ≥ � or
d( f N(y), f N(x)) ≥ � by (7.2.2). �

Remark 7.2.13 There are maps exhibiting sensitive dependence that are not
chaotic, such as the linear twist from Section 6.1.1. Here, any point x has arbitrarily
nearby points (on a vertical segment through x) that move a considerable distance
away after sufficiently many iterates. The set of periodic points consists of those
points whose second coordinate is rational and is hence dense. On the other hand,
this map is clearly not topologically transitive.

Sensitive dependence can be derived from topological mixing alone, without
an assumption on periodic points:

Proposition 7.2.14 A topologically mixing map (on a space with more than one
point) has sensitive dependence.

Proof Take � > 0 such that there are points x1, x2 with d(x1, x2) > 4�. We show
that � is a sensitivity constant.

Let Vi = B�(xi) for i = 1, 2. Suppose x ∈ X and U is a neighborhood of x. By
topological mixing there are N1, N2 ∈ N such that f n(U ) ∩ V1 �= ∅ for n ≥ N1 and
f n(U ) ∩ V2 �= ∅ for n ≥ N2. For n ≥ N := max(N1, N2), there are points y1, y2 ∈ U
with f n(y1) ∈ V1 and f n(y2) ∈ V2; hence d( f n(y1), f n(y2)) ≥ 2�. By the triangle
inequality d( f n(y1), f n(x)) ≥ � or d( f n(y2), f n(x)) ≥ �. �

� EXERCISES

� Exercise 7.2.1 Find the maximal sensitivity constant for E2.

� Exercise 7.2.2 Find the supremum of sensitivity constants for FL in Section 7.2.4.

� Exercise 7.2.3 Prove that, for a topologically mixing map, any number less than
the diameter sup{d(x, y) | x, y ∈ X } of the space X is a sensitivity constant.
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� Exercise 7.2.4 Consider the linear twist T : S1 × [0, 1] → S1 × [0, 1], T(x, y) =
(x + y, y) from Section 6.1.1 that was remarked upon in Remark 7.2.13. Prove that it
has the following property of partial topological mixing: Let U, V ⊂ S1 be nonempty
open sets. Then there exists N(U, V ) ∈ N such that T n(U × [0, 1]) ∩ (V × [0, 1]) �= ∅

for any n ≥ N.

� Exercise 7.2.5 Show that for a compact space sensitive dependence is a
topological invariant (see Section 7.3.6).

� Exercise 7.2.6 Prove that for any two periodic points of FL the set of heteroclinic
points (see Definition 2.3.4) is dense.

� Exercise 7.2.7 Consider a 2 × 2 integer matrix L without eigenvalues of absolute
value 1 and with | det L| > 1. Prove that the induced noninvertible hyperbolic
linear map FL : T2 → T2 is topologically mixing.

7.3 CODING

One of the most important ideas for studying complicated dynamics sounds strange
at first. It involves throwing away some information by tracking orbits only approx-
imately. The idea is to divide the phase space into finitely many pieces and to follow
an orbit only to the extent of specifying which piece it is in at a given time. This is a
bit like the itinerary of the harried tourist in Europe, who decides that it is Tuesday,
so the place must be Belgium. A more technological analogy would be to look at the
records of a cell phone addict and track which local transmitters were used at various
times.

In these analogies one genuinely loses information, because the sequence of
European countries or of local cellular stations does not pinpoint the traveller at
any given moment. However, orbits in a dynamical system do not move around at
whim, and the deterministic nature of the dynamics has the effect that a complete
itinerary of this sort may (and often does) give all the information about a point.
This is the process of coding of a dynamical system.

7.3.1 Linear Expanding Maps

The linear expanding maps

Em: S1 → S1, Em(x) = mx (mod 1)

from Section 7.1.1 are chaotic (Corollary 7.2.8), that is, they exhibit coexistence
of dense orbits (Proposition 7.2.7) with a countable dense set of periodic orbits
(Proposition 7.1.3). Thus the orbit structure is both complicated and highly
nonuniform. Now we look at these maps from a different point of view, which in
turn gives a deeper appreciation of just how complicated their orbit structure really
is. To simplify notations, assume as before that m = 2.

Consider the binary intervals

�k
n :=

[
k

2n
,

k + 1
2n

]
for n = 1, . . . and k = 0, 1, . . . , 2n − 1.
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0 1 1 3 1

∆2

4 2 4

∆2 ∆2 ∆2
3210

Figure 7.3.1. Linear coding.

Figure 7.3.1 illustrates this for n = 2. Let x = 0.x1x2 . . . be the binary representation
of x ∈ [0, 1]. Then 2x = x1.x2x3 . . . = 0.x2x3 . . . (mod 1). Thus

E2(x) = 0.x2x3 . . . (mod 1).(7.3.1)

This is the first and easiest example of coding, which we will discuss in greater
detail shortly.

7.3.2 Implications of Coding

We briefly derive a few new facts about linear expanding maps that are best seen
via this coding.

1. Proof of Transitivity via Coding. First, we use this representation to give another
proof of topological transitivity by describing explicitly the binary representation
of a number whose orbit under the iterates of E2 is dense. Consider an integer k,
0 ≤ k ≤ 2n − 1. Let k0 . . . kn−1 be the binary representation of k, maybe with several
zeroes at the beginning. Then x ∈ �k

n if and only if xi = ki for i = 0, . . . n − 1. There-
fore we write �k0...kn−1 := �k

n from now on. Now put the binary representations of all
numbers from 0 to 2n − 1 (with zeroes in front if necessary) one after another and
form a finite sequence, which we denote by ωn, that is, ωn is obtained by concate-
nating all 2n binary sequences of length n. Having done this for every n ∈ N, put the
sequences ωn, n = 1, 2, . . . in that order, call the resulting infinite sequence ω, and
consider the number x with the binary representation 0.ω. Since by construction
moving ω to the left and cutting off the first digits produces at various moments bi-
nary representations of any n-digit number, this means that the orbit of the point x
under the iterates of the map E2 intersects every interval �k0...kn−1 and hence is dense.

This construction extends to any m ≥ 2. To construct a dense orbit for Em

with m ≤ −2, we notice that E 2
m = Em2 . Obviously the orbit of any point under the

iterates of a square of a map is a subset of the orbit under the iterates of the map
itself; thus if the former is dense, so is latter. So we apply our construction to the
map Em2 and obtain a point with dense orbit under Em.
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2. Exotic Asymptotics. Next we use this approach to show that besides periodic
and dense orbits there are other types of asymptotic behavior for orbits of expand-
ing maps. One can construct such orbits for E2, but the simplest and most elegant
example appears for the map E3.

Proposition 7.3.1 There exists a point x ∈ S1 such that the closure of its orbit with
respect to the map E3 in additive notation coincides with the standard middle-third
Cantor setK . In particular, K is E3-invariant and contains a dense orbit.

Proof The middle-third Cantor set K can be described as the set of all points on
the unit interval that have a representation in base 3 with only 0’s and 2’s as digits
(see Section 2.7.1). Similarly to (7.3.1), the map E3 acts as the shift of digits to the
left in the base 3 representation. This implies that K is E3-invariant. It remains to
show that E3 has a dense orbit in K .

Every point in K has a unique representation in base 3 without 1’s. Let x ∈ K and

0.x1x2x3 . . .(7.3.2)

be such a representation. Let h(x) be the number whose representation in base 2 is

0.
x1

2
x2

2
x3

2
. . . ,

that is, it is obtained from (7.3.2) by replacing 2’s by 1’s. Thus we have constructed a
map h: K → [0, 1] that is continuous, nondecreasing [that is, x > y implies h(x) ≥
h(y)], and one-to-one, except for the fact that binary rationals have two preimages
each (compare Section 2.7.1 and Section 4.4.1). Furthermore, h ◦ E3 = E2 ◦ h. Let
D ⊂ [0, 1] be a dense set of points that does not contain binary rationals. Then h−1(D)
is dense in K because, if � is an open interval such that � ∩ K �= ∅, then h(�) is a
nonempty interval open, closed, or semiclosed and hence contains points of D. Now
take any x ∈ [0, 1] whose E2-orbit is dense; the E3-orbit of h−1(x) ∈ K is dense in K . �

3. Nonrecurrent Points. Another interesting example is the construction of a
nonrecurrent point, that is, such a point x that for some neighborhood U of
x all iterates of x avoid U (see Definition 6.1.8). In fact, there is a dense set of
nonrecurrent points for the map E2.

Pick any fixed sequence (ω0, . . . , ωn−1) of 0’s and 1’s and add a tail of 0’s if
ωn−1 = 1, or of 1’s if ωn−1 = 0. Call the resulting infinite sequence ω. As before, let x
be the number with binary representation 0.ω. Thus, x lies in a prescribed interval
�ω0...ωn−1 and by construction x �= 0. On the other hand, E n

2 x = 0 and hence E m
2 x = 0

for all m ≥ n, so x is a nonrecurrent point.
Thus, we have found that Em is chaotic and topologically mixing, that its

periodic and nonrecurrent orbits are dense, and that E3 has orbits whose closure
is a Cantor set.

7.3.3 A Two-Dimensional Cantor Set

We now describe a map in the plane that naturally gives rise to a two-dimensional
Cantor set (previously encountered in Problem 2.7.5) on which ternary expansion
of the coordinates provides all information about the dynamics. This horseshoe
map plays a central role in our further development.
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Consider a map defined on the unit square [0, 1] × [0, 1] by the following con-
struction: First apply the linear transformation (x, y) !→ (3x, y/3) to get a horizontal
strip whose left and right thirds will be rigid in the next transformation. Holding
the left third fixed, bend and stretch the middle third such that the right third falls
rigidly on the top third of the original unit square. This results in a “G”-shape. For
points that are in and return to the unit square, this map is given analytically by

(x, y) !→
{

(3x, y/3) if x ≤ 1/3

(3x − 2, (y + 2)/3) if x ≥ 2/3.

The inverse can be written as

(x, y) !→
{

(x/3, 3y) if y ≤ 1/3

((x + 2)/3, 3y − 2) if y ≥ 2/3.

Geometrically, the inverse looks like an “e”-shape rotated counterclockwise by 90◦.
To iterate this map one triples the x-coordinate repeatedly and always assumes

that the resulting value is either at most 1/3 or else at least 2/3, that is, that the
first ternary digit is 0 or 2, but not 1. (If the expansion is not unique, one requires
such a choice to be possible.) Comparing with the construction of the ternary
Cantor set in Section 2.7.1, one sees that the x-coordinate lies in the ternary Cantor
set C . Looking at the inverse one sees likewise that, in order for all preimages
to be defined, the y-coordinate lies in the Cantor set as well. Therefore this map
is defined for all positive and negative iterates on the two-dimensional Cantor
set C × C . There is a straightforward way of using ternary expansion to code the
dynamics. For a point (x, y) the map shifts the ternary expansion of x one step to
the left, dropping the first term, and shifts the ternary expansion of y to the right.
It is natural to fill in the now-ambiguous first digit of the shifted y-coordinate
with the entry from the x-coordinate that was just dropped. This retains all
information, and the best way of vizualizing the result is to write the expansion
of the y-coordinate in reverse and in front of that of the x-coordinate. This gives a
bi-infinite string of 0’s and 2’s (remember, no 1’s allowed), which is shifted by the
map. Of course, one should verify that the inverse acts by shifting in the opposite
direction.

7.3.4 Sequence Spaces

Now we are ready to discuss the concept of coding in general. We mean by coding
a representation of points in the phase space of a discrete-time dynamical system
or an invariant subset by sequences (not necessarily unique) of symbols from a
certain “alphabet,” in this case the symbols 0, . . . , N − 1. So we should acquaint
ourselves with these spaces.

Denote by R
N the space of sequences ω = (ωi)∞

i=0 whose entries are integers
between 0 and N − 1. Define a metric by

dλ(ω, ω′) :=
∞∑

i=0

δ(ωi, ω
′
i)

λi
,(7.3.3)
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where δ(k, l) = 1 if k �= l, δ(k, k) = 0, and λ > 2. The same definition can be made
for two-sided sequences by summing over i ∈ Z:

dλ(ω, ω′) :=
∑
i∈Z

δ(ωi, ω
′
i)

λ|i| ,(7.3.4)

for some λ > 3. This means that two sequences are close if they agree on a long
stretch of entries around the origin.

Consider the symmetric cylinder defined by

Cα1−n...αn−1 := {ω ∈ N ωi = αi for |i| < n}.
Fix a sequence α ∈ Cα1−n...αn−1 . If ω ∈ Cα1−n...αn−1 , then

dλ(α, ω) =
∑
i∈Z

δ(αi, ωi)
λ|i| =

∑
|i|≥n

δ(αi, ωi)
λ|i| ≤

∑
|i|≥n

1
λ|i| = 1

λn−1

2
λ − 1

<
1

λn−1
.

Thus Cα1−n...αn−1 ⊂ Bdλ
(α, λ1−n), the λ1−n-ball around α. If ω /∈ Cα1−n...αn−1 , then

dλ(α, ω) =
∑
i∈Z

δ(αi, ωi)
λ|i| ≥ λ1−n

because ωi �= αi for some |i| < n. Thus ω /∈ Bdλ
(α, λ1−n), and the symmetric cylinder

is the ball of radius λ1−n around any of its points:

Cα1−n...αn−1 = Bdλ
(α, λ1−n).(7.3.5)

Therefore, balls in N are described by specifying a symmetric stretch of entries
around the initial one.

For one-sided sequences this discussion works along the same lines [one only
needs λ > 2 in (7.3.4)] and λ1−n-balls are described by specifying a string of n initial
entries.

Our examples [see (7.3.1)] suggest to represent points in the phase space by
sequences in such a way that the sequences representing the image of a point are
obtained from those representing the point itself by the shift (translation) of the sym-
bols. In this way the given transformation corresponds to the shift transformation

σ : N → N, (σω)i = ωi+1

σ R : R
N → R

N, (σ Rω)i = ωi+1.
(7.3.6)

We often write σN for the shift σ on N and likewise σ R
N for σ R on R

N. For invertible
discrete-time systems, any coding involves sequences of symbols extending in
both directions; while for noninvertible systems, one-sided sequences do the job.
Section 7.3.7 studies these shifts as dynamical systems.

Among the shift transformations that arise from coding there is also a new kind
of combinatorial model for a dynamical system that is described by the possibility
or impossibility of certain successions of events.

Definition 7.3.2 Let A = (ai j )
N−1
i, j=0 be an N × N matrix whose entries ai j are either

0’s or 1’s. (We call such a matrix a 0-1 matrix.) Let

A := {
ω ∈ N aωnωn+1 = 1 for n ∈ Z

}
.(7.3.7)
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Figure 7.3.2. Obtaining a Cantor set.

The space A is closed and shift-invariant, and the restriction

σN�A
=: σA

is called the topological Markov chaindetermined by A.

This is a particular case of a subshift of finite type.

7.3.5 Coding

Sequences representing a given point of the phase space are called the codes of that
point. We have several examples of coding: for the map Em on the whole circle by
sequences from the alphabet {0, . . . , |m| − 1}; for the restriction of the map E3 to the
middle-third Cantor set K by one-sided sequences of 0’s and 1’s; and for the ternary
horseshoe in Section 7.3.3 by bi-infinite sequences of 0’s and 2’s. In both cases
we used one-sided sequences, all sequences appeared as codes of some points,
and each code represented only one point. There was, however, an important
difference: In the first case, which involved for positive m a representation in base
m, a point could have either one or two codes; in the latter there was only one code.

This shows that the space of binary sequences is a Cantor set (Definition 2.7.4).
In fact, this also holds for the other sequence spaces.

7.3.6 Conjugacy and Factors

This situation can be roughly described by saying that the shift (R
2 , σ R) “contains”

the map f up to a continuous coordinate change. (We already encountered such
a situation in Theorem 4.3.20.)

Definition 7.3.3 Suppose that g : X → X and f : Y → Y are maps of metric spaces
X and Y and that there is a continuous surjective map h: X → Y such that
h ◦ g = f ◦ h. Then f is said to be a factor of g via the semiconjugacy or factor map h.
If this h is a homeomorphism, then f and g are said to be conjugate and h is said
to be a conjugacy.
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These notions made a brief appearance in Section 4.3.5 in connection with
modeling an arbitrary homeomorphism of the circle by a rotation. The notion
of conjugacy is natural and central; two conjugate maps are obtained from one
another by a continuous change of coordinates. Hence all properties that are
independent of such changes of coordinates are unchanged, such as the numbers
of periodic orbits for each period, sensitive dependence (Exercise 7.2.5), topological
transitivity, topological mixing, and hence also being chaotic. Such properties
are said to be topological invariants. Later in this book we will encounter further
important topological invariants such as topological entropy (Definition 8.2.1).

7.3.7 Dynamics of Shifts and Topological Markov Chains

We now study the properties of shifts and topological Markov chains introduced
in (7.3.6) and Definition 7.3.2 in more detail. These are important because
many interesting dynamical systems are coded by shifts or topological Markov
chains. To such dynamical systems the results of this section have immediate
applications.

Proposition 7.3.4 Periodic points for the shifts σN and σ R
N are dense in N

and R
N, correspondingly, Pn(σN) = Pn(σ R

N ) = Nn, and both σN and σ R
N are

topologically mixing.

Proof Periodic orbits for a shift are periodic sequences, that is, (σN)m ω = ω

if and only if ωn+m = ωn for all n ∈ Z. In order to prove density of periodic
points, it is enough to find a periodic point in every ball (symmetric cylinder),
because every open set contains a ball. To find a periodic point in Cα−m,...,αm ,
take the sequence ω defined by ωn = αn ′ for |n ′| ≤ m , n ′ = n (mod 2m + 1).
It lies in this cylinder and has period 2m + 1.

Every periodic sequence ω of period n is uniquely determined by its coor-
dinates ω0, . . . , ωn−1. There are Nn different finite sequences (ω0, . . . , ωn−1).

To prove topological mixing, we show that σ n
N(Cα−m,...,αm ) ∩ Cβ−m,...,βm �= ∅ for

n > 2m + 1, say, n = 2m + k + 1 with k > 0. Consider any sequence ω such that

ωi = αi for |i | ≤ m , ωi = βi−n for i = m + k + 1, . . . , 3m + k + 1.

Then ω ∈ Cα−m,...,αm and σ n
N(ω) ∈ Cβ−m,...,βm .

The arguments for the one-sided shift are analogous. �

There is a useful geometric representation of topological Markov chains. Con-
nect i with j by an arrow if ai j = 1 to obtain a Markov graph G A with N vertices
and several oriented edges. We say that a finite or infinite sequence of vertices of
G A is an admissible path or admissible sequence if any two consecutive vertices
in the sequence are connected by an oriented arrow. A point of A corresponds
to a doubly infinite path in G A with marked origin; the topological Markov
chain σA corresponds to moving the origin to the next vertex. The following
simple combinatorial lemma is a key to the study of topological Markov chains:

Lemma 7.3.5 For every i, j ∈ {0, 1, . . . , N − 1}, the number Nm
i j of admissible

paths of length m + 1 that begin at xi and end at xj is equal to the entry am
i j of

the matrix Am.
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1

2

3

40

Figure 7.3.3. A Markov graph.

Proof We use induction on m. First, it follows from the definition of the graph
G A that N1

i j = ai j. To show that

Nm+1
i j =

N−1∑
k=0

Nm
ikakj,(7.3.8)

take k ∈ {0, . . . , N − 1} and an admissible path of length m + 1 connecting i
and k. It can be extended to an admissible path of length m + 2 connecting i to
j (by adding j) if and only if akj = 1. This proves (7.3.8). Now, assuming by
induction that Nm

i j = am
i j for all i j, we obtain Nm+1

i j = am+1
i j from (7.3.8). �

Corollary 7.3.6 Pn (σA) = tr An.

Proof Every admissible closed path of length m + 1 with marked origin, that
is, a path that begins and ends at the same vertex of G A, produces exactly one
periodic point of σA of period m. �

Because the eigenvalue of largest absolute value dominates the trace, it
determines the exponential growth rate:

Proposition 7.3.7 p(σA) = r(A), where r(A) is the spectral radius.

Proof “≤ ” is clear. To show “ ≥ ” we need to avoid cancellations: If
λ j = re2π iϕ j (1 ≤ j ≤ k) are the eigenvalues of maximal absolute value then
there is a sequence m n → ∞ such that m nϕ j → 0 (mod 1) for all j (recurrence
for toral translations, Section 5.1), so

∑
λ

m n
i ∼ rm n. �

Example 7.3.8 The Markov graph in Figure 7.3.3 produces three fixed points,
0, 1, and 4. 01 and 23 give four periodic points with period 2. The period-3
orbits are generated by 011, 001, 234.

Topological Markov chains can be classified according to the recurrence
properties of various orbits they contain. Now we concentrate on those
topological Markov chains that possess the strongest recurrence properties.
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Definition 7.3.9 A matrix A is said to be positive if all its entries are positive.
A 0-1 matrix A is said to be transitive if Am is positive for some m ∈ N. A
topological Markov chain σA is said to be transitive if A is a transitive matrix.

Lemma 7.3.10 If Am is positive, then so is An for any n ≥ m.

Proof If an
i j > 0 for all i, j, then for each j there is a k such that akj = 1.

Otherwise, an
i j = 0 for every n and i. Now use induction. If an

i j > 0 for all i, j,
then an+1

i j = ∑N−1
k=0 an

ikakj > 0 because akj = 1 for at least one k. �

Lemma 7.3.11 If A is transitive and α−k, . . . , αk is admissible, that is, aαi αi+1 = 1
for i = −k, . . . , k − 1, then the intersection A ∩ Cα−k,...,αk =: Cα−k,...,αk,A is
nonempty and moreover contains a periodic point.

Proof Take m such that am
αk,α−k

> 0. Then one can extend the sequence α to
an admissible sequence of length 2k + m + 1 that begins and ends with α−k.
Repeating this sequence periodically, we obtain a periodic point in Cα−k,...,αk,A. �

Proposition 7.3.12 If A is a transitive matrix, then the topological Markov chain
σA is topologically mixing and its periodic orbits are dense in A; in particular,
σA is chaotic and hence has sensitive dependence on initial conditions.

Proof The density of periodic orbits follows from Lemma 7.3.11. To prove
topological mixing, pick open sets U, V ⊂ A and nonempty symmetric
cylinders Cα−k,...,αk,A ⊂ U and Cβ−k,...,βk,A ⊂ V . Then it suffices to show
that σ n

A(Cα−k,...,αk,A) ∩ Cβ−k,...,βk,A �= ∅ for any sufficiently large n. Take
n = 2k + 1 + m + l with l ≥ 0, where m is as in Definition 7.3.9. Then am+l

αkβ−k
> 0

by Lemma 7.3.10, so there is an admissible sequence of length 4k + 2 + m + l
whose first 2k + 1 symbols are identical to α−k, . . . , αk and the last 2k + 1
symbols to β−k, . . . , βkβ. By Lemma 7.3.11, this sequence can be extended to a
periodic element of A which belongs to σ n

A(Cα−k,...,αk,A) ∩ Cβ−k,...,βk,A. �

Example 7.3.13 The matrix ( 1 1
0 1 ) is not transitive because all its powers are

upper triangular and hence there is no path from 1 to 0. In fact, the space
A is countable and consists of two fixed points ( . . . , 0, . . . , 0, . . . ) and
( . . . , 1, . . . , 1, . . . ), and a single heteroclinic orbit connecting them (consisting
of the sequences that are 1 up to some place and 0 thereafter).

Example 7.3.14 For the matrix 
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0
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every orbit alternates between entries from the first group {0, 1} on the one hand
and from the second group {2, 3} on the other hand, that is, the parity (even–odd)
must alternate. Therefore no power of the matrix has all entries positive.

� EXERCISES

� Exercise 7.3.1 Prove that E2 has a nonperiodic orbit all of whose even iterates
lie in the left half of the unit interval.

� Exercise 7.3.2 Prove that E2 has a uncountably many orbits for which no
segment of length 10 has more than one point in the left half of the unit interval.

� Exercise 7.3.3 Prove that linear maps that are conjugate in the sense of linear
algebra are topologically conjugate in the sense of Definition 7.3.3.

� Exercise 7.3.4 Write down the Markov matrix for Figure 7.3.3 and check
Corollary 7.3.6 up to period 3.

� Exercise 7.3.5 Consider the metric

d′
λ(α, ω) :=

∑
i∈Z

|αi − ωi |
λ|i|(7.3.9)

on N. Show that for λ > 2N − 1 the cylinder Cα1−n...αn−1 is a λ1−n-ball for d′
λ.

� Exercise 7.3.6 Repeat the previous exercise for one-sided shifts (with λ > N ).

� Exercise 7.3.7 Consider the metric

d′′
λ (α, ω) := λ− max{n∈N αi=ωi for |i|≤n}(7.3.10)

[and d′′
λ (α, α) = 0] on N. Show that the cylinder Cα1−n...αn−1 is a ball for d′′

λ .

� Exercise 7.3.8 Find the supremum of sensitivity constants for a transitive
topological Markov chain with respect to the metric d′′

λ .

� Exercise 7.3.9 Find the supremum of sensitivity constants for a transitive
topological Markov chain with respect to the metric d′

λ.

� Exercise 7.3.10 Show that for m < n the shift on m is a factor of the shift on n.

� Exercise 7.3.11 Prove that the quadratic map f4 on [0, 1] is not conjugate to any
of the maps fλ for λ ∈ [0, 4).

� Exercise 7.3.12 Show that the topological Markov chains determined by the
matrices (

1 1
1 0

)
and

 1 1 0
0 0 1
1 1 0


are conjugate.

� Exercise 7.3.13 Find the smallest positive value of p(σA) for a transitive
topological Markov chain with two states (that is, with a 2 × 2 matrix A).
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� PROBLEMS FOR FURTHER STUDY

� Problem 7.3.14 Find all factors of an irrational rotation Rα of the circle.

� Problem 7.3.15 Find the smallest value of p(σA) for a transitive topological
Markov chain with three states (that is, with a 3 × 3 matrix A).

7.4 MORE EXAMPLES OF CODING

We now carry out a coding construction for several familiar dynamical systems.

7.4.1 Nonlinear Expanding Maps

There is a correspondence between general (not necessarily linear) expanding
maps of the circle (Section 7.1.3) and a shift on a sequence space. The construction
is similar to the one from Section 7.3.1. There is some effort involved, but there is
a beautiful prize at the end: We obtain a complete classification of a large class of
maps in terms of a simple invariant.

To keep notations simple, we consider an expanding map f : S1 → S1 of degree
2. By Proposition 7.1.9, f has exactly one fixed point p. (For maps of higher degree,
we could pick any one of the fixed points.) Since deg( f ) = 2, there is exactly one
point q �= p such that f (q) = p. The points p and q divide the circle into two arcs.
Starting from p in the positive direction, denote the first arc by �0 and the second
arc by �1. Define the coding for x ∈ S1 as follows: x is represented by the sequence
ω ∈ R

2 for which

f n(x) ∈ �ωn.(7.4.1)

This representation is unique unless f n(x) ∈ {p, q} = �0 ∩ �1. This lack of unique-
ness is similar to the case of binary rationals for the map E2. Suppose a point x
has an iterate in {p, q}. Then either x = p and f n(x) = p for all n ∈ N, or else the
point q must appear before p in the sequence of iterates, that is, f n(x) /∈ {p, q} for
all n less than some k and then f k(x) = q and f k+1(x) = p. In this case we make
the following convention. p has two codes, all 0’s and all 1’s, and q has two codes,
01111111 . . . and 1000000 . . . , and any x such that F k(x) = q has two codes given by
the first k − 1 digits uniquely defined by (7.4.1), followed by either of the codes for q.

Actually, going the other way around is better:

Proposition 7.4.1 If f : S1 → S1 is an expanding map of degree 2, then f is a
factor of σ R on R

2 (Definition 7.3.3), that is, there is a surjective continuous map
h: R

2 → S1 such that f n(h(ω)) ∈ �ωn for all n ∈ N0, that is, h ◦ σ R = f ◦ h.

Proof That the domain of h is R
2 requires that every sequence of 0’s and 1’s appears

as the code of some point. First, f maps each of the two intervals �0 and �1 onto
S1 almost injectively, the only identification being at the ends. Let

�00 be the core of �0 ∩ f −1(�0),

�01 be the core of �0 ∩ f −1(�1),

�10 be the core of �1 ∩ f −1(�0),

�11 be the core of �1 ∩ f −1(�1).



book 0521583047 April 21, 2003 16:55 Char Count= 0

222 7. Simple Systems with Complicated Orbit Structure

∆ 00 ∆ 01 ∆ 10 ∆ 11

p p + 1

Figure 7.4.1. Nonlinear coding.

What we mean by “core” is that each indicated intersection consists of an interval
as well as an isolated point ( p or q), and we discard this extraneous point. Each of
these four intervals is mapped onto S1 by f 2, again the only identification being at
the ends. By definition, any point from �i j has i j as the first two symbols of its code.
Proceeding inductively we construct for any finite sequenceω0, . . . , ωn−1 the interval

�ω0,...,ωn−1 := the core of �ω0 ∩ f −1(�ω1 ) · · · ∩ f 1−n(�ωn−1 ),(7.4.2)

which is mapped by f n onto S1 with identification of the endpoints. Now take any
infinite sequence ω = ω1, · · · ∈ R

2 . The intersection
⋂∞

n=1 �ω0,...,ωn−1 of the nested
closed intervals �ω0,...,ωn−1 is nonempty, and any point in this intersection has the
sequence ω as its code.

So far we have only used the fact that f is a monotone map of degree 2. To show
that h is well defined, we use the expanding property to check that

⋂∞
n=1 �ω0,...,ωn−1

consists of a single point, hence a point with a given code is unique.
If g : I → S1 is an injective map of an open interval I with a nonnegative

derivative, then by the Mean-Value Theorem A.2.3 l(g(I )) = ∫
I g ′(x) dx = g ′(ξ )l(I )

for some ξ ∈ I . Thus, in our case, there is a ξn such that

1 = l(S1) =
∫

�ω0 ,...,ωn−1

( f n)′(x) dx = ( f n)′(ξn) · l(�ω0,...,ωn−1 ).

Since f is expanding |( f n)′| > λn for some λ > 1, hence l(�ω0,...,ωn−1 ) < λ−n → 0 as
n → ∞ and

⋂∞
n=1 �ω0,...,ωn−1 consists of a single point xω. This gives a well-defined

surjective map h: R
2 → S1, ω !→ xω.

Give R
2 the metric d4 from (7.3.3). We showed in Section 7.3.4 that if

ε = λ−n and δ = 4−n, then d(ω, ω′) < δ implies that ωi = ω′
i for i < n and hence

|xω − xω′ | ≤ l(�ω0,...,ωn−1 ) < λ−n = ε. Thus h is continuous.
That h(σ R(ω)) = f (h(ω)) is clear from the construction. �
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7.4.2 Classification via Coding

Proposition 7.4.1 and the discussion preceding it established a semiconjugacy
between the one-sided 2-shift and the expanding map f on S1, that is,

Proposition 7.4.2 Let f : S1 → S1 be an expanding map of degree 2. Then
f is a factor of the one-sided 2-shift (R

2 , σR) via a semiconjugacy h: R
2 → S1.

If h(ω) = h(ω′) =: x, then there exists an n ∈ N0 such that f n(x) ∈ {p, q}, where
p = f ( p) = f (q), q �= p.

The last sentence of this proposition says that h is “very close” to being a
conjugacy: There are only countably many image points where injectivity fails.

An important feature of this coding is that it is obtained in a uniform way for
all expanding maps, and that the absence of injectivity occurs at points defined
by their dynamics, namely, the fixed point and its preimages. This leads us to
the prize promised at the beginning:

Theorem 7.4.3 If f, g : S1 → S1 are expanding maps of degree 2, then f and g are
topologically conjugate; in particular, every expanding map of S1 of degree 2 is con-
jugate to E2.

Proof We have semiconjugacies h f , hg : R
2 → S1 for f and g. For x ∈ S1, consider

the set Hx := hg(h−1
f ({x})). If x is a point of injectivity of h f , that is, h−1

f ({x}) is a single
point, then so is Hx. Otherwise, x is a preimage of the fixed point under some iterate
of f and h−1

f ({x}) consists of a collection of sequences that are mapped under hg to a
single point. Therefore, Hx always consists of precisely one point h(x). The bijective
map h: S1 → S1 thus defined is clearly a conjugacy: h ◦ f = g ◦ h. It is continuous
because h f sends open sets to open sets, that is, the image of a sequence and all
sufficiently closeby sequences contains a small interval. Exchanging f and g shows
that h−1 is also continuous. �

This holds for any degree via an appropriate coding. It is the first major
conjugacy result that establishes conjugacy with a specific model for all maps
from a certain class. The Poincaré Classification Theorem 4.3.20 comes close, but
requires extra assumptions (such as the existence of the second derivative; see
Section 4.4.3) to produce a conjugacy with a rotation.

7.4.3 Quadratic Maps

For λ > 4 consider the quadratic map

f : R → R, x → λx(1 − x).

If x < 0, then f (x) < x and f ′(x) > λ > 4, so f n(x) → −∞. When x > 1, f (x) < 0 and
hence f n(x) → −∞. Thus the set of points with bounded orbits is

⋂
n∈N0

f −n([0, 1]).

Proposition 7.4.4 If λ > 2 + √
5 and f : R → R, x → λx(1 − x), then there is a

homeomorphism h: R
2 → $ := ⋂

n∈N0
f −n([0, 1]) such that h ◦ σ R = f ◦ h, that is,

f �$
is conjugate to the 2-shift.
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Proof Let

�0 =
[

0,
1
2

−
√

1
4

− 1
λ

]
and �1 =

[
1
2

+
√

1
4

− 1
λ

, 1

]
.

Then f −1([0, 1]) = �0 ∪ �1 by solving the quadratic equation f (x) = 1. Likewise,
f −2([0, 1]) = �00 ∪ �01 ∪ �11 ∪ �10 consists of four intervals, and so forth. Consider
the partition of $ by �0 and �1. These pieces do not overlap and

| f ′(x)| = |λ(1 − 2x)| = 2λ

∣∣∣∣x − 1
2

∣∣∣∣ ≥ 2λ

√
1
4

− 1
λ

=
√

λ2 − 4λ >

√
(2 +

√
5)2 − 4(2 +

√
5) = 1

on �0 ∪ �1. Thus, for any sequence ω = (ω0, ω1, . . . ), the diameter of the
intersections

N⋂
n=0

f −n(�ωn)

decreases (exponentially) as N → ∞. This shows that for a sequence ω = (ω0,

ω1, . . . ) the intersection

h({ω}) =
⋂

n∈N0

f −n(�ωn)(7.4.3)

consists of exactly one point and this map h: R
2 → $ is a homeomorphism. �

Remark 7.4.5 It turns out that Proposition 7.4.4 holds whenever λ > 4 (Proposi-
tion 11.4.1), but this is significantly less straightforward to prove than the present
result. The situation present in either case, where a map folds an interval entirely
over itself, is referred to as a one-dimensional horseshoe, in analogy to the geometry
seen in the next subsection.

7.4.4 Linear Horseshoe

We now describe Smale’s original “horseshoe,” which provides one of the best
examples of perfect coding. (In Section 7.3.3 a special case was constructed, in
which ternary expansion provides the coding.)

Let � be a rectangle in R2 and f : � → R2 a diffeomorphism of � onto its
image such that the intersection � ∩ f (�) consists of two “horizontal” rectangles
�0 and �1 and the restriction of f to the components �i := f −1(�i), i = 0, 1,
of f −1(�) is a hyperbolic linear map, contracting in the vertical direction and
expanding in the horizontal direction. This implies that the sets �0 and �1 are
“vertical” rectangles. One of the simplest ways to achieve this effect is to bend �

into a “horseshoe”, or rather into the shape of a permanent magnet (Figure 7.4.2),
although this method produces some inconveniences with orientation. Another
way, which is better from the point of view of orientation, is to bend � roughly
into a paper clip shape (Figure 7.4.3). This is an exaggerated version of the ternary
horseshoe in Section 7.3.3, which also leaves some extra margin. If the horizontal
and vertical rectangles lie strictly inside �, then the maximal invariant subset
$ = ⋂∞

n=−∞ f −n(�) of � is contained in the interior of �.

Proposition 7.4.6 f �$
is topologically conjugate to σ2.
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∆

f(∆)

f2(∆)

Figure 7.4.2. The horseshoe.

Figure 7.4.3. The paper clip.

Proof We use �0 and �1 as the “pieces” in the coding construction and start with
positive iterates. The intersection � ∩ f (�) ∩ f 2(�) consists of four thin horizon-
tal rectangles: �i j = �i ∩ f (� j ) = f (�i) ∩ f 2(� j ), i, j ∈ {0, 1} (see Figure 7.4.2).
Continuing inductively, one sees that

⋂n
i=0 f i(�) consists of 2n thin disjoint

horizontal rectangles whose heights are exponentially decreasing with n. Each such
rectangle has the form �ω1,...,ωn = ⋂n

i=1 f i(�ωi ), where ωi ∈ {0, 1} for i = 1, . . . , n.
Each infinite intersection

⋂∞
n=1 f n(�ωn), ωn ∈ {0, 1}, is a horizontal segment, and

the intersection
⋂∞

n=1 f n(�) is the product of the horizontal segment with a Cantor
set in the vertical direction. Similarly, one defines and studies vertical rectangles
�ω0,...,ω−n = ⋂n

i=0 f −i(�ω−i ), the vertical segments
⋂∞

n=0 f −n(�ω−n), and the set⋂∞
n=0 f −n(�), which is the product of a segment in the vertical direction with a

Cantor set in the horizontal direction.
The desired invariant set $ = ⋂∞

n=−∞ f −n(�) is the product of two Cantor sets
and hence is a Cantor set itself (Problem 2.7.5), and the map

h: 2 → $, h({ω}) =
∞⋂

n=−∞
f −n(�ωn)

is a homeomorphism that conjugates the shift σ2 and the restriction of the
diffeomorphism f to the set $. �

Since periodic points and topological mixing are invariants of topological
conjugacy, Proposition 7.4.6 and Proposition 7.3.4 immediately give substantial
information about the behavior of f on $.
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Corollary 7.4.7 Periodic points of f are dense in $, Pn( f �$
) = 2n, and the

restriction of f to $ is topologically mixing.

Remark 7.4.8 Any map for which there is a perfect coding is defined on a Cantor
set, because the perfect coding establishes a homeomorphism between the phase
space and a sequence space, which is a Cantor set.

7.4.5 Coding of the Toral Automorphism

The idea of coding can be applied to hyperbolic toral automorphisms. To
simplify notations and keep the construction more visual, we consider
the standard example. Among our examples, this is the first where the coding
is ingenious, even though it is geometrically simple. Section 10.3 describes a
construction whose dynamical implications are quite similar to those obtained
here, but where the geometry is complicated and almost always fractal.

Theorem 7.4.9 For the map

F(x, y) = (2x + y, x + y) (mod 1)

of the 2-torus from Section 7.1.4 there is a semiconjugacy h : A → T2 with

F ◦ h = h ◦ σ5�A
, where

A =


1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
0 0 1 0 1

 .(7.4.4)

Proof Draw segments of the two eigenlines at the origin until they cross suffi-
ciently many times and separate the torus into disjoint rectangles. Specifically,
extend a segment of the contracting line in the fourth quadrant until it intersects
the segment of the expanding line twice in the first quadrant and once in the third
quadrant (see Figure 7.4.4). The resulting configuration is a decomposition
of the torus into two rectangles R(1) and R(2). Three pairs among the seven
vertices of the plane configuration are identified, so there are only four different
points on the torus that serve as vertices of the rectangles; the origin and three
intersection points. Although R(1) and R(2) are not disjoint, one can apply the
method used for the horseshoe, using R(1) and R(2) as basic rectangles. The
expanding and contracting eigendirections play the role of the “horizontal”
and “vertical” directions, correspondingly. Figure 7.4.5 shows that the image
F(R(i)) (i = 1, 2) consists of several “horizontal” rectangles of full length.
The union of the boundaries ∂ R(1) ∪ ∂ R(2) consists of the segments of the two
eigenlines at the origin just described. The image of the contracting segment is
a part of that segment. Thus, the images of R(1) and R(2) have to be “anchored”
at parts of their “vertical” sides; that is, once one of the images “enters” either
R(1) or R(2), it has to stretch all the way through it. By matching things up along
the contracting direction one sees that F(R(1)) consists of three components,
two in R(1) and one in R(2). The image of R(2) has two components, one in each
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a

a

b
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cc

d

R(1)

R(2)

Figure 7.4.4. Partitioning the torus.

∆1

∆2

∆3

∆4

∆0

(2)

F(R
)
(1)

F(R
)

Figure 7.4.5. The image of the partition.
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rectangle (see Figure 7.4.5). The fact that F(R(1)) has two components in R(1)

would cause problems if we were to use R(1) and R(2) for coding construction
(more than one point for some sequences), but we use these five components
�0, �1, �2, �3, �4 (or their preimages) as the pieces in our coding construction.
There is exactly one rectangle �ω−�...ω0,ω1...ωk defined by

⋂k
n=−� F−n(�ωn), not

several. (As in the case of expanding maps in Section 7.3.1, we have to discard
extraneous pieces, in this case line segments.) Due to the contraction of F in the
“vertical” direction, �ω−�...ω0,ω1...ωk has “height” less than ((3 − √

5)/2)�, and
due to the contraction of F−1 in the “horizontal” direction �ω−�...ω0,ω1...ωk has
“width” less than ((3 − √

5)/2)k. These go to zero as � → ∞ and k → ∞, so the
intersection

⋂
n∈Z

F−n(�ωn) defines at most one point h(ω). On the other hand,
because of the “Markov” property described previously, that is, the images going
full length through rectangles, the following is true: If ω ∈ 5 and F−1(�ωn)
overlaps �ωn+1 for all n ∈ Z, then there is such a point h(ω) in

⋂
n∈Z

F−n(�ωn).
Thus, we have a coding, which, however, is not defined for all sequences of 5.

Instead, we have to restrict attention to the subspace A of 5 that contains
only those sequences where any two successive entries constitute an “allowed
transition”, that is, 0, 1, 2 can be followed by 0, 1, or 3, and 3 and 4 can be
followed by 2 or 4. This is exactly the topological Markov chain (Definition 7.3.2)
for (7.4.4). �

Theorem 7.4.10 The semiconjugacy between σA and F is one-to-one on all
periodic points except for the fixed points. The number of preimages of any
point not negatively asymptotic to the fixed point is bounded.

Proof We describe carefully the identifications arising from our semiconjugacy,
that is, what points on the torus have more than one preimage. First, obviously,
the topological Markov chain σA has three fixed points, namely, the constant
sequences of 0’s, 1’s, and 4’s, whereas the toral automorphism F has only one,
the origin. It is easy to see that all three fixed points are indeed mapped to
the origin. As we have seen in Proposition 7.1.10, Pn(F) = λn

1 + λ−n
1 − 2, and

accordingly Pn(σA) = tr An = λn
1 + λ−n

1 = Pn(F) + 2 (Corollary 7.3.6), where
λ1 = (3 + √

5)/2 is the maximal eigenvalue for both the 2 × 2 matrix ( 2 1
1 1 ) and

for the 5 × 5 matrix (7.4.4). To see that the eigenvalues are the same, consider
A − λ Id, subtract column 4 from the first two columns and column 5 from the
third, and then add rows 1 and 2 to row 4 and row 3 to row 5:

1 − λ 1 0 1 0
1 1 − λ 0 1 0
1 1 −λ 1 0
0 0 1 −λ 1
0 0 1 0 1 − λ

 →


−λ 0 0 1 0
0 −λ 0 1 0
0 0 −λ 1 0
λ λ 0 −λ 1
0 0 λ 0 1 − λ



→


−λ 0 0 1 0
0 −λ 0 1 0
0 0 −λ 1 0
0 0 0 2 − λ 1
0 0 0 1 1 − λ

 .
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Furthermore, one can see that every point q ∈ T2 whose positive and
negative iterates avoid the boundaries ∂ R(1) and ∂ R(2) has a unique preimage,
and vice versa. In particular, periodic points other than the origin (which have
rational coordinates) fall into this category. The points of A whose images
are on those boundaries or their iterates under F fall into three categories
corresponding to the three segments of stable and unstable manifolds through 0
that define parts of the boundary. Thus sequences are identified in the following
cases: They have a constant infinite right (future) tail consisting of 0’s or 4’s,
and agree otherwise – this corresponds to a stable boundary piece – or else
an infinite left (past) tail (of 0’s and 1’s, or of 4’s), and agree otherwise – this
corresponds to an unstable boundary piece. �

� EXERCISES

� Exercise 7.4.1 Prove that for λ ≥ 1 every bounded orbit of the quadratic map fλ
is in [0, 1].

� Exercise 7.4.2 Give a detailed argument that (7.4.3) defines a homeomorphism.

� Exercise 7.4.3 Construct a Markov partition for ( 1 1
1 0 ) that consists of two

squares.

� Exercise 7.4.4 Construct a Markov partition and describe the corresponding
topological Markov chain for the automorphism FL , where L = ( 1 1

2 1 ).

� Exercise 7.4.5 Given a 0-1 n × n-matrix A, describe a system of n rectangles
�1, . . . , �n in R2 and map f : � := ⋃n

i=1 �i → R2 such that the restriction of f to
the set of points that stay inside � for all iterates of f is topologically equivalent to
the topological Markov chain σA.

� Exercise 7.4.6 Check that the process (7.4.2) of discarding extraneous points

in the coding construction amounts to taking �ω0,...,ωn−1 = ⋂n−1
i=0 Int( f −i(�ωi )), and

{h(ω)} := ⋂
n∈N

�ω0,...,ωn−1 .

� PROBLEMS FOR FURTHER STUDY

� Problem 7.4.7 Show that the assertion of Theorem 7.4.3 remains true for any
map f of degree 2 such that f ′ ≥ 1 and f ′ = 1 only at finitely many points.

� Problem 7.4.8 Prove the assertion of Theorem 7.4.9 for some 0-1 matrix A for
any automorphism

FL : T2 → T2, x !→ Lx (mod 1),

where L is an integer 2 × 2 matrix with determinant +1 or −1 and with real
eigenvalues different from ±1.

7.5 UNIFORM DISTRIBUTION

We now investigate whether the notion of the uniform distribution of orbits that
appeared in previous chapters for rotations of the circle and translations of the
torus has any meaning for the group of examples discussed in the present chapter,
such as linear or nonlinear expanding maps of the circle, shifts, and automorphisms
of the torus.
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7.5.1 Failure of Unique Ergodicity

We discuss linear expanding maps in more detail. One can define asymptotic
frequencies of visits for an interval � ⊂ S1 as in (4.1.2) and Birkhoff averages
of functions as in (4.1.5). Proposition 4.1.7 and Theorem 4.1.15 showed that for
rotations these frequencies converge uniformly. This is called unique ergodicity
(Definition 4.1.18).

In the present situation, those expressions do not converge uniformly to
constants, that is, linear expanding maps are not uniquely ergodic: Consider a
continuous function that vanishes only at 0. Then the Birkhoff average of the fixed
point is 0 while all other periodic points have nonzero averages. Furthermore, there
are orbits for which the limit of the average frequencies of visits to an interval does
not exist, as one can see by coding. For E2, the average frequency of visits to the
interval [0, 1/2] of a point x ∈ S1 with unique binary representation is equal to the
proportion of 0’s among the first n digits. Let x be a point whose binary represen-
tation consists of alternating blocks of 0’s and 1’s in such a way that the length of
the nth block is n times the total length of all preceding blocks. The proportion of
0’s after the end of the nth block of 0’s [which is the (2n − 1)st block] is greater than
1 − 1/(2n − 1); but after the end of the nth block of 1’s (the 2nth block) it is less than
1/2n. Thus the limit points for the average frequencies cover the whole interval [0, 1].

Therefore we have to investigate another mode of convergence.

7.5.2 Convergence in the Mean

The previous counterexample orbits are somewhat special, so there is still hope that
a “majority” of orbits are nevertheless uniformly distributed, or that “on average”
we see convergence. This is indeed true in fairly great generality. We explicitly show
it for the map E2.

Proposition 7.5.1 If

ϕ(x) := χ[0,1/2] :=
{

1 if x ≤ 1/2

0 if x > 1/2

is the characteristic function of the interval [0, 1/2] and

Bn(ϕ) (x) := 1
n

n−1∑
k=0

ϕ
(

E k
2(x)

)
is the Birkhoff average, then

∫
S1 |Bn(ϕ)(x) − ∫

S1 ϕ(t) dt| dx −−−→
n→∞ 0 exponentially.

Remark 7.5.2 One can prove analogous results for any binary interval, and by
linear combination and approximation this gives equidistribution.

Proof In terms of binary representation x = 0.x1x2 . . .

nBn(ϕ)(x) = F[0,1/2](x, n) := card{k 0 ≤ k ≤ n − 1 and

E k
2 x ∈ [0, 1/2]} =

n−1∑
k=0

1 − xk.
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Figure 7.5.1. Distribution after 10 iterates.

Thus, the Birkhoff average is constant on each binary interval

�i
n =

[
i

2n
,

i + 1
2n

]
i = 0, 1, . . . , 2n − 1.

As noted before, this is not uniformly close to any constant; in fact, it takes all values
i/n, i = 0, 1, . . . , n. Nevertheless, for most intervals the average frequency of visits
is close to �([0, 1/2]) = 1/2. (See Figure 7.5.1.) To show this we use that the number
of sequences of 0’s and 1’s of length n that have exactly k 0’s (this corresponds to
the average frequency k/n) is the binomial coefficient(

n
k

)
= n!

k!(n − k)!
,

and, accordingly, the proportion of such sequences is ( n
k )2−n. Thus, if ε > 0, then

card
{

i : |Bn(ϕ) (x) − 1/2| < ε for x ∈ �i
n

} =
�(1/2+ε)n	∑

k=�(1/2−ε)n	+1

(
n
k

)
,(7.5.1)

where �·	 denotes integer part. To give a lower bound we estimate the sum of the
remaining binomial coefficients from above. Since ( n

k ) = ( n
n − k ), this sum is

2
�(1/2−ε)n	∑

k=0

(
n
k

)
.

The binomial coefficients are increasing with k for k < n/2 because the ratio of
successive coefficients is (k + 1)/(n − k). Thus the largest term in the sum is the
last. Since the number of terms does not exceed n/2, we find that

2
�(1/2−ε)n	∑

k=0

(
n
k

)
≤ n

(
n

�(1/2 − ε)n	
)

= n
(

n
�αn	

)
,

where α = (1/2) − ε. Dividing by 2n to get at the proportion of “bad” sequences
shows that we need an upper bound for n( n

�αn	 )2−n.
We use the classical Stirling formula n! , √

2πnnne−n, where f (n) , g(n) means
limn→∞ f (n)/g(n) = 1. Writing l := �αn	, this gives(

n
�αn	

)
= n!

l!(n − l)!
, nne−n

√
2πn

ll(n − l)n−le−lel−n
√

2πl
√

2π(n − l)
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and hence

n
(

n
�αn	

)
2−n , nen log n−l log l−(n−l) log(n−l)−n log 2

√
n

2πl(n − l)
.(7.5.2)

In order to obtain an upper bound for

n log n − l log l − (n − l) log(n − l) − n log 2

= (n − l)[log n − log(n − l) − log 2] + l[log n − log l − log 2]

= (n − l) log
n

2(n − l)
+ l log

n
2l

= (n − l) log
(

1 + 2l − n
2(n − l)

)
+ l log

(
1 + n − 2l

2l

)
,

we use that log(1 + x) ≤ x (because the logarithm is concave down), and, in fact, that
log(1 + x) ≤ x − δ whenever |x| > ε. Since 2l = 2�αn	 = 2�n/2 − nε	 , (1 − 2n)ε
for large n, we get 2l − n/2(n − l) , 2ε and n − 2l/2l , −2ε, so

(n − l) log
(

1 + 2l − n
2(n − l)

)
+ l log

(
1 + n − 2l

2l

)
≤ (n − l)

(
2l − n

2(n − l)
− δ

)
+ l

(
n − 2l

2l
− δ

)
= −nδ,

with δ > 0 depending on ε. Taking δ also small enough to leave a margin for the
small error in (7.5.2) gives

2
�(1/2−ε)n	∑

k=0

(
n
k

)
2−n ≤ ne−nδ

√
n

2π�αn	(n − �αn	)
=: �(n, ε),(7.5.3)

which goes to 0 exponentially as n → ∞.
Returning to (7.5.1), we see that for any fixed ε > 0 and sufficiently large n the

proportion of the binary intervals for which the average number of 0’s differs from
1/2 by less than ε is at least 1 − �(n, ε) and hence exponentially close to 1. Since
every interval has the same length, the function Bn(ϕ) is close to 1/2, except on a
union of intervals the sum of whose lengths tends to zero exponentially as n → ∞.
Because the function is bounded (above and below), this implies that its average
deviation from 1/2 = �([0, 1/2]) = ∫

S1 ϕ(t) dt is exponentially small. �

A crucial point was to reduce the estimate for the total length of the “bad” set (for
which the Birkhoff averages deviate from the space averages) to a combinatorial
calculation of a number of intervals. This relies on the fact that all binary intervals
of a given rank have the same length. This, in turn, implies (but does not follow
from) the fact that E2 preserves the length in the sense of complete preimages (see
Section 7.1.1).

7.5.3 Pointwise Convergence of Averages

There is an essential difference between uniform distribution in the mean (the
Birkhoff averages for large n are close to the space average outside of a set of small
length) and the original notion of uniform distribution as discussed in Chapter 4,
where we calculated Birkhoff averages of individual points. It is natural to suppose
that uniform distribution in the mean implies convergence of Birkhoff averages
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for “most” points. The problem is to make precise sense of the word “most”. Even
in the simplest case we just discussed, both the set A of points for which Birkhoff
averages converge to the space average and its complement are dense, so the
characteristic function of A is not Riemann integrable and there is no length of A.
However, there is an adequate notion of smallness in this sense:

Definition 7.5.3 A null set in R is a set that, for any ε > 0, can be covered by a (not
necessarily finite or disjoint) collection of open intervals whose lengths add to at
most ε. A property of points that holds for all points except those of a null set is
said to hold almost everywhere or for almost every point.

Any subset of a null set is itself a null set. Easy examples of null sets are finite
sets. Even countable sets are necessarily null sets because they are (by definition of
countable) the range of a sequence (xn)n∈N, which can be Covered by the intervals
(xn − ε2−n−1, xn + ε2−n−1) whose lengths ε2−n sum to ε. This means that Q is a null
set, as is the set of periodic points of E2. A countable union

⋃
n∈N

Nn of null sets
is itself a null set: Cover Nn by intervals whose lengths add to at most ε2−n. The
ternary Cantor set is also a null set because it is covered by the union Cn of 2n closed
intervals of length 3−n each (see Section 2.7.1) and hence by 2n open intervals of
slightly larger length, for any n ∈ N.

Lemma 7.5.4 An interval that is not a point is not a null set.

Proof Every interval that is not a point contains a closed interval that is not a point, so
it suffices to prove this for closed intervals. Consider a cover of a closed interval [a, b]
by open intervals. There is a finite subcover (by compactness; see Definition A.1.18).
Consider all endpoints of intervals from this cover that are in (a, b) and order them
as x0 := a < x1 < x2 < · · · < xk < b =: xk+1. This way, [a, b] is split into the union of
k + 1 intervals I1 = [a, x1), I2 = [x1, x2), . . . , Ik+1 = [xk, b]. Each interval I j is covered
mj times by intervals from our finite cover, and hence the lengths of these intervals
sum to at least mj (xj+1 − xj ) > xj+1 − xj . Therefore, all of the lengths of intervals
from this finite cover, and hence even more so all the lengths of the intervals from
the original cover, add to at least (b − xk) + (xk − xk−1) + · · · + (x1 − a) = b − a. �

Corollary 7.5.5 The complement of a null set is dense.

Proof Otherwise the null set contains an interval that is not a point. �

Theorem 7.5.6 With the notations of Proposition 7.5.1, Bn(ϕ)(x) −−−→
n→∞

∫
S1 ϕ(t) dt

almost everywhere.

Remark 7.5.7 Compared to Proposition 7.5.1, this result sacrifices exponential
convergence to gain control of almost every point.

Proof The set of x where we have convergence is{
x Bn(ϕ)(x) → 1

2

}
=

∞⋂
m=1

⋃
N∈N

⋂
n≥N

{
x

∣∣∣∣Bn(ϕ)(x) − 1
2

∣∣∣∣ <
1
m

}
,
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so we need to show that the (“bad”) set

B :=
{

x Bn(ϕ)(x) �→ 1
2

}
=

∞⋃
m=1

⋂
N∈N

⋃
n≥N

{
x

∣∣∣∣Bn(ϕ)(x) − 1
2

∣∣∣∣ ≥ 1
m

}
is a null set. To that end note that

{x |Bn(ϕ)(x) − 1/2| ≥ 1/m}
can be covered by a collection of (binary) intervals whose lengths add to no more
than �(n, 1/m), where � is defined by (7.5.3), and exponentially small in n for any
given m. Therefore ⋃

n≥N

{x |Bn(ϕ)(x) − 1/2| ≥ 1/m}

can be covered by intervals whose lengths sum to at most �̄(N, 1/m) := ∑
n≥N �

(n, 1/m). This series converges [geometrically; see (7.5.3)], so �̄(N, 1/m) −−−→
N→∞

0.

There is an N0 such that �̄(N0, 1/m) < ε2−m, so
⋂

N∈N

⋃
n≥N{x |Bn(ϕ)(x) − 1/2| ≥

1/m} can be covered by a union of intervals whose lengths add to no more than
ε2−m. The union of these covers gives a covering of B by intervals whose lengths
add to no more than ε. �

7.5.4 The Law of Large Numbers

The two kinds of uniform distribution,
∫

S1 |Bn(ϕ)(x) − ∫
S1 ϕ(t) dt| dx → 0

(Proposition 7.5.1) and Theorem 7.5.6 are called the weak and strong law of
large numbers, respectively, because they describe the fact that any initial prob-
ability distribution (represented by a continuous function ϕ) tends to a uniform
distribution after repeated applications of the map, that is, large numbers of
iterations tend to make any distribution look uniform in the long run.

These two notions of uniform distribution are both weaker than the strongly
uniform distribution observed for irrational rotations in Theorem 4.1.15 and found
there to be related to the notion of unique ergodicity (Definition 4.1.18). Likewise,
the weak and strong laws of large numbers are related to a notion of ergodicity,
which we do not define here because this requires familiarity with measure theory.
In fact, a consequence of the pertinent theory (specifically, the Birkhoff Ergodic
Theorem) is that these two notions of uniform distribution are equivalent, even
though they look different on the surface.

7.5.5 Distribution of Periodic Points

Another interesting conclusion about some orbit averages can be drawn from the
proof of Theorem 7.5.6.

Theorem 7.5.8 For any ε > 0,

card{p E n
2 ( p) = p, | limm→∞ Bm(ϕ)( p) − 1/2| ≥ ε}

2n − 1

converges to 0 exponentially.

Proof There are 2n − 1 periodic points of period n for the transformation E2, one
in each binary interval �i

n, i = 0, . . . , 2n − 1 with �0
n and �2n−1

n sharing 0 as an
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endpoint. Denote the n-periodic point in �i
n by pi

n. Since Bn is constant on �i
n, the

values Bn( pi
n) for all but an exponentially small proportion of these 2n − 1 periodic

points are within ε of 1/2. But then limm→∞ Bm( p) = Bn( p) for any n-periodic
point p since the averages are taken over a periodic sequence. �

This result is not a consequence of Theorem 7.5.6 because the set of periodic
points is a null set. It is rather a natural consequence of the fact that the set of
periodic points is “uniformly distributed”.

� EXERCISES

� Exercise 7.5.1 Prove for the map E2 that the set of points for which there are
asymptotic frequencies is the union of countably many nowhere dense sets.

� Exercise 7.5.2 Prove the counterpart of Proposition 7.5.1 for the map E3.

� Exercise 7.5.3 Prove the counterpart of Proposition 7.5.1 for the map Em.

� Exercise 7.5.4 Prove the counterpart of Theorem 7.5.6 for the map E3.

� Exercise 7.5.5 Prove the counterpart of Theorem 7.5.6 for the map Em.

� Exercise 7.5.6 Prove the counterpart of Theorem 7.5.8 for the map Em.

7.6 INDEPENDENCE, ENTROPY, MIXING

Investigating the distribution properties of orbits constitutes a probabilistic
approach to dynamics. Especially the present examples, where convergence to
averages is far from uniform, suggest that even in a deterministic dynamical
system there are features that appear to reflect randomness. We take a closer look
at dynamical systems where this is a central feature.

7.6.1 The Coin-Tossing Model

We now take a fresh look at the coding construction for expanding maps carried
out in Section 7.3.1. Think of a binary representation of a number from the
interval [0, 1] as an account of the result of an infinite sequence of coin-tossing
experiments: We write zero each time the coin lands heads up and one when it
lands tails up. If the coin is fair, that is, heads and tails are equally likely, and our
trials are independent, then the probability of any sequence of zeros and ones in
the first n trials is 2−n. We call the appearance of any fixed sequence of heads and
tails during n trials an elementary event. The probability of any outcome during any
n trials (not necessarily the first ones or even successive) is the total length of the
collection of binary intervals that correspond to all elementary events compatible
with the given outcome. Thus the calculations with lengths in Section 7.5 have a
probabilistic interpretation. For example, to find the probability of having k tails in
n trials, take the number of sequences of zeros and ones of length n with exactly k
ones, which is equal to

( n
k

)
, and divide by 2n. Similarly, (7.5.1) gives the number of

trials for which the deviation of the average number of tails from 1/2 is at most ε.
The calculations with Birkhoff averages of the characteristic function ϕ with respect
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to the map E2 (Section 7.5) can be reformulated to give estimates of probabilities of
various outcomes in the fair coin-tossing model: The probability that the average
number of tails differs from one-half by more than any fixed number converges to
zero exponentially as the number of trials goes to infinity.

Section 7.3.5 explains how the coding of a map produces a shift on a sequence
space. The coding for E2 using the partition into the left half and right half of the
unit interval corresponds exactly to a coin-tossing scheme; it also takes place on a
space of sequences of zeros and ones.

