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1. Resonant frequencies of metallic nanoparticles

Very small metallic particles exhibit interesting diffractive phenomena, related to
resonances : localization and extremely large enhancement of the electromagentic
fields in their vicinity

Many potential applications : nanophotonics, nanolithography, near field microscopy,
biosensors, cancer therapy

2 main ingredients :

- The wavelength of the incident excitation should be larger than the particle
diameter

- the real part of the electric permittivity ε(ω) inside the particle is negative



Typical model problem

Consider a particule that occupies a bounded C2 domain δD ⊂ Rd

δ is small, |D| = 1

ω ∈ C is a resonant frequency of the nanoparticle Dδ if there exists a non-trivial
solution U to the PDE (TE polarization):

8>><>>:
∆U + ω2ε(x, ω)µ0U = 0 in Rd \Dδ ∪Dδ
[εU ] = 0 on ∂Dδh
∂U
∂ν

i
= 0 on ∂Dδ

radiation condition

The Drude model gives a good description of the electric permittivity ε of metals such
as Au, Ag, Al, in the range of frequencies of interest

ε(x, ω) =

8<: ε0 for x ∈ Rd \Dδ
ε0ε̂(ω) = ε0

„
ε∞ −

ω2
P

ω2+iωΓ

«
for x ∈ Dδ



The change of variable x̃ = z + x/δ transforms the original PDE into8>>>><>>>>:
∆Ũ + δ2ω2ε(x, ω)µ0Ũ = 0 in R2 \D ∪Dh
εŨ
i

= 0 on ∂Dh
∂Ũ
∂ν

i
= 0 on ∂D

where Ũ(x) = U(x̃) and one expects that εŨ converges to a solution of the
quasistatic problem 

div(1/ε(ω)∇u) = 0 in Rd

u → 0 as |x| → ∞

Electrostatic resonances: find the values of ε for which the above PDE has non trivial
solutions

[Mayergoyz-Fredkin-Zhang, Grieser, Ammari-Millien-Ruiz-Zhang]



We may seek u in the form u(x) = SDϕ(x) where SD is the single layer
potential on ∂Ω

SDψ(x) =

Z
∂D

G(x, y)ψ(y) dσ(y), x ∈ Rd

G(x, y) =

8><>:
1

2π
ln |x− y| if d = 2

|x− y|d−2

(2− d)ωd
if d ≥ 3

For ψ ∈ L2(∂D), the function SDψ is harmonic in D and in Rd \D, continuous
across ∂D and satisfies the Pelmelj jump relations

∂νSDψ|± = ±1/2ψ +K∗Dψ

The operator K∗D (or its adjoint) is the Neumann-Poincaré operator

K∗Dψ(x) =

Z
∂D

ν(x) · (x− y)

|x− y|2
ψ(y) dσ(y)



The layer potential ϕ yields a solution to the PDE provided

(λ(ω)I −K∗D)ϕ = 0

where λ(ω) =
1/ε̂(ω) + 1

2(1/ε̂(ω)− 1)
is thus an eigenvalue of K∗D

- σ(K∗D) ⊂ [−1/2, 1/2]

- When D is smooth (C1,α), K∗D is compact consisting of a countable sequence of
eigenvalues accumulating at 0

- When D is Lipschitz, K∗D may have continous spectrum



Goal in applications: tune the shape of D to trigger resonant frequencies at desired
values of ω

[Gang Bi et al, Optics Comm., 285 (2012) 2472]

The Neumann-Poincaré operator naturally appears also in other situations: cloaking,
pointwise estimates on gradients of solutions to elliptic PDE’s in composite media

[Ammari-Ciraolo-Kang-Lim, Perfekt-Putinar, Ola, Kang-Lim-Yu, EB-Triki]



2. The Neumann-Poincaré operator/ Poincaré variationnal
problem for a periodic collection of inclusions

!

