
Submitted for publication in Math. Zeitschrift
Manuscript no. (will be inserted by hand later)

Two vanishing theorems for holomorphic
vector bundles of mixed sign

Thierry BOUCHE
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Summary. We give (tiny) generalizations of vanishing theorems of Kodaira
and Kobayashi for vector bundles over compact complex manifolds. Both yield
cohomology vanishing for some vector bundles of mixed sign curvature. Their
proof relies on heat kernel estimates.
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Introduction

Let X be a compact complex analytic manifold of dimension n endowed with
a hermitian metric ω, and L be a holomorphic hermitian line bundle over X.
We denote by ic(L) the curvature form of L, and by α1(x) ≤ . . . ≤ αn(x)
its (ordered) eigenvalues with respect to ω at a given point x of X. The αj ’s
are continuous functions on X, but they need not to be C∞. The first aim of
this note is to prove the following theorem generalizing the Kodaira (coarse)
vanishing theorem :

Theorem 1 For some q = 1, . . . , n, we suppose that L has at least n − q + 1
nonnegative eigenvalues and moreover that the function α−6n

q is integrable over
X. Then, for any holomorphic vector bundle E over X, and for any i ≥ q the
following vanishing

Hi(X, E ⊗ Lk) = 0

holds as soon as k is sufficiently large.

An easy consequence is the following

Corollary 1 On a Kähler manifold, a semi-positive line bundle such that∫
X

α−6n
1 < +∞ is ample.
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Theorem 1 is some kind of a vanishing theorem for vector bundles whose
curvature can have arbitrarily large negative eigenvalues on a very small subset
of X. An effective, or precise version of it should be much more powerful. Such
a precise version would have to be quite different from the vanishing theorem
of Ancona and Gaveau [1]. For instance, if X is assumed to be Kähler, and L
satisfies the conditions of theorem 1 for some q, choose E in order that ic(E)x <
−(λ1/16)ωx⊗IdT∗

x X at a point x where c(L)x = 0 (here λ1 is the first eigenvalue
of the ordinary laplacian on functions on X, see [1]); then Theorem 1 yields the
asymptotic vanishing of the cohomology in degree at least q although it is not
likely that E ⊗ Lk satisfies the assumptions of the main theorem of [1] for any
k ≥ 0.

Corollary 1 is, up to the author’s knowledge, the first attempt in charac-
terizing ampleness with a weaker condition than definite positivity (except for
the case of isolated degeneracy points). Of course, the integral condition is very
restrictive, and it is clear that such a case cannot appear in low dimension, as α1

is a root of a polynomial of degree n with C∞ coefficients. It is also clear that one
cannot go much further, as the degree of the restriction of an ample line bundle
must be positive on any curve. If one could drop the Kähler assumption on X,
Corollary 1 could be viewed as a generalization of the projectivity criterion of
Kodaira. In our case, this aspect of Corollary 1 is much weaker than [8].

Our method for proving Theorem 1 is simply a rationalization of the one we
explained in our recent paper [4] under a strict positivity hypothesis. In [4] the
vanishing of the cohomology was obtained by bounding its dimension by some
quantity of the form Ckne−α0kε

, thus smaller than one for a sufficiently large k.
This bound was derived from the heat kernel estimate (1a) of [4]. Here we avoid
the strict positivity assumption by replacing the uniform convergence to zero of
the heat kernel by the Lebesgue bounded convergence theorem. The exponent
6n is then shown to be the smallest integer we can afford in order to apply this
Lebesgue convergence argument.