7.6.2 Bernoulli Schemes

A more general scheme of random trials with several possible outcomes (not
necessarily equally likely or independent) can still be described in terms of the
shift on a symbolic space. The probabilities of elementary events may not be equal.
Elements of this space correspond to possible outcomes of infinite sequences
of trials, and the shift transformation corresponds to taking one step forward in
time. The simplest class of such schemes is the stationary Bernoulli scheme. Fix
the probabilities p0, . . . , pN−1 of the N symbols 0, . . . , N − 1 to occur in a trial, and
suppose that successive trials are mutually independent, that is, the probability
of a particular outcome of any trial does not depend on the results of the previous
one. This means that the probability of any finite sequence of outcomes is the
product of the probabilities of the outcomes in the sequence.

Consider the case N = 2 where p := p0 �= p1 = 1 − p, that is, the tossing of a
biased coin, and follow the calculations from Section 7.5. The probability of any
elementary event that includes k occurrences of 0 and n − k occurrences of 1
is equal to

(n
k

)
pk(1 − p)n−k. Thus, if ϕ is the characteristic function of the set of

sequences whose first entry is 0, then the space average of ϕ is p, and for most finite
sequences the proportion of 0 entries should be approximately p. This expectation
is justified by adapting the calculation from Section 7.5 to this new situation.

Proposition 7.6.1 For the stationary Bernoulli scheme with weights p and 1 − p,

probability
{

i : |Bn(ϕ) (x) − p | < ε for x ∈ �i
n

} → 1

exponentially as n → ∞.

Proof Instead of (7.5.1) we have

probability
{

i : |Bn(ϕ) (x) − p| < ε for x ∈ �i
n

} =
�( p+ε)n	∑

k=�( p−ε)n	+1

(
n
k

)
pk(1 − p)n−k.

(7.6.1)

To find a lower bound estimate the sum of the remaining binomial coefficients
from above. One part is

�( p−ε)n	∑
k=0

(
n
k

)
pk(1 − p)n−k,

and estimating the corresponding sum starting from �( p + ε)n	 + 1 is left to the
reader. For sufficiently large n, the last term is the largest because passing from one
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term to the next is accomplished by multiplying with (n − k/k)( p/1 − p), which is
greater than 1 for k < pn. As in Section 7.5, this leads to the upper bound

�( p−ε)n	∑
k=0

(
n
k

)
pk(1 − p)n−k ≤ (l + 1)

(
n
l

)
pl(1 − p)n−l

, (l + 1)en log n−l log l−(n−l) log(n−l)

√
n

2πl(n − l)
pl(1 − p)n−l

= en log n−l log l−(n−l) log(n−l)+l log p+(n−l) log(1−p)(l + 1)
√

n
2πl(n − l)

pl(1 − p)n−l.

The exponent

(n − l )[log n − log(n − l) + log(1 − p)] + l[log n − log l + log p]

= (n − l) log
n(1 − p)

n − l
+ l log

np
l

= (n − l) log
(

1 + n(1 − p) − n + l
n − l

)
+ l log

(
1 + np − l

l

)
can be estimated again using convexity of the logarithm: For l = �( p − ε)n	 and
ε > 0, there is a δ > 0 such that

(n − l ) log
(

1 + n(1 − p) − n + l
n − l

)
+ l log

(
1 + np − l

l

)
≤ (n − l )

(
n(1 − p) − n + l

n − l
− δ

)
+ l

(
np − l

l
− δ

)
= −nδ.

Thus the exponent is negative and the upper bound goes to zero exponentially as
n → ∞.

Together with the analogous estimate of the other tail of the sum, this implies
that the right-hand side of (7.6.1) goes to 1 exponentially, as claimed. �

7.6.3 Entropy

The elementary events that constitute the bulk of the possible outcomes, that is,
those with an average number of appearances close to the space average, are not
the most probable by themselves, but they have a specific exponential size. For any
such event C the logarithm of the probability of C divided by n is approximately
p log p + (1 − p) log(1 − p). This is called the entropy of the probability distribution
( p, 1 − p) and is intimately connected with the degree of uncertainty generated
by the randomness of the scheme. The above exponential asymptotic for the
probability of typical outcomes is the most elementary case of the celebrated
Shannon–MacMillan Theorem, which is one of the cornerstones of information
theory.3

7.6.4 Bernoulli Measures on the Interval

Returning to the expanding map E2, we can interpret the probabilities of elemen-
tary events as a substitute of the length of the corresponding binary intervals. To

3 See, for example, Theorem 2.3 in Karl Petersen, Ergodic Theory, Cambridge Studies in Advanced
Mathematics 2, Cambridge University Press, Cambridge, 1983.
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Figure 7.6.1. �1/3 and �1/10.

keep the distinction, we refer to this as the Bernoulli measure of these intervals, as
opposed to their length. For example, the measure of [0, 1/4] is mp([0, 1/4]) = p2

and mp([1/4, 1/2]) = mp([1/2, 3/4]) = p(1 − p), mp([3/4, 1]) = (1 − p)2. Naturally
the measure of a union of binary intervals is taken to be the sum of their measures.
It is not hard to check that any way of approximating an interval by unions of
binary intervals from inside or outside leads to the same limit of the corresponding
measures, so we obtain a measure mp(I ) for any interval I , and hence their finite
unions. As in the definition of the usual integral, we can use this measure to define
the integral of any continuous function (in fact, some other functions as well, such
as functions with finitely many discontinuities). Analogously to before, a null set
is a set such that given ε > 0 there is a countable cover by open intervals whose
(Bernoulli) measures add to less than ε.

Analogously to Definition 4.2.2, it is convenient to represent this measure by
its distribution function �p(x) = mp([0, x]). Evidently, �p(0) = 0 and �p(1) = 1,
and �p is nondecreasing. In fact, it is increasing, since every binary interval has
positive measure and between any two numbers there is a binary interval. Likewise
it is continuous for p /∈ {0, 1}, because the measures of short binary intervals are
small. Clearly, �1/2(x) = x, but, as it turns out, for p �= 1/2 the function �p is not
differentiable at many points. However it has an interesting self-similarity property:
ψp(x/2) = p�(x). Figure 7.6.1 shows �1/3 and �1/10.

7.6.5 Mixing

Analogously to the way in which topological mixing is a stronger property than
topological transitivity, there is a property, called mixing, corresponding in a like
manner to the uniform distribution (or a law of large numbers). We develop this
notion in the concrete setting of piecewise continuous maps of the circle.

To that end, start from a distribution function: Suppose � : [0, 1] → [0, 1] is
a continuous nondecreasing function with �(0) = 0 and define the measure of
[a, b] to be m([a, b]) := �(b) − �(a). This extends to finite unions of intervals by
additivity. In particular, if we represent the circle as [0, 1] with endpoints identified,
then the measure of an arc containing 0 is defined to be the sum of the measures
of the two pieces on either side of 0. The measure of an open or half-open arc is
the same as that of its closure.
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Consider a piecewise continuous, piecewise monotone map f : S1 → S1 (or of
an interval). This notion was introduced in Definition 4.2.2, where we noted that
mf (I ) := m( f −1(I )) is well defined. If mf = m, then we say that the measure m is
invariant under f . This is not the first situation of the preservation of a measurein
Section 6.1 we noted that Newtonian systems preserve volume (Corollary 6.2.3),
which is a natural measure in higher dimension.

Definition 7.6.2 Consider a piecewise continuous, piecewise monotone map
f : S1 → S1 and suppose a measure m is invariant under f . Then f is said to be
mixing (with respect to m) if m(�1 ∩ f −n(�2)) −−−→

n→∞ m(�1) · m(�2) for any two

arcs �1, �2.

Since �1 ∩ f −n(�2) is a finite union of intervals, its measure is well defined.

Proposition 7.6.3 If f is mixing with respect to a measure m whose distribution
function is increasing, then f is topologically mixing.

Proof The assumption on m implies that every interval has positive measure.
If U, V are open, then there are intervals �1 ⊂ V , �2 ⊂ U. Since f is mixing
with respect to m, there is an N ∈ N such that m(�1 ∩ f −n(�2)) > 0 and hence
�1 ∩ f −n(�2) �= ∅ for n ≥ N. Applying f n we get �1 ∩ f n(�2) �= ∅ for all n ≥ N;
hence V ∩ f n(U ) �= ∅ for n ≥ N. �

Proposition 7.6.4 The Bernoulli measure mp on S1 from Section 7.6.4 is invariant
under E2, and E2 is mixing with respect to mp.

Proof To prove invariance note that any arc can be approximated arbitrarily well
by a union of nonoverlapping binary intervals. Therefore it suffices to check
that a binary interval has the same measure as its preimage. A binary interval
� is determined by a finite string 0.x1x2 . . . xn of binary digits, and its measure
m(�) = ∏n

i=1 xi has one factor p for each xi = 0 and a factor 1 − p for each xi = 1.
The preimage consists of two binary intervals with binary strings 0.0x1x2 . . . xn and
0.1x1x2 . . . xn, whose measures sum to

pm(�) + (1 − p)m(�) = m(�).

Mixing likewise needs to be checked only for binary intervals. Suppose �1

and �2 are binary intervals given by strings 0.α1 . . . αm and 0.ω1 . . . ωr , respectively.
Then E−n

2 (�2) is the disjoint union of the 2n binary intervals determined by the
strings 0.x1 . . . xnω1 . . . ωr with all possible combinations x1 . . . xn. If n > m, then
�1 ∩ E−n

2 (�2) is the disjoint union of the binary intervals with all possible strings
0.α1 . . . αmxm+1 . . . xnω1 . . . ωn. Its measure is∑

x1...xn

m∏
i=1

αi

n−m∏
j=1

xm+i

r∏
k=1

ωi = m(�1)m(�2)
∑

x1...xn

n−m∏
j=1

xm+i = m(�1)m(�2)

because the last sum is the sum of the measures of all binary intervals for strings
of length n − m, hence the measure of the circle, that is, 1. �
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The two other prominent examples of chaotic systems are mixing as well: the
two-sided shift and the hyperbolic linear automorphism of the torus. Of course,
this statement requires definitions of mixing and of measures for these contexts.

Proposition 7.6.5 A two-sided shift with a Bernoulli measure defined analogously
to Section 7.6.4 is mixing, where mixing is understood as in Definition 7.6.2 with
arcs replaced by cylinders.

The proof uses the same argument as in the case of E2 and is left as an exercise
(Exercise 7.6.1).

Proposition 7.6.6 The hyperbolic automorphism F of T2 induced by the linear
map L with matrix ( 2 1

1 1 ) is mixing with respect to area measure, where mixing is
understood as in Definition 7.6.2 with arcs replaced by parallelograms.

Proof Since F is invertible, we can replace the condition m(�1 ∩ F −n(�2)) −−−→
n→∞

m(�1) · m(�2) by the condition m(B ∩ F n(A)) −−−→
n→∞ m(A) · m(B). For convenience,

we use particular kinds of parallelograms as “test sets” to replace the arcs in the case
of E2. Instead of the arc A we use a parallelogram A whose sides are parallel to the
eigendirections; we denote the length of the sides along the expanding eigenline by
a1 and the length of the other sides by a2. Instead of the arc B we use a parallelo-
gram with two vertical sides of length b2 and two sides of length b1 parallel to the
eigendirection for the eigenvalue λ greater than one, denoting the cosine of their
angle with the horizontal by c. Consider now F n(A) for some large n. Its bottom side
of length a1 is mapped to a line of length λna1 that intersects the vertical side of B in
approximately cb2λ

na1 places because the intersection points are the images of the
section map for the linear flow generating the eigenlines, and this section map is an
irrational rotation, which has the uniform distribution property. To determine the
measure of the intersection F n(A) ∩ B note that (aside from at most two strips near
the edges of B and two pieces not transversing B all the way) it consists of as many
strips of widthλ−na2 and of length b1, giving a combined area of (cλna1b2)(λ−na2)b1 =
(a1a2)(cb1b2), which is precisely m(A)m(B). (See Figure 7.6.2.) �

This kind of argument works for any linear toral automorphism:

Proposition 7.6.7 Any hyperbolic linear automorphism of the torus is mixing with
respect to area as measure.

a1a2
b1

b2

Figure 7.6.2. Mixing for the toral automorphism.
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� EXERCISES

� Exercise 7.6.1 Show that the full shift on two symbols is mixing with respect to
any Bernoulli measure.

� Exercise 7.6.2 Estimate the second tail in the proof of Proposition 7.6.1.

� Exercise 7.6.3 Show that if 0 < p < q < 1, then there is a set A such that A is a
null set for mp and its complement is a null set for mq.

� Exercise 7.6.4 Prove the counterpart of Theorem 7.5.6 for the Bernoulli
measure mp.
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CHAPTER 8

Entropy and Chaos

In this chapter we look at two related notions that are important parameters for
chaotic dynamical systems. The first is the fractal dimension of a set. By permitting
noninteger values, this notion extends the topological concept of dimension to sets
such as Cantor sets. While all Cantor sets are homeomorphic, they may look thicker
or thinner depending on the parameters in their construction. Fractal dimension
is a measure of the thickness of these sets. When the Cantor set in question arises
as an invariant set of a hyperbolic dynamical system its dimension is related in
deep ways to other dynamically important quantities, notably the contraction and
expansion rates in the system. This is an active research topic, and we illustrate it
with the Smale horseshoe.

The other notion is entropy. It measures the global orbit complexity on an
exponential scale and is intimately related to the growth rate of periodic points and
contraction and expansion rates. As an invariant of topological conjugacy, it also
provides a means for telling apart dynamical systems that are not conjugate.

The values of dimension and entropy of an invariant set of a dynamical system
are related, and so are the constructions involved in defining them. The common
root is the notion of capacity of a set, with which we begin the chapter.

8.1 DIMENSION OF A COMPACT SPACE

8.1.1 Capacity

For a compact metric space there is a notion of the “size” or capacity inspired
by the notion of volume. Suppose X is a compact space with metric d. Then a
set E ⊂ X is said to be r-denseif X ⊂ ⋃

x∈E Bd(x, r), where Bd(x, r) is the r-ball
with respect to d around x (see Section 2.6.1). Define the r-capacity of (X, d )
to be the minimal cardinality Sd(r) of an r-dense set.

For example, if X = [0, 1] with the usual metric, then Sd(r) is approximately
1/2r because it takes over 1/2r balls (that is, intervals) to cover a unit length,
and the �2 + 1/2r	-balls centered at ir(2 − r), 0 ≤ i ≤ �1 + 1/2r	 suffice. As
another example, if X = [0, 1]2 is the unit square, then Sd(r) is roughly r−2

242
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because it takes at least 1/πr2 r-balls to cover a unit area, and, on the other
hand, the (1 + 1/r)2-balls centered at points (ir, jr) provide a cover. Likewise,
for the unit cube (1 + 1/r)3, r-balls suffice.

In the case of the ternary Cantor set with the usual metric we have
Sd(3−i ) = 2i if we cheat a little and use closed balls for simplicity; otherwise, we
could use Sd((3 − 1/ i)−i ) = 2i with honest open balls.

8.1.2 Box Dimension

One interesting aspect of capacity is the relation between its dependence on r
[that is, with which power of r the capacity Sd(r) increases] and dimension.

If X = [0, 1], then

lim
r→0

− log Sd(r)
log r

≥ lim
r→0

− log(1/2r)
log r

= lim
r→0

log 2 + log r
log r

= 1

and

lim
r→0

− log Sd(r)
log r

≤ lim
r→0

− log�2 + 1/2r	
log r

≤ lim − log(1/r)
log r

= 1,

so limr→0 − log Sd(r)/ log r = 1 = dim X. If X = [0, 1]2, then limr→0 − log Sd(r)/
log r = 2 = dim X; and if X = [0, 1]3, then limr→0 − log Sd(r)/ log r = 3 =
dim X. This suggests that limr→0 − log Sd(r)/ log r defines a notion of dimension.

Definition 8.1.1 If X is a totally bounded metric space (Definition A.1.20), then

bdim(X ) := lim
r→0

− log Sd(r)
log r

is called the box dimension of X.

8.1.3 Examples

Let us test this notion on less straightforward spaces.

1. The Ternary Cantor Set. If C is the ternary Cantor set, then

bdim(C) = lim
r→0

− log Sd(r)
log r

= lim
n→∞ − log 2i

log 3−i
= log 2

log 3
.

If Cα is constructed by deleting a middle interval of relative length 1 − (2/α) at
each stage, then bdim(Cα) = log 2/ log α. This increases to 1 as α → 2 (deleting
ever smaller intervals), and it decreases to 0 as α → ∞ (deleting ever larger
intervals). Thus we get a small box dimension if in the Cantor construction the
size of the remaining intervals decreases rapidly with each iteration.

This illustrates, by the way, that the box dimension of a set may change under
a homeomorphism, because these Cantor sets are pairwise homeomorphic.

2. The Sierpinski Carpet. It is easy to handle other Cantor-like sets, such as the
Sierpinski carpet S from Section 2.7.2. For the square Sierpinski carpet we can
cheat as in the capacity calculation for the ternary Cantor set and use closed
balls (sharing their center with one of the small remaining cubes at a certain
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stage) for covers. Then Sd(3−i/
√

2) = 8i and

bdim(S) = lim
n→∞ − log 8i

log 3−i/
√

2
= log 8

log 3
= 3 log 2

log 3
,

which is three times that of the ternary Cantor set (but still less than 2, of course).
For the triangular Sierpinski carpet we similarly get box dimension log 3/ log 2.

3. The Koch Snowflake. The Koch snowflake K from Section 2.7.2 has Sd(3−i ) =
4i by covering it with (closed) balls centered at the edges of the ith polygon. Thus

bdim(K) = lim
n→∞ − log 4i

log 3−i
= log 4

log 3
= 2 log 2

log 3
,

which is less than that of the Sierpinski carpet, corresponding to the fact
that the iterates look much “thinner”. Notice that this dimension exceeds 1,
however, so it is larger than the dimension of a curve. All of these examples
have (box) dimension that is not an integer, that is, fractional or “fractal”. This
has motivated calling such sets fractals.

4. The Smale Horseshoe. Suppose that in the construction of the Smale
horseshoe (Section 7.4.4) the expansion rate on the linear pieces is λ > 2 and
the contraction rate is µ < 1/λ (without loss of generality). Given n ∈ N, the
invariant set $ = ⋂∞

n=−∞ f −n(�) is contained in $ = ⋂n
i=−n f −i (�), which

consists of 4n rectangles with sides λ−n and µn and can therefore be covered by
about 4n/(λnµn) squares with sides µn. Thus Sd(µ−n) , 4n/(λnµn) and

bdim($) = lim
n→∞ − log Sd(µ−n)

log µ−n
= lim

n→∞ − n(log 4 − log λ − log µ)
n log µ

= 1 + log 4 − log λ

− log µ
.

5. Sequence Spaces. Consider the two-sided sequence space N with the metric
dλ of (7.3.4). According to (7.3.5), there is a disjoint cover by N2n−1 balls of
radius λ1−n, namely, the cylinders Cα1−n...αn−1 = {ω ∈ N ωi = αi for |i | < n}.
Therefore Sdλ

(λ1−n) = N2n−1 and hence the box dimension is

bdim(N, dλ) = lim
r→0

− log Sd(r)
log r

= lim
n→∞ − log N2n−1

log λ1−n
= lim

n→∞
2n − 1
n − 1

log N
log λ

= 2
log N
log λ

.

Analogously to the Cantor set example, the box dimension decreases as λ

increases, corresponding to the rapid decrease of the radius of cylinders (as a
function of the length of the specified string) for large λ.

8.1.4 Dependence on the Metric

A different issue related to capacity is the dependence of Sd(r) on the metric
for a given r. If one replaces a metric by a larger one (with finer resolution,
as it were), then balls become smaller and hence Sd(r) increases. The rate at
which it does so is a new measure of the rate of refinement of the metrics. A
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simple example is scaling of the metric, that is, multiplying by a positive factor
a. Clearly Sad(ar) = Sd(r) and

lim
r→0

− log Sad(r)
log r

= lim
r→0

− log Sad(ar)
log ar

= lim
r→0

− log Sd(r)
log ar

= lim
r→0

− log Sd(r)
log a + log r

= lim
r→0

− log Sd(r)
log r

.

Thus, scaling does not affect the box dimension. However, one may study the
asymptotic behavior of Sdi (r) for a sequence di of metrics as i → ∞ for fixed r.
We presently do this in our study of entropy.

� EXERCISES

� Exercise 8.1.1 Prove that the cardinality of a minimal cover is not always the
same as the minimal cardinality of a cover.

� Exercise 8.1.2 Compute the box dimension of Q ∩ [0, 1].

� Exercise 8.1.3 For the Smale horseshoe show that 0 < bdim($) < 2.

� Exercise 8.1.4 For an S-shaped horseshoe with three crossings compute the box
dimension of the invariant set and prove that it lies between 0 and 2.

� Exercise 8.1.5 Find the dimension of the metric d′′
λ (7.3.10) on N and R

N.

� Exercise 8.1.6 Show that the dimension bdim(R
N, dλ) of the one-sided shift

space R
N with the metric dλ is log N/ log λ.

� Exercise 8.1.7 Show that the triangular Sierpinski carpet has box dimension
log 3/ log 2.

� Exercise 8.1.8 Construct Cantor sets on the interval with box dimension 0 and 1.

� Exercise 8.1.9 Determine the box dimension of the set of points in [0, 1] that
have a binary expansion with no consecutive 0’s.

8.2 TOPOLOGICAL ENTROPY

8.2.1 Measures of Complexity and Invariants

We have encountered several indicators of the complexity of a dynamical system:
topological transitivity, minimality, density of the set of periodic points, chaos,
and topological mixing. Especially the latter indicate the presence of intertwining
and separation of different orbits. These are all qualitative (“yes–no”) measures of
complexity. So far the only quantitative measure of complexity is the growth rate of
periodic orbits. While the otherwise simple rational rotations have infinitely many
periodic points, it is chaotic examples that are distinguished by the exponential
growth of finite numbers of periodic points.

1. Entropy. A step beyond the periodic orbit growth is to measure the growth of
all orbits in some sense. This is done by the most important numerical invariant
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related to the orbit growth, the topological entropy. It represents the exponential
growth rate for the number of orbit segments distinguishable with arbitrarily fine
but finite precision. In a sense, the topological entropy describes in a crude but
suggestive way the total exponential complexity of the orbit structure with a single
number. Indeed, we will see that the chaotic systems from among our examples
are distinguished by having positive entropy, and the topological entropy is no less
than the growth rate of periodic orbits. Therefore it is appropriate to view entropy
as a quantitative measure of the amount of chaos in a dynamical system.

2. Invariants. At this point it might be useful to give another motivation for
studying invariants of dynamical systems. Invariants are quantities associated with
a dynamical system that agree for two dynamical systems that are equivalent in
the sense of conjugacy (Definition 7.3.3). When one encounters a new dynamical
system it is natural to wonder whether it is equivalent to a previously studied one,
which would save a lot of work; or one may try to see whether certain collections
of dynamical systems are pairwise equivalent or can be subdivided neatly into
equivalence classes (under topological conjugacy). Either way, one needs to decide
whether there is a conjugacy between two given systems. If one is unable, after much
trying, to find one, the need becomes apparent for methods to show that there can
be no conjugacy. Invariants provide a means to do this: If one system is transitive
and the other one is not, then they cannot be conjugate. If one circle homeomor-
phism has rotation number α and another has rotation number β �= α, then these
two homeomorphisms are not topologically conjugate. Similarly, entropy is an
attractive invariant (Corollary 8.2.3) not least for the reason that it takes on real
values (as opposed to “yes–no” only) and hence gives a finer distinction between
different dynamical systems than transitivity, mixing, and so on. On the other hand,
it is defined for a broad class of dynamical systems rather than only circle maps.

8.2.2 First Definition of Entropy

To define entropy we measure the rate of increase of the capacity Sd(r) for fixed r
as the metric is refined in a dynamically significant way. This is different from the
definition of box dimension, where we study the change in capacity as a function
of r for a fixed metric. Suppose f : X → X is a continuous map of a compact metric
space X with distance function d and define an increasing sequence of metrics d f

n ,
n = 1, 2, . . . , starting from d f

1 = d by

d f
n (x, y) = max

0≤i≤n−1
d( f i(x), f i(y)).(8.2.1)

In other words, d f
n is the distance between the orbit segments On(x) = {x, . . . , f n−1x}

and On(y). We denote the open ball {y ∈ X d f
n (x, y) < r} by B f (x, r, n).

Definition 8.2.1 Let Sd( f, r, n) be the r-capacity of d f
n . Explicitly, a set E ⊂ X is

r-dense with respect to d f
n , or (n, r)-dense, if X ⊂ ⋃

x∈E B f (x, r, n). Then Sd( f, r, n)
is the minimal cardinality of an (n, r)-dense set or, equivalently, the cardinality of
a minimal (n, r)-dense set.This is the minimal number of initial conditions whose
behavior up to time n approximates the behavior of any initial condition up to r .
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Consider the exponential growth rate

hd( f, r) := lim
n→∞

1
n

log Sd( f, r, n)(8.2.2)

of Sd( f, r, n). Obviously hd( f, r) does not decrease with r , so we can define

hd( f ) := lim
r→0

hd( f, r).(8.2.3)

Call h( f ) := htop( f ) := hd( f ) the topological entropy of f .

Note that we take a double limit, first with respect to n and then with respect
to r . The important limit is the one in n, because it is there that the dynamics
enters. In many interesting cases the limit in r is, in fact, trivial, because hd( f, r) is
independent of r (for small r) to begin with.

A priori, hd( f ) might depend on the metric d. Actually it does not, so long as
one changes to a homeomorphic metric (Definition A.1.17). This justifies dropping
the reference to the metric in (8.2.3).

Proposition 8.2.2 If d′ is a metric on X equivalent to d, then hd′ ( f ) = hd( f ).

Proof The identity map Id: (X, d) → (X, d′) is a homeomorphism by assumption
and uniformly continuous in both directions by the compactness of X . Thus, given
r > 0, there exists a δ(r) > 0 such that, if d′(x1, x2) < δ, then d(x1, x2) < r , that is, any
δ-ball in the metric d′ is contained in an r-ball in the metric d. By (8.2.1) this also
holds for d′ f

n and d f
n . Thus Sd′ ( f, δ, n) ≥ Sd( f, r, n) for every n, so hd′ ( f, δ) ≥ hd( f, r)

and hd′ ( f ) ≥ limδ→0 hd′ ( f, δ) ≥ limr→0 hd( f, r) = hd( f ). Interchanging d and d′ one
obtains hd( f ) ≥ hd′ ( f ), and hence equality. �

Corollary 8.2.3 Topological entropy is an invariant of topological conjugacy.

Proof Let f : X → X , g : Y → Y be topologically conjugate via a homeomorphism
h: X → Y (see Definition 7.3.3). Fix a metric d on X and define d′ on Y as the
pullback of d, that is, d′(y1, y2) = d(h−1(y1), h−1(y2)) (Section 2.6.1). Then h becomes
an isometry, so hd( f ) = hd′ (g). �

8.2.3 Subexponential Growth

As a first example of how to apply this concept, consider situations with relatively
simple dynamics.

Proposition 8.2.4 The topological entropy of contractions and isometries is zero.
In particular, any translation Tγ of the torus or any linear flow T t

ω on the torus (see
Section 5.1) has zero entropy.

Proof If X is a compact metric space and f : X → X is 1-Lipschitz, then d f
n = d for

all n and consequently Sn( f, r, n) does not depend on n; so h( f ) = 0. The situation
with isometric flows is completely similar to that of maps. �
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This absence of any growth is most removed from the case of positive topo-
logical entropy. Between these two extreme cases there is a variety of situations of
“moderate”, that is, subexponential, growth for those quantities. An example is given
by the linear twist T : S1 × [0, 1] → S1 × [0, 1], T(x, y) = (x + y, y) in Section 6.1.1.
In this case we can give a d f

n -r-dense set of nr2 balls with centers spaced uniformly
r apart along the horizontal and uniformly nr apart on the vertical. The centers are
then also r/2-separated.

8.2.4 Entropy via Covers

Topological entropy is not always easy to calculate, and it helps to have alternative
definitions in order to be able to choose a convenient one as the situation requires
(this comes in handy already in Proposition 8.2.9).

There are several quantities similar to Sd( f, r, n) that can be used to define
topological entropy. Let Dd( f, r, n) be the minimal number of sets whose diameter
in the metric d f

n is less than r and whose union covers X .

Lemma 8.2.5 h̃d( f, r) := limn→∞(1/n) log Dd( f, r, n) exists for any r > 0.

Proof If A is a set of d f
n -diameter less than r and B is a set of d f

m-diameter less
than r , then A ∩ f −n(B) has d f

m+n-diameter less than r . Thus if A is a cover of X by
Dd( f, r, n) sets of d f

n -diameter less than r and B is a cover of X by Dd( f, r, m) sets of
d f

m-diameter less than r , then the cover by all sets A ∩ f −n(B), where A ∈ A, B ∈ B,
contains at most Dd( f, r, n) · Dd( f, r, m) sets and is a cover by sets of d f

m+n-diameter
less than r . Thus

Dd( f, r, m+ n) ≤ Dd( f, r, n) · Dd( f, r, m)

for all m, n. For an = log Dd( f, r, n), this means am+n ≤ an + am and hence
limn→∞ an/n exists by Lemma 4.3.7. �

Proposition 8.2.6 If hd( f, r) := lim n→∞(1/n) log Sd( f, r, n), then

lim
r→0

h̃d( f, r) = lim
r→0

hd( f, r) = lim
r→0

hd( f, r) = h( f ).(8.2.4)

Proof The diameter of an r-ball is at most 2r , so every covering by r-balls is a
covering by sets of diameter ≤ 2r , that is,

Dd( f, 2r, n) ≤ Sd( f, r, n).(8.2.5)

On the other hand, any set of diameter ≤ r is contained in the r-ball around each
of its points, so

Sd( f, r, n) ≤ Dd( f, r, n).(8.2.6)

Thus

h̃d( f, 2r) ≤ hd( f, r) ≤ hd( f, r) ≤ h̃d( f, r). �

8.2.5 Topological Entropy via Separated Sets

Another way to define topological entropy is via the maximal number Nd( f, r, n)
of points in X with pairwise d f

n -distances at least r . We say that such a set of points
is (n, r)-separated. (See Figure 8.2.1.) Such points generate the maximal number of
orbit segments of length n that are distinguishable with precision r .
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Figure 8.2.1. A separated set.

Proposition 8.2.7

htop( f ) = lim
r→0

lim
n→∞

1
n

log Nd( f, r, n) = lim
r→0

lim
n→∞

1
n

log Nd( f, r, n).(8.2.7)

Remark 8.2.8 This justifies the verbal description of entropy as the exponential
growth rate for the number of orbit segments distinguishable with arbitrarily fine
but finite precision that we gave at the beginning of this section.

Proof A maximal (n, r)-separated set is (n, r)-dense, that is, for any such set of
points the r-balls around them cover X , because otherwise it would be possible to
increase the set by adding any point not covered. Thus

Sd( f, r, n) ≤ Nd( f, r, n).(8.2.8)

On the other hand, no r/2-ball can contain two points r apart. Thus

Nd( f, r, n) ≤ Sd

(
f,

r
2
, n

)
.(8.2.9)

Using (8.2.8) and (8.2.9) we obtain

hd( f, r) ≤ lim
n→∞

1
n

log Nd( f, r, n) ≤ lim
n→∞

1
n

log Nd( f, r, n) ≤ hd

(
f,

r
2

)
.(8.2.10)

The result follows by Proposition 8.2.6. �

8.2.6 Some Properties of Entropy

The following proposition contains some standard elementary properties of
topological entropy. The proofs demonstrate the usefulness of switching back
and forth from one of the three definitions to another.

Proposition 8.2.9

(1) If $ is a closed f -invariant set, then htop( f �$
) ≤ htop( f ).

(2) If X = ⋃m
i=1 $i , where $i , (i = 1, . . . , m) are closed f -invariant sets,

then htop( f ) = max1≤i≤m htop( f �$i
).

(3) htop( f m) = |m|htop( f ).
(4) If g is a factor of f , then htop(g) ≤ htop( f ).
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(5) htop( f × g) = htop( f ) + htop(g), where f : X → X, g : Y → Y and
f × g : X × Y → X × Y is defined by ( f × g)(x, y) = ( f (x), g(y)).

Proof Statement (1) is obvious since every cover of X by sets of d f
n -diameter

less than r is at the same time a cover of $.
To prove (2) note that Dd( f, r, n) ≤ ∑m

i=1 Dd( f �$i
, r, n), because the union

of covers of $1, . . . , $m by sets of diameter less than r is a cover of X. Thus

Dd
(

f �$i
, r, n

) ≥ 1
m

Dd( f, r, n)

for at least one i. Since there are only finitely many i’s, at least one i works for
infinitely many n. For this i ∈ {1, . . . , m }

lim
n→∞

log Dd
(

f �$i
, r, n

)
n

≥ lim
n→∞

log Dd( f, r, n) − log m
n

= h̃d( f, r).

Together with (1) this proves (2).
If m is positive, then (3) follows from two remarks. First

d f m

n (x, y) = max
0≤i≤n−1

d( f im(x), f im(y)) ≤ max
0≤i≤mn−1

d( f i (x), f i (y)) = d f
nm(x, y),

so any d f m

n r-ball contains a d f
mn r-ball and

Sd( f m, r, n) ≤ Sd( f, r, mn).(8.2.11)

Hence h top( f m ) ≤ mh top( f ). On the other hand, for every r > 0 there is a
δ(r) > 0 such that B(x, δ(r)) ⊂ Bf (x, r, m) for all x ∈ X. Thus

Bf m (x, δ(r), n) =
n−1⋂
i=0

f −im B( f im(x), δ(r))

⊂
n−1⋂
i=0

f −im Bf ( f im(x), r, m) = Bf (x, r, mn).

Consequently,

Sd( f, r, mn) ≤ Sd( f m, δ(r), n)

and mh top( f ) ≤ h top( f m). If f is invertible, then Bf (x, r, n) =
Bf −1 ( f n−1(x), r, n) and Sd( f, r, n) = Sd( f −1, r, n); so h top( f ) = h top( f −1).

If m is negative, then (3) follows from the statement for m > 0 and n = −1.
Statement (4) deals with f : X → X, g : Y → Y, h : X → Y such that

h ◦ f = g ◦ h and h(X) = Y (Definition 7.3.3). Denote by dX, dY the distance
functions in X and Y, correspondingly.

h is uniformly continuous, so for any r > 0 there is δ(r) > 0 such that, if
dX(x1, x2) < δ(r), then dY (h(x1), h(x2)) < r. Thus the image of any (dX) f

n ball of
radius δ(r) lies inside a (dY ) f

n ball of radius r, that is,

SdX ( f, δ(r), n) ≥ SdY (g, r, n).

Taking logarithms and limits, we obtain (4).
To prove (5) use the product metric d((x1, y1), (x2, y2)) = max(dX(x1, x2),

dY (y1, y2)) in X × Y. Balls in the product metric are products of balls on X and Y.
The same is true for balls in d f ×g

n . Thus Sd( f × g, r, n) ≤ SdX ( f, r, n)SdY (g, r, n)
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and h top( f × g) ≤ h top( f ) + h top(g). On the other hand, the product of any
(n, r)-separated set in X for f and any (n, r)-separated set in Y for g is an
(n, r)-separated set for f × g. Thus

Nd( f × g, r, n) ≥ NdX ( f, r, n) × NdY (g, r, n)

and hence h top( f × g) ≥ h top( f ) + h top(g). �

� EXERCISES

� Exercise 8.2.1 Compute the topological entropy of f (x) = x(1 − x) on [0, 1].

� Exercise 8.2.2 Compute the topological entropy of the linear horseshoe.

� Exercise 8.2.3 Suppose f : S1 → S1 is an orientation-preserving C2-diffeo-
morphism without periodic points. Find htop( f ).

� Exercise 8.2.4 Let f : T3 → T3, f (x, y, z) = (x, x + y, y + z). Find htop( f ).

� Exercise 8.2.5 Suppose X = ⋃
i Xi is compact, f : X → X such that each Xi is

closed and f -invariant. Show that htop( f ) = sup htop( f �Xi
).

� PROBLEMS FOR FURTHER STUDY

� Problem 8.2.6 Given f : X → X , g : Y → Y , suppose h ◦ f = g ◦ h, where h: X →
Y is a continuous surjective map such that every y ∈ Y has finitely many preimages.
Show that htop( f ) = htop(g).

8.3 APPLICATIONS AND EXTENSIONS

8.3.1 Expanding Maps

The expanding maps Em represent the first situation in our survey where a really
complicated orbit structure appears. Since one of the features of this structure is

the exponential growth of periodic orbits (Proposition 7.1.2), it is natural to expect
the total exponential orbit complexity, measured by the topological entropy, to be
positive too.

Proposition 8.3.1 If m ∈ N, |m| ≥ 2, then htop(Em) = log |m| = p(Em).

Proof For the map Em, and in fact for any expanding map, the distance between
iterates of any two points grows until it becomes greater than a certain constant
depending on the map (1/2|m| for the map Em). To simplify notations, assume
m > 0. If d(x, y) < m−n/2, then dEm

n (x, y) = d(E n−1
m (x), E n−1

m (y)); so if dEm
n (x, y) ≥ r ,

then d(x, y) ≥ rm−n. Taking r = m−k, this shows that {im−n−k i = 0, . . . , mn+k − 1}
is a maximal set of points whose pairwise dEm

n -distances are at least m−k, that is,

Nd(Em, m−k, n) = mn+k,

and consequently

h(Em) = lim
k→∞

lim
n→∞

log Nd(Em, m−k, n)
n

= lim
k→∞

lim
n→∞

n + k
n

log m = log m.

The case m < 0 is completely parallel. �
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Since topological entropy is invariant under topological conjugacy (Corol-
lary 8.2.3) and every expanding map of degree m is topologically conjugate to the
map Em (Theorem 7.4.3), we obtain from Proposition 8.3.1

Corollary 8.3.2 If f : S1 → S1 is an expanding map of degree m, then

htop( f ) = p( f ) = log |m|.

8.3.2 Shifts and Topological Markov Chains

Proposition 8.3.3 htop(σA) = p(σA) = log |λmax
A | for any topological Markov

chain σA.

Proof Analogously to Section 7.3.4, any cylinder

C−m,...,n+m
α−m,...,αn+m

:= {ω ∈ N ωi = αi for − m ≤ i ≤ m+ n}(8.3.1)

is at the same time the ball of radius rm = λ−m/2 around each of its points with
respect to the metric dσN

n associated with the shift σN (because λ > 3). Thus, any two
dσN

n balls of radius rm are either identical or disjoint, and there are exactly Nn+2m+1

different ones of the form (8.3.1); so Sdλ
(σN, rm, n) = Nn+2m+1 and

h(σN) = lim
m→∞ lim

n→∞
1
n

log Nn+2m+1 = log N.

Similarly, if σA is a topological Markov chain, then Sd(σA, rm, n) is the number
of those cylinders (8.3.4) that have nonempty intersection with A. Assume that
each row of A contains at least one 1. Since the number of admissible paths of
length n that begin with i and end with j is the entry an

i j of An (see Lemma 7.3.5),

the number of nonempty cylinders of rank n + 1 in A is
∑N−1

i, j=0 an
i j < C · ‖An‖ for

some constant C . On the other hand,
∑N−1

i, j=0 an
i j > c‖An‖ for another constant c > 0

because all numbers an
i j are nonnegative and hence the left-hand side is the norm∑N−1

i, j=0 an
i j of An, which is equivalent to the usual norm because all norms on RN2

are equivalent. Thus, we have

Sdλ
(σA, rm, n) =

N−1∑
i, j=0

an+2m
i j(8.3.2)

and

h(σA) = lim
m→∞ lim

n→∞
1
n

log Sdλ
(σA, rm, n)(8.3.3)

= lim
m→∞ lim

n→∞
1
n

log ‖An+2m‖ = lim
n→∞

1
n

log ‖An‖ = log r(A) = log
∣∣λmax

A

∣∣,
where r(A) is the spectral radius of the matrix A (Definition 3.3.1). Equation (8.3.3)
and Proposition 7.3.7 now give the claim. �

8.3.3 The Hyperbolic Toral Automorphism

In calculating the entropy of the toral automorphism we use both coding and our
knowledge of the growth rate of periodic points.
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Proposition 8.3.4 If FL : T2 → T2 is given by FL (x, y) = (2x + y, x + y) (mod 1),
then

h(FL ) = p(FL ) = 3 + √
5

2
.

Proof In Section 7.4.5 we showed that

FL (x, y) = (2x + y, x + y) (mod 1)

is a factor of the topological Markov chain σA, where

A =


1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
0 0 1 0 1

 ,

and that the maximal eigenvalue of A is λmax
A = 3 + √

5/2. Proposition 8.2.9(4)
shows that

h(FL ) ≤ h(σA) = log
3 + √

5
2

.(8.3.4)

On the other hand, we next show that the set of n-periodic points of FL is
(n, 1/4)-separated for any n ∈ N. This implies Nd(FL , 1/4, n) ≥ Pn(FL ) and

h(FL ) ≥ p(FL ) = log
3 + √

5
2

by Proposition 7.1.10. By (8.3.4), the result then follows.
If p, q are n-periodic points and d( p, q) < 1/4, then there is a uniquely defined

minimal rectangle R with vertices p, s, q, t formed by segments of expanding and
contracting lines passing through p and q. (See Figure 8.3.1.) Under the action of
FL the sides ps and qt expand with coefficient λ1 = (3 + √

5/2) > 2 while the other
two sides contract with coefficient λ−1

1 .
This implies F n

L (R) �= R because F n
L cannot leave all four sides invariant while

also expanding and contracting them. Equivalently, F −n
L (R) �= R. Therefore, there is

a k ≤ n for which F k
L (R) is not a minimal rectangle. For the smallest such k we then

p

q

stFigure 8.3.1. Heteroclinic points.
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have d(F k
L ( p), F k

L (q)) > 1/4 because a rectangle with diagonals shorter than 1/4 is
minimal. Thus the periodic points of period n form an (n, 1/4)-separated set. �

Remark 8.3.5 In the case of expanding maps Em and for topological Markov chains
σA one can also show that periodic points form (n, r0)-separated sets for some r0.
This allows us to produce the inequality htop ≥ p in a uniform way for all three cases.

8.3.4 Periodic Points and Entropy

Our examples show an interesting pattern. For both smooth examples with
complicated exponentially growing orbit structure, namely, expanding maps
(Proposition 8.3.1) and hyperbolic toral automorphisms (Proposition 8.3.4), the
two natural measures of the exponential orbit growth – the growth rate pof periodic
points and the topological entropy htop – coincide. This is a rather widespread phe-
nomenon, although not universal. It is related to the local hyperbolic structure, that
is, the stretching and folding common to these examples. (This is systematically in-
troduced in Chapter 10.) For topological Markov chains the growth rate of periodic
points and topological entropy also coincide (Proposition 8.3.3). Hyperbolicity
is a relevant explanation here, too, since by Proposition 7.4.6 topological Markov
chains are topologically conjugate to the restriction of some smooth systems to
special invariant sets that possess hyperbolic behavior.

8.3.5 Topological Entropy for Flows

The definition of topological entropy htop(�) for a flow � = (ϕt)t∈R is completely
parallel to that for the discrete-time case. The only change is that the metrics in
(8.2.1) are replaced by the nondecreasing family

d�
T (x, y) = max

0≤t≤T
d(ϕt(x), ϕt(y))

of metrics. This parallelism has a particularly useful consequence analogous to
Proposition 8.2.9.(3).

Proposition 8.3.6 htop(�) = htop(ϕ1).

Proof If r > 0, then by compactness and continuity for there is a δ(r) > 0 such that
d(x, y) ≤ δ(r) implies max0≤t≤1 d(ϕt(x), ϕt(y)) < r . Then any r-ball in the metric

d�
T contains a δ(r)-ball in the metric d ϕ1

�T	. On the other hand, d�
n ≥ d ϕ1

n . These two
remarks imply the statement. �

The topological entropy for a flow is thus invariant under flow equivalence,
that is, coincides for two flows whose time-t maps are topologically conjugate
with the same conjugacy for all t. It changes under time change (Definition 9.4.12)
and hence under orbit equivalence (flow equivalence with a time change) in a
rather complicated way. One can show that for a flow without fixed points any time
change preserves vanishing of the topological entropy, that is, a time change of a
flow with zero entropy also has zero entropy. If the topological entropy for a map or
a flow vanishes, the subexponential asymptotic of any of the quantities involved in
its definition may provide useful insights into the complexity of the orbit structure.
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8.3.6 Local Entropy as a Measure of Sensitive Dependence

As we mentioned in the introduction to this section, entropy can be viewed as
a measure of the amount of chaos in a system. We now explicitly show how
entropy provides a quantitative measure of the amount of sensitive dependence
in a dynamical system. To that end we introduce a closely related notion of local
entropy, explain how it measures sensitive dependence on the one hand, and
how it is related to topological entropy on the other.

Fix a point x and a “microscopic” ε as well as a “macroscopic” r, and
let Nd( f, r, n, x, ε) be the maximal number of points in Bd(x, ε) with pairwise
d f

n -distances at least r. A large such number would certainly indicate rather
sensitive dependence on initial conditions.

Definition 8.3.7 If

hd,x,r( f ) := lim
ε→0

lim
n→∞

1
n

log Nd( f, r, n, x, ε),

then

hd,x( f ) := lim
r→0

hd,x,r( f )

is called the local entropy of f at x.

Remark 8.3.8 The limits exist because the dependence on ε is increasing and
on r decreasing.

Proposition 8.3.9 hd,x( f ) ≤ htop( f ).

Proof Topological entropy corresponds to the case of leaving ε fixed at a size
for which B(x, ε) is the entire space. Therefore any point with strong sensitive
dependence in this sense necessarily produces large topological entropy. �

On the other hand, there is a relation with hd( f, r) [see (8.2.2)]:

Proposition 8.3.10 For r > 0 there exists an x such that

hd,x,r( f ) ≥ hd( f, r).

Proof If Sd( f, r, n, x, ε) is the minimal number of d f
n -r-balls covering Bd(x, ε),

then there is an x such that

Sd( f, r, n) ≤ Sd(ε)Sd( f, r, n, x, ε)(8.3.5)

because we can take a cover of the space by Sd(ε)-balls of radius ε and, denoting
their centers by xj, we have

Sd( f, r, n) ≤
Sd(ε)∑
j=1

Sd( f, r, n, xj, ε);
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hence
Sd( f, r, n, x, ε) ≥ Sd( f, r, n)/Sd(ε)

for x being one of the xj.
As n → ∞ we obtain a sequence of such points xn satisfying (8.3.2) for the

respective values of n. Take an accumulation point x of this sequence and con-
sider the 2ε-ball around it. For sufficiently large n we have Bd(xn, ε) ⊂ Bd(x, 2ε)
and hence

Sd( f, r, n, x, 2ε) ≥ Sd( f, r, n)/Sd(ε)
for all n, which implies

lim
n→∞

1
n

log Sd( f, r, n, x, 2ε) ≥ lim
n→∞

1
n

log)(Sd( f, r, n)/Sd(ε)) = hd( f, r).

Using arguments as before we can replace Sd( f, r, n, x, 2ε) by the corresponding
number of r-dense points and let ε → 0 to get

hd,x,r( f ) ≥ hd( f, r)
for all r. �

Remark 8.3.11 Since hd( f, r) −−→
r→0

h( f ), this shows that there are points with
hd,x,r( f ) arbitrarily close to the topological entropy. Thus the supremum of
local entropies over the space is the topological entropy, and topological entropy
indeed measures the amount of sensitive dependence on initial conditions.

� EXERCISES

� Exercise 8.3.1 Prove Corollary 8.3.2 without reference to topological conjugacy.

� Exercise 8.3.2 Construct a map with positive topological entropy that has no
periodic points.

� Exercise 8.3.3 Construct a topologically transitive map of a compact metric
space that has infinite topological entropy.

� Exercise 8.3.4 Prove that the local entropy of Em is independent of the point
and equals topological entropy.

� Exercise 8.3.5 Prove that the local entropy of the shift on m symbols is
independent of the point and equals topological entropy.

� Exercise 8.3.6 Prove that the local entropy of the toral automorphism induced
by (2 1

1 1) is independent of the point and equals topological entropy.

� Exercise 8.3.7 Consider the closed unit disk in R2 and the map fλ on it defined
in polar coordinates by fλ(reiθ ) = λre 2iθ , where 0 ≤ λ ≤ 1. Show that htop( f1) ≥ log 2
and that htop( fλ) = 0 for λ < 1.

� PROBLEMS FOR FURTHER STUDY

� Problem 8.3.8 Prove that htop(ϕt) = |t|htop(ϕ1) for any flow ϕt.

� Problem 8.3.9 Give an example of a topologically transitive map for which local
entropy is not constant.
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PART 2

PANORAMA OF DYNAMICAL SYSTEMS

This part of the book develops results and themes from the course and in doing
so presents several strands of research in dynamics. The exposition relies on and
refers to the course, but it stands on its own as a careful description of selected
modern achievements. The choice of subjects was influenced by the topics of the
course and the degree to which these results have been digested in the literature.

Starting with Chapter 10, we adopt a style less technically thorough than that of
the course. Many results come with at least a proof outline, but not all arguments
labeled as proofs are as complete and self-contained as in the course. The focus is
on making clear how ideas are elaborated and used. Many references are given in
the text.

The chapters are largely independent of each other, and can be read selectively
and in any order.
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CHAPTER 9

Simple Dynamics as a Tool

9.1 INTRODUCTION

9.1.1 Applications of the Contraction Principle

The collection of simple dynamical systems with complicated orbit structure
presented in Chapter 7 and revisited in Section 8.3 is representative of hyperbolic
dynamical systems. Much of the core theory of hyperbolic dynamics consists of
results that are obtained (more or less) directly from the Contraction Principle,
which first appeared as an example of a dynamical system with simple dynamics
in Chapter 2. Although we already used it in Section 2.5 as a tool that can tell us
much about other dynamical systems, its pervasive role in hyperbolic dynamics
motivates a more thorough presentation of its uses. Accordingly, the main theme
of this chapter is to present case studies of using the Contraction Principle, that is,
of putting one important insight about a specific class of simple dynamics to use
in an auxiliary space to tell us about analysis as well as (complicated) dynamical
systems. Since the results we obtain are rather important, we take some time to
develop them further, notably when it comes to the basic theory of differential
equations. In this chapter we maintain the same standard of proof as in the course.

As in the preceding chapters, this intrinsically interesting development has a
utilitarian undercurrent. The results obtained here are important for the study
of dynamical systems. In the case of existence and uniqueness of solutions of
differential equations this is evident, but all other results presented here also figure
in our development and are standard tools in dynamics. This chapter does not
present nearly all such applications; some others are presented elsewhere, such as
the Anosov Closing Lemma (Theorem 10.2.2), which follows from the Contraction
Principle by way of the Hyperbolic Fixed Point Theorem 9.5.4. The Stable Manifold
Theorem 9.5.2 is the foremost example and is featured prominently here.

9.1.2 Overview

We begin by deriving two important results in analysis, the Inverse- and Implicit-
Function Theorems. The latter immediately tells us something new about the

259
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Contraction Principle itself: The fixed point of a contraction depends smoothly
on the contraction. A first and straightforward application of these results is the
persistence of transverse fixed points in Section 9.3, where we show that a simple
condition on the linear part of a map at a fixed point can guarantee that the
fixed point persists when the map is perturbed. This is similar to the situation
for contractions (Proposition 2.2.20) and very much in the spirit of linearization
(which is discussed in Section 2.1, the beginning of Chapter 3, and, for example,
Section 6.2.2.7). In these first applications the space on which the contraction is
defined is the same space in which the problem is posed. However, the applications
of the Contraction Principle to existence and uniqueness of solutions of differential
equations (Section 9.4) and in the theorem on stable manifolds (Section 9.5), like
many other important applications in analysis, use the Contraction Principle by
reducing the situation at hand to a search for a fixed point in a space of functions,
which has infinite dimension, rather than in a Euclidean space.

9.1.3 Creating a Context for the Contraction Principle

While the common feature is the application of the Contraction Principle in some
auxiliary space, the degree of cleverness required to set this up varies in these ex-
amples. Picard iteration (Section 9.4) is a straightforward application, even though
the space in question is not as simple as in the earlier applications. Of course, this
is also the oldest example. The initial step in the proof of the Inverse-Function
Theorem 9.2.2 requires more creativity but is close to the Newton method. The
proof of persistence of transverse fixed points (Proposition 9.3.1) has no equally ob-
vious motivation for the initial step, but it exhibits some features common to other
applications of the Contraction Principle in dynamics. The central point is the com-
bination of transversality and closeness (smallness of a perturbation), which is being
used to produce an invertible map by transversality whose inverse is composed
with a strongly contracting map arising from the perturbation. (The trick is to do
this in such a way that the desired object is a fixed point of the resulting contraction.)

Except for the Picard iteration, all applications of the Contraction Principle
in this chapter depend on linearization. This, too, is typical of applications in the
theory of smooth dynamical systems.

9.2 IMPLICIT- AND INVERSE-FUNCTION THEOREMS

IN EUCLIDEAN SPACE

9.2.1 The Inverse-Function Theorem

The inverse function theorem says that, if a differentiable map has invertible
derivative at some point, then the map is invertible near that point. This result is
related to linearization: If we assume a certain qualitative (“yes–no”) fact about the
linear part (invertibility), then it holds for the nonlinear map itself – at least in a
neighborhood. The version for the real line is familiar from calculus:

Theorem 9.2.1 Suppose I ⊂ R is an open interval and f : I → R a differentiable
function. If a ∈ I is such that f ′(a) �= 0 and f ′ is continuous at a, then f is invertible
on a neighborhood U of a and ( f −1)′(y) = 1/ f ′(x), where y = f (x).
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Figure 9.2.1. The Inverse-Function
Theorem.

Usually one thinks of invertibility as the easy part and the derivative formula as
the hard one, because the basic calculus examples of invertible real-valued functions
are given by formulas where invertibility is rather apparent. However, the main con-
tent of this result is to conclude invertibility from knowledge only of the linear part
of a map at one point, without any such extra information. The derivative formula is
then an easy postlude. We even get higher derivatives easily. This result is fairly easy
in Rn as well, however, we first give a proof for the simple case of a single variable.

Proof Given y, we want to solve the equation f (x) = y for x, which is the same as
finding a root of Fy(x) := y − f (x). To this end we first set up a suitable contracting
map.

The space. The space on which the contraction acts is the real line.
Defining the contraction. The Newton method in Section 2.2.8 suggests making

an initial guess x (where y is fixed for the moment) and improve the guess by
repeatedly applying the map

Fy(x) = x − Fy(x)
F ′

y(x)
= x + y − f (x)

f ′(x)
.

To verify that this is a contraction involves taking and estimating the second
derivative of f , but we don’t assume it exists. It is convenient to instead consider
the map

ϕy(x) := x + y − f (x)
f ′(a)

on I . Its fixed points are solutions of our problem because ϕy(x) = x if and only if
f (x) = y.

The contraction property. Now we show that ϕy is a contraction of some closed
subset of O. Then, by the Contraction Principle, it has a unique fixed point and
hence there exists a unique x such that f (x) = y.

To that end let A := f ′(a) and α = |A|/2. By continuity of f ′ at a there is an ε > 0
such that W := (a − ε, a + ε) ⊂ I and | f ′(x) − A| < α for x in the closure W of W.
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a x �y(x)

f (x)

y

Figure 9.2.2. ϕy .

To see that ϕy is a contraction on W note that, if x ∈ W, then

|ϕ′
y(x)| =

∣∣∣∣1 − f ′(x)
A

∣∣∣∣ =
∣∣∣∣ A − f ′(x)

A

∣∣∣∣ <
α

|A| = 1/2.

Using Proposition 2.2.3 we get
∣∣ϕy(x) − ϕy(x′)

∣∣ ≤ |x − x′|/2 for x, x′ ∈ W.
We also need to show that ϕy(W) ⊂ W for y sufficiently close to b := f (a). Let

δ = Aε/2 and V = (b − δ, b + δ). Then for y ∈ V we have

|ϕy(a) − a| =
∣∣∣∣a + y − f (a)

A
− a

∣∣∣∣ =
∣∣∣∣ y − b

A

∣∣∣∣ <

∣∣∣∣ δa
∣∣∣∣ = ε

2
;

so if x ∈ W, then

|ϕy(x) − a| ≤ |ϕy(x) − ϕy(a)| + |ϕy(a) − a| <
x − a

2
+ ε

2
≤ ε

and hence ϕy(x) ∈ W.
Therefore Proposition 2.2.21 applied to ϕy : W → W for y ∈ V produces a

unique fixed point g(y) ∈ W, which depends continuously on y.
Next we prove that the inverse is differentiable. For y = f (x) ∈ V we want to

show that g′(y) exists and is the reciprocal of B := f ′(g(y)).
Let U := g(V ) = W ∩ f −1(V ) (the preimage under f ), so U is open. Take

y + k = f (x + h) ∈ V . Then

|h|
2

≥ |ϕy(x + h) − ϕy(x)| =
∣∣∣∣h + f (x) − f (x + h)

A

∣∣∣∣ =
∣∣∣∣h − k

A

∣∣∣∣ ≥ |h| −
∣∣∣∣ k

A

∣∣∣∣ ,
and hence

|h|
2

≤
∣∣∣∣ k

A

∣∣∣∣ <
|k|
α

and
1
|k| <

2
α|h| .

Since g(y + k) − g(y) − k/B = h − k/B = −( f (x + h) − f (x) − Bh)/B, we therefore
get

|g(y + k) − g(y) − k/B|
|k| <

2
|B|α

| f (x + h) − f (x) − Bh|
|h| −−−−−−−→

|h|≤2|k|/α→0
0,

which proves g′(y) = 1/B = 1/ f ′(g(y)).
Finally, suppose f ∈ Cr . We show inductively that g ∈ Cr . To that end assume

g ∈ Ck for some k < r (we start the induction with k = 0). Then f ′(g(y)) ∈ Ck and
so is its reciprocal g′. Thus, g ∈ Ck+1. �



book 0521583047 April 21, 2003 16:55 Char Count= 0

9.2 Implicit- and Inverse-Function Theorems 263

Now we adapt this argument to Rn:

Theorem 9.2.2 (Inverse-Function Theorem) Suppose O ⊂ Rm is open, f : O → Rm

is differentiable, and Df is invertible at a point a ∈ O and continuous at a. Then there
exist neighborhoods U ⊂ O of a and V of b := f (a) ∈ Rm such that f is a bijection
from U to V [that is, f is one-to-one on U and f (U) = V ]. The inverse g : V → U of f
is differentiable with Dg(y) = (Df (g(y)))−1. Furthermore, if f is Cr (that is, all partial
derivatives of f up to order r exist and are continuous) on U, then so is its inverse.

Proof The proof is actually the same as before. We only need to replace various
numbers by linear maps and some absolute values by norms.

The space. The contraction acts in Rm.
The map. For any given y ∈ Rm, consider the map

ϕy(x) := x + Df (a)−1(y − f (x))

on O. Notice that ϕy(x) = x if and only if f (x) = y, so we try to find a unique fixed
point for ϕy. We need a set W on which it is a contraction.

The contraction property. Let A := Df (a), α < ‖A−1‖−1/2, and, using continuity
of Df at a, take ε > 0 such that ‖Df (x) − A‖ < α for x in the closure of W := B(a, ε).
To see that ϕy is a contraction, note that

‖Dϕy(x)‖ = ‖ Id −A−1 Df (x)‖ = ‖A−1(A − Df (x))‖ < ‖A−1‖α =: λ < 1/2

for x ∈ W and apply Corollary 2.2.15 to get ‖ϕy(x) − ϕy(x′)‖ ≤ λ‖x − x′‖ for x, x′ ∈ W.
Therefore, by Proposition 2.2.20 there is a neighborhood V of b such that ϕy is
a contraction of W for all y ∈ V and has a unique fixed point g(y) ∈ W (which
depends continuously on y). U := g(V ) = W ∩ f −1(V ) is open.

The determinant of Df (x) depends continuously on Df and hence is continu-
ous at a as a function of x. Thus, by taking V (and hence U) smaller, if necessary,
we may assume det Df �= 0 on U and therefore that Df (x) is invertible on U.

For y = f (x) ∈ V we want to show that Dg(y) exists and is the inverse of
B := Df (g(y)). Take y + k = f (x + h) ∈ V . Then

‖h‖
2

≥ ‖ϕy(x + h) − ϕy(x)‖ = ‖h + A−1( f (x) − f (x + h))‖(9.2.1)

= ‖h − A−1k‖ ≥ ‖h‖ − ‖A−1‖‖k‖,
so

‖k‖
α

> ‖A−1‖‖k‖ ≥ ‖h‖
2

and
1

‖k‖ <
2

α‖h‖ .

Since g(y + k) − g(y) − B−1k = h − B−1k = −B−1( f (x + h) − f (x) − Bh), we get

‖g(y + k) − g(y) − B−1k‖
‖k‖ <

‖B−1‖
α/2

‖ f (x + h) − f (x) − Bh‖
‖h‖ −−−−−−−−→

‖h‖≤2‖k‖/α→0
0,

which proves Dg(y) = B−1.
Finally, suppose f ∈ Cr and g ∈ Ck for some k < r . Then Df (g(y)) ∈ Ck and so

is its inverse Dg by using the formula for matrix inverses (the entries of A−1 are
polynomials in those of A divided by det A �= 0). Thus, g ∈ Ck+1. �
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9.2.2 The Implicit-Function Theorem

A result closely related to the Inverse-Function Theorem is the Implicit-Function
Theorem. It follows easily from the Inverse-Function Theorem and is therefore
indirectly an application of the Contraction Principle. Furthermore, as we will
see in the next subsection, it immediately tells us more about the Contraction
Principle itself regarding the dependence of the fixed point of a contraction on the
contraction (see also Figure 2.2.3).

