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1. Resonant frequencies of metallic nanoparticles

Very small metallic particles exhibit interesting diffractive phenomena, related to
resonances : localization and extremely large enhancement of the electromagentic
fields in their vicinity

Many potential applications : nanophotonics, nanolithography, near field microscopy,
biosensors, cancer therapy

2 main ingredients :

- The wavelength of the incident excitation should be larger than the particle
diameter

- the real part of the electric permittivity e(w) inside the particle is negative



Typical model problem
Consider a particule that occupies a bounded C2? domain 6D C R
dissmall, |[D| =1

w € C is a resonant frequency of the nanoparticle Dy if there exists a non-trivial
solution U to the PDE (TE polarization):

AU + w?e(z,w)uoU = 0 in R4\ DsU Ds
[eU] =0 on 0Ds

ou

{W] =0 on 0Ds

radiation condition

The Drude model gives a good description of the electric permittivity € of metals such
as Au, Ag, Al, in the range of frequencies of interest

€0 forx € R\ Ds
= 2
e(z,w) c0é(w) = o <aoc _ “’7P> for # € D

w2 +iwl



The change of variable Z =2z+x/§ transforms the original PDE into

AU + 52w2e(z, w)uolU = 0 inR2\DUD
[EU] =0 on 0D

au —

[%2] =0 on D

where U(z) = U(Z) and one expects that eJJ converges to a solution of the
quasistatic problem

div(l/e(w)Vu) = 0 inR?
u — 0 as|z] — o

Electrostatic resonances: find the values of £ for which the above PDE has non trivial
solutions

[Mayergoyz-Fredkin-Zhang, Grieser, Ammari-Millien-Ruiz-Zhang]



We may seek u in the form  wu(z) = Spp(x) where Sp is the single layer
potential on 992

Spv@) = [ G do). @eR!
1 .
2—111\x—y| ifd=2

G(.Z,y) = |:E7y‘d_2
PZY T pg>3
(2 — d)wa

For ¢ € L?(AD), the function Sp is harmonic in D and in R\ D, continuous
across 0D and satisfies the Pelmelj jump relations

81/SD1M:5: = il/QerK*Dw

The operator K7, (or its adjoint) is the Neumann-Poincaré operator

Ko@) = /d way)da(y)

|z —y[?



The layer potential ¢ yields a solution to the PDE provided
AWI-Kp)p = 0

1/e(w) +1

where  A(w) = m

is thus an eigenvalue of K7,

- o(Kp) C[-1/2,1/2]

- When D is smooth (C1%), K7, is compact consisting of a countable sequence of
eigenvalues accumulating at 0

- When D is Lipschitz, K}, may have continous spectrum



Goal in applications: tune the shape of D to trigger resonant frequencies at desired
values of w
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[Gang Bi et al, Optics Comm., 285 (2012) 2472]

The Neumann-Poincaré operator naturally appears also in other situations: cloaking,
pointwise estimates on gradients of solutions to elliptic PDE's in composite media

[Ammari-Ciraolo-Kang-Lim, Perfekt-Putinar, Ola, Kang-Lim-Yu, EB-Triki]
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2. The Neumann-Poincaré operator/ Poincaré variationnal
problem for a periodic collection of inclusions

Y
(

e

wCCY

smooth inclusions

Consider © C R2, smooth bounded domain, that contains a periodic collection of

D = w: = UieNs (Wa,i) We i = Ze,i +ew, € Ns,i
Model PDE : given f € L?(f), seek u € H} () such that
. _ . _J k inwe
—div(A(z)Vu) = [ inQ, A(z) = { 1 otherwise
What are the resonant frequencies of such a system ? Are there collective effects ?
What is lim. .o o(K}) ?




