BUILDING INFINITESIMAL NEIGHBOURHOODS OF VARIETIES.

by Catriona Maclean

ABSTRACT. We develop a deformation-type tool for the study of embeddings ofgukinvariety X. Given a variety
X C Y there is a natural series of schem¥és= Xo C X1 C X2... C Y of infinitesimal neighbourhoods of Xefined as
follows
Xn = zero(y y).

Under certain assumptions, we calculate the obstructions to the existennéndésimal neighbourhoods and classify
them when they exist.

1. INTRODUCTION.

1.1 A MOTIVATING EXAMPLE.

Consider the following question. LeX be a complex normal crossing variety: for simplicity’s sake
consider the case whee¢ is the union of two smooth irreducible varietieg and X, glued together along
divisors D; C X; and D, C X; via an isomorphismyp : D; — D,. The common image ob; and D, in X
is denotedD.

It is natural to ask whetheiX can be embedded in a smooth varieYy as a normal crossing divisor.
The following example (based on Friedman’s paper [1]) shtives the answer is “no” in general.

Suppose thaX C Y is an inclusion ofX as a normal crossing divisor in a smooth variety. Then therani
exact sequence
0— N;‘Y—>Q\1(®Ox—>§2>l(—>0

where Ny . is the conormal bundle oK in Y, N . = |></Y/|>2</Y- We note thatly,y ® Ox, = Ny  and
hence
N;l‘y ® Op = |x1‘y ® Ox1 ® Op = |X1|Y ® Op = |D\X2 ® Op = NS\XZ'

Likewise, Ny \ ® Op = N, , but sinceX is a normal crossing divisor i¥, Nyy[p = Ny vIo @ Ng [o
s0 Ny vlo = Npx, ® Np .- The point is that the right-hand side of this equation is tstriction toD of a
line bundle defined orX, whereas the left-hand side does not dependroiwe therefore have the following
result.

ProPosITION1.1. Let X= X; Up Xo be a normal crossing variety as above. If X can be embedded in
a smooth variety Y as a normal crossing divisor then the linade N, ® N5, can be extended to a
line bundle on X.

Consider a pair X, D), where D is a smooth divisor inX such that the restriction map PX)(— Pic(D)
is not surjective. (This typically holds iX is a surface and is a smooth curve of genus 0.) Choose a
line bundleL on D which is not the restriction of a line bundle ok and setX; = ProjlL & Op), Xz = X,
D; = ProjL) and D, =D.

We then have thatNj, = L, N5, = O(-D) and by definition, N5, ® N7, ~does not extend to a



line bundle onX;. It follows that X cannot be embedded in any smooth variety as a normal crodsiisgr.

The obstruction given above t§ being a normal crossing divisor is in farffinitesimal in other words, it
is an obstruction not only to the existence %fbut also to the existence of the schede= zeroqf(lY).

Indeed, suppose given a scheme supportedXorX., such that

1. Ixx. is a line bundle,L on X. (In particular, |>2<\x€ =0.)

2. The sheaf)} ® Ox is a locally free sheaf oX. (This condition means thaX. is “potentially” the first
infinitesimal neighbourhood oK in a smoothvariety Y).

It then turns out that, as above, we can build an exact sequenc

0—>|X‘x€—>Q>l(€®Ox—>Q)l(—>0.

Since Q}Q ® Ox is assumed to be locally free, there is a surjective “iaﬁ — Ext}(Q%, Ox). The sheaf
EXtL(Q, Ox) is a line bundle onD which is proved in [1] (page 85) to be given Yo x, ® Npjx,- The
left-hand side is a line bundle oX : it follows that I}, [o = N5, ® N, and henceNj, ®@Ng,, ~extends
to a line bundle onX.

1.2 DEFINITIONS AND STATEMENT OF THEOREMS

Hopefully, the above example has convinced the reader tifiaitesimal considerations can produce inter-
esting information about embeddings Xfand a systematic study of infinitesimal obstructions to tkistence
of embeddings can be useful.

Throughout what follows we work ovek, an algebraically closed field of characteristic zero. Gian
inclusion of k-schemesX C Y there is an associated sequenXe= Xo C X3 C Xz C X3 C ... of nilpotent
schemes supported 0¥ given by X; = zeroqi(w). Our aim is to classify these infinitesimal models under
certain assumptions. We start by defining infinitesimal hletqirhoods, which should be thought of as nilpotent
schemes whose underlying base schem¥ iand which are potentially schemes of the form zd@;]() for
“good” X and Y.

DerFINITION 1.2. Let X be a reduced locally complete intersectiksvariety, wherek is an algebraically
closed field. LetV be a vector bundle orX. An n-th order infinitesimal neighbourhood of with normal
bundleV, X,, is the data of a triplél, = (Xn,ix,,ax,) such that
1. X, is a k-scheme of finite type,

. The mapiy, : X — X, is an inclusion,

. The ideal sheaf%(i =0,

. The mapax, : V¥ — |X\XH/|>2<|xn is an isomorphism of9x-modules,

. The multiplication map SyRfax, ) : Synd'(V*) — 1%x, is an isomorphism.

g~ WODN

The bundleV* is called theconormalbundle of the infinitesimal neighbourhodki,.

REMARK 1.3. If X, = (Xn,ix,, @x,) is an-th order infinitesimal neighbourhood &f with normal bundle
V then for any 1< i < n there is ani-th order infinitesima | neighbourhood of with normal bundleV,
Xi = (X, ix;, ax;) which is defined as follows:
Xij = zero Q;(T)%n), ixi = ixn‘xi; ;= ax,.

The infinitesimal neighbourhood; is called thei-th order truncation ofX,.

We fix an open selU C X. We will need to know what we mean by the restictions of an rotter
infinitesimal neighbourhood oK to U. Note that if X = (X, ix,, ax,) then the nilpotent schemX, can be
thought of as a sheaf of algebras #n In particular, the restriction oK, to U is well-defined. We denote
the restriction of the nilpotent schemé, (resp. X%, ,, X2, ;) to U by U, (respUL, ., UZ,,).
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DEFINITION 1.4, LetX, = (Xn,ix,, ax,) be an n-th order infinitesimal neighbourhood Xfwith normal
bundle V and let U be an open set inX. The restriction of X, to U, denotedU,, is the n-th order
infinitesimal neighbourhood ob) with normal bundleV|y given by Uy = (Un,ix,|u, ax,|u)-

DEFINITION 1.5.  An n-th order infinitesimal neighbourhoodl, = (X, ix,, ax,) is said to bepotentially
smoothif the shean)1<n ® Ox is a locally free sheaf orX.

Consider an inclusion of schemés X — Y such that the conormal sheaf* &' |xw/|>2qy is a vector
bundle onX. We can then form a series of triples

Y Y ;
Xp = (Xna|XIvaDCI)
given by
Y 1 H H A 2 2 2
Xy = zero(3), ixy =ilxy, axy =id /1w = byxe/Wxe = v /Ny = V-

The above definitions are motivated by the following lemma.

LEMMA 1.6. Let iy : X — Y be a closed embedding of X, a reduced l.c.i. k-variety. Tlages Y is
then smooth in an open neighbourhood of X if and only if thelariX) is a potentially smooth infinitesimal
neighbourhood of X for all & N.

Proof of Lemma 1.6.

We start by proving that if the tripléC is a potentially smooth infinitesimal neighbourhood for alE N
then Y is smooth alongX.

Let x € X be a point. The schem& is smooth at the pointx if and only if O} ® kc is a kg-vector
space of rank dimY (see [4] Theorem 8.15). We note $at2 ke = Q2 @ ky. By assumption(2,, @ Ox is
a vector bundle onX : it remains only to show that this vector bundle is of rank im 1t will be enough
to prove thathlY ® kg is a vector space of dimension dimY for any closed smoothtpwia X.

Let f,...,f, be elements of the local rin@y(X) such thatdfy, ..., df, form a basis ofQ} @k, dfi,...,df;,

form a basis of Q% ® ke and fpyq,...,f, are elements inlyjy. In particular, the cIasseEmH,...,ﬁ are

then independent elements of the vector spb@e/lf(/Y ® ky. We wish to show that < dim(Y) (we know
that it is > dim(Y)): to do this it will be enough to show that the elemerits...,f, are algebraically
independent ovek. Suppose not: there is then an algebraic equation of the f(f...,f,) = 0, whereP

is a polynomial. We write

P(f]_,...,fr) = P]_(f]_,...,fr)+...—I—PD(f]_,...,fr)

where P; is of total degreei with respect to the function§y,1,...,f. (We note that there is no terrRg
because the function|x,...,fm|x are algebraically independent). There is at least one 1 such that
P; # 0. Let d be the smallest non-zero integer such tRat 0 : in a suitable Zariski neighbourhood af
we have that 6= Py(fr,.. ., fm, fni1,... ) € I;'@('Y/IO“rl Since XJ is supposed to be an infinitesimal neigh-

x|y -
bourhood Py(fy, . . ., fm, fme1, . - . fr) = O is therefore identically 0 as a polynomial in variablgg y,...,f
with coordinates in the local rin@x(x). But now asfi|x, ..., fm|x are algebraically independent this implies

that P4 = 0, which is a contradiction.

Let us now prove that ifY is smooth thenXY is an infinitesimal neighbourhood for ahh € N. (It is
then immediate that it is potentially smooth.) The only thiwe have to prove is that i is smooth then
the multiplication map

pin = Sy (v /15y) — I)Q|Y/I)QT§(1
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is an isomorphism. By Matsumura [9] p.121 we know thatis Cohen Macaulay so by [9] p. 110 for any
ideal | generated by a regular sequenég .( ., fy) we know that Sy:1/12 — I"/I" is an isomorphism.
But now sinceX is a locally complete intersectioty,y is generated by a regular series in any sufficiently
small open set inX. This completes the proof of Lemma 1.6. O

We will also need in what follows to have a definition of an isphism of infinitesimal deformations.

DEFINITION 1.7. Let Xn = (Xn,ix,, ax,) and X = (X),ix;,ax;) be two n-th order infinitesimal
neighbourhoods oX with normal bundleV. An isomorphism of infinitesimal neighbourhoods betwekén
and X}, is an isomorphism of schemgs: X, — X such thatj, oix, =ix; and ax, oj; = ax;.

Here, j; : Ixjx; — Ixjx, is the pull-back map. Note that jf, : X, — X] is an isomorphism of infinitesimal
deformations of ordein with normal bundleV then for any 1<i < n the truncated morphism
ji=ilx X =X

is an isomorphism of infinitesimal neighboourhoods of ordewith normal bundleV betweenX; and X;.
We define an extension of am-th order infinitesimal neighbourhood as follows.

DEFINITION 1.8. LetXp = (Xn,ix,,ax,) be ann-th order infinitesimal neighbourhood of with normal
bundle V. An extension ofX, is given by a pair X}, ,,jn) where
1. X{,1 is an @+ 1)st order infinitesimal neighbourhood &f with normal bundleV and
2. jn: X, — X, is an isomorphism betweel{;, the n-th order truncation ofxgH, and X,.

By abuse of notation, if there is no risk of confusion we oftienote the extensioriX{,, ,,jn) by X[,;.
We will also need to know what we mean by an isomorphism of resitas.

DEerFINITION 1.9. LetX, be ann-th order infinitesimal neighbourhood &f with normal bundleV and let
(R, 1,05, (X2,4,j3) be two different extensions df,. An isomorphism between the extensiorf§} (,, jz)
and ()CﬁH,jﬁ) is an isomorphism of (+ 1)-th order infinitesimal neighbourhoods with normal b

cl 2
Int1t Xy — Xi

such thatj2 o J, = j}
The aim of this article is to prove the following two theorems

THEOREM 1.10. Let n be an integer> 1 and let X, = (Xn,ix,,ax,) be an n-th order infinitesimal
neighbourhood of X with normal bundle V. Suppose that theokektensions of(, to (n+ 1)-st order is
not empty. To any pair of extensions %f,, (I)C}Hl,jl) and (xﬁ+1,j2) we can then associate a difference

D4, X3,4) € Exty (% ® Ox, SymTH(V*))

in such a way that
1. D(X}, 1, X2,,) =0 if and only if (X}, 1,j}, 1) and (X3, 4,j2,,) are isomorphic as extensions &f,
2. DL, 1, X2, )+ D2, 4, X3, ;) = D(XE,,,X3,,) for any triple of extensiongX? ,,X2,,, X3, ),
3. Given any extensiofct,; and any elemenb € Exty (% ® Ox, SynT1(V*)) there is an extensiof(Z,
such that
DXy 1, Xiryn) = w.

THEOREM 1.11. Given an n-th order infinitesimal neighbourhodf, with normal bundle V we can
assign to it an element
oby, € Exth, (2, @ Ox, SynT'(v"))

such thatX, has an(n+ 1)st order extension if and only ibby, = O.
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There are obvious analogies with the standard theorems fofrdation theory (see [6], [12] and [11]
for more details). The related problem of constructing itégimal neighbourhoods seems to have received
relatively little attention: lllusie’s book [6] proves aadsification/obstruction result for extensions of sheaves
of algebras by fixed sheaves &theme fondamental, page 162) but, surprisingly, does not ireigd deal
with the question of whether the algebras produced are fiegimhal neighbourhoods in the above sense. (See
page 191 of [6] for a related result, which works for much mgemeral choices oKX and X,, but which
requires the presence of a base scherpe . The aim of the present article is to deal with the many cases
where no such base scheme can exist.)

REMARK 1.12. The sheaﬂ)l(n ® Ox which appears in the above statements is isomorphi@itp@ Ox.
In particular it only depends on the first infinitesimal néiaghrhood of X.

ReEmMARK 1.13. If X, is potentially smooth then E@g;(ﬂin ® Ox, Sym"1(v*)) is isomorphic to
Hl(J{orr(Q}(n ® Ox, Sym1(V*))). Any two extensions are then locally isomorphic: thisncasts with the
deformation theory of singular varieties.

We have the following immediate corollary of 1.10.

COROLLARY 1.14. Let X be an l.c.i. reduced k-variety and let V be a vector barait X. LetX; be
a first-order infinitesimal neighbourhood of X with normalndle V and suppose there is a number k such
that Exty (2% ® Ox, Syn?™(V*)) vanishes for any > k+ 1. Suppose giverit} and X2, two n-th order
infinitesimal neighbourhoods of X, and isomorphismhs ¥} — X; and ¢ : X2 — X;. Suppose we also
have an isomorphismyJd Xt — X2 such that J = (j2)~1oji. There is then an isomorphism of infinitesimal
neighbourhoods with normal bundle V, JX! — X2, such that the k-th truncation of, Js X.

In the case wher&k = C, V is a weakly negative vector bundle an€l is smooth the above corollary
can be seen as a weaker version of Grauert’s theorem in [2].

THEOREM 1.15 (Grauert). Let X and X be two smooth complex varieties, and let A (respectiviely
be a smooth codimension 1 subvariety of X (respecti%ly Assume that the normal bundle of A in X is
weakly negative. Then there is an integey such that for anyr > 1y any isomorphism A2 A, extends
to an isomorphism of the ringed space$ A Ox|a and A* = Og|;.

In [5], Hironaka and Rossi proved the following generalmatof the above result.

THEOREM 1.16 (Hironaka/Rossi). Let A (resp.A) be a compact reduced complex subspace of a reduced
complex space X (respK), such that X- A (resp. X — A) is smooth. Assume that A is exceptional (i.e.
it can be blown down to a point). Then there is an integgrsuch that for anyv > 1y any isomorphism
A, =~ A, extends to an isomorphism of the ringed spacés=A)x|n and Ar = Ox|a-

REMARK 1.17. Whenn = 0 condition 5 of definition 1.2 is empty and the first order iitésimal
neighbourhoods oX with normal bundleV are simply algebra extensions @fx by V*. These have been
classified by lllusie in [6] (page 162, &beme fondamental 1.2): there are no obstructions to theesxist
of such algebra extensions and they are classified by(&xtV*).

Our proof uses embeddings of infinitesimal neighbourhowodbtheir morphisms, which are defined below.

DEFINITION 1.18. LetX be a reduced locally complete intersectiksvariety and letX, = (Xn, ix,, ax,)
be ann-th order infinitesimal neighbourhood of with normal bundleV. Let P be a smooth scheme and
let W be a vector bundle oP. An embedding ofX, over P with normal bundleW is given by a pair
(Pn, fr) where

1. P, is an n-th order infinitesimal neighbourhood @& with normal bundleW,
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2. fo: Xy — Py is a closed inclusion of schemes such tifiallp) = Ix and the pull-back map

. 2 2
f: . W>k = IP\Pn/IP|Pn — IX\Xn/|X\X,, = V*

iS surjective.