Like the Inverse-Function Theorem, the Implicit-Function Theorem transfers
information about the linear part of a map to the map itself. To see how, consider
the question answered by the Implicit-Function Theorem in the case of a linear
map. Suppose A : Rn × Rm → Rn is a linear map and write it as A = (A1, A2), where
A1 : Rn → Rn and A2 : Rm → Rn are linear. Suppose we pick k ∈ Rm and want to
find h ∈ Rn such that A(h, k) = 0. To see when this can be done, rewrite this as
A1h + A2k = 0 to conclude that if A1 is invertible, then

A(h, k) = 0 ⇔ h = −(A1)−1 A2k.(9.2.2)

One can interpret this as saying that the equation A(h, k) = 0 implicitly defines
a map h = Lk such that A(Lk, k) = 0. The Implicit-Function Theorem says that if
this is true for the linear part of a map, then it is true for the map itself: Under some
assumptions corresponding to invertibility of A1, the equation f (x, y) = 0 implicitly
defines a map x = g(y) such that f (g(y), y) = 0. To state those assumptions for a
map f : Rn × Rm → Rn we write Df = (D1 f, D2 f ) analogously to the above, with
D1 f : Rn → Rn and D2 f : Rm → Rn.

The Implicit-Function Theorem then tells us that if we can solve an equation
given a particular value of a parameter, then there is a solution for nearby parameter
values as well.

Theorem 9.2.3 (Implicit-Function Theorem) Let O ⊂ Rn × Rm be open and
f : O → Rn a Cr map. If there is a point (a, b) ∈ O such that f (a, b) = 0 and D1 f (a, b)
is invertible, then there are open neighborhoods U ⊂ O of (a, b) and V ⊂ Rm of b
such that for every y ∈ V there exists a unique x =: g(y) ∈ Rn with (x, y) ∈ U and
f (x, y) = 0. Furthermore, g is Cr and Dg(b) = −(D1 f (a, b))−1 D2 f (a, b).

Proof F (x, y) := ( f (x, y), y) : O → Rn × Rm is Cr , and if A = Df (a, b), then
DF (a, b) (h, k) = (A(h, k), k) by the chain rule. This gives zero only if k = 0 and
A(h, k) = 0; hence (h, k) = 0 by (9.2.2). Therefore DF is invertible and, by the
Inverse-Function Theorem 9.2.2, there are open neighborhoods U ⊂ O of (a, b)
and W ⊂ Rn × Rm of (0, b) such that F : U → W is invertible with Cr inverse
G = F −1 : W → U. Thus, for any y ∈ V := {y ∈ Rm (0, y) ∈ W} there exists an
x =: g(y) ∈ Rn such that (x, y) ∈ U and F (x, y) = (0, y), that is, f (x, y) = 0.

Now (g(y), y) = (x, y) = G(0, y) and hence g is Cr . To find Dg(b), let
γ (y) := (g(y), y). Then f (γ (y)) ≡ 0 and hence Df (γ (y))Dγ (y) = 0 by the chain rule.
For y = b, this gives D1 f (a, b)Dg(b) + D2 f (a, b) = Df (a, b)Dγ (b) = 0, completing
the proof. �
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Rm

Rn

Rn

Figure 9.2.3. The Implicit-Function Theorem.

9.2.3 The Smooth Contraction Principle

Returning to dynamics we apply smoothness of the implicit function g to the
Contraction Principle to show that the fixed point of a contraction depends
smoothly on the contraction itself (see Figure 2.2.3). To express this we write our
contractions as maps with a parameter.

Theorem 9.2.4 Suppose f : Rn × Rm → Rn is Cr and there exists a λ < 1 such that
d( f (x, y), f (x′, y)) ≤ λd(x, x′) for x, x′ ∈ X. Then for every y ∈ Y there is a unique
fixed point g(y) of x !→ f (x, y) and g is Cr.

Proof Existence of the fixed point g(y) follows from the contraction principle. Now
write F (x, y) := f (x, y) − x and notice that this is a Cr function that satisfies the
hypotheses of the Implicit-Function Theorem 9.2.3: It is zero at (a, b) = (g(y), y) (any
choice of y is fine here) and ‖D1 F v‖ = ‖D1 f v − v‖ ≥ ‖v‖ − ‖D1 f v‖ ≥ (1 − λ)‖v‖ >

0 for v �= 0, so D1 F is invertible. Thus g ∈ Cr . �

Remark 9.2.5 Instead of the domain Rn × Rm, one can take A × O, where O ⊂ Rm

is open and A is the closure of an open set, say. (One needs a closed set to apply the
contraction principle, but also a good enough one to be able to differentiate r times.)

Remark 9.2.6 Suppose fλ depends smoothly on λ and f := f0 is as in Proposi-
tion 2.2.20. Show that there is a smooth family λ !→ xλ with x0 as in Proposition 2.2.20
and fλ(xλ) = xλ.

9.3 PERSISTENCE OF TRANSVERSE FIXED POINTS

The fixed point of a contraction simultaneously exhibits two kinds of stability.
As an attracting fixed point it is asymptotically stable. Proposition 2.2.20 and
Proposition 2.6.14 (as well as Theorem 9.2.4) state that it is also stable under per-
turbations of the map, that is, perturbations of the map have a unique fixed point
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nearby. This is an important robustness property of the local dynamics, and we
now use the Contraction Principle to describe a general condition under which
an analogous conclusion holds. This is a straightforward and simple illustration
of the use of the Contraction Principle and the Implicit-Function Theorem in dy-
namics where the Contraction Principle is applied to a derived system in the same
space.

Recall that two C1-maps f and g are C1-close if | f − g| + ‖Df − Dg‖ is
uniformly small.

Proposition 9.3.1 If p is a periodic point of period m for a C1 map f and the
differential Df m

p does not have one as an eigenvalue (in this case p is said to be a
transverse periodic point), then for every map g sufficiently C1-close to f there is a
unique periodic point of period mclose to p.

Note that in dimension one the assumption on the derivative simply means that
it is not one. Accordingly, in the example of the basic bifurcation of Section 2.3.2
(see Figure 2.3.2) the single fixed point appears or disappears exactly when there is a
tangency with the diagonal, that is, the derivative of the map is one. Figure 9.3.1 illus-
trates this. The axis of the independent variable points right, the vertical axis is for the
“output”, and the axis toward the rear gives a parameter with which the map changes.
The plane shows the diagonal for various parameters, and the graphs of perturbed
maps combine to a surface that intersects the diagonals in the family of fixed
points.

Proof The space. We define a contraction in a neighborhood of p.
The map. Introduce local coordinates near p with p as the origin. In these

coordinates, Df m
0 becomes a matrix. Since 1 is not among its eigenvalues, the

map F = f m − Id defined locally in these coordinates is locally invertible by the
Inverse-Function Theorem 9.2.2. Now let g be a map C1-close to f . Near 0 one can
write gm = f m − H, where H is small together with its first derivatives. A fixed point

Figure 9.3.1. Persistence of a fixed point.
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for gm can be found from the equation x = gm(x) = ( f m − H)(x) = (F + Id −H)(x)
or (F − H)(x) = 0 or

x = F −1 H(x).

The contraction property. Since F −1 has bounded derivatives and H has very small
first derivatives, one can show that F −1 H is a contracting map. More precisely, let
‖ · ‖0 denote the C0-norm, ‖dF −1‖0 = L, and

max (‖H‖0, ‖dH‖0) ≤ ε.

Then, since F (0) = 0, we get ‖F −1 H(x) − F −1 H(y)‖ ≤ εL‖x − y‖ for every
x, y close to 0 and ‖F −1 H(0)‖ ≤ L‖H(0)‖ ≤ εL, and hence ‖F −1 H(x)‖ ≤
‖F −1 H(x) − F −1 H(0)‖ + ‖F −1 H(0)‖ ≤ εL‖x‖ + εL. Thus, if ε ≤ (R/L(1 + R)), the
disc X = {x ‖x‖ ≤ R} is mapped by F −1 H into itself and the map F −1 H : X → X
is contracting. By the contraction principle it has a unique fixed point in X , which
is thus a unique fixed point for gm near 0. �

Remark 9.3.2 It is easy to show that a transverse fixed point is isolated.

Remark 9.3.3 If f is a C1 map with a hyperbolic fixed point p, that is, Df |p
has

no eigenvalues on the unit circle, and g is sufficiently C1-close to f , then g has
a unique fixed point near p and this fixed point is a hyperbolic fixed point of g.
Theorem 9.5.4 quantifies “near.”

9.4 SOLUTIONS OF DIFFERENTIAL EQUATIONS

Differential equations are a natural setting in which dynamical issues arise, and
they appear in several important contexts. At the basis of the use of differential
equations in science is that they describe a system in a deterministic way. This
means that for any allowed initial condition there is a solution, which then de-
scribes the evolution from that initial condition onward. In addition, determinacy
requires that the solution be unique – if it were not, then the initial data would
not determine the evolution uniquely and the model would have no predictive
value.

Right now we examine only the basic fact of existence and uniqueness of
solutions by itself. While it can conveniently be taken for granted in the sequel, it is
appealing to derive it here as yet another application of the Contraction Principle.
Obtaining existence of solutions in this way has the advantage that smooth depen-
dence of the fixed point of a contraction on the contraction has beautiful and useful
implications about the behavior of solutions of a differential equation as the initial
condition is varied: Small changes in initial condition change the solution only
slightly.

9.4.1 The Uniform Case

The present use of the Contraction Principle is called Picard iteration. It is the first
time we use the Contraction Principle in a function space. The idea here is that
we can write a differential equation with initial condition as an integral equation



book 0521583047 April 21, 2003 16:55 Char Count= 0

268 9. Simple Dynamics as a Tool

and then apply the integral to continuous functions as candidates for solutions.
This operation turns out to be a contraction and hence to improve our guesses at
a solution iteratively.

Theorem 9.4.1 Suppose f : R × Rn → Rn is a continuous function that is Lipschitz-
continuous in y ∈ Rn with Lipschitz constant M. Given any (a, b) ∈ R × Rn and
δ < 1/M, there is a unique solution ϕa,b : (a − δ, a + δ) → Rn of the differential
equation ẏ = f (t, y) with ϕa,b(a) = b.

Proof The space. We use a contraction defined on the space of continuous
functions (candidate solutions). Specifically, the hypothesis on f means that
‖ f (t, y ′ ) − f (t, y)‖ ≤ M‖y ′ − y‖ for t ∈ R, y, y ′ ∈ Rn. Consider the set of contin-
uous functions ϕ : [a − δ, a + δ] → Rn and let ‖ϕ‖ := max|t−a|≤δ ‖ϕ(t)‖. This is a
complete metric space by Theorem A.1.13.

The map. We apply the Contraction Principle to the Picard operator defined by

Pa,b(ϕ) (t) := b +
∫ t

a
f (x, ϕ(x)) dx.

The contraction property. Note that

‖Pa,b(ϕ1) − Pa,b(ϕ2)‖ = max
|t−a|≤δ

∥∥∥∥∫ t

0
f (x, ϕ1(x)) − f (x, ϕ2(x)) dx

∥∥∥∥ ≤ Mδ‖ϕ1 − ϕ2‖,
that is, Pa,b is a contraction and hence has a unique fixed point. It remains to show
that fixed points of Pa,b are solutions of ẏ = f (t, y) with ϕ(a) = b (and vice versa).
To that end, differentiate the fixed-point condition ϕa,b(t) = b + ∫ t

a f (x, ϕa,b(x)) dx
with respect to t to get ϕ̇a,b(t) = f (t, ϕa,b(t)) by the Fundamental Theorem of
Calculus. Evidently fixed points ϕa,b of Pa,b satisfy ϕa,b(a) = b. To see conversely
that solutions are fixed points, insert a solution into the fixed-point condition and
observe that the integrand is ϕ̇, yielding a fixed point by the Fundamental Theorem.
Thus existence and uniqueness of the fixed point gives existence and uniqueness
of solutions. �

In fact, the solutions are defined for all time in this case (Proposition 9.4.7) by
piecing together the local ones obtained here.

Example 9.4.2 One can explicitly carry out this iteration scheme for the differ-
ential equation ẏ = y, y(0) = 1 with y0(x) = 1 as the initial guess. Then y1(x) =
1 + ∫ x

0 y(x) dx = 1 + ∫ x
0 dx = 1 + x and y2(x) = 1 + ∫ x

0 1 + x dx = 1 + x + x2/2.
Inductively, yk(x) = ∑k

n=0 xn/n!, so y(x) = ∑∞
n=0 xn/n! = ex.

Picard invented this scheme well before the Contraction Principle was available,
and this method of successive approximation was carried out by verifying that the
errors shrink sufficiently fast.

9.4.2 The Nonuniform Case

It may happen that the Lipschitz constant of the right-hand side of the differential
equation depends on t and that the right-hand side is not even defined for all time
and not on all of Rn either. In that case there is still a result like Theorem 9.4.1,
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but some care must be taken that the solutions do not leave the domain of the
right-hand side:

Theorem 9.4.3 Suppose I ∈ R is an open interval, O ⊂ Rn open, f : I × O → Rn

a continuous function that is an M-Lipschitz-continuous function of y ∈ O for
any fixed t ∈ I . Given any (a, b) ∈ I × O, there exists a δ > 0 such that there is a
unique solution ϕa,b : (a − δ, a + δ) → Rn of the differential equation ẏ = f (t, y)
with ϕa,b(a) = b.

Proof The space. The hypothesis on f means that ‖ f (t, y′) − f (t, y)‖ ≤ M‖y′ − y‖
for t ∈ I , y, y′ ∈ O. Take a closed bounded subset K of O and a closed interval
I ′ ⊂ I containing a. Let B > supt∈I ′,x∈K ‖ f (t, x)‖ and take δ ∈ (0, 1/M ) such that
[a − δ, a + δ] ⊂ I ′ and the ball B(b, Bδ) is contained in K . Now consider the set C

of continuous functions ϕ : [a − δ, a + δ] → O such that ‖ϕ − b‖ < Bδ, where again
‖ϕ‖ := max|t−a|≤δ ‖ϕ(t)‖. C is a closed subset of the complete metric space of all
continuous functions on [a − δ, a + δ] (with this norm) and hence is itself complete.

The map. The Picard operator is again defined by

Pa,b(ϕ) (t) := b +
∫ t

a
f (x, ϕ(x)) dx.

Then ‖Pa,b(ϕ) − b‖ ≤ max|t−a|≤δ ‖ ∫ t
a f (x, ϕ(x)) dx‖ < Bδ, so Pa,b(ϕ) ∈ C for ϕ ∈ C,

that is, Pa,b is well defined.
The contraction property. Since

‖Pa,b(ϕ) − Pa,b(ϕ′)‖ = max
|t−a|≤δ

∥∥∥∥∫ t

0
f (x, ϕ(x)) − f (x, ϕ′(x)) dx

∥∥∥∥ ≤ Mδ‖ϕ − ϕ′‖,
Pa,b is a contraction of C and hence has a unique fixed point. As before, fixed points
correspond to solutions. �

Remark 9.4.4 Note that we only obtain local solutions here. Global ones can be ob-
tained by piecing together local ones; by uniqueness, any two local solutions must
agree on the intersection of their domains. In fact, the only obstacle to extending
solutions is that they may run into the boundary of O, beyond which the ordinary
differential equation makes no sense. We carry this out explicitly in Section 9.4.7.

9.4.3 Continuous Dependence

Since Pa,b depends continuously on a and b and Pa,b ′ (C) ⊂ C for b ′ sufficiently close
to b, the solutions depend continuously on the initial value b by Proposition 2.6.14.

Proposition 9.4.5 Under the hypotheses of Theorem 9.4.3, solutions depend con-
tinuously on the initial value; that is, given ε > 0 there exists an η > 0 such that, if
‖b ′ − b‖ < η, then max|t−a|≤δ ‖ϕa,b ′ (t) − ϕa,b(t)‖ < ε.

Proof We clearly need to pick η such that B(b ′, Bδ) ⊂ K (see the beginning of
the previous proof) whenever ‖b ′ − b‖ < η, to make sure that ϕa,b ′ is defined for
|t − a| < δ. Once this is the case, however, the conclusion (for possibly smaller η) is
simply a restatement of the continuous dependence of the fixed point of a contrac-
tion on a parameter, in this case with respect to the norm ‖ϕ‖ := max|t−a|≤δ ‖ϕ(t)‖. �
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9.4.4 Smooth Dependence

The map P : C × R × O → C goes into a linear space, where differentiation makes
sense (Definition A.2.1). It depends linearly (hence smoothly) on b ∈ O, and the
dependence on ϕ ∈ C is through f and hence is as smooth as f . To indicate how
one sees this consider the first derivative. The Mean-Value Theorem gives

Pa,b(ϕ) (t) − Pa,b(ψ) (t) =
∫ t

a
f (x, ϕ(x)) dx −

∫ t

a
f (x, ψ(x)) dx

=
∫ t

a
f (x, ϕ(x)) − f (x, ψ(x)) dx

=
∫ t

a
(∂ f/∂y)(x, cx)(ϕ(x) − ψ(x)) dx

≈
∫ t

a
(∂ f/∂y)(x, ϕ(x))(ϕ(x) − ψ(x)) dx.

The first derivative is thus given by DPa,b(ϕ)(η)(t) = ∫ t
a (∂ f/∂y)(x, ϕ(x))η(x) dx.

Corollary 2.2.15 implies

Proposition 9.4.6 If in Proposition 9.4.5 the function f is Cr, then the solutions are
Cr+1 and depend Cr on the initial value b, that is, b !→ ϕa,b(a + t) is a Cr map for all
t ∈ (−δ, δ).

The fact that the solutions themselves are Cr+1 follows inductively from the
differential equation, which shows that ẏ is Ck whenever y and f are Ck.

9.4.5 Nonexistence and Nonuniqueness

To see that the hypotheses are really needed, consider Figure 9.4.1. It shows the
solutions x = ct2 for tẋ = 2x, where uniqueness fails for the initial condition
a = b = 0 and existence fails for any initial condition a = 0, b �= 0. The right
portion of the picture shows that solutions do not always extend to all t where
the right-hand side f (t, x) is defined for all t: The solutions x = −1/(t + c) of
ẋ = x2 have singularities for finite t. Existence of solutions can be proved using
only continuity of the right-hand side of the differential equation. However, the
possible failure of uniqueness shows that continuous dependence on the initial
value cannot be expected without a Lipschitz condition.

Figure 9.4.1. Problems with differential equations.
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Figure 9.4.2. Extension of solutions.

9.4.6 Extension of Solutions

For reasons that were previewed in Section 3.2.6 and are fully justified by
Proposition 9.4.11, we restrict attention to differential equations of the form
ẋ = f (x), that is, differential equations whose right-hand side does not depend on
time. (These are said to be autonomous differential equations, and the right-hand
side is then called the vector-field generating the flow.) Physically this reflects the
fixed laws of nature that we assume. We would prefer not to have to worry about the
possibility of solutions being defined only up to some time, and we usually don’t:

Proposition 9.4.7 If f is defined on all of Rn and is Lipschitz-continuous, then the
solutions of ẋ = f (x) are defined for all t.

Proof For any initial condition y(0) = b there is a solution ϕ0,b : [−δ, δ] → Rn with
ϕ0,b(0) = b by Theorem 9.4.1. For the initial condition ϕ0,b(δ) =: b ′ there is a solution
(see Figure 9.4.2) ϕδ,ϕb(δ) on [0, 2δ], that is,

ϕ̇δ,ϕb(δ)(t) = f
(
ϕδ,ϕb(δ)

)
and ϕδ,ϕb(δ)(0) = b.

At the same time, ϕ̇0,b(t) = f (ϕ0,b) and ϕ0,b(0) = b, so ϕδ,ϕb(δ)(t) = ϕ0,b(t) for t ∈ [0, δ]
by uniqueness. Therefore there is a unique solution on [−δ, 2δ]. Extending similarly
from −δ gives a solution on [−2δ, 2δ], which can in turn be continued to [−3δ, 3δ],
and so on. Thus solutions are defined for all time, independently of the initial
condition. �

Applying Proposition 9.4.5 about T/δ times gives:

Proposition 9.4.8 Solutions depend continuously on the initial value for any finite
amount of time; that is, given T, ε > 0 there exists a δ > 0 such that, if ‖b ′ − b‖ < δ,
then max|t−a|≤T ‖ϕa,b ′ (t) − ϕa,b(t)‖ < ε.

9.4.7 Flows

We now study the maps arising from solutions of differential equations. The first
lemma establishes that the evolution over a given length of time is independent of
the initial time. Then we conclude that these evolutions determine a one-parameter
group of invertible differentiable maps.
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Lemma 9.4.9 The map φt
a : b !→ ϕa,b(a + t) of Proposition 9.4.6 is defined on all of

Rn for any value of t, and it is Cr if f is. It is also independent of a.

Proof Proposition 9.4.7 shows that φt
a is defined on Rn for any t. Proposition 9.4.6

shows that it is as smooth as f .
Given a, a ′ ∈ R and b ∈ Rn, consider the solutions ϕa,b and ϕa ′,b of the dif-

ferential equation with ϕa,b(a) = b and ϕa ′,b(a ′) = b. Then φt
a(b) = ϕa,b(a + t)

and φt
a ′ (b) = ϕa ′,b(a ′ + t). We need to show that these coincide. If we define

ψ1(t) := ϕa,b(t + a) and ψ2(t) := ϕa ′,b(t + a ′), then

ψ̇1(t) = f (ψ1(t)), ψ1(0) = b and ψ̇2(t) = f (ψ2(t)), ψ2(0) = b.

By uniqueness, φt
a ′ (b) = ϕa ′,b(t + a ′) = ψ2(t) = ψ1(t) = ϕa,b(a + t) = φt

a(b). �

We drop the subscript a henceforth and write φt(b) = ϕa,b(a + t) from now on
(and make a = 0 our default choice).

Definition 9.4.10 A family (φt)t∈R of maps for which (t, x) !→ φt(x) is Cr is said to
be a Cr flow if φs+t = φs ◦ φt for all s, t ∈ R.

This “group property” holds in our situation:

Proposition 9.4.11 A differential equation ẋ = f (x) with f : Rn → Rn a Cr function
and ‖Df ‖ bounded defines a Cr flow on Rn.

Proof Given t ∈ R, the functions ψ1(s) := ϕ0,b(s + t) and ψ2(s) := ϕ0,ϕ0,b(t)(s) are
solutions of the differential equation and ψ2(0) = ϕ0,ϕ0,b(t)(0) = ϕ0,b(t) = ψ1(0), so
ψ1 = ψ2 by uniqueness. Consequently,

φs ◦ φt(b) = φs(ϕ0,b(t)) = ϕ0,ϕ0,b(t)(s) = ϕ0,b(s + t) = φs+t(b).

Taking s = −t shows in particular that φt is invertible with inverse φ−t. Thus these
maps φt are Cr diffeomorphisms. �

The concept of a smooth flow is central to the theory of dynamical systems with
continuous time. It is the bridge between dynamics and differential equations.
With this concept one can describe dynamics as the study of the asymptotic
behavior of one-parameter groups (discrete or continuous) of transformations.

Section 2.4.1 gave a complete description of the dynamics of the flow generated
by the differential equation ẋ = f (x) on the line, where f is a Lipschitz-continuous
function: There is a closed set of fixed points and the flow is monotone on every
complementary interval with all orbits asymptotic to one endpoint and asymptotic
to the other endpoint in negative time.

Changing the size of the right-hand side without changing the direction does
not change orbits, only the speed along them.

Definition 9.4.12 The flows generated by ẋ = f (x) and ẋ = a(x) f (x) for some
continuous nowhere zero scalar function a are said to be related by a time change.
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9.5 HYPERBOLICITY

We start this section with a nice instance of linearization relating directly to the
description of qualitative features of a nonlinear map in terms closely related to
those of its linear part.

9.5.1 Hyperbolic Fixed Points

Recall our description of the dynamics of a hyperbolic linear map of R2 in Sec-
tion 3.1. A hyperbolic linear map of R2 is a linear map with an eigenvalue λ ∈ (−1, 1)
and an eigenvalue µ outside [−1, 1]. A nonzero eigenvector v for λ then spans a line
E s through the origin in R2, and likewise we obtain a line E u from an eigenvector
w for µ.

These two lines are the main building blocks for reconstructing the dynamics
of the linear map. On E s the map is a linear contraction; on E u its inverse is a
contraction. The orbits of points not on either line lie on curves asymptotic to the
stable and unstable lines obtained.

Consider now a differentiable map f : R2 → R2 with a fixed point x0 such that
Df (x0) is a hyperbolic linear map. Remarkably, the presence of a contracting and
expanding line for the linear map Df (x0) has an exact counterpart for the map f
itself, except that instead of lines we get curves Ws and Wu. Each of these curves
is invariant, that is, f (Ws) = Ws and f (Wu) = Wu, and f is a contraction on Ws

and f −1 a contraction on Wu. (See Figure 9.5.1) Strictly speaking, this statement
is not perfectly accurate, but it is true in a neighborhood of the fixed point. In
order not to have to worry about how large this neighborhood might be, we prove
a statement that is formulated a bit differently (Theorem 9.5.2). That statement
also contains only half of what we just promised, namely, only the contracting
curve. But by applying it to the inverse map as well we also get the expanding curve
for f .

Note also, by the way, that the contracting line E s for a hyperbolic linear map
is exactly the set of points whose successive images form a bounded sequence,
that is, whose positive semiorbit is bounded. Analogously, a map with a hyperbolic
fixed point (that is, one where the differential of the map is a hyperbolic linear map)
has a smooth curve through the fixed point that consists of exactly those points

Figure 9.5.1. Stable and unstable manifolds.
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whose iterates stay sufficiently near the fixed point. We prove this result for maps
of R2, but it is not hard to see that the same argument with reinterpreted notations
works in higher dimension. As in Section 9.4, the proof is a nice application of
the Contraction Principle in a properly constructed “infinite-dimensional” metric
space.

9.5.2 The Stable Manifold Theorem

Let us call the graph c ⊂ R2 of a C1 function ϕ : {0} × R → R × {0} (that is, x as a
function of y) with |Dϕ| ≤ γ a vertical γ -curve. When ϕ gives y as a function of x
we speak of a horizontal γ -curve. For our considerations it is useful to have the
following

Lemma 9.5.1 Suppose A : R2 → R2 is the linear map given by the matrix ( κu 0
0 κs

)
with 0 < κs < κu. For γ > 0 and ε < (κu − κs/γ + 2 + (1/γ )) and any C1 map
f : R2 → R2 for which ‖Df − A‖ ≤ ε, the inverse of f preserves vertical γ -curves,
that is, the preimage of a γ -curve under f is again a γ -curve.

Proof It is convenient in this proof to use the norm ‖(x, y)‖ := |x| + |y| on R2 and
to write f (x, y) = ( f1(x, y), f2(x, y)) and D1 := ∂/∂x, D2 := ∂/∂y.

We want to show that for any γ -curve given by x = c(y) we can solve the
equation

f1(x, y) = c( f2(x, y)) or 0 = F (x, y) := f1(x, y) − c( f2(x, y))

Figure 9.5.2. Preservation of vertical γ -curves.
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for an implicitly defined function x = g(y) with |Dg| ≤ γ . Since the preimage of our
γ -curve is nonempty, there exists a pair (a, b) for which F (a, b) = 0. Let us check
that D1 F �= 0. Note that |D1 f2| < ε, |D2 f1| < ε and

|D1 f1| ≥ κu − |D1 f1 − κu| ≥ κu − ε.(9.5.1)

Therefore

|D1 F | = |D1 f1 − Dc ◦ f2 D1 f2| ≥ κu − (1 + γ )ε > 0.

Thus we can, at least locally, solve for a function giving x = g(y). To estimate its
derivative note that

|D2 F | = |D2 f1 − Dc ◦ f2 D2 f2| ≤ γ (κs + ε) − ε = γ κs − (1 + γ )ε.

Thus |Dg| < γ , as required:

|Dg| =
∣∣∣∣− D2 F

D1 F

∣∣∣∣ ≤ γ κs − (1 + γ )ε
κu − (1 + γ )ε

< γ.

[To check the last inequality clear fractions, divide by γ and use (1 + γ )(1 + 1/γ )ε <

κu − κs .]
It remains to show that g is defined on R and not only locally. To that end

note from above that |D2 f2| ≤ κs + ε, that is, f −1 stretches curves in the vertical
direction. To be specific, take any y ∈ R. We need to show that the preimage of our
curve contains a point (x, y). Consider the graph of c over the interval from a to
a + (y − b). The y-coordinates of the preimage extend from b to b + (y − b)/(κs + ε)
and in particular include y. Thus, in this setting we have a globally defined implicit
function with the right estimate on the derivative. �

Note that γ + 2 + (1/γ ) ≥ 4, so we certainly need ε < (κu − κs)/4 above.
Now we can prove the result about stable curves.

Theorem 9.5.2 (Stable Manifold Theorem) Suppose A : R2 → R2 is the linear map
given by the matrix ( κu 0

0 κs
) with 0 < κs < 1 < κu. There exists ε > 0 such that, for

any Cr map f : R2 → R2 with ‖Df − A‖ ≤ ε, the set of points with bounded positive
semiorbits is the graph of a Cr function of y.

Proof The space. We define a contraction on the space l∞ of bounded sequences
(xn)n∈N0 with the sup-norm ‖(xn)n∈N0‖∞ := supn∈N0

|xn|. (This is a complete metric
space by Theorem A.1.14.)

Figure 9.5.3. A stable manifold.
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Ly

x x ′{x n}{x ′
n}

Figure 9.5.4. Proof of Theorem 9.5.2.

The map. Take ε > 0 such that we can apply Lemma 9.5.1 to f −1 and A−1 with the
roles of x and y reversed; that is, ε is also small enough for f to preserve horizontal
γ -curves for some γ . For a given y ∈ R consider the successive images f n(L y) of
the line L y := {(x, y) x ∈ R} (these are horizontal Cr γ -curves). Given any x ∈ R

and n ∈ N there is a unique z ∈ R such that (x, z) ∈ f n(L y), and so we can associate
with x an x′ ∈ R by taking y′ ∈ R such that (x′, y′) ∈ f n−1(L y) and f (x′, y′) = (x, y).
Thus we define a map Fy : l∞ → l∞ by Fy((xn)n∈N0 ) = (x′

n)n∈N0 . (See Figure 9.5.4.)
The contraction property. Each of these sequences corresponds to a bounded

sequence of points in the plane by adding y-coordinates yn in such a way as to have
(xn, yn) ∈ f n(L y). The map Fy reflects the action of f on such sequences of points
(dropping the first one and reindexing the others). This shows that a fixed point
of Fy is the sequence of x-coordinates of an orbit of f with initial y-coordinate
y, and vice versa, every bounded semiorbit gives rise to a fixed point of Fy. Fy

is a contraction because f expands x-coordinates by (9.5.1); that is, entrywise
differences between l∞-sequences are divided by a factor κu − ε > 1, and the same
therefore applies to differences in the sup-norm. Therefore there is a unique fixed
point (g(y), y) depending continuously on y ∈ R.

Thus, the graph of the continuous function g(y) gives the set of points with
bounded positive semiorbits.

The fact that l∞ is a normed linear space allows us to talk about differentiability
(Definition A.2.1), and the fact that f and the curves f n(L y) are Cr implies (with
some work that we prefer not to do here in detail) that F : ((xn)n∈N0 , y) !→ Fy((xn)n∈N0 )
is Cr ; hence, by Theorem 9.2.4, g is also Cr . �

9.5.3 Localization

We briefly indicate how the statement of Theorem 9.5.2 is related to our earlier
description in terms of linearization. Suppose f : R2 → R2 has a fixed point p with
Df ( p) a hyperbolic linear map. Replacing (x, y) by (x, y) − p, we change coordinates
in such a way that the fixed point is at the origin. Now Df ( p) is a hyperbolic linear
map, though it may not be diagonal. If we change coordinates to diagonalize Df ( p),
we get Df (0) = A = ( λ 0

0 µ

)
. If f is continuously differentiable, then by definition

‖Df (q) − A‖ < ε for q near the origin. One can now construct a globally defined map
that coincides with the given map near the fixed point and is close to the derivative
everywhere. Then, applying this result, we obtain a contracting curve C , at least near
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the origin, and likewise an expanding curve by considering the inverse of f . One can
easily show that

⋃
n∈N

f −n(C) is a simple curve, that is, it has no self-intersections.

9.5.4 The Hyperbolic Fixed-Point Theorem

Note that in Theorem 9.5.2 the origin is a transverse fixed point of A and hence
persists by Proposition 9.3.1. However, this persistence also follows from our
arguments here. Since f is C1-close to A, hyperbolicity also persists. This gives us
the Hyperbolic Fixed-Point Theorem:

Theorem 9.5.3 If p is a hyperbolic m-periodic point of a C1 map f , then for every
map g sufficiently C1-close to f there is a unique m-periodic point close to p, and it
is hyperbolic.

The following “globalized” version is also useful:

Theorem 9.5.4 Suppose 0 < κs < 1 < κu and A : Rn → Rn is a linear map such that
A�R

m×{0} is a κs-contraction and A−1�{0}×R
n−m is a 1/κu-contraction. If F : Rn → Rn

is a map with f := F − A bounded and Lip( f ) ≤ ε := min{1 − κs, 1 − κ−1
u } (see

Definition 2.2.1), then F has a unique fixed point p with ‖p‖ < ‖F (0)‖/(ε − Lip( f )).

Remark 9.5.5 Clearly p is a hyperbolic fixed point of F .

Using only methods available at this point (stable leaves or the Contraction
Principle), one can strengthen Theorem 9.5.3 to give a local conjugacy. This
is a simple instance of structural stability (see also Section 10.2.6), of which a
compelling example is given by Theorem 7.4.3.

Theorem 9.5.6 (Hartman–Grobman Theorem)1 Let U ⊂ Rn be open, f : U → Rn

continuously differentiable, and O ∈ U a hyperbolic fixed point of f . Then there exist
neighborhoods U1, U2, V1, V2 of O and a homeomorphism h: U1 ∪ U2 → V1 ∪ V2

such that f = h−1 ◦ Df0 ◦ h on U1.

In fact, the topological character of f near O is determined already by the
orientation of f on stable and unstable manifolds and by their dimensions,
analogous to Theorem 7.4.3, which has no closeness assumption:

Theorem 9.5.7 Suppose f : U → Rn, g : V → Rn have hyperbolic fixed points
p ∈ U and q ∈ V , respectively, and dim E+(Dfp) = dim E+(Dgq), dim E−(Dfp) =
dim E−(Dgq), sign det Dfp�E+(Dfp)

= sign det Dgq�E+(Dgq)
, and sign det Dfp�E−(Dfp)

=
sign det Dgq�E−(Dgq)

. Then there exist neighborhoods U1 ⊂ U and V1 ⊂ V and a

homeomorphism h: U1 → V1 such that h ◦ f = g ◦ h.

1 A direct proof of this theorem can be found in A. Katok and B. Hasselblatt, Introduction to the Modern
Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995; here we obtain it from
Theorem 9.5.8.
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The following result is equivalent to Theorem 9.5.6 via a localization procedure.
We obtain it as an application of the Hyperbolic Fixed-Point Theorem 9.5.4.

Theorem 9.5.8 Suppose 0 < κs < 1 < κu and A : Rn → Rn is a linear map such that
A�R

m×{0} is aκs-contraction and A−1�{0}×R
n−m is a 1/κu-contraction. Suppose F is a map

such that f := F − A is bounded and Lip( f ) ≤ ε := min{‖A−1}−1, 1 − κs, 1 − κ−1
u }.

Then there is a unique homeomorphism H of Rn such that h := H − Id is bounded
and H ◦ A ◦ H−1 = F .

Proof The assumption Lip( f ) ≤ ‖A−1‖−1 ensures that F is a homeomorphism
because y = F (x) ⇔ x = A−1(y − f (x)) and the right-hand side is continuous and
a contraction in x; hence it determines x uniquely.

It is useful to make the proof more symmetric by introducing G = A + g with g
bounded and Lip(g) ≤ ε. The first step is to show that there is a unique continuous
bounded map h of Rn such that

F ◦ (Id +h) = (Id +h) ◦ G,(9.5.2)

or, equivalently,

A ◦ h ◦ G−1 + f ◦ (Id +h) ◦ G−1 + A ◦ G−1 − Id = h.

To this end consider the space E of bounded continuous maps from Rn to Rn, which
splits into the space Es of bounded continuous maps to Rm × {0} and the space Eu of
bounded continuous maps to {0} × Rn−m. Define maps A : E → E and F : E → E by

A(h) := A ◦ h ◦ G−1 and F(h) := f ◦ (Id +h) ◦ G−1 + A ◦ G−1 − Id .

Then A preserves Es and Eu, A�Es
is a κs-contraction, and A−1�Eu

is a κ−1
u -

contraction. Since Lip(F) ≤ Lip( f ), the Hyperbolic Fixed-Point Theorem 9.5.4
shows that A + F has a unique fixed point in E . This gives the desired h.

It remains to show that H is a homeomorphism. This is where the symmetry of
the preceding argument helps. It yields an h̄ such that

G ◦ (Id +h̄) = (Id +h̄) ◦ F.

Combining this with (9.5.2) two ways gives the two relations

G ◦ (Id +h̄) ◦ (Id +h) = (Id +h̄) ◦ (Id +h) ◦ G

F ◦ (Id +h) ◦ (Id +h̄) = (Id +h) ◦ (Id +h̄) ◦ F.

Each of these is of the same type as (9.5.2), as it would be obtained by running
through the first part of the proof with F = G. Since we already established unique-
ness of the conjugating map, and Id conjugates F with F and G with G, we conclude

(Id +h̄) ◦ (Id +h) = (Id +h) ◦ (Id +h̄) = Id,

which in particular proves that H = Id +h is a homeomorphism. �
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CHAPTER 10

Hyperbolic Dynamics

This chapter synthesizes the fundamental common structure that produces the
behaviors we observed earlier in the various examples of complicated dynamics.
The essence of chaotic behavior in dynamics lies in a combination of stretching (to
separate orbits) and folding (to create recurrence and maintain compatibility with
compactness). We make this notion precise and develop some important general
consequences. The facts and ideas developed here play a role in many areas in
dynamics and appear throughout the remainder of this book. Proofs omitted in this
chapter can be found in our book, Introduction to the Modern Theory of Dynamical
Systems (with the same notations).

10.1 HYPERBOLIC SETS

To extract from our collection of examples the features of interest we need to deal
with the invertible and noninvertible cases separately.

10.1.1 Definition

A hyperbolic set is an invariant set such that at every point x the derivative looks
like it does at a hyperbolic fixed point: There are complementary subspaces E u

x

and E s
x (expanding or “unstable” and contracting or “stable”) such that Df −1(x)

is a κ-contraction (Definition 2.2.1) on E u
x (with image E u

f −1(x)) and Df |x
is a

κ-contraction on E s
x for every x, with κ < 1 independent of x. In fact, instead of

contraction one needs only eventual contraction roughly as in Definition 2.6.11,
and this makes the conditions in the definition easier to verify.

Definition 10.1.1 Suppose U is an open set and f is a map defined on U. If $ is a
compact invariant set, that is, f ($) = $, on which f is invertible, then $ is said to
be a hyperbolic set if at every point x ∈ $ we have subspaces E u

x and E s
x such that

every vector v can be written uniquely as v = v u + v s with v u ∈ E u
x and v s ∈ E s

x, and
there are C > 0 and κ < 1 such that ‖Df −n(x)�E u

x
‖ ≤ Cκn and ‖Df n(x)�E s

x
‖ ≤ Cκn

for every x ∈ $ and n ∈ N.

279
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The hyperbolic linear map of the torus in Section 7.1.4 is an example of
this situation. The set $ is the entire torus, and the expanding and contracting
subspaces are parallel to the expanding and contracting eigenlines. The constant
κ is the smaller of the two eigenvalues.

The other kind of invertible example is represented by the ternary horseshoe in
Section 7.3.3 and the general linear horseshoe in Section 7.4.4. The invariant set $

constructed there is a hyperbolic set. The expanding subspaces are horizontal lines
and the contracting ones are vertical lines. The constant κ is determined by the
expansion and contraction rates that one chooses for the horseshoe map. It is 1/3
for the ternary horseshoe.

We used invertibility to define the expanding direction. For noninvertible maps
this is a problem, except for those cases where one has expansion in all directions.
Since our noninvertible examples are one-dimensional, this is automatic.

Definition 10.1.2 Suppose U is an open set and f is a map defined on U. A compact
invariant set $ is said to be a hyperbolic repeller if there is a κ > 1 such that, if x ∈ $

and v is a vector, then ‖Df n(x)v‖ ≥ Cκn‖v‖.

The linear expanding maps Em of the circle in Section 7.1.1 have this property
for $ = S1 (and κ = |m|); so do nonlinear expanding maps (Definition 7.1.7). By
compactness, the assumption | f ′(x)| > 1 for all x ∈ S1 implies that there is a κ > 1
such that | f ′(x)| ≥ κ for all x ∈ S1. In all of these cases one can take C = 1.

For λ > 4, the invariant set
⋂

n∈N0
f −n
λ ([0, 1]) in Proposition 7.4.4 of the quadratic

maps in Section 2.5 and Section 7.1.2 is a hyperbolic repeller (Proposition 11.4.1).
This is not as easy to verify for 4 < λ ≤ 2 + √

5 as it was in the proof of Proposi-
tion 7.4.4. Also, here one cannot take C = 1 in Definition 10.1.2 unless one changes
the metric.

Definition 10.1.3 Let $ be a hyperbolic set for f on U. If there is an open neighbor-
hood V of $ such that $ = $

f
V := ⋂

n∈Z
f n(V ), then $ is said to be locally maximal,

isolated, or basic.

This assumption is natural and pervasive, and will therefore be made most of
the time henceforth, sometimes implicitly.

10.1.2 Cone Criterion

We now present an alternate characterization of hyperbolic sets whose require-
ments are more apparently robust and are often easier to check. A typical example
is the proof of existence of the Lorenz attractor (Theorem 13.3.3).

Definition 10.1.4 The standard horizontal γ -cone at p ∈ Rn is defined by

Hγ
p = {(u, v) ∈ TpR

n ‖v‖ ≤ γ ‖u‖}.
The standard vertical γ -cone at p is

V γ
p = {(u, v) ∈ TpR

n ‖u‖ ≤ γ ‖v‖}.
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Figure 10.1.1. A horizontal cone.

Figure 10.1.2. A vertical cone.

More generally, a cone K in Rn is defined as the image of a standard cone under an
invertible linear map.

Some examples will clarify the picture. In dimension n = 2, all cones look
alike. A horizontal cone |x2| ≤ γ |x1| is shaded in Figure 10.1.1. The closure of its
complement |x1| ≤ |x2|/γ is a vertical cone, of which a 3-dimensional counterpart
is shown in Figure 10.1.2. In dimension n = 3, the following is obviously a cone: Let
u = x1, v = (x2, x3),

√
x2

2 + x2
3 ≤ γ |x1|. But here, too, the closure of the complement

of a cone is a cone; so letting u = (x2, x3), v = x1, |x1| ≤
√

x2
2 + x2

3/γ gives an example
of a cone that does not look like those designed to hold ice cream.

By a cone field we mean a map that associates to every point p ∈ Rn a cone K p

at p. A diffeomorphism f : Rn → Rn naturally acts on cone fields by

( f∗K )p := Df f −1( p)
(

K f −1( p)
)
.
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Theorem 10.1.5 A compact f -invariant set $ is hyperbolic if and only if there
exist λ < 1 < µ such that at every x ∈ $ there are complementary subspaces
Sx and Tx (in general, not Df -invariant), a field of horizontal cones Hx ⊃ Sx,
and a family of vertical cones Vx ⊃ Tx associated with that decomposition such
that

Dfx Hx ⊂ Int Hf (x), Dfx
−1V f (x) ⊂ Int Vx,

‖Dfxξ‖ ≥ µ‖ξ‖ for ξ ∈ Hx, and
∥∥Dfx

−1ξ
∥∥ ≥ λ−1‖ξ‖ for ξ ∈ V f (x).

10.1.3 Stable Manifolds

Theorem 9.5.2 used the Contraction Principle to show that corresponding to the
subspaces E u and E s that expand and contract under the differential there are
curves that do the same for the map. While Theorem 9.5.2 produced these only for
a hyperbolic fixed point, one can use that result in an auxiliary space to show that
in case of a hyperbolic set we have such curves at every point, fixed or otherwise.
Alternatively, one can modify the proof in such a way as to work along entire orbits
of possibly nonfixed points.

We used these invariant curves before. In proving that linear hyperbolic maps
on a torus are mixing (Proposition 7.2.9) we used the translates of the eigenlines,
which are exactly the stable and unstable curves. A general hyperbolic system
should be pictured in the same way with these lines made a little “wobbly”. The
method of proof of Theorem 9.5.2 can be used to obtain the following:

Theorem 10.1.6 (Stable and Unstable Manifolds Theorem for Hyperbolic Sets)

Let $ be a hyperbolic set for a C1 diffeomorphism f on U such that Df on $

expands E u by µ > 1 and contracts E s by λ < 1. Then for each x ∈ $ there is a pair of
C1-embedded (Definition A.2.5) disks W s(x), W u(x), called the local stable manifold
and the local unstable manifold of x, respectively, such that

(1) E s(x) is tangent to W s(x) at x, and E u(x) is tangent to W u(x) at x.
(2) f (W s(x)) ⊂ W s( f (x)), f −1(W u(x)) ⊂ W u( f −1(x)).
(3) For every δ > 0 there exists C(δ) such that, for n ∈ N,

dist( f n(x), f n(y)) < C(δ)(λ + δ)n dist(x, y) for y ∈ W s(x),

dist( f −n(x), f −n(y)) < C(δ)(µ − δ)−n dist(x, y) for y ∈ W u(x).

(4) There exists β > 0 and a family of neighborhoods Ox containing the ball
around x ∈ $ of radius β such that

W s(x) = {y f n(y) ∈ O f n(x), n ∈ N},

W u(x) = {y f −n(y) ∈ O f −n(x),n ∈ N}.



book 0521583047 April 21, 2003 16:55 Char Count= 0

10.1 Hyperbolic Sets 283

This also implies that global stable and unstable manifolds

W̃ s(x) =
∞⋃

n=0

f −n(W s( f n(x)))

W̃ u(x) =
∞⋃

n=0

f n(W u( f −n(x)))

are defined independently of a particular choice of local stable and unstable
manifolds and can be characterized topologically:

W̃ s(x) = {y ∈ U dist( f n(x), f n(y)) → 0, n → ∞},
W̃ u(x) = {y ∈ U dist( f −n(x), f −n(y)) → 0, n → ∞}.

The following useful fact is easy to show.

Proposition 10.1.7 Denote by W s
ε (x) and W u

ε (x) the ε-balls in W̃ s(x) and W̃ u(x).
Then there exists an ε > 0 such that for any x, y ∈ $ the intersection W s

ε (x) ∩ W u
ε (y)

consists of at most one point [x, y] and there exists a δ > 0 such that whenever
d(x, y) < δ for some x, y ∈ $ then W s

ε (x) ∩ W u
ε (y) �= ∅.

The argument which showed that toral automorphisms are topologically
mixing also shows that, if global stable and unstable leaves are dense in a hy-
perbolic set, then the hyperbolic set is topologically mixing (hence chaotic by
Proposition 7.2.14). The converse is true also.

Proposition 10.1.8 If $ is a compact locally maximal hyperbolic set for f and
f : $ → $ is topologically mixing, then there is an N ∈ N such that for x, y ∈ $ and
n ≥ N we have f n(W u(x)) ∩ W s(y) �= ∅.

This innocuous result has remarkable dynamical consequences, among them
Theorem 10.2.8. Sensitive dependence is one of our ingredients of chaos, and
Theorem 10.1.6 immediately implies it. However, it gives an even stronger property.
Sensitive dependence says that nearby orbits may diverge, but the description of
the local hyperbolic structure given by Theorem 10.1.6 shows that nearby orbits
must diverge either in the future or in the past – the local picture near a hyperbolic
point shows that other points move away either in the future, because of a nonzero
unstable component, or in the past, due to a stable component, but usually both.
The resulting property plays an important role.

Definition 10.1.9 A homeomorphism (correspondingly, a continuous map)
f : X → X is said to be expansive if there exists a constant δ > 0, called an
expansivity constant, such that, if d( f n(x), f n(y)) < δ for all n ∈ Z (correspondingly,
n ∈ N0), then x = y.

The maximal expansivity constant is sometimes called the expansivity constant
for the dynamical system. By compactness, the property of being expansive does
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not depend on the particular choice of a metric on X defining a given topology,
and hence it is an invariant of topological conjugacy. However, the expansivity
constant does depend on the choice of metric.

Corollary 10.1.10 The restriction of a diffeomorphism to a hyperbolic set is
expansive.

Proof If dist( f n(x), f n(y)) < β for n ∈ Z, then f n(y) ∈ O f n(x) for n ∈ Z and
y ∈ W s(x) ∩ W u(x) = {x} by Theorem 10.1.6(4). �

In our examples of hyperbolic dynamical systems, topological entropy is also
the exponential growth rate of periodic orbits. This is true for all hyperbolic
systems, and expansivity explains half of it: It forces periodic orbits to be well
separated, so these can serve as the separated sets in the definition of entropy. We
return to this in Section 10.2.4.

10.1.4 The Contraction Principle

The Contraction Principle (Proposition 2.6.10) is the most basic ingredient for the
general hyperbolic theory. It underlies the construction of stable and unstable
manifolds whether one uses the proof in Section 9.5 or another. Their importance
alone would put the Contraction Principle close to center stage. But other direct
and indirect uses of the Contraction Principle pervade the hyperbolic theory. As in
Chapter 9, it is applied by constructing a map that has two properties: The desired
object is a fixed point of the map, and this map is a contraction.

The contraction property is obtained by using the contraction/expansion
assumptions in Definition 10.1.1. The way this is done has some common features
in most instances, so a useful shortcut is provided by the Hyperbolic Fixed-Point
Theorem 9.5.4 whose use provides a once-and-for all device to pass from hyper-
bolicity to contraction. Thus numerous proofs set up a map in an auxiliary space
that is hyperbolic rather than a contraction because such a map may be a little
more straightforward to invent. The proof of Theorem 10.2.2 is a case in point.

10.2 ORBIT STRUCTURE AND ORBIT GROWTH

10.2.1 Density of Periodic Points, Closing Lemma

That periodic points are dense (Proposition 7.1.2, Proposition 7.1.3, Propo-
sition 7.1.10, and Corollary 7.4.7) is not only common to our examples,
but an intrinsic feature of hyperbolic dynamics.

The density of periodic points follows from the Anosov Closing Lemma, which,
together with the closely related shadowing and specification theorems as well
as invariant manifolds, coding, and the Contraction Principle, is part of a suite of
tools that yields a highly detailed picture of the orbit structure and fundamental
results about statistical behavior and structural stability.

We present the Closing Lemma with proof to give an illustration of how the
Hyperbolic Fixed-Point Theorem 9.5.4 (and hence indirectly the Contraction
Principle) is put to use in a concrete setting.
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Definition 10.2.1 Let (X, d) be a metric space, U ⊂ M open, and f : U → X . For
a ∈ Z ∪ {−∞} and b ∈ Z ∪ {∞} a sequence {xn}a<n<b ⊂ U is said to bean ε-orbit or
an ε-pseudo-orbit for f if d(xn+1, f (xn)) < ε whenever a < n and n + 1 < b. If, fur-
thermore, −∞ < a < b < ∞ and xb−1 = xa+1, then it is said to be a periodic ε-orbit.

Theorem 10.2.2 (Anosov Closing Lemma) Let $ be a hyperbolic set for a map
f on U. Then there is a neighborhood V ⊃ $ and C, ε0 > 0 such that for ε < ε0

and any periodic ε-orbit (x0, . . . , xm) ⊂ V there is a point y ∈ U with f m(y) = y and
dist( f k(y), xk) < Cε for k = 0, . . . , m− 1.

Remark 10.2.3 A particular case of an ε-periodic orbit is provided by an orbit
segment x0, f (x0), . . . , f m−1(x0) such that dist( f m(x0), x0) < ε. Thus the Anosov
Closing Lemma implies in particular that near any point in a hyperbolic set whose
orbit nearly returns to the point there is a periodic orbit that closely follows the
almost-returning segment. Another sharp way of stating when this yields density
of periodic points is the following.

Definition 10.2.4 The set {x ∀ε > 0 there is a periodic ε-orbit containing x} is
called the chain-recurrent set.

The Anosov Closing Lemma shows the density of periodic points in the
chain-recurrent set.

If V is an open neighborhood of $, then any periodic point in V is contained
in $

f
V . If V is sufficiently small and $ is locally maximal, then these orbits are in

$. In that case the Closing Lemma therefore produces a periodic point y ∈ $. In
particular, topological transitivity implies density of periodic points and hence
that the hyperbolic set is chaotic.

Proof of Theorem 10.2.2 For each xk there is a neighborhood Vk on which f is a
small perturbation of a hyperbolic linear map given by fk(u, v) = (Aku + αk(u, v),
Bkv + βk(u, v)) with ‖αk‖, ‖βk‖, ‖Dαk‖, and ‖Dβk‖ bounded by C1ε for all k and some
C1 > 0. We do not assume that the maps fk fix the origin.

A sequence (uk, vk) ∈ Vk, k = 0, . . . , m− 1, is a periodic orbit if and only if

(u, v):= ((u0, v0), (u1, v1), . . . , (um−1, vm−1))

= ( fm−1(um−1, vm−1), f0(u0, v0), . . . , fm−2(um−2, vm−2)) =: F (u, v).

Therefore we need to find a fixed point of F . We use the norm ‖(x0, x1, . . . ,

xm−1)‖ := max0≤i≤m−1 ‖xi‖. Represent F as “linear plus small”:

F (u, v) = L(u, v) + S(u, v),

where

S((u0, v0), (u1, v1), . . . , (um−1, vm−1)) :=
((αm−1(um−1,vm−1),βm−1(um−1,vm−1)), . . . ,(αm−2(um−2,vm−2),βm−2(um−2,vm−2))),
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L((u0, v0), (u1, v1), . . . , (um−1, vm−1)) :=
((Am−1um−1, Bm−1vm−1), (A0u0, B0v0), . . . , (Am−2um−2, Bm−2vm−2)).

L is hyperbolic: It expands the subspace ((u0, 0), (u1, 0), . . . , (um−1, 0)) and contracts
the subspace ((0, v0), (0, v1), . . . , (0, vm−1)). Since ‖S(u, v) − S(u′, v′)‖ ≤ C3 · ε ·
‖(u, v) − (u′, v′)‖ for some C3 = C3( f, $) > 0, we can apply the Hyperbolic Fixed-
Point Theorem 9.5.4 to obtain the desired closed orbit near the pseudo-orbit. �

The Anosov Closing Lemma produces an abundance of periodic points, a
subject that we presently develop further. But first we present related results that
are stronger in several different ways.

10.2.2 The Shadowing Lemma

An immediate way to strengthen the Anosov Closing Lemma is to omit periodicity
to approximate any pseudo-orbit by a genuine one. This concept plays a sufficiently
prominent role to have proper name.

Definition 10.2.5 Let (X, d) be a metric space, U ⊂ M open, and f : U → X .
For a ∈ Z ∪ {−∞} and b ∈ Z ∪ {∞} a pseudo-orbit {xn}a<n<b ⊂ U is said to be
δ-shadowed by the orbit O(x) of x ∈ U if d(xn, f n(x)) < δ for all a < n < b.

Theorem 10.2.6 (Shadowing Lemma) Let f be a diffeomorphism with a compact
hyperbolic set $. Then $ has a neighborhood U($) such that for any δ > 0 there is
an ε > 0 such that every ε-orbit in U($) is δ-shadowed by an orbit of f .

The Shadowing Lemma can be proved in a similar way to the Anosov Closing
Lemma (Theorem 10.2.2) by considering a sequence of maps of Rn close to
hyperbolic linear maps. Although it does not assert that the shadowing orbit for
a periodic pseudo-orbit is periodic, one can extract this extra information by
shadowing a pseudo-orbit with explicit repetition and then using expansivity.
Thus, this is a genuine strengthening of the Closing Lemma.

The Shadowing Lemma is good news for numerical computation of hyperbolic
sets. Sensitive dependence (and even more so expansivity) suggests that compu-
tation of a particular orbit is hopeless because roundoff deviations from a genuine
orbit will be amplified exponentially by the dynamics. Shadowing reassures
us that the computed pseudo-orbit closely matches some orbit in the hyper-
bolic set.

Since the intent of such numerical computation is to get a useful graphic
rendering of the hyperbolic set in question, typically a strange attractor, there is a
substantial issue that remains. While shadowing tells you that every plotted orbit
represents a genuine orbit, it does not guarantee that these genuine orbits are at
all typical. This is illustrated by the linear expanding map E2, where the repeated
doubling of binary representations in the computer will attract all computer orbits
to the origin, thus missing virtually everything. So even without roundoff errors it is
not clear how to make sure that one finds some typical orbits. A reassuring answer
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to this question in provided by the theory of SRB measures in the following, which
implies that almost any initial choice gives a typical orbit.

10.2.3 Specification

One can view the Shadowing Lemma as a tool for the design of orbits. With the
right choices sensitive dependence can be used to amplify the ε-deviations in
a pseudo-orbit to macroscopic effects of a desired type, and shadowing then
produces an orbit to realize these effects. From this point of view there is a beautiful
refinement that allows to design orbits with remarkable specificity. In essence it
says that one can take any finite collection of (finite) orbit segments whatsoever
and stitch them together to occur at specified times in a real orbit, which can be
chosen periodic. This fine tool can be combined with expansivity to develop most
of the topological and statistical orbit structure of a hyperbolic set.

Definition 10.2.7 Let f : X → X be a bijection of a set X . A specification
S = (τ, P) consists of a finite collection τ = {I1, . . . , Im} of finite intervals
Ii = [ai, bi] ⊂ Z and a map P : T(τ ) := ⋃m

i=1 Ii → X such that, for t1, t2 ∈ I ∈ τ ,
we have f t2−t1 (P(t1)) = P(t2). S is said to be n-spaced if ai+1 > bi + n for all
i ∈ {1, . . . , m}, and the minimal such n is called the spacing of S. We say that
S parameterizes the collection {PI I ∈ τ } of orbit segments of f .

We let T(S) := T(τ ) and L(S) := L(τ ) := bm − a1. If (X, d) is a metric space, we
say that S is ε-shadowed by x ∈ X if d( f n(x), P(n)) < ε for all n ∈ T(S).

Thus a specification is a parameterized union of orbit segments P�Ii
of f .

If (X, d) is a metric space and f : X → X is a homeomorphism, then f is said
to have the specification property if for any ε > 0 there exists an M = Mε ∈ N such
that any M-spaced specification S is ε-shadowed by some x ∈ X and such that,
moreover, for any q ≥ M + L(S ) there is a period-q orbit ε-shadowing S.

Theorem 10.2.8 (Specification Theorem) Let $ be a topologically mixing com-
pact locally maximal hyperbolic set for a diffeomorphism f . Then f �$

has the
specification property.

The proof relies mainly on Proposition 10.1.8. One starts with the first orbit seg-
ment and calls its final point x. Denoting the initial point of the second segment by
y, we apply Proposition 10.1.8 with sufficiently small pieces of invariant manifolds.
The intersection point thus obtained defines the second approximation to the
ultimate orbit segment. The required transition time depends only on the desired
closeness. Being in W u(x) it is extremely close to the initial orbit segment, and being
in W s(y) it also approximates the second segment well. Connecting to the third seg-
ment in the same way leaves the early points of the previous approximation almost
unchanged; the total accumulation of errors is bounded by a geometric series.

Remark 10.2.9 One cannot prove this without mixing; indeed, it is easy to show that
the specification property implies that f �$

is topologically mixing. This condition is
not as restrictive as it seems, however. The spectral decomposition (Theorem 10.3.6)
shows that it holds essentially without loss of generality.
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10.2.4 Growth of Periodic Orbits

While density gives a qualitative indication of the abundance of periodic points
in our examples, we also produced quantitative measures of this. We found that
the number of periodic points grows exponentially (Proposition 7.1.2, Proposi-
tion 7.1.3, Proposition 7.1.10, and Corollary 7.4.7) and at a specific rate. Both of
these features are common to hyperbolic dynamical systems. The specific growth
rates can be obtained via coding, and they coincide with the topological entropy
(Chapter 8). This means that periodic orbit growth is a significant measure of the
overall dynamical complexity in hyperbolic dynamical systems.

Proposition 10.2.10 p( f ) ≤ htop( f ) for an expansive homeomorphism f of a
compact metric space.

Proof If δ0 is the expansivity constant, then Fix( f n) is (n, δ0)-separated for
all n ∈ N since if x �= y ∈ Fix( f n) and δ := max{d( f i(x), f i(y)) | 0 ≤ i < n} then
d( f i(x), f i(y)) ≤ δ for i ∈ Z and hence δ > δ0. Thus Pn( f ) ≤ N( f, ε, n) for ε < δ0,
implying the claim. �

Conversely, the specification property makes it possible to mimic separated
sets with sets of periodic orbits to produce the reverse inequality.

Theorem 10.2.11 p( f �$
) = htop( f �$

) for an expansive homeomorphism f of a
compact metric space with the specification property.

Proof Any element of an (n, ε)-separated set En can be ε/2-shadowed by a periodic
point of period n + Mε/2. These points are distinct by the triangle inequality in
the d f

n metric. Thus there are at least card(En) distinct periodic points of period
n + Mε/2 and consequently Pn+Mε/2 ( f ′) ≥ N( f ′, ε, n), implying p( f ′) ≥ htop( f ′). �

Although locally maximal hyperbolic sets of diffeomorphisms provide the
prime examples of expansive maps with specification, other important classes of
transformations are covered, too; notably, transitive topological Markov chains and
some more general classes of symbolic systems such as sofic systems are expansive
with specification.

The Specification Property was not used to the fullest in this proof. Using it
more diligently gives a much refined result:

Theorem 10.2.12 Let X be a compact metric space and f : X → X an expansive
homeomorphism with the specification property. Then there exist c1, c2 > 0 such
that for n ∈ N

c1enhtop( f ) ≤ Pn( f ) ≤ c2enhtop( f ).

Coding gives a sharper result because the periodic orbit growth of topological
Markov chains is λn + smaller exponentials due to Corollary 7.3.6. (However, for
continuous-time systems coding is not as powerful.)
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10.2.5 The Shadowing Theorem

While the Specification Theorem improves on the Shadowing Lemma to give
the most precise tool for the creation of individual orbits of a specified kind, the
Shadowing Lemma can be improved in a different direction to give tight global
control of the orbit structure. The distinctive feature of this Shadowing Theorem is
that it provides for coherent shadowing of families of orbits that may in an evident
sense be as complex as the entire orbit structure of a hyperbolic set.

