On deformations of l.c.i. schemes

Institut de Mathématiques de Jussieu, Université Paris 6, 175, rue de Chevaleret, 75013, Paris, France E-mail: maclean@clipper.ens.fr
Deformations of locally complete intersections.

Catriona Macleana

14th December 2006

Given a projective l.c.i. scheme, $X \subset \mathbb{P}^N$, we show that X has a smooth formal neighbourhood in which X is globally a complete intersection - that is, X is the intersection of codim(X) hypersurfaces.

1 Introduction

If $X \subset \mathbb{P}^N(k)$ (k being any field) is a projective local complete intersection scheme, then X is not necessarily a global complete intersection in projective space - that is, X is not necessarily embedded in $\mathbb{P}^N(k)$ as the vanishing locus of codim X polynomials. It seems natural to ask whether this is true for more general ambient varieties. In particular, given such an X, we may wonder whether it can be embedded in some smooth Y as a globally complete intersection; ie, the intersection of codim(X) hypersurfaces. The aim of this note is to answer this question in the affirmative, at least formally, by proving the following result:

Theorem 1.1 Let $X \subset \mathbb{P}^N(k)$ be a projective local complete intersection scheme. Then there exists a smooth formal neighbourhood, X_∞ of X, a vector bundle, V on X_∞, and a section $\sigma : X_\infty \to V$, such that

- V is a direct sum of line bundles,
- $rk(V) = \text{codim}_{X_\infty} X$
- X is schematically the zero locus of σ.

Remark. I do not know whether or not this scheme X_∞ maybe chosen algebrisable.

1.1 Idea of the proof

We will embed \mathbb{P}^N in a smooth space, W. The normal bundle of \mathbb{P}^N in W will be highly negative, and \mathbb{P}^N will be the zero locus of a section of a vector bundle, V, which is a direct sum of line bundles. We will consider the spaces \mathbb{P}_n^N, which will be cut out in W by $I_{\mathbb{P}_n^N}$, and will recursively construct an l.c.i. scheme X_n in \mathbb{P}_n^N extending X_{n-1}. If V is negative enough, the construction of X_n will be unobstructed, and we may therefore continue this construction to ∞ to obtain a formal neighbourhood, X_∞, of X. We will also be able to impose that X_∞ is smooth. X_∞ will then satisfy all the requirements of the theorem.
2 Proof of Theorem 1

Let \(I_X \) be the ideal sheaf of \(X \) in \(\mathbb{P}^N \). Since \(X \) is a l.c.i. subscheme of \(\mathbb{P}^N \), the co-normal bundle \(I_X/I_X^2 \) is a locally free sheaf of \(\mathcal{O}_X \) modules. We recall Serre’s vanishing theorem, which may be found in [1].

Proposition 2.1 Let \(F \) be a coherent sheaf on \(X \), a projective scheme. There exists an \(i \) such that, for all \(a \geq i \) and for all \(j \geq 1 \), we have:

1. \(H^j(X, F(a)) = 0 \)
2. \(F(a) \) is generated by its global sections.

We may therefore, in particular, choose \(m \) such that

1. \(H^1((I_X/I_X^2)^* \otimes \mathcal{O}_X(m))) = 0 \)
2. \((I_X/I_X^2)^* \otimes \mathcal{O}_X(m) \) is generated by its global sections.

We define:

- \(l \), the dimension of \(H^0((I_X/I_X^2)^* \otimes \mathcal{O}_X(m)) \)
- \(W \), the total space of the vector bundle \(\mathcal{O}_{\mathbb{P}^N}(-m)^\otimes l \), in which \(\mathbb{P}^N \) is naturally embedded as the zero section.
- \(\pi \), the projection \(\pi : W \to \mathbb{P}^N \).

We denote by \(V \) the bundle \(\mathcal{O}_{\mathbb{P}^N}(m)^\otimes l \) and by \(\mathbb{P}^N \) the \(n \)-th formal neighbourhood of \(\mathbb{P}^N \) in \(W \), that is, the subscheme defined by the ideal \(I_{\mathbb{P}^N}^n \). Let \(e \) be the codimension of \(X \) in \(\mathbb{P}^N \).

The following proposition allows us to recursively construct neighbourhoods of \(X \) in \(\mathbb{P}^N \) in a compatible way:

Proposition 2.2 If \(X_n \) is a l.c.i. subscheme of \(\mathbb{P}^N \), such that \(X_n \cap \mathbb{P}^N = X \), and codim \(X_n \subset \mathbb{P}^N = c \), then there exists \(X_{n+1} \), an l.c.i. subscheme of \(\mathbb{P}^N \) such that

- \(X_{n+1} \cap \mathbb{P}^N = X_n \),
- codim \(X_{n+1} \) = \(c \).