Note that in the above definition we do not ask tlfiat should be an isomorphism. As previously, we will
abusively write P, for the embedding %, f,) when there is no risk of confusion.

DEFINITION 1.19. LetX be a reduced locally complete intersectiksvariety and letX, = (Xn, ix,, ax,)
be ann-th order infinitesimal neighbourhood of with normal bundleV. Let P and Q be smooth schemes
and let Wp and Wg be vector bundles o® and Q, respectively. Let ¥y, f,) and Qn, gn) be embeddings
of X, over P and Q respectively. A map of embeddings frof}, to Q, is a map

h . iPn — Qn
such thatho f, = g, and h*(lg|q,) = lpjp, -

1.3 OVERVIEW OF THE PROOF AND NOTATION

We start by indicating a relatively elementary proof of stam deformation-theoretic results, and which
parts do and don’t work in our set-up.

1.4 REVIEW OF BASIC DEFORMATION THEORY

Given a reduced locally complete intersectiowvariety X, there is a well-developped theory of deformations
of X. By a deformation ofX over a local Artinian ringA, we mean a commutative diagram

X———Xa

L

Speck) —— Spech)

where X, is flat over A. Intuitively, we think of such schemes as being “fatteningtthe base schem&.

The first systematic study of deformations of structures ahifiolds was carried out in the complex analytical
category by Kodaira and Spencer in 1958 in [7]. The first cahensive study of deformations in the
algebraic category was completed by Schlessinger in [LGhénlate 1960s: an exposition of this work is
also contained in Grothendieck’s E.G.A [3].

In the particular case wher¥, is a local complete intersection the theorem on extensidndeforma-
tions of X can be stated as follows. Le&¥ and A be Artinian rings, and consider an exact sequence

0—-a—-A >5A->0

where a is an ideal of A’ such thatma.a = 0. If X5 — Specf) is a deformation ofX over A and
Xn — Spech’) is a deformation ofX over A’ then we say thatX, is an extension ofX, if there is
an isomorphismXa = Xy ®a Spech). Likewise, we say that two deformations of over A, X3 and X3
are isomorphic as deformations &f if and only if they are isomorphic a&-schemes. We then have the
following two theorems, which can be found in [12] or more gelly in [6]. (See also the recent book [11]).

THEOREM 1.20. To any ordered pair(X3,, X3,) of extensions of X over Specf'), we can assign a

difference D(X},, X3,) € Ext'(Q%, Ox ® a) in such a way that the following hold.

1. We have thatD(X3,X3) = 0 if and only if X}, and X3 are isomorphic as extensions of X

2. For any triple of extensions over’AX:, X3 and X, we have thatD(X} ,X3) + D(X3,X3) =
D(X3, X3).

3. If an extension ¥ exists then for any E= Ext'(Q%, Ox ® a) there is an extension 2X such that
DXL, X2) = E.



THEOREM 1.21. We can associate to pX a deformation of X overSpecf), an elementoby, €
Ext?(Qx, Ox ® a), such that extensions ofaXover Specf)) exist if and only ifobx, = 0.

We start by summarising an (elementary) proof of Theoren® {cRawn from [12]) and indicating what
doesn’t work in our context. Our aim is to associate to a paExtensionsXi, and X,i, of Xa a “difference”
DXL, X3,) in Ext{(Qx, Ox ® a).

1. Prove a classification theorem for embeddeddeformations. Given an embeddir§ e P, we consider

A-flat subschemes

Xa C P x Specf) = Pa

extending X. Extensions of embedded deformationsXf to X, form a torsor overH%(a ® Nx|p) -
2. To an elementh € H%a ® Nxp) We associate the push-forward along the dual nmépof the exact
sequence
0 — Nyjp — 25 ® Ox — O — 0.

3. We can therefore construct local extensions encodingldbal difference between embeddings ®t
and X2. Given two different embeddings of the pax,, X3 as embedded deformations in two different
ambient space® and Q we can define canonical isomorphisms between the asso@atedsions, based
on the the product diagram

Pa xa Qa
Pa Qa

The point which does not work directly for infinitesimal nielgpurhoods is 3). The problem is the following:
the construction of the gluing isomorphisms uses the priosip@cePa xAQa in which X, remains transverse

to the central fibreFor infinitesimal neighbourhoods, there is no base schenex(®p We can still define
embeddings of deformations — P, but P, is no longer the product of a smooth space and the spec of
an Artinian ring, but a simple kind of formal scheme. In pautar, given two such objects? and Q there

is no canonical way to take a product in whigh will be tranverse to the central fibre. For this reason, we
are obliged to consider embeddings of deformations intm#&brthickenings of a smooth variety in which

the schemeX, may not be transverse to the smooth schePeThis is the fundamental reason for most of
the technical problems that we will meet and deal with in thiicle. Globally, the proof follows closely the
ideas and methods of Vistoli’s article [12].

NOTATION

Throughout thi articlek will be an algebraically closed field of characteristic zero
X denotes a reduced locally complete intersectiomariety.
X, denotes am-th order infinitesimal neighbourhood of with normal bundleV.

To simplify the notation, we will denote by) the shean>1<n ® Ox and we will denote byS the sheaf
Sy H(Vy).

For any open setU of X and any sheafA on X we will denote by Ay the restriction of A to U.
(In particular, the sheaf)y is therefore not equal t&} .)

WheneverX is a subscheme of a schenYewe will denote bylyy the ideal sheaf oX in Y.

ORGANISATION

The article is organised as follows. In section 2 below wevereome preliminary lemmas. In section 3
we will define extensions associated to pairs of embeddeshsixins and show how to glue them together in
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order to create an extension encoding the “difference” betwthem. In section 4 we complete the proof of
Theorem 1.10 by proving that this mapping turns the set ofresibns of infinitesimal neighbourhoods into
a torsor over EX(2,9 and in section 5 we prove Theorem 1.11.

2. PRELIMINARY LEMMAS.
In this section we will prove some preliminary lemmas whiclil we useful in the rest of the proof.

Let X be a reduced l.c.ik-variety. Let X;; be an n-th order infinitesimal neighbourhood oX with
normal bundleV and let (P,,f,) be an embedding ok, with normal bundleW. Recall that we then have
a surjective map

fr W' — V™.

DEerINITION 2.1. Let X, and (P, f,) be as above. We then denote by, the kernel of the pullback
map f¥ : W*|x — V*. We denote byl the sheaf-theoretic kernel df : W* — V*, considered as a maps
of sheaves. We note thatp_ is a vector bundle orX.

We need to understand the structure of the ideal shgaf . Note thatlp ,p, is an Op-module; in
particular we have that
Ixjp 1Py sy = IxafPa-1PoafPy C Ixolpy M Ty

We have an isomorphism

|
Syml'(ap,)|x : SymW* [y — —ntlPr
xip - Ipy s/py
. . | | |
We consider Syf{as,)|x* (%) , the inverse image under S¥ns_)|x of the subshea}% CI
a id n—11"n

b le 1 The following lemma identifies this subsheaf explicitly.

'XIP'lF’n—l\Pn
LEMMA 2.2. Let X, X, and P,, be as above. We then have that

| Nl
Synf(as,)lx® (“""’) — [Ly, - Syt W) ).

Ixip - Ipy_s [Py
Proof of Lemma 2.2.

We consider the following commutative diagram.

sym'(cws,)Ix

SynT'(W*)[x Ip,_1p, ® Ox
iw«;) l
Synm'(«
Synfi(vr) — e %1%

where on the right-hand sidg is the pullback mapfy : Ip,_,jp, ® Ox — Ix,_,x, and on the left hand side
f¥ is the pullback mapf : W* — V*. The two horizontal maps are isomorphisms. On the rightihside

of the equation, Keff) = 2= 1t fo1i0ws that

(Ix-lpy_q1Pn)

sl VhlPy g ix(Ker(Symi(i4)

(IX ’ lpn—l‘Pn)
and hence | .
(SynT(as)h) (LT ) — Ker(Synf(5;) = L, - Synf W)l
This completes the proof of Lemma 2.2. O



LEMmMA 2.3. Let X, be an n-th order infinitesimal neighbourhood of a reduced.l.k-variety X with
normal bundle V. The sequenfe— V* 4 Oy, © Ox X Qf ® Ox — 0 is then exact.

Proof of Lemma 2.3.

By [4], 11.8.12 it will be enough to show thad : V* — Q%ﬂ@(ﬁ)x is injective. As the question is local, it will be
enough to prove Lemma 2.3 on any small enough open ¥t We choose an affine open ddtC X such that
V|y is trivial and U can be embedded in an affine spd€eas the zero locus of a regular series of functions
f1,...,fm. (This is possible becaus¥ is l.c.i..) We setU = Specf) where A = K[x1, ..., %n]/{f1,...,fm).
Choose elementsy,. .., e € lyjy, such that the elements,, ... e € lyjy, ® Oy = Vj form a basis of
sections ofV. We can then writeU, in the form U, = SpecB) where

B:(k[X]_,...,Xn,El,...76k]/|~@J)

where| is an ideal of the fornfy, ..., f,, wherefian =f andJ C (e1,..., ). We setm = (e1..., ), the
ideal generated ifB by the ¢;s: we have thaA = B/m. Since theg s form a basis of sections ¢f;y, ® Ou,
we have thatd ¢ T@m2. Now, Qf ® Oy = Qf), ® Oy and Uy = SpecKxy, ..., %, €1,..., /T &m?. It
follows that the Oy -module Qal ® Oy is the sheafification of thé-module

<de1€B...@Bd&@Bdel...eBBdek) 20 A
(d(M) @ d(m2)) B

We note thatd(m?) C m - (Bdx @ ... ® Bdx, & Bdey ... ® Bdex) so Qf, @ Oy is the sheafification of the
following A-module
Adxg @ ... D Adx, ® Adey . .. B Adeg

(dii @A, ... din@A)

V* is the sheafification of thé& module Ade; @ ... ® Adex so it remains to show that the map

Adx @ ... D Ad¥ D Adey ... B Adey

Ad ... B Ade — - -
D O Ak oA Ao A

is injective. In other words, we must show thatf; ® A, ..., df, ® A) N Ade; @ ... @ Ade, = {0}. Suppose
now that there are elements € A such that) ", adfi @ A C ®;Ade;. We then have thad ", adfi = 0 in
Qﬁn ®@ A. But now since thefis are a regular series fdg» the dfis are independent ovek and it follows

that & = O for all i. It follows that the above maps are injective and hentdy LN an ® Oy is also
injective. This completes the proof of Lemma 2.3. (]

LEMMA 2.4, Let X, be an n-th order infinitesimal neighbourhood of X and let U lmeagpen set in
X. Let P, be an embedding ofl,. Consider the map

79, lpp, Ny, e, = luy e, ® Ou.

Then we have thaKer(rp,) = lyp, - Ipjp, . In particular, lpjp, Ny, p,/Ker(rp,) = Ly, .
Proof of Lemma 2.4.

It is immediate thatlyp, - Ipp, C Ker(rp,). To prove the converse, we use the fact thatis a local
complete intersection irP. Locally, we can choose a regular sequencenofelementsfy,... fn € lyp
such that if F denotes the vector spadd; @ kf, ... @ kfy, then Iu|p/|5‘P = F ®¢ Oy and more generally

15/151 = SynT'(F) @ Ou.

We fix liftings foof f, to ly,p,- Choose an element € (ly,p, N lpjp,) such thatrp (v) = 0: our
aim is to show that € lyp, - ly,p, . We know thatv can be written in the formy = >, jigi whereji € lypp,
and gi € ly,p, -



LEMMA 2.5. Let U, P, U, Py, fi....fy and f...fn be as above and let € (Iy,p, N Ipp,) be an
element ofKer(rp ). There is then aw € lyjp, - ly,|p, Such thatv —w = >, jig/ where for all i we have
that Jll,gl/ S <f1,f2 .. fm>

Proof of Lemma 2.5.

We can writev = Y ;jigi. We can writegi = g/ + ¢ where g/ € (fi,f>...fm) and & € lpp,. On set-
ting w1 = > jiei € lyjp, - lu,p, We see thaty —wy =}, giji. We can writej; = j{ +v; whereji € Iy p, and
v € lpjp, . It follows that if we setw, = Zi gJ’ui € lup, - luypy then we have thav — wy —wz = >, gji .
And now we setji = |’ + ¢/, whereji’ € (fi,f...fy) and ¢ € lpp,. On settingws = > ; ¢{g/ we see that
v—w1—wy — w3 =y ;4. On taking w = wy + w» + ws, this completes the proof of Lemma 2.5. O

LEMMA 2.6. Let U, P, U, Py, fi,....fm and fi,...,fn be as above. Let € (ly,p, N lpp,) be an
element ofKer(rp,) which can be written in the fornd = >, jigi, where gi,ji € (f1,f2,...,fy) for all i.
Then for all integers n we have that

v € (Ipjp, - lupp) @ Sym'((fy, .. . fm)).
Proof of Lemma 2.6.

We will prove the lemma by induction om. The casen = 2 holds by definition. Assume that the in-
duction hypothesis holds fon — 1. We then havev = ¢ + >, auf' where e € lpp, - lujp and the sum is
taken over all multi-indiced of degree if — 1). Sincefy, ..., fn is a regular series folyp, the map

Sym*((f1, ... fm) @ Ou — 15/10p

is an isomorphism. It follows thaty |y € lyjp : in other words, we can write) = ¢ + > 5 f! + B where
B € Syml'((f1,...fm)) and & € lpp,. But we then have that + >, 6f' € Ipp, - Iyjp. This completes the
proof of Lemma 2.6. |

We now show how Lemma 2.6 implies Lemma 2.4. It will be enoughshow that for any poinix € X,
the image ofv in the local ringOp, x, which we denote by, is contained in the localised idedpe, - 1yjp)x-

We denote the ideal generated By...f, in Op,x by a. We denote the localised idealpf, N lyp)x
by Ix. We note that by the Artin-Rees lemma the following sequdrcexact

- — —
0—lx— OPl,x - oPl,x/lx —0

where M indicates completion of the modulél with respect toa.

By Lemma 2.6, we know that the image of in @ is contained inly. In particular, we know that the
image of vy In O;X\/Ix is 0. Krull's theorem says that there exists an elemfeatl + a such thatfv =0

in Op, x/Ix. But now the form off implies thatf is invertible since it cannot be an element of the maximal
ideal of Oxx, SO vy € Ix. This completes the proof of Lemma 2.4. O

LEMMA 2.7. Consider the Artinian ring A= Kleg, ..., em]/m". Let % — Specf) be an A-scheme
whose central fibre %= X, is a reduced l.c.i. k-variety. Consider the tripl§, = (X, ix,, @x,), where i,
is the inclusion of X in X and ax, is the identification of V= Oxe; & ... ® Oxen With 'X\Xn/|>2<\xn- Then
the following are equivalent, a)., is an n-th order infinitesimal neighbourhood of Ynd b) X is a flat
A,-scheme.

Proof of Lemma 2.7.

We prove the lemma by induction on. We may assume thaX, is affine, X, = SpecB,), where B,
is an A,-algebra. Throughout this section for any<li < n we setA = Kley, ..., em]/m't1, B = B,®@a, A,
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Xi = SpecB).

In the case wheren = 1 we have thatm? = 0 so m is simply a k-vector space and an ideal %
is the same thing as k-subspace ofn. Conditions 1), 2) and 3) of the definition of anth order infinitesi-
mal neighbourhood are immediately satisfied, and conditénand 5) are equivalent. We have that is flat
if and only if for any subspace C m the mapn ®a, B1 — B; is injective. Now,n®a, By = n®yBp and the
above map is injective for any if and only if the mapm ®x By — B; is injective. But the sheafification of
this morphism is the morphisft? — Ox and since the mam ®x By — g, is surjective by definition, we see
that X; is flat overA; if and only if ax, is an isomorphism. This proves the lemma in the case whestel .

Now, let us consider the case where> 1: we want to show that if one of the two conditions a)
and b) hold then the other also holds. By the induction hygsithwe may assume thai, has the property
that X,,_; is flat over A,_1 and is ann— 1-st order infinitesimal neighbourhood with normal buni¥e We
note thatX, is then an infinitesimal neighbourhood if and only if the magm@ay, : m" @ Ox — Oy, is
injective, or in other words if the mam" ®¢ By — By is injective.