Theorem 10.2.13 (Shadowing Theorem) Let M be a Riemannian manifold, d the
natural distance function, U ⊂ M open, f : U → M a diffeomorphism, and $ ⊂ U
a compact hyperbolic set for f .

Then there exist a neighborhood U($) ⊃ $ and ε0, δ0 > 0 such that for all δ > 0
there is an ε > 0 with the following property:

If f ′ : U($) → M is a C2 diffeomorphism ε0-close to f in the C1 topology,
Y is a topological space, g : Y → Y is a homeomorphism, α ∈ C0(Y, U($)), and
dC0 (αg, f ′α) := supy∈Y d(αg(y), f ′α(y)) < ε, then there is a β ∈ C0(Y, U($)) such that
βg = f ′β and dC0 (α, β) < δ.

Furthermore, β is locally unique: If βg = f ′β and dC0 (α, β) < δ0, then β = β.

Remark 10.2.14

(1) Local maximality of $ is not required.
(2) To get the Shadowing Lemma take Y = (Z, discrete topology), f ′ = f ,

ε0 = 0, g(n) = n + 1 and replace α ∈ C0(Y, U($)) by {xn}n∈Z ⊂ U($)
and “β ∈ C0(Y, U($)) such that βg = f ′β” by { f n(x)}n∈Z ⊂ U($). Then
d(xn, f n(x)) < δ for all n ∈ Z.

(3) The Closing Lemma is another particular case corresponding to f ′ = f ,
Y = Z/nZ, g(k) = k + 1 (mod n).

10.2.6 Stability and Classification

A smooth dynamical system is said to be C1-structurally stable if every C1-
perturbation is topologically conjugate to it.

At first sight it is natural to believe that structural stability is only possible when
there are finitely many (hyperbolic) periodic points. To each of these one can apply
Proposition 9.3.1 for some definite perturbation size. The smallest of these sizes pre-
serves all of these orbits; one can then tidy up the remainder of the picture. However,
in the presence of infinitely many periodic points this does not work, because the
allowed perturbation sizes may get arbitrarily small. Yet, Theorem 7.4.3 shows that
expanding circle maps are structurally stable. Indeed, it was a remarkable discovery
that, even though hyperbolic dynamical systems have infinitely many periodic
points, the tight intertwining of the orbit structure makes it robust on the whole.

Structural stability holds for all hyperbolic dynamical systems, and it is a
distinctive feature of hyperbolic dynamics that has provided one of the foremost
motivations for their study. It automatically provides for a wealth of further ex-
amples of hyperbolic dynamical systems, namely, perturbations of our examples.
In Section 7.4.4 it is immaterial that we assumed linearity in constructing the
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horseshoe. Nonlinear horseshoes exhibit exactly the same behavior. They arise
naturally in many applications; this is described in Chapter 12.

There is an intimate connection between shadowing and structural stability.
Structural stability (with continuous dependence of the conjugating homeomor-
phism on the perturbation) certainly implies that orbits of a perturbation are
shadowed by unperturbed orbits. Conversely, the orbits of a perturbation of a
dynamical system are ε-orbits for the original system. Since they are shadowed by
unperturbed orbits, the correspondence that sends perturbed orbits to the unper-
turbed orbits shadowing them gives a candidate for a conjugacy. In this way the
Shadowing Theorem can be used to prove the structural stability of hyperbolic sets.

Theorem 10.2.15 (Strong Structural Stability of Hyperbolic Sets) Let $ ⊂ M be
a hyperbolic set of the diffeomorphism f : U → M. Then for any open neighbor-
hood V ⊂ U of $ and every δ > 0 there exists ε > 0 such that, if f ′ : U → M and
dC1 ( f �V

, f ′) < ε, there is a hyperbolic set $′ = f ′($′) ⊂ V for f ′ and a homeomor-

phism h: $′ → $ with dC0 (Id, h) + dC0 (Id, h−1) < δ such that h ◦ f ′�$′ = f �$
◦ h.

Moreover, h is unique when δ is small enough.

Remark. The proof uses the Shadowing Theorem 10.2.13, which is stated here for
C2 maps. One can prove structural stability of C1 maps directly or by sharpening
the Shadowing Theorem.

Proof We use the Shadowing Theorem 10.2.13 three times. First take δ0 < δ as in
the Shadowing Theorem and apply the Shadowing Theorem with ε < δ0/2, Y = $,
α = Id �$

the inclusion, and g = f to obtain a unique β : $ → U($) such that
β ◦ f = f ′ ◦ β. The cone criterion for hyperbolicity can be used to show that orbits
staying sufficiently near a hyperbolic set must be hyperbolic, that is, that $′ := β($)
is hyperbolic.

To show that β is injective, apply the Shadowing Theorem the other way around:
Take ε as before, y = $′, α′ = Id �$′ the inclusion, and g = f ′ to obtain a map h such
that h ◦ f ′ = f ◦ h. It is important to keep in mind that we are allowed to use f ′

instead of f in the Shadowing Theorem if ε here is chosen small enough. We claim
that h ◦ β = Id and hence h = β−1 is a homeomorphism.

Apply the uniqueness part of the Shadowing Theorem now in the “f = f ′” case,
when trivially α ◦ f = f ◦ α and at the same time by the above β ◦ f = f ◦ β, where
β := h ◦ β.

Since dC0 (α, β) = dC0 (Id, h ◦ β) ≤ dC0 (Id, Id ◦β) + dC0 (Id ◦β, h ◦ β) = dC0 (Id, β) +
d(Id, h) < δ0, the uniqueness assertion of the Shadowing Theorem implies
β = α = Id �$

, as claimed. �

One of the outstanding achievements of dynamics in the twentieth century was
to show that it is precisely hyperbolic dynamical systems that are C1-structurally
stable, that is, that C1-structural stability is equivalent to hyperbolicity.1 The

1 Joel Robbin: A Structural Stability Theorem, Annals of Mathematics 94, no. 2 (1971), 447–493, R.
Clark Robinson, Structural Stability of C1 Diffeomorphisms, Journal of Differential Equations 22,
no. 1 (1976), 28–73; Ricardo Mañé, A Proof of the C1 Stability Conjecture, Publications Mathéma-
tiques de l’Institut des Hautes Études Scientifiques 66 (1988), 161–210.
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corresponding issue for C2-structural stability (defined analogously) is still
open.

Striving for a classification is a lofty goal, but for some important collections
of hyperbolic dynamical systems it has been achieved. The first instance is
Theorem 7.4.3, which shows that an expanding map of the circle is equivalent
to the linear expanding map with the same degree. The main example is that
if the hyperbolic set is a torus, then the map on it is equivalent to a linear toral
map. Which linear toral map it is can also be determined from degree-like global
information. The degree of the expanding map Em is the number m, and the analog
of degree of the map FL is the matrix L.2

Further examples of a classification are provided by hyperbolic attractors in
low-dimensional dynamical systems.

10.3 CODING AND MIXING

10.3.1 Coding

The close relation between each of our examples and a symbolic system
(Section 7.3.1, Proposition 7.4.2, Proposition 7.4.4, Proposition 7.4.6, and Corol-
lary 7.4.10) arises from one of the primary features of hyperbolic dynamics, being
modeled by a topological Markov chain up to occasional “bookkeeping” to adjust
for the slight overlaps on the edges of a partition. This coding uses a Markov
partition of a hyperbolic set. This is a finite cover by closed sets that overlap only
on their boundaries, and with the “Markov” property that if U, V, W are among
these sets and f (U) ∩ V �= ∅ �= f (V ) ∩ W, then f 2(U) ∩ W �= ∅. It is essentially
this property that makes the symbolic system defined by possible itineraries with
respect to this partition into a topological Markov chain. This Markov property
arises from the geometric fact that f (U) ∩ V �= ∅ implies that “ f (U) goes across V ”.

We write Int$ and ∂$ to refer to the interior and boundary relative to $.

Definition 10.3.1 Let $ be a compact locally maximal hyperbolic set, take ε, δ and
[x, y] as in Proposition 10.1.7, and let η = ε. Then R ⊂ $ is said to be a rectangle if
the diameter of R is smaller than η/10 and [x, y] ∈ R whenever x, y ∈ R. A rectangle
R is proper if R = Int$ R. We write W i

R(x) := W i
η (x) ∩ R for x ∈ R, i = u, s, and set

∂s R := {x ∈ R x /∈ Int$∩W u
η (x) W u

R (x)}, ∂uR := {x ∈ R x /∈ Int$∩W s
η (x) W s

R(x)}.
A Markov partition is a finite cover R = {R0, . . . , Rm−1} of $ by proper rectangles

such that

(1) Int Ri ∩ Int Rj = ∅ for i �= j;
(2) whenever x ∈ Int Ri and f (x) ∈ Int Rj , then W u

R j
( f (x)) ⊂ f (W u

Ri
(x)) and

f (W s
Ri

(x)) ⊂ W s
R j

( f (x)).

While the word “rectangle” is natural and appropriate, the elements of a Markov
partition are rarely as simple as in our example so far. In general, and already
for toral automorphisms in dimension 3 and higher, Markov partitions have
complicated geometry with fractal boundaries.

2 This is presented, for example, in Katok and Hasselblatt, Introduction to the Modern Theory of
Dynamical Systems, pp. 330, 587.
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It is useful to observe the following:

Lemma 10.3.2 If R is a rectangle, then ∂$ R = ∂s R ∪ ∂uR.

Proof x ∈ Int$ R ⇒ x ∈ Int$∩W u
η (x)(R ∩ W u

η (x) ∩ $) = Int$∩W u
η (x) W u

R (x) since R is a
neighborhood of x in $. Thus ∂s R ⊂ ∂$ R. Likewise, ∂uR ⊂ ∂$ R. If x ∈ (Int$∩W s

η (x)

W s
R(x)) ∩ (Int$∩W u

η (x) W u
R (x)), then by continuity of [·, ·] there is a neighbor-

hood U of x in $ such that for all y ∈ U we have [x, y], [y, x] ∈ R and hence
y′ := [[y, x], [x, y]] ∈ R ∩ W s

η (x) ∩ W u
η (y) ⊂ W s

η (x) ∩ W u
η (y) ⊂ {y}, so x ∈ Int$ R. �

Theorem 10.3.3 A compact locally maximal hyperbolic set admits Markov
partitions of arbitrarily small diameter.

Proof outline First take δ > 0 small, ε as in Theorem 10.2.13, γ < ε/2 such that
d( f (x), f (y)) < ε/2 when d(x, y) < γ , and a γ -dense set P := {p0, . . . , pN−1} in
the hyperbolic set $. Then (P) := {ω ∈ N d( f ( pωi ), pωi+1 ) < ε} is a topological
Markov chain. For each ε-orbit from (P) there is a unique β(ω) ∈ $ that δ-shadows
α(ω) := {pωi }i∈Z. One can show that β is surjective and continuous. We extend [·, ·]
to ε-orbits by setting

[ω, ω′]i =
{

ωi for i ≥ 0,

ω′
i for i ≤ 0,

for any ω, ω′ ∈ (P) with ω0 = ω′
0. Then [·, ·] commutes with β, that is,

β([ω, ω′]) ∈ W s
2δ(β(ω)) ∩ W u

2δ(β(ω′)) = {[β(ω), β(ω′)]}.
Then R′

i := {β(ω) ω0 = i} is a rectangle since for x = β(ω), y = β(ω′) ∈ R′
i we

have [ω, ω′]0 = i and thus [x, y] = [β(ω), β(ω′)] = β([ω, ω′]) ∈ R′
i . It is not hard to ob-

tain (2) in Definition 10.3.1. To obtain a Markov partition we need, however, proper
rectangles with pairwise disjoint interiors. To that end we modify these rectangles.

For x ∈ $ let R(x) be the set of rectangles from R′ that contain x and R∗(x)
be the set of rectangles from R′ that intersect a rectangle from R′(x). Then
A := {x ∈ $ W s

η (x) ∩ ∂s R′
i = ∅, W u

η (x) ∩ ∂uR′
i = ∅ for all i} is open and dense. If

R′
i ∩ R′

j �= ∅, then we cut R′
j into four rectangles as follows:

R(i, j, su) := R′
i ∩ R′

j,

R(i, j, 0u) := {
x ∈ R′

j W s
R′

i
(x) ∩ R′

j = ∅, W u
R′

i
(x) ∩ R′

j �= ∅
}
,

R(i, j, s0) := {
x ∈ R′

j W s
R′

i
(x) ∩ R′

j �= ∅, W u
R′

i
(x) ∩ R′

j = ∅
}
,

R(i, j, 00) := {
x ∈ R′

j W s
R′

i
(x) ∩ R′

j = ∅, W u
R′

i
(x) ∩ R′

j = ∅
}
,

and for x ∈ A let R(x) := ⋂{Int$ R(i, j, q) x ∈ R′
i, R′

i ∩ R′
j �= ∅, x ∈ R(i, j, q), q ∈

{su, 0u, s0, 00}}. Then R(x) are rectangles covering R′
i ∩ A and the R(x) are finitely

many pairwise disjoint open rectangles, so

R := {R(x) x ∈ A} =: {R0, . . . , Rm−1}
is a finite cover of $ by proper rectangles with pairwise disjoint interiors. One can
show that this is the desired Markov partition by showing (2) of Definition 10.3.1. �
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The desired consequence is the existence of a semiconjugacy between a
compact locally maximal hyperbolic set and a topological Markov chain:

Theorem 10.3.4 If $ is a compact locally maximal hyperbolic set, R = {R1, . . . , Rm}
a Markov partition of sufficiently small diameter, and

Ai j :=
{

1 if Ri ∩ f −1(Rj ) �= ∅,

0 otherwise,

then f �$
is a topological factor of the topological Markov chain (A, σA). The semi-

conjugacy h: A → $ is injective on h−1($′), where $′ := $ �
⋃

i∈Z
f i(∂sR ∪ ∂uR)

and ∂sR := ⋃
R∈R ∂s R, ∂sR := ⋃

R∈R ∂uR.

Proof For ω ∈ A define h(ω) = ⋂
i∈Z

f −i(Rωi ). The main effort is to use the
Markov property to show that the intersection is nonempty by checking the finite
intersection property. It cannot contain more than one point by expansivity. h is
continuous and it is surjective because h(A) is a compact set containing $′.
Clearly, h ◦ σA = f ◦ h, and it is clear that every x ∈ $′ has only one preimage. �

10.3.2 Topological Mixing and Spectral Decomposition

Our examples turn out to be not only topologically transitive, but also topologically
mixing by Proposition 7.2.7 (linear expanding maps), Proposition 7.2.9 (toral au-
tomorphisms), Corollary 7.4.7 (horseshoes), Theorem 7.4.3 (nonlinear expanding
maps), and Proposition 7.3.4 (quadratic maps via coding).

Proposition 7.3.12 says that a transitive topological Markov chain is topologically
mixing. However, a topological Markov chain can be topologically transitive without
having a transitive transition matrix. The issue is that there may be restrictions about
the times at which images of one set overlap another. However, a topologically transi-
tive topological Markov chain always permutes finitely many pieces with a topolog-
ically mixing return map. Here is a brief argument. Assume A is a 0-1 m × m matrix
with at least one 1 in each row and each column. If i ∈ {0, . . . , m− 1}, then A,i =
{ω ∈ A ω0 = i} �= ∅. If there is an ω ∈ A that contains the symbol i at least twice,
then i is said to be essential. Two essential symbols i and j are equivalent if there exist
ω, ω′ ∈ A, k1 < k2, l1 < l2 such that ωk1 = ω′

l2
= i, ωk2 = ω′

l1
= j. This is an equiva-

lence relation. If σA has a dense positive semiorbit, then all symbols are essential and
equivalent. Let N be the greatest common divisor of lengths of cycles (sequences
beginning and ending at the same symbol) and identify two symbols if they are con-
nected by a path whose length is a multiple of N. Let $1, . . . , $N = $0 be the equiv-
alence classes. Show that the restriction of (σA)N to each $i is topologically mixing.

Via coding hyperbolic sets decompose analogously, even without being topo-
logically transitive. Here we indicate how to obtain the decomposition directly. In
the case of quadratic maps and horseshoes, it is luck that they are topologically
mixing. But for expanding maps and linear toral maps this is not an accident. It
happens because there is no nontrivial partition of the circle or torus into compact
sets. For the same reason any connected hyperbolic set is topologically mixing.

Before obtaining the decomposition into mixing pieces a correction is in order.
A hyperbolic set might contain an attracting and a repelling fixed point together
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with a heteroclinic orbit (Definition 2.3.4). This is incompatible with transitivity,
and we must therefore discard points that wander in this fashion.

Definition 10.3.5 A point x ∈ X is nonwandering with respect to the map f : X → X
if for any open set U . x there is an N > 0 such that f N(U ) ∩ U �= ∅. The set of all
nonwandering points of f is denoted by NW( f ).

So, in fact, the spectral decomposition decomposes the nonwandering set of a
compact locally maximal hyperbolic set into finitely many components on which
the appropriate iterate of f is topologically mixing.

Theorem 10.3.6 (Spectral Decomposition) Let M be a Riemannian manifold,
U ⊂ M open, f : U → M a diffeomorphism, and $ ⊂ U a compact locally maximal
hyperbolic set for f . Then there exist disjoint closed sets $1, . . . , $m and a per-
mutation σ of {1, . . . , m} such that NW( f �$

) = ⋃m
i=1 $i , f ($i) = $σ (i), and when

σ k(i) = i, f k�$i
is topologically mixing.

The proof uses an equivalence relation on Per( f �$
) defined by x ∼ y if and only

if W u(x) ∩ W s(y) �= ∅ and W s(x) ∩ W u(y) �= ∅ with both intersections transverse
at at least one point. The $i ’s are the closures of equivalence classes.

10.4 STATISTICAL PROPERTIES

Especially for hyperbolic dynamics, the interplay between topological properties
and statistical ones is important. Section 7.5 and Section 7.6 clearly outline the fea-
tures and concepts relevant for studying statistical properties of hyperbolic systems.
These are nonunique ergodicity (Section 7.5.1), uniform distribution/ergodicity
(Proposition 7.5.1, Theorem 7.5.6, and Section 7.5.4), and mixing (Proposition 7.6.6
and Proposition 7.6.7).

10.4.1 Expanding Maps; Difficulties of the Direct Approach

Nonlinear expanding maps of S1 lend themselves as a model for some general
features of statistical analysis.

Theorem 7.5.6 tells us that for the doubling map E2 on S1 the Birkhoff averages
Bn(ϕ)(x) of a continuous function ϕ converge to

∫
S1 ϕ(t) dt almost everywhere.

An analogous result for arbitrary expanding maps (even just those of degree 2)
is clearly desirable, although these do not preserve length. We should look for
weighted equidistribution as suggested in Section 7.6.4, where orbits have a
skewed but coherent asymptotic distribution. Ideally, there should be a continuous
function g : [0, 1] → [0, 1] such that the “weighted length”

∫
I g(x) dx of intervals

I is invariant under the expanding map (see also Section A.3.2). There is a pretty
obvious approach to defining such a function because a nonlinear expanding map
of degree 2 is topologically conjugate to E2 (Theorem 7.4.3). If h is the conjugacy,
then h ◦ f = E2 ◦ h, so we should be able to define a density g from the condition∫ b

a g(x) dx = h(b) − h(a). This does not work because the conjugacy h looks rather
like the distribution functions illustrated in Figure 7.6.1. It is far from differentiable,
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unlike the expression
∫ b

a g(x) dx for continuous g. We do not obtain a density
function in this way. This is a subtle problem, but it is related to the elementary
observation that the conjugacy cannot be differentiable if the derivative of f at the
fixed point is not 2, that is, if it disagrees with that of E2.

Although constructing an invariant density is therefore not trivial, such a
density does indeed exist, and one can then inquire about uniform distribution
with respect to it. For a nonlinear expanding map, especially when the degree
is 2, uniform distribution can then be established (in principle) by probabilistic
arguments as in the proof of Proposition 7.6.1.

This is rather involved, although as a reward one can establish much stronger
statistical properties than simple uniform distribution. For the latter purpose the
most appropriate tool is the Birkhoff Ergodic Theorem,3 which produces uniform
distribution from ergodicity defined in the proper framework of measure theory,
which we do no touch in this book. However, checking ergodicity for an invariant
measure is relatively straightforward when measure theory is in hand.

The conclusion for the present context is that expanding maps have an invariant
density, and almost all points are uniformly distributed with this density.

10.4.2 Abundance of Invariant Measures

To elaborate on the failure of unique ergodicity in hyperbolic dynamical systems
it is useful to describe it in terms of a purely qualitative property. This is expressed
in terms of invariant measures.

Definition 10.4.1 Let X be a compact metric space and f : X → X continuous.
An invariant integral for f is a nonzero real-valued linear map (linear functional)
I : C(X) → R on the space of continuous functions on X that is continuous in the
topology of uniform convergence [that is, if φn → φ uniformly, then I(φn) → I(φ)]
and is f -invariant, that is, I(φ ◦ f ) = I(φ) for any φ ∈ C(X). If I(1) = 1, then the
invariant integral is also said to be an invariant measure or invariant probability.

A simple example occurs in Section 11.4.3.2 (as well as Section A.3.2) and is
given by I(φ) := ∫

φρ dx, where ρ is a reasonable function. Measures that can be
represented in this fashion are said to be absolutely continuous.

Proposition 10.4.2 A transformation f is uniquely ergodic if and only if it has
exactly one invariant measure.

In terms of this result the failure of unique ergodicity as stated in Sec-
tion 7.5.1 can be reexpressed as the presence of several invariant measures.
Indeed, hyperbolic dynamical systems have an abundance of invariant measures.
This is evident because there are so many periodic points (Proposition 7.1.2,
Proposition 7.1.3, Proposition 7.1.10, and Corollary 7.4.7), and each periodic
orbit O(x) = {x, f (x), . . . , f n−1(x)} carries an invariant measure I defined by
I(φ) = ∑n−1

i=0 φ( f i(x))/n. Of course, these measures are not absolutely continuous.

3 Katok and Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Theorem 4.1.2.
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There are various ways of creating new invariant measures from these. The
most basic is convex combination: If I and J are invariant measures and a, b ≥ 0,
a + b = 1, then aI + bJ is an invariant measure. In other words, the space of
invariant measures is convex (Definition 2.2.13). In particular, finite convex
combinations of “periodic measures” are invariant measures.

Although this is not obvious, the space of invariant measures is also compact.4

Therefore, every sequence (Ii)i∈N of invariant measures has a convergent subse-
quence. Its limit defines a new invariant measure. Applying these limit processes
to the set of periodic measures yields a great wealth of invariant measures. The
Specification Theorem provides a way of designing periodic orbits in a highly
specific way and thereby lends itself to the construction of invariant measures
with specific properties, such as Gibbs measures.

10.4.3 Equidistribution

In the discussion of shadowing (Section 10.2.2) it was pointed out that shadowing
does not guarantee that computed orbits are typical. While the example of the
doubling map is natural, it is also quite specific in that the binary rationals whose
behavior is pointed out form a null set of points whose orbits are not uniformly
distributed on the interval. Unless such a specific circumstance forces sampling
from a null set, uniform distribution guarantees that almost every randomly
chosen orbit behaves typically.

1. Absolutely Continuous Invariant Measures. The discussion of the doubling
map in Section 7.6.4 produced an example of uniform asymptotic distribution
with a complicated distribution function. This extended notion of equidistribution
is appropriate for hyperbolic dynamical systems in general, and the appropriate
framework is outlined in Section A.3. A new collection of examples arises from the
quadratic family, which has an absolutely continuous invariant measure for many
parameter values (Section 11.4). This results in weighted equidistribution, which is
a little stronger than uniform asymptotic distribution because there is a reasonable
density function that reflects the distribution. It is worth emphasizing again that,
in combination with nonunique ergodicity (which reflects a rather heterogeneous
orbit structure), this is one aspect of highly complicated asymptotic behavior. For
added emphasis we list again some of the places where equidistribution made a
prior appearance: Proposition 7.5.1, Theorem 7.5.6, Section 7.5.4, Proposition 7.6.6,
and Proposition 7.6.7.

2. Absolutely Continuous Measures on Attractors. Chapter 13 is dedicated to
(strange) attractors. Equidistribution issues are of particular importance for these.
However, they have to be framed carefully. Orbits should be uniformly distributed
on the attractor in some sense, and since an attractor often is a null set in phase
space, this requires a significant adaptation of the notion of equidistribution.

To fix ideas we keep in mind as a model the solenoid illustrated in Figure 13.2.1.
Under the map in question, points in the attractor are stretched apart while points off

4 This follows from the Alaoglu Theorem in functional analysis.
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the attractor move toward it. Since uniform distribution of an orbit on the attractor
must mean uniform distribution conditioned on overlooking everything outside the
attractor, a natural way to define it in terms similar to those above is to look at mea-
sures on the attractor, that is, measures that operate on continuous functions that
are defined only on the attractor. Densities (for weighted equidistribution) should
be defined only on the attractor, that is, we desire an absolutely continuous measure
on the attractor (see Section A.3). We want it to be ergodic to obtain equidistribution.

The problem is that this means asking for a functional of the form I(φ) := ∫
φg dx

without knowing what the integral means. After all, the whole attractor is a null
set. But thinking of the solenoid one can make sense of the integral because the
attractor locally is simply an accumulation of smooth curves (unstable manifolds),
and integrating along any piece of such curves is unproblematic even though in R3

it is a null set. To make this more explicit requires a description of how to descend on
a particular unstable leaf. Because these are null sets even within the attractor, one
has to go through some normalization along the way. To this end take an interval
I in a specific unstable leaf and suppose In is the union of the stable disks of radius
1/n with center in I , that is, a tube around I of radius 1/n. The required property
of our measure is that there is a function g on the attractor such that for any such
interval and any continuous function φ we get limn→∞ I(φχIn)/I(χIn) = ∫

I φg dx,
where dx denotes arc length on I .

This explains what we mean by an ergodic invariant measure on the attractor
that is absolutely continuous on unstable manifolds, and why it is natural to look
for one. At this point we know that having such a measure produces (weighted)
equidistribution of almost all orbits that lie on the attractor. (“Almost all” makes
sense because null sets on smooth curves make sense.)

3. Sinai–Ruelle–Bowen Measure. Such a measure is called a “Sinai–Ruelle–
Bowen measure” (or SRB measure). Its description so far leaves a practical
problem. Strange attractors are not described analytically. They emerge as com-
puter pictures obtained by following a more or less random orbit. But since the
attractor is a null set, chances are that one computes orbits that do not lie on
the attractor. The preceding development has nothing to say about these, yet.
One needs to tie the asymptotics of an orbit that approaches the attractor to the
asymptotics of orbits on the attractor. The solenoid is again the perfect illustration.
A point x near the attractor is in the stable leaf of a point p on the attractor because
(in this case) every constant-angle slice is a stable leaf. Its motion under the map
therefore decomposes into movement towards the attractor and the motion of the
point p, which dictates the motion of the stable slice. This means that once the
iterates of x are close enough to the attractor, they are indistinguishable from
the corresponding iterates of p. If these are uniformly distributed on the attractor,
then the orbit of x reflects the density of the SRB measure.

We wish to deduce that almost every nearby orbit of the solenoid map eventually
looks equidistributed as described above. The set to be excluded is that of points x
on stable manifolds of points p in the null set of bad points for the SRB measure. By
the definition of a null set (on a curve piece from the attractor) the set of such p can
be covered by countably many intervals whose lengths have an arbitrarily small
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sum. The union of stable slices through all points of these dangerous intervals is a
countable collection of “wedges” of the solid torus that are close enough to being
rectangles,5 and the volume in R3 of each of these agrees with the length of the
base interval on the solenoid up to the factor of area of a stable slice. Therefore, the
volumes of these wedges have an arbitrarily small sum and the nontypical points
in this neighborhood form a null set in R3.

One of the important results in the theory of hyperbolic dynamical systems
is that hyperbolic attractors carry a Sinai–Ruelle–Bowen measure. As explained
above, this implies that, except for a null set, every point in the basin of an attractor
is uniformly distributed with the corresponding density. This gives us assurance
that numerical simulations of “strange attractors” produce pictures that show the
real attractor and all of it. The Sinai–Ruelle–Bowen measure is also referred to as
the “physically observed measure.”

10.5 NONUNIFORMLY HYPERBOLIC DYNAMICAL SYSTEMS

The theory of hyperbolic dynamics is remarkable for the strength of its conclusions
about systems with vastly complicated orbit structure. The strength of the results
and the comparative ease with which they can be obtained owes a lot to the
uniformity of the hyperbolicity assumption used throughout.

As in our examples so far, orbit complexity in real-life systems is due in large
part to a combination of stretching and folding. However, the folding is not always
as neat, as we will see in the succeeding chapters. To widen the applicability of
the hyperbolic theory it has been extended to include systems where each point is
subject to hyperbolic action by the derivative, but the contraction and expansion
rates vary between points, with no uniform separation from 1. Compared to the
parent theory outlined here, the theory of nonuniformly hyperbolic dynamical
systems relies far more on measure theory. Therefore it appears here only by way
of the forthcoming examples. We note a few basic features.

The invariant directions E u and E s may be undefined on a null set and need not
depend continuously on the point, nor is there a lower bound for the angle between
them. Stable and unstable manifolds exist, but since the proof of this theorem
operates locally and there is no uniformity in the size of neighborhood, the sizes
of the leaves are not uniform, nor is there good control of the angle between them.
Instead of the uniformly hyperbolic picture as for linear toral automorphisms, where
along a piece of unstable curve the stable curves line up to form a uniform stack of
leaves, a good mental picture of the nonuniform situation is of a “fence” consisting
of segments crossing a Cantor set (but not a null set) in an unstable curve, the gaps
containing similar fences with much shorter and more crooked segments, and so on.

In part because of the central role of measure theory, there is great interest in
stochastic behavior. This plays a role with respect to quadratic maps and attractors.
For the latter it is always of particular interest to establish the existence (and
uniqueness) of a Sinai–Ruelle–Bowen measure to validate numerical pictures.

5 This faith in the harmlessness of the deformation skips a serious technical point addressed only by
absolute continuity of the stable foliation.
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CHAPTER 11

Quadratic Maps

11.1 PRELIMINARIES

11.1.1 Simple and Complicated Behavior in the Quadratic Family

In Section 2.5 the quadratic family provided examples of nonmonotone interval
maps that display fairly simple asymptotic behavior, which can be fully described
in rather pedestrian terms. Such simple behavior occurs for 0 ≤ λ ≤ 3. One can
extend the same kind of analysis to slightly larger parameter values. In the next
section we describe the first step of this extension in some detail (although without
complete proof) and indicate what happens after the next significant bifurcation
(cascade of period doublings). During this process of gradual buildup of complexity
the behavior can still be classified as simple in the sense that all asymptotic regimes
are periodic, albeit with a growing number of orbits of different periods. This ends,
however, beyond λ∞ ≈ 3.58.

For larger λ the topological entropy of fλ is positive and the global behavior
is increasingly complex. In particular, the topological entropy grows with λ, and
periodic points of periods other than powers of 2 start appearing. For λ = 1 + √

8
an orbit of period 3 appears for the first time (Figure 11.1.1). By then periodic
points of all periods coexist (Proposition 11.3.8). However, as λ increases, the
degree to which there is any uniformity in the asymptotic behavior changes in a
highly irregular way. Accordingly, this coexistence of a multitude of periodic orbits
does not preclude simple periodic asymptotic for most (as opposed to all) initial
conditions. For 3.8284 ≈ 1 + √

8 ≤ λ ≤ 3.841499008,1 the iterates of a randomly
chosen initial condition asymptotically display periodic behavior with period three
(Figure 11.2.3). On the other hand, for other parameter values, for example, λ = 4,
the asymptotic behavior is uniformly distributed (with a density), analogously to
that of the linear expanding map (see Section 11.4.3).

1 While this parameter has an expression in radicals, it is rather more complicated than the preferred
parameters we produce later: λ = 1 +

√
52800 − 3900z + 285z2 + 15

√
201z(20 + z)/120, where z =

3
√

460 + 60
√

201. This is due to Sharon Chuba and Andrew Scherer.
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Figure 11.1.1. The maps f 3
1+√

8
and f 3

4 .

A considerable amount of research has been done on the quadratic family
and on similar classes of one-dimensional maps in order to identify the possible
types of behavior and to establish how various types appear in the parameter
space. Some of the structural features reflect general paradigms in the theory of
dynamical systems (hyperbolicity, structural stability, Markov partitions, existence
of absolutely continuous invariant measures), while others are specific to one-
dimensional dynamics [Sharkovsky ordering of periods (Theorem 11.3.9), kneading
theory]. The research uses methods from general differentiable dynamics such
as fixed-point methods based on hyperbolicity, methods specific to dimension
one (Intermediate-Value Theorem, distortion estimates), and specific properties
of analytic functions, or of polynomials. All of this makes the quadratic family an
excellent proving ground for various approaches to dynamics and a model case for
difficulties that appear even in simple-sounding problems.

As a result of a number of deep and brilliant works, the structure of the quadratic
family (also sometimes called a real quadratic family) is comprehensively under-
stood in its main features.

11.1.2 Attracting Periodic Orbits

Beginning with Proposition 11.2.1, we describe the first bifurcations in the
quadratic family, which cause the appearance of heterogeneous asymptotics.
While the detection and classification of periodic orbits is a matter of explicit
computation, some simple topological facts will strengthen the insights to be
obtained. Therefore, this section develops some basic global information pertinent
to the existence of attracting periodic points.2

Recall that an m-periodic point x0 of a continuous map f of an interval I
into itself is said to be attracting if there is an ε > 0 such that |x − x0| < ε implies
| f n(x) − f n(x0)| → 0 as n → ∞. Equivalently, it is an attracting fixed point for f m

(Definition 2.2.22). A periodic orbit {x0, f (x0), . . . , f m−1(x0)} is said to be attracting
if one (and hence all) of its points are attracting.

2 The initial doublings were studied by Myrberg as part of a series of papers in the 1950s and 1960s;
see, for example, Pekka Juhana Myrberg, Iteration der reellen Polynome zweiten Grades. II., Annales
Academiæ Scientiarum Fennicæ Mathematica Ser. A I 268 (1959).
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Let f : I → I be differentiable and x0 an m-periodic point. If |( f m )′(x0)| < 1, then
x0 is attracting (Proposition 2.2.17); if |( f m )′(x0)| > 1, then is it not. If |( f m )′(x0)| = 1,
it may or may not be attracting.

Definition 11.1.1 The basin of attraction of an attracting periodic orbit O =
{x0, f (x0), . . . , f m−1(x0)} is the set of x such that | f n(x) − f n+k(x0)| → 0 as n → ∞
for some k.

The basin of attraction of the orbit O consists of those points whose asymptotic
behavior follows one of the points on the orbit. Such a point is unique since
different points on the orbit cannot approach each other. Thus one can talk about
the phase for each point in the basin of attraction.

Definition 11.1.2 The immediate basin of attraction of the periodic point x0 is
the maximal interval J containing x0 such that | f n(x) − f n(x0)| → 0 as n → ∞ for
any x ∈ J . The immediate basin of attraction of a periodic orbit is the union of
immediate basins of attraction of all points on the orbit.

Remark 11.1.3 Basins and immediate basins are open sets.

Lemma 11.1.4 Let I = [a, b] and f : I → I concave and twice differentiable such
that f (a) = f (b) = a. Then the immediate basin of attraction of any attracting
periodic orbit contains a critical point.

Proof If f ′(a) ≤ 1, then by concavity f ′(x) < 1 for x > a and hence f (x) < x for
x > a, so I lies the immediate basin of attraction of a. In this case we are done.
Henceforth we assume f ′(a) > 1.

Let J be the immediate basin of attraction of an attracting m-periodic point
x0 and c < d its endpoints. Then f m(J ) is an interval by the Intermediate-Value
Theorem and contains x0. The interval J ∪ f m(J ) belongs to the immediate basin
of attraction of x0, so f m(J ) ⊂ J .

If, contrary to the assertion, none of the intervals f i(J ), (0 ≤ i ≤ m− 1) contain
the critical point of f , then f m is monotone on J . We aim to derive a contradiction
from this.

Consider first the case when one of the images of the endpoints is an endpoint of
I . Since f (b) = a, we may assume without loss of generality that this endpoint is a.
Replacing x0 by its iterate, we may assume that a is an endpoint of J , that is, c = a.

Since a is a fixed point, f ′(a) > 1 implies ( f m )′(a) > 1; hence ( f m )′ is positive
and decreasing on [a, d ] due to the presence of the attracting point x0. (This uses the
chain rule and that f m is monotone on [a, d ]). Thus 0 < ( f m )′(d ) < ( f m )′(x0) < 1,
so f m is a contraction on the interval [x0, d ] and d < b since [a, d ] does not contain
the critical point of f . Thus the map f is a contraction on [x0, d + ε] for sufficiently
small ε > 0, contrary to maximality of J .

Therefore none of the images of c or d is an endpoint of I . Then f m(J ) ⊂ J
implies f m(J ) = J because neither c nor d is in the basin of attraction. Hence c
and d are periodic points of period mor 2m. Since the derivative of f m (and hence
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f 2m ) has constant sign on J and f is concave, the derivatives of f m and f 2m are
monotone on J by the chain rule (they are products of monotone functions with
constant sign). The average of ( f m )′ [and of ( f 2m )′] over J is ±1 because f m(J ) = J ,
so the value at one endpoint is less than 1 in absolute value, and at least one of
the points c or d is an attracting periodic point for f . This is impossible since its
immediate basin of attraction would overlap with J , the immediate basin of x0. �

Proposition 11.1.5 Let I = [a, b] and f : I → I concave and twice differentiable
such that f (a) = f (b) = a. Then f has at most one attracting periodic orbit.

Proof Immediate basins of attraction of different periodic orbits do not overlap.
Since f has one critical point, the proposition follows from Lemma 11.1.4. �

Corollary 11.1.6 A quadratic map fλ has at most one attracting periodic orbit.

One may ask what happens in the presence of a periodic point outside the basin
of attraction. We will see later that the behavior on the remaining set R, which is
invariant in both positive and negative direction, may still be quite complicated.
This set is called the universal repeller (because it is the maximal repelling set;
see A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical
Systems, Cambridge University Press, 1995, p. 519).

The following crucial fact holds in greater generality, but we formulate it for the
quadratic family.

Theorem 11.1.7 If a quadratic map fλ has an attracting periodic point, then the
universal repeller is a nowhere dense null set.

Thus, both in the topological sense and in the sense of probability most points
are attracted to the single periodic orbit.

The internal structure of the restriction of a quadratic map to a universal
repeller is well descibed by Markov models (Definition 7.3.2, Section 7.3.7).

Theorem 11.1.8 The restriction of a quadratic map with an attracting periodic
point to the universal repeller is topologically conjugate to a one-sided topological
Markov chain (Definition 7.3.2).

Both theorems follow from hyperbolicity of the universal repeller (Defini-
tion 10.1.2). This is the reason for the following terminology:

Definition 11.1.9 Quadratic maps with an attracting periodic point are said to be
hyperbolic.

Remark 11.1.10 Since the existence of an attracting periodic point is an open
condition, the set of parameters for which a quadratic map is hyperbolic is open.



book 0521583047 April 21, 2003 16:55 Char Count= 0

11.2 Simple Behavior Beyond the First Bifurcation 303

In light of the above discussion, the following question becomes natural and
interesting.

Question How big is the set of parameters λ for which the quadratic map fλ is
hyperbolic, that is, has an attracting periodic orbit? In particular, is it dense? Is its
complement a null set?

Both of the latter questions have been answered, the last negatively by Michael
Jakobson in the early eighties, and the other positively by Gregorz Świ

↪
atek and

his collaborators in the late nineties. Their respective works represent the high
points of one-dimensional dynamics in the corresponding periods. Moreover, they
establish two principal paradigms of behavior in one-dimensional real dynamics,
which we will refer to as “hyperbolic” and “stochastic.”

Before telling the story we look at the development of behavior after the first cru-
cial bifurcation at λ = 3. The principal feature is a succession of period doublings.

11.2 DEVELOPMENT OF SIMPLE BEHAVIOR BEYOND

THE FIRST BIFURCATION

11.2.1 First Period Doubling

For the next parameter interval after λ = 3 orbits are asymptotic to a periodic orbit
rather than a fixed point.

Proposition 11.2.1 For 3 < λ ≤ 1 + √
6 all orbits of fλ(x) = λx(1 − x) on [0, 1],

except for 0 and xλ and their preimages, are asymptotic to a unique periodic orbit of
period 2.

Sketch of proof Unlike in the previous case (Proposition 2.5.2) we do not prove
the entire statement but simply calculate the periodic points and determine their
stability. The full dynamics can be unraveled in a similar way as before, but the
argument would be a bit more lengthy. To show that there is a period-2 orbit look
for fixed points of f 2

λ by solving the quartic equation

x = f 2
λ (x) = fλ( fλ(x)) = λ(λx(1 − x))(1 − λx(1 − x)).

First discard the known solutions – the fixed points – by dividing out fλ(x) − x from
f 2
λ (x) − x:

f 2
λ (x) − x

fλ(x) − x
= λ2x(1 − x)(1 − λx(1 − x)) − x

λx(1 − x) − x
= −(λx)2 + (λ + 1)λx − (λ + 1).

This is a quadratic function of λx with roots

λx = −(λ + 1) ±
√

(λ + 1)2 − 4(λ + 1)
−2

,

so there are two points of period 2:

xλ,± = λ + 1 ± √
(λ + 1)(λ − 3)
2λ

.(11.2.1)
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Let us note a few features of this explicit description. For λ < 3 there are no
real solutions and x3,± = 2/3 = x3. Therefore, as λ increases beyond 3, these two
periodic points appear by splitting off from the nonzero fixed point xλ = (λ − 1)/λ.
The distance from xλ is

(11.2.2) xλ,± − xλ = λ + 1 ± √
(λ + 1)(λ − 3) − 2(λ − 1)

2λ

= 3 − λ ± √
(λ + 1)(λ − 3)
2λ

≈ 3 − λ

6
±

√
4(λ − 3)

6
≈ ±

√
λ − 3

3
.

This is the reason for the parabolic curves in the bifurcation diagram (Figure 11.2.3.)
This qualitative change in the orbit structure is a bifurcation different from

those in Section 2.3.2. In this case, the change is from having two fixed points and
all other points asymptotic to one of them to having two fixed points as well as a
period-2 orbit.

If λ > 3, then | f ′
λ(xλ)| = λ|1 − 2xλ| = |2 − λ| > 1, so the nonzero fixed point

becomes repelling beyond exactly the parameter value at which it spawns the
periodic points. This particular kind of transition is referred to as a period doubling
bifurcation. An intuitive way of understanding the necessity of such transitions is to
note that for λ < 3 all points near the fixed point are attracted to it (while switching
sides in each iteration). For λ slightly larger than 3, nearby points are repelled,
whereas faraway points still try to approach the fixed point. Consequently, there
must be a point on either side of the fixed point to separate these two behaviors.
These two points form the attracting periodic orbit.

For λ < 1 + √
6, the periodic orbit is attracting. To see this, calculate the

derivative of fλ at xλ,±. Using f ′
λ(x) = λ(1 − 2x) with xλ,± given by (11.2.1) gives

f ′
λ(xλ,±) = λ

(
1 − λ + 1 ± √

(λ + 1)(λ − 3)
λ

)
= −1 ±

√
(λ + 1)(λ − 3),

and ( f 2
λ )′(xλ,±) is the product of these two numbers: ( f 2

λ )′(xλ,±) = 1 − (λ + 1)(λ − 3).
This is 1 when λ = 3. It decreases to −1 as λ increases to the positive solution
λ = 1 + √

6 of (λ + 1)(λ − 3) = 2. Therefore, the period-2 orbit is attracting for
3 < λ < 1 + √

6.
For λ = 1 + √

6, all nonfixed orbits still converge to the period-2 orbit
x1+√

6,± = (
√

2 + √
3 ± 1)/(

√
2 + 2

√
3), but now with subexponential speed; see

Figure 11.2.1 or Figure 11.2.2. �

Figure 11.2.1. The maps f 2
3 and f 2

1+√
6
.
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Figure 11.2.2. The maps f 4
1+√

6
and f 4

1.05+√
6
.

We describe the basins of attraction for 3 < λ ≤ 1 + √
6. Other than itself, the

unstable fixed point xλ has one preimage,

xλ,1 := 1 − xλ = 1/λ,

which in turn has two preimages,

x±
λ,2 := 1/2 ±

√
λ2 − 4/2λ.

Direct inspection using the order of the points shows that the immediate basins of
attraction of xλ,± are

(
xλ, x+

λ,2

)
and I1(λ) := (xλ,1, xλ),(11.2.3)

correspondingly.
Further preimages of the unstable fixed point xλ form two sequences that

converge to the endpoints 0 and 1, respectively. Those preimages separate the
basin of attraction of the stable orbit of period 2 into countably many disjoint
intervals. For the map f 2

λ , the basin of attraction of each of its two stable fixed
points consists of countably many disjoint intervals, which alternate on both sides
of the immediate basins of attraction.

The central observation that makes it possible to carry this analysis further
is that, if we restrict the map f 2

λ for 3 < λ < 1 + √
6 to the immediate basin of

attraction of either of its two attracting fixed points, we obtain a map that looks
qualitatively like the original map fλ on the whole interval [0, 1] for λ < 3. It has a
unique critical point, a repelling fixed point at one end, the preimage of that point
on the other end, and an attracting fixed point with negative derivative.

As the parameter increases, the attracting fixed point of this new map becomes
repelling in a period doubling bifurcation. Beyond that bifurcation one can restrict
f 4
λ = ( f 2

λ )2 to the interval I2(λ) defined as the interval between the preimage of the
unstable fixed point and the point itself [this corresponds to the interval I1(λ) for
f 2
λ �I1(λ)

]. This can be continued indefinitely.

This is the first germ of the idea of renormalization.
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11.2.2 Cascade of Period Doublings

Indeed, the procedure can be iterated. There is enough qualitative similarity as
described above to allow us to define intervals In(λ) inductively using the maps
f 2n−1

λ and observe the period-doubling bifurcation of the stable fixed points for
the latter map on such an interval. This is not trivial, but it is not specific to
the quadratic family, either. The key ingredient that makes this renormalization
possible is to have negative Schwarzian derivative, which is defined by

Sf := f ′′′

f ′ + 3
2

(
f ′′

f ′

)2

.(11.2.4)

This property is preserved under composition. Imposing this condition prevents
iterates from having almost flat pieces away from critical points. Analytically it is
used to control distortion under the map.

Before discussing this general aspect of the picture we describe results in this
specific case. The next theorem gives a qualitative picture of the orbit structure
during this cascade of period doublings.

Theorem 11.2.23 There is a monotone sequence of parameter values
λ1 = 3, λ2 = 1 + √

6, λ3, . . . , such that for λn < λ ≤ λn+1 the quadratic map fλ has one
attracting periodic orbit On(λ) of period 2n, two repelling fixed points 0 and xλ, and
one repelling periodic orbit Ok(λ) of period 2k for each k = 1, 2, . . . , n − 1. The basin of
attraction of the orbit O(λ) is dense and consists of all points other than these periodic
orbits and their preimages. At λ = λn , the orbit On(λ) undergoes a period-doubling
bifurcation.

During the period doubling the points of the nascent attracting 2n+1-periodic
orbit appear in pairs around the points of the period-2n orbit, so the order
of points on various periodic orbits is easy to describe: 11, 1212, 14241424,
1848284818482848, and so on.

It is curious that the interesting parameter values that we have encountered
so far can be written in a consistent form: For λ = 1 + √

0 a nonzero fixed point
appears, at λ = 1 + √

1 its “orientation” changes (the derivative becomes negative),
at λ = 1 + √

4 the period-2 orbit appears, and at λ = 1 + √
6 the period-4 orbit

appears. At λ = 1 + √
8 we first have a period-3 orbit and, indeed, all periods

(Proposition 11.3.8). Finally, for λ = 1 + √
9 we obtain the maximal complexity

(Section 7.1.2). Furthermore, the derivative at the stable period-2 orbit changes sign
when ( f 2

λ )′(xλ,±) = 1 − (λ + 1)(λ − 3) is zero, that is, when (λ + 1)(λ − 3) = 1 or λ =
1 + √

5. These special parameters 1 + √
n for n = 0, 1, 4, 5, 6, 8, 9 are marked by ver-

tical dotted lines in Figure 11.2.3. Unstable points have dashed lines. Also, additional
points of a given period may appear later. An interesting example is the appearance

of a second orbit of period 4 for λ = 1 +
√

4 + 3
√

108 = 1 +
√

4 + 3 3
√

4, indicated by a
small tick mark on the x-axis in Figure 11.2.3.4 To verify the appearance of a period-3

3 Welington de Melo and Sebastian van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin,
1993.

4 This is due to An Nguyen.
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Figure 11.2.3. The fixed and periodic points as a function of λ.

orbit at λ = 1 + √
8 use that if gα(x) := α − x2 and hλ = λ(x − 1

2 ), then hλ( fλ(x)) =
gα(hλ(x)), where α = (λ2/4) − (λ/2) (Exercise 2.5.2 (p. 61)). For λ = 1 + √

n this gives
α = (n − 1)/4, so the issue is the appearance of a period-3 orbit in gα(x) = α − x2 for
α = 7/4. This happens because g3

7/4(x) − x has five roots, of which three are also roots
of (g3

7/4)′(x) − 1: Verify that 64 · (g3
7/4(x) − x) = (g7/4(x) − x)(1 − 18x − 4x2 + 8x3)2

and 64 · ((g3
7/4)′(x) − 1) = −(8 − 3x − 22x2 + 4x3 + 8x4)(1 − 18x − 4x2 + 8x3).

The mere appearance of infinitely many period doublings can be derived in
much greater generality than for the quadratic family (see Section 11.3.2). Further
develoment of this general approach is based on a general device known as the
kneading theory.5 Monotonicity, that is, the absence of relapses from period 2k

back to 2k−1 as the parameter increases, is a subtle fact that in general uses negative
Schwarzian derivative (11.2.4). So is the fact that the whole cascade appears only
once and no two bifurcations occur at the same time. While those features are not
restricted to the quadratic family, they require much more specific structure of the
family in question.

11.3 ONSET OF COMPLEXITY

11.3.1 Feigenbaum Universality

The period-doubling cascade was known in the early 1960s. At a 1975 conference,
Steven Smale suggested that there is something interesting about how the dou-
blings accumulate on an eventual parameter. Mitchell Feigenbaum then found
numerically that in the quadratic family there is a regular pattern to the rate at which
successive period-doubling bifurcations occur.6 Specifically, the distance between
successive bifurcations decreases eventually in a geometric progression. As the
numerics suggested, and later proof has shown, δ := limn→∞(λn − λn−1)/(λn+1 − λn)
exists. In fact, Feigenbaum achieved great precision, finding δ ≈ 4.6992016090.

This is an interesting observation to begin with. More interestingly, period-
doubling cascades occur for all nearby one-parameter families of unimodal maps
and the sequence of bifurcation parameters produces an eventually geometric
progression as in the quadratic case. What is truly astonishing is that this occurs
with the same limiting ratio. That is, the specific numerical value obtained for the
quadratic family has nothing to do with the particular structure of those maps but

5 A description and references can be found in Katok and Hasselblatt, Introduction to the Modern
Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.

6 Mitchell J. Feigenbaum, Quantitative Universality for a Class of Nonlinear Transformations, Journal
of Statistical Physics 19, no. 1 (1978), 25–52.
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is an intrinsic feature related to the general shape of the map. Here is a brief outline
of what Feigenbaum perceived, all of which has been rigorously proved since.7

Consider the map fλ∞ at the end of the period-doubling cascade. The restriction
of its square to the interval [1 − xλ∞ , xλ∞ ] is (aside from being upside-down) of
the same type as fλ∞ in that it fixes one endpoint, which is the image of the other
endpoint, is unimodal, and is at the end of a period-doubling cascade. It turns out,
in fact, that f and this restriction are topologically conjugate (Definition 7.3.3),
that is, they agree up to a continuous change of variable. Feigenbaum wondered
whether they are more closely related, namely, by a linear change of variable.
Although they are not, he found something as useful. To describe this with
more ease, change variables so as to make the quadratic family take the form
f (x) = α − x2 on a symmetric interval (Exercise 2.5.2). Then there is one positive
fixed point and 0 is the critical point. Feigenbaum found that there is a unique
even analytic map g that is linearly related to a restriction of its square. This means
that there is a unique real number α (roughly −2.5) such that αg2(x/α) = g(x). One
can obtain g approximately by solving numerically for the coefficients in its power
series. Indeed, g(x) ≈ 1 − 1.52763x2 + 0.10481x4 − 0.0267057x6 + · · · .

How would one get at this distinguished self-similar map? It is the unique fixed
point of the renormalization operator defined by

R f (x) = α f 2(xα)

for x between the positive fixed point x f of f and −x f . Here f is supposed to be an
even function with f (0) = 1 and α = 1/ f 2(0) = 1/ f (1). (We won’t worry about the
fact that this is an infinite-dimensional space of functions.)

Studying this operator leads to insights about the rate at which period-doubling
bifurcations appear. The self-similar map g is a hyperbolic fixed point of the
operator R. Moreover, the differential of R at g has a one-dimensional eigenspace
with eigenvalue δ ≈ 4.69920166, and there is a complementary invariant subspace
on which it is contracting. As is always the case with a hyperbolic fixed point
(Section 9.5), the contracting space for the differential of R corresponds to a surface
consisting of functions positively asymptotic to g under iteration of R, the stable
manifold. It can be described intrinsically as the set of maps for which the orbit
of the critical point is ordered in the same way as for g. In fact, S is the limit of
surfaces Sn that consist of functions for which the critical point is 2n-periodic. Note
that R(Sn+1) = Sn. This implies that the distance from Sn to S is approximately 1/δn

for large n, because δ is the rate at which the Sn are “pushed away” from S under R.
(See Figure 11.3.1.)

The method described in Section 9.5 suggests how to get at a standard one-
parameter family of functions that contains g: For any one-parameter family of
functions that crosses S close to g define R̃( fλ) := R( fλ/δ). This “normalizes away”
the stretching under R by δ in the one-dimensional direction. As a result there is
a fixed point of this adapted operator, which gives an R-invariant one-parameter
family that includes g.

7 Oscar Lanford III, A Computer-Assisted Proof of the Feigenbaum Conjectures, Bulletin of the
American Mathematical Society (N.S.) 6, no. 3, (1982), 427–434.
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Figure 11.3.1. The renormalization
operator.

The point of this last observation is that distances between successive period
doubling bifurcations in a one-parameter family can be compared via such a
renormalization. Since we have just described the limiting behavior as universal,
any period doubling cascade happens with asymptotic ratio 1/δ between successive
doublings.

11.3.2 Appearance of Powers of 2

The verification of the assertions in the preceding discussion requires formidable
analysis. To show that some more basic features are even more universal requires no
more than the Intermediate-Value Theorem. We now show that the order in which
powers of 2 appear in the quadratic family is the only order possible for any family.

Definition 11.3.1 Consider a continuous map f : I → I of an interval I . We say
that an interval J ⊂ I covers (or f -covers) K ⊂ I (under f ) if K ⊂ f (J ), and we
denote this situation by J → K . If we consider a finite collection of subintervals of
I , then the graph with these as vertices and arrows determined by the f -covering
relation is called the associated Markov graph.

If J → K , then the covering takes place in the obvious way:

Lemma 11.3.2 If J , K are intervals, K is closed, and J → K , then there exists a
closed interval L ⊂ J such that f (L) = K .

Proof Write K = [a, b] and c := max f −1({a}). Take L = [c, d] with d := min((c, ∞) ∩
f −1({b})), if this is defined. Otherwise, L = [c′, d′] with c′ := max((−∞, c) ∩ f −1({b}))
and d′ := min((c′, ∞) ∩ f −1({a})) is as desired. �

Thus if J → K , then there are several intervals L1, . . . , Lk ⊂ J with pairwise
disjoint interiors such that f (Li) = K . Sometimes we write this as J ⇒ K with k
arrows, if k is the maximal number of such subintervals Li . These Li are called full
components associated to J → K . Note that the preimage of K in J may contain
infinitely many intervals, even though there are only finitely many full components
by compactness.
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The next two lemmas provide a connection between this covering relation and
periodic points.

Lemma 11.3.3 If J → J , then f has a fixed point x ∈ J .

Proof If J = [a, b], then J → J implies that there are c, d ∈ J with f (c) = a ≤ c and
f (d) = b ≥ d. By the Intermediate-Value Theorem, f (x) − x has a zero in J . �

Lemma 11.3.4 If I0 → I1 → I2 → · · · → In, then
⋂n

i=0 f −i(Ii) contains an interval
�n such that f n(�n) = In.

Proof Let �0 = In and recursively take a full component �i ⊂ In−i associated to
In−i → �i−1. �

By virtue of Lemma 11.3.3 this has the

Corollary 11.3.5 If I0 → I1 → I2 → · · · → In−1 → I0, then there exists x ∈ Fix f n

such that f i(x) ∈ Ii for 0 ≤ i < n.

Lemma 11.3.6 (Barton–Burns) If f has a nonfixed periodic point, then it has a
nonfixed point of period 2.

Proof We show that if x �= f 2(x) has period p, then f has a nonfixed point of period
less than p.

Consider the intervals I1, . . . , Ip−1 whose endpoints are adjacent iterates of x.
For each i ∈ {1, . . . , p − 1} there is a j �= i such that Ii → I j since the endpoints
are not 2-periodic. Thus, there is a nontrivial loop in the Markov graph that visits
k ≤ p − 1 intervals. By Corollary 11.3.5 there is a nonfixed k-periodic point. �

This implies that powers of 2 appear in increasing order:

Theorem 11.3.7 If f : I → I is a continuous map of a closed interval with a periodic
point of period 2n, then f has periodic points of all periods 2m for m ≤ n.

Proof If m = 0, use Lemma 11.3.3; otherwise, apply Lemma 11.3.6 to f , f 2, . . . ,
f 2n−2

. �

11.3.3 Further Period-Forcing Relations

There is a nice complementary result that is also of historical interest, because the
paper in which it was published introduced the term “chaos” to a wide audience.8

8 The paper was Tien-Yien Li and James A. Yorke, Period Three Implies Chaos, American Mathematical
Monthly 82, no. 10 (1975), 985–992. Earlier and more precise uses of chaos, but not necessarily
deterministic chaos, appeared in Norbert Wiener, The Homogeneous Chaos, American Journal
of Mathematics 60, no. 4 (1938), 897–936, and Norbert Wiener and Aurel Wintner, The Discrete
Chaos, American Journal of Mathematics 65, no. 2 (1943), 279–298. Scientists were more likely
to see Robert M. May, Biological Populations with Non-Overlapping Generations: Stable Point,
Stable Cycles and Chaos, Science 186 (1974), 645–647, or Simple Mathematical Models with Very
Complicated Dynamics, Nature 261 (1976), 459–467, who emphatically credits Yorke for the minting
of the term.
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Proposition 11.3.8 If f : I → I is a continuous map of a closed interval with a
periodic point of period 3, then f has periodic points of all periods.

Proof Label the points of the period-3 orbit by {x1 < x2 < x3}. Consider the intervals
I1 = [x1, x2] and I2 = [x2, x3]. Suppose f (x2) = x3. Then f 2(x2) = x1 and hence I2

f -covers both I1 and I2, and I1 covers I2. If f (x2) = x1, we relabel I1 and I2 to get the
same conclusion. Thus the Markov graph associated to I1, I2 contains the graph

I1 � I2,

�(11.3.1)

and for any n ∈ N we have a loop I1 → I2 → I2 → · · · → I2 → I1 (with n − 1
occurrences of I2) which, by Corollary 11.3.5, gives a periodic point of period n
which evidently cannot have any smaller period. �

This result is a special case of a much more general one, which was discovered
earlier:

Theorem 11.3.9 (Sharkovsky Theorem)9 If I ⊂ R is a closed interval, f : I → I
continuous with a periodic point of prime period p, and q � p, where “�” is defined by

1 � 2 � 22 � 23 � · · · � 2m � · · · � 2k(2n − 1) � · · · � 2k · 3 � · · · � 2 · 3 � · · · �
2n − 1 � · · · � 9 � 7 � 5 � 3,

then f has a periodic point of prime period q.

The two special cases (Theorem 11.3.7 and Proposition 11.3.8) contain the
essential ingredients for the proof of the Sharkovsky Theorem. One can develop
this theme further: While the presence of any particular period other than 3
does not imply that all other periods exist, one can show, for example, that if
f : [0, 1] → [0, 1] has a periodic orbit {x1 < x2 < x3 < x4} such that f (xi) = xi+1 for

i < 4 and f (x4) = x1, then f has periodic points of all periods. This leads to the study
of which “patterns” of periodic orbits force the existence of other periodic orbits.

11.3.4 The Feigenbaum–Misiurewicz Attractor

The map fλ∞ at the end of the period doubling cascade should be expected to have a
great deal of self-similarity in some way. The discussion of Feigenbaum universality
suggests that it is in some essential way invariant under renormalization. We now
establish in an explicit way some important self-similarity of the dynamics.

We will do this in two ways. First we briefly describe where the periodic points
of fλ∞ are located relative to each other. Then we describe the dynamics on an
important invariant set that contains no periodic points.

9 Alexander N. Sharkovskĭı, Coexistence of Cycles of a Continuous Map of the Line into Itself, Ukrain-
skiı̆ Matematicheskiı̆ Zhurnal 16, no. 1 (1964), 61–71; English translation: International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering 5, no. 5 (1995), 1263–1273; On Cycles
and Structure of a Continuous Map, Ukrainskiı̆ Matematicheskiı̆ Zhurnal 17, no. 3 (1965), 104–111.



book 0521583047 April 21, 2003 16:55 Char Count= 0

312 11. Quadratic Maps

1. Combinatorics of Periodic Points. The combinatorial pattern of periodic points
was already noted after Theorem 11.2.2: 11, 1212, 14241424, 1848284818482848, and
so on. Moreover, one can determine the dynamical ordering of each of these orbits.
For example, the period-4 orbit naturally has a left half and a right half, and these
two halves are interchanged by fλ∞ because they are “dragged along” with the two
points of the period-2 orbit. Likewise, the left and right halves of any of the period-2n

points are interchanged by fλ∞ . Self-similarity begins to show when we describe,
for example, how the left half of the period-8 orbit is mapped to itself under f 2

λ∞ ,
or how it is mapped to the right half by fλ∞ . Because the two “packets” associated
with the two left points of the period-4 orbit are “dragged along” with those points,
the period-8 orbit is mapped in packets of two. Specifically, if we label the points
x1, . . . , x8 according to their ordering in the interval, then fλ∞ ({x1, x2}) = {xi, xi+1}
with i = 5 or i = 7. Whether it is 5 or 7 is determined from the period-4
orbit.