If \(U \) is an open subscheme of \(\mathbb{P}^N \), then we denote by \(U_n \) the open subscheme of \(\mathbb{P}^N \) whose underlying geometric space is \(U \). Let

- \(U^i \) be an affine open covers of \(\mathbb{P}^N \), such that \(X_n \cap U^i_n \) is a complete intersection,
- \(f_1^i \ldots f_c^i \subset H^0(U^i_n, I_{X_n \cap U^i_n}) \) a regular sequence for the ideal sheaf of \(X_n \cap U^i_n \).
We denote $U^i \cap U^j$ by $U^{i,j}$, $X_n \cap U^i$ by X^i_n and $X_n \cap U^{i,j}$ by $X^{i,j}_n$. For every i, d, we choose $\tilde{f}^i_d \in H^0(\mathcal{O}_{\mathbb{P}^n_{|\mathbb{P}^n}}, \mathcal{O}_{\mathbb{P}^n})$ such that $\tilde{f}^i_d \equiv f^i_d$. \tilde{f}^i_d is then a regular sequence in $\mathcal{O}_{U^i_{n+1}}$. We denote by I^i_{n+1} the ideal sheaf of $\mathcal{O}_{U^i_{n+1}}$ generated by the \tilde{f}^i_d.

I^i_{n+1} defines an l.c.i subscheme of U^i_{n+1}, which we denote by \tilde{X}^i_{n+1}. We will show that, after modification of the functions \tilde{f}^i_d, I^i_{n+1} will be equal to I^i_{n+1} on $U^{i,j}_{n+1}$ and therefore, the \tilde{X}^i_{n+1}’s may be glued together to form an l.c.i subscheme, $X_{n+1} \subset \mathbb{P}^N_{n+1}$, satisfying the requirements of the proposition.

Consider the following exact sequence of $\mathcal{O}_{\mathbb{P}^N}$ modules:

$$0 \to \text{Sym}^{n+1}(V) \to \mathcal{O}_{\mathbb{P}^N} \to \mathcal{O}_{\mathbb{P}^n} \to 0$$

$\text{Sym}^{n+1}(V)$ is here considered with its $\mathcal{O}_{\mathbb{P}^N}$-module structure. We will now define a Čech cocycle

$$h^{i,j} \in \Gamma((I_{X_n}/I^2_{X_n})^* \otimes O_{X_n} \text{Sym}^{n+1}(V|X), U^{i,j}_{n})$$

whose vanishing will be a sufficient condition for \tilde{X}^i_{n+1} to be compatible.

Given $f \in \Gamma(I_{X_n}/I^2_{X_n}, U^{i,j}_{n})$, we now construct $h(f) \in \Gamma(\text{Sym}^{n+1}(V|X), U^{i,j}_{n})$. We choose

- $f' \in \Gamma(I_{X_n}, U^{i,j}_{n})$, extending f. This is possible since, U^i_n and U^j_n, and therefore $U^{i,j}_n$ are affine.
- $f^{i'} \in \Gamma(I^i_{n+1}, U^{i,j}_{n+1})$ extending f'.
- $f^{j'} \in \Gamma(I^j_{n+1}, U^{i,j}_{n+1})$ extending f'.

Then, $f^{i'} - f^{j'} \in \text{Sym}^{n+1}(V)$ and $f^{i'} - f^{j'}|_X \in \text{Sym}^{n+1}(V)|_X$.

The difference $f^{i'} - f^{j'}|_X$ is independent of the choice of $f^{i'}$. Indeed, the choice of a different $f^{i'}$ alters $f^{i'} - f^{j'}$ by an element of $I^i_{n+1} \cap \text{Sym}^{n+1}(V)$, which is equal to $\text{Sym}^{n+1}(V) \otimes I_X$, since f^1, \ldots, f^c is a regular sequence. The same argument show that $f^{i'} - f^{j'}|_X$ is independent of the choice of $f^{j'}$.

Likewise, $f^{i'} - f^{j'}|_X$ is independent of f'. If $f'' = f' + g_1 g_2$, $g_i \in I_{X_n}$, then we may choose

$$f'^{i'} = f'' + g^1 g^2, f^{j'} = f'' + g^1 g^2$$

and hence $f'' - f^{j'} = (g^1 - g^1) g^2 + f'' - f^{j'}$, whence $(f'' - f^{j'})|_X = (f^{i'} - f^{j'})|_X$.

We may therefore define $h^{i,j}$ by $h^{i,j}(f) = f^{i'} - f^{j'}|_X$. We now need the following lemma:

Lemma 2.1 If $h^{i,j} = 0$, then I^i_{n+1} and I^j_{n+1} are compatible on the intersection $U^{i,j}_{n}$.