Now, let | be an ideal ofA,. Since B,_; is flat over A,_1 we know that 0— B, ®a, (I N m") —
Bh®1 — By ®a, (I/lNm") — 0 is exact, sincd, | nm" and I /(I nm") are all A,_;-modules. We know
also that the maB,_1 ®a,_, |/l Nm" — By_1 is injective, sinceB,_; is A,_;-flat. In particular, the map
Bn ®a, | — By is injective for all ideals! if and only if the mapB, ®,, (I Nm") — B, is injective for
all ideals |. In other words,B, is flat over A, if and only if for any subspacen C m" we have that
Bn®a, n — By is an injection intom" - By. Since we have thaB, ®a, n = Bo®kn this is the case if and only
if B, ®a, m" — m"- By is an isomorphism. But this is the case precisely if S ) is an isomorphism,
that is, if X, is an infinitesimal neighbourhood. This completes the pafoEemma 2.7. O

3. CONSTRUCTION OF D(X}, 1, X2 ;).

Throughout this section, the following data will be fixed:
1. an n-th order infinitesimal neighbourhood of, X, = (X, ix,, ax,),
2. two extensions of(,, (X}, ,jt,,) and (2 4,i2,,).
The aim of this section is to construct the extensil?(wxﬁ+17xﬁ+1). We will now define categorie€(U)
and &(U) associated to the extensiofi&,, and X2, ;.

3.0.1 [DEFINITION OF CATEGORIES C(U) AND E(U).

DEFINITION 3.1. An eIementT?nH of the categoryC(U) is a 4—tupleﬂ~>n+1 = (P, U’nﬂ,fnlﬂ,fnzﬂ) where
P is a smoothk-variety, Pni1 = (Pny1,ip,. ., ap,,,) is an infinitesimal neighbourhood of orden ¢ 1) of
P with normal bundlew and f! , : UL, ; — Ppy1 and £2,, : UZ,, — Ppy1 are maps of schemes such that
(Pny1,fl,4) are embeddings ob}, , and the truncated extension mafjs and f? have the property that

froGn) t=1f2o (D)™
(We recall that the mapg: and j2 are the isomorphismg, : U, — U! from the n-th order truncation of
np1 t0 Upl)
If Prit = (P, Poya, fLq, T2 ) is an element ofe(U) then we will denote the map
fnl °© (j%)_l = fnz o (jﬁ)_l 2Un — Py
by f,. The pair (Py,f,) is then an embedding df(,.
DEFINITION 3.2. Let Pp.q = (P, Py, fl.,f2,) and Oni1 = (Q, Ont1, 9541, 95,1) be two elements of

C(U). A €(U)-morphism fromP,,1 to Qny1 is @ map of infinitesimal neighbourhoods: P11 — Qny1
such thatFof! , =gt , andFof2 , =g2 ..

11



(Recall that a map of infinitesimal neighbourhodés Pn 1 — Qn11 is @ map of schemes : P,1 — Qny1
such thatF*(IQ|Qn+1) = IP|Pn+1 )

For any pair of open set¥ ¢ U we define a restriction map); : C(U) — (V).

DEFINITION 3.3.  Let Pnq = (P, Pni1, fl 1, f2,1) be an element of(U). We definer))(Pn11) € C(V) as
follows:

Y (@Par1) = Z, Zog, Fla e

2
1) fn+1|V§+l)

where Z = P\(U \ V).
We now define a category of extensior®gU), in the following way.

DerFINITION 3.4. The members of(U) are exact sequences ¢f;-modules.

0-S, SE™Q, — 0.

Notation. Whenever dealing with an extension
0O-F—-E—-G—-0

we will denote the inclusion maf — E by ig and the projection mafE — G by =g.

DerFINITION 3.5. Consider two elements d@f(U),

0-SSETQ, -0,

TE/

0-S, BE ™, -0

A &(U)-morphism betweerE and E’ is a map of Oy -modulesf : E — E’ such that the following diagram
commutes

0— S —5-E

N

EngUHO

Note that all maps are isomorphisms in this category. Therani obvious functor)) : E(U) — &(V)
given by restriction of extensions dj,-modules.

3.1 THE CONTRAVARIANT FUNCTOR F(U) : C(U) — E(U) : DEFINITION OF iT(fT?nH).

We shall now construct a contravariant funct®(U) : ¢(U) — £(U) which will be compatible with
localisation (i.e.r)j o F(U) = F(V) orY.) This will be based on the conormal bundle which is constuic
below.

3.1.1 (ONSTRUCTION AND PROPERTIES OF THE CONORMAL BUNDLENS, .

DerINITION 3.6. Let Py, f,) be an embedding of an infinitesimal neighbourhoodJaf U,,, with normal
bundle W. The conormal bundle of,,f,), N3 , is defined byN; =1y, p, ® Ou.

We will need a good understanding &f;, in what follows. We start with the following proposition.

LEMmA 3.7. Let (P,,fn) be an embedding of an infinitesimal neighbourhood of W, with normal
bundle W. We then have that;N= ly,p, ® Ou.

12



Proof of Lemma 3.7.

We prove that for anyn > i > 1 we have thatlyp ®o,, Ou = lu,,p,, ®os, Ou. We consider the
surjective maprmitg : ly_,p,, — lujp- The kernel ofriyq is Iy e, Nlpe., - It Will be enough to show

that the ideal shealy,,p., Nlp ., is contained inlyp,,, - lu,, ., - But now by Lemma 2.2 we know that

(0 aipis N 1epe )/ (R < Tuppys) = Sy (as,)|u(Ly, - SymW*|y)
or in other words _ _
(U alpy N RRy.) = Sym ™ (agp, ) (L, - Sym(W))
= x(Ly, @ lp_,p,)
where here x @ lpp, ®o, Ip_,p — Ipp,, IS the multiplication map. Let us considex(a @ b) for

some a € Lp, = lyp, Nlpp, and b € Ip_,p. Locally, there is ana € ly_,p,, N lpp,, Such
that a'lp, = a and ab’ € Ip_,p,, such thatb/|[p, = b. We have thatx(a® b) = & - b’. Since
a € lyp,, and b’ € lp_,p,, C lyp,, We have thatx(@® b) € lyp,, - lu,,p.,,- It follows that
(uisaipis N PPy C lupyy - luigap, - This completes the proof of Lemma 3.7. O

We will now break N3, into N, and a part,Lp , arising because the normal bundle Bf in P,
may be larger than the normal bundle Of in U,.

DEFINITION 3.8. Let (P, f,) be an embedding of the infinitesimal neighbourhdggl. We define a map
rp, : Ly, — N3 as follows. Letl be an element oty : as by definitionLy, = (Ipjp, N1y, p,)/(Ipip, - lujp)
locally we can find an elemerite Ipjp, Nly,jp, such that the class dfin the quotientLyp, is |. The element
re. (1) is then the class of in the quotiently, p, ®op, Ou -

We note thatr, (1) is well-defined : ifl” is an alternative lifting of then (—1") € Ipip,-lu,p, C lujp,-luyjp,-

ProPoOsSITION3.9. Let (P, f,) be an embedding of the infinitesimal neighbourhdégd Let
7o, Np, = ly,p, @ Ou — Njip = lujp ® Ou
be the map induced by the restriction map ily p, — lujp. There is then an exact sequence

e,

x TPn *
0—Lp, = Np — NU|P — 0.

where r, is the map defined in Definition 3.8.
Proof of Proposition 3.9.

By Lemma 3.7, we know thaNj; = ly,p, ® Oy. We consider the exact sequence of ideals

0 — lpp, Nlyyp, = luypy o lyp — 0.
There is an induced exact sequence obtained by tensorifigtieét two right hand terms by
(e, N uggpy) =2 luyp, ® Oy = lyjp ® Oy — 0,
from which it follows that the sequence
0 — (luye, N lppp,)/Ker(rp,) =5 Ny =3 Nip — 0

is exact. But now by Lemma 2.4 we know that Ker() = lyp, - Ipjp, and (y,p, N lpp,)/Ker(re,) = Ly, .
It follows from the definitions ofrp, and rp, that 75, : Ly, — Ng, = Tp,. This completes the proof of
Proposition 3.9. O

This summarises the results we need on the conormal buNgle Our next step will be to construct

amapfs  :Nj — S associated to the data Gti1 = (P, Pror, fh 1, T200).
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3.1.2 (ONSTRUCTION OF THE MAP ff;,n+1 : N3, — . Our aim is to defineff;,nﬂ(ﬁ) for any
B € Nj = lyp, ®Oy. We will in fact define a mapﬂsn : ly,p, — Su which we will then tensorise
with Ou.

DEFINITION 3.10. LetX,, X}, , and X2, , be as above; let) be an open set iX and let Pni1 be an
element ofC(U). Let 3, be a section of the sheaf, |, over an affine open subset bf,. There are surjective
. 2.
maps of coherent sheaves : Iy p,,, — lu,p, @and 72 :lyz 5, — lyp, and we letfy, € ly: .,

and B7.; € lyz,p,,, be sections such that'(8.,) = Bn: we then have thatd,, — 52,,) € lpp,,,- We
define a map of sheaves, ., : ly,p, — Sym(V*)|lu = Sy by

F5,(60) = Syt ((Synt e, ) (B30 — )l
where f here denotes the pullback mdp : W*|y — V{jx*.

LEMvmA 3.11. The mapfs ., is well-defined.
Proof of Lemma 3.11.

We have to prove that the element SYitf:((Syntasp,,,)" 2 (8L, — 82,1))|u is independent of the
choice of g,, and f2,,. Let g%, and %, be another possible choice. We setl(, — gt;) = &
and (2., — #2,,) = 6%: we then have tha8' € lpp, ., Ny, p,.,- By Lemma 2.2, if§l is the class ofs'

in the quotientlp b, /lujp - Ip,jp,,, then we have thad' € SynT(ayp, ,,)|u((Lp, @ SynT(W*))|y . It follows
in particular that Sy (f*)(Sym" ™ (asp,,,)~%(6")|u = 0. In particular,

Syt (Sym™ Hag,,) 2B 1 — B2 )|
= Syn3(E)(SynT Hag,,,) "By + 0 — 8211 — 3D)|u

= SynTH(f)(Sym Haw,,.) (Bt — Bre))lu-
This completes the proof of Lemma 3.11. O

DEFINITION 3.12. LetX,, X%, and X2,, be as above. Let) be an open set irX and let Poi1 be
an element ofC(U). As & is an Oy-module, we can definé; to be the unique map oby-modules
fj;nﬂ Ny p, ®O0u = Nﬂén L Sy such thatf@n+1(g) = fﬁml(a) for any sectiono € Iy, p,. Here,o denotes
the class ofo in the quotient sheafy p, @ Oy .

3.1.3 (ONSTRUCTION OF THE EXTENSIONH"(j’n_,_l). We now show how to associate to the embedding
(Pn, fn) of U, a canonical exact short sequence @j-modules.

DerFINITION 3.13. LetX,, be ann-th order infinitesimal neighbourhood of with normal bundleV, let
U be an open subset of and let (P,,f,) be an embedding ofl,. We denote byEy, the following short
exact sequence o)y -modules.

1) 0—N; 20k ©0y 5y — 0.

where f is simply pull-back along the map of schemgs: U, — P, and dp, is the map defined below.
(Of course, we have not yet established that this sequenegaist.)

DEFINITION 3.14.  LetX,,, X},, andX32,, be as above. Let) be an open set iX and letd : Iy p, — Qf,
be the map of sheaves given by derivation. Tensoring on tite by Oy we obtain a map
d® Oy : ly,p, — O, @ Ou.

Unlike d, d ® Oy is an Op,-module map, since for any € Iy, and anyf € Op, we have that
d ® Oy(fu) = fdu+ udf = fdu becauseudf = 0 in Qf ® Oy. As Qf ® Oy is an Oy-module there
is a unique Oy -module map

dp, : lu,p, ® Ou = Nj — Qb ® Oy

14



such that for any sectionr of Iy p, d® Oy(c) = dp,(7), where is the class ofo in the quotient sheaf
ly,p, ® Ou-

It remains to be seen that the sequeltte is exact.

PROPOSITION3.15. Let (Pp,f,) be an embedding with normal bundle W of an n-th order infiiritas
neighbourhoodl, of U with normal bundle V. The exact sequencg, Eefined above is then exact.

Proof of Proposition 3.15.

It is only necessary to prove that the malp, is injective. We consider the following commutative di-
agram, whose middle row is simplisp, .

0 0 0
i
0 Ly, Wy V* 0
FPn d
* dop, f
0 N, Q|1:n®OU*>QLlJn®OU —0
i%n i%n i
* f*
0 NG P —2> QL ® 0y o 0
iﬁn
0 0 0

In the above diagramf is the restriction of the maf, : U, — P, to U. Suppose that is a section of
Nj, such thatdy (o) = 0. We then have that}, o dg (0) =0 sodoij (0) = 0. As the bottom row of
the diagram is exact becau&¢ is a local complete intersection we have thgt(c) = 0. As the left-hand
column is exact by Proposition 3.9 there is a sectior Ly, such thato = rp (1). We considery as an
element of W*, which is possible becaudsy, is defined as a sub-bundle ¥¥. We have thatd(x) = 0 and
it follows from Lemma 2.3 thatu = 0. This completes the proof of Proposition 3.15. a

We now define the extensiofi(Pn;1).

DEFINITION 3.16. Let§>n+1 = (P, ﬂ?nﬂ,f,}“,fnz“) be an element o€(U) and let (,,f,) be the associated
embedding ofU,. The extensionF(P) is defined to be the pushforward alorlign+1 of the extensionEgp,
defined above.

We recall the definition of the pushforward because it willibgortant in what follows.

DEFINITION 3.17. In any abelian category, let-0 F -5 E 5 G — 0 be an extension 06 by F. Let
f : F — F’ be a morphism fromF to F’. We then define the pushforward & by f to be the following
extension _
0-FEFEG-0
where E/ = (f(a),O):'(:C/J,ei?ja))VaeF’ ier(n) = [(n,0)] for any p € F' and 7g[(p,v)] = me(v) for any
(u,v) € FF®E. If E' is the pushforward of an extensioB under a morphismf : F — F’ then for
any ec E and f’ € F we denote the class of/f’) in the quotientE’ by [e f']g .

In the particular case above, this means tﬁ@nﬂ) is the extension

(5 1 T (5
0—>SUUE’+1) S D (2, ® Ou) ‘U’—QH)Q%J@OU—»O
(f3,,,(0),0) = (0,dp, (0))Vo € N5, n
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where w55 ., ([S,w]) = w|u, and iz, (S) = [s,0].

DEFINITION 3.18. Let U~>n+1 be an element of2(U). For any choice ofse §; and w € Q,%n ® Oy we
SUB(Q,®00)
5., 60=0.dp,()Vo NG,

SJ@(SZP ®0y)
5 11(9),.0)=0,d», (0))VoeN; |

denote by §, w]g:n+1 the class of § w) in the quotient?(ﬁ’n+1). The inclusiong;, —

— Qu given

given by s — [s,0]5_ e will be denoted byis " and the projectiong
by [s, w]j,n+1 — wly, will be denoted by7rg>n+1.

3.2 (QONSTRUCTION OF THE FUNCTORTF : G(U) — E(U) : CONSTRUCTION OF F(F).

Suppose that we have elements&t)), P = (P, Pny1,fL1,f2 1) and Q = (Q, Qn1, 9.1, 92.1) - Consider
a mapF : P — Q which is a €(U)-morphism. (Recall thaF is just a mapF : P17 — Qny1 satisfying
various compatibility conditions.) There is an induced oamative diagram

do
0N, %oy so,

a5
- -
d, f*

0*>N* Q ®OUL>QU*>O
The following lemma holds.

LEMMA 3.19. Let P = (P, Poga, Tl ,f2.) and 0 =(Q, Ont1, 92,1, 95,1) be elements of(U) and let
F:? — Q be aC(U)-morphism. We have then have th@m =f3.,,0F N5 — &

Proof of Lemma 3.19.
We consider an element ¢ N, = lujq, ® Ou = IU1 lQnis ® Oy = |U2 1100 ® Oy. Let 61 be a

lifting of o to IU1 Qs @nd let 02 be a lifting of o to |Uz Qnys - We have then thaf* (1) € I
and F*(a7) € Iug Pos , by definition of €(U)-morphisms. By def|n|t|on

+1‘Pn+1

(F*0) = synl4(f ) Sy ag,,,) " (F*(62) — F*(G2))lu-

?+l

Since F is a map of infinitesimal neighbourhoods, we have tRato aq, , = ap, ., SO
f5,,,(F*0) = Synf ™ ({)(Sym X (ag,,,) 261 — 62))lu = fa,,, (0)-

This completes the proof of Lemma 3.19. |
We are now in a position to defing(F).