Therefore the period-2n orbits for various nare all properly intertwined with each
orbit mapped in “packets” that can be tracked recursively according to the combina-
torics of the orbit of half the period. This is one way in which self-similarity appears.

2. The Feigenbaum–Misiurewicz Attractor. The self-similar dynamics in fλ∞ is
abstractly given in Problem 4.1.15 and can be described in more familiar terms as
follows.

Definition 11.3.10 Let R
2 be the space of one-sided 0-1-sequences as defined in

Section 7.3.4. The map A : R
2 → R

2 given by

(Aω)i =
{

1 − ωi if ωi = 1 for all j < i,
ωi otherwise

of the space R
2 is called the dyadic adding machine.

Theorem 11.3.11 The map fλ∞ has a closed invariant set that consists of isolated
repelling periodic orbits of periods 2n for n = 0, 1, 2 . . . (two for n = 0 and one orbit
for each other period) and a Cantor set S the dynamics on which is topologically
conjugate to the dyadic adding machine.

Furthermore, S is exactly the set of accumulation points for the set of periodic
points. S is also the ω-limit set (Definition 4.3.18) of any point that is not eventually
periodic (that is, a preimage of a periodic point).

Sketch of proof An equivalent description of the preceding combinatorial analysis
of periodic points is that of the intervals defined by a period-2n+1 orbit none
containing a period-2n point fλ∞ -covers one containing a period-2n−1 point. We
use this to construct S.

First consider the interval I whose endpoints are the period-2 points and let
S0 be a full component of I → I . There are two intervals whose endpoints are
on the period-4 orbit and that contain a period-2 point, I1 on the left and I2 on
the right. We let S1 be the union of one full component each of I1 → I2 → I1 and
I2 → I1 → I2. Then S1 has positive distance from the fixed point. S2 is likewise
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obtained as a union of full components corresponding to the length-four loops
associated with the four intervals obtained similarly from the period-8 orbit. Thus
S2 is separated from the points with periods 1 and 2. Likewise we obtain sets Sn

consisting of 2n−1 intervals separated from the points of period up to 2n−1. Next we
let S be the boundary of

⋃∞
m=1

⋂∞
n=m Sn, that is, S is the collection of nonperiodic

points in the closure of the set of periodic points. Denote by yn the right endpoint
of the leftmost interval in Sn and let Sn = {x ∈ S x ≤ yn}.

Define h: S → R
2 by h(Sn) = {ω ∈ R

2 ω1 = · · · = ωn = 1} and h ◦ fλ∞ = A ◦ h.
Then h is continuous and surjective, that is, the adding machine A is a factor of
fλ∞�S

. In this sense the dynamics of A on R
2 is contained in that of fλ∞ on S.

Furthermore, the size of the intervals in the construction above tends to 0, and this
implies that h is injective. �

In light of Theorem 11.3.11, it is natural to pay attention to the intrinsic
dynamics of the dyadic adding machine.

Proposition 11.3.12 The dyadic adding machine is uniquely ergodic.

Proof The phase space of the dyadic adding machine A has a nested structure. At
the nth step there are 2n disjoint Cantor subsets called the cylinders of rank n, which
are both closed and open and which are cyclically interchanged by the dynamics.
Every function constant on each cylinder of a given rank is continuous, and every
continuous function is the uniform limit of functions constant on cylinders of
certain ranks. For a function φ that is constant on cylinders of rank n one has

const. = 1
2n

2n−1∑
i=0

φ ◦ Ai = lim
N→∞

1
N

N∑
i=0

φ ◦ Ai .

Uniform approximation of an arbitrary continuous function by functions constant
on cylinders yields uniform convergence of averages. �

Thus the adding machine has some common features with irrational rotations
of the circle. In some sense it is even simpler (small pieces return back precisely,
not approximately, as do small intervals on the circle), but its unique ergodicity is
less “perfect” because even iterates are not uniquely ergodic.

The following fact shows that in a sense the dyadic adding machine is the only
model of relatively simple nonperiodic recurrent behavior for interval maps.10

Theorem 11.3.13 Suppose f is a continuous self-map of an interval with zero
topological entropy and S is a closed f -invariant set without periodic points and
with a dense orbit (that is, topologically transitive; Definition 4.1.3). Then the
restriction of f to S is topologically conjugate to the dyadic adding machine.

10 The proof is contained in the proof of Theorem 15.4.2 of Katok and Hasselblatt, Introduction to the
Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.
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11.4 HYPERBOLIC AND STOCHASTIC BEHAVIOR

We now change our point of view and study the dynamics of quadratic maps not by
way of the combinatorics of orbits, but by their stability or instability. This returns
us to the questions posed in Section 11.1.2.

11.4.1 Hyperbolic Cantor Repeller

Proposition 7.4.4 holds for all λ > 4; the assumption λ > 2 + √
5 was made earlier

to make the proof feasible in our setting. For the remaining values the argument is
more involved and uses negativity of the Schwarzian derivative (11.2.4). Therefore
one has, in fact,

Proposition 11.4.1 There is a homeomorphism h: R
2 → $ := ⋂

n∈N0
f −n([0, 1])

such that h ◦ σ R = f ◦ h, where f : R → R, x → λx(1 − x) with λ > 4.

In fact, the proof of Proposition 7.4.4 shows that the set $ is a hyperbolic
repeller (Definition 10.1.2).

This is a helpful model to keep in mind when discussing the possible behaviors
of quadratic maps. For parameters λ < λ∞, the asymptotics are straightforward:
Orbits are attracted to the 2n-periodic orbit with the largest n available. In the
previous section the dynamics of fλ∞ was described in terms of periodic points (all
repelling) and a self-similar invariant set S.

It remains to study λ between λ∞ and 4. This requires sophisticated analysis
well beyond the scope of this book, but the results of this analysis can be described
well enough. We begin by describing one of two main types of behaviors.

The first step gives a general outline of increasing complexity

Theorem 11.4.2 11 The topological entropy of the map fλ is nondecreasing, is zero
for λ ≤ λ∞, and is positive for λ > λ∞.

This implies12

Corollary 11.4.3 For λ > λ∞, the map fλ has infinitely many periodic orbits whose
periods are not powers of 2.

11.4.2 Periodic Attractor and Markov Repeller

Recall from Section 11.1.2 that a hyperbolic quadratic map is one for which all
recurrence takes place on periodic orbits and an invariant Cantor set that may be
empty and is a null set (Definition 7.5.3). There is only one attracting periodic orbit,
and for λ < 4 any hyperbolic map has such an orbit. Every orbit not in the Cantor
set is positively asymptotic to this orbit. The Cantor set is a hyperbolic repeller
(Definition 10.1.2) and it is nonempty for λ > λ∞.

11 Welington de Melo and Sebastian van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin,
1993.

12 Positive topological entropy implies the existence of a (one-dimensional) horseshoe for an iterate,
which in turn implies the corollary; see Katok and Hasselblatt: Introduction to the Modern Theory
of Dynamical Systems, Corollary 15.2.4.
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In this hyperbolic situation a straightforward numerical exploration would
show only the attracting periodic orbit. Although the dynamics on the Cantor set is
complicated, a computer will miss it because it is a null set. Even if the initial value
for a numerical computation were in the Cantor set, a generic roundoff error would
eject the computed orbit from it and produce an orbit that tends to a periodic one.

Theorem 11.4.4 (Graczyk–Świ
↪

atek) 13 The set of λ ∈ [0, 4] for which fλ is hyper-
bolic is open and dense.

The difficult part of this theorem is density, since openness follows almost di-
rectly from the definition of hyperbolicity. This statement illustrates the need for
mathematical insight over numerical exploration, because this set of parameters
does not look prominent in the bifurcation diagram (Figure 11.2.3), where only a few
windows (light vertical strips) are visible. The reason is twofold. Except for the small-
est periods, any one of these windows is fantastically narrow. And orbits of rather
large period not only contain enough points to blend into the shaded environment,
but it also takes a computer many more iterations to get close to the orbit.

Nevertheless, the bifurcation diagram suggests that there is another prominent
set of parameters.

11.4.3 Stochastic Behavior

There can be complicated behavior of a type rather different from the kinds just dis-
cussed, namely, behavior where complex dynamics coexists with equidistribution
on the interval. The overall complexity of the picture is mind-boggling; however
many phenomena appear in rather exceptional situations. Still, there is one type of
nonuniformly hyperbolic behavior that is particularly important both because it
appears for a nonnull set of parameter values and because of its intrinsic structure.

1. The Tent Map. In order to introduce this kind of behavior consider first the
model situation where g : [0, 1] → [0, 1] is the “tent” map

g(x) =
{

2x, 0 ≤ x ≤ 1/2,

2 − 2x, 1/2 ≤ x ≤ 1.

It is clear (see Section 7.1.1) that this map preserves measure in the following sense:
For any interval I ⊂ [0, 1], the measure of g−1(I ) agrees with the measure of I .
(Here the measure of a disjoint union of intervals is defined to be the sum of their
lengths, as in Definition 4.2.2.) Except for the up–down reversal on the right half
of the interval, the tent map looks exactly like the expanding map. Indeed, one can
trace through the arguments that prove equidistribution of orbits for the doubling
map (Theorem 7.5.6) to obtain equidistribution of orbits for the tent map. This
engenders a fair amount of dynamical complexity, but this complexity is necessarily

13 Jacek Graczyk and Grzegorz Świ
↪

atek, Generic Hyperbolicity in the Logistic Family, Annals of Math-
ematics (2) 146, no. 1 (1997), 1–52.



book 0521583047 April 21, 2003 16:55 Char Count= 0

316 11. Quadratic Maps

distributed over the entire interval, in contrast to the hyperbolic behavior discussed
above.

2. Chebyshev–von Neumann–Ulam Map. The preceding observation is relevant
to the quadratic family because the tent map g is topologically conjugate to the
quadratic map f4 : x !→ 4x(1 − x)via h(x) = sin2(πx/2). The map f4 represents the
second Chebyshev polynomial. Pafnutij L. Chebyshev was aware of the conjugacy
but did not consider its dynamical implications, unlike von John von Neumann
and Stanislav Ulam. This is the reason that f4 is sometimes called the von
Neumann–Ulam map.

The expression for f4 is easily the simplest single algebraic formula (without
absolute values, reductions modulo 1, or other mathematical trickery) that pro-
duces a map with genuine “stochastic” behavior. The conjugacy with the tent map
is simply a matter of a trigonometric identity. This does not mean that f4 preserves
measure in the same sense, but rather that, due to the mild distortion under the
coordinate change h, there is a positive “density” function ρ : [0, 1] → R, given in
this case by πρ(x) = 1/

√
x(1 − x), such that f4 preserves the measure obtained via

Definition 4.2.2 by taking “lengths” of intervals to be lρ(I ) := ∫
I ρ(x) dx. This is the

first nontrivial example of what we refer to as having weighted uniform distribution
or stochasticity(see Section A.3). It implies that with respect to information about
being in the left or right half of the interval we have (via the tent map, which
is materially the same as E2) the same statistical complexity as the coin toss in
Section 7.5.1. On one hand, this gives various forms of the law of large numbers.
On the other hand, this means also that there are points that have no long-term
average at all, as described in Section 7.5.1.14

For purposes of classifying quadratic maps we allow the density to be
nonnegative, and we do not require the set of zeros to be a null set.

3. Mechanisms of Stochasticity. The presence of the critical point 1/2 where the
derivative of a quadratic map is zero is an obvious obstruction to local expansion,
which is needed for hyperbolic repellers and stochastic behavior. In the hyperbolic
cases, this point is simply absorbed by the basin of attraction and is thus harmless
for the repeller, which is disjoint from it and its preimages. For the Chebyshev–von
Neumann–Ulam map, the critical point is mapped to zero, which is an expanding
fixed point. Thus points close to the critical point (even if recurrent) have enough
time to recover the local expansion before coming back into the area with small
derivatives. This mechanism can be increasingly generalized and modified to
produce ever larger sets of parameters with stochastic behavior.

4. Ruelle Maps. The most straighforward generalization of the Chebyshev–von
Neumann–Ulam situation appears when an iterate of the critical point is a repelling
periodic point. The set of such parameters is countable and the invariant density
is piecewise smooth.

14 This was also observed by Edward Lorenz, who used the quadratic map as a metaphor for the
possibilities of weather and concluded that it is not automatic that a “climate” exists, where climate
is understood to mean long-term average of weather data.
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5. Misiurewicz Maps. What makes the previous situation work is that the critical
point is not recurrent. Misiurewicz used this observation to construct the first
uncountable (albeit still null) set of parameter values producing stochastic behavior.
Misiurewicz’s condition is that the critical point is not recurrent, that is, theω-limit set
of 1/2 does not contain 1/2. In this case the ω-limit set of the critical point is a hyper-
bolic repeller, and there is still an invariant density, which is smooth on a countable
set of intervals but may be discontinuous on a Cantor set. The basic reasoning
for stochasticity in the Misiurewicz situation is still similar to the Chebyshev–
von Neumann–Ulam case: Any recurrent point that comes close to the critical
one has enough time to recover expansion while wandering near the repelling
ω-limit set.

6. Jakobson– and Collet–Eckmann Maps. To produce a nonnull set of parame-
ters with stochastic behavior one has to consider situations when the critical point
returns arbitrarily close to itself. The model for stochasticity in such a situation was
described by Collet and Eckmann, but it was Jakobson in his landmark 1980 work15

who showed that stochastic behavior appears on nonnull set and is in fact “preva-
lent” among parameter values close to 4 and to the Ruelle and Misiurewicz values.

The Jakobson–Collet–Eckmann mechanism allows the critical point to return
close to itself but sufficiently unfrequently so that, between the returns, points
sufficiently close to return (but not so close as to have the derivative almost
annihilated at the previous round) recover enough expansion. A sophisticated
inductive procedure shows that for enough points expansion prevails on all time
scales over occasional contractions caused by returns.

The most important observation, due to Jakobson, is the parameter exclusion
method, which controls parameter values for which a too-close accidental return of
the critical point produces attracting periodic orbits and thus locks the contraction
forever. The heart of the method is an estimate showing that, when this happens,
after many iterates the speed of moving the corresponding iterate of the critical
point is so high that the “dangerous zone” where the locking may appear at the
given return is passed very quickly.

In the Jakobson–Collet–Eckmann case the invariant density tends to be highly
discontinuous but the main qualitative features seen in the tent map still prevail.

15 Michael V. Jakobson, Absolutely Continuous Invariant Measures for One-Parameter Families of
One-Dimensional Maps, Communications in Mathematical Physics 81, no. 1 (1981), 39–88.



book 0521583047 April 21, 2003 16:55 Char Count= 0

CHAPTER 12

Homoclinic Tangles

Our study of complicated dynamics in the course developed mostly by looking
at examples. One reason is that this is an effective way to develop important
concepts in a natural fashion. But another reason is that those examples almost
fully represent the range of phenomena responsible for chaotic behavior. We
now return to the horseshoe and explain why this seemingly particular example
is an important mechanism that gives rise to chaotic dynamics for some orbits.
Specifically, we show how it appears in real systems and that it does so often, and
we describe how it has been used as an important tool in deciding fundamental
questions in dynamics. We first present the principal mechanism that produces
horseshoes and then give an account of the various ways this scenario arises in real
problems.

12.1 NONLINEAR HORSESHOES

For the discussion of the horseshoe in Section 7.4.4 it was convenient to assume
linearity, but as we mentioned in Section 10.2.6, it is not essential. We now introduce
nonlinear horseshoes.

It is easy and useful to define horseshoes in arbitrary dimension, but there
are several reasons to restrict ourselves to the planar situation. It makes it easier
to picture the arguments, and, accordingly, in the development of the theory of
dynamical systems the planar case played the leading role. Finally, it is in dimension
two that the full topological entropy of a dynamical system can be accounted for
by looking only at horseshoes in it.

In the definition we use the coordinate projections π1 : (x, y) !→ x and π2 :
(x, y) !→ y on R2.

Definition 12.1.1 If U ⊂ R2 is open, then a rectangle � = D1 × D2 ⊂ U ⊂ R2

(where D1 and D2 are intervals) is said to be a horseshoe for a diffeomorphism
f : U → R2 if � ∩ f (�) contains at least two connected components �0 and �1

318
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∆

f(∆)

f2(∆)

Figure 12.1.1. The horseshoe.

such that, if we write �i = f (�′
i) for i = 1, 2 and �′ = �0 ∪ �1, then

(1) π2(�′
i) = D2,

(2) π1� f (�′
i∩(D1×π2(z)))

is a bijection onto D1 for any z ∈ �′
i ,

(3) π2(�′) ⊂ int D2, π1( f −1(�′)) ⊂ int D1,
(4) D( f� f −1(�′)

) preserves and expands a horizontal cone family on f−1(�′),

(5) D( f −1��′ ) preserves and expands a vertical cone family on �′ (Defini-
tion 10.1.4).

In Figure 12.1.1, �0 and �1 are the two lightly shaded horizontal rectangles
that make up � ∩ f (�). Their preimages are vertical rectangles that go all the way
through � vertically. This is the content of the first item. The second requirement
says that these rectangles themselves must go entirely across � horizontally, and
without too much wiggling. The third requirement is that these strips stay away
from the top and bottom part of the boundary, and their preimages stay away
from the sides. In other words, there is room to spare in either direction. This
is useful for stability under perturbation. The last two conditions are horizontal
expansion and vertical contraction combined with the requirement that almost
horizontal lines remain almost horizontal, and almost vertical lines remain almost
vertical.

This definition makes relatively mild and robust requirements: A horseshoe
looks like the one in Figure 12.1.1 but is allowed to be a little deformed and
have variable expansion and contraction. In Section 12.3 we will see how such
horseshoes arise naturally. By structural stability (Section 10.2.6) the dynamics on
a linear horseshoe and a small perturbation are identical up to a homeomorphic
coordinate change that moves no point by much. This implies in particular that
our results about the orbit structure of linear horseshoes also hold for their
perturbations (coding in Proposition 7.4.6 and periodic orbit growth and density
as well as transitivity in Corollary 7.4.7).
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Figure 12.2.1. Hyperbolic fixed point.

12.2 HOMOCLINIC POINTS

We now describe a scenario and some of its outstanding features that lead to a
description of why horseshoes are so ubiquitous.

As the starting point we take the linear hyperbolic map A : R2 → R2,
A(x, y) = (2x, y/2). (See Figure 12.2.1.) The y-axis consists of points asymptotic
to the origin in positive time, and the x-axis consists of points asymptotic to the
origin in negative time, while all other points move along hyperbolas xy = const.

Now we consider a nonlinear diffeomorphism f that is close to A in a neighbor-
hood of the origin. By the Stable Manifold Theorem (Theorem 9.5.2) there is a stable
curve (replacing the y-axis for A) of points asymptotic to 0 and an unstable curve
of points negatively asymptotic to 0. This description implies that both curves are
invariant. Furthermore, neither of these curves can self-intersect. If the stable curve
did, the images of the resulting loop would accumulate at 0, and that would mean
that near 0 the set of points asymptotic to 0 is not a curve, contrary to Theorem 9.5.2.

Suppose that far from the origin the nonlinearities are such that these curves
bend enough to intersect at a point p and form a nonzero angle (see Figure 12.2.2).
Such a point p is called a transverse homoclinic point for the fixed point 0. It is a
homoclinic point as in Definition 2.3.4, and this situation corresponds to breaking

Figure 12.2.2. Transverse homoclinic point.
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up a homoclinic loop such as in Section 6.2.2. (Contrast Figure 6.2.2 and Figure 4.3.3
with Figure 12.2.2.)

It is fair to ask how we know that this can be accomplished. One way of looking at
it is to alter the description slightly by starting from A in a neighborhood of 0 only and
then extending the definition in such a way that the images/preimages of the hori-
zontal and vertical segments through 0 follow the desired pattern. On the other hand,
here is an explicit map of the plane (that preserves area) with the desired property:(

x
y

)
!→

(
3(x + (x − y)2)
1
3 (y + (x − y)2)

)
.

This Cremona map1 is invertible; indeed, the inverse is equally simple:(
x
y

)
!→

(
x
3 − (3y − x

3 )2

3y − (3y − x
3 )2

)
.

Finally, as we remark at the end, this very picture appears naturally in all kinds
of real-world problems, although often in a slightly different way: In a simplified
problem the two curves bend to form a smooth loop in the first quadrant, and
when one perturbs this problem to the real one, a nonzero intersection angle
results. Deformations of an elliptic billiard table would be a case in point, and
perturbations of the time-1 map for the mathematical pendulum (Section 6.2.2)
can achieve the same end.

The complications that this causes begin to become apparent along the orbit
O( p) of the homoclinic point p. Since p lies on the stable and on the unstable curve,
so does every point of the orbit. Therefore, all of these points are also homoclinic
points. Since f is a diffeomorphism, the intersection angles are always nonzero.
These points accumulate on 0 along both curves.

Any two adjacent points of O( p) define a loop with a stable and an unstable
boundary piece. As these loops accumulate on 0 (from above) in positive time they
are compressed vertically and stretched horizontally. Since the unstable curve can-
not self-intersect, these ever longer lobes follow the unstable curve ever more
closely, as in Figure 12.2.3. In negative time, a complementary accumulation occurs
with vertical stretching. This gives the complete picture in Figure 12.2.3. Note
from the picture that this gives rise to “second-generation” homoclinic points, and
recursively to ever higher complexity.

Heteroclinic tangles arising from a transverse heteroclinic point are similarly
complex and occur frequently as well; for example, they appear in regions of
instability of twist maps (Corollary 14.3.3). However, transverse heteroclinic points
may appear without engendering much recurrence. Such is the case for the gradient
flow of the height function on a torus (bagel-shaped surface) that is standing up
almost but not quite vertical.2 In this case no appreciable complexity appears.
Tangles appear in the case of heteroclinic loops. Because of the fundamental
similarity, we do not treat heteroclinic tangles here.

1 This map was brought to our attention by Alex Dragt.
2 See Katok and Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Section 1.6.
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Figure 12.2.3. Tangles.

12.3 THE APPEARANCE OF HORSESHOES

We now show that the stretching and folding of the invariant curves produce the
stretching and folding of a rectangle into a horseshoe.

Theorem 12.3.1 (Birkhoff–Smale) Let U ⊂ R2 be a neighborhood of 0 and
f : U → R2 an embedding (Definition A.2.5) for which 0 is a hyperbolic fixed point
with a transverse homoclinic point p. Then in an arbitrarily small neighborhood of
0 there exists a horseshoe for some iterate of f .

Remark 12.3.2 This is a remarkable result because it tells us that any hyperbolic
fixed point can be affected by “faraway” circumstances in such a way that the
dynamics nearby has the full complexity of the horseshoe.

Proof Figure 12.3.1 tells the whole story. If one takes a small rectangle in the first
quadrant with two sides just beyond the invariant curves, then the stretching and
folding of the tangles pull the rectangle along and cause an overlap after several
iterations. The picture shows that the geometry is right, and the iterations of f
force the required horizontal stretch and vertical contraction.

To make the notations simpler we assume that near zero the invariant curves
coincide with the coordinate axes (this can be arranged by a coordinate change).
Then take a rectangle � = D1 × D2, where D1 and D2 are small intervals containing
0 in their interior. In Figure 12.3.1 we chose them to have the left endpoint of D1

and the lower endpoint of D2 especially close to 0.
There is a preimage p′ = f −n( p) in the interior of D1, and the nearby portion of

a stable curve through q′ is almost vertical. The pieces of unstable loops nearby are
all close to horizontal. On one hand, for any n ∈ N, the origin is contained in one
component �0 of f n(�) ∩ �. On the other hand, taking n large enough there will
be a second component �1 satisfying the first three conditions in Definition 12.1.1.

That the expansion and contraction conditions in Definition 12.1.1 are satisfied
is clearly no problem, because most of the applications of f that are needed to
produce the right geometry are near 0 and therefore stretch and contract almost
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Figure 12.3.1. Obtaining a horseshoe.

precisely like the linear part. If needed, one can shrink D1 and D2 slightly to
increase the number of iterates of f . All additional iterates contribute uniform
distortion. �

In realistic situations rather few iterations (on the order of 10) are needed,
but already these few produce extreme stretching and contraction. Indeed, in
Figure 12.3.1 one sees the enormous stretch directly, and an exact rendition would
show the elongated rectangle as a single curve due to a corresponding rate of
contraction in the stable direction.

Figure 12.3.2 shows a better-proportioned horseshoe in the Cremona map that
we obtained by searching in a neighborhood of 0.

Figure 12.3.2. A horseshoe due to tangles.
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12.4 THE IMPORTANCE OF HORSESHOES

12.4.1 From Tangles to Horseshoes

Homoclinic tangles were first observed by Henri Jules Poincaré in his work on
the three-body problem, and it gave the first indication that there may be truly
complex dynamics in the solar system. Later he described this situation as follows:

When we try to represent the figure formed by these two curves and their infinitely many
intersections, each corresponding to a doubly asymptotic solution, these intersections
form a type of trellis, tissue, or grid with infinitely fine mesh. Neither of the two curves
must ever cut across itself again, but it must bend back upon itself in a very complex
manner in order to cut across all of the meshes in the grid an infinite number of times.

The complexity of this figure is striking, and I shall not even try to draw it. Nothing
is more suitable for providing us with an idea of the complex nature of the three-body
problem, and of all the problems of dynamics in general, where there is no uniform
integral.3

Several decades later, George David Birkhoff proved that in this situation there
are many periodic points near the fixed point. During World War II, Mary Lucy
Cartwright and John Edensor Littlewood built upon the work of Poincaré in their
analysis of radar circuitry tuned to parameters outside the normal operating range,
which exhibited an erratic blinking of a control light in a phenomenon known
as relaxation oscillations.4 Also in the 1940s, Norman Levinson analyzed the van
der Pol equation (relevant for vacuum tubes) and found infinitely many periodic
solutions (combined with structural stability).5 Around 1960 he brought this to the
attention of Steven Smale, who extracted from this work the geometric picture of the
horseshoe as shown in Figure 12.1.1 and proved Theorem 12.3.1 in the 1960s.6 Al-
though horseshoes occur in higher dimension, this entire history played out in two
dimensions.

It should be emphasized that the horseshoes obtained from tangles are null
sets, so the presence of complexity in such a dynamical system may be confined
to a set of the kind we are usually prepared to neglect. In other words, tangles
provide no guarantee that complicated orbits will be ubiquitous in a given system.

3 In Chapter 33, §396, of Jules Henri Poincaré, Les méthodes nouvelles de la mécanique céleste, Paris,
1892–1899; English translation: New Methods of Celestial Mechanics, edited by Daniel Goroff, History
of Modern Physics and Astronomy 13, American Institute of Physics, New York, 1993.

4 Mary Lucy Cartwright, Forced Oscillations in Nonlinear Systems, in Contributions to the Theory of
Nonlinear Oscillations, Annals of Mathematics Studies 20, Princeton University Press, Princeton,
NJ, 1950, pp. 149–241; Mary Lucy Cartwright and John Edensor Littlewood, On Non-Linear Differ-
ential Equations of the Second Order. I. The Equation ÿ − k(1 − y2)y + y = bλk cos(λt + a), k Large,
Journal of the London Mathematical Society 20 (1945), 180–189; John Edensor Littlewood, On Non-
Linear Differential Equations of the Second Order. IV. The General Equation ÿ + kf (y)ẏ + g(y) =
bkp(φ), φ = t + α, Acta Mathematica 98 (1957), 1–110.

5 Norman Levinson, A Second Order Differential Equation with Singular Solutions, Annals of Mathe-
matics (2) 50 (1949), 127–153

6 Steven Smale, A Structurally Stable Differentiable Homeomorphism with an Infinite Number of
Periodic Points, in Qualitative Methods in the Theory of Non-Linear Vibrations (Proc. Internat.
Sympos. Non-Linear Vibrations, Vol. II, 1961), Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1963, pp. 365–366;
Diffeomorphisms with Many Periodic Points, in Differential and Combinatorial Topology (A Sympo-
sium in Honor of Marston Morse), edited by Stewart S. Cairns, Princeton University Press, Princeton,
NJ, 1965, pp. 63–80.



book 0521583047 April 21, 2003 16:55 Char Count= 0

12.4 The Importance of Horseshoes 325

Their importance lies in providing the possibility of such complexity as well as in
affecting the behavior of other orbits for long albeit finite time.

12.4.2 The Ubiquity of Horseshoes in Applications

Horseshoes are present in many applications. Numerous dynamical systems that
arise directly from scientific questions have a transverse homoclinic point and
hence contain a horseshoe. Furthermore, given any dynamical system with homo-
clinic tangles, all sufficiently small perturbations have homoclinic tangles as well,
and hence also contain a horseshoe. This certainly implies physical importance
because it means that once the differences between the model and reality are made
small enough, a horseshoe in the model corresponds to a horseshoe in reality. This
is the fundamental importance of all persistent or (structurally) stable phenomena.
Aside from being relevant to perturbations of specific examples, the persistence of
transverse homoclinic points also shows that among all dynamical systems those
with homoclinic tangles are fairly common.

We emphasize once more that in every such situation this directly gives strong
conclusions about the orbit complexity of the dynamical systems at hand. For
example, it has positive topological entropy and exponential growth of periodic
points with their period, and it contains a topological Markov chain as a subsystem.
Of course, the complexity due to a horseshoe may be rather localized and might
only be sustained on a null set. However, the mere possibility of exponential
orbit complexity is interesting in itself (and firmly rules out that the system is
integrable). Moreover, even though the horseshoe is a null set, some other orbits
will be entrained with orbits in the horseshoe for long enough to acquire a fair
sensitivity to initial conditions and other features of complex behavior for finite
time intervals. In the quadratic family positive topological entropy is attributable
to (one-dimensional) horseshoes, but it may be confined to a null set by periodic
orbits that attract all other points. At the other extreme is the hyperbolic toral
automorphism, where horseshoes abound, but any countable collection of these
only amounts to a null set, while exponential orbit complexity fills the torus
entirely.

Here are several concrete occurrences of tangles. Homoclinic tangles, and
hence horseshoes, are generically present in twist maps (Definition 14.2.1),
which arise in the study of various dynamical problems such as billiards, celestial
mechanics, and the design of particle accelerators. The Størmer problem of the
motion of charged particles (from solar wind) in the earth’s magnetic field also
exhibits homoclinic tangles.7 This is known as the cause for “insolubility of
the Størmer problem.” There have also been models of transport phenomena
in fluid mechanics that involve heteroclinic tangles, which arise from mutual
intersections of the stable and unstable curves of two hyperbolic points. In these
models the plume of lobes away from the tangled region (similar to what one
would see beyond the left edge of Figure 12.2.3) looks strikingly similar to the

7 Alex J. Dragt and John M. Finn, Insolubility of Trapped Particle Motion in a Magnetic Dipole Field,
J. Geophys. Res. 81 (1976), 2327–2340.
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turbulent wake photographed in experiments.8 This is a prime example where the
entrainment of transient orbits with those on the horseshoe produces significant
effects.

One important instance where a horseshoe was used as an ingredient to
settle a fundamental mathematical and physical question is provided by celestial
mechanics. Until the 1960s astronomers universally assumed that without external
influences there could not be capture in an n-body problem such as our solar
system. Specifically, it was taken for granted that there is a symmetry between
long-term behavior in positive and negative time. A body could not have an
unbounded negative-time orbit without also having an unbounded positive-time
orbit. In other words, the solar system could not “capture” another celestial body
(if all bodies are treated as point masses). Conversely, this would mean that if we
trust that the earth has always been in the solar system, then it cannot possibly
be ejected from it without special external influences. In studying the three-body
problem Alekseev dispelled this belief by producing a horseshoe and showing that
its presence created the possibility of capture.9 This is an example where the mere
possibility of complexity is decisive, even if it is confined to a null set, that is, even
if its consequences may have probability zero.

A more recent application of tangles to force orbit complexity via a horseshoe
is a result of Knieper and Weiss that the geodesic flow on a ellipsoid (which is com-
pletely integrable and hence has very little orbit complexity) acquires homoclinic
tangles (hence a horseshoe, positive topological entropy, exponential growth of
closed geodesics, etc.) for some arbitrarily small deformations of the ellipsoid.10

Here the distinction between complexity on a null set and pervasive complexity
has raised questions that remain open: Can one construct such perturbations
that have not only positive topological entropy, that is, the maximal possible orbit
complexity is characterized by exponential behavior, but also positive metric or
measure-theoretic entropy, which measures the average orbit complexity?

12.4.3 Planar Chaos Comes from Horseshoes

We close with a most striking result. If a planar dynamical system has positive
topological entropy, then all of this entropy is due to horseshoes.11

8 Vered Rom-Kedar, A. Leonard and Stephen Wiggins: An Analytical Study of Transport, Mixing and
Chaos in an Unsteady Vortical Flow, Journal of Fluid Mechanics 214 (1990), 347–394.

9 Vladimir Mihkaı̆lovich Alekseev, On the Possibility of Capture in the Three-Body Problem with a
Negative Value for the Total Energy Constant, Akademiya Nauk SSSR i Moskovskoe Matematicheskoe
Obshchestvo. Uspekhi Matematicheskikh Nauk 24 no. 1 (1969), (145), 185–186.

10 Gerhard Knieper and Howard Weiss: A Surface with Positive Curvature and Positive Topological
Entropy, Journal of Differential Geometry 39 no. 2 (1994), 229–249; see also Gabriel P. Paternain, Real
Analytic Convex Surfaces with Positive Topological Entropy and Rigid Body Dynamics, Manuscripta
Mathematica 78, no. 4 (1993), 397–402, and Victor J. Donnay, Transverse Homoclinic Connections
for Geodesic Flows, Hamiltonian Dynamical Systems (Cincinnati, OH, 1992), IMA Volues in Math-
ematics and its Applications 63, Springer, New York, 1995, pp. 115–125.

11 A. Katok, Nonuniform Hyperbolicity and Structure of Smooth Dynamical Systems, Proceedings of
the International Congress of Mathematicians, Warszawa 2, (1983), 1245–1254. See also the Supple-
ment in Katok and Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge
University Press, Cambridge, 1995.
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Theorem 12.4.1 For a surface diffeomorphism the topological entropy is arbitrarily
well approximated by restrictions to a horseshoe.

In this sense horseshoes are the only needed mechanism of chaos in the plane.
This is one way in which the dynamics of exponentially complicated maps is
exceptionally well understood in two dimensions.

This fact helps control the behavior of entropy under perturbations.

Theorem 12.4.2 Entropy as a function on the space of surface diffeomorphisms is
lower semicontinuous in the C1-topology (Section A.2.2).

Proof An equivalent restatement is the following: For any surface diffeomorphism
f and any ε > 0 there is a δ > 0 such that if d( f, g) < δ (in the C1-metric) then
htop(g) ≥ htop( f ) − ε.

To prove this pick any such f . If htop( f ) = 0, there is nothing to show. Otherwise,
there is a horseshoe $ of f with htop( f �$

) ≥ htop( f ) − ε. Take δ > 0 such that
(using structural stability of horseshoes) any g with d( f, g) < δ contains a horsesoe
$′ that is topologically conjugate to $. Its entropy then agrees with that of $, so
htop(g) ≥ htop(g�$′ ) = htop( f �$

) ≥ htop( f ) − ε. �

An analogous result also holds for continuous maps of an interval,12 but
Exercise 8.3.7 shows that it can fail in other situations. Upper semicontinuity can
be obtained without dimension restrictions, but it is a far more delicate matter in
terms of the smoothness required: It holds for C∞ maps,13 but the proof relies on
a subtle estimate14 that fails maps of finite differentiability. For these there is only
some control over the degree to which upper semicontinuity fails.

12.5 DETECTING HOMOCLINIC TANGLES:

THE POINCARÉ–MELNIKOV METHOD

The preceding sections have shown that transverse homoclinic points and the
ensuing tangles are of great interest for mathematical and scientific applications.
Therefore it is also important to have a method by which the presence of transverse
homoclinic points can be detected. Numerical calculations alone may not give
unambiguous results if the angle at the homoclinic point is small, because then the
entire web of tangles is compressed into a thin neighborhood of the local stable
and unstable leaf of the hyperbolic point, and computer pictures may not detect
it reliably. In addition, numerical pictures do not constitute proof of the presence
of this phenomenon.

To explain the Poincaré–Melnikov method consider a flow ϕt in the plane
defined by a differential equation ẋ = f (x) that has a hyperbolic saddle at 0
and a homoclinic loop � := {ϕt(q) t ∈ R} ∪ {0}. The Poincaré–Melnikov method

12 Michal� Misiurewicz, Horseshoes for Continuous Mappings of an Interval, in Dynamical Systems
(Bressanone, 1978), Liguori, Naples, 1980, pp. 125–135.

13 Sheldon Newhouse, Continuity Properties of Entropy, Annals of Mathematics (2) 129 (1989), 215–
235.

14 Yosef Yomdin, Volume Growth and Entropy, Israel Journal of Mathematics 57 (1987), 285–300.
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detects the appearance of a transverse homoclinic point under perturbation.15

Thus, perturb the flow to flows ϕt
ε defined by ẋ = f (x) + εgt(x), where we assume

that gt is periodic in t and, for simplicity, that gt(0) = 0. Concrete examples are
deformations of an elliptic billiard and the work of Knieper and Weiss mentioned
previously.

We need to study the stable curve W s
ε of 0 for ϕt

ε and the corresponding
unstable curve W u

ε . Orbits on these are of the form ϕt(q) + εqs(t) + O(ε2) (t ≥ 0)
and ϕt(q) + εqu(t) + O(ε2) (t ≤ 0), respectively, where

q̇s(t) = Df (ϕt(q))qs(t) + gt(ϕt(q)) for t ≥ 0

q̇u(t) = Df (ϕt(q))qu(t) + gt(ϕt(q)) for t ≤ 0

(the linearized flow). Up to order ε2 the separation d(q) between W s
ε and

W u
ε near q is given by the projection to the normal J f of ε(qu(0) − qs(0)), so

d(q) = ε(qu(0) − qs(0))J f (q)/‖ f (q)‖. Since Qu and Qs can be determined from the
linearized flow, so can this difference. The Melnikov function is defined on � by

M(q) =
∫ ∞

−∞
gt(ϕt(q))J f (ϕt(q)) dt.

Note that this integral is computed using only information about the unperturbed
flow and the perturbation term itself.

Theorem 12.5.1 If the Melnikov function has any simple zero along �, then for all
sufficiently small ε �= 0 there is a transverse homoclinic point for ϕt

ε . If M �= 0 except
at 0, then W s

ε ∩ W u
ε = {0}.

In some important situations the splitting is exponentially small. This causes
difficulties that were noticed 20 years ago16 and have been worked on since.17

12.6 HOMOCLINIC TANGENCIES

In a one-parameter family fε of diffeomorphisms of R2 with homoclinic tangles
associated to a hyperbolic fixed point p it may happen that for ε = 0 a “tongue”
of the stable tangle is tangent to the unstable leaf at a point q. This is called a
homoclinic tangency. It might be that q is the “primary” intersection and there are
no tangles at all for either negative ε or for positive ε. Or q may be a higher-order
intersection arising from a transverse homoclinic point that persists for all small ε.
Either way, this situation is a mechanism for the production of additional dynamical
complexity. Note that in investigating this situation we are studying hyperbolicity

15 V. K. Melnikov, On the Stability of the Center for Time-Periodic Perturbations, Trudy Moskovskogo
Matematičeskogo Obščestva 12 (1963), 3–52; Transactions of the Moscow Mathematical Society 12
1–57.

16 Jan A. Sanders, A Note on the Validity of Melnikov’s Method, Report 139, Wiskundig Seminarium,
Vrije Universiteit Amsterdam.

17 See, for example, Vasily G. Gelfreich, A Proof of the Exponentially Small Transversality of the
Separatrices for the Standard Map, Communications in Mathematical Physics 201, no. 1 (1999), 155–
216.
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Figure 12.6.1. Homoclinic tangencies.

but at the same time leave the uniformly hyperbolic context of the preceding
sections, because a transient homoclinic tangency produces a global bifurcation,
which is incompatible with the structural stability of hyperbolic sets. Thus we are
pushing techniques further, but in doing so we rely strongly on the underlying
hyperbolicity.

We suppose that the homoclinic tangency is of generic type. Specifically, we
assume that there is a local coordinate system near the tangency point q in which
W s( p) is represented as the x-axis and W u( p) is given by y = ε − x2.

The source of additional dynamical complexity is the appearance of extra
horseshoes.

Proposition 12.6.1 If a one-parameter family fε of diffeomorphisms of R2 is
volume-contracting at p (that is, ‖Dfε( p)‖ < 1) and has a generic homoclinic
tangency for ε = 0, then for ε > 0 an extra horseshoe appears.

This effect is evident from Figure 12.6.1, which shows a tangent bifurcation
with the requisite rectangle and its image included.

By producing more horseshoes this phenomenon adds further dynamical
complexity of the same type as that already present in any web of tangles. However,
there are also effects that are of an altogether different nature. These appear just
before the bifurcation:

Proposition 12.6.2 (Newhouse Phenomenon) 18 If a one-parameter family fε of
diffeomorphisms of R2 is volume-contracting at p (that is, ‖Dfε( p)‖ < 1) and has a
generic homoclinic tangency for ε = 0, then for a residual set of small ε < 0 there are
infinitely many attracting periodic orbits (sinks).

A residual set is the intersection of a countable collection of open and dense
sets (this implies density by Lemma A.1.15).

At this point it is rather clear that every generic homoclinic tangency is the
source of dynamical complexity, but also of significant change in the dynamics.

18 Sheldon Newhouse, Diffeomorphisms with Infinitely Many Sinks, Topology 13 (1974), 9–18.
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Analogously to (and indeed because of) the hierarchy of homoclinic tangles, a ho-
moclinic tangency never comes by itself. By looking at the higher-order intersections
in the tangles one can see that many small perturbations must also have
tangencies:

Proposition 12.6.3 If a one-parameter family fε of diffeomorphisms of R2 has a
generic homoclinic tangency for ε = 0, then there is a sequence εn → 0 such that fεn

has a homoclinic tangency for all n ∈ N at points qn → q.

One should keep in mind that most of these tangencies are obtained from high-
order “tongues”, and accordingly have effects that are highly concentrated in space
and are associated with high iterates of the diffeomorphism. Accordingly, complex-
ity is added on small spatial scales and large time scales. If one considers the fact
that the creation of a horseshoe increases entropy, then it is clear that continuity of
entropy (which follows from Theorem 12.4.2 and the upper semicontinuity result
mentioned after it) requires most of these changes to be of this type in order to limit
the accumulation of orbit complexity. Thus in this complex sequence of homoclinic
tangency bifurcations all manner of tiny horseshoes for high iterates appear to make
their contributions to orbit complexity and entropy. Yet, for each value of the pa-
rameter the bulk of the orbit complexity can be understood in terms of the same
generic properties we developed for all uniformly hyperbolic dynamical systems.
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CHAPTER 13

Strange Attractors

Strange attractors are a popular subject in dynamics. They are attractors with
a complicated geometric structure, in particular attractors that are not simple
curves or surfaces. Before looking at strange attractors it is appropriate to look at
some geometrically simple ones. From there we will get to strange attractors via an
important explicit model situation.

Hyperbolicity of some kind is a characteristic feature of strange attractors,
but the study of the most popular examples is difficult because the hyperbolicity
of those attractors is of a weaker form than the uniform hyperbolicity discussed
in Chapter 10. There is enough of it to produce a great deal of complexity, but
not enough to apply the tools from Chapter 10 directly. It is often similar to the
nonuniformly hyperbolic behavior that appears in stochastic quadratic maps (the
Jakobson–Collet–Eckmann case; see Section 11.4.3.6), and, in fact, those are used
as both models and as the basis for perturbative constructions for some popular
strange attractors. However, we consider only the Lorenz attractor, where the
difficulties are of a different sort and may by described as “uniform hyperbolicity
with singularities.” The proof of existence of the Lorenz attractor is one of the most
spectacular examples of computer-assisted proofs in continuous mathematics.

13.1 FAMILIAR ATTRACTORS

Not all attractors are strangers to us at this point. The simplest ones are attracting
fixed points, which were formally introduced in Definition 2.2.22. Here is an equiva-
lent definition of an attracting fixed point that is more conducive to generalization.

Definition 13.1.1 A fixed point p of a map f : X → X of a metric space is said to be
an attracting fixed point if there is a neighborhood U of p such that f (U ) ⊂ U and⋂

n∈N
f n(U ) = {p}.

The other familiar attractor is a limit cycle, as seen in Section 2.4.3. We defined
it as a periodic point p that has a neighborhood whose every point is positively

331
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asymptotic to O( p). Analogously to Definition 13.1.1, we can give the following
definition.

Definition 13.1.2 A periodic point p is said to be an attracting periodic point (or
limit cycle) of a flow φt if there is a neighborhood U of O( p) such that φt(U ) ⊂ U
for t ≥ 0 and

⋂
t≥0 φt(U ) = O( p).

The attractive feature of these definitions is that they do not need the notion of
“asymptotic to,” which is a little more subtle when the target of the asymptotics is
more than a point.

Suppose p is an attracting periodic point of a flow φt and consider the map
f (x) = φ1(x). Then the orbit of p under the flow is a set that attracts points under
repeated application of f . To make this precise we modify Definition 13.1.2. In fact,
we can replace O( p) by any set there to determine whether that set is attracting.

Definition 13.1.3 Suppose f : X → X is a map. A compact set A ⊂ X is said to
be an attractor for f if there is a neighborhood U of A such that f (U ) ⊂ U and⋂

n∈N
f n(U ) = A. We usually require A to have no proper subsets with the same

property.

The requirement that A is “smallest”, that is, has no proper attracting subsets,
makes a difference in the following example situation. Figure 13.1.1 shows a dy-
namical system for which the set A = {(x, y) ∈ R2 x ∈ [0, 1]} has most properties
required by Definition 13.1.3, but it contains the attractors (−1, 0) and (1, 0).
Therefore we do not call A an attractor in this case.

A slightly more substantial but still simple example can be constructed as
follows. Consider a circle map f1 with an attracting fixed point, for example as in
Figure 4.3.3. Suppose this point is 0. If f2 is any map of T2, such as a translation or
a hyperbolic automorphism, then the map f : T3 → T3, f (x, y, z) = ( f1(x), f2(y, z))
has an attracting 2-torus {0} × T2.

So attracting fixed points, limit cycles, and attracting periodic orbits are
examples of attractors, as are such attracting surfaces. However, there are plenty of
other examples. Those that do not have a comparably simple structure gave rise to
the name “strange” attractor.

Figure 13.1.1. Not an attractor.
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13.2 THE SOLENOID

Strange attractors abound in systems arising from applications of dynamics. Those
attractors can be hard to analyze effectively, and therefore it is useful to look at a
model situation first.

We describe one from a class of examples presented by Smale in the 1960s. It is
called the Smale attractor or solenoid. The construction can be visualized as similar
to doubling over a rubber band.

Consider the solid torus M := S1 × D 2, where D 2 is the unit disk in R2. This looks
like a bagel. On it we define coordinates (ϕ, x, y) such that ϕ ∈ S1 and (x, y) ∈ D2,
that is, x2 + y2 ≤ 1. Using these coordinates we define the map by doubling up and
shrinking the thickness by five.

Proposition 13.2.1 The map

f : M → M := S1 × D2, f (ϕ, x, y) = (2ϕ, 1–
5x + 1–

2 cos ϕ, 1–
5y + 1–

2 sin ϕ)

is well defined and injective.

Proof The map is well defined, that is, f (M ) ⊂ M, because

( 1–
5x + 1–

2 cos ϕ)2 + ( 1–
5y + 1–

2 sin ϕ)2 = 1—
25(x2 + y2) + 1–

5(x cos ϕ + y sin ϕ)

+ 1–
4(cos2 ϕ + sin2 ϕ) ≤ 1—

25 + 2–
5 + 1–

4 < 1.

Thus, in fact, f (M ) is contained in the interior of M.
That f is injective is not surprising, because we shrink the thickness a lot.

Suppose f (ϕ1, x1, y1) = f (ϕ2, x2, y2). Then

2ϕ1 = 2ϕ2 (mod 2π),

1–
5x1 + 1–

2 cos ϕ1 = 1–
5x2 + 1–

2 cos ϕ2,

1–
5y1 + 1–

2 sin ϕ1 = 1–
5y2 + 1–

2 sin ϕ2 .

Ifϕ1 = ϕ2, the trigonometric terms cancel, so x1 = x2 and y1 = y2. Ifϕ1 = ϕ2 + π , then

1–
5x1 + 1–

2 cos ϕ1 = 1–
5x2 − 1–

2 cos ϕ1,

1–
5y1 + 1–

2 sin ϕ1 = 1–
5y2 − 1–

2 sin ϕ1,

or

1–
5(x2 − x1) = cos ϕ1 and 1–

5(y2 − y1) = sin ϕ1,

which implies that

(x2 − x1)2 + (y2 − y1)2 = 25.

Since the left-hand side is at most 8, this is impossible. �
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Figure 13.2.1. The Smale attractor and a cross section.

A much milder contraction than by a factor of 5 will do. The same argument,
but using x cos ϕ + y sin ϕ ≤ x + y ≤ √

2, shows that

f : M → M := S1 × D2, f (ϕ, x, y) = (2ϕ, 1–
3x + 1–

2 cos ϕ, 1–
3y + 1–

2 sin ϕ)

is well defined and injective.
The image f (M ) intersects any cross section C = {θ} × D2 of M in two disjoint

disks of radius 1/5 as shown in Figure 13.2.1 and on the book cover. Indeed,
C ∩ f (M ) = f (C1) ∪ f (C2), where C1 and C2 are cross sections. Under iteration
this picture repeats on smaller scales.

Clearly f 2(M ) ⊂ f (M ), but moreover C ∩ f 2(M ) = f (C1 ∩ f (M )) ∪ f (C2 ∩
f (M )), where C1 and C2 are as before. Thus C ∩ f 2(M ) consists of four little disks,
two each in f (C1) and f (C2) (Figure 13.2.1), and f 2(M ) winds around M four times.
Pictorially we have doubled up the rubber band a second time.

Recursively, C ∩ f l+1(M ) consists of 2l+1 disks, two each in the disks of
C ∩ f l(M ).

What happens here is geometrically similar to what happens in the taffy
machines that one often sees in seaside towns. Those machines constantly stretch
and fold the taffy (which consists of molasses or sugar), and this stretching and
refolding produces a remarkably aligned stringy structure – it is definitely not a
curve or a surface. There are other situations where a similar technique is employed
to produce particular materials. One is the production of Japanese swords, which
are made by repeatedly folding over and flattening a piece of steel to produce a
highly aligned molecular structure. Twenty foldings of a piece of metal less than
1 cm thick give layers of thickness less than 2−20 cm < 10−6 cm = 10 nm, about the
size of an atom. This stretching and folding is also rather like the construction of
the horseshoe in Section 7.4.4.

Both of these real-life examples differ from the corresponding model situation
in that our models lose some volume, as it were. In the Smale attractor, the fivefold
shrinking in two directions combined with only a doubling in the remaining direc-
tion reduces the total volume by more than 10 in each iteration. In the horseshoe
we lose volume by discarding parts that fall outside the rectangle. Nevertheless,
the taffy and sword examples are real-life illustrations of the stretching and folding
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that are jointly responsible for the complex dynamics we saw in Chapter 7 and for
similar complexity in the Smale attractor. And losing volume is an essential feature
of having an attractor, as one can see from Definition 13.1.3.

The Smale attractor is a hyperbolic attractor: The stretching is uniform (by a
factor 2 everywhere) because we arranged for constant expansion in the angular
coordinate. This makes the dynamics maximally chaotic by producing the full
complexity developed in Chapter 10. It also happens to make the global attractor
relatively easy to study with the methods from Chapter 10.

A direct relation to the inverse limit construction (Definition 7.1.12) is the
following:

Proposition 13.2.2 The Smale attractor is the inverse limit of the circle doubling E2.

Because hyperbolic attractors are so tractable, the term “strange” attractor is
often reserved for attractors with a comparable degree of complexity that do not
have a uniform lower bound on the expansion rate. We next consider a famous
example of that sort.

13.3 THE LORENZ ATTRACTOR

In 1961, the meteorologist Edward Norton Lorenz studied a weather model with his
new electronic computer, based on rules that expressed the relationships between
temperature and pressure, pressure and wind speed, and so forth. At one time he
wanted to extend a prior run further in time, and instead of starting at the beginning
typed in a number well into that run. But instead of duplicating the old run, the new
one diverged rapidly from it. He realized that instead of the six decimal places used
in the computation he had typed in only the three digits from the printout, and the
small difference of a few thousandths quickly accumulated to macroscopic errors.

By 1963 Lorenz had radically simplified a convection model used in atmospheric
science to the differential equations

ẋ = σ (y − x)

ẏ = r x − y − xz

ż = xy − bz,

(13.3.1)

where σ, r, b > 0. (He quickly singled out the particular values σ = 10, b = 8/3,
r = 28 as warranting careful study.) The same equations have since appeared in
various other models. They happen to describe a dynamo (the precursor of modern
generators), and the direction reversals they exhibit are thought to potentially
explain the occasional reversals of the earth’s magnetic field in geological times. A
chaotic waterwheel provides a mechanical realization.1

The qualitative behavior of solutions to these differential equations depends
rather strongly on the values of the parameters. Nowadays one can easily verify this
numerically (to the extent that one trusts numerical simulations to give a complete
and accurate picture), but standard techniques from ordinary differential equations
enabled Lorenz to carry the analysis of these differential equations rather far.

1 Steven Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, 1994, p. 302.
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13.3.1 The Case r < 1
The simplest behavior occurs for r < 1:

Proposition 13.3.1 For r < 1, all solutions of the Lorenz equations (13.3.1) tend to
the origin as t → ∞.

Proof First, for r < 1 the origin is the only fixed point: From (13.3.1) one sees that
ẋ = 0 implies x = y and 0 = ż = xy − bz = x 2 − bz then gives z ≥ 0, hence
r − 1 − z < 0. Together with 0 = ẏ = r x − y − xz = x(r − 1 − z) this gives x = 0,
hence y = 0 and (from ż = 0) z = 0.

Although it is not necessary for this proof we note that the linearizationẋ
ẏ
ż

 =

σ (x − y)
r x − y
−bz

 =

−σ σ 0
r −1 0
0 0 −b


x

y
z

(13.3.2)

of (13.3.1) has only negative eigenvalues when r < 1. This means that the origin is
an attractor.

To show that it is a global attractor we employ a Lyapunov function. This is a
positive function that decreases along orbits. Inventing one for a given system is
an art form. Here we use L(x, y, z) := x2/σ + y2 + z2, whose level sets are ellipsoids
centered at the origin. Then L decreases along each orbit. By the chain rule,

L̇ = d
dt

(x2/σ + y2 + z2) = 2xẋ/σ + 2yẏ + 2zż

= 2x(y − x) + 2y(r x − y − xz) + 2z(xy − bz)

= 2(r + 1)xy − 2x2 − 2y2 − 2bz2

= −2
(

x − r + 1
2

y
)2

− 2

(
1 −

(
r + 1

2

)2
)

y2 − 2bz2,

which is never positive and is zero only if each term is zero, which implies that
y = z = 0 (from the last two terms) and then x = 0 from the first term. Thus, L
decreases along each orbit, which means that orbits constantly move to smaller
and smaller ellipsoids, which means that they get closer to the origin.

That L decreases along each orbit does not in itself imply that it decreases to 0.
But this must be so because for each orbit we must have L̇ → 0 (since L is bounded
below), which from the above implies (x, y, z) → 0. Thus, 0 is a global attractor. �

Looking back at the above arguments one can see that for r = 1 the qualitative
behavior is largely the same. The analysis of the Lyapunov function becomes more
elaborate because the term (1 − (r + 1/2)2)y2 disappears, but the complications
are still well within the range of standard techniques in ordinary differential
equations.

13.3.2 The Case r > 1
When r > 1, two other equilibria appear. ẋ = 0 still implies x = y. From (13.3.1) one
sees that 0 = ẏ = r x − y − xz = x(r − 1 − z) gives either x = 0 (hence y = 0 and then
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z = 0 because 0 = ż = xy − bz = −bz) or z = r − 1. The first case gives the known
equilibrium at the origin. The case z = r − 1 combines with 0 = ż = xy − bz =
x2 − bz to give x2 − b(r − 1) = 0, that is, x = ±√

b(r − 1). This gives two new equilib-
ria, (x0, y0, z0) = (

√
b(r − 1),

√
b(r − 1), r − 1) and (−√

b(r − 1), −√
b(r − 1), r − 1),

that tend to 0 as r → 1+. Thus, r = 1 is a bifurcation value. [That the rate of
approximation is of square-root type corresponds to what we observed in the
period-doubling bifurcations of the quadratic family in (11.2.2) and Figure 11.2.3.]

Proposition 13.3.2 If σ > b + 1 and 1 < r < σ ((σ + b + 3)/(σ − b − 1)), then the
equilibria (±√

b(r − 1), ±√
b(r − 1), r − 1) are stable.

Outline of proof To linearize (13.3.1) at these equilibria set ξ := x − x0, η := y − y0

and µ := z − z0. Then

ξ̇ = σ (x0 + ξ − y0 − η) = [σ (x0 − y0)] + σ (ξ − η)

η̇ = r(x0 + ξ ) − y0 − η − (x0 + ξ )(z0 + µ) = [r x0 − y0 − x0z0] + rξ − η

− (x0µ + z0ξ + ξµ)

µ̇ = (x0 + ξ )(y0 + η) − b(z0 + µ) = [x0 y0 − bz0] + x0η + y0ξ + ξη − bµ.

The bracketed terms are zero. Dropping terms that are not linear in ξ, η, µ and
using x0 = y0 and z0 = r − 1 leaves ξ̇

η̇

µ̇

 =

 σ (ξ − η)
rξ − η − x0µ − z0ξ

x0η + y0ξ − bµ

 =

 σ (ξ − η)
ξ − η − x0µ

x0ξ + x0η − bµ

 =

 σ −σ 0
1 −1 −x0

x0 x0 −b


ξ

η

µ

 .

The characteristic polynomial of the last matrix is

λ3 + (b + 1 − σ )λ2 + λb(σ + r) − 2σb(r − 1).

Check that the solutions have a negative real part when 1 < r < σ ((σ + b +
3)/(σ − b − 1)). �

For this parameter range there are also two unstable periodic solutions
that merge into the equilibria, (

√
b(r − 1),

√
b(r − 1), r − 1) and (−√

b(r − 1),
−√

b(r − 1), r − 1), respectively, when r = σ (σ + b + 3/σ − b − 1).

13.3.3 The Case r > σ(σ + b+ 3/σ − b− 1)
This is where things get interesting. Already for r > 1 the origin ceases to be
stable because the characteristic polynomial of the linearization matrix in
(13.3.2) is (b + λ)[λ2 + λ(σ + 1) + σ (1 − r)] with roots −b < 0 and (1/2)[−σ − 1 ±√

(σ + 1)2 − 4σ (1 − r)], both of which are negative only when r < 1. There are two
further unstable fixed points, but the unstable periodic solutions have disappeared.
Lorenz gave a plausible argument to the effect that there could be no stable periodic
solutions. At the same time it is not so hard to observe that solutions cannot grow
too much and are indeed bounded.

At this point it becomes believable that the dynamics must be complicated. The
orbits are trapped in a compact region devoid of stable equilibria and, apparently,
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limit cycles. Compactness forces them to accumulate somewhere. Lorenz decided
to concentrate on particular values of the parameters

σ = 10, b = 8/3, r = 28 > 10
47
19

= 10
10 + (8/3) + 3
10 − (8/3) − 1

= σ
σ + b + 3
σ − b − 1

and resorted to a computed picture. What Figure 13.3.1 shows has been known
as the Lorenz attractor for several decades. For almost four decades formidable
technical difficulties stood in the way of proving that there is indeed an attractor. It is
only now, as we are writing this book, that there is finally proof of the existence of an
attractor.

Figure 13.3.1. The Lorenz attractor.
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13.3.4 The Tucker Theorem

The proof that for the “classical” parameter values there actually is an attractor in
the Lorenz system is based on a sophisticated blend of mathematical theory and
rigorous computation. Warwick Tucker developed an algorithm for computing
rigorous solutions to a large class of ordinary differential equations based on a
partitioning process and the use of interval arithmetic with directed rounding.

This gives important conclusions that go beyond the existence of an attractor.

Theorem 13.3.3 The Lorenz equations for σ = 10, b = 8/3, r = 28 have an attractor.
Moreover, the attractor is robust, that is, it persists under small parameter changes,
and it carries a unique “SRB measure” (see Section 10.4.3.3).

This means, essentially, that the attractor is actually the object that numerical
computations show. More precisely, this means that there is an invariant measure
(Section 10.4.3.3) defined on the attractor (this means that it assigns zero to
continuous functions that vanish on the attractor) with respect to which almost
every orbit that starts in a neighborhood of the attractor is uniformly distributed:
The time averages of any continuous function coincide with the space average
determined by the invariant measure. This is therefore called the “physically
observed” density. These two added conclusions show that there is not only some
attractor, but it is both physically meaningful (persistent) and observed.

We describe the proof in some detail.

Proof outline2 The first step of the proof is standard and had been taken as a starting
point of prior attempts long before. Judiciously choose a rectangle S in the plane z =
r − 1 and consider the return map R of the Lorenz flow to this rectangle. Specifically,
the rectangle includes (0, 0, r − 1), and the equilibria (

√
b(r − 1),

√
b(r − 1), r − 1)

and (−√
b(r − 1), −√

b(r − 1), r − 1) are the midpoints of two sides. The Lorenz
flow swirls around these points, crossing the rectangle from above. Aside from a
line � through (0, 0, r − 1) parallel to the sides through the equilibria, the return
map R is defined on S. Points on � are attracted to the origin. This is why the return
map is not defined on �, and moreover it is the reason that numerical attacks failed
to resolve the issue of existence of the attractor: Since return times get arbitrarily
large near �, one cannot control the errors in numerical solutions of the Lorenz
equations.

