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Abstract

In this paper we consider the elliptic equation V-aVu = 0 in a two dimensional domain
2, which contains a finite number of circular inhomogeneities (cross-sections of fibers).
The coefficient, a, takes two constant values, one in all the inhomogeneities and one in
the part of Q which lies outside the inhomogeneities. A number of the inhomogeneities
may possibly touch, and in spite of this we prove that any variational solution u (with
sufficiently smooth boundary data) is in W', For this very interesting, particular type
of coefficient, our result improves a classical regularity result due to DeGiorgi and Nash,
which asserts that the solution is in the Holder class C” for some positive exponent ~.

1 Introduction

Consider a domain @ C IR?, representing the cross-section of a three dimensional body. We
suppose the three dimensional body is occupied by a fiber-reinforced composite and we sup-
pose the cross-section is taken perpendicular to the finitely many (identical) cylindrical fibers.
Frequently in composites, the fibers are very closely spaced and may even touch. We suppose
the strength of the fibers is different from that of the material between the fibers (the so-called
matrix). When we talk about strength this could for instance refer to the shear modulus (for
a problem of antiplane shear) or the conductivity (for a problem of heat or electric conduc-
tion). In all three cases the corresponding scalar variable, u, (the out of plane displacement,
the temperature or the voltage potential) satisfies the elliptic equation

V-aVu=0 inQ , (1)
with, for instance a given Dirichlet boundary condition
u=¢ ondd . (2)

The coefficient 0 < a < oo takes two constant values, one in the fibers and one in the matrix.
The aim of this paper is to study the behaviour of « and, in particular, its gradient near points
where the fibers touch. Because the cross-section is perpendicular to the fibers, these appear
as disks of identical radii. We may without loss of generality restrict attention to a situation
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with only two touching disks (fibers); for simplicity we take these to lie strictly inside . We
may also rescale the strength, @, so that

a(z) = 1 for z outside the two disks
a(z) = ao for x inside the two disks . (3)

In the context of anti-plane shear it is probably physically most relevant to think of ag as being
larger than 1 — after all, the fibers are there for reinforcement. However, in the context of heat-
or electrical conduction there are no physical reasons why we might not have ay < 1 as well.
We may, without loss of generality, suppose that the point where the two disks touch is located
at the origin. We may also suppose that the domain 2 is of class €™ and symmetric in the
z1-axis, and that the boundary data ¢ is in C*(9Q). If not, we can simply take such a smooth
domain inside {2, containing the two fiber cross-sections, and rely on elliptic regularity to get
that the (new) Dirichlet data is C*>. The geometric situation is illustrated in Figure 1. For
simplicity of illustration, we have drawn 02 in the shape of a circle — a convention we shall
follow throughout this paper. The solution u is defined variationally, by the requirements that
u be in H'(Q) with u|sq = ¢ and

/ a(z)VuVv dz =0 Yo € Hy(Q)
Q

In two dimensions (as we are here) Sobolev’s imbedding theorem states that elements of H*(€2),
1 < s, are automatically continuous. But this is not true for all elements of H*(£2). However,
a regularity result of DeGiorgi and Nash (cf. [3], [9] or [4]) asserts that any H' solution
to a divergence form, scalar elliptic equation with bounded measurable coefficients such as
(1), is indeed Holder comtinuous inside €2. Near 02, the coeflicent a is constant, and the
boundary, as well as the boundary data ¢ are C*°, so standard elliptic boundary regularity
results immediately imply that w is C™ there. Indeed, away from the origin (where the two disks
touch) standard elliptic regularity results (for operators with constant, or piecewise constant
coefficients) very easily imply that the gradient of u is bounded. The origin, however, presents
a serious problem. Neither standard elliptic regularity results, nor the DeGiorgi-Nash result
assert anything about the boundedness of the gradient. Such boundedness is guaranteed by
the main result of this paper:

Theorem The solution u is in W1°(2) for any fixed 0 < ag < oco.

Since the gradient of the solution w is generically discontinuous at the interfaces between
the fibers and the matrix, this theorem is optimal in terms of global regularity.