DEFINITION 3.20. Let an+1 and Qn+1 be two elements of(‘Z(U) and letF : Ppy1 — Qnu1 be a
C(U)-morphism from?n+1 to Qn+1 The mapJ(F) : 9(Qn+1) — 3"(:]3“+1) is then defined by

FFE)s wls,,,) = [sFWls,,,

foranyse § and anyw € Ql , ®0y. (This map is well-defined on the quotient becatﬁge oF*))

Tn+1

We note that~the mag : C(U) — E(U) is indeed a contravariant functor because-if iTJnH — 53%1
and G: Rpy1 — Qnyg are C(U)-morphisms then for ang e § and w € Q<13n ® Oy we have that

FFoQ)sula, , =[s(FoG) uls,, =[G F Wj,, = FO)ISsF Wi, = FOG) o FEIswls,,,-

Further, since the above construction is entirely local weehthatr), o ¥ = For). This completes the
construction of the functoff : C(U) — E(U).
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3.3 THE CANONICAL ISOMORPHISMS IN C(U).

Throughout this subsection we fix two elementsdgt)), 93n+1 and Qn+1. The aim of this subsection is to
construct a canonical isomorphism between the extensigi®g, 1) and F(Qn1). The first step will be to cre-
ate products in the categog(U). To do this, we will need first of all products of infinitesitmaeighbourhoods.

Notation.

If P and Q are k-varieties and®, = (Pn,ip,,ap,) and Qy = (Qn,iq,,aq,) are n-th order infinitesi-
mal neighbourhoods oP resp. Q then we denote byR x Q), the subscheme oP, x Q, cut out by the

: n+1
ideal sheafl P QIPyxQn

We denote byrwp, and mg, the projection mapsrp, : (P x Q) — P, and mg, : (P x Q)n — Qn. We
denote byrp and mq the projection mapsi, : P x Q — P and mg : P x Q — Q.

DEFINITION 3.21. Let® = (Pn,ip,, ap,) and Q = (Qn,io,, ao,) be infinitesimal neighbourhoods of order
n> 1 of varietiesP and Q with normal bundlesWe and Wy respectively. We define the produc® k Q)
to be the infinitesimal neighbourhood of orderof P x Q with normal bundlers(We) © 75(Wg) given by
((P X Q)n, i, X iq,,domp (ap,) © 7§ (ag,) Where heres is the isomorphism

. 2 2 2
o 7Té(lP\Pn/lpmn) D Wé(IQlQn/IQ|Qn) - |PxQ\anQn/|PxQ|F>nxQn

given by pullback alongrp and mq.

We can now define products i(U).

DEFINITION 3.22. Let Py, = (P, Pns1.f14,12,1) and Oni1 = (Q, Qni1, gt 1, 92,1) be two members of
C(U). We then define the product (x Q)1 as follows:

(P x Qnir= (P x QP x Dnia,fliy x gk, f20 X g2,1).

For any pairPy; and Oy1 the projection mapsp, ., : (PxQ)ns1 — Pny1 and g, , 1 (PxQni1 — Qnia
are ¢(U)-morphisms. It follows that there are induced contrav@rimapsF(wp,, ,) : F(Pnr1) — F(P X Qny1)
and J(mq,,,) : F(Qny1) — F((P x Dny1).

_ DEFINITION 3.23.  Let Pny1 and Ony1 be two elements of(U). There is then a canonical isomorphism
350 1 F(Pni1) — F(Qnsa) defined by

9, _
Ji’nj:ll = 9T(WQ"Jrl) to SF(7Tpn+1).

By construction, the isomorphisrﬂj%"L1 is compatible with restriction to an open subset. We need the
following proposition:

PROPOSITION3.24. Let Pn11, 00,1 and Rny1 be elements of(U). We then have that%lli o J;}n:j =

Ont1
J=rtt
Pri1

Proof of Proposition 3.24.

Consider the following diagram:
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(P x Qns1 X Rnya

(P x Q)ny1 (Q X R)ny1 (P x R)nt1
Qny1 Pnt1 Rnt1

We have thatryom3 = m50m, mgom™ = m7om and g o m, = mg o m3. It follows that ?(71’3) o ?(71’4) =
F(m1) o F(ws), F(mr) o F(mwg) = F(m2) o F(m7) and F(mrp) o F(wg) = F(rs) o F(mg). Re-arranging, we see that

F(m1) Y o F(ms) = F(ms) 0 F(ma) ™
F(m3) L 0 F(mz) = F(mg) 0 F(mg)
F(m2) "t o F(m1) = F(m7) o F(me) L.
Multiplying, we get that
Id = F(ms) 0 F(ma) "L 0 F(mg) 0 F(mg) L 0 F(mr7) o F(me) L
which we then write as
F(ms) " o F(me) = F(ma) "L 0 F(mo) o F(mg) L 0 F(rr7)

or in other Wordst(’f”+1 = 5%““ o121 This completes the proof of Proposition 3.24. O
n+1 n+1 ':PnJrl

3.4 DEFINITION OF D(X},;, X2, ).

We start by checking thaK can be covered by open sets such tBét)) is non-empty.

LEMMA 3.25. Let U be an affine open set in X such thafyMs trivial. Then C(U) is not-empty.

Proof of Lemma 3.25.

Let P be a smooth variety and lét: U — P be an inclusion ofU in P. Let W be a trivial vector bundle on
P whose rank is the same a&. Choose elements}, ... ¢! € lujug,, such that{e!} c IU|Un1+1/Il2J|U%+1 forms

a basis of sections OrU\Uiﬂ/'S\ugﬂ- Choose elements?, ... €2 € lyjuz,, such thate?|y, = €t|u,. These

choices give rise to maps; : Uy, — Specf;1) where Ayi1 = Kle, ..., e]/m™! and by Lemma 2.7
the choice of the maps; turns ULH into a flat A, 1 -scheme. Moreover, by choice of th}as, m1lu, = m2|u, -

Now, letf : U — P be a closed immersion df in a smoothk-variety P and considelP,,; = PxSpecf;1).

By Lemma 2.7Pn.1 = (Phy1,ip,,,, @p,,,) IS an n+4 1-st infinitesimal neighbourhood dPy. 1. It will be
enough to show that there are flat subschem!{;s1 of Pny1 such that there are isomorphisms Af ;-
schemes¢; : Uj ; — Vi, such that¢si|y, = ¢2|u, and ¢ily = f. We start by recursively constructing
flat subschemed/; C P, = P x Spech;) which are isomorphic toU; for any i < n. Suppose thatv;_;
exists and is isomorphic tdJ;_;. We then know by [12] (Thm 2.5, Thm 4.4 and Prop. 4.9) that flat
subschemes oP; extendingV,_; are a torsor over Horhlfjlp,m‘/mi+l ®k Oy), that isomorphism classes

of flat A -schemes extendiny;_; are a torsor over EX{Q}, m /m'+! @, Oy) and that the forgetful map
sending a flat subscheme & extendingV;_; to its isomorphism class as a flat scheme is the boundary
map § : Hom(N p, m'/m** @ Oy) — Ext}(Q}, m'/m*1 @, Oy) associated to the exact sequence

0—>NG‘P—>Q]F',®OU—>Q%J—>O.
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But now sinceP is smooth andU is affine we know thaty is a surjection. In particular, there is aRj-flat
subscheme ofP;, Vi, which extendsV;_; and which is isomorphic as aA -scheme toU;. Iterating this
procedure, we obtain a flah,-subscheme o, which is isomorphic toU,. The same argument then also
shows that there are flat subschenws, and V2 ; in Pn1 which are A, ;-isomorphic toU}, , and U2,
respectively and which satisfy all the required conditiofibis completes the proof of Lemma 3.25. [

We now choose an open affine covering of X such thatVy, is trivial for eachi. For eachi, we
choose an eIemerﬁ"nJrl = (P, P, f1,,f2,) of C(U;). We denote by‘Pn+1 the eIementrU'mU‘(TnH) in
CUiNY).

DEFINITION 3.26. Let X, be an n-th order infinitesimal neighbourhood of with normal bundleV.
Let I)C,l]+l and X1 be two extensions oX to n-+ 1st order, letU; be a covering ofX by open affines
such thatV|y, is trivial for eachi. For eachi, let T'n+1 be an element of2(U;). To the choice of elements
{‘PHH} we associate the unique exten5|@(ﬂ>n+1) € &(X) such that:

1. There is an |somorph|sm3>. @(T ne1) — CF(THH)
2. The mapJ : (P, )|y, — 3’(33,1+1)|u,J given by J = SH_, oSyt satisfiesd = J~,?“.

n+1 n+1

It follows from the various compatibilities proved aboveth

PROPOSITION3.27. Let X, X ;, X2., and U be as above. Le(?!, ;) and (Q\.,) be two different
choices of elements d®(U;). There is then a unique isomorphism

D(Q'n 1)
Iyt D@Phi) = D@0y

DPL,
such that over Uwe have that @ oJ @ ,”“) os‘l = J~Q‘"+1
nt+ (P ) Phi Pt
Proof of Proposition 3.27. We defineJ 2@ n+1)| b JD(Q”“)| st oJs n+1o . It will be enough
p 27. D@, )Y y D, o, Si., g

to show that these definitions are compatible on the mtB’mE:U.,, or in other Words that

Sgil OJ~H+10833| = ~j110J~-n+1OSJ>j
n+ n+
or in other words that " . - -
J~Q‘n+1 o \]?;n+1 o J?janrl — JNanﬁ»l.
Qi1 Popr Pr Pha

But this has already been established in Proposition 3.B#% dompletes the proof of Proposition 3.271

DEFINITION 3.28. Let X, X%, XL, , and U; be as above. We identify any pair of extensions

of the form @(?n+l) and D(Qn+l) using the isomorphisms]D((?."“)) After this identification, we set
n+1

DXL, 1, X2, ) = D(?nﬂ) for any choice of elemen'[?:"n+l € C(Uy).

Throughout the rest of the paper, we denoted@,%/+1 the isomorphism

D1, X2, Dy — FP0)

for any element‘j?‘mrl € €(U;). Having thus constructed the elemeb(X},,,X2,,), in the next section we
will show that it has the required properties

4. TORSOR CHARACTER OFD(X3, ;, X2 ).

To complete the proof of Theorem 1.10, it remains to provefttiewing.
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1. D(XE, 1, X2,,) = S®Q as an extension if and only &}, , and X2, , are isomorphic extensions &€,.
2. For any triple of extensions(t ;, X3, and X3,, we have thatD(X},; X3, ) = D(X5, 1, X3, ) +

D(:)Cn-&-l’ n+1)
3. That if one extensiol(l, , exists, then for anyE € &(X) there is an)2, , such thatD(X1 ,,X2,,) 2 E

We will begin by proving 1. In fact, we will prove something mo namely that there exists a canonical
correspondence between splittings D{X}, ,, X2, ;) and isomorphisms betweeli},, and X2, ;.

4.1 THE CANONICAL CORRESPONDENCE BETWEEN SPLITTINGS OFD(X}, ;,X2,,) AND ISOMORPHISMS BE

1
TWEEN X}, , AND X2, ;.

Throughout this section)(: ne1 and X? nr1 Will be a pair of fixed extensions ok,,. We start by setting up
some notation.

DEFINITION 4.1. Let X, be ann-th order neighbourhood oK and let X},, and f)Cn+l be a pair of
extensions ofX,. For any open set irX, U, we let R(U) be the set of spllttmgs oiD(un+l, ﬁH) and we
let J(U) be the set of isomorphisms of extensiopsy : UL, ; — U2, ;.

In this subsection we will prove the following proposition.

PROPOSITION4.2. Let X, be an n-th order neighbourhood of X with normal bundle V andde, ;
and DC2+1 be extensions of(,. Let U be an open set in X. There is then a canonical bijectibrseats
b(U) : J(U) — R(U) such that for any Mc U and je€ J(U) we have that &/)(j|v) = (b(U)())|v -

REMARK 4.3. Note that since the mapgd — R(U) and U — J(U) define sheaves of sets, it will be
enough to prove the existence of the ma@J) for all sufficiently small open sett).

Proof of Proposition 4.2.

By Remark 4.3, it will be enough to prove 'Ehe existence [ffJ) for any U such that C(U) i§ not
empty. LetU be such an open set iX and let P, ; be an element of2(U). We introduce setsT (Pn11)
and R(Pny1).

DEFINITION 4.4, LetU be an open set irX and let 5’n+1 be an element of2(U). The setT(9~>n+1) is
the set of allOy-linear mapst : Q,%n ® Oy — S such thattodp, = fj,nﬂ. The setR(P,11) is the set of

splittings of F(Pns1).

There is~ a canonical isomorphisrz;rjpn+1 ﬂ)(un+1, ﬁtl) — ?(53”+1). Vye have therefore a bijection
(S$,,,)" * R(Pny1) — R(U) We now construct a bijectiot(Pn+1) : J(U) — R(Pni1). Recall that

Su @ (9B, ® Ou)

F(Pi1) = (f3,,,(0),0) = (0,dy,(0)) Vo € N;

An elementr € R(ﬁ’mrl) is therefore a map : S, @ (an ® Oy) — Sy such that

1. r(s,0) = s for any sectionse S, .

2. for any sectiono € N3, we have thatfj,m(a) = r([O,dryn(a)]@nH).

Note that by 1) the map is characterised by the mag(r) : Ql ® Oy — S given by t;(r)(w) = r([0, w]j,m)
for any w € Ql ® Oy. We note that 2) is equivalent to the fact that for amye Nj we have that
jJHH(U) = tl(r)(dg)n(o')) In other words, the map(r) is an element ofT(iPnH) We now prove the
following lemma.

LEMMA 4.5. The map 1: R®Pni1) — T(Pni1) given by r— ty(r) is a bijection.
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Proof of Lemma 4.5.
We construct an inverse map, by letting ri(t) be the splitting given byr,(t)[s, w]g;nH
any t € T(§>n+1), any w € Qflﬁ ) ® Oy and anys € . Note that for any section € Nj,_
r(®)[dy, (0). —f5,,,(0)]3,,, = t(ds,(0)) — T5,,,(0) =0

by definition of T(ﬁ’nﬂ) so ry(t) is a well defined splitting ofiT(ﬁJnH). It is immediate thatry(t;(r)) =r
and ty(r1(t)) = t. This completes the proof of Lemma 4.5. O

= s+ t(w) for

We now construct a bijection betweei(U) and T(iJN’nH). An elementjy.1 € J(U) is determined by
Jhet L‘)Uﬁ+1 — OU%“, the corresponding map of algebra sheaves.(f)%;z;.+1 is a quotient algebra sheaf of

Op,,, this can be seen as a map of algebra shegyes: Op,,, — (‘)llJn+l such that Kei, ) = luz, 1Poss
and for anyf € Op,,, we have thatj; ;(f)[u, = flu,.

Likewise, any sheaf mag; ; : Op,,, — OU%+1 such that Kei, ;) = IL,§+1“,n+1 and for anyf ¢ Op,,
we have thatj; 4(f)[u, = flu, gives rise to an elemernt,; € J(U). Given such a magn,1, we consider
the mapd(jnt1) : Op,,, — Su given by

d(ne2)(F) = (Symlang ) HHlur, +inea(®)).

n+1

Note that sincej;;, ;(f)|u, = f|lu, we do indeed have that—(|un1+l +inaf) € 'Un|un1+1 =~ Sym(v*). The
map d(jnt+1) iS a derivation because for any sectiohg € Op,,, we have that

d(ns2)(fg) = (Syrﬁwlauﬁﬂ)_1(—f9|u;+1 +inr1(f9)

=f-(Sym™* g ) Hgluz,, +ina(9)) + Sym Haqe )7H - Tria(9) + i) - Tia(9))

n+1 n+1

=f - d(in+1)(9) +insa(9) - Sym Hang ) HE +jna(F))-

=t d(in+1)(9) +insa(9) - dGns2)(F).
Since § is an Oy-module, andj;, 1(g9)lu = glu, it follows that

din+1)(fg) = f - d(nt2)(9) + g - d(nra)(F).