Y

⌦

ω ⊂⊂ Y

Consider Ω ⊂ R2, smooth bounded domain, that contains a periodic collection of
smooth inclusions

D = ωε = ∪i∈Nε (ωε,i) ωε,i = zε,i + εω, i ∈ Nε,i

Model PDE : given f ∈ L2(Ω), seek u ∈ H1
0 (Ω) such that

−div(A(x)∇u) = f in Ω, A(x) =


k in ωε
1 otherwise

What are the resonant frequencies of such a system ? Are there collective effects ?

What is limε→0 σ(K∗ε ) ?



As the definition of the Neumann-Poincaré depends on the number of inclusions, we
work with the Poincaré variational operator

Tε : H1
0 (Ω)→ H1

0 (Ω)

∀ v ∈ H1
0 (Ω),

Z
Ω
∇Tεu · ∇v =

Z
ωε

∇u · ∇v

If Tεu = βu for some u ∈ H1
0 (Ω) and β ∈ R, then for any v ∈ H1

0 (Ω)Z
Ω
∇Tεu · ∇v −

Z
ωε

∇u · ∇v = β

Z
Ω
∇u · ∇v −

Z
ωε

∇u · ∇v

= β

Z
Ω\ωε

∇u · ∇v + (β − 1)

Z
ωε

∇u · ∇v = 0

It follows that div(a(β)∇u) = 0

u = Sωεϕ with (λI −K∗ωε
)ϕ = 0, λ = 1/2− β

We conclude that σ(Tε) = 1/2− σ(K∗ωε
)



Theorem

lim
ε→0

σ(Tε) = {0, 1} ∪ σBloch ∪ σ∂Ω

• The first term is the Bloch spectrum and corresponds to bulk resonant modes of
single cells or group of cells

σBloch = ∪i≥1[ min
η∈[0,1]d

λ−i (η), max
η∈[0,1]d

λ−i (η)] ∪ [ min
η∈[0,1]d

λ+
i (η), max

η∈[0,1]d
λ+
i (η)]

where the operators Tη are defined by

∀ v ∈ H1
#(Y ),

Z
Y

(∇Tηu+ 2iπηTηu) · (∇v + 2iπηv) =Z
ω

(∇u+ 2iπηu) · (∇v + 2iπηv), η 6= 0

∀ v ∈ H1
#(Y )/R,

Z
Y
∇T0u · ∇v =

Z
ω
∇u · ∇v, η = 0



• The boundary layer spectrum σ∂Ω is defined as the set of λ ∈ (0, 1) such that

∃ (λε) ⊂ σ(Tε) such that λε → λ

and for which the associated eigenvectors uε ∈ H1
0 (Ω) satisfy

∀ s > 0 lim
ε→0

ε−(1−1/2+s)||∇uε||L2(Uε) = ∞

where

Uε = {x ∈ Ω, d(x, ∂Ω) < ε}



Remarks :

- It is more convenient to work with Tε (domains of definition easier to handle)

- Our work is largely inspired by the analysis of [Allaire-Conca] who studied the
high frequency limit of spectra of diffusion equations using Bloch wave
homogenization

- As ε→ 0, the operators Tε converge to a limiting operator T∞ defined on
H1

0 (Ω) by

∀ v ∈ H1
0 (Ω)

Z
Ω
∇T∞u · ∇v = |ω|

Z
Ω
∇u · ∇v

However, the convergence is only in a weak sense, and thus does not yield any
information on limε→0 σ(Tε)

- To take into account the microscopic effects in the limit, we define a 2-scale
version T̃ε of Tε on the larger space L2(Ω, H1(ω)/R), which has the same
spectrum

- We show that the operators T̃ε converge strongly to a limiting operator T̃0, and
thus limε→0 σ(Tε) ⊃ σ(T̃0)



Key ingredient :

2-scale convergence [Allaire, Nguetseng] and the associated compactness properties

Theorem : Let uε be a bounded sequence in L2(Ω)

1. Then there exists u0 ∈ L2(Ω× L2
#(Y )) such that uε 2-scale converges weakly to

u0, i.e.