A known feature of the return map to S is that it maps S � � to two triangular
regions in S, each of which crosses � as shown in Figure 13.3.2. The tips of these
triangles correspond to �. The curve � therefore provides an opportunity for
orbits to separate without having large derivative of the return map. This is the
“singularity” that we alluded to at the beginning of the chapter.

Having established this much, the standard line of reasoning imposed some
benign assumptions on more specific aspects of the way in which R maps S � � into

2 Warwick Tucker, The Lorenz Attractor Exists, Comptes Rendus des Séances de l’Académie des Sciences.
Série I. Mathématique 328, no. 12 (1999), 1197–1202; A Rigorous ODE Solver and Smale’s 4th Problem,
Foundations of Computational Mathematics 2, no. 1 (2002), 53–117.
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← S
↗

Γ

Figure 13.3.2. Section for the Lorenz map.

S. These were called the “geometric Lorenz attractor,” and allowed to establish the
existence of an attractor. However, it was not clear whether these assumptions hold,
that is, whether the attractor thus obtained is the Lorenz attractor. This is a good
moment to mention that the amount of nonhyperbolicity is reasonably benign
here. While a uniformly hyperbolic attractor such as the solenoid is structurally
stable, this is not the case with the Lorenz or geometric Lorenz attractor because of
the singularity at the origin. However, the failure of structural stability is moderate.
There is more than one conjugacy class nearby, but the conjugacy classes form
only a two-parameter family. This is significantly more benign than the general
case, in which there may be infinitely many moduli of conjugacy, or, worse, the
conjugacy classes may be highly irregular.

Tucker’s approach is a good example of how to analyze specific strange attrac-
tors. He combines analytic and numerical methods, using numerical methods for
the bulk of the attractor and analytic methods to deal with the singularity that
confounds all numerical approaches. In this way he establishes the following three
facts.

First, there is a compact set N ⊂ S such that N � � is strictly R-invariant, that is,
R(N � �) ⊂ Int(N ). This establishes the existence of an attractor L for the Lorenz
flow, which intersects S in $ := ⋂∞

n=0 Rn(N ).
In order to make sure that the attractor is as nontrivial as expected, two more

facts are developed. There is an R-invariant cone field on N; that is, if C(x) is
the sector with 10◦ opening centered around a curve that approximates $, then
DR(x)C(x) ⊂ C(R(x)) (see Definition 10.1.4). Finally, vectors inside cones are
eventually expanded under repeated application of DR. Specifically, there is
some C > 0 and λ >

29
√

2 such that, if v is a vector in C(x) for some x ∈ N, then
‖DRn(x)v‖ ≥ Cλn‖v‖ for all n ∈ N. These two facts about the cone field correspond to
the properties of a cone field centered around the angular direction in the solenoid,
where hyperbolicity of the map implies these properties. Here these two facts
prove hyperbolic behavior (by Theorem 10.1.5). Tucker noticed, by the way, that
the positive constant C in the cone-expansion property cannot be 1, that is, vectors
in those cones could be contracted in the first few steps. This was not expected.
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The proof of these properties combines two complementary approaches. One of
these is normal form theory. In a small cube, centered at the origin (the equilibrium)
there is an almost linear analytic coordinate change that transforms the Lorenz
equations to the form v̇ = Av + F (v), where A is diagonal and F is of order 20 in
‖v‖. Specifically, on a cube of size r we have ‖F‖ ≤ 7 · 10−9r20/(1 − 3r). This means
that on the small cube the new coordinate representation is phenomenally close to
linear. One the same cube, the nonlinear part of the coordinate change is bounded
by r2/2.

The coordinate change as well as the remarkable estimates are obtained by a
method of Poincaré. Basically, one writes down the change of variables equation
with (undetermined) Taylor series for the new coordinate representation and the
coordinate change. If one desires to eliminate nonlinear terms up to order 20 from
the normal form, then the Taylor coefficients of the coordinate change are given
explicitly in terms of those of the Lorenz flow, appearing with coefficients of the
type 1/(n1λ1 + n2λ2 + n3λ3), where the λi ’s are the eigenvalues of the derivative of
the Lorenz flow at 0 and ni ∈ N. For large ni there are explicit upper bounds on
these fractions, and numerical work can check the remaining (finite but enormous)
number of cases.

The second ingredient is rigorous numerical orbit computation. This is done
using interval arithmetic (in each coordinate). After the first integration step the
numerical value is bracketed by error terms: Upper bounds for the error of the
method of integration compounded with roundoff error are known. Adding and
subtracting these from the numerical value gives the endpoints of an interval
containing the true value. Then these endpoints are integrated one further
step, and the smaller result is diminished while the larger is augmented by the
error bound. This is repeated at every step, ultimately leading to an interval (or
parallelepiped) that is guaranteed to contain the true answer. Explicit values for the
partial derivatives of the Lorenz flow follow directly from the Lorenz equations and
can be evolved in time by the same method. This is used for the cone estimates.

This method encounters a problem that confounded all prior attempts to estab-
lish the reality of the Lorenz attractor: In computing orbits that approach the origin,
the return times become arbitrarily large and errors compound out of control. This
is where the normal form provides the decisive advantage. For an orbit entering a
fixed box around 0 it provides precise control over how that orbit exits the little box.

Thus orbits are tracked by a combined method: While outside the box, around
the origin they are integrated numerically with interval arithmetic. When an orbit
enters the box one directly transits through the box using the transfer map provided
by the normal form. �
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CHAPTER 14

Variational Methods, Twist Maps,

and Closed Geodesics

In this chapter we leave the area of hyperbolic dynamics, which dominated the
Panorama so far, and we describe some applications of the variational approach to
dynamics that are among the most impressive and at the same time easily visualiz-
able. The variational approach was first mentioned in Chapter 6 in connection with
the Lagrangian formalism and then in the specific context of billiards. We begin
with the study of twist maps, which include billiards in convex domains as a special
case and provide an ideal setting for the variational approach due to the relatively
simple structure of the phase space. Aubry–Mather theory establishes the existence
of a full range of motions with the features of orbits of one-dimensional maps
whose rotation numbers are compatible with the amount of twist in the system.
These motions can be viewed as “traces” or “ghosts” of invariant curves. Thus
we obtain both the remnants of “order,” and the presence of chaos, since in the
absence of genuine invariant curves the interaction between periodic orbits and
Cantor-like sets produces not only homoclinic and heteroclinic tangles but also
complex behavior of an even more baffling kind and puts a rigorous description of
typical behavior way beyond the reach of current methods.

We continue with results that involve fewer assumptions on dynamics and
deeper use of topology and end up with the description of one of the most
impressive applications of dynamics to geometry: the existence of infinitely many
closed geodesics for every Riemannian metric on the two-dimensional sphere.

14.1 THE VARIATIONAL METHOD AND BIRKHOFF PERIODIC

ORBITS FOR BILLIARDS

14.1.1 Periodic States and Action Functional

In Section 6.4.5 we constructed two special period-2 orbits for a convex billiard by
finding critical points of a functional related to the generating function and defined
on a space of “potential orbits.” In that particular simple case “potential orbits”
were period-2 states, that is, pairs of points on the boundary with the functional
being the length of the chord connecting the two points. This kind of approach is

342
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called the variational method, and in this section it is used to find many periodic
orbits of a specific nature, in particular, orbits of any desired period. Following the
original approach of G. D. Birkhoff, we now describe the basic results in the case of
billiards, where geometric pictures help to visualize the situation nicely. In the next
section we present a more general context that includes billiards as a particular
case, explain the results about the existence of periodic points on a more technical
level, and develop this approach beyond the periodic case.

Let p, q ∈ Z be relatively prime. Without loss of generality we assume q > 0 and
1 ≤ p ≤ q − 1. For a convex billiard we look for specific periodic orbits of period q
that wind around the table p times in such a manner that each orbit moves exactly
p steps in the positive (counterclockwise) direction. In other words, the billiard
map restricted to such an orbit behaves in the same way as the rotation Rp/q by the
angle 2πp/q. Such orbits are called Birkhoff periodic orbits of type ( p, q).

We now outline the construction of at least two different Birkhoff periodic
orbits of type ( p, q) for any q > 0 and 1 ≤ p ≤ q − 1. Altogether this will produce
infinitely many different periodic orbits with arbitrarily long periods. The space
C p,q of potential orbits will naturally be the space of ( p, q) periodic states. It can
be visualized as q-gons (in general, self-intersecting) inscribed into the billiard
table with a marked vertex, and with edges between vertices p apart. The marked
vertex x0 corresponds to the origin in counting; then in the cyclic order x1, . . . , xq−1

will be the other vertices. Extend this sequence periodically; in other words, if
0 ≤ k ≤ q − 1 and l ∈ Z, define xk+lq = xk. The functional Ap,q for the variational
problem is the total length or perimeter of the polygon described above, namely,
connecting x0 with xp, then with x2 p, and so on, until xqp = x0. Now we use the
representation of the billiard map via the generating function (the negative of the
distance) given by (6.4.1). Let s0, s1, . . . , sq−1 be the values of the length parameter
corresponding to x0, xp, . . . , xp(q−1). Then

Ap,q(x0, x1, . . . , xq−1) = −(H(s0, s1) + H(s1, s2) + · · · + H(sq−1, s0)).

The negative of this functional is often called the action functional. Equation (6.4.2)
shows that three successive vertices form an orbit segment if and only if the partial
derivative of Ap,q with respect to the position of the middle vertex vanishes; hence,
critical points of the functional Ap,q on the space C p,q are exactly the configurations
corresponding to Birkhoff periodic orbits of type ( p, q).

14.1.2 Existence of Two Birkhoff Periodic Orbits

It remains to show that there are at least two critical points for the perimeter
functional Ap,q (see Figure 14.1.1). In the case of period-2 orbits, which corresponds
to p = 1, q = 2, these two critical points correspond to the diameter and the width
(see Section 6.4.5). The first orbit is obtained from a configuration corresponding
to the maximal value of the functional Ap,q. Since the space C p,q is not compact, an
argument is needed to show that such a maximal value is attained. This is done in
a predictable fashion: The space C p,q is extended to its natural closure in the space
of q-tuples of points, namely, one adds configurations where the order is not exact:
Several successive points may coincide. This space is compact, the functional Ap,q

naturally extends to it, and it reaches its maximal value. Now it is enough to show
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Figure 14.1.1. Two Birkhoff orbits.

that the maximal length cannot be achieved at an added degenerate configuration.
This is almost immediate in the case of period-3 orbits and also can be done in
an elementary fashion for the period-4 case, but for longer orbits some care is
required and we outline the argument in the next section, when the problem is
treated in greater generality. The idea is that for any degenerate configuration there
is a perturbation within the extended space that makes the polygon longer and,
in fact, makes it “less degenerate,” that is, with fewer vertices coinciding. See the
proof of Theorem 14.2.5 below for details.

Having found a maximum for the perimeter functional Ap,q we immediately
notice that the same configuration gives rise to q different maxima by moving the
marked point along the orbit. This observation is the key to the construction of
the second Birkhoff periodic orbit of type ( p, q), which is based on the minimax
or mountain pass principle. The name suggests a visualization of the argument:
To traverse the ridge between two peaks in a mountain chain with minimal loss of
altitude one has to pass through a saddle or a mountain pass. By changing the sign
of the functional represented in this picture by the altitude (and thus reverting to
the original generating function in the construction of the functional) one gets a
version for less adventurous mountaineers: To pass from one mountain valley to
another with minimal altitude gain one has to traverse a pass.

For billiards, the mountain pass argument works like this. Let
x = (x0, x1, . . . , xq−1) ∈ C p,q be a configuration at which Ap,q reaches its maxi-
mum. Consider smooth paths x(t) = (x0(t), x1(t), . . . , xq−1(t)), 0 ≤ t ≤ 1 in C p,q that
connect x with x′ = (x1, . . . , xq−1, x0), and such that xi(t) remains between xi and
xi+1 for i = 0, . . . , q − 1. On such a path the functional Ap,q is either constant [and
then trivially every configuration x(t) generates a different Birkhoff periodic orbit
of type ( p, q)] or, much more likely, attains a minimal value, which is strictly less
than the common value at x and x′. A simple differentiation again shows that if
such a value is maximal over all possible paths of the above-described type, then it
has to correspond to a critical point of the functional Ap,q (the mountain pass; see
Figure 14.1.2). The remaining issue is again the existence of such a path where the
minimum attains its maximal possible value. This is by far the most subtle part of
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Figure 14.1.2. A mountain pass.

the whole argument, although intuitively it looks quite convincing that it must be
more advantageous to move all vertices of the maximal configuration away rather
than freeze some of them. (See Figure 14.1.3.)

14.1.3 Lift to the Strip

Our alternative description of the billiard system is to parametrize the boundary
not by a simple closed curve, that is, not by a parameter in S1, but rather by a
periodic curve with period 1. Then, of course, every “physical” boundary point
corresponds to infinitely many parameter values, all of them integer translates of
each other. These are called lifts of this point, and all points (x, y) ∈ S := R × (−1, 1)
that project to a given point (s, r) ∈ C are called lifts of (s, r). This corresponds ex-
actly to an “unrolling” of the boundary circle that reverses the process described
in Section 2.6.2 (and there is a lift construction corresponding to Proposition 4.3.1).
The billiard map can still be unambiguously described in this model: Given
a parameter x ∈ R and an angle y, find the corresponding ray in the table. It

Figure 14.1.3. The minimax orbit.
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determines a new point and angle. [Alternatively, find the point (s, y) in C to which
(x, y) projects modulo 1 and then take its image under the billiard map φ.] For
the new point we choose the smallest possible parameter value x′ > x. [Or, for the
resulting point (s ′, y′), choose a point (x′, y′) where x′ = s ′ (mod 1).] This way we
obtain a continuous map (as is seen by letting y → 0 for a fixed s). From this new
map � : S → S, which is periodic in s and which we shall call the lift of φ, we can
easily recover φ itself by taking all boundary data modulo 1.

14.2 BIRKHOFF PERIODIC ORBITS AND AUBRY–MATHER

THEORY FOR TWIST MAPS

14.2.1 Twist Maps

Any cylinder map can be lifted to the strip R × (−1, 1) in a fashion completely
similar to that described above for the billiard map. To distinguish between a map
and its lift we always denote the cyclic coordinate of the cylinder by s and the first
coordinate on the strip by x.

Definition 14.2.1 A diffeomorphism φ : C → C of the open cylinder
C = S1 × (−1, 1) is said to be a twist map if

(1) it preserves orientation and preserves boundary components in the
sense that there exists an ε > 0 such that, if (x, y) ∈ S1 × (−1, ε − 1), then
φ(x, y) ∈ S1 × (−1, 0), and

(2) (∂/∂y)�1(x, y) > 0, where � = (�1, �2) is a lift of φ to S = R × (0, 1). See
Figure 14.2.1.

(3) The map φ extends to a homeomorphism φ (not necessarily smooth) of the
closed cylinder S1 × [−1, 1].

φ is said to be a differentiable twist if, in fact, for ε > 0 there is a δ > 0 such that
(∂/∂y)�1(x, y) > δ on Cε := S1 × [ε − 1, 1 − ε].

The last condition in the definition is not essential. However, it simplifies some of
the considerations like the definition of the generating function below. Furthermore,
it helps to quantify “the amount of twist” present in a twist map. The restriction of the
homeomorphism φ to the “bottom” circle S1 × {−1} has a rotation number defined
up to an integer (Definition 4.3.6). Fixing a lift of this restriction with rotation number

Figure 14.2.1. A twist map.
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ρ− defines a unique lift of φ; the restriction of this lift to the “top” circle S1 × {1} has a
uniquely defined rotation numberρ+. The interval [ρ−, ρ+] changes if the original lift
is chosen differently, but only by an integer translation. We call this interval the twist
interval of the twist map φ. This way the notion of the twist map can be defined for
any homeomorphism of the closed cylinder that preserves boundary components.

Basic geometry, (6.4.4), and Proposition 6.4.2 imply

Proposition 14.2.2 The billiard mapφ : C → C of the open cylinder C = S1 × (−1, 1)
is an area-preserving differentiable twist map with the additional property that a
lift � satisfies �1(x, y) −−−→

y→−1
x and �1(x, y) −−→

y→1
x + 1. Thus the twist interval for

any billiard map is [0, 1].

14.2.2 Generating Function for a Twist Map

Area-preserving twist maps share most essential features with billiard maps.
We begin by showing that every area-preserving differentiable twist map can
be represented via a smooth generating function in the form (6.4.3). To avoid
dealing with possible overlaps of domains in the cylinder and counting areas with
multiplicities, we describe the generating function for the lift.

Let �(x, y) = (x′, y′). Fixing x and x′, consider the “triangle” formed by the
vertical segment with the coordinate x′, the image under � of the vertical segment
with the coordinate x, and the segment of the bottom horizontal connecting the
bottom of the latter curve to that of the former. Let H(x, x′) be the area of this
domain. (See Figure 14.2.2.) Then

∂

∂s ′ H(x, x′) = y′.

Applying �−1 and using preservation of area gives

∂

∂s
H(x, x′) = −y.

While the definition of the function does not require the differentiable twist
condition, this is needed to ensure existence of the second derivatives ∂2 H/∂s2

and ∂2 H/∂s ′2. On the other hand, the twist condition guarantees that the mixed
partial derivative ∂2 H/∂s∂s ′ = −∂y/∂s ′ exists and is nonpositive. It is negative for
a differentiable twist map.

x x′

Φ({x} × (0, 1))

Figure 14.2.2. The generating function.
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The generating function is obviously uniquely defined up to an additive con-
stant. An alternative way of constructing it is as follows. By the twist condition y and
y′ are uniquely defined by the values of x and x′. The differentiable twist condition
implies that if y(x, x′) and y′(x, x′) are defined for a pair of values (x, x′), then they are
defined and differentiable in a neighborhood of that pair. In order to find H locally
one has to check the well-known exactness condition ∂y/∂x′ = ∂y′/∂x. This requires
a small calculation, which shows that exactness is equivalent to area-preservation.
Thus the generating function H is defined locally up to an additive constant, and
it can be extended to all admissible pairs (x, x′) by gluing the local definitions and
adjusting constants. One expects that H(x + 1, x′ + 1) − H(x, x′) is a constant, and
the fact that the map � preserves a strip implies that this constant vanishes.

The principal qualitative properties known for billiard maps extend to area-
preserving differentiable twist maps. One obvious advantage of using this notion
is that it covers many other important cases such as periodically forced oscillators,
neighborhoods of most elliptic points in general area-preserving maps, small
perturbations of Hamiltonian systems with two degrees of freedom, and outer
billiards. An outer billiard map is defined on points outside a convex curve by
drawing a tangent line and moving to the opposite point on it (equal distance
to the point of tangency). See Figure 14.2.3. From the intrinsic point of view, the
difference between considering, say, billiard maps directly or treating them as
twist maps is similar to the difference between the Lagrangian and Hamiltonian
formalisms in classical mechanics and, in fact, constitutes a particular case of
the discrete-time version of that duality. In general, the Hamiltonian approach
makes the dynamical (in the sense used in this book) nature of the problem more
apparent by considering dynamical systems in the phase space without making a
particular distinction between positions and momenta. The Lagrangian approach,
which separates the configuration space and divides phase space coordinates into
positions and momenta (or velocities), is sometimes useful because it provides a
nice geometric visualization of methods and results.

Figure 14.2.3. Outer billiard.
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14.2.3 Birkhoff Periodic Orbits

Birkhoff periodic orbits appeared in the previous section for billiards. Now we
discuss them in the context of twist maps.

Definition 14.2.3 Given a twist map φ and its lift �, a point w ∈ C is said to be a
Birkhoff periodic point of type ( p, q) and its orbit a Birkhoff periodic orbit of type
( p, q) if for a lift z ∈ S of w there exists a sequence ((xn, yn))n∈Z in S such that

(1) (x0, y0) = z,
(2) xn+1 > xn (n ∈ N),
(3) (xn+q, yn+q) = (xn + 1, yn),
(4) (xn+p, yn+p) = �(xn, yn).

Remark 14.2.4 The sequence (xn, yn) does not parametrize the orbit according to
the “dynamical ordering” induced by passing from (x, y) to �(x, y), but rather in the
“geometric ordering” of its projection to S1 (see Section 14.1.1). In fact, this order
coincides with the ordering of iterates of the rational rotation Rp/q on the circle.
Moreover, the projection of a Birkhoff periodic orbit of type ( p, q) to the circle is a
finite set, and the map induced by projecting � can be extended piecewise linearly
to a homeomorphism of the circle.

Now we give the more technical discussion of the existence of the first (action-
minimizing) Birkhoff periodic orbit promised in Section 14.1.1, including the
explanation of why the minimum is achieved inside the space of ( p, q)-states.

Theorem 14.2.5 Let φ : S → S be a differentiable twist map. If p, q ∈ N are relatively
prime and p/q lies in the twist interval of φ, then there is a Birkhoff periodic orbit of
type ( p, q) for φ.

Proof Take a lift � of φ such that p/q lies within the twist interval for that lift. Denote
the restrictions of � to the “bottom” R × {−1} and the “top” R × {−1} by �− and
�+, correspondingly. We obtain the Birkhoff periodic orbit by finding the sequence
of its x-coordinates as a global minimum of an appropriate action defined on a
space of sequences of points in R. As reasonable candidates for x-coordinates of
an orbit consider the following space &. First, let &̃ be the set of nondecreasing
sequences (xn)n∈Z of real numbers such that

xn+q = xn + 1(14.2.1)

and

�(xn × [ε − 1, 1 − ε]) ∩ (xn+p × [ε − 1, 1 − ε]) �= ∅,(14.2.2)

where ε > 0 is as follows: Since p/q belongs to the twist interval of �, there exists δ ∈
(0, 1) such that xk+1 ≤ �−(xk) + δ (k = 0, 1, . . . , q − 1) implies xq < x0 + p and simi-
larly, if xk+1 ≥ �+(xk) − δ (k = 0, 1, . . . , q − 1), then xq > x0 + p. Take ε > 0 such that

q−1⋃
i=0

�i(R × ((−1, ε − 1] ∪ [1 − ε, 1))) ⊂ R × ((−1, δ − 1] ∪ [1 − δ, 1)).

We call these sequences ordered states of type ( p, q).
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Thus any orbit on S whose x-coordinates satisfy (14.2.1) and (14.2.2) has y-
coordinates in (ε − 1, 1 − ε). Define an equivalence relation ∼ on &̃ by x ∼ x′ if xi −
x′

i = k for all i and some fixed k ∈ Z. Let & := &̃/ ∼ be the set of equivalence classes.
Condition (14.2.1) is periodicity, and, since p/q belongs to the twist interval of �,

condition (14.2.2) ensures that there is a point (xn, yn) with �(xn, yn) = (xn+p, yn+p)
for some yn+p. A sequence satisfying (14.2.1) and (14.2.2) is usually not the
x-projection of an orbit, but we will find a sequence that is, and the corresponding
orbit is the desired Birkhoff periodic orbit of type ( p, q).

Each sequence has only q “independent variables” x0, . . . , xq−1, say, by (14.2.1),
that is, &̃ is naturally embedded in Rq. Condition (14.2.2) applied inductively shows
that {xn − x0}q−1

n=0 is bounded for any x ∈ &̃, so & is a closed and bounded, hence
compact, subset of Rq/Z ∼ Rq−1 × S1.

Define the action functional

L(s) :=
q−1∑
n=0

H(xn, xn+p)

on &, where H is the generating function. Since p and q are relatively prime,
it follows from (14.2.1) that L(s) = ∑q−1

n=0 H(xj, xj+np) for any j ∈ Z. Since L is
invariant under the integer shift, it is defined on the compact set & and hence
attains its maximum and minimum, but it could be on the boundary. We show that
the minimum corresponds to a Birkhoff periodic orbit of type ( p, q) and deduce
that it is also not on the boundary.

Consider any sequence x ∈ &. It is not constant by (14.2.1). So for any m ∈ Z there
are n ∈ Z and k ≥ 0 such that n ≤ m ≤ n + k and xn−1 < xn = · · · = xn+k < xn+k+1. (If
k > 0, then x is a boundary point of &̃.) Define h1(x, x′) and h2(x, x′) by

�(x, h2(x, x′)) = (x′, h1(x, x′)).(14.2.3)

Since x is nondecreasing, the twist condition (Definition 14.2.1.(2)) implies

ε − 1 ≤ h1(xn+k−p, xn+k) ≤ · · · ≤ h1(xn−p, xn) ≤ 1 − ε,

ε − 1 ≤ h2(xn, xn+p) ≤ · · · ≤ h2(xn+k, xn+k+p) ≤ 1 − ε,

so either

h2(xn, xn+p) < h1(xn−p, xn)(14.2.4)

or

h1(xn+k−p, xn+k) < h2(xn+k, xn+k+p)(14.2.5)

or

h1(xn+l−p, xn+l) = h2(xn+l, xn+l+p) for l ∈ {0, . . . , k}.(14.2.6)

For case (14.2.4) note that considering s = xn as an independent variable and
keeping all other xi fixed we have

d
ds |s=xn

L(x) = d
ds |s=xn

q−1∑
i=0

H(xi, xi+p) = d
ds |s=xn

(H(xn−p, s) + H(s, xn+p))

= h1(xn−p, xn) − h2(xn, xn+p) > 0,

and that by (14.2.4) we can decrease xn – and hence L(x) – slightly, without leaving
&, so x is not a minimum. For case (14.2.5) we find similarly that setting s = xn+k
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we get d/ds|s=xn+k
L(x) < 0, so by (14.2.5) we can increase xn+k slightly – and hence

decrease L(x) slightly – without leaving &, so s is not a minimum. Thus if x = (xm)m∈Z

is a minimum, then for all m ∈ Z the analysis above leads to (14.2.6). Therefore

h1(xm−p, xm) = h2(xm, xm+p) for all m ∈ Z.(14.2.7)

Setting (sn, yn) = (xn, h1xn−p, xn)) now yields a periodic orbit.
Now yn ∈ (ε − 1, 1 − ε) for all n ∈ Z, since having yn ≤ ε − 1 for any n ∈ Z implies

yn < δ for all n ∈ Z, which is incompatible with (14.2.1) and (14.2.2) by the choice
of δ. Thus, to show that (xn, yn) is a Birkhoff periodic orbit of type ( p, q) and s is not
on the boundary of &, it suffices to show that sn = xn is strictly increasing.

Suppose sn = sn+1. By choosing a different n, if necessary, we may assume
that either sn−1 < sn or sn+1 < sn+2 (since s is not constant). Then, since s is
nondecreasing, the twist condition and (14.2.7) yield yn+1 = h1(sn−p+1, sn+1) ≤
h1(sn−p, sn+1) ≤ h1(sn−p, sn) = yn = h2(sn, sn+p) ≤ h2(sn, sn+p+1) = yn+1 with at least
one strict inequality, which is absurd.

Thus we have found a Birkhoff periodic orbit of type ( p, q) such that the
sequence of its x-coordinates is a global minimum of L in the interior of &. �

The construction of the second (minimax) Birkhoff periodic orbit uses a version
of the mountain pass principle applied to the same functional restricted to the
space of states that stay between the state defining a maximal Birkhoff periodic
orbit and its shift. For the discussion of nonperiodic orbits in the rest of this chapter
only the existence of one Birkhoff periodic orbit is essential.

14.2.4 Ordered Orbits

In this section we prove that any order-preserving orbit of a twist map forms part of
the graph of a Lipschitz function whose Lipschitz constant can be taken bounded
on any closed annulus in S. As in Section 14.2.1, we frequently work with lifts.

Definition 14.2.6 (Compare Definition 14.2.3.) Consider a twist diffeomor-
phism φ : C → C . An orbit segment (or orbit) {(xm, ym), . . . , (xn, yn)} of φ with
−∞ ≤ m < n ≤ ∞, which may be infinite in one or both directions, is said to be
ordered or order-preserving if xi �= xj when i �= j and (i, j) �= (n, m) and φ preserves
the cyclic ordering of the x-coordinates; that is, if xi, xj, xk, where i, j, k < n, are
positively ordered (with respect to a chosen orientation on S1), then xi+1, xj+1, xk+1

are ordered in the same way

Lemma 14.2.7 Let � : R × (−1, 1) → R × (−1, 1) be the lift of a twist diffeo-
morphism φ : C → C (not necessarily area-preserving). If (xi, yi) = F i(x0, y0) and
(x′

i, y′
i) = F i(x′

0, y′
0) and x′

i > xi for i = −1, 0, 1, then there exists M ∈ R such that
|y′

0 − y0| < M|x′
0 − x0|. M can be chosen uniformly on any closed annulus in C.

Proof Suppose first that y′
0 < y0. If (x̃, ỹ) = �(x′

0, y0), then the twist condition yields

x̃ > x′
1 + c(y0 − y′

0),

where c is bounded away from zero on any closed annulus in C . On the other
hand, differentiability of φ implies that there is a constant L (bounded on compact
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annuli in C) such that

x′
1 > x1 > x̃ − L(x′

0 − x0).

Taking M = Lc−1 we obtain the claim. If y′
0 > y0, repeat the same argument with

φ−1 instead of φ. �

Corollary 14.2.8 Consider an area-preserving twist map φ : C → C and an order-
preserving orbit segment {(xm, ym), . . . , (xn, yn)} with −∞ ≤ m < n ≤ ∞ of φ that is
contained in a closed annulus in C. Then |yi − yj | < M|xi − xj | for all i, j such that
m < i, j < n.

Proof Apply Lemma 14.2.7 to the triples (i − 1, i, i + 1) and ( j − 1, j, j + 1). �

This corollary shows that the closure E of an ordered orbit is contained in
the graph of a Lipschitz function ϕ : S1 → (−1, 1). Note that φ�E

projects to a

homeomorphism of the projection of E to S1, which we can also extend linearly
into the gaps of that set to obtain a circle homeomorphism. We can thus define the
rotation number of an ordered orbit to be the rotation number of this induced
circle homeomorphism. So the intrinsic dynamics of ordered orbits of a twist
map of the annulus is essentially one-dimensional. Now we will see that for every
rotation number from the twist interval of a twist map some such one-dimensional
dynamics is represented the twist map.

14.2.5 Aubry–Mather Sets

Our next goal is to show that every irrational number from the twist interval
is the rotation number of an ordered orbit. We will furthermore see that such
orbits are not isolated like Birkhoff periodic orbits; there are many of them for
each rotation number. The construction of such orbits can be carried out by a
rather sophisticated version of the variational approach applied to an appropriate
infinite-dimensional space. This is a complicated but powerful method, whose
further development yields lots of additional information both about ordered
orbits and about more complicated types of orbits. However, it is quite remarkable
that fairly simple continuity arguments yield ordered periodic orbits with irrational
rotation numbers as limits of Birkhoff periodic orbits. Thus the results of the rest of
this section (with the exception of Theorem 14.2.15) do not use preservation of area
directly but only the existence of Birkhoff periodic orbits (which can be shown under
weaker assumptions).

Definition 14.2.9 Let φ : C → C be a twist map. A closed invariant set E ⊂ C is
called an ordered set if it projects one-to-one to a subset of the circle and φ preserves
the cyclic order on E . An Aubry–Mather set is a minimal ordered invariant set
projecting one-to-one on a Cantor set of S1.

Any orbit in an ordered set is an ordered orbit. The complement of the projection
of an Aubry–Mather set is the union of countably many intervals on the circle.
We call those intervals the gaps of the Aubry–Mather set. The endpoints of each
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interval are the projections of points on the Aubry–Mather set which we shall also
call endpoints. Corollary 14.2.8 immediately yields:

Corollary 14.2.10 Let φ : C → C be a twist diffeomorphism and A an Aubry–Mather
set for φ. Then there is a Lipschitz-continuous function ϕ : S1 → (−1, 1) whose graph
contains A.

Proof Corollary 14.2.8 gives us such a function defined in the projection of A to S1.
Extending it linearly through the gaps of that Cantor set gives a function with the
same Lipschitz constant. �

We define the rotation number of an Aubry–Mather set or an invariant circle to
be the rotation number of any of its orbits as defined at the end of Section 14.2.4.
We can now prove one of the central results in the theory of twist maps.

Theorem 14.2.11 Let φ : C → C be an area-preserving differentiable twist map. For
any irrational number α from the twist interval of φ there exists an Aubry–Mather
set A with rotation number α or an invariant circle graph(ϕ), where ϕ is a Lipschitz
function, with rotation number α.

Proof Let pn/qn be a sequence of rationals in lowest terms that approximates α.
Apply Theorem 14.2.5 and take any sequence wn of Birkhoff periodic orbits of
type ( pn, qn). According to Corollary 14.2.8, we can construct a Lipschitz function
ϕn : S1 → (−1, 1) whose graph contains wn. By an argument similar to the one that
yielded (14.2.2), we observe that all of these orbits are contained in a closed annulus
in C , so the Lipschitz constant can be chosen independently of n. Using precom-
pactness of this equicontinuous family of functions (the Arzelá–Ascoli Theorem) we
may without loss of generality assume that these functions converge to a Lipschitz
function ϕ. The graph of ϕ may not be φ-invariant, but it always contains a closed
φ-invariant set A, which is obtained as follows. The domain ofϕn contains the projec-
tion of the Birkhoff periodic orbit of type ( pn, qn) to S1. These Birkhoff periodic orbits
of type ( pn, qn) are closed φ-invariant subsets of C , and thus in the topology of the
Hausdorff metric (see Definition A.1.28) they have an accumulation point A ⊂ C .
The set A obviously belongs to the graph of ϕ and is φ-invariant by Lemma A.1.27.
Furthermore, φ preserves the cyclic ordering of A (since this is true for the Birkhoff
periodic orbit wn and is a closed property). If we denote by φn the extensions to S1

of the projections of φ from the Birkhoff periodic orbits of type ( pn, qn) to S1, and
by φα the extension of the projection of φ�A

to S1, then φn → φα uniformly. Thus

by continuity of the rotation number in the C0-topology (Proposition 4.4.5) the
rotation number of A is α. Consider now the minimal set of φα . By the dichotomy
of Proposition 4.3.19 it is either the whole circle or it is an invariant Cantor set. In
the latter case the image of this Cantor set under Id ×ϕ is then an Aubry–Mather set
with rotation number α. �

Remark 14.2.12 The Aubry–Mather set obtained in Theorem 14.2.11 may be a sub-
set of an invariant circle for φ. However, if both the map and the invariant circle are
C2, then the restriction of the map to the circle is a C2 diffeomorphism of the circle,
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and by the Denjoy Theorem (see Section 4.4.3) it is topologically transitive. Thus for
an Aubry–Mather set to lie on an invariant circle either the map, or the circle, or both
should fail to be C2. Michael Herman found a remarkable construction by which
he managed to embed Denjoy-type examples of nontransitive C2−ε (ε > 0) circle
diffeomorphisms into C3−ε area-preserving differentiable twist maps, thus gaining
an extra derivative over obvious constructions. It is not known however whether a
C3 diffeomorphism can have an invariant circle with an Aubry–Mather set.

The Hausdorff limit of the Birkhoff periodic orbits of type ( pn, qn) may be larger
than an Aubry–Mather set, although it is always an order-preserving set. If it is not
a minimal set, then it contains a set of orbits that are homoclinic to the Aubry–
Mather set. By taking Hausdorff limits of the minimax Birkhoff periodic orbits and
using some careful variational estimates one can show that such orbits always
exist.

Replacing the Birkhoff periodic orbits wn in the preceding arguments by
arbitrary invariant ordered sets that converge in the Hausdorff metric, we obtain
the following:

Proposition 14.2.13 The rotation number of an ordered invariant set is continuous
in the topology of the Hausdorff metric (see Definition 4.1.25).

This, in turn, implies

Corollary 14.2.14 The rotation number of ordered orbits is a continuous function
of the initial condition.

Proof Let xn → x be a convergent sequence of points with ordered orbits. Without
loss of generality we may assume that the rotation numbers αn of the orbits of
the xn converge. Consider the collection of orbits of the xn. By compactness of the
topology of the Hausdorff metric (see Lemma A.1.26) it contains a subsequence
that converges to an ordered set that contains the orbit closure of x. Thus, by
Proposition 14.2.13, the limit of the rotation numbers of the orbit of xn is the
rotation number of the orbit of x. �

We can now show that for any irrational number there is at most one invariant
circle with that rotation number.

Theorem 14.2.15 Let φ : C → C be an area-preserving twist map and α an irra-
tional number in the twist interval. Then φ has at most one invariant circle of the
form graph(ϕ) with rotation number α. If there is such an invariant circle, then φ

has no Aubry–Mather sets with rotation number α outside this circle, and hence has
at most one such Aubry–Mather set.

Remark 14.2.16 It is, in fact, possible for a twist map to have several invariant
circles with the same rational rotation number. This is the case in the elliptic billiard
(see Figure 6.3.9), where two branches of heteroclinic loops form a pair of invariant
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circles with rotation number 1/2. A time-t map (for small t) of the mathematical
pendulum (Section 6.2.2) exhibits a similar phenomenon for rotation number zero.

Lemma 14.2.17 Suppose φ has an invariant circle R [of the form graph(ϕ)] with
rotation number α. Then every order-preserving orbit whose closure is disjoint from
R has rotation number different from α.

Proof The circle R divides the annulus C into an upper and a lower component. Sup-
pose x is a point in the upper component of C � R whose orbit is order-preserving
and bounded away from R. Then φ restricted to the orbit of x projects to a map of
a subset E of the circle S1. We want to extend it to a map φ2 of S1, which is strictly
ahead (in the sense of Definition 4.4.6) of the map φ1 induced by φ�R

, that is, φ1 ≺ φ2.
This relation holds on E already, so we need only take care to extend carefully
from E . Extending to the closure of E does not change the strict inequalities, since
we have the twist condition and the assumption that the orbit of x is bounded away
from R. To define φ2 on the intervals complementary to Ē denote the endpoints of
such an interval by x1 and x2 and let δ := min{φ2(x1) − φ1(x1), φ2(x2) − φ1(x2)}. Set
φ2(tx1 + (1 − t)x2) = max(tφ2(x1) + (1 − t)φ2(x2), δ + φ1(tx1 + (1 − t)x2)). Then φ2 is
monotone and φ1 ≺ φ2. Consequently, Proposition 4.4.9 implies that the rotation
number of φ2 is greater than α. Likewise, there cannot be an order-preserving orbit
of rotation number α in the lower component of C � R. �

Proof of Theorem 14.2.15 Suppose there are two invariant circles with rotation
number α. Their intersection is invariant, so if at least one of them is transitive, then
they are disjoint, which is impossible by the lemma. Otherwise the intersection
contains a common Aubry–Mather set A and the two circles form the graphs of
two distinct functions ϕ1 and ϕ2, which coincide on the projection of A. The graphs
of both max(ϕ1, ϕ2) and min(ϕ1, ϕ2) are invariant, and hence so is the area between
these graphs. But the latter area has to have infinitely many connected components,
since it projects into the nonrecurrent complementary intervals to the projection
of the Aubry–Mather set. Thus we obtain an open disk with pairwise disjoint
images, which is impossible by area-preservation (see the Poincaré Recurrence
Theorem 6.1.6). Here we use irrationality of the rotation number, without which
there could be finitely many components that are permuted by φ.

The lemma also yields the impossibility of having an Aubry–Mather set
of rotation number α outside an invariant circle of rotation number α. �

Remark 14.2.18 In the absence of an invariant circle with rotation number α there
may be many Aubry–Mather sets with that rotation number. In fact, often there are
multiparameter families of such sets.1

14.2.6 Homoclinic and Heteroclinic Orbits

We now turn the process around and approximate a rational number by irrational
ones and consider the limits of the corresponding Aubry–Mather sets in order to
construct nonperiodic orbits with rational rotation number.

1 John Mather, More Denjoy Minimal Sets for Area Preserving Diffeomorphisms, Commentarii Math-
ematici Helvetici 60, no. 4 (1985), 508–557.
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Proposition 14.2.19 Let φ : C → C be an area-preserving twist map and p/q a
rational number in the twist interval. Then there exists an order-preserving closed
φ-invariant set with rotation number p/q that is either an invariant circle consisting
of periodic orbits or contains nonperiodic points. Moreover in the latter case the two
endpoints of each complementary interval are nonperiodic.

Proof Let (αn)n∈N be a sequence of irrational numbers in the twist interval that
approximates p/q. Consider the corresponding invariant minimal order-preserving
sets An with rotation number αn. Without loss of generality we may assume that
the An’s converge to a set A in the topology of the Hausdorff metric as n → ∞. A
is clearly φ-invariant and ordered. If infinitely many of the An’s are circles, then A
is also a circle and by continuity of the rotation number the restriction of φ to this
circle has rotation number p/q. By the classification of circle maps with rational
rotation number (see Proposition 4.3.12) we are done in this case. So we may
assume that all An’s are Aubry–Mather sets. To understand the dynamics of A we
consider the gaps, that is, the intervals in S1 complementary to the projection of
A to S1. Each of these gaps G ⊂ S1 has a well-defined length l(G), and we want to
show that the two endpoints of such a gap are not periodic.

A gap G of A is the limit of the corresponding gaps Gn of An in the Hausdorff
metric. Denote by φn an extension to a circle homeomorphism of the projection
of φ�An

to S1 and by φ0 the same extension corresponding to φ�A
. Since φn has

irrational rotation number, the images of the gap Gn under the iterates of φn are
pairwise disjoint, so

∑
m∈N

l( f m
n (Gn)) ≤ 1. If both endpoints of G are periodic, then

the gap G is periodic, that is,
∑

n∈N
l(φ0(G)) diverges. But l(φm

n Gn) → l(φm
0 G) for all

m ∈ N, which gives a contradiction. Thus one of the endpoints of G is nonperiodic.
The other endpoint of the gap G must then also be nonperiodic, since otherwise

φ
q
0 (G) is a gap that intersects G nontrivially without coinciding with G. �

We can thus describe the structure of such an invariant set in the generic case
when it contains only finitely many periodic orbits:

Corollary 14.2.20 If a closed order-preserving φ-invariant set A with rational
rotation number p/q contains only finitely many periodic orbits, then there is a
complete set of heteroclinic connections in the following way: If γ1, . . . , γs denote the
periodic orbits in A, ordered according to the induced cyclic ordering of the circle,
then there are heteroclinic orbits σ1, . . . , σn such that either

γ1 = ω(σs) = α(σ1),

γ2 = ω(σ1) = α(σ2),

...

γs = ω(σs−1) = α(σs)

or that the same situation holds with α and ω interchanged. Here α and ω denote
the α- and ω-limits sets of an orbit (see Definition 4.3.18). If s = 1, the orbit σ1 is, of
course, a homoclinic one.
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14.3 INVARIANT CIRCLES AND REGIONS OF INSTABILITY

14.3.1 Global Structure of Invariant Circles

In the previous section we encountered invariant curves for a twist map that
appear as limits of Birkhoff periodic orbits and hence are graphs of Lipschitz maps
S1 → [−1, 1]. The existence of such a circle is an alternative to the existence of
a Cantor-like Aubry–Mather set. While in general these two possibilies are not
mutually exclusive, they often are, namely, if the circle has dense orbits. Of course,
the basic difference between an invariant circle and an Aubry–Mather set is that the
former separates the phase space. Since the boundary components are preserved,
any orbit that starts on one side of an invariant circle stays there forever. Thus the
existence of even a single invariant circle provides substantial information about
the behavior of all orbits. It is natural to ask whether there are invariant sets other
than Lipschitz graphs that separate the phase space. Such sets may appear around
certain periodic orbits, as we already saw in the case of the elliptic billiard and the
pairs of invariant curves surrounding the stable period-2 orbits, which correspond
to hyperbolas as caustics (Section 6.3.5.3). However, if we only consider sets that
separate the cylinder in such a way that the two boundary components lie in
different pieces, then the following classical result of Birkhoff shows that this only
happens due to the presence of invariant curves that are Lipschitz graphs.

Theorem 14.3.12 If U is an open invariant set of a differentiable twist map φ that
contains a neighborhood of the “bottom” S1 × {−1} and has connected boundary,
then the boundary of U is the graph of a Lipschitz function.

The dynamics of a twist map on the union of invariant circles is reason-
ably well understood in terms of the dynamics of circle maps (Section 4.3).
Thus one needs to understand what happens outside of the union of invariant
circles.

First consider a simple example. For the billiard in an ellipse there is exactly one
invariant circle with any rotation number other than 1/2; such circles correspond
to confocal ellipses as caustics. For the rotation number 1/2 there are two invariant
circles corresponding to the orbits passing through the foci: In the phase space
picture (Figure 6.3.9) they are formed by the upper and lower branches of the
separatrices of the hyperbolic orbit of period 2 (the larger axis or diameter). The
rest are orbits circling around the elliptic orbit of period 2 (the smaller axis),
corresponding to the hyperbolas as caustics. Such a picture is only possible
because an invariant circle with rational rotation number does not have to be
unique. By Theorem 14.2.15 there is at most one invariant circle with a given
irrational rotation number, so such invariant circles are ordered by rotation
numbers. Each circle lies completely within one component of the complement
to any other circle. Furthermore, the limit of a sequence of invariant circles is
an invariant circle and the rotation number is continuous on the set of invariant
circles.

2 Katok and Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Theorem 13.2.13.
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14.3.2 Regions of Instability

Thus, each complementary interval [a, b] to the set of rotation numbers of invari-
ant circles generates a unique region whose boundary components are disjoint
invariant circles with rotation numbers a and b, correspondingly. Such a region is
called a region of instability.

We showed that there are billiard maps with no caustics (Theorem 6.4.7) and
hence without invariant curves. For such maps the whole cylinder is a single region
of instability, and hence for every irrational number between 0 and 1 there is a
nowhere-dense Aubry–Mather set.

A simple coordinate change allows us to consider the restriction of the twist
map to a region of instability as a twist map whose twist interval is the interval
between the rotation number of the two boundary invariant circles. Thus, for
any rational (correspondingly irrational) number from that interval there are
necessarily Birkhoff periodic orbits (correspondingly Aubry–Mather sets) inside
the region of instability. There are no “barriers” in the form of invariant circles that
prevent orbits from wandering around the region, in particular bouncing between
the boundary components.

1. Difficulties Beyond Comprehension. The dynamics in the regions of instability
is complicated. Many specific orbits can be found either for all cases or in “typical”
situations, and there are plausible conjectures about the behavior of most orbits.
(“Most” may mean either orbits covering an open dense set or a complement to
a null set.) It seems that a rigorous analysis of typical orbits is beyond the reach
of currently available or conceivable methods even under the most optimistic
projections. The difficulty of this problem likely exceeds that of some famous prob-
lems with huge price tags (such as the Poincaré conjecture in three-dimensional
topology) and no substantial progress is to be expected during the twenty-first
century.

2. Entropy and Horseshoes. Disallowing exponential growth puts severe
restrictions on the dynamics of twist maps.

Theorem 14.3.2 3 A twist map with zero topological entropy has invariant circles
for any rotation number in the twist interval; in particular, there are no regions of
instability.

Using Theorem 12.4.1 we obtain

Corollary 14.3.3 For any C2 twist diffeomorphism and any region of instability there
is a horseshoe and hence a hyperbolic periodic point with a transverse homoclinic
point in that region.

Thus all complexity compatible with area preservation and discussed in
Chapter 12 appears within any region of instability.

3 Sigurd B. Angenent, A Remark on The Topological Entropy and Invariant Circles of an Area Pre-
serving Twistmap, in Twist Mappings and Their Applications, Springer–Verlag, New York, 1992,
pp. 1–5.
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3. Special Orbits by Variational Methods. Further developments of the vari-
ational approach for twist maps involve critical points of properly constructed
action functionals on carefully and often ingeniously constructed spaces of states
satisfying conditions that preclude such simple solutions as ordered orbits. This
approach has been developed to great depth by John Mather.

It yields orbits that travel from one boundary component of a region of insta-
bility to the other in either direction, that is, orbits homoclinic and heteroclinic
to the boundary components, and orbits that oscillate between the boundary
components in a prescribed fashion. Furthermore, there are heteroclinic orbits for
pairs of Aubry–Mather sets with different rotation numbers and more complicated
orbits that wander among different collections of such sets in a prescribed fashion.
And all of this wealth only covers a set that is expected to be always thin both
metrically (a null set) and topologically (nowhere dense).

4. Complexity in Typical Situations. There are dynamical restrictions on the
behavior of Birkhoff periodic orbits. For example, the maximal orbits cannot
be elliptic, that is, have a pair of complex conjugate eigenvalues. Such orbits, if
nondegenerate, are hyperbolic, typically with heteroclinic tangles between differ-
ent points on the orbit. Thus the horseshoe structure that always appears due to
positivity of entropy in this case shows up in a rather specific form (Theorem 12.3.1).

The minimax Birkhoff periodic orbits are often elliptic. It is a widely held illusion,
especially among scientists and engineers dealing with models that produce twist or
similar maps, that barring a degeneracy (a double eigenvalue one) these orbits are
always elliptic. This is not the case. The minimax orbits may be hyperbolic but with
negative eigenvalues, as in the famous example of the billiard in the “stadium” shown
in Figure 14.1.3.4 Still, ellipticity of the minimax orbits is a common phenomenon,
for example, it happens for small perturbations of integrable twist maps f (x, y) =
(x + g(y), y). Elliptic periodic orbits typically produce islands of relative stability due
to the fact that around such an orbit the period map in properly chosen coordinates
becomes a twist and in fact has invariant curves surrounding the orbits (imagine
what happens in the areas of instability for that little twist map and then try to iter-
ate the picture in your imagination!). These islands are thus excluded at least from
the global complexity play since, for example, all of the wealth of variationally con-
struced orbits as well as heteroclinic tangles described above lie outside the islands.

5. The Impossible Problem of Peaceful Coexistence. Thus the orbit picture for
a “typical” area-preserving twist map in a region of instability emerges. There are
elliptic periodic points surrounded by islands of relative stability from which orbits
cannot escape. There are also hyperbolic points with homoclinic and heteroclinic
tangles as well as other orbits that exhibit hyperbolic behavior in various ways.
The set of questions referred to above as difficult beyond comprehension concern

4 Katok and Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Section 9.2.



book 0521583047 April 21, 2003 16:55 Char Count= 0

360 14. Variational Methods, Twist Maps, Closed Geodesics

the prevalence of either type of behavior and the mechanisms of their forced
coexistence. Here is a sample.

(1) Is the union of elliptic islands ever (or typically) dense?
(2) Is the complement to the union of elliptic islands ever (or typically) a null set?
(3) Does the closure of the stable manifold of a hyperbolic Birkhoff peri-

odic orbit ever (or typically, or always under natural nondegeneracy
assumptions) contain an open set?

(4) Is the union of closures from the previous item ever (or typically, or always)
a null set?

(5) Is the Kolmogorov entropy of a C2 area-preserving twist map ever (or
typically) positive?

14.4 PERIODIC POINTS FOR MAPS OF THE CYLINDER

14.4.1 Cylinder Maps with Weak Twist Conditions

Part of the theory outlined in the previous section can be generalized to maps with
much weaker twist-like properties. This part concerns the existence of infinitely
many periodic points of growing periods. A classical result in this direction is
much older than the theory of twist maps. It was formulated and proved in some
particular cases by Poincaré shortly before his death. Birkhoff, who realized the
importance of the results in many problems of classical mechanics and geometry,
gave a rigorous proof.

Remember that the notion of twist interval is defined in Section 14.2.1 for any
homeomorphism of a closed cylinder that preserves boundary components. We
assume the latter condition throughout this section without restating it.

Theorem 14.4.1 (Poincaré’s Last Geometric Theorem)5 Let f be an area-preserving
homeomophism of a closed cylinder whose twist interval contains zero in the interior.
Then f has a fixed point inside the cylinder

Applying this theorem to a properly chosen extension of an iterate of the map
one obtains a statement about the existence of periodic orbits, which, while not
necessarily ordered, still possess some features of Birkhoff orbits.

Corollary 14.4.2 Let p and q be relatively prime integers, q > 0, and f be an
area-preserving homeomophism of a closed cylinder whose twist interval contains
the number p/q in the interior. Then f has a periodic point (s, y) of period q such that
for some lift F of f and any lift (x, y) of the point (s, y) one has F q(x, y) = (x + p, q).

Of course in the absence of any control inside the cylinder the limit process
described in Section 14.2 does not work, and hence there is no natural extension
of this result to irrational rotation numbers.

5 George David Birkhoff, Dynamical Systems, American Mathematical Society Colloquium
Publications 9.
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In the 1980s, John Franks generalized the last result using a much weaker prop-
erty than rotation numbers of the boundary components being on the different
sides of p/q. In fact, his condition is the weakest twist-like condition imaginable.
While Franks also assumes a weaker recurrence property than preservation of area,
we retain the latter assumption.

Theorem 14.4.3 Let p and q be relatively prime integers, q > 0, f be an area-
preserving homeomophism of a closed cylinder, and F be a lift of f . Assume that
there are points u and v on the universal cover such that

lim
n→∞

F n(u) − u
n

≤ p
q

≤ lim
n→∞

F n(v) − v
n

.(14.4.1)

Then f has a periodic point of period q such that any lift w of that point satisfies
F q(w) = w + (0, p).

The solution to Problem 4.3.8 uses a condition that is stronger than (14.4.1) but
of a similar type.

If u, v are points on the universal cover and

lim
n→∞

F n(u) − u
n

< lim
n→∞

F n(v) − v
n

,(14.4.2)

then there are infinitely many different rational numbers satisfying (14.4.1), and
hence f has infinitely many different periodic orbits.

14.4.2 Periodic Points Without Twist

Thus, having only finitely many (or no) periodic points implies that (14.4.2) does
not hold. This is equivalent to all points in the annulus having the same rotation
number, that is,

lim
n→∞

F n(v) − v
n

exists for every point v on the universal cover and is independent of v. (In fact,
independence of v follows from existence for all v.) We may then call this the
rotation number of f . If it is irrational, there are no periodic points at all. If it
is rational, then there is at least one periodic orbit by Theorem 14.4.3 applied
to a boundary circle, but Franks made a remarkable improvement on the last
conclusion:

Theorem 14.4.4 An area-preserving homeomorphism of a closed annulus with
rational rotation number has infinitely many periodic points in the interior.

Therefore, having only finitely many periodic points forces irrational rotation
number and hence no periodic points at all, which leads to the final conclusion of
the Franks theory.
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Theorem 14.4.56 If a homeomorphism of a closed annulus that preserves area and
boundary components has at least one (fixed or) periodic point, then it has infinitely
many periodic points in the interior.

This is the main dynamical ingredient in the proof of existence of infinitely
many closed geodesics on any 2-sphere, which is discussed in the next section.

In Theorem 14.4.4 it is not guaranteed that there are points of arbitrarily high
period, since the identity map has only fixed points. As it turns out, this is the only
exception: Any other map has periodic points whose minimal period is arbitrarily
high.7

Proof outline of Theorem 14.4.4 First, assume that there are only finitely many peri-
odic points. Taking an iterate one can make all of these points fixed and the rotation
number equal to zero. Deleting those points, one gets a noncompact surface S of
finite genus and an area-preserving homeomorphism of it without fixed points.
Using an important tool from low-dimensional topology, the classification (due to
William Thurston) of surface homeomorphisms up to homotopy, one can make sure
that, by passing to another iterate, the homeomorphism can be made homotopic to
the identity, that is, that it can be continuously deformed (within the surface) to the
identity map. Now lift the homeomorphism (with the fixed points deleted) to the
universal cover of S (which looks quite different from the strip). One can make sense
of the rotation number in this setting, and it turns out to be zero. This allows us to
produce a perturbation of the map that has a periodic point with zero rotation num-
ber in the interior. This contradicts a deep result by Michael Handel, which states
that in the absence of fixed points any periodic point must have a nonzero rotation
number. �

14.5 GEODESICS ON THE SPHERE

Section 1.3.3 presented the problem of finding closed geodesics on a (deformed)
sphere. Put differently, one can consider the motion of particles confined to (the
surface of) a dented sphere and moving without any external forces (Section 6.2.8).
The specific question is whether there are infinitely many different ways of flying
around in a periodic motion. That this is the case has been believed for a long
time, but it was only proved in full generality relatively recently. The proof involves
a unique blend of techniques from differential geometry, variational calculus,
low-dimensional topology, and dynamical systems. While we cannot present it
here, we can give an idea of how several dynamical ingredients come into play.

We begin with a quick historical account of the geodesics problem. The
existence of at least one closed geodesic is not particularly specific to the sphere (it
works for any compact Riemannian manifold). It is based on another version of the
mountain pass argument. In the case of a sphere it works like this. Consider smooth
one-parameter families of closed curves “anchored” at a particular point and

6 John Franks, Geodesics on S2 and Periodic Points of Annulus Homeomorphisms, Inventiones Math-
ematicae 108, no. 2 (1992), 403–418.

7 Patrice Le Calvez, private communication; unpublished.
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covering the whole sphere (that is, a smooth surjective map from [0, 1] × [0, 1] to S2

that maps the boundary of the square to a single point). In each such family there
is a longest curve. Obviously the length of such a longest curve is bounded away
from zero independently of the family. If there is a family for which the length of
such a longest curve attains its minimal value over all families, then it follows from
the variational description of geodesics that the longest curve is a closed geodesic.
The existence of such a family is based on a general argument that shows that the
lower bound over all families is the same as over a certain collection of families that
can be made compact in a topology in which the maximal-length functional is still
continuous.

A somewhat more subtle fact is the existence of a simple closed geodesic, that is,
one that does not intersect itself. It can still be produced via a variational argument
by finding a critical point of a length functional in a proper space of simple closed
curves.

A much deeper and more specific result also proved by variational methods is
due to Lazar A. Lyusternik and Lev G. Shnirelman.

Theorem 14.5.18 There are always at least three different simple closed geodesics on
the two-dimensional sphere.

The seminal 1930 paper was available in the West only in severely abridged
translation, and other proofs were later published by several mathematicians.

The Lyusternik–Shnirelman Theorem uses a fairly crude but quite remarkable
invariant of topological spaces called the Lyusternik–Shnirelman category. This is
simply the minimal number of subsets into which the space can be decomposed
and which are contractible, that is, they can be continuously deformed (within
themselves) into a point. The connection with variational problems is that for
spaces (even infinite-dimensional ones) where differentiation can be defined and
hence the notion of a critical point for a function makes sense, the Lyusternik–
Shnirelman category gives a lower bound for the number of critical points of any
differentiable function.

The space to which this criterion is applied in the geodesic problem is con-
structed from a space of (parametrized) simple smooth curves. The functional is
related to the length, and the critical point condition guarantees that the curve is
a closed geodesic parametrized by the length parameter. The topological part of
the proof is to show that the Lyusternik–Shnirelman category of this space is three;
this is naturally independent of the metric.

8 Lazar A. Lyusternik, and Lev G. Shnirelman, Sur le problème de trois géodesiques fermées sur les
surfaces de genre 0, Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique
189 (1929), 269–271; Topological Methods in Variational Problems, Proceedings of the Institute of
Mathematics and Mechanics (1930); Topological Methods in Variational Problems and Their Applica-
tion to the Differential Geometry of Surfaces, Akademiya Nauk SSSR i Moskovskoe Matematicheskoe
Obshchestvo. Uspekhi Matematicheskikh Nauk 2, no. 1(17), (1947), 166–217. The only article avail-
able in English is, Lazar A. Lyusternik, The Topology of the Calculus of Variations in the Large, Trudy
Mat. Inst. Steklov 19 (1947); translation: Translations of Mathematical Monographs 16, American
Mathematical Society, 1966.
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The Lyusternik–Shnirelman result is optimal in the sense that there are metrics
with no more than three simple closed geodesics. A triaxial ellipsoid is an example.

Even before the work of Lyusternik and Shnirelman, Birkhoff suggested an ap-
proach to finding infinitely many closed geodesics. It uses the existence of a simple
closed geodesic, which Birkhoff did not know to hold in full generality, although he
found the minimax argument mentioned above, which gives one closed geodesic. By
the Jordan Curve Theorem a simple closed geodesic divides the sphere into two con-
nected components, which we will call the northern and southern hemispheres. The
geodesic itself will be called the equator. Consider the set of all unit tangent vectors to
the sphere with foot point on the equator and pointing into the northern hemisphere
(either choice of which hemisphere is “northern” will do). The set S of these vectors
is parametrized by a circle (the equator) times an interval [angles in (0, π)] and is
hence an open cylinder. Every one of these vectors determines a unique geodesic. If
this geodesic, which initially enters the northern hemisphere, leaves the northern
hemisphere and arrives at the equator again from the south, then it determines a new
vector of the same type. This defines a map from a subset R of S to S. Periodic points
of this map correspond to closed geodesics, and different periodic orbits produce
different closed geodesics. If R = S, the question arises about extending the section
map to the boundary of the open cylinder S. If such an extension is possible, then
the obvious symmetry shows that the maps on two boundary components are in-
verse to each other; hence its twist interval contains zero. Now there is a dichotomy.
One possibility is that the interval has positive length, and then Theorem 14.4.1 pro-
duces infinitely many periodic orbits and hence infinitely many closed geodesics
(this conclusion was one of the chief reasons for Birkhoff’s interest in Poincaré’s
Last Geometric Theorem). Alternatively, the rotation numbers on the boundary
components are equal to zero. This is where the matter stood for about 60 years.

The results of Franks, Theorem 14.4.3 and Theorem 14.4.4, finish the proof of the
existence of infinitely many different closed geodesics in the case when the section
map is defined in the open cylinder S and is extendable by continuity to the closed
cylinder.

The remaining case was resolved by Victor Bangert, based partly on his earlier
joint work with Wilhelm Klingenberg. There are two cases to consider. If the map
is defined in the open cylinder but does not extend to the boundary, then it follows
that along the original simple closed geodesic there are no “conjugate points”.
Roughly speaking, nearby geodesics diverge. This implies a special structure of
the length functional, which makes it amenable to a variational treatment that
produces infinitely many closed geodesics. If the section map is not defined, then
Bangert shows that there is another simple closed geodesic without conjugate
points and the problem reduces to the previous case.