By the universal property of derivations, it follows thaeth is a uniqueQy -linear map,
to(int1) - Qéw ®0y—S

such that for anyf € Op,,, we have thaty(jni1)(df|u) = d(jn+1)(f). We consider the map : J(U) — T(Pnia)
given by ts : jnr1 — to(jny1). We now prove thaty(jn+1) is @ member ofT(Pn41). Let o be a section of

ooy = NUalPy @ Ou = lug ey © Ou = 1z, e, @ Ou. Locally, we choose sections; € Iy: p,., and
o9 € 'U§+1|Pn+1 which lift . We may assume that;|p, = o2|p,. By definition, to(jn+1)(dp,0) = d(jnr1)(02).
We know thato, € Ker(jy, ;), and henced(jni1)(o2) = —(Syni‘“auéﬂ)—laﬂuéﬂ. But now, by definition,
f5,,,(0) = Syn(EN)(SymTas,,,) (01— 02))|u, Where heref; is the pull-back mag; : W[y — V*|y.
We know that Syrfit*(f¥)(Syn"asp, )Yy = (Synf*lau%+l)*1ofr}jl, where here the maf; : Ip,
lu,uz,, is the pull-back map. I~t follows that; (o) = (Seri‘Jrlopu%Jrl)*l oflti(—02) = tainy1)(dp,0). We
therefore have thaty(jn1) € T(Pnsa).

|Pryr —

LEMMA 4.6. The map £:J(U) — T(ﬁ’nﬂ) given by j+1 — t2(jnr1) is a bijection.
Proof of Lemma 4.6.
We will do this by cgnstructing an explicit inverse mapy; : T(§>n+1) — J(U). Let t: Q,%n ®0y — X
be an element ofT(Pny1). We let j11(t) be the map whose associated pull-back map is given by

In1O@) = U\U%H + Syrri"“(auﬁﬂ)(t(dv)) for any v € Op,,,. We need to show thaj; , is indeed an
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algebra morphism, that,, ;(t)(f)|u, = flu, and that Kef_ (1)) = 12

n+1|Pn+1 '
The mapj;_,(t) is an algebra morphism because

inw) = v-w+ Sy Hag: Hdw)) = vw +v - Sy oy J(t(dw)) + w - SymtHH(ag )(t(dv))

= i) - iny 2 O(w) — Sym o )(t(dv)) - SynT ™ ags JHdw)) = jr1O) - fnra®(w)
where the last equality follows because §Vﬁ(auﬁ+l)(t(dv)) and Syn’i“(auhl)(t(dw)) are both contained

in IUnIU%+1' Moreover,j;_ 1 ()(f)|u, = f|u, by definition. It remains only to show that Kt 4(t) = |U§+1|Pn+1'

Suppose thaw|ug+1 +Syrﬁ‘+1(au%+1)(t(dv)) = 0 for somev € Op,,, ; we then have that|y, = 0. We choose
v1 € lyz pp,., and vz € lyz_jp,,, such thatvylp, = vzlp, = vlp,, SO that—vly: = Synf‘*l(ozu%+l)(t(dv)) =
Synﬁ+l(au%+1)(fj;n+1(§)) = (v1 — Uz)‘ugprl. (Here by v we mean the class of|p, € ly,p, in ly,p, ® Ou.)
This implies that ¢ — v2)|Un1+1 = 0. Sincev — vz|p, = 0, we have thaty — vz € Ip jp,,, N IU§+1\Pn+1' But we
know that

1ouipres N0z s/ (Upprss - TRyfpos) = SYMT ag, (L, - SynT(Wiu))
= lpopos N w2, P/ (1UlPw  TRyIPL)-
It follows that @ — v;) € Iugmpwl and hencev € Iugmpm since by definitionv, € IU§+1.
The mapst, and j,,; are easily seen to be inverses. This completes the proof wirize 4.6. a
We therefore have a bijection(Pn1) : J(U) — R(Pnr1) given by b(Pni1) = ryots.
LEMMA 4.7. For any elementsP,,1 and On,1 in €(U) we have that 5.0 b(Pni1) = S5, © b(Qny 1)
Proof of Lemma 4.7.

We have to prove tha(P, 1) = (s;lﬂ)*os’g2 +1ob(QnJrl) or alternativelyb(P, 1) = (sQnﬂos;lH)*ob(QnH).
This can be re-written as )

b(Pn 1) = (3577)" 0 b(Qn ).
In other words, we have to prove that for any.1 € J(U) we have that

b(®n+1)n+1) = B@ns1)Gns1) 0 357

considered as maps froff(Py1) to S, . We start by proving that iF : Qn1 — Pnyy is any €(U)-morphism
then for anyjn.1 € J(U) we have thatd(Pni1)(nr1) = b(Qni1)(nr1) o F(F). We recall that for anys € §
andf € Op,,, we have that

b(@ns1)Gnr1)[s, df @ Oulp,,, = S+ to(df|y) = s+ SynT o (SynT* g, )M~ lug,, +insaf)-
Likewise, for anyse § andf € Op ., we have that
004 1)(ins 1)oF (F)[s, dFOU]5, ., = b(Gni )iy 2)ls AF*F20U] 5, ,, = s+Sym () Sy o, ) ™ H(—FFlus, +insaF D]

But by definition of ¢(U)-morphisms we know thaF*f|U%+1 = f\unl+1 and F*f|u§+l = f|U§+1, which implies
that j;,,F*f =j;,4f. In particular it follows that

b(Pn11)Gnr1) = B(Qny1)(inta) 0 F(F).

By definition J?”Ll = B’(anH)—loS"(anH) so it follows that for any pairinﬂ, Qn+1) of elements inC(U)
we have that

b(Pn+1)int1) = BGn42)Gns1) 0 35"
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This completes the proof of Lemma 4.7 |

We now setb(U) = s, L b(ﬂNJnH) for any U such thatC(U) has an elemen@nH. The local nature
of this map follows from the local nature of all the constioos involved. This completes the proof of
Proposition 4.2. O

There is a special case of this isomorphism whéh, = X2, ; and j,;1 = Id.

DEFINITION 4.8. Let X% , be an extension of a-th order infinitesimal neighbourhood 6f, of X, and

consider the extension i
D(

xl al Toel, xl )
+1° 7 n4-1 +1° 7+l
0—-S =" D(DC%JA, fX:,1H1) =T a—o.

b(X)(Id p .
QUOELIN
—

1
We denote byr,y the isomorphismD(X}, 1, X7 ) sea.

Let now Ppiq € C(U) be of the form B, Pnyq, L. f1 ). The mapryg o s;1+1 L F(Prsr) — Su @ Qu is
then given by the formulaia([s,w]3 ,,) — (s,w|Un1+l) foranyse § andw € Qf ® Oy.

4.2 THE ISOMORPHISM D(X% 1, X3, 1) = D(X5, 1, X2, 1) + D(XZ, 1, X3, ).
In this section we will construct a natural isomorphism MWQ(DC%H,DCﬁH) and D(XE ,, X2, ) +
D(XR 41 Xopn):

In what follows we will need a certain number of facts on sunmsl alifferences of extensions, which
we now summarise.

4.2.1 SM AND DIFFERENCE MAPS ON EXTENSIONS We place ourselves in an arbitrary abelian category
C: let F and G be two elements of this category. Whenever~-O0F — E — G — 0 is an extension in the
categoryC the inclusion mapF — E will be denoted byig and the projection majE — G will be denoted
by me. Let E;, E, be two extensions of and G,

0—F5E ™G0
0—F2E™G-0
By definition, E; + E; is the spaceU(E;, E;)/V(Ey, Ez) where U(Ey, Ep) is defined by
U(E1, BE) = {(e1, &) € E1 & Ex|mg,(e1) = 7g,(€2)}

and V(E,, Ey) is defined by
V(Ey, B2) = {(ie,(f), —ie,()|f € F}.

For anye; € E;, & € E; such thatrg, (e1) = 7g,(e2) we write [e1, )] for the equivalence class i + E;
of (e, ). There is an exact sequence

0 F % E 4 E %G -0
where by definition
ie+E(f) = [ig (f), 0] = [0,ig,(f)], and7g,1e,([er, &]) = 7 (e1)-
Note that if we have two extension mags : E; — E; and ¢, : E; — E;, then the sum
1@ P2 BE1®RE2 - E;DE

descends to an extension map
$1+ ¢2: E1+Ex — Ey + Ej.

We note further that if we consider the trivial extensith® G, then there is a natural isomorphism
(F® G) + E — E given by
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[(f,9). €] — ie(f) +e
By abuse of notation, we will frequently identify the extenms F © G)+ E and E

More generally, given extensions,, E;, ..., E,, we have a multiple sum extensiof; + E; + ... + E, =

U(Es,...En)/V(E:...Ey) where by definitionU(E;...E)) C E1® ... ® E, is defined by &,...,&) €
U(E;:...Ey) if and only if g (e1) = mg,(&) ... = 7g,(en) and V(E; ... E,) is given by

V(E: ... E) = {(ig,(f),....,ig,(F))|f1,...,fn € F,Zfi = 0}.

We denote the equivalence class @f,(..,e,) under this map byd;,...,e]. We have an extension.
0o F ™ E 4 4 E ™ G L0

given by ig+. g, (f) = [ig(f),0,...,0] and 7g,+. 1, (€1,-..,e]) = 7 (g) for all i. For any permu-
tation ¢ of [1,...,n] there is a canonical isomorphisr&; + ... + En — Egq) + ... + E;n given by
[en,....&] — [&),--. €m]. We will therefore considerE; + ...+ E, and E,q) + ... + E;n to be
equivalent. It is still the case that if; : E; — E/ is a map of extensions for anythen there is an induced
map ¢1+...+¢én: E1+... +Ey — E{ + ...+ E|. In the notation¢s + ... + ¢, We suppress any of the
¢is which are equal to the identity. Hence, for examplep ifE; — E] is a map of extensions then we will
denote the map) + Id : E; + E; — E] + E, simply by ¢;.

Given an extension .
0-F5ESG—0

we can define an extensionE in a similar way: —E is equal toE as an element of the categofy, the
extension maps are given as follows

0-F 5 E®G-o0.

We define the difference of extensions; — E,, to be equal toE; + (—Ey). Explicitly, this space can be
constructed as followsE; — E; is the spaceU’(E;, E;)/V'(E;, E;) where U'(Ey, Ey) is defined by

U'(E1, E2) = {(e1, &) € E1 @ E|m, (1) = 7, (€2) }
and V'(Ey, Ey) is defined by
V'(Ey, B) = {(ie,(f). ie,(N))If € F}.
We will write [er, &)’ for the equivalence class i&; — E, of (e, e). There is an exact sequence
0-FRE B ™%6-0
where by definition
g (f) = [ie,(f), 0 = [0, —ig,(F)I', e, &, [€1, €] = 7, (&)
We will need the contraction maps in what follows.
DEFINITION 4.9. Let E be an extension of by G in an abelian categorfC. We then denote by
the contraction mage : E— E — F & G given by
[e1, &) — (ig'(e1 — &), me(e1)).
4.2.2 LOCAL CONSTRUCTION OF THE CANONICAL ISOMORPHISM Throughout this section an-th order

infinitesimal neighbourhood oK, X,, and three extensions dt,, X%,,, X3,; and X3 ,, are fixed. For
any open setU C X and any pair of distinct integersj € {1,2,3} we define a categorg'1(U) as follows.

DEFINITION 4.10.  An elementP}), of €(U) is a quadruple R, Pny1,fi, 1.}, 1), where P is a smooth
variety, Pn11 is an g+ 1)-th order infinitesimal neighbourhood d® with normal bundleW and each
fi 41Ul — Pnya is @ scheme morphism such that:
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1. (Pni1.fX ) is an embedding o, for k=1,j.

2. fl+1|Un - n+1|Un

Given two elements ofe"i(U), ?n+1 = (P, Pny1.fliy, n+1) and Qn+l = (Q, QnH,gLH,ginH), a C(U)-
morphism from(Pn+l to Qr{J+1 is a mapF : P11 — Qn41 such thatF is a map of infinitesimal neighbourhoods
and Fofk , =gk , for k=i orj.

We will prove the following proposition.

ProPOsITION4.11. Let X, be an n-th order infinitesimal neighbourhood with normal 8lenV and let

(X}, 1, X3,4,X3,,) be three extensions df,. There is then a canonical morphism

¢DC1 . D(:)Cner xﬁ+l) + D(anrb n+1) - g(anrl? n+l)

n-¢—17x2

n+1’ n+1

Proof of Proposition 4.11. In order to construct this isomorphism, we will need an estraicture which
we will call a triple.

DEFINITION 4.12. Let U be an open set ofX. A triple iT)nH over U is given by a data set

(GRUINETS S CO0 S where P is a smooth variety,Pn1 is an @+ 1)-th infinitesimal neighbourhood

of P and the mapsfnJrl : Upp1 — Pny1 are maps of schemes such that for each pgirthe 4-tuple

(P, Pry1, iy, n+l) is an element of¢'J(U). We denote R, Pny1,fl, 1, n+l) by (P'n’il

DEFINITION 4.13. Let Py = (P, Prgr, fh 1, f2.0,13)) and 9 = (Q, Ont1, 984159541, 9511) e triples
over U. Amap F : Pny1 — Qny1 is said to be a map of triples if for all paiisj € {1,2,3} the mapF is
a €4 (U)-morphism. The magF considered as &'(U)-morphism will be denoted ' .

Given a triple j)n+1 there are associated maps
Tinn e fogs, - 20 = S
and associated extensmrfﬁ(ﬂ’n +1) ?(an +1) and Cr"(fPn +1) By definition of the mapsf; W, we have that

fz13 = fiplz +fT23 . There is therefore an induced map of extensions
n+1

65,.,  F@ulD) + F@RE) — FErly.

given by
P,y (IS0 Wlgrz , [S2, wlz2a 1) = ([81 + S, wles )

for any choice ofs;, s, € §y andw € Q%;n ®0y.

(We note that any elementey e;] of ?(‘PHH) + S"(iPnH) e = [Sj_,w]_]j,lz , & = [Sg,wz]?zs , can be
written in the above form because of the condition th@tﬁl(el) = 7r9,z+31(e2) There are, of course several

choices ofs;, s, and w giving rise to different representations of the same elemérﬁt( +21) +S—"( +1)
we leave it to the reader to prove that the above definitiomdgpendent of the choice of representation.)

DEFINITION 4.14. LetP,,; be a triple overU. We then letts, ., be the map

Vo (u”+1’ n+1) + D(un-‘rb n+1) - D(un—i-l, ﬁ+1)
given by
w?nﬂz ;13 O(Z):P+lo(59)12 +ST23).

n+1
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4.2.3 G.OBALISATION OF THE CANONICAL ISOMORPHISM To complete the proof of Proposition 4.11, it
will be enough to prove the following proposition.

PROPOSITION4.15. Let X, X% ,, X2,, and X3, , be as above and let U be an open set in X. The
map 15 ., defined above is then independent of the choice of trile; € €(U).

Proof of Proposition 4.15.

We have that prove that for any pair of tripl€%,,.; and Q.1 we have that

—1 .
Sp1a, © Py, © (Sh2z2, +5:p23)—5~13 © b3, © (Sz2, + Sg23)

which is equivalent to
. . . ~ . -1 _ a. —1 R
e © Sz, + 8523 ) 0 (Sazz, +8a28) ™ = Spis, © s © 0,y
which we can also write as

le “ TIS

2,3
n+1 n+1 n+1 R
05, 0 Ugli +3555) = J52 0 6g, -

We start by proving that i@n+1 and Qn+1 are two triples overld and F : Ppy; — Qni1 is @ morphism of

triples then

35, 0 (FF™?) + F(F23) = F(F™¥) 0 ¢,
considered as maps frotﬁ( fl)+3"( fl) to S—"( +1) Consider elementel € 3’( +1) and e, € 3’( +1)
such thatvrQu (1) = Tgzs, (e2) and consider the elemeng;[e)] € ?(Q 1) + ?(Q 1) We write [e, &]
in the form [[Sl,w]le ,[sz,w]st] The map ¢¢_ . is then given by¢Qn+l([el el =[s +527w]913 . We

have that
FF¥) o ¢, (o1, &]) = FFE¥)([s1 + =, wlats)
= [s1+ %, F (W)l 323 -
But on the other hand, we have that
3, © (FF) + FEN(s1, wlzez,» (92, w]529,)
= Op,,, (51, F (W22 [s2, F (W)l 323 1) = [81 + &2, F7 ()] 32 -

“'13 QIZ "23 .
It now follows that if Tn+1, Qn+1 are two triples ther1]~n+1 o ¢§,n+1 ¢Qn+1 (J~n+1 +J~:Ll). Indeed, if

Pni1, Ony1 are triples then B x Q, (P x Q)nyq, L np1 X gnJrl,fmrl x ga . f30 % g3) |s again a triple, which
we denote by P x Q)ny1. The projection mapsp, ., : (P X Q)ny1 — Pnr1r and mg, ., : (P X Qny1 — Qnia
are then maps of triples, so

B tyrer © FB2) + Flwpr ) = Fsl ) bs,,,)-
Likewise, we have that

d)(yx Ony1 (E(WQHH) + SF(WQ,]H)) ?(WQ,‘H)((anH)
Taking the inverse of the second equation multiplied by th&t, five get that

F(rg2,) +F(m Qn+1)) Lo (Fmp) + F@E ) = (da,,) " Fmgl )T FEE )@, )

or in other WOI’dSJQ“ +32 (gzs@nﬂ)*l o Jj)1:3 o ¢5,n+1. This completes the proof of Proposition 4.15.

g>23
DEFINITION 4.16. For anyn-th order infinitesimal neighbourhood of, X, and any tripleXt, ,, X2,
and X3, , of extensions ofX, we set ¢x%+17xn+l n+1|U Vs |y for any triple Pny1 defined overuU.