∀ φ ∈ L2(Ω, C#(Y )),

Z
Ω
uε(x)φ(x, x/ε) dx →

Z
Ω×Y

u0(x, y)φ(x, y) dxdy

2. Assume that a sequence (uε) converges weakly in L2 to some u0 ∈ H1(Ω). Then
there exists û ∈ L2(Ω, H1

#(Y )/R) such that, up to a subsequence

- uε 2-scale converges to u

- ∇uε 2-scale converges to ∇u0(x) +∇yû(x, y)



3. Bloch wave homogenization

Following [Allaire-Conca] (see also [Cioranescu-Damlamian-Griso]) we define

- an extension operator Eε : L2(Ω) −→ L2(Ω× Y )

Eεu(x, y) =

8<: u(ε[x/ε] + εy) if x ∈ ωε,i ⊂ Ω

0 otherwise

- a projection operator Pε : L2(Ω× Y ) −→ L2(Ω)

Pεφ(x) =

8><>:
Z
Y
φ(ε[x/ε] + εz, {x/e}) dz if x ∈ ωε,i ⊂ Ω

0 otherwise



Denoting Ωε the union of all the cells ωε,i that are fully contained in Ω

• Eε and Pε are bounded operators with norm 1

• Pε : L2(Ω× Y )→ L2(Ω) and Eε : L2(Ω)→ L2(Ω× Y ) are adjoint operators

• Pε and Eε are almost inverse to one another

for u ∈ L2(Ω), PεEεu(x) =


u(x) if x ∈ Ωε

0 otherwise

for φ ∈ L2(Ω× Y ), EεPεφ→ φ strongly in L2(Ω× Y )



In our setting, we should be cautious as the definition of Tε involves derivatives,
whereas the operators Eε, Pε may not define functions in H1

We set T̃ε := Eε T ◦ε Pε with

T̃ε : L2(Ω, H1(ω)/R) −→ L2(Ω, H1(ω)/R)

Pε ↓ ↑ Eε
T ◦ε : Hε := H1(ωε)/C(ωε) −→ Hε

↓ ↑
Tε : H1

0 (Ω) −→ H1
0 (Ω)

where C(ωε) = {u ∈ H1
0 (Ω), u = (const)i on ωε,i}

φ ∈ L2(Ω×H1(ω)/R) → Pεφ := uε ∈ H1(ωε)/C(ωε)

→ vε ∈ H1
0 (Ω), such that

Z
Ω
∇vε · ∇v =

Z
ωε

∇uε · ∇v

→ T̃εφ = Eεvε|Ω×ω



Proposition

• T̃ε is self-adjoint and σ(T̃ε) = σ(Tε) \ {0}

• For any φ ∈ L2(Ω, H1(ω)/R), T̃εφ converges strongly in L2(Ω, H1(ω)/R) to

some T̃0φ

T̃0φ = Qv̂ where Q : L2(Ω, H1
#(Y )/R) −→ L2(Ω, H1(ω)/R) is the restriction

operator and v̂ is the unique solution in L2(Ω, H1
#(Y )/R) of

−∆y v̂(x, y) = −divy(1ω(y)∇yφ)(x, y) in Y, a.e. x ∈ Ω

• It follows that limε→0 σ(Tε) ⊃ σ(T̃0)

• Actually, σ(T̃0) = σ(T0) \ {0}, where T0 : H1
#(Y )/R −→ H1

#(Y/R) is defined

by

∀ v ∈ H1
#(Y ),

Z
Y
∇T0u · ∇v =

Z
ω
∇u · ∇v

The values in σ(T0) can be interpreted as eigenvalues of single-cell resonant modes



This follows from the compactness induced by 2-scale convergence :

φ ∈ L2(Ω×H1(ω)/R) → Pεφ := uε ∈ H1(ωε)/C(ωε)