The final outcome of these considerations is the following remarkable result.

Theorem 14.5.2 On any smooth sphere there are infinitely many closed geodesics.
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CHAPTER 15

Dynamics, Number Theory, and Diophantine

Approximation

Some questions in the theory of numbers that go back to the work of Dirichlet,
Jacobi, Kronecker, and Weyl can be viewed retrospectively as one of the principal
sources of modern dynamics. A fruitful interaction has developed in both direc-
tions: Dynamical methods often provide new and sometimes unexpected insights
into problems in analytic number theory, and, on the other hand, algebraic number
theory provides tools for studying some model dynamical systems to greater depth
than more general analytic, topological, and geometric methods allow.

The contents of the first four sections of this chapter are classical and are meant
to demonstrate the usefulness of the dynamical approach to the problems of
uniform distribution and Diophantine approximation of numbers. Along the way
the prominent role of hyperbolic geometry becomes apparent. The last section
gives a brief account of one of the top achievements of the dynamical approach to
analytic number theory: the proof of Oppenheim’s conjucture about small values
of quadratic forms in three variables.

15.1 UNIFORM DISTRIBUTION OF THE FRACTIONAL

PARTS OF POLYNOMIALS

In this section we describe how some general dynamical arguments establish
the uniform distribution results (unique ergodicity; see Section 4.1.4) for special
dynamical systems needed to solve a number-theoretic problem discussed
in the Introduction (Section 1.3.5) and its generalizations. Unique ergodicity
(Definition 4.1.18) is essential for establishing uniform distribution for specific
sequences because a given sequence is associated with a particular orbit of the
dynamical system. Convergence outside of a null set is not sufficient, since that
particular orbit may turn out to be in the exceptional null set.

15.1.1 Quadratic Polynomials and Affine Maps of the 2-Torus

We return to the problem of the distribution of the last digits before the decimal
point for the sequence xn = n2

√
2 first introduced in Section 1.3.5. There is nothing

365
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special about
√

2 aside from irrationality, so we consider the sequence αn2 for any
irrational α. To deal with the question about the last digits we need to consider
the first digits of the sequence of the fractional parts of αn2/10. Unlike some other
sequences discussed earlier in this book, such a sequence does not appear as the
sequence of successive iterates of a one-dimensional map and cannot be modified
naturally into such a sequence. There is however a method that bypasses this
difficulty. One constructs a dynamical system in higher dimension and interprets
the sequence in question as a sequence of coordinates (or, more generally, values
of a function) for the successive iterates of a particular initial condition. For our
question, the proper dynamical system is the following affine map of the 2-torus

Aα/5(x, y) = (x + α/5, y + x) (mod 1).

This map is “integrable” in the sense that there is a closed formula for its iterates:

An
α/5(x, y) = (x + nα/5, y + nx + n(n − 1)α/10) (mod 1).

The sequence of x-coordinates is familiar from Section 4.1.1, but the sequence of
y-coordinates includes the quadratic term we need. To eliminate the unwanted
linear term one picks x = α/10 and y = 0.

Following the arguments from Section 4.2.2, we see that in order to establish
the uniform distribution of the last digits for the sequence αn2 it suffices to show
that for any decimal interval �k = [k/10, (k + 1)/10], k = 0, 1 . . . , 9 the Birkhoff
averages of the characteristic function χ�k ,

1
n

n∑
i=0

χ�k ◦ Ai
α/5,

uniformly converge to 1/10. Again, there is nothing special about these character-
istic functions aside from the fact that they are Riemann integrable (Section 4.1.5).

There are two principal methods for establishing uniform convergence of
Birkhoff averages for all Riemann-integrable functions for these maps. The first
method was introduced by Hermann Weyl in 1916. It is a refinement of the
Kronecker–Weyl method we used for rotations of the circle in Section 4.1.6 and
for translations of the torus in Section 5.1.6. It involves estimating the Birkhoff
averages for the characters exp 2πi(kx + ly), (k, l ∈ Z) by directly using a more
sophisticated calculation than simply summing the geometric progression as in
Section 4.1.6. The expressions in the Weyl calculations are a particular case of
trigonometric sums, which play a prominent role in analytic number theory. After
that the Weierstraß Theorem establishes uniform convergence for all continuous
functions (unique ergodicity; see Definition 4.1.18) and the standard argument as
in Section 4.1.6 extends it to Riemann-integrable functions. The principal strength
of this method is that for certain classes of functions it allows us to establish the
speed of convergence of Birkhoff averages.

15.1.2 Ergodicity and Unique Ergodicity

We discuss a more qualitative approach, which was pioneered by Hillel Furstenberg
around 1960. While it does not provide any estimates on the speed of convergence
for Birkhoff averages, it does not depend on clever calculations with trigonometric
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sums and is hence more broadly applicable. The key point is that both unique
ergodicity (uniform convergence of averages for continuous functions) and the
weaker property of convergence of averages outside of a null set (see Section 7.5.3)
are equivalent to certain purely qualitative properties.

In the case of unique ergodicity, the corresponding qualitative property is
the uniqueness of an invariant measure or integral (Definition 10.4.1, and Propo-
sition 10.4.2). In the case of convergence of averages outside of a null set, the
corresponding qualitative property is called ergodicity. In the case of a volume-
preserving transformation f , ergodicity means that every “reasonable” f -invariant
set is either a null set or the complement of a null set, or, equivalently, that every
“reasonable” f -invariant function is constant outside of a null set. The rigorous
definition of “reasonable” in either case requires the notion of measurability, which
is not discussed in this book beyond the concept of a null set.

The second method of proving the uniform distribution for polynomials is
based on a general criterion of unique ergodicity for a class of maps called group
extensions, which we formulate here in a special case.

Proposition 15.1.1 Let f be a continuous volume-preserving uniquely ergodic map
of the torus Tk and φ : Tk → S1 continuous. If the map fφ : Tk+1 → Tk+1 defined by

fφ(x, y) = ( f (x), y + φ(x))

is ergodic, then it is uniquely ergodic.

Outline of proof We will use the equivalence of unique ergodicity to the uniqueness
of an invariant integral, as well as certain properties of invariant integrals that
follow from ergodic decomposition.

Since the map fφ is ergodic (with respect to the usual volume measure on
the torus Tk+1), every orbit outside of a null set is uniformly distributed. But,
since the volume is invariant with respect to any translation, in particular with
respect to a “vertical” translation (x, y) → (x, y + β), and fφ commutes with vertical
translations, it follows that the set A of uniformly distributed orbits is also invariant
under vertical translations and hence consists of complete circles x = const. We
say that such a set is saturated. The set A is not a null set since its complement is a
null set (the union of two null sets is a null set, and the whole torus is not a null set).

Now suppose fφ is not uniquely ergodic. This means that there is at least one
more invariant integral different from the one generated by the standard volume
and hence (by ergodic decomposition) there is another asymptotic uniform
distribution. The set of points with this new asymptotic uniform distribution is
disjoint from the set of points uniformly distributed with respect to the standard
volume and hence belongs to a null set of circles x = const. Projecting this invariant
integral to the x-coordinate, one obtains an invariant integral for f , which by
assumption is unique and hence coincides with the standard one. This gives us a
contradiction: The set A of all points that are uniformly distributed with respect to
the usual volume measure on the torus Tk+1 is a null set with respect to the second
invariant integral, but the latter projects to the standard integral on Tk, and hence
the set A, which is saturated, projects to a null set. �
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15.1.3 Uniform Distribution of Squares

With these ingredients in hand the proof of equidistribution of squares is not very
hard.

Proposition 15.1.2 The map Aβ(x, y) = (x + β, y + x) (mod 1) of T2 is uniquely
ergodic.

Proof This map is of the form described in Proposition 15.1.1, where f = Rβ . Thus
it suffices to prove ergodicity, that is, that any “reasonable” invariant function is
a constant outside a null set. It is sufficient to consider L2 functions, for which
the Fourier series expansion is uniquely and unambigously defined, although it
may not converge at some points. Checking the absence of invariant nonconstant
functions boils down to writing equations for the Fourier cofficients of such a
function that imply that all coefficients except one vanish. Specifically, suppose g
is an invariant L2-function. Then in terms of Fourier series∑

i, j

ai+ j j e2πixe2π jxe2π jy =
∑
i, j

ai j e2πixe2π jy = g(x, y)

= g(Aβ(x, y)) = g(x + β, y + x) =
∑
i, j

ai j e2πi(x+β)e2π j(y+x),

so ai+ j j = ai j e2πiβ for all i, j ∈ Z. This implies that |ai+kj j | = |ai j | for all i, j, k ∈ Z.
The Fourier coefficients of an L2-function are square-summable, so liml→∞ alj = 0
and ai j = 0 for i, j ∈ Z � {0} (using e2πiβ �= 1 for i �= 0 since β /∈ Q). If i = 0, then
ai+ j j = ai j e2πiβ gives a0 j = aj j = 0 for j �= 0. If j = 0, then ai+ j j = ai j e2πiβ gives
ai0 = ai0e2πiβ , which implies ai0 = 0 for i �= 0. Thus ai j = 0 unless i = j = 0. �
Corollary 15.1.3 If α /∈ Q, then the sequence of last digits of αn2 is uniformly
distributed.

Proof Since An
α/5(x, y) = (x + nα/5, y + nx + n(n − 1)α/10) (mod 1) and Aα/5 is uni-

quely ergodic, every orbit is uniformly distributed. For x = α/10 and y = 0, this
implies that y + nx + n(n − 1)α/10 = αn2/10 is uniformly distributed on the unit
interval and in particular so are the first digits after the decimal point of this
sequence. �

15.1.4 Uniform Distribution of Polynomials

The method described above can be applied inductively to prove the following.

Proposition 15.1.4 If α is irrational, then the map Ak,α : Tk+1 → Tk+1 defined by

Ak,α(x0, x1, . . . , xk) = (x0 + α, x1 + x0, . . . , xk + xk−1) (mod 1)

is uniquely ergodic.

For any polynomial P of degree k + 1 with irrational leading coefficient one
can find α and initial conditions x0, x1, . . . , xk such that the last coordinate of
An

k,α(x0, x1, . . . , xk) is P(n). This is done by first finding a closed formula for the
iterates An

k,α and then solving a system of linear equations. Taking into account the
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periodicity of the fractional parts of polynomials with rational coefficients, one
obtains the equidistribution theorem for polynomials.

Theorem 15.1.5 The fractional parts of the values P(n) for a polynomial with at
least one irrational coefficient are uniformly distributed.

Since the last k digits before the decimal point of a real number become the
first k digits after the decimal point upon division by 10k, this theorem implies

Corollary 15.1.6 If P is a polynomial with at least one irrational coefficient, then
the last k digits before the decimal point of the numbers (P(n))n∈N are uniformly
distributed.

15.2 CONTINUED FRACTIONS AND RATIONAL APPROXIMATION

As we saw in Proposition 6.1.12, all orbits of a circle rotation Rα are (uniformly)
recurrent. Considering the orbit of 0, one sees that this means that αngets arbitrarily
close to integers for some large n ∈ N, or that |αn − m| can be made arbitrarily
small by choosing n, m ∈ N appropriately.

15.2.1 Best Approximation

To refine this in a quantitative way, one can ask how large n, m have to be to get
|αn − m| < ε. Put slightly differently, given bounds on n, minimize minm∈Z |αn − m|.
For a rational α, this is a finite problem that is of no interest for us in the present
context. We henceforth assume α /∈ Q, and also 0 < α < 1 for the moment.

Definition 15.2.1 A rational number p/q is said to be a best rational approxi-
mation or simply a best approximation of the irrational number α if q > 0 and
|qα − p| ≤ |nα − m| whenever n, m ∈ Z and |n| ≤ q.

Clearly this implies that p and q are relatively prime. It follows from the
topological transitivity of an irrational rotation that there are infinitely many
different best approximations for any given irrational number.

Now we approach the question of finding best approximations by tracking
patiently how close αn gets to integers (and what those integers are). Specifically,
we take note of those n ∈ N for which αn is closer to Z than any αi for i < n. In
doing so we try to discern a recursive pattern. From a dynamical point of view, we
are looking at how closely the orbit of 0 under the iterates of the rotation Rα returns
back to 0 and registering the closest returns.

Denote the first such integer by a1. It is determined by a1α < 1 < (a1 + 1)α,
that is, by being closer to Z than α. This means that a1 = �1/α	, where �·	 denotes
integer part. In terms of approximating α by a rational number, this corresponds
to a1α ≈ 1 or α ≈ 1/a1. For the next step it helps to imagine that this is a good
approximation, that is, that the error δ := 1 − a1α < α is small.

The next close approximation of an integer occurs with the first n ∈ N for which
nα is within less than δ of an integer. Imagining δ to be small, note that in the a1
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steps after the previous encounter the numbers iα for a1 < i ≤ 2a1 lie well between
1 and 2, and that at the end of this run we have 2a1α = 2(1 − δ) = 2 − 2δ; so we
have fallen behind by another δ, as it were.

Let a2 be the last integer n for which nδ < α, that is, a2 = �α/δ	. Then
0 < δ1 := α − a2δ < δ and a1a2α has “fallen behind integers” by close to α (by α − δ1,
to be exact). Thus, (a1a2 + 1)α is closer to an integer (specifically, a2) than all
previous iα’s, because (a1a2 + 1)α − a2 = α − a2(1 − a1α) = α − a2δ = δ1 < δ. Note
that the corresponding rational approximation is (a1a2 + 1)α ≈ a2 or

α ≈ a2

a1a2 + 1
= 1

a1 + 1

a2

.

To discern a pattern in the choice of a2 note that α2 := δ/α = (1 − a1α)/α =
(1/α) − a1 = {1/α}, where {·} now denotes fractional part, and therefore a2 = �1/α2	.

15.2.2 Continued Fraction Representation

The preceding scheme gives an algorithm for the best rational approximation of
irrational numbers and for best representation of any real number by a continued
fraction.

Theorem 15.2.2 Given α ∈ R � Q, define (ai)∞
i=0 and (αi)∞

i=1 recursively by

a0 := �α	, α1 := {α}, ai :=
⌊

1
αi

⌋
, αi+1 :=

{
1
αi

}
and set

a0 + 1

a1 + 1

. . . + 1

an

=:
pn

qn

in lowest terms with qn > 0. (These are called the convergents.)
Then

α = a0 + 1

a1 + 1

a2 + . . .

:= lim
n→∞ a0 + 1

a1 + 1

. . . + 1

an

.

If α ∈ Q, then the above recursion terminates with αi+1 = 0 for some i, and

α = a0 + 1

a1 + 1

. . . + 1

ai

.

Both sequences pn and qn satisfy the two-step recursion

xn+1 = xn−1 + an+1xn,
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with initial conditions p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a0; pn+1qn − pnqn+1 =
(−1)n; and, finally, every best rational approximation of an irrational number is a
convergent and every convergent is a best approximation.

Remark 15.2.3 A little thought shows that the continued fraction representation
of a number is unique. In comparison with the decimal expansion of reals there are
a few things to note. Decimal expansion is not always unique. Continued fractions
use a sequence of integers with no a priori bound, whereas decimal expansion
uses single digits. Rationals and irrationals can be distinguished using the decimal
expansion (periodic versus not), but this distinction can only be made either way
if the entire expansion is in hand. By contrast, a number is rational if and only if
the continued fraction expansion terminates. If this is the case, it is apparent from
a finite-level continued fraction expansion.

Proof that these ai ’s work Given the form of the continued-fraction expansion, it is
easy to check that the ai ’s are determined by the procedure described: If

α = a0 + 1

a1 + 1

a2 + . . .

,

then �α	 = a0 and with α1 := α − a0 = {α} we get

1
α1

= a1 + 1

a2 + 1

a3 + . . .

,

so a1 = �1/α1	 and

α2 :=
{

1
α1

}
= 1

α1
− a1 = 1

a2 + 1

a3 + . . .

;

hence a2 = �1/α2	, and so on. �

Remark 15.2.4 Note that the pn/qn lie alternately above and below α. This can be
seen from the discussion of closest approximation, or from the alternating effect
obtained by adding a term to a finite continued-fraction approximation.

Example 15.2.5 The two-step recursion for pn and qn implies that the Fibonacci
numbers (bn)n∈N0 = (1, 1, 2, 3, 5, 8, . . . ) produce the convergents 1, 2, 3/2,

5/3, 8/5, . . . of the golden mean

1

1 + 1

1 + 1

1 + . . .

=
√

5 − 1
2

.
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Example 15.2.6 Consider the simple continued fraction

x = 1

2 + 1

2 + 1

2 + . . .

,

which is the positive root of the quadratic equation 1/x = x + 2. Thus
x2 + 2x − 1 + 0 and x = √

2 − 1. The previous example can be treated similarly.

These examples suggest a fruitful generalization. Assume that the continued
fraction expansion of a number is eventually periodic, that is, it becomes periodic
after finitely many terms. Then one can express it as a root of a quadratic equation
with rational coefficients. As it turns out, the converse is also true. Thus a real
number has eventually periodic continued-fraction expansion if and only if the
number is a quadratic irrationality, that is, it has the form a + √

b, where a and b
are rational numbers.

15.2.3 Speed of Approximation and Dynamics

There is another natural way to measure the quality of a rational approximation
p/q of an irrational number α, namely, by comparing the absolute value of the
difference α − p/q with a given function of the denominator q. Naturally, the
convergents come to the fore in considerations of this kind.

Proposition 15.2.7 If α /∈ Q and n ∈ N, then∣∣∣∣α − pn

qn

∣∣∣∣ <
1

an+1q2
n

≤ 1
q2

n
.

Proof The convergents oscillate around α, so Theorem 15.2.2 gives∣∣∣∣α − pn

qn

∣∣∣∣ <

∣∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣∣ = |pn+1qn − pnqn+1|
qnqn+1

= 1
qnqn+1

≤ 1
an+1q2

n
. �(15.2.1)

One can also show that ∣∣∣∣α − pn

qn

∣∣∣∣ >
1

(an+1 + 2)q2
n
,(15.2.2)

which gives a tight connection between the size of an and the actual error. A slightly
more delicate argument refines Proposition 15.2.7 to give |α − pn/qn| < 1/2q2

n

infinitely often; the estimate never fails for two consecutive n’s. This is fairly sharp
in that for relatively prime p and q the inequality

|α − p/q| < 1/2q2
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holds only if p/q is a convergent for α. The sharpest possible result is that
|α − p/q| ≤ 1/

√
5q2 for infinitely many ( p, q). The fraction for the golden mean

1

1 + 1

1 + 1

1 + . . .

realizes this bound.
Thus, the inverse square speed of approximation is the fastest speed that is

achieved universally, and in order to find the fastest approximations for a given
number one has to look at the convergents and only at them. It is clear from (15.2.1)
and (15.2.2) that the growth properties of the sequence an essentially determine
the speed of approximation of α by rationals.

Now we look at how a particularly fast approximation may appear. It is
conceivable, for example, that the first error δ is microscopic compared to α. This
means, of course, that α ≈ 1/a1 is an enormously good approximation (with error
δ/a1). This would appear to be a desirable situation. One effect is that a2 = �α/δ	
is quite large. Thus, the size of the terms ai in the continued fraction expansion
is a measure of the quality of approximation at the previous step. (Indeed, this is
directly related to the next qn being substantially larger than the current one, that
is, the approximation being good means that it takes a long time to improve on
it.) A remarkable concrete example of this phenomenon is the excellent rational
approximation of π by p3/q3 = 355/113, which was known in ancient China. This
is correct to six decimal places because a4 turns out to be unexpectedly large so
early in the game: It is 292. Accordingly, q4 jumps to the rather large value of 33102.

Such fast approximation affects the dynamics of the circle rotation by α.
Reconsider our first example by projecting it to the circle R/Z, taking a1 = 5 and
δ ≈ 10−6α. We are tracking the orbit of 0 and find the first five iterates evenly spaced
around the circle (up to δ mismatch). The first 500,000 iterates lie within 1/10 of
the first 5, so there are 5 intervals of length 1/10, none of which contains any of
the first half-million iterates. While this does not contradict uniform distribution
(Proposition 4.1.7), it takes an enormous number of iterates to balance the
distribution, even on a crude scale. The possibility that such close encounters may
happen at any number of levels in the rational approximation scheme implies that
relatively rapid approximation can affect the dynamics in undesirable ways. It gives
rise to Liouvillian phenomena. One aspect of such effects is that circle rotations by
a rapidly approximable angle tend to be far less robust in some sense than those
with moderate continued-fraction denominators.

15.2.4 Metric Theory of Diophantine Approximations

The approximation questions addressed so far are of the type that inquires about
the possible rates of approximation by convergents or about the approximation
rate of a particular irrational. Metric number theory addresses a related question
of converse type: Given a particular rate of approximation, how many num-
bers exhibit this rate? This turns out to be a question important for dynamics.
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If r : N → (0, ∞) is a nonincreasing “rate” function, then α ∈ R is said to be
r-approximable if |qα − p| ≤ r(|q|) for infinitely many ( p, q) ∈ Z × N.

The inverse power scale is of particular importance both for number theory
and for many applications of rational approximations.

Definition 15.2.8 The Diophantine condition with exponent β ≥ 0 and constant
C > 0 for a number α ∈ R is that

|α − ( p/q)| ≥ C/q2+β

for all p, q ∈ Z, q �= 0, that is, α is not C/x1+β-approximable for some C > 0. Denote
the set of all such numbers by Dβ,C . The number α is said to be Diophantine if it
satisfies a Diophantine condition for some β, C > 0, and is said to be Liouvillian
otherwise; that is, if there are sequences pn, qn ∈ Z such that∣∣∣∣α − pn

qn

∣∣∣∣ = o
(
q−γ

n

)
for all γ > 0.(15.2.3)

Each Dβ,C is closed and nowhere dense, but in a different sense most numbers
satisfy the Diophantine condition with any positive exponent β and a constant
depending on β: The complement of

⋂
β>0

⋃
C Dβ,C is a null set.

The definitive results concerning the size of sets allowing approximation with
a particaular speed are due to Alexander Ya. Khinchine.1 If the series

∑∞
n=1 r(n)

converges, then the set of r-approximable numbers is a null set. The converse,
which is more difficult, is also true: If the series diverges, then only a null set of
numbers fails to be r-approximable.

15.3 THE GAUSS MAP

Khinchine’s theorems are proved by a standard but subtle method from real
analysis: looking directly at the structure of the sets of numbers that allow (or do
not allow) approximation with a particular speed, and constructing appropriate
coverings. This method is quite efficient in establishing the best rate of approxi-
mation for various classes of numbers. A more thorough investigation of rational
approximation would study how often a particularly fast or not-so-fast “best”
approximation takes place. In other words, one would like to know the distribution
of the partials an for various classes of numbers, in particular, some asymptotic
statistical properties of such distributions.

15.3.1 Coding of Continued Fraction Expansion

Recall that the distribution of digits in a decimal expansion (or, more generally,
expansion in base m) is related to the asymptotic behavior of the linear expanding
map E10 (or Em). Analogously, the continued-fraction expansion is naturally
associated with iterations of the following map.

1 Alexander Ya. Khinchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der
diophantischen Approximationen, Mathematische Annalen 92 (1924), 115–125.
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Figure 15.3.1. The Gauß map.

Definition 15.3.1 The map G : [0, 1] → [0, 1) defined by x !→ {1/x} (fractional part)
is called the Gauß map (see Figure 15.3.1).

This map has jump discontinuities at 1/i for i ∈ N and a discontinuity without a
right-sided limit at 0. Projecting to the circle S1 = R/Z would fix the discontinuities
away from zero, but as a dynamical system this map is most naturally defined on
the interval.

If x ∈ (0, 1], the first term a1 in the continued fraction expansion of x is i if
and only if 1/(i + 1) < x ≤ 1/i. Similarly, the second term a2 is i if and only if
1/(i + 1) < G(x) ≤ 1/i, and so on. Thus the distribution of the partials an in the
continued-fraction expansion for x coincides with the distribution of the iterates
Gn(x) between the half-open intervals (1/(i + 1), 1/i], i ∈ N.

The Gauß map is discontinuous, and the discontinuity at zero is of a serious sort,
but it is almost expanding away from the discontinuities. In fact, G2 is expanding
because the minimum of the derivative is greater than one. Thus it is not entirely
surprising that the Gauß map has some of the properties related to hyperbolic (in
particular, expanding) behavior that we observed in earlier chapters. It is far from
being uniquely ergodic: It has a great variety of invariant integrals and asymptotic
distributions, periodic orbits are dense (they are quadratic irrationalities of a
particular kind), and a great variety of orbit behavior is possible.

15.3.2 Uniform Distribution

The central fact about the Gauß map relevant for our discussion is the existence of a
weighted uniform distribution given by a density, much like many quadratic maps
(Section 11.4.3.2), or expanding or tent maps (Theorem 7.5.6 and Section 11.4.3,
respectively).

Proposition 15.3.2 The Gauß map preserves the measure defined by the density
1/(1 + x).

Proof The measure of an interval [a, b] is∫ b

a

1
1 + x

dx = log(b + 1) − log(a + 1).

The preimage is obtained by noting that a = {1/x} if and only if 1/x = a + n for
some n ∈ N, and likewise for b. Therefore the measure of G−1([a, b]) is a sum of
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weighted lengths as follows:

∑
n∈N

∫ 1
a+n

1
b+n

1
1 + x

dx =
∑
n∈N

log
(

1 + 1
a + n

)
− log

(
1 + 1

b + n

)
=

∑
n∈N

log(a + n + 1) − log(a + n) − log(b + n + 1) + log(b + n)

= log(b + 1) − log(a + 1)

(telescoping sum). These agree, as required. �

Indeed, with moderate further effort one can show

Proposition 15.3.3 The Gauß map is ergodic.

Corollary 15.3.4 The set of α ∈ [0, 1] with bounded continued-fraction coefficients
is a null set.

Proof Since ai = �1/Gi−1(α)	, this is the set of points whose orbits under the Gauß
map are bounded away from zero and are therefore not uniformly distributed.
Therefore this is a null set. �

Proposition 15.3.5 For almost every number (see Definition 7.5.3) the continued-
fraction coefficients are distributed as follows: The number n ∈ N occurs as a
continued-fraction coefficient with asymptotic frequency

log
(

1 + 1
n

)
− log

(
1 + 1

n + 1

)
log 2

.(15.3.1)

Sketch of proof The Gauß map is ergodic with respect to the measure defined by
the density 1/(1 + x). Hence the orbits of the Gauß map are uniformly distributed
with respect to the density 1/(1 + x), so the probability that ai = �1/Gi−1(α)	 = n is
the probability that

1
n + 1

< Gi−1(α) ≤ 1
n

,

which is∫1/n
1/(n+1)(1/1 + x) dx/ log 2, where log 2 = ∫1

0(1/1 + x) dx is the normalization
constant. This integral gives (15.3.1). �

15.3.3 Gauß Map and Inducing for Circle Rotations

Now we will give a different interpretation of the Gauß map which is an instance
of a very fruitful approach to dynamics. Sometimes dynamical systems from a
certain class can be considered as elements of a certain space with a natural
(“global”) dynamics in it. In other words, there is a canonically defined operation
within the class, and the asymptotic behavior of an orbit with respect to this
operation often reveals essential properties of the system corresponding to the
initial condition. Often the global dynamics involved goes under the revealing
name of “renormalization”; rather than giving a speculative explanation of this
term in general we will illustrate this approach by our example at hand.
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Let us identify the real number α, 0 < α < 1 with the rotation Rα. By cutting
the circle at 0 we can represent the rotation as the following map of the half-open
interval [0, 1):

Rα(x) =
{

x + α if 0 ≤ x < 1 − α,

x + α − 1 if 1 − α ≤ x < 1.

Geometrically this can be visualized as the interchange of two intervals [0, 1 − α)
and [1 − α, 1). Now consider the first return map on the interval [0, α). An imme-
diate inspection shows that this map amounts to the exchange of two intervals
[0, β) and [β, α), where β = {nα} and the integer n is defined by the inequality
(n − 1)α < 1 ≤ nα, that is, n = [1/α] + 1 and hence β = [1/α]α + α − 1.

Now consider this exchange as a representation of a rotation as above. Of
course for that we need to normalize the interval [0, α) to length one. This makes
the induced map the representation of the rotation by 1 − (β/α) = 1 − [1/α] + 1+
(1/α) = {1/α} = G(α).

Thus iterations of the Gauß map correspond to the process of taking the first
return map successively. Since the operation of taking the first return on decreasing
intervals is obviously transitive, we can view the iterations as taking the first return
on specially chosen smaller and smaller intervals (the lengths of these intervals can
be easily computed and are closely related with the continued-fraction expansion)
and “renormalizing” those back to full size. This procedure reveals the microscopic
behavior of the original rotation, and thus the dynamics of the Gauß map tells us
about the properties of inducing.

For example, if α is rational, then a certain iterate G(α) is equal to 0, after which
the process stops: The induced map is the identity, which is simply another way of
saying that the original rotation is periodic.

If α is a quadratic irrationality, the corresponding orbit of the Gauß map
is eventually periodic, and hence the inducing process exhibits self-similarity:
Beginning from a finite step the inducing process becomes periodic, so in a sense
the microscopic structure at any level is the same as the macroscopic one.

Finally, for a typical α (outside of a null set), the orbit of the Gauß map is
uniformly distributed with respect to the density 1/(1 + x). Hence the induced
rotations are distributed according to the same density, and the macroscopic
structure at different levels changes in a fairly random way.

We have already encountered a renormalization procedure of a different kind
in Section 11.3.1. The main difference is that there the auxiliary dynamics took
place in a neighborhood of a hyperbolic fixed point and hence did not exhibit
much recurrence. Indeed, renormalization of an individual map would make it
more similar to a map with an attractor of the Feigenbaum–Misiurewicz type.

15.4 HOMOGENEOUS DYNAMICS, GEOMETRY, AND NUMBER THEORY

A natural class of dynamical systems comes from the following general algebraic
construction. Let G be a locally compact group, H ⊂ G a closed subgroup, and
M = H\G the left homogeneous space, which in this case has the natural locally
compact topology. Sometimes for noncompact G and H the homogeneous space
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may happen to be compact similarly to the abelian case of G = Rn, H = Zn. Since
left and right multiplications in a group commute, the action of G on itself by right
translations projects to M. The restriction of this action to a subgroup $ of G is
called a (right) homogeneous action; if $ is a one-parameter subgroup, its action
is called a (right) homogeneous flow. Naturally, by considering right homogeneous
spaces and left actions one defines left homogeneous actions, not surprisingly,
certain homogeneous actions play a central role in the interaction between number
theory, geometry, and dynamics.

15.4.1 The Modular Surface, Geodesic, and Horocycle Flows

We begin with a description of a famous homogeneous action closely related to
continued fractions and rational approximation. From the point of view of hyper-
bolic geometry, the action is the geodesic flow on a particular surface of constant
negative curvature. Accordingly we start from some geometric preparations.

1. The Upper Half-Plane. Consider the upper half of the complex plane defined
by points having positive imaginary part: H := {(x + iy) ∈ C y > 0}. We define a
non-euclidean distance on it by agreeing that the length of a vector v at a point
(x, y) ∈ H is ‖v‖/y. Equivalently, the length of a curve in H is

∫
(1/y)(dx + dy), the

integral taken along the curve. This defines the hyperbolic metric.
The geodesics are easy to describe: Every geodesic is either a vertical line

{x + iy y > 0} or a semicircle whose endpoints are real, that is, lie on the x-axis.
The geodesic flow is defined as usual on the space SHof unit tangent vectors toH.

Unlike the sphere or torus, whose geodesic flows we encountered earlier (in
Section 1.3.3 and Section 5.2.2), (and similarly to the euclidean plane), this space
is rather “big”. It is noncompact and has infinite volume. There is however a big
difference between the behavior of geodesics in Euclidean and non-Euclidean
geometry. To obtain a smaller space we will later perform a construction similar to
that in Section 2.6.4, where the torus is obtained by identifying points in R2 if one
is an integer translate of the other.

2. Möbius Transformations. The group SL(2, R) acts isometrically and transitively
on H by fractional-linear transformations, often called Möbius transformations:

fg(z) = az + b
cz + d

, z ∈ H, g =
(

a b
c d

)
∈ SL(2, R),

with kernel Z2 = {±Id} ⊂ SL(2, R). These transformations preserve the structure
developed so far: They preserve the hyperbolic metric (that is, lengths and
angles) and (thus) send geodesics to geodesics. The factor group G = P SL(2, R) =
SL(2, R)/Z2 0 SO(1, 2)0 acts effectively on H, and the isotropy subgroup of the
point z0 = i ∈ H is C = P SO(2) = SO(2)/Z2; hence H can be identified with G/C .

The differential of the action of P SL2(R) on H defines a transitive and free action
on SH, so the latter can be identified with G by fixing any unit tangent vector to
H as the identity element in the group. It is convenient to pick the upward-looking
vertical vector at the point i for that purpose.
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3. Fuchsian Groups and Surfaces of Constant Negative Curvature. Any smooth
surface M of constant Gaussian curvature −1 is of the form M = �\H = �\G/C for
some discrete subgroup � of G (such groups are called Fuchsian) having no torsion.
The unit tangent bundle SM is therefore the left homogeneous space �\SH = �\G.
The volume form for the Riemannian metric on M induces a G-invariant measure
on SM, which is called the Liouville measure, and clearly coincides with the
appropriately normalized Haar measure on �\G. In particular, a surface M = �\H

is of finite area if and only if � is a lattice in G (i.e., SM = �\G is of finite volume).

4. The Modular Surface. Now we consider a special Fuchsian group that is a close
analog of the lattice of integer translations in a Euclidean space. It is the modular
group P SL(2, Z), which consists of transformations

z !→ az + b
cz + d

with a, b, c, d ∈ Z, and ad − bc = 1.(15.4.1)

In Section 2.6.4 the torus was obtained from gluing together opposite edges
of the fundamental domain [0, 1] × [0, 1]. In the present situation a convenient
fundamental domain is

{x + iy |x| ≤ 1/2, x2 + y2 ≥ 1},
which is bounded by the half-lines {(1/2) + iy y ≥ √

3/2} and {−(1/2) + iy y ≥√
3/2} as well as the connecting arc of the unit circle {x + iy −1 ≤ 2x ≤ 1 and y =√
1 − x2}. In the case of the torus, one identifies the two vertical sides of the funda-

mental square because the integer translation by (1, 0) sends the left side to the right
side. Analogously, the vertical half-lines in bounding the hyperbolic fundamental
domain are identified by the same translation, which arises from a = b = d = 1,
c = 0 in (15.4.1). Furthermore, the halves of the circle arc are identified by the map
z !→ −1/z [obtained from a = −b = c = 1, d = 0 in (15.4.1)], which acts like a mirror
symmetry on that arc. One can picture the identification as rolling up the domain
around the imaginary axis like a newspaper to identify the lines, and then “zipping”
the bottom half-arcs together to close it up. The result is topologically a half-infinite
cylinder closed at the bottom. Geometrically, however, outside of the bottom it
looks more like a pseudosphere: The length of the section decreases exponentially
along the geodesics represented by vertical lines. These geodesics are parallel
in the non-Euclidean sense: The distance between any two of them decreases
exponentially.

The geodesic flow on this modular surface can be described by tracking a
geodesic in the region until it encounters the boundary. Then it emerges back into
the domain from the corresponding boundary point. For the vertical segments this
would be the “opposite” point, and the geodesic continues in the same direction.
Encounters with the circle arc result in a jump from x + iy to −x + iy that preserves
the angle with the boundary. (See Figure 15.4.1.)

The geodesic flow has a section whose return map is closely related to the
Gauß map (Definition 15.3.1). It is not surprising then that properties of rational
approximation are closely related to properties of the geodesic flow on the modular
surface.
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Figure 15.4.1. A geodesic ray on the modular surface.

The identification between SH and P SL(2, R) described in Section 15.4.1.2
identifies the geodesic flow with the right homogeneous flow on P SL(2, R)
generated by the subgroup of diagonal matrices. We briefly mention dynamical
properties of the geodesic flow in Section 15.4.4.

5. The Horocycle Flow. There is another homogeneous flow on P SL(2, Z)\
P SL(2, R) (or, equivalently, on the unit tangent bundle to the modular surface)
that is even more central for number-theoretic considerations than the geodesic
flow and is closely related to the latter. This is the right homogeneous flow defined
by the one-parameter group (

1 t
0 1

)
, t ∈ R

and called the the horocycle flow2 on the modular surface. The orbits of the
horocycle flow are actually unstable manifolds for the geodesic flow. There are
fascinating connections between questions about the horocycle flow and the
Riemann Hypothesis in number theory.

For our considerations it is important to point out that the dynamics of the horo-
cycle flow is very different from that of the geodesic flow (see Section 15.4.4). There
is a one-parameter family of closed orbits represented by horizontal segments in the
fundamental domain with vertical tangent vectors looking upward as well as their
images under the geodesic flow. However, every other orbit is dense and, in fact, uni-
formly distributed with respect to the Liouville measure. Thus the picture is closer to
unique ergodicity than to the complicated behavior represented by hyperbolicity.3

2 The name came from horocycles or limit cycles, which are the limits of the circles in the hyperbolic
plane when the center moves to infinity along a geodesic. Horocycles are represented by horizontal
lines and circles tangent to the real line; geometrically, the horocycle flow is represented by the
motion of a unit vector along one of the two horocycles perpendicular to it.

3 For a Fuchsian group � such that �\P SL(2, R) is compact, the corresponding horocycle flow is in
fact uniquely ergodic.
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15.4.2 The Space of Lattices

A natural generalization of the construction of the modular surface that plays an
important role in applications of homogeneous dynamics to number theory is
represented by homogeneous spaces k := SL(k, Z)\SL(k, R). The standard right
action of SL(k, R) on Rk keeps the lattice Zk ⊂ Rk invariant, and, given any g ∈ G,
the lattice gZk is unimodular, that is, its fundamental set is of unit volume. On
the other hand, any unimodular lattice $ in Rk is of the form Zkg for some g ∈ G.
Hence the space k is identified with the space of all unimodular lattices in Rk, and
clearly this identification sends the right action of SL(k, R) on SL(k, Z)\SL(k, R) to
the linear action on lattices: For a lattice $ ⊂ Rk, one has g$ = {gx : x ∈ $}.

Thus, in particular, the unit tangent bundle to the modular surface is naturally
identified with the space of all lattices in the Euclidean plane, thus providing a
fundamental link between Euclidean and non-Euclidean geometry. Similarly to the
case of a modular surface, the homogeneous spaces k are not compact but have
finite volume invariant under the action of G by left translation. An infinite “cusp”
in the modular surface described above that can be easily visualized is replaced by
a much more complicated asymptotic geometry.

The main link between number theory and the theory of homogeneous actions
is the following the Mahler criterion, which gives a certain grasp of this asymptotic
geometry:

Theorem 15.4.1 A sequence of lattices gi SL(k, Z) goes to infinity in k ⇐⇒ there
exists a sequence {xi ∈ Zk \ {0}} such that gi(xi) → 0 as i → ∞. Equivalently, fix a
norm on Rk and define the function δ on k by

δ($) := max
x∈$\{0}

‖x‖.(15.4.2)

Then a subset K of k is bounded if and only if the restriction of δ on K is bounded
away from zero.

The right homogeneous actions of SL(k, R) and its subgroups on the space k

of lattices in Rk are very important for applications of homogeneous dynamics to
number theory.

15.4.3 Indefinite Quadratic Forms on Lattices

Now we consider a model number-theoretic situation in which these actions arise,
and in the next section we will briefly describe one of the most spectacular successes
in the application of dynamical methods to classical problems in number theory. Let
Q(x) be a homogeneous polynomial in k variables (for example, a quadratic form),
and suppose that one wants to study nonzero integer vectors x such that the value
Q(x) is small. Denote by H the stabilizer of Q in SL(k, R) [that is, H = {g ∈ SL(k, R) :
Q(gx) = Q(x) for all x ∈ Rk}]. Then one can state the following elementary

Lemma 15.4.2 There exists a sequence of nonzero integer vectors xn such that
Q(xn) → 0 if and only if there exists a sequence hn ∈ H such that δ(hnZk) → 0.
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The latter condition, in view of Mahler’s criterion, amounts to the orbit HZk

being unbounded in k. This gives a special number-theoretic importance to
studying the long-term behavior of various trajectories on k.

We consider real quadratic forms in k variables and their values at integer
points. Naturally, if such a form Q is positive or negative definite, the set Q(Zk \ {0})
has empty intersection with some neighborhood of zero. Now take an indefinite
form and call it rational if it is a multiple of a form with rational coefficients and
irrational otherwise. For k = 2, 3, 4 it is easy to construct rational forms that do not
attain small values at nonzero integers;4 therefore, a natural assumption to make
is that the form is irrational.

15.4.4 Quadratic Forms in Two Variables

The case k = 2 for indefinite forms is rather special. We restrict our considerations
to the special but representative case of the forms Qλ(x1, x2) := x2

1 − λx2
2 , where

λ > 0. Notice that x2
1 − λx2

2 = (x1 − √
λx2)(x1 + √

λx2), and, assuming that x1 and x2

are integers of the same sign (without loss of generality they then can be assumed
to be positive), the second factor must be large. Hence, in order for the product
to be small, the first factor should be small compared to (max(x1, x2))−1. In other
words, there should be sequences of positive integers pn and qn, n ∈ N such that

lim
n→∞ q2

n |
√

λ − pn/qn| = 0.

By (15.2.1) and (15.2.2), this condition is equivalent to the unboundedness of the
coefficients an in the continued-fraction expansion of the number

√
λ. If these

coefficients are eventually periodic, then as we know
√

λ is a quadratic irrationality
and so is λ. But there are uncountably many other numbers (although still a null
set) of bounded type, that is, with bounded continued-function expansion.

Note that dynamically such numbers are characterized as having orbits under
the Gauß map bounded away from zero or, equivalently, having compact
closure in the half-open interval (0, 1]. The stabilizer of the form Qλ in SL(2, R)
is a one-parameter hyperbolic subgroup that is thus conjugate to the diagonal
subgroup, and its action is conjugate to the geodesic flow on the modular sur-
face. This flow possesses all of the features of hyperbolic behavior discussed in
Chapter 10 and is very similar to those of the Gauß map. In particular typical
orbits are uniformly distributed and hence unbounded, while there is still a rich
collection of bounded orbits. The Mahler criterion concerns the boundedness or
unboundedness of the orbit with a particular initial condition (the standard lattice
Z2), but a proper coordinate change reduces this to the corresponding question
about the geodesic flow (or the left homogeneous action of the diagonal subgroup)
with a variable collection of initial conditions. In fact, if one considers arbitrary
indefinite quadratic forms rather than the special forms Qλ, this set of initial
conditions becomes complete. As before, the correspondence can be described

4 However, by Meyer’s Theorem (see J. W. S. Cassels, An Introduction to Diophantine Approximation,
Cambridge Tracts in Mathematics and Mathematical Physics 45, Cambridge University Press, New
York, 1957) if Q is a nondegenerate indefinite rational quadratic form in k ≥ 5 variables, then Q
represents zero over Z nontrivially, i.e., there exist a nonzero integer vector x such that Q(x) = 0.



book 0521583047 April 21, 2003 16:55 Char Count= 0

15.5 Quadratic Forms in Three Variables 383

explicitly. Thus one can characterize quadratic forms that take arbitrarily small
positive values at the integer vectors as those that, under this correspondence, are
mapped to unit tangent vectors with unbounded geodesics on the modular surface.

15.5 QUADRATIC FORMS IN THREE VARIABLES

The situation is quite different in higher dimensions.

15.5.1 Oppenheim Conjecture

In 1986, Gregory A. Margulis5 proved the following result, which resolved then a
60-year-old conjecture due to A. Oppenheim.

Theorem 15.5.1 Let Q be a real indefinite nondegenerate irrational quadratic form
in k ≥ 3 variables.6 Then, given any ε > 0, there exists an integer vector x ∈ Zk \ {0}
such that |Q(x)| < ε.

For k ≥ 21, this result was proved by analytic number theory methods in the
1950s.7 In particular, it has been known that the validity of the conjecture for
some k0 implies its validity for all k ≥ k0; in other words, Theorem 15.5.1 reduces to
the case k = 3.

The key observation was made implicitly in the 1950s by Cassels and
Swinnerton-Dyer and later explicitly by Raghunathan (which motivated the latter’s
famous conjecture). It asserts that Theorem 15.5.1 is equivalent to a certain
statement about the dynamics of a particular homogeneous action.

15.5.2 Dynamical Approach and the Margulis Theorem

The statement in question, which was eventually proved by Margulis, is the
following:

Theorem 15.5.2 Let Q be a real indefinite nondegenerate quadratic form in three
variables, and let HQ be the stabilizer of Q in SL(3, R). Then any orbit HQ$, $ a lattice
in R3, of the right homogeneous action of HQ in 3 with compact closure is compact.

Outline of the reduction of Theorem 15.5.1 to Theorem 15.5.2 One uses Lemma 15.4.2
and certain considerations from the theory of lattices in Lie groups. Indeed, suppose
for some ε > 0 one has infx∈Z3\{0} |Q(x)| ≥ ε. Then by Lemma 15.4.2 the orbit HQZ3 is
unbounded in the space 3 of unimodular lattices in R3; hence it is compact in view
of Theorem 15.5.2. But since this orbit can be identified with HQ/HQ ∩ SL(3, Z),
this shows that HQ ∩ SL(3, Z) is a cocompact lattice (a discrete subgroup with a
compact homogeneous space) in HQ; hence it is Zariski-dense by Borel’s Density

5 G.A. Margulis, Formes quadratriques indéfinies et flots unipotents sur les espaces homogènes. C.
R. Acad. Sci. Paris Sér. I Math. 304(10) (1987), 249–253; G.A. Margulis, Indefinite quadratic forms
and unipotent flows on homogeneous spaces, in Dynamical Systems and Ergodic Theory (Warsaw,
1986), PWN, Warsaw, 1989, pp. 399–409.

6 The original conjecture of Oppenheim assumed k ≥ 5; later it was extended to k ≥ 3 by Davenport.
7 For the history of the problem see G. A. Margulis, Oppenheim conjecture, in Fields Medallists’

Lectures, World Science Publishing, River Edge, NJ, 1997, pp. 272–327.
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Theorem. The latter is not hard to show to be equivalent to HQ being defined over
Q, which, in turn, is equivalent to Q being proportional to a form with rational
coefficients.8 �

15.5.3 Rigidity of Dynamics for Unipotent Actions

Margulis’ result was a part of a broad development to understand the dynamical
and statistical properties of a special class of homogeneous actions of which the
horocycle flows described in Section 15.4.1.5 represent the simplest examples.
Similarly to the previous section, one considers right homogeneous actions on
the left homogeneous space �\G, where G is a connected Lie group and � is a
lattice, that is, a discrete subgroup of G such that the homogeneous space has finite
volume invariant under the right action of G. The latter condition is obviously
satisfied if the homogeneous space is compact, but in many cases, including the
most interesting ones (such as k), it is not.

The defining local feature of the horocycle flow is its unipotence. This means that
in a proper (moving) coordinate system the derivatives of the transformations look
like linear maps with eigenvalues one only (in the particular case of the horocycle
flow the maps in question have a single Jordan block of size three). It was shown
in the 1970s by Furstenberg, Dani, and others that horocycle flows possess certain
rigidity properties, beginning from unique ergodicity in the cocompact case. This
led Raghunathan in the late 1970s to a general conjecture that any orbit closure
for a homogeneous action that is generated by unipotent elements is algebraic in
a natural sense, that is, it is a projection of a single coset of a closed subgroup.

Initial progress was reached for horocycle flows and more general unipotent
actions that are closely associated to certain hyperbolic or partially hyperbolic ac-
tions; such unipotent subgroups bear the general name of horospherical. Since
an intertwined hyperbolic action provides a renormalization for a horospherical
action, this connection is of great assistance in the study of orbit closures and
invariant measures. In the early 1980s Marina Ratner went much beyond simple
unique ergodicity by establishing an impressive panoply of rigidity properties
for horocycle flows, their products, and the like. In 1986, Margulis established
Raghunathan’s conjecture for a certain class of nonhorospherical unipotent
subgroups that included the subgroups generating HQ (see below). Finally, in
1990, Ratner established the Raghunathan conjecture in full generality9 as well as
the corresponding statement about invariant measures.10 The Ratner theorems and
the developments that followed have a great number of implications for number
theory, geometry, and even group theory that are still being actively pursued.

Outline of proof Theorem 15.5.2 By a unimodular coordinate change any indefinite
quadratic form in three variables can be brought to the form ±Q0, where

Q0(x1, x2, x3) = 2x1x2 + x3.

8 A detailed argument can be found in Alexander N. Starkov, Dynamical Systems on Homogeneous
Spaces. American Mathematical Society, Providence, RI, 2000.

9 Marina Ratner, Raghunathan’s Topological Conjecture and Distributions of Unipotent Flows. Duke
Math. J., 63(1)(1991), 235–280.

10 Marina Ratner, On Raghunathan’s Measure Conjecture. Ann. of Math. (2) 134(3) (1991), 545–607.
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Thus the the group HQ is isomorphic to the group HQ0 , which contains a unipotent
one-parameter subgroup  1 t 0

0 1 0
0 0 1

 , t ∈ R,

and in fact can be easily shown to be generated by unipotent subgroups. The
closure of an HQ orbit in 3 must, by Margulis’ result or the general theorem of
Ratner, be a homogeneous space of a proper closed subgroup H of SL(3, Z), where
obviously HQ ⊂ H. Since there are no intermediate subgroups between HQ0 and
SL(3, R) [and hence between HQ0 and SL(3, R)], we have H = HQ; hence the action
is transitive on the orbit closure and the orbit is compact. �
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CONCURRENT READING

Several popular books complement this one well. An excellent treatment with a
focus on applications is given by

Steven H. Strogatz, Nonlinear Dynamics and Chaos, Addison–Wesley, Reading, MA,
1994.

The following two books take a different approach to increasing complexity by
going up in dimension from 1 to 2 to higher dimension:

Robert Devaney, An Introduction to Chaotic Dynamical Systems, Addison–Wesley,
Reading, MA, 1989.
Robert Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley,
Reading, MA, 1992.

These also provide easy access to complex dynamics (Julia sets, etc.).

FURTHER READING

Numerous books provide an advanced treatment of dynamical systems suit-
able for continuing an education in dynamics. Naturally, these rely on a
broader and deeper mathematical background, for which we have suggestions
below.

The most natural continuation from here would be to use our book

Anatole Katok and Boris Hasselblatt, Introduction to the Modern Theory of
Dynamical Systems, Cambridge University Press, New York, 1995.

This is a self-contained comprehensive exposition of dynamical systems.

386
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The geometric theory of dynamical systems is treated excellently by

Clark Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos,
second edition, CRC Press, Boca Raton, FL, 1999.

We recommend several books for their presentation of important areas in
dynamics. For continuous-time systems, mechanics, and applications it is useful
to be well versed in the theory of differential equations. The classical treatment of
differential equations from the point of view of dynamical systems is given by

Vladimir I. Arnold, Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer-Verlag, New York–Berlin, 1983.

We also recommend his text on mechanics, which emphasizes the geometric,
global, and structural perspectives:

Vladimir I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag,
New York, 1989.

Low-dimensional dynamics is presented in a definitive way by

Welington de Melo and Sebastian van Strien, One-Dimensional Dynamics,
Springer-Verlag, Berlin, 1993.

A good and well-motivated account of ergodic theory is due to

Karl Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983, 1989.

Symbolic dynamics and interesting applications are well-presented by

Douglas Lind and Brian Marcus, An Introduction to Symbolic Dynamics and Coding,
Cambridge University Press, Cambridge, 1995.

There are two books that are of particular interest to readers of the Panorama who
seek a broad and up-to-date high-level overview of dynamics. The first of these re-
sulted from a research institute in Seattle in the summer of 1999 that featured lecture
series and expository talks aimed at students and experts alike. The resulting volume
consists of lecture notes, surveys, and original papers, and will be of great interest:

Anatole Katok, Rafael de la Llave, Yakov Pesin and Howard Weiss (eds.), Smooth
Ergodic Theory and Its Applications, Proceedings of Symposia in Pure Mathematics
69, Summer Research Institute, Seattle, WA, 1999, American Mathematical Society,
Providence, RI, 2001

The second book consists of surveys that together cover a vast spectrum of
research areas in dynamics in a coherent way. It is part of a series of handbooks on
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dynamical systems that will have at least four volumes:

Boris Hasselblatt and Anatole Katok (eds.), Handbook of Dynamical Systems, vol.
1A, Elsevier, Amsterdam, 2002, vol. 1B, Elsevier, Amsterdam, to appear.

BACKGROUND READING

Dynamical systems builds on a mathematical background in several broad areas. A
reader may want to consult an appropriate textbook while learning from this book,
and further study may be needed to follow our suggestions for further reading. A con-
cise summary of a wide variety of subjects useful for dynamical systems is given in
the appendix to our book, Introduction to the Modern Theory of Dynamical Systems.

Three useful books for reading at the level used here are

Jerrold E. Marsden and Michael J. Hoffman, Elementary Classical Analysis, W. H.
Freeman, New York, 1993.
Charles C. Pugh, Real Mathematical Analysis, Springer-Verlag, New York, 2002.
Walter Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York–
Auckland–Düsseldorf, 1976.

Among many introductory books on ordinary differential equations

Vladimir I. Arnold, Ordinary Differential Equations, Springer-Verlag, Berlin, 1992,
is suitable as a preparation for the study of dynamical systems.

The study of statistical properties (ergodic theory) requires a background in
measure theory and functional analysis. Two classic texts also include some other
material of use for dynamics:

Halsey L. Royden, Real Analysis, Macmillan, New York, 1988,
Walter Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.

An even more comprehensive source for measure theory is

Paul R. Halmos, Measure Theory, Springer-Verlag, New York, 1974.

Smooth dynamics also requires a background in topology and geometry. We
suggest the books

John W. Milnor, Topology from the Differentiable Viewpoint, Princeton University
Press, Princeton, NJ, 1997.
James R. Munkres, Elementary Differential Topology, Annals of Mathematics
Studies 54, Princeton University Press, Princeton, NJ, 1966.
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APPENDIX

A.1 METRIC SPACES

Some interesting dynamical systems do not naturally “live” in Euclidean space, and
there are occasions where the study of a dynamical system benefits from consid-
erations in an auxiliary space. Therefore we use metric spaces in some generality.

A.1.1 Definitions

Definition A.1.1 If X is a set, then d : X × X → R is said to be a metric or distance
function if

(1) d(x, y) = d(y, x) (symmetry),
(2) d(x, y) = 0 ⇔ x = y (positivity),
(3) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

If d is a metric, then (X, d) is said to be a metric space.

Remark A.1.2 Putting z = x in (3) and using (1) and (2) shows that d(x, y) ≥ 0.

Remark A.1.3 A subset of a metric space is itself a metric space by using the metric
of the space (this is then called the induced metric).

The following notions generalize familiar concepts from Euclidean space.

Definition A.1.4 The set B(x, r) := {y ∈ X d(x, y) < r} is called the (open) r-ball
around x. A set A c X is said to be bounded if it is contained in a ball.

A set O ⊂ X is said to be open if for every x ∈ O there exists r > 0 such that
B(x, r) ⊂ O. (This immediately implies that any union of open sets is open.) The
interior of a set S is the union Int S of all open sets contained in it. Equivalently,
it is the set of x ∈ S such that B(x, r) ⊂ S for some r > 0. If x ∈ X and O is an open
set containing x, then O is said to be a neighborhood of x. A point x ∈ X is called a

389
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boundary point of S ⊂ X if for every neighborhood U of x we have U ∩ S �= ∅ and
U \ S �= ∅. The boundary of S is the set ∂ A of its boundary points.

For A ⊂ X the set A := {x ∈ X B(x, r) ∩ A �= ∅ for all r > 0} is called the closure
of A. A is said to be closed if A = A. A set A ⊂ X is said to be dense if A = X and
ε-dense if X ⊂ ⋃{B(x, ε) x ∈ A}. A set is said to be nowhere dense if its closure has
empty interior (that is, contains no nonempty open set). This is true for finite sets
but fails for Q and intervals. A sequence (xn)n∈N in X is said to converge to x ∈ X if
for all ε > 0 there exists an N ∈ N such that for every n ≥ N we have d(xn, x) < ε.

It is easy to see that a set is closed if and only if its complement is open.
(Therefore, any intersection of closed sets is closed.) Another way to define a closed
set is via accumulation points:

Definition A.1.5 An accumulation point of a set A is a point x for which every ball
B(x, ε) intersects A � {x}. The set of accumulation points of A is called the derived
set of A and denoted by A′. A set is closed if A′ ⊂ A and the closure A of a set A is
A = A ∪ A′. A set A is said to be perfect if A′ = A, that is, there are no points missing
(all accumulation points are there) nor any extraneous (isolated) ones.

Note that x ∈ A′ if and only if there is a sequence of points in A that does not
include x but converges to x.

Example A.1.6 Perfect sets are closed. R is perfect, as are [0, 1], closed balls in Rn,
S1, and the middle-third Cantor set (see Section A.1.7). But Z or finite subsets of Rn

are not (they have no accumulation points) and nor are the rationals Q (they have
irrational accumulation points).

On the real line finite sets are nowhere dense, but this fails for Q and intervals.
The ternary Cantor set is nowhere dense, because it is closed and has empty
interior (contains no interval).

Here is an interesting, pertinent special case of Theorem A.1.38:

Proposition A.1.7 All sets in R that are bounded, perfect, and nowhere dense are
homeomorphic to the ternary Cantor set.

Definition A.1.8 A metric space X is said to be connected if it contains no two
disjoint nonempty open sets. A totally disconnected space is a space X where for
every two points x1, x2 ∈ X there exist disjoint open sets O1, O2 ⊂ X containing
x1, x2, respectively, whose union is X .

R or any interval of R, as well as Rn and open balls in Rn, or the circle in R2 are
connected. Examples of totally disconnected spaces are provided by finite subsets
of R with at least two elements as well as the rationals and, in fact, any countable
subset of R. The ternary Cantor set is an uncountable totally disconnected set.
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A.1.2 Completeness

One important property sets apart the real number system from that of rational
numbers. This property is called completeness, and it reflects the fact that the
real line “has no holes,” like the rationals do. There are several equivalent ways of
expressing this property precisely, and different versions may be useful in different
circumstances.

(1) If a nondecreasing sequence of real numbers is bounded above, then it is
convergent.

(2) If a subset of R has an upper bound, then it has a smallest upper bound.
(3) A Cauchy sequence of real numbers converges.

A Cauchy sequence is a sequence (an)n∈N such that for any ε > 0 there exists an
n ∈ N such that |an − am| < ε for any n, m ≥ N.

The first two versions of completeness refer to the ordering of the real numbers
(by using the notions of upper bound and nondecreasing). The last one does not,
and it is used to define completeness of metric spaces.

Definition A.1.9 A sequence (xi)i∈N is said to be a Cauchy sequence if for all ε > 0
there exists an N ∈ N such that d(xi, xj ) < ε whenever i, j ≥ N. A metric space X is
said to be complete if every Cauchy sequence converges.

Example A.1.10 For example, R is complete, whereas an open interval is not, when
one uses the usual metric d(x, y) = |x − y| (the endpoints are “missing”). If, however,
we define a metric on the open interval (−π/2, π/2) by d∗(x, y) = | tan x − tan y|,
then this unusual metric space is indeed complete. The endpoints are no longer
perceived as “missing” because sequences that look like they converge to an
endpoint are not Cauchy sequences with respect to this metric since it stretches
distances near the endpoints.

Remark A.1.11 This is an example of the pullback of a metric. If (Y, d) is a metric
space and h: X → Y is an injective map, then d∗(x, y) := d(h(x), h(y)) defines a
metric on X . Here we took X = (−π/2, π/2), Y = R, and h = tan.

Lemma A.1.12 A closed subset Y of a complete metric space X is itself a complete
metric space.

Proof A Cauchy sequence in Y is a Cauchy sequence in X and hence converges to
some x ∈ X . Then x ∈ Y because Y is closed. �

An important example is the space of continuous functions (Definition A.1.16).

Theorem A.1.13 The space

C([0, 1], Rn) := { f : [0, 1] → Rn f is continuous}
is a complete metric space with the metric induced by the norm ‖ f ‖ :=
maxx∈[0,1] ‖ f (x)‖ (see Section A.1.5).
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Proof Suppose ( fn)n∈N is a Cauchy sequence in C([0, 1], Rn). Then it is easy
to see that ( fn(x))n∈N is a Cauchy sequence in Rn for all x ∈ [0, 1]. Therefore,
f (x) := limn→∞ fn(x) is well defined by completeness of Rn. To prove fn → f uni-
formly fix anyε > 0 and find N ∈ Nsuch that‖ fk − fl‖ < ε/2 whenever k, l ≥ N. Now
fix k ≥ N. For any x ∈ [0, 1] there is an Nx such that l ≥ Nx ⇒ ‖ fl(x) − f (x)‖ < ε/2.
Taking l ≥ N gives ‖ fk(x) − f (x)‖ ≤ ‖ fk(x) − fl(x)‖ + ‖ fl(x) − f (x)‖ < ε. This
proves the claim because k was chosen independently of x. �

Likewise one proves completeness of the space of bounded sequences.

Theorem A.1.14 The space l∞ of bounded sequences (xn)n∈N0 with the sup-norm
‖(xn)n∈N0‖∞ := supn∈N0

|xn| is complete.

Proof The proof is the same, except that the domain is N rather than [0, 1].
(Boundedness is assumed to make the norm well defined; for continuous functions
on [0, 1] it is automatic.) �

Lemma A.1.15 (Baire Category Theorem). In a complete metric space any intersec-
tion of countably many open dense sets is dense.

Proof If {Oi}i∈N are open and dense in X and ∅ �= B0 ⊂ X is open, then induc-
tively choose a ball Bi+1 of radius at most ε/i such that Bi+1 ⊂ Oi+1 ∩ Bi . The
centers form a Cauchy sequence and hence converge by completeness. Thus
∅ �= ⋂

i Bi ⊂ B0 ∩ ⋂
i Oi . �

A.1.3 Continuity

Definition A.1.16 Let (X, d), (Y, d′) be metric spaces. A map f : X → Y is said to be an
isometry if d′( f (x), f (y)) = d(x, y) for all x, y ∈ X . It is said to be continuous at x ∈ X
if for everyε > 0 there exists aδ > 0 such that f (B(x, δ)) ⊂ B( f (x), ε) or, equivalently,
if d(x, y) < δ implies d′( f (x), f (y)) < ε. f is said to be continuous if f is continuous
at x for every x ∈ X . An equivalent characterization is that the preimage of each open
set is open. f is said to be uniformly continuous if the choice of δ does not depend
on x, that is, for all ε > 0 there is a δ > 0 such that for all x, y ∈ X with d(x, y) < δ we
have d′( f (x), f (y)) < ε. f is said to be an open map if it maps open sets to open sets.