The second section is concerned with the proof of a precise vanishing theorem
in the spirit of S. Kobayashi [7]. We say that X is special if it admits a metric
ω such that ∂∂̄ω = 0. Given a holomorphic hermitian vector bundle E, we
define in section 2 a tensor Aq which depends on the curvatures of E, KX and
on the torsion of the metric ω. It has the particularity to test simultaneously
the positivity of E on (0, q)- and (n, q)-forms, and therefore allows mixed sign
curvature on E when determining its sign. For instance, A0 only depends on E
through the trace (with respect to ω) of its curvature, and does not depend on
KX . However, we must point out that, when q increases, estimates on Aq are
much more difficult to obtain. In case X is Kähler and E is Hermite-Einstein,
it is easier to compute. Our second main result is

Theorem 2 Let X be a compact complex special manifold, and E a holomorphic
vector bundle on X. We suppose that Aq is semi-positive on X, then

(i) dim Hq(X, E) ≤
(

n
q

)
rkE and the harmonic representatives of the coho-

mology are parallel ; moreover
(ii) Hq(X, E) = 0 if Aq is positive definite at some point.

This theorem follows directly from the standard Bochner technique and con-
structions of Demailly [6] and Bismut [3] which allow us to generalize the results
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of [7] to q-forms over a non Kähler manifold. We also briefly discuss this theorem :
we give an example, and an asymptotic version. As the Lebesgue convergence
argument of the first section generalizes other results in [4], we conclude this
paper with one of them.

1. The proof of Theorem 1

Let us first introduce some notations : X is a compact complex analytic mani-
fold of dimension n, endowed with a hermitian metric ω and associated volume
element dV = ωn/n!. E (resp. L) is a hermitian holomorphic vector bundle of
rank r (resp. 1). We shall write E(k) = E ⊗ Lk. We call £

q
k = (∂̄∗ + ∂̄)2 the

∂̄-laplacian (with respect to the given metrics) acting on (0, q)-forms with values
in E(k). The associated heat kernel eq

k(t, x, y) is the smooth kernel of the oper-

ator e−
2t
k

£
q
k . It enjoys the following expansion : for j = 0, 1, . . ., let µk

j be the
eigenvalues of £

q
k (counted with multiplicities), and ( ψ j)j be an orthonormal L2

basis of eigenforms associated to the µk
j ’s, then

eq
k(t, x, y) =

∑
j≥0

e−
2t
k

µk
j ψ j(x)⊗ ψ ∗j (y).

We refer to [4] for details. For a multiindex J , we put ᾱJ =
∑

j /∈J αj−
∑

j∈J αj .
We set also the function α

sinh αt to be 1
t when α = 0 and we define the function

eq
0(t, x) on R

∗
+ ×X to be r(4π)−n(

∑
|J|=q etᾱJ )

∏n
j=1

αj(x)

sinh αj(x)t . Now, our main
tool is

Proposition 1 When k → +∞, the following equivalent holds :

k−neq
k(kε, x, x) ∼ eq

0(kε, x) (1)

uniformly with respect to x ∈ X for any given ε ∈]0, 1/6[.

Proof . A careful reading of [5] shows that in order to get the larger possible
ε in the statement of Theorem 2 (which implies our Proposition 1) the only
requirement is that the localization principle (Proposition 1 of [5]) is valid for
t = kε on a ball sufficiently small for the validity of the approximations required.
For any small η > 0 the radius rk = k−

1
3−η satisfies this condition. It is then

easy to check that Theorem 2 of [5] holds for ε = 1
6 − 2η.

We now fix q and suppose that L satisfies the assumptions of Theorem 1. The
first step of the proof of Theorem 1 is the same as for Theorem 1.3 of [4]. As this
paper is more technical, we shall be a little more precise. For some real number
α we put α = α+ − α−. Now, it is easy to check that

αe−αt

sinhαt
≤ e−2α+t

(
|α|+ 1

t

)
for any α ∈ R and t > 0. Because the αj ’s are ordered, one has ᾱJ ≤ −α1−· · ·−
αi + αi+1 + · · · + αn for any set of indices J of cardinal i. Thus Proposition 1
together with the nonnegativeness of αq yield
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ei
k(kε, x, x) ≤ Ckn(αq + k−ε)e−2αqkε