Throughout the rest of this paper we will refer to the maps 2

X3 as contraction maps.
N1 10 n41

In particular, this establishes condition 2). To prove theorem it remains only to prove condition 3)
(surjectivity) : in the next section we will prove some rdsubn the contraction maps that will be useful in
what follows.
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4.2.4 Q\LCcULATIONS. In what follows, by abuse of notation, the subscnipt 1 in expressions of the
form XT,; will frequently be dropped in order to make the formulae nussdble.

PROPOSITION 4.17. Let X}, ;, X2,;, X3,,, X}, be extensions ofl,, an n-th order infinitesimal
neighbourhood of X. We then have that

P12, x4 © (Idp(oen 02y + ez 03, x04) = doer, 3, x4 © (Doxn, 2,23 + 1dpes, xcay)

as maps from‘D(xn+1, +1) + 'D(:X:n+17 +1) + D(xn+l7 +1) to D(:X:nayla ﬁ+1) .
Proof of Proposition 4.17.

Since the question is local oK, it will be enough to prove the proposition in any suitablyasihopen set
in X. Let U be an open set itX which is small enough that we can find a smooth varietyan @1+ 1)-th

order infinitesimal neighbourhood d?, iPn+1, and mapsfn+1 n+1 — Ppy1 such that @n41, nJrl) is an

embedding ofUj, , for all i andf}, [u, = f),|u, for all i,j. Let P2 be the triple B, Poy1, i g, 1, T ).

Our aim is to show that
(;333#2,14 o (|dg(j~>i,2l) + ¢5’§'3’14) = qu)isf o ((;533#2,13 + |d§(g~>§ﬁ1)).

as maps from&"( fl) + F(P fl) + 9(?34) to ?(Tnﬂ) Let [el e, e] be an element 0f?(~1f1) +
3"( fl)JrS—"( +1) wheree; € 3—"( +1) e c ?( +l) and e; € S—"( +l) We write [e;, &, €3] in the form
[[S1, w]512 ,[S2, w]523 ,[S3, w] 534 ] for some choice ofs;, s, 53 € §y and w € an ®Oy.

n+1 n+1 n+1

We have that

Pprza o (Idggi2) + Pgese)[€r, €, €] =[S + S + 83, wgaa -
Likewise, we calculate that

P24 © (%ﬁfﬁ + |dg@gﬁl))[91, €, €] = [S1 + S + 3, w] e -
This completes the proof of Proposition 4.17. a
In other words, the order of a sequence of contraction map®tismportant.

DEFINITION 4.18.  LetX,, be ann-th order infinitesimal neighbourhood. L&t., ;... X[, , be an ordered
sequence of extensions Of,. We define the contraction map
Pr_oem 2 DAL, X?) + ...+ DML A™ — DXL, XM

by

(bxl,“wxm = ¢x17xm—17xm O0...0 (bxl}xS’xA o ¢x17x2,x3.

We can in fact introduce a more general version of these igolm®ms: to do so we introduce some
notation.

DEFINITION 4.19. A chain of extensions dX,, is a finite ordered set = (i, i»,...,ix) together with a
choice of extensior{(' m.1 of Xy for each indexin.

DEFINITION 4.20. Given a chain of extensions &f,, C = (X! DC'nZH, . DC“‘H), we set

n+1°
D(C) = D(AL, 1, X2, 1) + D2, 4, L$+l)+...+1>(x';+;,x' k1)

DEFINITION 4.21. LetC = (xn+17 . DC';H) be a chain of extensions df, indexed by an ordered set

| = (i,...,ix). A subchain ofC is a chain of the formC’' = (Xn+l, .. DC” ‘1)) wherel” = (i}, ..., i) is
a sub-ordered set df which containsi; and iy.
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Suppose thaC = (X%, .-, X,,) is & chain andC’ = (X2, ., Xy, -+, Xy 4)} is @ chain obtained
]

from C by removing X, ;. We then define a contraction mazjig : D(C) — D(C) by

(bg = ldp(cy) + Pxii—1 i i+ + ldp(cy
where C; is the chain TQCLIH, . .,i)Ci,;jrll) and C, is the chain Kirtri-llv . ,kaH)
DEFINITION 4.22. LetC be a chain of extensions and I&f be a subchain ofC. Let C;,C,,...,C be

a sequence of subchains &f such thatC; is C, C; is C’' and C; is obtained fromC;_; by deleting one
element for alli € [2,...,1]. We then define a maﬁ)g : D(C) — D(C) by

c C C
o = gZ)CLl o...00g.

REMARK 4.23. Proposition 4.17 implies that the ma;é' does not depend on the choice of intermediate
subchainsC, ... C,_1. We note further that ifC is a chain of extension<’ is a subchain ofC and C” is a
subchain ofC’ then ¢S = ¢S, 04 . If C is the concatenation oE; and C, (that is, C; = (X%, X2,...,X'),
Co= (X', X+, ..., X" and C = (X1,...,X'~1, ", XL ... X") then

D(C) = D(Cy) + D(C2)
and if C; and C}, are subchains o€; and C, whose concatenation i€’ then ¢S = ¢g + ¢§§

DEFINITION 4.24. LetC be a chain of extensions &, and letC’ be a sub-chain o. We then denote
the inverse map¢C)~! by ¢S, .

In the special case wher€ contains a pair of identical neighbours (i€. = (..., Xm Xim1 ) with
X'm = X'+ then there are two (a priori distinct) ways of contractifC) to D(C’), where C’ is the chain
(...Xm Xim2 ). We can either use the magf or we can use the map

ldp(c,) +ha+1dp(cy) : (D(C1)+D(X'™, X'm1) 4+ D(Cp)) — (D(C1)+SQ+D(Cy)) = D(Cy)+D(Cz) = D(C).
where C; is the chain {',...,Xm), C, is the chain L™,...,X*) andrq is the map constructed at the

end of section 4.1.

LEMMA 4.25. Let C= (X"1,...,X') be a chain of extensions O, and suppose thaf('m = X'm+1, Let
C' be the subchain obtained from C by deletif@'. Then we have thatS = Idpc,) + fa + dp(cy)
where G is the chain(X™,...,X'") and G is the chain (X', ..., X%).

Proof of Lemma 4.25. By remark 4.23, it will be enough to deal with the case whére- (X(*, X1, X?)
or C = (X%,X%,XY). We treat the case wher€ = (X1, X!, X?) below: the same argument works for
C = (X2, XL, xY).

Since the problem is local onX, we may assume there is a a trip[émrl over X of the form
(P7 ?n+1afr}+17f[}+17fnz+l)' We haVe that¢g ([[Sil.aw]@;fl7[325w](’ﬁﬁﬁl]) = [Sl + 327(")]5)#31 for any Sla& € SJ
andw € Of ® Oy. Further,

Na(([se, wlzez , [S2, wlzes 1) = [(S1wlun), [S2, w23 ] = [81+ 82, s
This completes the proof of Lemma 4.25. O
We now consider the particular case wheBe= (X!, X?,X1) and C' = (X, X%). In this case we ob-

tain a contraction map
¢S 1 DXL, X?) 4+ D(A?, AY) — DL, xY.

We have a canonical isomorphisny : D(X!, X*) — S@ Q and hence in particular, we have a map

(rgo ) 1 DXL, X?) + D(XZ, XY — S Q.
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DEFINITION 4.26. For any pair of extensioris}, ;, X2, ; of an n-th order neighbourhood,, we denote
the map g 0 <) : DXL, X?) + D(XZ, XY — S® Q by Tor 2.

This gives rise to a map
T xz - DO, X?) + DA, XY + (DX, X)) — —D(X?, XY

and since we have for ani a canonical isomorphisme : E+ (—E) — S Q this gives rise to a map which
we denote byry, .,

Thi e = Nty © 6€ ) © +Cpxa yy) - DXL, X?) — —D(XZ, XY).

We can restate Lemma 4.25 in the following form.

LEMMA 4.27. Let X,, be an n-th order infinitesimal neighbourhood of X and %t and X? be two
extensions of X Let C= (...X% X?,X*...) be a chain of extensions ¢, and let C be the sub-chain
of C obtained on suppressing t& term and the second?® term. The following diagram then commutes.

c/

(. + DXL, X2) + DO, XL + DO, A7) ——= (.. + DO, A +..)

’
T
xl,x2
i D(xL,x2)

(.. 4+ DL, X?) + (—D(XL, X3) + DO, X3)...)

4.3 SJRJIECTIVITY.

In this paragraph, we will assume that at least one extensiof,, exists. We shall denote this “base”
extension byX?,,. Our aim is to prove the following proposition.

PrOPOSITION4.28. Let X, be an n-th order infinitesimal neighbourhood of a reduced. lk-variety X
and suppose there is at least one extensiorf(pfto n+ 1st order, xﬁH. Then for any extension E df
and S there exist&(Z, ,, an extension to r 1st order of X,,, such thatD(X},,, X2, ) = E.

Let E be an extension 0S5 E™ O — 0. If U; is an open cover oK then we denoteE|y, by E;.
We denote the intersectiob;,N, ... N Uj, by Ui, i, and the restrictiorE|y, , by Ei_i,.

PROPOSITION4.29. Let X, be an n-th order infinitesimal neighbourhood of a reduced.l.k-variety X
with normal bundle V. Let)(i,l1+1 be an extension oi(,, and let E be an element &(X). Suppose that there
exists an open covering of X by sets &lich that E is trivial for each i. Then there exists an extension of
Xn, X2,,, such thatD(X},,, X2, ) =E.

Proof of Proposition 4.29.

For eachi we choose an isomorphism : E; — S, @ Qy,. This choice of isomorphism gives rise over each
Uij to an map 3

¢i;j : sJi,j D QUi,j - SJi,j & QUi,j'
given by &i,,— =rjoldeorit. Since quSi,,- is a map of extensions, it is of the following form

$ij(s,w) = (s+ ¢i,j(w), w)
where ¢;j : Qu;; — Sy,; is a linear map. It is immediate from the definition éfyj that q?,-,k o qNSiyj = (;Nsi,k.
and it follows that¢;j + ¢k = ¢ix. Over Uj; = U; N U;, there is an automorphism of algebra sheaves
Aje OX%H — OX%H given by Aj;(f) = — Syw+l(axn)(¢i7j(df|u)). Let xﬁH be the unique extension of
Xn up to isomorphism that satisfies the following properties.
1. For everyi there is an isomorphism : U?,, — U, ,, whereU?, ,, is the restriction ofX3,, to U;,
such thatt|y,,, = Id.
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2. The isomorphismh; : Ui, ; — uj{nH defined byh;; =tjo 'dUﬁj,nﬂ ot7! is given by the dual formula
h';(f) = A(f) for all f € Out, v

Since ¢ij + ¢jk = ¢ix we have thathjxohij =hix so i)(:ﬁ+l does indeed exist.
PROPOSITION4.30. The elementD(X}, ,, X2, ,) is isomorphic to E.
Proof of Proposition 4.30.

For eachi we choose an elemeff 1 € C(U;) of the form @, Prg, L 1, fL 1ot). We let Pi ny1 have normal
bundle Wp, . Recall that for any pair,j we denote byrp, ., the projection maprp, ., : (PixPj)ni1 — Piny1.
It is immediate from the definition of;  thatf; . =0. It follows that for everyi we have a map

R : F(Pint1) — Su, @,
given by R([s, w]gai,nﬂ) = (s,wly,) for any wherese §;, and w € Q%%,n ® Oy. We now seek to prove the

following equation.

Pin _ 7
@ Rodjm o R =y
Throughout the proof of this equation we will tacitly assumgrselves to be working on a small enough
neighbourhood for all necessary constructions. This issiptes because of the local nature of all our

constructions. We consider the following diagram

1 1
fine1 Xfng

Ui (Pi x Pns1

(s 10t) X (6L 10 )T

Uin,n+1
We will now attempt to determine the elemeﬂlf'”i([s, w]3, n+1) forany se §), and w € Q%%_m ® Oy .
It will be enough to establish equation (2) for any of the form dg;, where g € Op,,..- We fix an
elementg; € Op,,,, and denote its restriction to)},,; by g. We choose an elemen; € Oy, ., such that
gJ-|UJ_1n+1 = g. We note that
Wémﬂ(gi) o ﬂ-;i,nﬂ(gj) € IU§+1|(PiXPj)n+1'

We denote the functiom;ivm(gi)—w;jvw(gj) on (Pi xPj)nt1 by h and we leth be the equivalence class bfin

. We now show thaf;, , 5, ., (h) = ¢i(dg). We have thalh\u§+1 = (5, ., (91 —7r,’sjwn+1(g,-))\us+1 =
goti—goti =go(d—tott)ot. By definition, gotjoti™ = Aj(g) so hjyz = (9 - Aj(9)) oti =
Syrﬁwlauﬁﬂ(@,]—(dg)) otj = Syni‘“(auﬁﬂ)(%(dg)). It follows that if ®;j(dg) is an arbitrary lifting of
¢ij(dg) € Syrﬁ“*l(V(j) to SyI’TPJrl(Wpi EBWPJ.) thenh’ =h— a(?ix(Pj)nH(q)i,j(dg)) is a lifting to IU§+1\(Pi><Pj)n+1
of glu,. By definition of f3 .5, ., we therefore have that

T3 30a (M = SYMTTAEDSYNT 05, 3,.,.) (= (h = Sy X az, 5, @i(d9)))
where here Syﬁfl(f,;*) is the surjective pull-back map

SynTi(wg @ W) — Synf (v, )

*
N('j)i X Pnt1

and hence
f3,x3n,2 (1) = SYNT ()i (dg)) = ¢i(dlg).
By definition of F(p, ,,,) we have that for anyse Sand g € Op, .,
i}‘(’]TPi,nJA)[S? dg] 5>i,n+1 = [Sv dﬂ—;i’n_*_lg] (53, ><5)|)n+1’

But we have seen thdts,, 5, .,(N) = ¢i;(dg) and hence inF((Pi x P;)n;1) we have that
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[~ i5(dg), d(mp g1 — 75,,...9) @ OUluF e = O
and hence

[0, dwsi,n+1gi](j)i><j>j)n+1 = [¢i1j (dg), dw;j,nﬂgj](j’ixj’j)n“'
We therefore have that

?(Wpi,n+1)[s7 dgi]ﬁ%,n“ = [S—|— ¢i7j (dg), d’]'(';j,n_'_lgj](j')i Xj)])n_H = [S + ¢i,j (dg)v dﬂ;j7n+1gj]((i’i Xj’,)n+1
and hence
F(me )8, gl = F(p 0[S+ ¢i(dg), dgily, -

We note that for anyse€ §; and anyg; € Op,,,, R[sdg ® Ouls . = (sdg) and

':Pi‘n+1
R[s+ ¢ij(dg),dg; ® Ou] = (s+ ¢ij(dg), dg)

and so it follows that for anyse §; and w € Q%’i,nﬂ ® Oy we have that
R o F(mp,,,,) "t o Flrp,,) 0 RTHs w) = (5+ ¢ (w), w) = (s, w).

or in other wordsR, oJ?’ Ll R!= ¢.,(s w) which completes the proof of equation 2. But Proposition
4.29 now follows because this implies that the maps

R, D(antlaxirl)mi - Ei

given by R = (r)"1oR o ST satisfy the equation
(I%-’)OR;*l - oRJoJiP’"LloRl ory =1, lqu,Jor,fIdE

for any pair {,j). These maps therefore glue together to give a global isphiem of extensions. |
The following lemma establishes the existenceddf, , locally.