A continuous bijection (one-to-one and onto map) with continuous inverse is
said to be a homeomorphism. A map f : X → Y is said to be Lipschitz-continuous
(or Lipschitz) with Lipschitz constant C , or C-Lipschitz, if d′( f (x), f (y)) ≤ Cd(x, y).
A map is said to be a contraction (or, more specifically, a λ-contraction) if it is
Lipschitz-continuous with Lipschitz constant λ < 1.

Continuity does not imply that the image of an open set is open. For example,
the map x2 sends (−1, 1) or R to sets that are not open.

There are various ways in which two metrics can be similar, or equivalent. The
easiest way to describe these is to view the process of changing metrics as taking
the identity map on X as a map between two different metric spaces.
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Definition A.1.17 We say that two metrics are isometric if the identity establishes
an isometry between them. Two metrics are said to be uniformly equivalent
(sometimes just equivalent) if the identity and its inverse are Lipschitz maps
between the two metric spaces. Finally, two metrics are said to be homeomorphic
(sometimes also equivalent) if the identity is a homeomorphism between them.

A.1.4 Compactness

An important class of metric spaces is that of compact ones:

Definition A.1.18 A metric space (X, d) is said to be compact if any open cover of X
has a finite subcover; that is, if, whenever {Oi i ∈ I } is a collection of open sets of X
indexed by I such that X ⊂ ⋃

i∈I Oi , there is a finite subcollection {Oi1 , Oi2 , . . . , Oin}
such that X ⊂ ⋃n

l=1 Oil .

Proposition A.1.19 Compact sets are closed and bounded.

Proof Suppose X is a metric space and C ⊂ X is compact. If x /∈ C , then the sets
On := {y ∈ X d(x, y) > 1/n} form an open cover of X � {x} and hence of C . There
is a finite subcover O of {On}n∈N. Let n0 := max{n ∈ N On ∈ O}. Then d(x, y) > 1/n0

for all y ∈ C , so x /∈ C . This proves C ⊂ C .
C is bounded because the open cover {B(x, r) r > 0} has a finite subcover. �

The Heine–Borel Theorem tells us that in Euclidean space a set is compact if and
only if it is closed and bounded. In some important metric spaces, closed bounded
sets may fail to be compact, however, and this definition of compactness describes
the property that is useful in a general metric space. Indeed, this definition uses
the metric only to the extent that it involves open sets.

If a metric is given, compactness is equivalent to being both complete and
totally bounded:

Definition A.1.20 A metric space is said to be totally bounded if for any r > 0 there
is a finite set C such that the r-balls with center in C cover the space.

Proposition A.1.21 Compact sets are totally bounded.

Proof If C is compact and r > 0, then {B(x, r) x ∈ C} has a finite subcover. �

Proposition A.1.22 If (X, d) and (Y, d′) are metric spaces, X is compact, and
f : X → Y is a continuous map, then f is uniformly continuous and f (X) ⊂ Y is
compact; hence it is closed and bounded. If Y = R, this shows that f attains its
minimum and maximum.

Among the most used facts about compact spaces is this last observation that
a continuous real-valued function on a compact set attains its minimum and
maximum.

Proof For every ε > 0 there is a δ = δ(x, ε) > 0 such that d′( f (x), f (y)) < ε/2
whenever d(x, y) < δ. The balls B(x, δ(x, ε)/2) cover X , so by compactness of X
there is a finite subcover by balls B(xi, δ(xi, ε)/2). Let δ0 = (1/2) min{δ(xi, ε)}.
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If x, y ∈ X with d(x, y) < δ0, then d(x, xi) < δ0 < δ(xi, ε) for some xi and, by the
triangle inequality, d(y, xi) ≤ d(x, xi) + d(x, y) < δ0 + δ0 ≤ δ(xi, ε). These two facts
imply d′( f (x), f (y)) ≤ d′( f (x), f (xi)) + d′( f (y), f (xi)) < ε/2 + ε/2 = ε.

To see that f (X) ⊂ Y is compact, consider any open cover f (X) ⊂ ⋃
i∈I Oi of

f (X). Then the sets f −1(Oi) = {x f (x) ∈ Oi} cover X , and hence there is a finite
subcover X ⊂ ⋃n

l=1 f −1(Oil ). But then f (X) ⊂ ⋃n
l=1 Oil . �

Proposition A.1.23 Suppose {Ci i ∈ I } is a collection of compact sets in a metric
space X such that

⋂n
l=1 Ci �= ∅ for any finite subcollection {Cil 1 ≤ l ≤ n}. Then⋂

i∈I Ci �= ∅.

Proof We prove the contrapositive: Suppose {Ci i ∈ I } is a collection of compact
sets with

⋂
i∈I Ci = ∅. Let Oi = C1 � Ci for i ∈ I . Then

⋂
i∈I Ci = ∅ implies that⋃

i∈I Oi = C1, that is, the Oi form an open cover of the compact set C1. Thus there
is a finite subcover

⋃n
l=1 Oil = C1. This means that

⋂n
l=1 Cil = ∅. �

Proposition A.1.24

(1) A closed subset of a compact set is compact.
(2) The intersection of compact sets is compact.
(3) A continuous bijection between compact spaces is a homeomorphism.
(4) A sequence in a compact set has a convergent subsequence.

Proof (1) Suppose C ∈ X is a closed subset of a compact space and
⋃

i∈I Oi is an
open cover of C . If O = X � C , then X = O ∪ C ⊂ O ∪ ⋃

i∈I Oi is an open cover of
X and hence has a finite subcover O ∪ ⋃n

l=1 Oil . Since O ∩ C = ∅, we get a finite
subcover

⋃n
l=1 Oil of C .

(2) The intersection of compact sets is an intersection of closed subsets and
hence a closed subset of any of these compact sets. Therefore it is compact by (1).

(3) We need to show that the image of an open set is open. Using bijectivity, note
that the complement of the image of an open set O is the image of the complement
Oc of O. Oc is a closed subset of a compact space, hence it is compact, and thus
its image is compact, and hence closed. Its complement, the image of O, is then
open, as required.

(4) Given a sequence (an)n∈N, let An := {ai i ≥ n} for n ∈ N. Then the closures
An satisfy the hypotheses of Proposition A.1.23 and there exists an a0 ∈ ⋂

n∈N
An.

This means that for every k ∈ N there exists an nk > nk−1 such that ank ∈ B(a0, 1/k),
that is, ank → a0. �

An interesting example of a metric space is given by the Hausdorff metric:

Definition A.1.25 If (X, d ) is a compact metric space and K (X ) denotes the
collection of closed subsets of X , then the Hausdorff metric dH on K (X ) is
defined by

dH(A, B) := sup
a∈A

d(a, B) + sup
b∈B

d(b, A),

where d(x, Y) := infy∈Y d(x, y) for Y ⊂ X .
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Notice that dH is symmetric by construction and is zero if and only if the two sets
coincide (here we use that these sets are closed, and hence compact, so the “sup”
are actually “max”). Checking the triangle inequality requires a little extra work. To
show that dH(A, B) ≤ dH(A, C) + dH(C, B), note that d(a, b) ≤ d(a, c) + d(c, b) for
a ∈ A, b ∈ B, c ∈ C , so taking the infimum over b we get d(a, B) ≤ d(a, c) + d(c, B)
for a ∈ A, c ∈ C . Therefore, d(a, B) ≤ d(a, C) + supc∈C d(c, B) and supa∈A d(a, B) ≤
supa∈A d(a, C) + supc∈C d(c, B). Likewise, one gets supb∈B d(b, A) ≤ supb∈B d(b, C) +
supc∈C d(c, A). Adding the last two inequalities gives the triangle inequality.

Lemma A.1.26 The Hausdorff metric on the closed subsets of a compact metric
space defines a compact topology.

Proof We need to verify total boundedness and completeness. Pick a finite ε/2-net
N. Any closed set A ⊂ X is covered by a union of ε-balls centered at points of N, and
the closure of the union of these has Hausdorff distance at most ε from A. Since
there are only finitely many such sets, we have shown that this metric is totally
bounded. To show that it is complete, consider a Cauchy sequence (with respect to
the Hausdorff metric) of closed sets An ⊂ X . If we let A := ⋂

k∈N

⋃
n≥k An, then one

can easily check that d(An, A) → 0. �

Any homeomorphism of a compact metric space X induces a natural homeo-
morphism of the collection of closed subsets of X with the Hausdorff metric, so we
have the following:

Lemma A.1.27 The set of closed invariant sets of a homeomorphism f of a compact
metric space is a closed set with respect to the Hausdorff metric.

Proof This is just the set of fixed points of the induced homeomorphism; hence it
is closed. �

Definition A.1.28 A metric space (X, d ) is said to be locally compact if for every x
and every neighborhood O of x there is a compact set K in O that contains x. It is said
to be separable if it contains a countable dense subset (such as the rationals in R).

A.1.5 Norms Define Metrics in Rn

There is a particular class of metrics in the Euclidean space Rn that are invariant
under translations.

Definition A.1.29 A function N on a linear space is said to be a norm if

(1) N(λx) = |λ|N(x) for λ ∈ R (homogeneity),
(2) N(x) ≥ 0 and N(x) = 0 ⇔ x = 0 (positivity),
(3) N(x + y) ≤ N(x) + N(y) (convexity).

A linear space with a norm is said to be a normed linear space.
Any norm determines a metric by setting the distance function d(x, y) =

N(x − y). For the metric thus defined, positivity follows from the positivity of the
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norm, symmetry follows from homogeneity for λ = −1, and triangle inequality
follows from convexity. For such a metric the translations Tv : x → x + v are isome-
tries by definition. Furthermore, the central symmetry x → −x is an isometry, and
any homothety x → λx multiplies all distances by |λ| (we call the last property
homogeneity of the metric).

Example A.1.30 The maximum distance on Rn is given by

d(x, y) = max
1≤i≤n

|xi − yi |.(A.1.1)

Of course, the standard Euclidean metric is of that kind (it is also invariant
under rotations, which we do not require), as is the maximum metric (A.1.1).

Example A.1.31 The linear space C([0,1]) of continuous functions on [0,1] is a
linear space and carries the norm ‖ f ‖ := max{| f (x)| | x ∈ [0, 1]}.

The following proposition is the main reason why norms are useful devices in
dynamics.

Proposition A.1.32 All metrics in Rn determined by norms are uniformly
equivalent.

Proof First, since the property of uniform equivalence is transitive, it is sufficient
to show that any metric determined by a norm is uniformly equivalent to the
standard Euclidean metric.

Second, since translations are isometries, it is suffient to consider distances
from the origin, that is, we can work with the norms directly.

Third, by homogeneity it is sufficient to consider norms of vectors whose
Euclidean norm is equal to one, that is, the points on the unit sphere.

But then the other norm is a convex, and hence continuous, function with
respect to Euclidean distance, so by compactness of the sphere it is bounded from
above. It also achieves its minimum on the unit sphere. The minimum cannot be
zero because this would imply the existence of a nonzero vector with zero norm.
Thus the ratio of the norms is bounded between two positive constants. �

A.1.6 Product Spaces

The construction of the torus as a product of circles illustrates the usefulness of
considering products of metric spaces in general. To define the product of two
metric spaces (X, dX ) and (Y, dY ) we need to define a metric on the cartesian
product X × Y , such as

dX×Y ((x1, y1), (x2, y2)) :=
√

(dX (x1, x2))2 + (dY (y1, y2))2.

That this defines a metric is checked in the same way as checking that the Euclidean
norm on R2 defines a metric.
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There are other choices of equivalent metrics on the product. Two evident
ones are

d′
X×Y ((x1, y1), (x2, y2)) := dX (x1, x2) + dY (y1, y2)

and

d′′
X×Y ((x1, y1), (x2, y2)) := max(dX (x1, x2), dY (y1, y2)).

Showing that these metrics are pairwise uniformly equivalent is done in the
same way as showing that the Euclidean norm, the norm ‖(x, y)‖1 := |x| + |y|, and
the maximum norm ‖(x, y)‖∞ := max(|x|, |y|) define pairwise equivalent metrics
(Proposition A.1.32). Indeed, this follows from it.

For products of finitely many spaces (Xi, dXi ) (i = 1, . . . , n) one can define
several uniformly equivalent metrics on the product as follows: Fix a norm ‖ · ‖ on
Rn, and for any two points (x1, x2, . . . , xn), and (x′

1, x′
2, . . . , x′

n) define their distance
to be the norm of the vector in Rn whose entries are dXi (xi, x′

i). That the resulting
metrics are uniformly equivalent follows from the uniform equivalence of any two
norms on Rn (Proposition A.1.32).

We also encounter products of infinitely many metric spaces (or, usually, a
product of infinitely many copies of the same metric space). In an infinite cartesian
product of a set X every element is specified by its components; that is, if the
copies of the set X are indexed by a label i that ranges over an index set I , then an
individual element of the product set is specified by assigning to each value of i an
element of X , the ith coordinate. This leads to the formal definition of the infinite
product

∏
i∈I X =: X I as the set of all functions from I to X .

Unlike in the case of finite products, we have to choose our product metric care-
fully. Not only do we have to keep in mind questions of convergence, but different
choices may give metrics that are not equivalent, even up to homeomorphism. To
define a product metric assume that I is countable. In case I = N and if the metric
on X is bounded, that is, d(x, y) ≤ 1, say, for all x, y ∈ X , we can define several
homeomorphic metrics by setting

dλ(x, y) :=
∞∑

i=1

d(xi, yi)
λ|i| .(A.1.2)

This converges for any λ > 1 by comparison with the corresponding geometric
series.

If I = Z, we make the same definition with summation over Z [this is the reason
for writing |i| in (A.1.2)].

Theorem A.1.33 (Tychonoff ). The product of compact spaces is compact.

As a particular case we can perform this construction with X = [0, 1], the
unit interval. The product thus obtained is called the Hilbert cube. This is a new
way to think of the collection of all sequences whose entries are in the unit
interval.
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A.1.7 Sequence Spaces

Generalizing from the ternary Cantor set introduced in Section 2.7.1 we now define
a more general class of metric spaces of which there are many important examples.

Definition A.1.34 A Cantor set is a metric space homeomorphic to the middle-third
Cantor set.

A natural and important example is the space R
2 of sequences ω = (ωi)∞

i=0 whose
entries are either 0 or 1. This set is the product {0, 1}N0 of countably many copies of
the set {0, 1} of two elements, so it is natural to endow it with a product metric. Up
to multiplication by a constant there is only one metric on {0, 1}, which we define by
setting d(0, 1) = 1. Referring to (A.1.2), we can endow R

2 with the product metric

d(ω, ω′) :=
∞∑

i=0

d(ωi, ω
′
i)

3i+1
.

Proposition A.1.35 The space R
2 = {0, 1}N0 equipped with the product metric

d(ω, ω′) := ∑∞
i=0 d(ωi, ω

′
i)3−(i+1) is a Cantor set.

To prove this we need a homeomorphism between the ternary Cantor set C
and R

2 :

Lemma A.1.36 The one-to-one correspondence between the ternary Cantor set C
and R

2 defined by mapping each point x = 0.α1α2α3 · · · = ∑∞
i=1 (αi/3i) ∈ C (αi �= 1)

to the sequence f (x) := {αi/2}∞i=0 is a homeomorphism.

Proof If x = 0.α0α1α2 · · · = ∑∞
i=0 (αi/3i+1) (αi �= 1) and y = 0.β0β1β2 · · · = ∑∞

i=0 (βi/

3i+1) (βi �= 1) in C , then

d(x, y) = |x − y| =
∣∣∣∣∣ ∞∑

i=0

αi

3i+1
−

∞∑
i=0

βi

3i+1

∣∣∣∣∣
=

∣∣∣∣∣ ∞∑
i=0

αi − βi

3i+1

∣∣∣∣∣ ≤
∞∑

i=0

|αi − βi |
3i+1

= 2d( f (x), f (y)).

Now let α = f (x), β = f (y). Then d( f −1(α), f −1(β)) = d(x, y) ≤ 2d(α, β), so f −1 is
Lipschitz-continuous with Lipschitz constant 2.

If ω, ω′ ∈ R
2 are two sequences with d(ω, ω′) ≥ 3−n, then ωi �= ω′

i for some i ≤ n,
because otherwise

d(ω, ω′) ≤
∞∑

i=n+1

3−i−1 = 3−n−2

1 − 1
3

= 3−n−1/2 < 3−n.

Consequently, f −1(ω) and f −1(ω′) differ in the ith digit for some i ≤ n. This implies
d( f −1(ω), f −1(ω′)) ≥ 3−(n+1) because the two points are in different pieces of Cn+1.
Taking x = f −1(ω), x′ = f −1(ω′), we get d(x, x′) < 3−(n+1) ⇒ d( f (x), f (y)) < 3−n.
This shows that f is Lipschitz-continuous as well. �

We have shown in particular that R
2 is compact and totally disconnected. Let

us note in addition that every sequence in R
2 can be approximated arbitrarily well
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by different sequences in R
2 by changing only very remote entries. Thus every

point of R
2 is an accumulation point and R

2 is a perfect set.

Proposition A.1.37 Cantor sets are compact, totally disconnected, and perfect.

It is not hard to see that the space 2 = {0, 1}Z with a product metric is in turn
homeomorphic to R

2 , and therefore it is also a Cantor set. To that end let

α : Z → N0, n !→
{

2n if n ≥ 0

1 − 2n if n < 0

and f : R
2 → 2, ω !→ ω ◦ a = (. . . ω3ω1ω0ω2ω4 . . . ). Endowing 2 and R

2 with
any two of the product metrics (A.1.2) makes f a homeomorphism because two
sequences α, α′ are close if and only if they agree on a large stretch of initial entries.
Then the resulting sequences ω = f (α) and ω′ = f (α′) agree on a long stretch of
entries around the 0th entry and hence are also close. Thus f is a continuous
bijection between compact spaces and therefore a homeomorphism by Proposi-
tion A.1.24. (It is as easy to see directly that f −1 is continuous.)

A.1.8 General Properties of Cantor Sets

Theorem A.1.38 Every perfect totally disconnected compact metric space is a
Cantor set.

We have seen that sequence spaces are perfect and compact; it is easy to see in
general that they are totally disconnected: If α �= β are sequences, then αi �= βi for
some index i. The set of sequences ω with ωi = αi is open, and likewise the set of
sequences withωi = βi . But these sets are disjoint and their union is the entire space.

Corollary A.1.39 Every nonempty, perfect, bounded, nowhere dense set on the line
is a Cantor set.

Proof A perfect bounded set on the line is compact by the Heine–Borel Theorem (a
closed bounded subset of Rn is compact). Being perfect, it also contains more than
one point. If it is not totally disconnected, then it has a connected component with
more than one point and hence contains a nontrivial interval, contrary to being
nowhere dense. �

A.1.9 Dyadic Integers

Define the following metric d2 on the group Z of all integers: d(n, n) = 0 and
d2(m, n) = ‖m− n‖2 for n �= M, where

‖n‖2 = 2−k if n = 2kl with an odd number l.

The completion of Z with respect to that metric is called the group of dyadic
integers and is usually denoted by Z2. It is a compact topological group.
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A.2 DIFFERENTIABILITY

A.2.1 The Derivative

A map is said to be differentiable if it admits a good linear approximation. We require
that for each point there is a linear transformation that differs from the map by an
error that is smaller than linear as a function of the distance to the reference point:

Definition A.2.1 Let V, W be normed linear spaces, U ⊂ V open, and x ∈ U. A map
f : U → W is said to be differentiable at x if there is a linear map A : V → W such that

lim
h→0

‖ f (x + h) − f (x) − Ah‖
‖h‖ = 0.

In this case A is said to be the derivative of f at x, and we write Df (x) := A.

If a map f : Rn → Rm is differentiable at x, then Df (x) is the matrix of partial
derivatives at x (see Section 2.2.4.1), but the existence of all partial derivatives does
not imply differentiability.

A.2.2 The C r-Topology

The sequence of functions fn(x) := sin(nx)/n converges to 0 uniformly, but the
sequence of derivatives does not. Therefore, if one wants to ensure convergence
of derivatives of a sequence of functions, one must impose it explicitly. The
C1-topology is an elegant way to formulate this. On the space of bounded functions
with bounded derivative we define the metric

d( f, g) := max(sup
x

d( f (x), g(x)), sup
x

d(Df (x), Dg(x))).

Then d( fn, g) → 0 means that fn → g and Dfn → Dg uniformly. Likewise, the
Cr -topology is defined by the metric

d( f, g) := max
0≤i≤r

sup
x

d(Di f (x)Di g(x)).

Theorem A.2.2 A space of bounded continuous functions with values in a com-
plete space, endowed with the metric of uniform convergence, is a complete space.
Likewise, any space of bounded functions with bounded derivative (and values in a
complete space) is complete with the C1-topology. An analogous statement holds
for the Cr -topology.

This generalization of Theorem A.1.13 and Theorem A.1.14 is an important rea-
son for using these topologies.

A.2.3 The Mean Value Theorem and the Taylor Remainder

The Mean Value Theorem is a basic and central result in differential calculus. It
connects the derivative with the behavior of a function on an interval.

Theorem A.2.3 If f : [a, b] → R is continuous and f is differentiable on (a, b), then
there is a point x ∈ (a, b) such that f (b) − f (a) = (b − a) f ′(x).
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Proof g(t) := t( f (b) − f (a)) − f (t)(b − a) is continuous on [a, b] and differentiable
on (a, b) and g(a) = af (b) − bf (a) = g(b). If g is constant, then we are done. Other-
wise, g has an extremum g(x) at some x ∈ (a, b) by continuity. g is differentiable at
x, hence 0 = g′(x) = f (b) − f (a) − f ′(x)(b − a). �

A more sophisticated version of this result is used to establish the validity of a
Taylor expansion.

Theorem A.2.4 If f : (a, b) → R has k + 1 derivatives and x0 ∈ (a, b), then for every
x ∈ (a, b) there exists a c between x and x0 such that

f (x) =
k∑

i=0

f (i)(x0)
i!

(x − x0)i + f (k+1)(x0)
(k + 1)!

(x − x0)k+1,

where f (i) denotes the ith derivative.

Proof Let fk(x) := ∑k
i=0 f (i)(x0)(x − x0)i/i!, z := ( f (x) − fk(x))/(x − x0)k+1, and

g(t) := f (t) − fk(t) − z(t − x0)k+1 on [a, b].
We will show that g(k+1)(c) = 0 for some c between x and x0. Since

g(k+1)(t) = f (k+1)(t) − (k + 1)!z, this implies f (k+1)(c) = (k + 1)!z, as required.
We use that g(i)(x0) = 0 for 0 ≤ i ≤ k since f (i)(x0) = f (i)

k (x0) by definition.
Combined with g(x) = 0 (by choice of z), this gives a c1 between x and x0 such that
g′(c1) = 0. Combining this with g ′(x0) = 0 gives a c2 between c1 and x0 such that
g ′′(c2) = 0. Repeating k times gives the desired c. �

A.2.4 Diffeomorphisms and Embeddings

The inverse of an invertible differentiable map need not be differentiable; x3 is an
example. Since having a differentiable inverse is useful, such maps have a name:
A differentiable map with differentiable inverse is said to be a diffeomorphism.

For our purposes it is useful to extend this notion to maps that are not surjective
(onto). We want to allow maps such as (x, y) !→ (x, y, x2 + y2) from the unit
disk to R3, but we wish to exclude t !→ (t, πt) (mod 1) from R to the torus (see
Section 2.6.4), because its “inverse” is not continuous.

Definition A.2.5 Suppose U ⊂ Rn. A map f : U → Rm is said to be an embedding
if f is differentiable, its derivative has rank n at every point, and f : U → f (U) is a
homeomorphism.

In this definition one can replace either or both Euclidean spaces by a torus, a
cylinder, or a sphere of the corresponding dimension.

A.3 RIEMANN INTEGRATION IN METRIC SPACES

The notion of integration with respect to a “measure” appears many times
throughout the book.
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A.3.1 The Riemann Integral

The basic notion is that of Riemann integration with respect to length, area, or
volume in space, and its subsets and related spaces such as spheres, cylinders,
and tori. An important question is, What functions are Riemann integrable? In the
standard definition through upper and lower sums boundedness is obviously nec-
essary. Similarly, the function must be compactly supported, that is, it should vanish
outside of a compact set. This is no restriction if the ambient space itself is compact,
such as a closed interval, a rectangle, a sphere, or a torus. Under these assumptions
every continuous function is integrable. Some of the most important functions
that appear in connection with integration are discontinuous, though. First, there
are characteristic functions of intervals, rectangles, and other “nice” sets where the
integral is equal to the length, area, or volume, depending on the dimension.

It turns out that there is a powerful necessary and sufficient condition for
integrability.

Theorem A.3.1 (Lebesgue). A function defined in a bounded domain of Euclidean
space, or on a sphere, a torus, or a similar compact differentiable manifold is Riemann
integrable if and only if it is bounded and the set of its discontinuity points is a
null set.

The main idea of the proof is to connect the countably many sets in the definition
of null set (Definition 7.5.3) with the finitely many rectangles in the upper and lower
sums. The method is to note that the set of points near which f varies by at least ε can
be covered by countably many rectangles whose volumes sum to arbitrarily little,
and then compactness leads to a finite subcover that can be made part of a legitimate
partition.1

Applying this criterion to the characteristic function of a compact set A (whose
discontinuity points are exactly the boundary points of A) we immediately obtain

Corollary A.3.2 For a compact set A the length, area, or volume is defined if and
only if the boundary of A is a null set.

This of course immediately extends to sets with compact closure.

A.3.2 Weighted Integration

A natural extension of Riemann integration is weighted integration with respect
to a nonnegative density ρ, which can be reduced to the standard case by simply
multiplying the integrand by ρ. Naturally, in order for this procedure to work, the
function ρ must be Riemann integrable itself. This is also sufficient due to the
following fact.

Proposition A.3.3 The sum, product, and uniform limit of Riemann-integrable
functions is Riemann integrable. Moreover, the integral behaves naturally with

1 See Jerrold E. Marsden and Michael J. Hoffman, Elementary Classical Analysis, W. H. Freeman,
New York, 1993.
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respect to linear combinations and limits, that is, the integral of a linear com-
bination (or limit) is the corresponding linear combination (or limit) of the
integrals.

The notion of integral can be extended beyond the above setting. Most texts
on calculus and elementary real analysis deal with situations (which often appear
in the real world) when either the domain of the function is not compact [as
for f (x) = 1/(1 + x2) + x2 on the real line], or the function is unbounded [as for
f (x) = log x on the interval (0, 1)], or both. In such cases natural approximation
procedures often give a notion of integral called an improper integral.

A.3.3 The Riemann–Stieltjes Integral on the Line

Bernoulli measures (Section 7.6.4) constitute a situation where integration is
naturally defined but cannot be reduced to any of the situations described above.
Integration with respect to any nonsymmetric Bernoulli measure cannot be
reduced to Riemann integration with respect to a density since a null set may
have positive Bernoulli measure (this is referred to as singularity of the measure).
Still, integration with respect to a Bernoulli measure can be defined following the
familiar procudure of upper and lower Riemann sums associated to a partition of
[0, 1] into small intervals and taking the joint limit when the length of the longest
partition element converges to zero.

A general construction of this kind is called the Riemann–Stieltjes integral. It is
defined for functions on an interval I ⊂ R. It depends on a distribution function
F on I . This is a function that is monotone, bounded from above and below,
and continuous from the left; that is, for an increasing sequence xn ∈ I one has
limn→∞ F (xn) = F (limn→∞ xn).

We first consider the case of continuous F ; this is not a serious restriction
in dynamical considerations. Define the measure of an interval [a, b] ⊂ I as
F (b) − F (a). Using this measure instead of length, define upper and lower Riemann
sums for a function with respect to a finite partition of I . In this case there is no
distinction between closed, open, or half-open intervals.

In general, that is, if there are discontinuity points, one considers first intervals
whose endpoints are continuity points of F and defines the measure the same
way. To avoid ambiguities in the definiton of Riemann sums, one has to restrict to
partitions where the division points are continuity points of F . This is because the
discontinuity points are not null sets: The measure of any such point x is given by
the jump of the distribution function at x. The proof that any continuous function
is integrable (that is, upper and lower Riemann sums have the same limit for any
sequence of partitions for which the maximal length of elements goes to zero) is
effectively identical to the proof for the standard Riemann integral.

The distribution function construction provides the most general treatment of
integration in one dimension; it can in fact be extended to the case of the whole
line or a half-line. In particular, it takes care of the situation of a “reasonable”
unbounded density funtion, which appears for example as an invariant measure
for some quadratic maps such as those discussed in Section 11.4.3.
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A.3.4 Integrals as Positive Functionals

However, in our discussions of hyperbolic systems and strange attractors we
encounter situations beyond dimension one where an asymptotic distribution
exists but cannot be reduced to integration with respect to a density. Besides, some
of the natural systems considered in this book such as symbolic systems act on
spaces that are very different from Euclidean spaces. In the rest of this section we
describe a general framework for integration in metric spaces, which in particular
addresses all of these situations. In fact, what we describe is going from an integral
defined for continuous function to the measure for “nice” sets and back, as was
done in the case of uniform distribution on the circle in Section 4.1.4 and
Section 4.1.6.

Definition A.3.4 Let X be a compact metric space. A Riesz integral is a nonzero
linear functional I on the space C(X) of continuous real-valued functions on X that
is continuous in the uniform topology and nonnegative, that is, I( f ) ≥ 0 if f ≥ 0.

The weighted Riemann integral I( f ) = ∫
ρ f dx as well as any Riemann–Stieltjes

integral satisfy these conditions.
A Riesz integral is defined on the characteristic function χA only if χA is

continuous, that is, if A is simultaneously open and closed. While this is the case
with cylinder sets in sequence spaces, it is impossible for connected spaces. We
extend the definition of the Riesz integral to some characteristic functions and
many other functions by approximation.

Definition A.3.5 For a function f : X → R define the upper integral as

I+( f ) := inf{I(g) g ∈ C(X ), g ≥ f },
and similarly the lower integral is

I−( f ) := sup{I(g) g ∈ C(X ), g ≤ f }.
The function f is integrable if I+( f ) = I−( f ). In this case, this common value is

denoted by I( f ).

Obviously a linear combination of integrable functions is integrable. It is slightly
less trivial but still not hard to see that the product of two integrable functions is
integrable and the uniform limit of integrable functions is integrable. The following
proposition shows the abundance of integrable functions among characteristic
functions.

Proposition A.3.6 If x ∈ X then for all but at most countably many values of r, the
characteristic functions of both the closed and open r-ball around x are integrable.

Definition A.3.7 A set whose characteristic function is integrable is said to be
(Riemann) measurable with respect to I. I(χA) is called the measure of A.

Proposition A.3.8 Any finite union or finite intersection of measurable sets is
measurable.
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Remark A.3.9 There is an obvious weakness in this definition that is not fully
apparent in the case of standard Riemann integration. Namely, some fairly “nice”
sets may not be measurable. The simplest example arises for the δ-measure:
δx0 ( f ) = f (x0) for a given point x0 ∈ X . This is obviously a Riesz integral, and
obviously it is “concentrated” at the point x0, since it vanishes at any function
that vanishes at that point. However, the one-point set {x0} is not measurable
according to our definition. The way out of this problem is to extend the notions
of integrability and measurability. This leads to the theory of Lebesgue integration.

A.3.5 Partitions and Riemann Sums

Now we show how a Riesz integral can be reconstructed using a procedure similar
to the construction of the standard Riemann integral through partitions into
rectangles and Riemann sums.

Definition A.3.10 Given a Riesz integral I, a measurable partition of X is a de-
composition of X into the union of finitely many measurable sets. The size of a
measurable partition is the supremum of distances between points in the same
element.

Proposition A.3.11 For any ε there is a measurable partition of size less than ε.

Proof By Proposition A.3.6, for every point there exists a ball around that point of
radius less than ε/3 whose characteristic function is measurable. Take a finite cover
B1, . . . , Bn by such balls and let Ck = Bk �

⋃k−1
i=1 Bi , k = 1, . . . , n. The sets C1, . . . , Cn

form a partition with the desired property. �

Given a bounded function f on X and a measurable partition ξ = (C1, . . . , Cn)
of X , we define the upper and lower Riemann sums as

U( f, ξ ) :=
n∑

i=1

measure(Ci) sup{ f (x) x ∈ Ci}

and

L( f, ξ ) :=
n∑

i=1

measure(Ci) inf{ f (x) x ∈ Ci},

correspondingly.

Theorem A.3.12 If f is integrable and ξm is a sequence of partitions whose size goes
to zero, then

lim
m→∞ U( f, ξm) = lim

m→∞ L( f, ξm) = I( f ).

Proof First consider a continuous function f and let ε > 0. Since f is uniformly
continuous, there exists N ∈ N such that for any m > N and for any element C



book 0521583047 April 21, 2003 16:55 Char Count= 0

406 Appendix

of the partition ξm, sup{ f (x) x ∈ C} − inf{ f (x) x ∈ C} < ε. Since measure is
additive, this implies that U( f, ξm) − L( f, ξm) < ε.

For an arbitrary-Riemann integrable function f there are continuous functions
f + and f− such that f − ≤ f ≤ f+ and ( f +) − ( f−) < ε. Applying the previous
argument to these functions gives the statement. �

A.3.6 The General Riemann Integral

Finally we show that a Riesz integral arises from a measure defined on a sufficient
collection of sets through the construction of Riemann sums. In analogy with the
classical Riemann-integral construction we call such sets “rectangles”. We assume
that a collection of rectangles is fixed together with a measure defined for each
rectangle. We consider a compact metric space X .

Sufficiency: The whole space is a rectangle.
Refinement: Given any ε > 0, a rectangle can be partitioned into finitely many

rectangles, each of which fits into an ε-ball.
Intersection: The intersection of two rectangles is a rectangle.
Additivity: If a rectangle R is partitioned into rectangles Ri (i = 1, . . . , k) then

measure(R) = ∑k
i=1 measure(Ri).

Suppose f is a bounded real-valued function defined on a bounded rectangle
A. For any partition R = {R1, . . . , Rk} (that is,A = ⋃k

i=1 Ri) into rectangles, define the
upper sum to be

U( f,R) :=
k∑

i=1

measure(Ri) sup{ f (x) x ∈ Ri}

and the lower sum

L( f,R) :=
k∑

i=1

measure(Ri) inf{ f (x) x ∈ Ri}.

Lemma A.3.13 If R and R′ are partitions, then L( f,R′) ≤ U( f,R).

Proof If R′ = R, this is obvious. To reduce to this case use the common refinement
R̄ := {R ∩ R′ R ∈ R, R′ ∈ R′}. This is a partition by rectangles, and it is not hard to
check that

L( f,R′) ≤ L( f, R̄) ≤ U( f, R̄) ≤ U( f,R)

using additivity. �

This lemma implies that∫
A

f := inf
R

U( f,R) and
∫

A

f := sup
R

L( f,R)

are well defined and finite, and
∫

A f ≥ ∫
A

f .
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Definition A.3.14 A function f defined on a rectangle A is said to be Riemann
integrable over A if

∫
A f = ∫

A
f . In this case,

∫
A f := ∫

A
f is called the Riemann

integral of f over A.

Using the refinement property above, an argument very similar to the proof of
Theorem A.3.12 shows that continuous functions are Riemann integrable and that
the Riemann integral thus defined on C(X) is a Riesz integral as in Definition A.3.4.
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Exercise 1.2.5 kT = − log 2, where log is the natural logarithm.

Exercise 1.3.3 Seven. The sixth step is quite close to Heron’s initial guess.

Exercise 1.3.8 Exercise 1.1.5 solves cos x = x, Exercise 1.1.8 finds
√

5, and Exercise 1.1.9
solves sin x = x.

Exercise 1.3.23 Since the sequence of the last two digits has period 20, it suffices to mul-
tiply 8 by 220 until 008 reappears. It may help to truncate in between.

Exercise 2.2.6 Use graphical computing (Remark 2.3.3 and Figure 2.3.1) in the middle
image of Figure 2.3.2.

Exercise 2.2.7 The last two.

Exercise 2.2.11 Use the triangle inequality to reduce the problem to continuity at the zero
matrix, then apply Exercise 2.2.9.

Problem 2.2.12 Consider an annulus centered at the origin with a narrow slit (a region
that looks like the letter C) and use polar coordinates to contract the radial as well as the
angular component.

Problem 2.2.13 Show that the minimum of d( f (x), x) exists and must occur at a fixed
point.

Problem 2.2.14 f (x) = x + e−x.

Exercise 2.3.4 Define the map on the complementary intervals to E in such a way that
every point moves to the right.

Problem 2.3.5 Do the construction on the complementary intervals similarly to the pre-
vious problem, but with extra care: First, make the function infinitely differentiable at
each such interval with all derivatives of the difference with the identity vanishing at both
ends; second, control the derivatives as the intervals get smaller. In other words, make
the function representing the deviation of your map from the identity very “flat” near the
set E .

408
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Exercise 2.4.2 Separate variables and integrate to get s = k − 1.

Exercise 2.4.3 This example must violate the Lipschitz condition on f . Take ẋ = √
x and

x(t) = 4t2.

Exercise 2.4.4 ẋ = x2.

Problem 2.4.7 The return map to a section may look like x → x − x3 near zero.

Exercise 2.5.1 Prove the convexity of f 2
λ on that interval to bound the derivative by the

derivative at xλ.

Exercise 2.6.1 If y ∈ B(x, r), show that B(y, r − d(x, y)) ⊂ B(x, r).

Exercise 2.6.8 See Lemma A.1.12.

Problem 2.6.9 By compactness, d(x, f (x)) attains its minimum at some point R0. Use the
assumption to show that the minimum is zero, as well as the uniqueness of the fixed point.
Convergence: For x ∈ X , the sequence ( f n(x)n∈N) has an accumulation point x′. Show that
f (x′) is also an accumulation point and that x′ �= x0 contradicts the fact that d( f n(x), x0) is
decreasing in n.

Problem 2.7.5 Verify that the map 0.α1α2α3 . . . !→ (0.α1α3 . . . , 0.α2α4 . . . ) is a homeomor-
phism, where all expansions are ternary and all αi ∈ {0, 2}.

Problem 2.7.6 Consult Section 4.4.1.

Problem 2.7.7 Construct a homeomorphism of the unit interval onto itself that maps C
′

onto C by matching complementary intervals preserving their order and picking each time
a longest one of the available intervals.

Exercise 3.1.4 The solutions are of the form xλn + ynλn.

Exercise 3.1.5 Denote the desired number by an. The shape of the tiles forces an = an−1 +
2an−2.

Exercise 3.2.3 Rewrite the equation in polar coordinates and separate variables.

Exercise 3.3.2 Use Proposition A.1.32.

Exercise 3.3.3 Use Proposition 3.3.3 and Proposition A.1.32.

Exercise 3.3.5 Consider the absolute values of the eigenvalues. Their sum is at least 2.7,
so if none exceeds 1, then the product is at least 0.7.

Problem 3.3.6 Use Jordan normal form.

Problem 3.3.7 Consider the Jordan blocks first.

Exercise 4.1.5 Show that the change of the time difference between sunrise and moonrise
from one day to the next is constant; hence the evolution of this difference represents an
orbit of a rotation. Conclude that this rotation must be irrational.

Exercise 4.1.6 Use Z as the space.

Exercise 4.1.7 Consider as the space {−1, 1} ∪ { 1
n − 1/n ∈ N} ∪ {1 − 1

n/n ∈ N} and modify
the previous solution.

Exercise 4.1.9 The time averages converge to the value at the fixed point.
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Exercise 4.1.11 292; see Proposition 15.2.7.

Problem 4.1.14 The time averages converge to the value at 0.

Exercise 4.2.5 The angle is equal to 1/γ .

Exercise 4.2.10 Distinguish between the rational and irrational cases. In the former case
there are finitely many very bright points and in the latter a circle.

Exercise 4.3.1 If a is an integer of half of an integer.

Exercise 4.3.4 F is a lift of an orientation-preserving homeomorphism. Since F (0) =
0, ρ(F ) = 0.

Exercise 4.3.5 Notice that the arguments for homeomorphisms used only continuity and
monotonicity.

Exercise 4.3.6 It changes sign.

Exercise 4.3.7 Use Lemma 4.3.7.

Problem 4.3.8 If there is a point for which the corresponding lim and lim disagree, choose
a rational number in between and locate a corresponding periodic point.

Problem 4.3.9 Consider the intervals between adjacent fixed points and obtain a contra-
diction if all points are stable or semistable.

Problem 4.4.5 Yes: If {O1, O2} is a disjoint open cover of Ap/q, show that we may assume
O1 ∩ O2 = ∅. Use a compactness argument to obtain a contradiction.

Exercise 5.1.2 Either at least one is a perfect square or their ratio is a ratio of perfect
squares. Prove this by case distinctions on the number of nonzero coefficients.

Exercise 5.1.5 Use the Chinese Remainder Theorem.

Exercise 5.1.7 If all elements of � are linearly dependent over R, that is, � lies in a line,
the statement follows from Exercise 4.2.8 by a coordinate change. Otherwise, � contains
two linearly independent vectors. Consider the factor of � by the lattice generated by
these vectors. This is a closed subgroup of T2. Classify such subgroups using the previous
exercise.

Problem 5.1.9 Rk × Zl , where 0 ≤ k + l ≤ n and k < n.

Problem 5.1.11 Z2 has a Cantor-like structure. At the nth level there are 2n sets (two ele-
ments are in the same set if their difference is a multiple of 2). Uniform distribution means
that the asymptotic frequencies of visits to those sets are all equal.

Exercise 5.2.1 Eight, if the initial direction is not parallel to one of the faces.

Exercise 5.2.2 Consider the group S of eight elements generated by reflections in three
faces of the cube I passing through the origin. The orbit of the unit cube under this group
covers the cube C of double size centered at the origin. Use the group S for a partial
unfolding. Then any billiard orbit inside I unfolds into a parallel motion in the torus
obtained from S by the identification of the pairs of opposite sides.

Exercise 6.1.3 Yes.
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Exercise 6.1.9 Apply the Baire Category Theorem to find the recurrent points in a closed
ball contained in the domain.

Problem 6.2.6 One can use a more complicated version of the coordinate calculation
in (6.2.4) or use the fact that the potential is unchanged when the coordinate system is
translated (this helps with the center of gravity) or rotated (for angular momentum).

Problem 6.2.7 The motion relative to the center of gravity looks like two independent
central force problems, so the orbits are ellipses.

Problem 6.2.9 This is outlined in V. I. Arnold, Mathematical Methods of Classical Mechan-
ics, Springer, Berlin, 1980.

Exercise 6.3.3 Consider separately the orbits that hit the inner circle and those that do
not. Both parts split into invariant circles.

Exercise 6.3.4 Consider the unfolding generated by reflections in the coordinate axes.

Problem 6.3.6 Find a combination of the squares of the three integrals (two components
of velocity plus angular momentum with respect to the origin) for free particle motion that
is invariant under collisions.

Exercise 6.4.3 They are formed by the corresponding numbers of equal elliptic arcs.

Exercise 6.4.4 H(S, S2) + · · · + H(Sn, S1).

Exercise 6.4.5 Perturb a short arc of the circle.

Problem 6.4.6 Such curves are said to have constant width. They can be obtained by
rotating a segment of fixed length around a point that moves along the segment.

Problem 6.4.9 Use a modified version of the string construction.

Exercise 7.1.2 It can be written as p/q, with m and q relatively prime.

Exercise 7.1.4 Consider lifts, interpolate linearly (“straight-line deformation”), and
project.

Exercise 7.1.5 If 0 is an attracting fixed point, then

x0 := sup{x ∈ [0, 1] : f (y) ≤ y for y ∈ [0, x]}
is an extra fixed point.

Exercise 7.1.9 See the hint to Exercise 7.1.5.

Exercise 7.2.1 1/4.

Exercise 7.2.7 Consider two cases: (i) both eigenvalues of absolute value > 1, and (ii)
one eigenvalue of absolute value less than one. In the case (i), the map is expanding in
an appropriate norm and the argument goes as in Proposition 7.2.7; in the case (ii), the
argument is as in Proposition 7.2.9.

Exercise 7.3.4 
1 1 0 0 0
1 1 1 1 0
0 0 0 1 0
0 0 1 0 1
0 0 1 0 1

 .
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Exercise 7.3.8 1.

Exercise 7.3.11 Consider the second preimages of zero.

Exercise 7.3.13 1+√
5

2 .

Problem 7.3.14 Every factor is given by a map En.

Problem 7.3.15 It is achieved for

A =

0 1 0
1 0 1
1 0 0

 .

Problem 7.4.8 Diagonalize the matrix, extend the eigenlines until they intersect suffi-
ciently, many times, iterate the partition thus obtained, and take connected components.

It is instructive to consider
(

13 8
8 5

)
=

(
2 1
1 1

)3
as an example.

Exercise 7.5.2 The counterpart of the crucial formula includes expressions containing
factorials. The total number of terms grows cubically, rather than quadratically. Find the
biggest “bad” terms as before and estimate factorials using the Stirling formula. The bound
decreases exponentially, so the sum of any polynomially growing number of terms de-
creases exponentially, similarly to (7.5.3).

Exercise 7.6.1 For the one-sided shift, the semiconjugacy to E2 is invertible iff a null set,
so the proof remains the same. For the two-sided shift, it suffices to consider cylinders with
positive indices, which is equivalent to considering a one-sided shift.

Exercise 7.6.3 If ε is small enough, the sum (7.6.1) for p and the analogous sum for q
correspond to disjoint sets.

Exercise 8.1.2 1.

Exercise 8.1.5 Use the fact that cylinders are balls to construct a minimal cover, and the
fact that d′′

λ is an ultrametric, that is, that any triangle has at least two equal sides, to show
that the covers by cylinders are optimal.

Exercise 8.1.8 Proceed as for the ternary Cantor set. For box dimension 0, take out the
middle intervals of relative length 1 − (1/2n), and for box dimension 1 use 1/2n.

Exercise 8.1.9
log 1+√

5
2

log 2 .

Exercise 8.2.1 0.

Exercise 8.2.2 log 2.

Exercise 8.2.3 htop( f ) = 0. Use semiconjugacy with an irrational rotation and show that
wandering intervals add only a bounded number of (n, ε)-separated points for each ε > 0.

Exercise 8.2.4 htop( f ) = 0. The growth of (n, ε)-separated sets is quadratic in n.

Exercise 8.3.3 Consider, for example, the Hilbert cube, the direct product of countably
many copies of the unit interval indexed by integers. It is a compact space that may be given
a metric. Then the shift map on H is topologically transitive and has infinite topological
entropy.



book 0521583047 April 21, 2003 16:55 Char Count= 0

Hints and Answers 413

A simpler but not topologically transitive example is a disjoint union of shift spaces
N, N = 2, 3 . . . each with the metric d2 scaled by 2−N with a point p added to make the
space compact, so that for x ∈ N the distance between p and x is equal to 10/2N.

Problem 8.3.8 For integer t the statement follows directly from Proposition 8.3.6 and
Proposition 8.2.9(3). The latter statement immediately implies equality for rational t. For ir-
rational t use rational approximation and the argument from the proof of Proposition 8.3.6
to obtain inequalities in both directions.
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Exercise 1.2.3 See Example 2.2.9.

Exercise 1.2.4 Call the sum xn and write it out, repeating it on the line below, but “shifted”
to the right. Adding corresponding terms gives 2xn = xn − 1 + an+1 + an, so xn = an+2 − 1.

Exercise 1.2.6 See Proposition 2.5.1.

Exercise 1.2.19 1/3. Show that an + 2an+1 is independent of n.

Exercise 1.3.1 (1, 4) !→ (5/2, 8/5) !→ (41/20, 80/41) !→ ((412 + 402)/41 · 40, 41 · 160/(412+
402)).

Exercise 1.3.6 See Section 2.2.8.

Exercise 1.3.9 (n + 10)2 = n2 + 20n + 100 = n2 (mod 10).

Exercise 1.3.10 (10 − n)2 = 100 − 10n + n2 ≡ n2 (mod 10).

Exercise 1.3.11 a10q−n − an = (10q − n)2 p/q − n2 p/q = 10(10 pq − 2np) is a multiple of 10.

Exercise 1.3.19 See Proposition 2.2.27.

Exercise 1.3.20 See Proposition 2.2.27.

Exercise 1.3.24 2n+50 + 2n = 2n(250 + 1) = 2n(. . . 625) is a multiple of 125 and of 8 for
n ≥ 3, and hence of 1000.

Exercise 2.1.1 yi+1 = xi+1 − (b/1 − k) = kxi + b − (b/1 − k) = k(yi + (b/1 − k)) +
b − (b/1 − k) = k yi .

Exercise 2.2.1 With the radian setting we are evaluating sin x repeatedly; since |sin x| =
sin |x| < |x|, the sequence an := sinn |x| is decreasing. Since it is bounded by 0, it converges
(Section A.1.2), necessarily to a fixed point [see (2.3.1)], which must be 0. Since the derivative
of sin x is 1 at 0, this map is not a contraction and moreover the ratio of successive terms
tends to 1; hence the convergence is not exponential.

If we use degrees, then we are evaluating sin(πx/180), which is a contraction by Propo-
sition 2.2.3, and the ratio of successive terms (quickly) increases to a := π/180. To get a
factor of 10−10 therefore requires some −10/ lg a < 6 steps.

414
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Exercise 2.2.2 The function
√

x is a contraction on [a, ∞) for any a > 1/4 with fixed point
1, so this is the limit of any such sequence. Since the derivative, 1/2

√
x, is 1/2 at x = 1, the

difference from 1 about halves at every step; so after some k steps the difference is too small
for the calculator, if we started from a moderate number (for a number of size roughly 2l

it takes k + l steps).

Exercise 2.2.3 Since we cannot use the Contraction Principle on (0, 1], we reduce to the
previous case by taking reciprocals: If the initial value is x, then 2n√x = 1/ 2n√

1/x is about as
close to 1 as 2n√

1/x. Thus we have exponential convergence and an initial value roughly
2−l settles to within k binary digits in k + l iterations.

Exercise 2.2.4 |x2 − y2| = |x − y||x + y| ≤ λ|x − y| for x, y ∈ [−λ/2, λ/2].

Exercise 2.2.5 Each summer the population triples and then all lemmings die that were
alive the previous summer. Thus, bn+1 = 3bn − bn−1. Dividing by bn gives

an := bn+1

bn
= 3bn − bn−1

bn
= 3 − 1

an−1
=: g(an−1).

Now g(2) = 5/2 > 2, g(4) = 11/4 < 4, and g is increasing, so g([2, 4]) ⊂ [2, 4]. On this inter-
val g′(x) = 1/x2 ≤ 1/4 < 1, so g is a contraction with a unique fixed point ω ∈ [2, 4]. Indeed,
ω = 3 + 1/ω, so ω = (3 + √

5)/2.

Exercise 2.3.2 The second iterate f 2 is a nondecreasing map. Hence periods can only be
1 or 2. On the other hand, the map f (x) = −x has period-2 points.

Exercise 2.5.3 f (x) − x has a zero by the Intermediate-Value Theorem and is nonincreas-
ing, hence its set of zeros is a point or an interval.

Exercise 2.6.2 If x ∈ ⋃
α∈A Oα , then there is an α ∈ A such that x ∈ Oα and hence an r > 0

such that B(x, r) ⊂ Oα ⊂ ⋃
α∈A Oα . Now use that closed sets are the complements of open

sets.

Exercise 2.6.3 {n ∈ Z d(n, 0) < 1} = {0} and {n ∈ Z d(n, 0) ≤ 1} = {−1, 0, 1}. Both are
open and closed: {n ∈ Z d(n, 0) < 1} is open by Exercise 2.6.1, and so is every point and
hence every subset of Z by Exercise 2.6.2. Then every set is closed also because its comple-
ment is open.

Exercise 2.6.4 {n ∈ Z d(n, m) < 1} = {m} is open by Exercise 2.6.1 for every m, and so is
hence every subset of Z by Exercise 2.6.2.

Exercise 2.6.5 Interiors are open by Definition A.1.4 and Exercise 2.6.2. To verify that

A ⊂ A take x ∈ A and r > 0. Then there is a y ∈ B(x, r/2) ∩ A and a z ∈ B(y, r/2) ∩ A by
Definition A.1.4. Then z ∈ A ∩ B(x, r) and x ∈ A by Definition A.1.4.

Exercise 2.6.6 Show from Definition A.1.4 that ∂S is S � Int S, which is closed. If S is
open, x ∈ ∂S, and r > 0, then B(x, r) ∩ S �= ∅ and x /∈ Int ∂S because S ∩ ∂S = ∅ by Defi-
nition A.1.4. Now combine these: A boundary is closed and its boundary is the boundary
of its complement, which is open.

Exercise 2.6.7 R is complete (one of the standard properties), Q is not because the se-
quence in Exercise 1.1.8 is a rational Cauchy sequence that does not converge (in Q). Z

and [0, 1] are complete by Exercise 2.6.8. (For Z this also follows from the easy observation
that a Cauchy sequence is eventually constant.)

Exercise 2.7.1 Use Exercise 2.6.8.
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Exercise 3.1.2 0 = 〈Av, w〉 − 〈v, Aw〉 = (λ − µ)〈v, w〉.

Exercise 3.2.1 (a) Expanding node, (b) saddle, (c) expanding focus, and (d) expanding
degenerate node.

Exercise 3.3.1 Here are the characteristic polynomials: (a) −λ((3 − λ)(−3 − λ) +
8) + (2(−3 − λ) + 8) + 2(4 − 2(3 − λ)) = −λ(λ2 − 1) + 2λ − 2 = (λ − 1)[−λ(λ + 1) + 2] =
(1 − λ)[λ2 + λ − 2 = (1 − λ)(λ − 1)(λ + 2); (b) (−1 − λ)[(−1 − λ)2 − 1] + 2(−1 − λ) =
−(1 + λ)[(1 + λ)2 + 1]; (c) (2 − λ)[(1 + λ)2(2 − λ) + (2 − λ)] = (2 − λ)2[(1 − λ)2 + 1].

Exercise 4.1.8 The intersection of any two such sets is an invariant closed set that is a
subset of each of them.

Exercise 4.1.10 Let X = {z ∈ C |z| ∈ {1, 2}} and f (z) = e2πiα for some α ∈ R � Q.

Problem 4.1.15 For transitivity it suffices to show that 1 is in the orbit closure. Every
g ∈ Z2 � Z+

2 is a limit of odd integers. For m odd and n ∈ N there exists k ∈ N such that
mk = 1 (mod 2n).

Exercise 4.2.8 If the lower bound of positive elements of � is a positive number a, then
any element of the group is a multiple of a. Otherwise, there are both positive and negative
numbers in � arbitrarily close to zero, and hence � is dense.

Exercise 4.3.3 F (x + 1) − F (x) = 1/2(sin(x + 1) − sin x). This is a nonconstant continu-
ous function, hence F is not the lift of any circle map.

Problem 4.4.4 The intersection is an interval by monotonicity. To show that it is nonempty
we observe that ρ0,b = 0 and ρ1,b = 1 and use continuity. To obtain positive length we notice
that Proposition 4.4.10 applies because fa,b is an entire function.

Problem 4.4.6 Use Propositions Proposition 4.4.9 and Proposition 4.4.10 as in the proof
of Proposition 4.4.13.

Exercise 5.1.1 Otherwise
√

3 is a rational combination of 1 and
√

5. Squaring both sides
of this equation implies that 3 is irrational.

Exercise 6.1.1 Preservation of orientation and length implies that f (x) − f (0) =
length([ f (0) f (x)]) = length([0, x]) = x − 0, so f (x) = x + f (0).

Exercise 6.1.8 Consider Q and {Oq := Q � {q} q ∈ Q}.

Problem 6.1.10 The set of points whose orbits intersect any given open set is open by
definition and dense because this set contains any dense orbit. Taking intersection over a
countable set of balls of rational radius centered at the points of a dense orbit, one sees
that the set of points whose orbits intersects all such balls (and hence are dense) is the
intersection of countably many open dense sets. The statement follows by passing to the
complements.

Exercise 6.2.5 The Lagrange equations are invariant with respect to reflection in a great
circle. Hence their solutions (that is, geodesics) are invariant in the sense that the image
of a geodesic under a reflection is again a geodesic. If the initial condition is tangent to a
great circle, then uniqueness of solutions of the Lagrange equation forces the great circle
to be a geodesic. Since every tangent vector is tangent to a great circle, those are the only
geodesics. Thus the geodesic flow is periodic.
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Exercise 6.4.1 Connect the points of intersection of the billiard table with the symmetry
axes in the counterclockwise direction. This figure is invariant under both symmetries,
hence at each point of intersection with the table the angle of incidence is equal to the
angle of reflection.

Exercise 7.1.4 Every periodic point x is uniquely defined (coded) by the sequence of its
visits to �0 or �1. Conversely, every sequence of zeroes and ones of length n produces
exactly one period-n orbit. If, in particular, such a sequence is not periodic with a smaller
period, then the corresponding periodic orbit has period exactly n.

Exercise 7.1.10 Describe the recursion relation as in Section 3.1.9 and project it to the
torus R2/(10Z)2, that is, mod 10. Alternatively, consider the orbit of (1/10, 1/10) on the
standard torus. What is the period? This is a careful way of using the fact that the last digit
of a Fibonacci number is uniquely determined by the last digits of the two preceding ones.

Exercise 7.2.6 Let p ∈ U, q ∈ V be periodic points (we use Proposition 7.1.10) and n their
common period. The line from the first family passing through p is dense, as is the line
from the second family passing through the point q. Hence each line intersects the other
in a dense set of points that are thus heteroclinic.

Exercise 7.3.2 Show that the set of a binary expansion 0, a1, a2, . . . , for which a1 = 1 when
i is not a multiple of 20, is uncountable.

Exercise 7.3.12 Draw the Markov graph for(
1 1
1 0

)
.

Then consider its arrows as points and draw the Markov graph that shows which of the
arrows in the first graph can be followed by which others. Compare with the Markov graph
for  1 1 0

0 0 1
1 1 0

 .

Exercise 7.4.1 The second iterate of every point outside [0, 1] is negative. Any negative
point goes to −∞.

Exercise 7.4.3 Verify that (
2 1
1 1

)
=

(
1 1
1 0

)2

and check that the partition in Figure 7.4.4 is a Markov partition for(
1 1
1 0

)
.

Problem 7.4.7 Assuming that the semiconjugacy is not bijective, we conclude that the
image of an interval is a single point. But then the image of any iterate of that interval is
also a single point. Using the Mean-Value Theorem one shows that the lift of f increases
the length of any interval. By compactness there is a longest interval that is mapped to a
point, a contradiction.

Exercise 8.1.1 The interval [0, 3] can be covered by two balls of radius 1, for example,
balls centered at 2/3 and 8/3, whereas the cover by 1-balls centered at 1/2, 3/2, and 5/2 is
minimal.
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Exercise 8.1.3 log µ < log 4 + log µ < log 4 − log λ < log 4 − log 2 = log 2 < − log µ.

Exercise 8.3.2 Consider the direct product of any map f with positive topological entropy
and an irrational rotation Rα . By Proposition 8.2.9(5), htop( f × Rα) = htop( f ) + htop(Rα) =
htop( f ) > 0.
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capacity, 242, 246
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chaotic, 205, 208, 209, 217, 219
characteristic function, 103
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419



book 0521583047 April 21, 2003 16:55 Char Count= 0

420 Index

Chebyshev, Pafnuty Lvovich, 316
Chuba, Sharon, 299
circle, 62, 96, 123
circle map, 123
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closed, 390
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coding, 211, 212, 214, 216, 223–224, 226, 252,

288, 291, 293
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compact, 393, 399
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cone, 281
configuration space, 163
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conjugacy, 134, 135, 216–217, 223, 246
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generalized, 92
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entropy, 237, 246, 299, 314, 318, 326, 327, 358
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ergodicity, 234, 295
Euler–Lagrange equation, 175
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291, 294
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expansivity, 283–284, 286, 288
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factor, 134, 216, 221
map, 216
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Fibonacci, 6, 8, 35, 44, 84, 85, 204
Finn, John M., 325
fireflies, 17, 141
first integral, 171
fixed point, 34

attracting, 41
repelling, 48

flow, 53–54, 272
box, 170
equivalence, 254

flux, 195
focus, 81, 88
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forced oscillator, 348
fractals, 244
Franks, John, 361, 362, 364
free particle motion, 153, 165
frequency, 100, 103, 112, 145

locking, 141
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game of life, 26
Gauß map, 375, 382
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general relativity, 173
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generating function, 182, 186–189, 347,

348
geodesic flow, 153, 165, 177, 326, 378, 382
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358
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flow, 380
horseshoe, 213, 224, 244, 280, 290, 318, 322,

324–327, 329, 334, 358, 359
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fixed point, 273
linear map, 76
metric, 378
quadratic map, 302, 315
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integrable, 402

twist, 153
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circle, 185, 192, 357, 358
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isometry, 62, 155, 207, 392
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kinetic energy, 164
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398
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local entropy, 255
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logistic differential equation, 51–53
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Lorenz attractor, 280, 338–341
Lorenz, Edward Norton, 12, 209, 316, 331, 335,

338
Lotka–Volterra equation, 10
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norm, 94

Lyusternik, Lazar A., 363, 364
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Mean Value Theorem, 400
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Melnikov, V. K., 327, 328
Menger curve, 71
Mercury, 173
metric, 61, 97, 214, 389
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metric space, 389
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norm, 78, 92, 395
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nowhere dense, 390
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open, 389
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ordered states, 349
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orbit, 196–198
orbits, 217, 314
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attracting, 300
points, 196–201, 205, 217, 219, 226, 234,

254, 284–285, 288, 310–311, 314, 360,
361
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Poincaré–Bendixson Theorem, 60
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potential energy, 164, 174
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