→ vε ∈ H1
0 (Ω), such that

Z
Ω
∇vε · ∇v =

Z
ωε

∇uε · ∇v

→ T̃εφ = Eεvε|Ω×ω

then 
εvε ⇀ v0 weakly in H1

0 (Ω)
εEε(∇vε) ⇀ ∇v0 +∇y v̂ weakly in L2(Ω× Y )Z

Ω×Y
(∇v0 +∇y v̂) · (∇φ+∇yψ) =

Z
Ω×ω

∇yφ(x, y) · (∇φ+∇yψ)



Collective resonances of the inclusions

The rescaling procedure can also be performed on a pack of cells (i.e. over Kd copies
of the unit cell Y )

- define corresponding projection and extension operators EKε , P
K
ε

- define T̃Kε

- show that T̃Kε converges strongly to a limiting operator T̃K0

- whose spectrum coincides with that of TK0 : H1
#(KY )/R −→ H1

#(KY )/R

defined by

∀ v ∈ H1
#(KY ),

Z
KY
∇T0u · ∇v =

Z
ωK
∇u · ∇v

- and in fact σ(TK0 ) = ∪0≤j≤K−1σ(Tη) η = j/K



4. Homogenization with NIM’s

Let f ∈ L2(Ω) and consider uε ∈ H1
0 (Ω) solution to

(Pε) − div(Aε(x)∇uε(x)) = f in Ω

where Aε(x) =


a > 0 x ∈ ωε
1 otherwise

Then uε ⇀ u∗ weakly in H1
0 (Ω), with

(P∗) − div(A∗∇u∗(x)) = f in Ω

A∗ is a (constant) matrix, whose entries are given in terms of the solutions to the cell
problems : find χj ∈ H1

#(Y )/R such that

−div(A(y)∇(χj(x) + yj)) = 0 in Y



What happens in the more general case when a ∈ C ?

[Bouchitté-Bourel-Feldbacq, Hoai-Minh Nguyen, Bunoiu-Ramdani,...]

Note that if λ = 1/(1− a) is not in the spectrum of T0 : H1
#(y)→ H1

#(Y )

∀ v ∈ H1
#(Y )

Z
Y
∇T0u · ∇v =

Z
ω
∇u · ∇v

the homogenized tensor is formally well defined



Prop.

Let f ∈ H−1(Ω). Assume that λ = 1/(1− a) /∈ σ(T0) so that A∗ is well defined

- If uε is a sequence of solutions to (Pε) such that uε → u weakly in H1, then u is
a solution to (P∗)

- If u is a solution to (P∗) (if any), then there exists a sequence
(fε) ⊂ H−1(Ω), fε → f such that the solutions uε ∈ H1

0 (Ω) to

−div(Aε∇uε) = fε in Ω

satisfy uε ⇀ u weakly in H1(Ω)

In particular, homogenization cannot discriminate among solutions to the
homogenized equation, if they are not unique



We can then relate (partially) the limiting spectrum with the homogenization tensor

Prop.

Let a ∈ C \ σ(T0) and let A∗ denote the associated homogenized matrix

Assume that there exists f ∈ H−1(Ω) such that the PDE

−div(A∗∇u) = f in Ω

does not have a solution in H1
0 (Ω)

Then 1/(1− a) ∈ limε→0 σ(Tε)

The converse is false: the case of rank-one laminates shows that the above system can
be well-posed when a is in the limiting spectrum



High contrast (a→ ±∞ or a→ 0)

Recall that we assumed that ω ⊂⊂ Y

Prop.
There exists −∞ < c < C < 0 such that if −∞ < a < c or if C < a < 0

• (Pε) is well posed and its solution uε depends continuously on f

• The homogenized tensor A∗ is elliptic (uniform bounds wrt a)

In particular the homogenized problem (P∗) is well-posed.



5. Conclusion/perspectives

- Does the Bloch spectrum really play a role wrt resonance ?

- How to better characterize the boundary spectrum

- What if the inclusions are not smooth ?

- The hypothesis ω ⊂⊂ Y plays an important role. Laminates provide
counter-examples to some of the properties we derived

- Is it possible to construct hyperbolic media under the hypothesis that ω ⊂⊂ Y ?