(2)

for some constant C only depending on ε. As αq > 0 outside a closed set Z of
measure 0, the function ei

k(kε, x, x) converges pointwisely to 0 on X \ Z. Now,
it is clear from the infinite sum expansion of the heat kernel (and the Hodge
identification between cohomology and harmonic forms) that

dim Hi(X, E(k)) ≤
∫

X

ei
k(kε, x, x) dV. (3)

This last inequality reduces Theorem 1 to the following lemma thanks to the
Lebesgue bounded convergence theorem :

Lemma 1 For ε = 2n
12n+1 there exists a constant C such that

ei
k(kε, x, x) ≤ C(αq(x)−6n + 1)

for k ≥ 1 and i ≥ q.

Proof . We shall denote by C any constant independant of x and k. We simply
remark that the function u

n
ε−

1
2 e−u is bounded on R

+, thus

kn− ε
2 e−αqkε

≤ Cα−6n
q (4)

because n
ε −

1
2 = 6n. Now, on the subset of X where αq ≤ k−

ε
2 the inequalities

(2) and (4) yield

ei
k(kε, x, x) ≤ Ckn− ε

2 e−2αqkε

≤ Cα−6n
q . (5)

But we have obvious inequalities outside this set :

ei
k(kε, x, x) ≤ kne−k

ε
2

≤ C (6)

The bounds (5) and (6) yield the lemma, thus Theorem 1.

Remark . Theorem 1 already derives from (3) when the upper limit of the in-
tegral is strictly less than one, which allows a weaker growth condition on α−1

q .
However, this doesn’t seem to have a simple geometric interpretation.

Proof of Corollary 1. We suppose that L is endowed with a metric with semi-
positive curvature satisfying the condition

∫
X

α−6n
1 < +∞. Due to the solution

of the conjecture of Grauert-Riemenschneider ([6], [9]) X must be Moishezon
(this is in our case a direct consequence of Theorem 1 and Riemann-Roch). By
a famous theorem of Moishezon, a Kähler manifold is Moishezon if and only if it
is projective. Thus X is projective, and Theorem 1 applies with E any coherent
sheaf. This is due to the existence of global syzygies for coherent sheaves on a
projective manifold. This means that L is ample.

Remark . In order to drop the Kähler assumption on X in corollary 1, it would
be sufficient to show the following : If I is the ideal sheaf of a point in X, I and
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I2 admit a global syzygy. For instance, we do not know if a point in a Moishezon
manifold is a complete intersection.

2. A precise vanishing theorem for vector bundles

In this section, X is a special compact complex manifold. According to the
definition of the introduction, this means that the metric ω is ∂∂̄-closed. E
is a hermitian holomorphic vector bundle. We define the commutator of two
operators A, B on the bigraduated algebra of (p, q)-forms with values in E of
(total) degree a, b to be [A,B] = AB − (−1)abBA. We also identify a form and
the operator it defines by wedge product, and call Λ the adjoint of ω. Then, if
we call τ = [Λ, ∂ω] the torsion, and Tω = −[∂ω, (∂ω)∗] the “torsion operator”
associated to the metric ω, and D = D′ + D′′ the Chern connection on E, we
have the following Bochner formula for the associated antiholomorphic laplacian
(cf. Demailly [6], p. 217) :

£ = £τ +[ic(E), Λ] + Tω (7)

where £ = [D′′, (D′′)∗] and £τ = [D′+ τ, (D′+ τ)∗]. As a C∞ (0, q)-form u with
values in E defines a (n, q)-form ũ with values in K∗

X ⊗E (this correspondance
is a hololmorphic isometry) we can sum up the two versions of Eq. (7) to get, if
we put Aqu = −Λic(E)u + ic(E)Λũ− ic(KX)Λ⊗ idE ũ + Tωu + Tωũ :

2 £u = £τ u + £τ ũ + Aqu. (8)