If $h^{i,j} = 0$, then, for every $f \in \Gamma(I_{n+1}, U^{i,j})$, there exists $g \in \Gamma(I_{n+1}^{j+1}, U^{i,j})$, such that
\[(g - f) \in I_X \otimes_{O_X} Sym^{n+1}(V).\]

On $U^{i,j}$, we have $I_X \otimes_{O_X} Sym^{n+1}(V) = I_{n+1}^{j+1} \otimes_{O_{X_{n+1}}} Sym^{n+1}(V)$ and therefore
\[(g - f) \in I_{n+1}^{j+1} \text{ whence } f \in I_{n+1}^{j+1}. \]

We now finish the proof of the proposition. We alter the regular sequences \tilde{P}_d so that $h^{i,j} = 0$. We note that
\[H^1((I_{X_n}/I_{X_n}^2)^* \otimes_{O_X} Sym^{n+1}(V|X)) = H^1((I_X/I_X^2)^* \otimes_{O_X} Sym^{n+1}(V|X)) = 0, \]
and that, therefore, there exist elements $h_i \in \Gamma((I_{X_n}/I_{X_n}^2)^* \otimes Sym^n(V|X)), U_i)$, such that
\[h_{i,j} = h_i - h_j. \]

We now choose a new regular sequence \tilde{T}_d, in such a way that $\tilde{T}_d|_X = \tilde{P}_d|_X + h_i(f^X_d)$. These sequences generate new ideal sheaves T_{n+1}. It is immediate from the construction that the associated cocycle $h_{i,j}$ is 0, and hence, by the previous lemma, the sheaves T_{n+1} are compatible on the intersections. Therefore, the T_{n+1}'s glue together to form a global ideal sheaf, I_{n+1}. I_{n+1} defines a subscheme of P_{n+1}^N, which we denote by X_{n+1}. X_{n+1} is l.c.i. and $\text{codim}(X_{n+1}) = c$ since \tilde{T}_d is a regular sequence for $X_{n+1} \cap U^{i,j}$. X_{n+1} satisfies, therefore, all the requirements of the proposition. The formal scheme $\lim_{n \to \infty} X_n = X_\infty$ is then a formal neighbourhood of X in which X is embedded as the zero locus of the tautological section of $\pi^*(\mathcal{O}_X(-m))^{\otimes l}$. It remains only to show that X_∞ is smooth for some choice of X_n. The smoothness of X_∞ depends only on the choice of X_2. All the results we now quote on Kähler differentials may be found in [1].

Let π be the projection $\pi : P_2^N \to P^n$. The sheaf of Kähler differentials $\Omega^1_{H}((P_2^N) \otimes_{O_{P^n}} \mathcal{O}_{P^n})$ is canonically isomorphic to $\pi^*\Omega^1_{H}(\mathcal{O}_{P^n}) \otimes V$. The universal derivative map: $d : I_{X_2}/I_{X_2}^2 \to \Omega^1_{H}(P_2^N) \otimes O_{X_2}$ is an O_{X_2} linear map. After tensoring by O_X, we obtain an O_X-linear map:
\[d_{X_2} : I_X/I_X^2 \to \Omega^1_{H}(P^n)|_X \otimes V|_X \]

X_∞ is smooth at x if $d_{X_2}(x)$ is injective. We now associate to any $\phi : I_X/I_X^2 \to V_X$ a candidate space for X_2, X_ϕ, in such a way that X_ϕ will be smooth if $\phi(x)$ is injective for all x. $X_\phi \subset P_2^N$ is defined by the formula:
\[f \in I_{X_\phi} \iff f|_{P^n} \in I_X \text{ and } (f - \pi^*(f|_{P^n}()))|_X = \phi(f) \]

For this X_ϕ, we have that
\[d_{X_\phi}(f) = \pi^*df + \phi(f), \]
whence $d_{X_\phi}(x)$ is injective for all x if $\phi(x)$ is injective for all x. It remains only to find $\phi \in Hom(I_X/I_X^2, V)$ such that $\phi(x)$ is injective for every x. Now, $Hom(I_X/I_X^2, O_X(m))$ is globally generated. If $v_1 \ldots v_l$ is a basis for $H^0(Hom(I_X/I_X^2, O_X(m)))$, then
\[\phi = \oplus_{b=1}^l v_b : I_X/I_X^2 \to V \]

5
is injective on $I_X/I_X^2(x)$ for every x. The theorem follows.

Remark. One might wonder whether this work holds for quasi-projective X. We have used the fact that X is projective only to invoke Serre’s vanishing theorem. Suppose that X is a quasi projective variety- that is, X is the complement in an projective variety, V, of an closed subvariety of V, U. The results of this paper will hold for X, provided that:

(A) For any coherent sheaf, \mathcal{F} on X, there exists k such that for any $m \geq k$ $H^1(\mathcal{F}(m)) = 0$ and $\mathcal{F}(m)$ is generated by its global sections.

If U is of pure codimension 1, then X is affine, and the condition (A) is immediately satisfied. Further, there is an exact sequence:

$$H^1(V, \mathcal{F}(m)) \to H^1(X, \mathcal{F}(m)) \to H^2_U(V, \mathcal{F}(m))$$

where $H^2_U(V, \mathcal{F}(m))$, the local cohomology of F along U, vanishes if every component of U has codimension ≥ 3 (see [2] for more details.) It follows that the results of this note are, in fact, also valid for $X = V/U$, where V is projective and U is a closed subvariety containing no codimension 2 component. I would like to express my gratitude to my supervisor, Claire Voisin, for her unstinting help and guidance. I would also like to thank Yves Lazlo, who was always ready to answer my questions, and the referee, whose generous comments and help have much improved this work.

References