LEMMA 4.31. Let X,, f)C%Jr1 be as above. Let U be an open affine subset of X such that ¥ trivial
bundle. There is then an extension 6, U2, such thatD(Ui ,,UZ,,) is isomorphic to .

Proof of Lemma 4.31.

By Lemma 3.25 there is a smooth affine varie®;, an n + 1-th order infinitesimal neighbourhood of
P, Pny1 and a mapfl, , : UL, — Pnyg such that R, Py, q,fl ) is an embedding. We consider the exact
sequence

(3) 0—Nj — Qp ®0y — Qu— 0.

Since P is smooth and affine andz,%n ® Oy is a locally free sheaf, the map HoNif , &) — Ext{(Qu, Su)
is a surjection. We can therefore findgac Hom(N3; , S such that the pull back of (3) along is = E;.
We define a subschemg?, ; € P,.1 by

luz,,, = {9 —elg’ € luz,_, € € lpp,,, SYMH(E)(SYNT Hag,.,) 1) = ¢(9)}-

Let iJNDi,nH be the element of2(U;) defined by takingP; n,1, Ui, and UZ,,, with 7, and fnJrl given by
the inclusion maps. It is immediate from the definitionfef  thatf; = ¢, and henceD(U!, 5, UP 1),

which is simply the push-forward of (3) alonfy, 1! satlsflesﬁ(u,’nﬂ, |,n+1) = E;. This completes the
proof of Lemma 4.31. |

LEMMA 4.32. Let X, and DC1+1 be as above. Let Ube a covering of X by open affines such thaj V
is trivial for every U and for each i letU?,,; be an extension otl, such thatD(U,,,,U?, ;) ~E.

Then there is an extension 6f,, I)CZ+l such thatxﬁ+1|ul is isomorphic toUZ,, for every i.
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Proof of Lemma 4.32.
For eachi we let T; : D(U{, 4, ﬁn+1) — E; be an isomorphism.

It will be enough to construct for each pair,jj an isomorphismg;; : U7, ; — J 1 which are compatible
on the triple intersections. Over the open 88N U; = U;; we have chaing;; = (U? n+1,u| N1 Jn+1) and
= (UW? N1 J,n+1) For each pairi(j) we have a series of maps
Cij ’
2 2 ¢ ! 1 2 Tui2n+1’u\ln+1
4) Jij: D(ui,n—ﬁ-l’ uj n+1) D(ul n+1o U n+1) + D(ul n+1s j,n+1) ad

Tl*‘rT'
®(ul n+1 Wi n+1) + D(ul n+1 n+1) - _Ei|Ui,j + Ei|Ui,j

where C; is the chain 1 W nﬂ,uj%nﬂ) and Cj; is the chain (5 N1 j%n+l) We have a canonical map
c_g,: —Elu,; +Elu; — Su,; ®Qu,; and hence for every pair,j there is a map

S] =C_ Ei; © ‘]IJ ®(u| n+1> j2,n+l) - aJi,j D QUi,j'
By Proposition 4.2, this splitting corresponds to a gluin(@;) = B : uﬁnH — uJ nr1- It will be enough to
show that these gluings are compatible on the triple inttimes. We start with the following lemma.
LEMMA 4.33. Let U, be an n-th order infinitesimal neihgbourhood of U and 1€}, ,, U3, ; and U3, ,
be three extensions df,. Suppose given three isomorphisms of extensions
P2 u nt1 un+1a >3 u nt1 un+l and ¢** uﬁ+1 — u§+1-

Let §;: DX}, 4, % 1) — S®Q be the isomorphism associated #b!. We then have thap’® = ¢?3 o0 ¢?
if and only if

Csp © (S12 + $.3) = S130 P x2 3
where ¢ga : (S® Q) + (S N) — S® N is the canonical contraction map.

Proof of Lemma 4.33.

The statement of the lemma may be checked locally, so we msynes that there is a triple oved
of the form @, Py, 3, 020 ¢?3 13 1 06?3 £3)), wheref? ; : U3, — Pny1 is an embedding. We then
have that the isomorphism assomatedngo:“ o ¢¥? is given by

[swlpe — [swixl]

foranyse Sandw € Qp ., ®Oy. In particular, we have thap'® = ¢**0 ¢'? if and only if S 3[s, w]fpm =
[s.w|x,] for any se S and w € Qf e @ Ou. We also have thaty: 2 xs[[sl,w]g,lz [sz,w]j,zs] = [sl +
Sz,u}]j}lﬁ It is therefore the case that'® = ¢p230¢%2 if and only if Sy 30 ¢ 2 xs[[Sg_,w]le [527(4)]?23 1=
[s1+ s;,w\xn forany s;, s € Sandw € QPn+1 ® Oy . On the other hand we have that

Sals,wlzes = [S2,wlx,]

and
51,2[51,W]5>§f1 = [s1,w(x,]-
In particular,
Cspn © (Su2 + Sa)lls1, wlgrz [, wlzes | = [t + 82, wlx,]-
This completes the proof of Lemma 4.33. d

To prove the lemma 4.32 it will therefore be enough to show tha following diagram commutes.

32



Cei j kOJiFCe j Ok

D(uiz,nﬂa uj2,n+1) + D(ujz,nﬂv uﬁ,n+1) : SN +SaN
cEi,', OJi,k
D(uimlv uﬁ,n+1) = S@Q

where hereC} is the chain U2 N1 ]n+1, nJrl) and C; is the chain (? nJr1,7.1§7n+1). Since the diagram

Cg; j+Cg;,
(Ei — E) + (g SE) T sp0+Se0

l CEJ- l Cspq
CEi k

—E + E : S0

is commutative it will be enough to show that the followinggiiam commutes

Jii+J
DU WP y) + DU g, UR L) 5 —E + B — B + Ex

3
D(u%n+1vuﬁ,n+1) : —E + Ex

The following diagram commutes since it simply says thatdbetraction maps commute with isomorphisms:

-DU Lo ui2,n+l) + 'D(uinJrl? ujz,n+1)—Ti+Tj—Tj+Tk
_:D(uj,nJrl» j,n+1) + D(ujanrla UE n+1)

i D(uJ i1 nJrl) ld_g +cEj+IdEk

—E +E — g + E

=Ti+T,
®(u| n+1 | n+1v u&,n+1) : —Ei + Ex

so it will be enough to show that the following diagram comesut

T o¢ I, D(u 17u2 1) + .D(u . 2 l)
@(ul N1 n+1) + @(UJ s uk n+1) _ U i,n+ i,n+ int 1,n+
+7 o¢> D(uJ Nl j,n+1) + @(uj’nH’uk’nH)

Co C 1 2
¢cé PO 41 W apd)

Ci k
T o¢c‘,
ik

D(ul n+1> uk n+1) EE—— D(ul n+1> u|2n+1) + D(ul 41 uk n+1)

where here for any indicer the map7/, denotesr, But this diagram commutes by Remark 4.23

U2, U
and Lemma 4.27. This completes the proof of Len;ma 4+32. O

End of the proof of Proposition 4.28Me consider the extensioff;2 ; constructed in the above lemma.
We have thatD(X}, 1, X2 1)|u, = Ei. It follows that the extensiorE — D(X}, 1, X2 )|y, is trivial and hence,
by Proposition 4.29, there exists a global extensﬁfm1 such that

D(XZ1. Xy 1) = E— DG4, X7 s)
or in other words
DO 1, X2 0) + D(CZ 1, X2, ) = E

By Proposition 4.11 we have thab(X%, ,,X2,,) = E. This completes the proof of the torsor character of
DXL, 1, X2, ). O

This completes the proof of Theorem 1.10. |
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5. OBSTRUCTIONS
This section will be devoted to a proof of the following thewor.

THEOREM 5.1. Let X, be an n-th order infinitesimal neighbourhood of a reduced.lk-variety X of
finite type with normal bundle V. We can associate an elerbgt € Ext(2,S) to X, in such a way that
there exists an extension &f, if and only if oby, = 0.

Proof of Theorem 5.1.

We will use the notion of arextension cocycleSection 5.1 below is slightly adapted from Vistoli [12]: we
include it for completeness’s sake.

5.1 EXTENSION COCYCLES AND CLASSES OF EXTENSION COCYCLES

We fix an open affine covering); of X which has the following property: for any there exists an
extensionU;ny1 of Ui . Throughout this sectiont; will refer to this choice of open affine covering and if
0—F & EI G- 0 is an extension of sheaves then we will dentés) by s for any se F. We will
also denote the intersectidd;, " U, ... NU;, by U, ;.. Given a sheaff or a map of sheave® which
is defined on a set containng;,._; we denote the restriction of (resp.¢) to Ui, i by Fi, i (resp.

(bil,n-,ik)'

DEFINITION 5.2.  An extension cocycle of? by S with respect toU; is a collection{E;;,Fi;} such
that for every pair i(j) E; is an extension of2y,; by Sy; in the category ofOy,;-modules and for every
triple (i,j,k) Fijx is an isomorphism defined ove;; , Fi;« : E; + Ex — Ei«, such that for anyi,j, k|
we have the following associativity relation

Fijio(Fijk+idg,) = Fiki o (idg; + Fjk1)-
DEFINITION 5.3.  Let {E;j,Fij«} and {E,F{;} be two extension cocycles dd by S with respect to

Ui. An isomorphism® : {E; j, Fij«} — {Ej,F/; «} is a collection of morphisms of extensions; : Ej — E/
indexed by pairsi(j) such that for all triples,j, k

dikoFijk=Flxo(dij+ ¢k

From now on, we will deal not with the set of extension cocgdbeit with the set of isomorphism classes
of extension cocycles.

REMARK 5.4. Let Gy (y;(©2,S) be the set of isomorphism classes of extension cocycle3 bfy S with
respect toU;. Gy (u;3(2,9) is then an abelian group with group law given by

{E,, Fijx] + {E, Fj ] = H{Ej + B Fijx + Fij il

The zero element is the elemen§[(® i), Cs; o).l
We will now define coboundaries of collections of extensions

DEFINITION 5.5. Let U; be an open affine covering of and for everyi let E; be an extension of§
and Q; over U;. We define the coboundary of the collectidi;}, denoted bys({E;}), by

5({E|}) = {Ei — Ej, Idg, + C_g + |d,Ek}.

REMARK 5.6. The setG, (y;(2,9) = EBiExtﬂJi(QUi,Sui) is an abelian group with group law given by
addition of extensions. The map: G y}(€2,9) — G1,1u;}(22,S) is a group morphism.

We are now in a position to define the set of cocycle classeS ahd (.
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DEFINITION 5.7. LetU; be an open affine cover of as above. We defingy,,(€2,S), the set of cocycle
classes ofS and 2 with respect toU;, by

Eru3 (2,9 = Gy (u(Q,9/0(G2 (1 (2, 9).

PrROPOSITION5.8.  Under the above hypotheses, there is a group isomorphigmg u,; : Efu, (2,9 —
Ext?(9, 9.

Proof of Proposition 5.8.

Let [{Eij,Fij«k}] be an element ofG; ;y,(S Q). We now constructyo s qu;3[{Ei;, Fi,jx}] Choose an exact
sequence of9x-modules 0— S K ™ Q — 0 such thatK is an injective sheaf orX and hence
Ex(Q,9 = Ext'(Q,Q). As ExtX(,9 = &xt}(,Q) and Ext3(2,S) = 0 since X is a locally complete
intersection, it follows that EX{Q, Q) = H(Hom((2, Q)).

Over eachU; ;, we have the following digram:

& j TE |

0 S,

lim

Ki ’j

Eij

Qi 0

Since K is injective, there exist map§; : Eij — Kj; such thatfijoig =ik ;. We say that the maph; are
compatible with theF; j ks if for any triple i,j,k we have thatf;; o Fi« = (fij + fj ).

LEMMA 5.9. There exist maps;f: E; — Kj; such that for all pairs jj we have that f o g, = ik,
and for all triples ij,k we have that;foFi;« = (fi; + k).

Proof of Lemma 5.9.

We note that ifs is an element of5 then
ik () = ik o Fijk(se,+g.) = (fij + (s +5.0-
In particular, for eachi,j, k there is a unique map;x : Qijk — Kijk, such that
Tijk © TE +E, = fiko Fijk — (fij +fix)-

For any i,j,k,| we have thatrjx — 7ij1 + 7Tixi — 7ixl = 0. In particular, ther ;x form a Cech cocycle

and hence determine an elementtdf(Hom(Q2, K)). SinceK is injective, H3(3om(Q2, K)) = 0, so there are
elements7 ; € Hom(€2j, Ki;) such that for alli,j,k we have thatr;x = 7 — 7 x + 7jx<. We now define

maps fifj :Ej — Kjj by setting fifj =fij +7jomg,;. We note that thefifjs form an alternative choice of
liftings of the mapsik,, : §; — Ki;. It remains only to show that

f o Fijo =) + k.
We note that
fli o Fij— () + 1) = fiko Fijx — (fij + 1) + mikome, o Fijk— (1ij + 7k © Te 16
= TijkOTE +E, + (Tik — 7ij — 76) © (e, +5,) = 0.

This completes the proof of Lemma 5.9. O

Henceforth, we assume that the mafps are compatible with theF;;s. Projecting ontoQ;;, we obtain
mapsf;; = g, ofij : Eij — Q. Sincef;;(sg;) =0 for anyse § there are unique maps; : Qi — Qi
such thatf, ; = gij o 7g ;.
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LEMMA 5.10. The mapsg;;: ©ij — Qi defined above have the property that for any péif) we have
that gix = gij + gjx over Ujx.

Proof of Lemma 5.10.

We note thatfix o Fijx = (fij + fix) whencef;, o Fijx = (f;; + ;). Since Fijx is a morphism of
extensions we have thatrd ¢ ) = 7g, o Fijx and we deduce that

fikoFijk=gikome, oFijk= 0gikoTE,+E,
It follows that
giko (me +g,) = (Fi; + )
whence, for allej € Ej, gk € gk such thatrg (&) = 7 ,(g.k) We have that
giko(me ;+g )€, 6k = (Fi,j + fj,k)[a,j; &kl
where B j, g k] is the equivalence class o, g ) in Ej+ E. It follows that
gik(me (&) = fij(&;) + fix(eK
gik(me; (&) = gij(e (&) + g k(g (8 K)-
But by definition of E;; + Ejx we have thatrg (&) = 7g (g x) and it follows that
gi7k(7TEi,j (a,j)) = Gi}j (TrEi,j (QJ) + gjyk(ﬂ-Ei‘J (a,i))
for any g ; € E; and hencey x = gij + gjx. This completes the proof of Lemma 5.10. O

DEFINITION 5.11. The eIementyQ,S{Ui}[{Ei’j,Fi}j,kv}] € Equy(©2,9 = HY(Hom(, Q)) is defined to be
[gi;], the class inH}(Hom(2, Q)) represented by th€ech cocycle 4 ;).

It remains only to prove the three following results.

LEmMMA 5.12. Let {E;,Fijk} be an extension cocycle of S atl with respect to the open covering
Ui. Let §;: B — Kj; be a set of maps such thatj(Eg ;) = s¢; for any s€ S and for all ij,k we have
that fxoFijx = (fij +fix). Let gij: Qij — Q; be the unique maps such that; o 7g ; = 7y, o fij. The
cohomology clasggi ;] € H(Hom(Q2, Q) is then independent of the choice of the maps f

ProposITION 5.13. Let {E;,Fijx} be an extension cocycle of2 by S. We then have that
ya,s¢uir({Eij, Fijk}) = 0 if and only if there exists a collection of extensiof} such that{E;;, Fi;} is
isomorphic to the boundary clas§{E;}).

LEMMA 5.14. The mapyq suy - Euy(©,9 — Ext?(2, 9 is surjective.
Proof of Lemma 5.12.
Let f/; be an alternative choice of liftings and Igt; be the associated elements Hom((2 j,Q; ;). We have

that f/; — fijls, = 0, so there is a unique maf; : Qi — Ki; such thatf{; —fij = hjj o 7g ;. In particular,
(gij — 9ij) = T,; © hij. This implies that the cohomology clasg; [ gi;j] has the property that

o5 — 91,1 € mc(H*(3om(©2, K))) = {0}

where the last equality holds becaukeis injective. This completes the proof of Lemma 5.12. O
Proof of Proposition 5.13.