Now, Bismut [3] has proved that, if ω is special, D′ + τ is the part of type
(1, 0) of a Chern connection on E for a different holomorphic structure on X.
Thus, the construction of Demailly ([6], Proposition 3.6) which shows that the
operator £u + £ũ can be interpreted as a rough laplacian associated to some
riemannian connection O on the C∞ vector bundle ∧0,qT ∗X ⊗E can be applied
to £τ (namely, the connection O has its (0,1) part identified with D′ + τ while
its (1,0) part acts on (0, q)-forms similarly to (D′ + τ)∗ on (n, q)-forms, the
construction of Bismut allows us to find a holomorphic structure on X such that
this (1,0) part is the ∂̄ operator). We get an identity

2 £u = O∗Ou + Aqu. (9)

Theorem 2 is a straightforward consequence of Eq. (9). Following the lines of
[4], the heat kernel proof goes like this : if we call e(t, x, y) (resp. eg(t, x, y)) the
heat kernel associated to 2 £ (resp. to the de Rham laplacian on functions on
X) the Kato inequality yields

e(t, x, x) ≤
(

n
q

)
rkE eg(t, x, x) (10)

on the whole of X. Moreover, if Aq is bounded below by αg ⊗ h (α > 0) on an
open set Ω (g and h are the induced metrics on TX and E respectively), we get
on Ω

e(t, x, x) ≤
(

n
q

)
rkE e−αteg(t, x, x). (11)
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Integrating Eq. (10) over X, and letting t → +∞ yields the first assertion of (i)
in Theorem 2, while considering both bounds (10) and (11) yields (ii). The fact
that £-harmonic sections are parallel with respect to O follows directly from (9).
The reason why Eq. (9) is of a quite different nature from Eq. (7) is that a rough
laplacian controls much more the global behaviour of sections than any positive
operator such as £τ . However, both equations coincide when q = 0 (you can see
it by simply adding £ on both sides of (7) and remarking that the de Rham
laplacian ∆ = £+£τ is a rough laplacian when q = 0). Before we come to
some special cases, we note that, when X is Kähler, and q = 0, we have simply
A0 = − trω ic(E)⊗ idT∗X . Thus theorem 2 asserts that some mean negativity is
sufficient for the vanishing of global sections. When E is Hermite-Einstein with
respect to ω for a constant λ, A0 = −λ idE ⊗ idT∗X . This shows that theorems 1,
A and D in [7] are contained in Theorem 2. Now, our hope is that we can control
the low degrees cohomology groups of E with the help of Theorem 2 when E
has some mean negativity. If we note ΘE the endomorphism of ∧0,qT ∗X ⊗ E
defined by ic(E), a straightforward computation gives :

Aq = 2ΘE − id∧0,qT∗X ⊗ trω ΘE − ic(KX)Λ⊗ idE .̃

It is already difficult to determine the sign of this tensor when q = 1. For
example, when E = TX, it equals 2ΘTX . As no tangent bundle is Nakano
positive, Theorem 2 (ii) never applies to this situation but, as TP

n is Nakano
semi-positive, (i) bounds the dimension of H0,1(Pn, TP

n) by the maximal rank of
a trivial real analytic subbundle of TP

n⊗T
∗
P

n (which is much smaller than n2).
In the case where E is a cotangent bundle, we have A1 = 2(ΘT∗X−ΘKX

⊗idT∗X).
It is known that the Griffiths negativity of T ∗X yields the Griffiths positivity
of the whole tensor. Unfortunately, Theorem 2 requires Nakano positivity. This
shows that Theorem 2 is not a very powerful tool when q 6= 0. We conclude
this section with the asymptotic version, which could be of more use in special
situations.

Corollary 2 Let X be a special compact complex manifold, E (resp. L) a holo-
morphic vector (resp. line) bundle over X. If the eigenvalues α1 ≤ . . . ≤ αn of
ic(L) with respect to ω verify α1 + · · · + αq > αq+1 + · · · + αn for some q, the
following vanishing

Hq(X, E ⊗ Lk) = 0

holds as soon as k is sufficiently large.