As the definition of the Neumann-Poincaré depends on the number of inclusions, we
work with the Poincaré variational operator

T : H(Q) — HY(Q)

Ve HA(Q), /vnu-w _ /Vu-Vv
Q we

If T.u = Bu for some u € HI(Q) and B € R, then for any v € H}(Q)

/VTgu-va Vu-Vv:ﬁ/Vu-va Vu - Vv
Q we Q we

= ﬂ/ Vu-Vo+ (—-1) Vu-Vv = 0
Q\we

We

It follows that  div(a(8)Vu) =0
u=Su ¢ with (M —K; )p =0, A=1/2-3

We conclude that o (7:) = 1/2 — o(K,_)



Theorem

linbo(Tg) = {0,1} UoBloch Uosa
e

e The first term is the Bloch spectrum and corresponds to bulk resonant modes of
single cells or group of cells

o = U min A, (n), max A; (n)]U[ min AF(n), max A (y
Bloch L21[n€[0’1]d i (]>'7;€[(J,1]d i ()] [ne[oﬁl]d i (I)'ne[[).l]d i ()]

where the operators T}, are defined by

Vove HJ% (Y), /Y (VTyu+ 2imnThu) - (Vo + 2imnu) =
/ (Vu + 2imnu) - (Vv + 2imnu), n#0

Vove Hy(Y)/R, /YVTOu»Wz/‘Vu-W, n=0



e The boundary layer spectrum oggq is defined as the set of A € (0,1) such that
3 (Ae) Co(T:) such that Ae — A

and for which the associated eigenvectors u. € H&(Q) satisfy
Vs>0 }111%'57<171/2+”>HVUEHLg(Mg) = o0

where

U: = {ze€Q,d(z,00) <e}



Remarks :

It is more convenient to work with T, (domains of definition easier to handle)

Our work is largely inspired by the analysis of [Allaire-Conca] who studied the
high frequency limit of spectra of diffusion equations using Bloch wave
homogenization

As £ — 0, the operators T converge to a limiting operator T, defined on
H§(82) by

Vv e HY Q) /VToou-Vv = \w\/Vu~Vv
Q Q

However, the convergence is only in a weak sense, and thus does not yield any
information on lime .o o(7%)

To take into account the microscopic effects in the limit, we define a 2-scale
version T of T on the larger space L?(Q2, H'(w)/R), which has the same
spectrum

We show that the operators T5~converge strongly to a limiting operator To, and
thus lim._.o (T(Tg) D) O'(’T())



Key ingredient :

2-scale convergence [Allaire, Nguetseng] and the associated compactness properties

Theorem :  Let u: be a bounded sequence in L?(Q)

1. Then there exists ug € L?(Q x Li(Y)) such that ue 2-scale converges weakly to
ug, i.e.

Ve LQ(Q,C#(Y))7 /ng(x)(b(:r,x/s) de — uo(z,y)p(z,y) dedy

QxY

2. Assume that a sequence (u.) converges weakly in L? to some ug € H(Q). Then
there exists @ € L2(1, H;E(Y)/R) such that, up to a subsequence

- ue 2-scale converges to u

- Vu. 2-scale converges to Vug(z) + Vyi(z,y)



3. Bloch wave homogenization

Following [Allaire-Conca] (see also [Cioranescu-Damlamian-Griso]) we define

- an extension operator F: : L?(Q) — L?(Q x Y)
u(elz/e] +ey) fzxecw.; CQ

EE’LL(Q?, y) =
0 otherwise

- a projection operator P. : L?(Q2 xY) — L%(Q)

/ o(elx/e]l +ez,{z/e})dz ifxecw.; CQ
Ped(z) = v

0 otherwise



Denoting )¢ the union of all the cells w, ; that are fully contained in

e F. and P. are bounded operators with norm 1
e P.: L2(QxY) — L%(Q) and E. : L?(Q) — L?(Q x Y)) are adjoint operators
e P. and E. are almost inverse to one another

foru € L?(Q), P:E.u(z) = { u(z) ifw € Qe

0 otherwise

forp € L2(2xY), E:P:¢p— ¢ strongly in L2(Q2 xY)



In our setting, we should be cautious as the definition of 7. involves derivatives,
whereas the operators E., P- may not define functions in H!

We set 7. := E. TS P- with

T. : L?(Q,H'(w)/R) — L%(Q, H'(w)/R)

P | T Ee
T® : H.:= H'(w:)/C(we) — He
1 T

T. : HY(Q) — HI®)

where C(w:) = {u € H}(Q), u= (const); onw. ;}

peL?(Qx H (w)/R) — Pegp:=1us € H (we)/C(we)
— ve € H}(Q), such that / Vve - Vv = / Vue - Vv

JQ Jwe
— T:¢ = Eevelaxw



Proposition
o T. is self-adjoint and  o(T:) = o(T:) \ {0}

e For any ¢ € L2(Q, H' (w)/R), Te¢ converges strongly in L2(2, H'(w)/R) to
some ’f’(ﬂ)