Assume that the class ofgj] is 0. Then there exist mapg; : 4 — Q such that for all i(j) we
have thatgi; = gi — gj. We consider an extensioB;, which will be the pullback along; of the extension
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i K

0—-§ — Kj = Q — 0. The extensiork; is then an extension d§ by Q; equipped with a maf : E — K;,
such that the following diagram commutes:

ig T

E QO 0

N

Ki —>Q —>0

0 S

and E; has the following universality property.

REMARK 5.15. Universality property of pullbacks. L&; be the pullback of
0—-§—=K —-0Q —0.

along the morphisny; : Qi — Q;. If any extension 0— § — F; — Q; — 0 is equipped with a morphism
¢ Fi — Ki such thatg(sr,) = ¢, and for allv € F 7k, 0 ¢(v) = gi o, (v) then there is a uniqgue morphism
of extensions® : F; — E; such thatfio & = ¢.

In particular, two extension mapgy, g> : E — E; are equal if and only iffi o g; = fj 0 go.

We now prove thati{E} = {E;,Fij«}.

TK;j

LEMMA 5.16. The extensior{E; —E) is isomorphic to the pull back along; of 0 — § Iy Ki—=Q —0

Proof of Lemma 5.16.

We recall that for anye € E; and g € E; such thatrg (6) = 7 (g) we denote by ¢,g]" the equivalence
class of &,q) in E — .

By rgmark 5.15 it will be en~ough to produce a mfa,p: E — E — Kj; such thatm oﬁ,j = gij © TE—E-
and f; j(s) = ik;(s). We definef;; as follows:
fii(le, 1) = fi(e) - fi(e).
for all & € B and g € E such thatrg (6) = 75 (g). We note that for alls€ S
fiiie(9), 15 (9) = ik (9 — ik,,(9 = O

and hence the above map is well defined on the equivalence [elag]. We have thaifi,,-(iE, (9),0) =fi(sg) =
ik;(5). Further, we have that

e, o fijle, 8]') = e (fi(e) — () = gi(me (@) — gi(7(8))

= (9 — g) ome-g([e,8]") = gij o e —g([&, 8]

where in the last equation we have used the fact thate (g, g]') = g (&) = g (g). This completes the
proof of Lemma 5.16. O

But now, applying Remark 5.15 to the mapg (which is possible becausey; o fij = gij o 7g ) we
see that for alli,j there is a unique isomorphism of extensiobg : (E — E) — E; such thatf;; o &;; = fi;.
The following lemma says that the collectioh; is in fact an isomorphism of extension cocycles between
5{Ei} and {Ei,j, Fi,j,k}-

LEMMA 5.17. We have that for all ,jj, k

Djxo (Idg, + C_g + ld_g) = Fi,j,k o (‘I)i,j + q)j’k).
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Proof of Lemma 5.17.

By Remark 5.15 it will be enough to show that
fiko ®iko(ldg +cg +1d_g) =fixoFijko (ij + Pj k).

This is equivalent to

fi7k o (|d|§i + C_g + |d7Ek) = fi,k o Fi,j,k o ((bi,j + éi,k)~
by definition of fi; and this is equivalent to

fixo(dg + c_g +I1d_g) = (fij + i) o (Pij + P k).
We calculate that for alk; € Ejj, gk € Ex such thatrg (&) = 7 (g), we have that

(fij + i) o (@i + @ le ), gk = (fij + [ Pij(&,), k(g

= fijo ®ij(@y) + fixo (g = fij(e ) + fiule ).
So it is enough to show tha?t,ko (ldg +c_g +1d_g) = ﬁ’j(e.,,-) +ﬁ,k(e,,k). We calculate that for alg € E;,
g € E, & € E¢, we have that

fixo (Idg +c_g +1d_g)([e, 8]’ [g,ad'] = fix(e, ad’) = fi(a) — fu(a)

But on the other hand

i+l 8] 8,6 =fij(e,8]) + fixleg, al’) = fi(e) — fi(a).

This completes the proof of Lemma 5.17. O

This proves that if §; = 0] then yqsu1({Ej, Fijk}) = 0. It remains to prove the converse. Sup-
pose thatvosqu({Eij;Fijk}) = 0, or in other words there exist extensiods over U; such that

{Eij,Fijx} ; 0{Ei}. We can choose map§ : E — K; lifting ix, : § — K; which give rise to lift-
ings i —fj : E —F — K; given by € — fj)([a,g]) = fi(a) — fi(g). Since there are isomorphisms
(I)LJ' . Ei7j — E — Ej we have a map‘u = (fi — fj) o (I)i,j . Ei7j — KiJ I|ft|ng iKi.J :S— Ki,j- We note that
fi,kOFi,j,k = (fi—fi) o ®j ko Fijk= (fi —fk)O(|d—‘y—C_EJ +|d)O<I)i7j +®; k. Foranyg € B, g € g and g € Ex we
have that { —fi)o(Id+c_g +1d)([[e, ]'[g,&l']) = (fi—f)(&,g]") = fi(e)—f(e). On the other hand we have
that 6 —f+f —f)((le. 1", [, &d']) = fi(e) —fi(8) +fi(§) —fk(a) = (f —fio(ld+c_g +1d)([[e, §][§, &').-
Since any element ofE — E;) + (Ej — Ex) can be written in the form §,g]'[g,a]’] we then have that
fixoFijx = fij +fjk so thefi;s defined above are compatible with thRg xs. But the associateg ;s are sim-
ply gij = gi—g; Whereg; is the unique mag; : & — Q; such thatry, of; = giong, . It follows that [g; ;] = 0.

This completes the proof of Proposition 5.13. O
Proof of Lemma 5.14.

Let [gi;] be a cocycle class inHY(Hom(2,Q)). We define Ejj to be the pull-back of the extension
IKi j K j

0—-§; = Kij = Q; — 0 along g j. There is therefore a uniqgue médp, : E; — K;; such that the
following diagram commutes

TE j

0 S Ei; Qi 0

N

Kij —>Qj—=0

By remark 5.15, to construct a mapi;k : Ej; + Ex — Eix it will be enough to find a map

fijk:Eij+ Bk — Kijx such thatfi k(s 15,) = S, and i, o fijk = giko 7, 4e

We definefi;« as follows. For anye j € E;; and g« € E x we set
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flike,. g.) = fij(e) +fi(E-

It is readily checked thafi)j)k satisfies the two given conditions. There is therefore a mlapxtensions
Fijk: Eij+Ex— Ex such thatf xoF;x = i k. It will now be enough to check the compatibility condition

Fijio(Fijk+idg,) = Fiki o (idg; + Fjk1)-
It will be enough to check that
firoFijio(Fijk+idg,) =fij oFix o (idg; + Fjk)-

This is equivalent tofix o (Fijx + idg,) = fix o (idg, + Fjx). We calculate that forej € Ej, 6k € Ejx
and g € Ex such thatrg (&) = g (g k) = 7, (&) we have that

fiki o (Fijk+idg )&, 6.k &l = fixi[Fijxe,, 6.k, &)

= fixco Fiju(l&,, §.) + fir (@) = fijlle, g.d) + fii (@)

= fij(& ;) + fix(&x) + fi (&)
A similar calculation show that
fixt o (de, + Fi)({&,, 8.k &) = fij&) + fix(e ) + fii(e)-

This completes the proof of Lemma 5.14. O
This completes the proof of Proposition 5.8. O
In the next section, we will use the isomorphism describeavalio prove Theorem 5.1.

5.2 PRROOF OF THEOREM 5.1.

We choose an open coveU; such that C(U;) is not empty for anyi. Throughout this sec-
tion, D(Ui n+1,Ujnt1) will be denoted by D;j, @(ui,n+1,uj'7n+l) by Dij, D(u{7n+l,uj7n+1) by Dy
and DU 4, U 1,1) by Dirj. Likewise, 7(Uint1, Ujnr1) (r€sp. 7(Uirnt1, Uinia)s 7(Winsa, Uprni),
T(Wir ny1, Ujr n1)) Will be denoted byr (resprivj 7ij 7 jr) and 7/ (Wi ng1, Ujni1) (resp.7 (Wirni1, Ujnga),s
7' (Wint1, U ng1), 7' (Ui nta, Ujr nga)) will be denoted byr; (resp i =) 7).

DEFINITION 5.18. For each let Ui ,y1 be an extension ofl; ,. We set
obx, = va,s51u1[({Dij; dui g ) -

ProPOSITION5.19. Let X, be an n-th order infinitesimal neighbourhood of X with norrbaindle V
and let U be an open cover of X such that an extensié,.1 of Ui, exists for all i. The element
HDij, duiagu ] € Equy (22,9 is then independent of the choice of extensiding, .

Proof of Proposition 5.19.

Let U ,,, be another possible choice of extensions. We wish to show H®;;, ¢y, }] and
[{Dil,j',¢ui/7uj/,u(<}] are the same class ifEqy;(©2, . We consider the element 06, (y3(©2,S given
by {Di }. Over any set of the fornU;; we seek isomorphism®;; : 6{D; } + Dy jy — D;; such that the
following diagrams commute

Diir — Diir + Dy i D; i+D;
I 1) 1", AT Pk Di,j + ij,k
+Dj,j/ — Dk,k’ —+ ®j/,k’

Cf’Dj’i/"l'qui,,uj/,uk/ ¢'LLi,Uj,'U.k

Pi «
Dijir — Dk + Dir o —

Dik
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For all pairs {(,j) we consider the maps

7t Dije = Dy + Dirjr — Dijr + Dirjr + Dy

and
c,
¢c;, : Diiw + Dirj + Dyrj — Dij

where C;; is the chain , U, U, U, ;) and C; is the subchain;, ;).

. cl .
PROPOSITION 5.20. The collection of mapsbi; = ¢’ o 7,7t 1 Diyw — Dy + Dirjyp — Dij is an
isomorphism of extension cocycles.

Proof of Proposition 5.20. We consider the following chains of extensions Wf.

1. Co= (Wi, U, U, W, Uf, Uy, )
2. Cy = (Wi, U, Uy, Uy)
3. Cg = (Wi, Uj, W)
4. Cq = (Wi, Ux)
The following diagram of contraction maps commutes by Psdjmn 4.17.
C2
C
D(Cy) : D(Cz)
l¢§§ . idaé‘;
bcy
D(Cs) : D(Ca)
Expanding, we get a commutative diagram
o2
C.
‘Di,i/ =+ fDil,j/ + 'DJ/] —+ TDLJ‘/ + D]’,k’ + Dk’,k Hl- ‘Divi/ —+ Di/,k’ “+ ‘Dk',k
l&éiwifﬂwﬁjﬁt . lféi—ﬁiji
¢4

C.
: Di k

s

Dij+ Djx

So, to establish that the choick; = gi)g:j o

i 1*1 is a cocycle isomorphism it will be enough to establish
that the following diagram commutes.

Dii =D+ Dyji o, +0%
i i8] i, 1 3 'Di,i/ — Dk,k’ + Di/,k’
+Dj i — Dk + Dy w L

r—1 r1—1
\LTM’ T

Diiv + Dirjy + Dy j + Dy + Dy e + Dok —> Diir + Dir e + Dic i

C2

Eliminating D;i» and Dy and permuting the terms we see that this is equivalent toimgothat the
following diagram commutes

’Di/Jl — Dj,j’ + D]"]‘/ + Dj',k’

C;
¢C/OC(7931 i)
/71 1 B
lﬂ,j'
Dirir + Dis i + D ir + Dis Dir w
i ij T i ik :
o3

3

where hereC; = (U, U], W), C; = (Ui, Uy) and C3 = (U, U, W, U], Wy). But this follows from Lemma
4.27 and Remark 4.23. This concludes the proof of ProposBi@0. |

This completes the proof of Proposition 5.19. |
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LEMMA 5.21. Let X, be an n-th order infinitesimal neighbourhood of X with norrbahdle V. If there
exists an extension df,, then the cocycle classby, =0 ¢ Ex?(Q,9).

Proof of Lemma 5.21.

Let X1 be the extension in question. We choolgn,, to be the restriction toU; of X,y1 and we
consider the associated extension COCYIR(Un 1, Unt1)|u; ;s Plnys,Uniatnsa Uy} - FOr €QCH paini,j we set

i = rdlu,; - DXni1, Xng)lu, — Sj D Qi

To prove that the collectio®; ; is a isomorphism of extension cocycles it remains to show ttie following
diagram commutes.

c’
$c

g(anLl, xn+l) + g(anrl, xn+l) I ‘D(anrl» xn+l)

- -

D(Xnt1, Xt 1) SeQ

where hereC = (Xpy1, Xni1, Xne1) and C' = (Xpy1, Xny1). But this follows from Lemma 4.25. This
completes the proof of Lemma 5.21. |

PROPOSITIONS.22. Let X, be an n-th order infinitesimal neighbourhood of X.dl, is O then there
exists an extensioiln; of X.

Proof of Proposition 5.22.

We choose extensiondl;n,1 of Ui, and we consider the associated extension cocyd®;, du; ;. wy ) -
The fact that {E;,Fijx}] = 0 in Eqy (22,5 means we can choose extensiofs over U; and isomor-
phismsl;; : D(U;, U;) — E — E such that the following diagram commutes

og
Dij+ Djxk

lli,jﬂj,k \Lli,k

C_E
(E-E)+(E-EBE) —FE —E

where hereC is the chain Ui ny1, Ujni1, Uknes) and C' is the chain Wing 1, Uk nsa) -

Alternatively, by Proposition 4.28 we can fix the followingtd.

1. Extensionsl{ ., of X over U;,

2. Isomorphisms/; : Di; — D; i — Dj - such that the following diagram commutes.
o€

Di; + Djx Di k

)

’ ’ !/
J{'u*'j,k l'i,k
C_p. .
Dy

(Di,i’ — ®j,j/) + ('Dj,j/ — Dk,k’) —_— Di,i’ — ®k,k’

Cij. 4D .D 4D .D
(:i"Ji . (N i’ i Nl

(njir+c-o,,)  (Dirj + Diji) + (=Djj + Djj) — Su,; & Qu,;-

where Ci; is the chain i ,, 1, Ui n+1, Ujnt1, U] ny4) @and C; is the chain ¢ ,, 1, U] ,,1). Combining these
maps, we get an isomorphism

Cij.
Tij = (mj + eoagup) o lijo o Dirjr = Sy & Quyj-
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We can now consider the isomorphisin = b(U;;)~*(Tij) : U .1 — i n+1 constructed in Section 4.1. To
show that theu{’nﬂs actually glue together to get a global extension)gf, we will have to prove that
Jikodij=Jix By Lemma 4.33 this is the case if and onlyd&:q o (Tij + Tjk) = Tik © b, w1t

LEMMA 5.23. We have that the following diagram commutes.

4

[
Di’,j’ + ‘Dj’,k’ ¢ Di’,k/

Tij+Tjk Tik
Csp

Se)+ (S Q) ——=Sa .
where here C is the chaifl,Uj,U;) and C is the chain(Uj, Uj).

Proof of Lemma 5.23.

We consider the following diagram. Here we defi@®@, C,, C3 and C; to be the following chains:
C = (u{,uj’, /k)' C, = (u{,u{(), Cs= (ui/7ui,u]',ujl,uj',uk7 /k) and Cy = (u{,ui,uk, f()

b2
C
D(Cy) - D(C2)
i¢€i - 9cs
C.
D(Cy) : D(Ca)
Diri + Dij+ Djx+ iy D(Ca)
4
Dy + Dy + Dy j
Ii’,j+lj/7k 1y
Dije+Diye = Djjr + Dy w) Dir i + Dijir — D + Dk
i iir K K
—Dyx + Dxw + Dy j + Dy
T i+, Ti,it +CDy
CS@QO(C'DH,ﬁLTj,j/)

—Djj + Djj + Dy j + Djjr Sa

The first square of the diagram commutes by Proposition 4'B8.second square commutes by Lemma 4.27.
The third square commutes by assumption and the last squamnates because E; and E, are extensions
and ¢; : E; — E3 and ¢, : E; — E4 are extension maps then (dg;) o (¢p1 + 1d) = (¢1 + 1d) o (Id + ¢5).

But now, the right hand side map ik and the the left hand side composed with the bottom map is

Cszq © (Tij + Tj k). This completes the proof of Lemma 5.23. O

This completes the proof of Proposition 5.22. O

This completes the proof of Theorem 5.1. O
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