Proof . This is an immediate consequence of Theorem 2 as the part of the tensor
Aq corresponding to L is diagonal with entries −ᾱJ ≥ α1 + · · · + αq − αq+1 −
· · · −αn (with the notations of section 1). Note that, when q > n/2, Corollary 2
is a consequence of Theorem 1 as our eigenvalues condition implies αq > 0. One
can also prove it directly with the equivalent of Proposition 1, this proof shows
that ω needs not to be special because the extra torsion terms will be dominated
by the curvature of L. Furthermore, one can verify that ᾱJ ≤ 0 already yields
the vanishing if the curvature of L vanishes nowhere on X, or even if it vanishes
and satisfies the condition that

∫
X

(
∑n

j=1 |αj |)−6n < +∞.
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3. Eigenvalue estimates

As a conclusion to this note, we state the result that was its original motivation.
We come back to the situation of section 1 and we denote by µk

1 the first nonzero
eigenvalue of £

0
k (acting on E(k)) on X.

Proposition 2 If α1 ≥ 0 satisfies
∫

X
α−6n

1 < +∞ we have when k → +∞ :

k−
10n+1
12n+1 µk

1 → +∞.

Proof . This proposition follows directly from the method of the proof of
Lemma 3.2 in [4] because it is shown there that e−2µk

1kε−1 ≤
∫

X
e1
k(kε, x, x)dV

with the same ε as in Lemma 1. Taking the Log of this inequality yields the
result. Of course, the same estimate holds for the first nonzero eigenvalue of £

q
k

under the same condition for αq.

Remark . This gives some intermediate between Lemma 3.2 in [4] (or Theorem 1
in Bismut and Vasserot [2]) and the result of the last section in [2] on µk

1 when
L is ample but endowed with a nonnecessarily positively curved metric. We can
also obtain different growth conditions on µk

1 from other vanishing orders on
α1, but always on a set of measure zero. However, this is still very far from
the control on µk

1 when L is only assumed to be semi-positive everywhere and
positive at one point conjectured by Siu (see [4] for references). This is yet the
best possible result in this direction that we can derive from an equivalent for
the heat kernel eq

k because this equivalent does not depend on the geometry
of the bundle E. Thus, in Proposition 2, we are not only bounding the first
eigenvalue of £

0
k for Lk but for all the class of bundles E(k), and one cannot

expect to control this except if L itself is ample. Thus, any heat kernel insight
in semi-positivity will require a higher order expansion, involving the geometry
of the bundles L, E and probably TX.

In order to show one geometric consequence of Proposition 2, let us recall
from [4,5] that the distortion function associated to an ample hermitian line
bundle L is defined by bk(x) = |s1(x)|2 + · · ·+ |sN (x)|2 where the family (sj) is
an orthonormal basis of H0(X, Lk) for the L2 inner product. For k large, it is
viewed as the distortion between the metric of Lk induced by the one given on L
and the restriction to X of the Fubini-Study metric of O(1) ' Lk. S. Zhang [10]
has called metric semiample an ample line bundle such that (bk)

1
k converges to

1 uniformly on X. It is known (independently due to G. Tian and the author [5])
that a positive line bundle is metric semiample. Using the proposition above, we
can show that an ample line bundle endowed with a nonnecessarily positively
curved metric satisfying the condition

∫
X

α−6n
1 < +∞ is metric semiample,

which gives a partial answer (in the case of smooth X) to a question raised in [10].
In fact, we have the more precise statement (whose proof follows directly from
the method of [5] together with the estimates of section 1 and Proposition 2) :
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Proposition 3 There exist positive constants C1, C2 such that

C1k
n(1−ε) ≤ bk(x) ≤ C2k

n

uniformly over X.
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