Tod = Qb where Q : L2(Q, H%& (Y)/R) — L%(Q, H'(w)/R) is the restriction
operator and © is the unique solution in L2(, H;#(Y)/R) of
—Ayi(z,y) = —divy(le(y)Vyed)(z,y) inY, ae x €

e It follows that  lim. .qo(7:) D o(Tp)

e Actually, o(Tp) = o(Tp) \ {0}, where Ty : HL(Y)/R — H}(Y/R) is defined
by

Jw

Vo e Hy(Y), /W‘Uu-w = /v%w
JY )

The values in o(Tp) can be interpreted as eigenvalues of single-cell resonant modes



This follows from the compactness induced by 2-scale convergence :

b€ L2(Qx HY(w)/R) — Pe¢p:=wue € H (we)/C(we)

— ve € Hé(Q). such that

JQ

- ’]’:‘EO = Ecve

QXw

then

EVe — V0
eE:(Vve) — Yug+ Vyo

[ w+v0 vorvw = [
QxY Q

Vue - Vv = / Vue - Vv

weakly in H§ ()
weakly in L#(Q X Y)

Vyod(z,y) - (Vo + Vyi)

X



Collective resonances of the inclusions

The rescaling procedure can also be performed on a pack of cells (i.e. over K9 copies
of the unit cell Y)

- define corresponding projection and extension operators EQK, PEK
- define TX
- show that TEK converges strongly to a limiting operator TOK

- whose spectrum coincides with that of Td¢ : HL(KY)/R — Hy(KY)/R
defined by

VUGH;L?é(KY)7 / VTou-Vv = / Vu - Vo
KY wk

- andin fact o(TF) = Up<j<r—_10(Ty) n=j3/K



4. Homogenization with NIM’s

Let f € L?(f2) and consider uc € Hg () solution to

(Pr) —div(Ac(z)Vue(z)) = f in Q2
a>0 zrEw
where Ac(x) = { 1 other\fvise

Then ue — us weakly in H (), with
(Px) —div(A«Vux(z)) = f in

A, is a (constant) matrix, whose entries are given in terms of the solutions to the cell
problems : find x; € H#(Y)/R such that

—div(AW)V(xj(x) +y;)) = 0 inY



What happens in the more general case when a € C ?

[Bouchitté-Bourel-Feldbacq, Hoai-Minh Nguyen, Bunoiu-Ramdani,...]

Note that if A = 1/(1 — a) is not in the spectrum of Ty : H;#(y) — H#(Y)

Yo e HL(Y) /VTgu-Vv - /vu-w
Y w

the homogenized tensor is formally well defined



Prop.
Let f € H~ (). Assume that A = 1/(1 — a) ¢ o(Tp) so that A* is well defined

- If ue is a sequence of solutions to (P:) such that uc — u weakly in H!, then u is
a solution to (Px)

- If uw is a solution to (Px) (if any), then there exists a sequence
(fe) € H=Y(Q), f- — f such that the solutions u. € H}(Q) to
—div(AcVue) = fe inQ

satisfy ue — u weakly in H(Q)

In particular, homogenization cannot discriminate among solutions to the
homogenized equation, if they are not unique



We can then relate (partially) the limiting spectrum with the homogenization tensor

Prop.
Let a € C\ o(Tp) and let A, denote the associated homogenized matrix
Assume that there exists f € H~1(Q) such that the PDE
—div(A*Vu) = f in Q
does not have a solution in HE ()
Then 1/(1—a) € lim._o0(T:)

The converse is false: the case of rank-one laminates shows that the above system can
be well-posed when a is in the limiting spectrum



High contrast (¢« — +oo or a — 0)

Recall that we assumed that w CC Y

Prop.
There exists —co < ¢ < C < 0Osuchthatif —oco<a<c orif C<a<O0

o (P:) is well posed and its solution us depends continuously on f

e The homogenized tensor A* is elliptic (uniform bounds wrt a)

In particular the homogenized problem (P;) is well-posed.



5. Conclusion/perspectives

- Does the Bloch spectrum really play a role wrt resonance ?
- How to better characterize the boundary spectrum
- What if the inclusions are not smooth ?

- The hypothesis w CC Y plays an important role. Laminates provide
counter-examples to some of the properties we derived

- Is it possible to construct hyperbolic media under the hypothesis that w CC Y ?