We have assumed that the circular fiber cross-sections have same radius. It is worthwhile to
point out that this assumption is for convenience only. A configuration with two touching disks
of different radii (say, r1 and r;) may quite easily be mapped conformally to a configuration
consisting of two identical touching disks: pick the z;-axis to be the common tangent for the
two disks (they touch at the origin) and let z = ®(z) denote the conformal mapping ®(zq, zs) =
(1/(23 +23), 22/ (23 +23)). Let T, denote the vertical translation T'(zy, 25) = (21, 22+ ¢). With
an appropriate choice of ¢ (= &(ry — ry)/4r,7s) the conformal mapping ¥ = &' 0 7, o & maps
the configuration with the two different disks to a configuration with two identical touching
disks (of radius 2ry7r9/(r1+72)). This mapping is furthermore smooth at the origin. The validity



Figure 1: Two touching fibers.

of the above theorem for two identical disks now immediately implies its validity for different
disks as well: the “push-forward” w = uo W' of the function w is in W™ near the origin (since
it pertains to a configuration of two identical disks) and due to the regularity of ¥ the same can
therefore be said about u. This “push-forward” technique works for any configuration which is
conformally equivalent to two touching disks. It should be extremely interesting to study the
regularity issue for configurations that are not conformally equivalent to two touching disks.

In the context of antiplane shear, aVu represents the stresses (internal forces). Most linear
fracture models suppose that fracturing will occur at points with extreme stress concentrations.
The fact that the (shear) stresses remain bounded, even near points where the fibers touch,
strongly indicates that separation between circular fibers and the matrix is not a likely mecha-
nism for the onset of fracture. The result proven in this paper only applies to a scalar equation,
it would be of utmost interest to extend this to the full system of linear elasticity.

To indicate that the behaviour of u near the origin is not entirely obvious (and not always
the same) let us change to the (conformally) different situation shown in Figure 2 :two conical
shapes symmetrically touching, with @ = a¢ inside the two shapes, a = 1 outside. For a fixed
ag, the solution is in C7 with 5 uniformly bounded away from zero (independently of the size
of the interior angle of the conical shapes). This is consistent with the result of DeGiorgi and
Nash, which asserts that « is of a minimal Holder class that only depends on the aspect ratio of
the coefficient. The Holder exponent « is smallest when the conical shapes have interior angles
a = w/2. For ag # 1 Figure 3 shows the “generic 7”7 as a function of ay for the two possible
symmetries of the solution u: one where u is odd with respect to the z; axis, and one where u
1s even with respect to the z; axis. Corresponding to this “generic «4”, there is locally near the
origin an H* solution to (1), which in polar coordinates has the form

7 (acosvy8 + bsinvb)

with a different pair of constants (a,b) in each of the four sectors. This v is the smallest
exponent for which a solution of this form exists in H'. 5 is very easily characterized as
the smallest positive solution to a certain determinant identity (expressing that the system
of linear equations for the coefficient pairs (a,b) has a nontrivial solution). An analysis very



Figure 2: Two touching conical shapes.

similar to that found in [5] would show that near the origin any solution has, generically, the
same behaviour as this special solution. It is clear from the graph, that a general solution wu,
which contains elements of both symmetries, is never in W (except when ag = 1) indeed,
depending on ayg, its regularity may not be better than C” for any arbitrarily small positive ~.

The fact that w is not in W (£2) in this situation can be explained in terms of a “corner ef-
fect”. Consider the geometric situation where the two convex shapes are € > () apart vertically.
The solution will then have two singularities which arise due to the corners in the interfaces.
Each corner has an angle of 7 /2. Figure 4 shows the generic Holder coefficient for any solution
corresponding to an interface with angle n/2 (and conductivity ratio 1 : ag). Figure 4 corre-
sponds to the lower half of Figure 3; if we had considered solutions with a special symmetry,
the curve on the right side (of g = 1) would continue smoothly into the left quadrant, and vice
versa. It is clear that, for € > 0, a general solution is never in W>(Q) (except when aq = 1),
and it is quite natural to expect that this does not in any way improve in the limit ¢ — 0, when
the two shapes touch.

But the “corner effect” is not the whole story in Figure 3: the regularity situation has
clearly become significantly worse when compared to that in Figure 4. For fixed € > 0, Figure
4 clearly indicates that any solution will at least be in 02/3(9), independently of ag. However,
when the shapes touch (for e = 0) Figure 3 clearly indicates that the regularity may not be
better than C7 for any arbitrarily small positive 7, depending on the size of ag. The touching
may thus induce a loss of almost a factor of 2/3 in terms of differentiability.

We now return to the case of (identical) circular fibers. The extreme situations that formally
correspond to ag = 0 and ag = oo are somewhat particular. The corresponding solutions are
now (essentially) only defined in  \ { the fibers }. If the boundary point, where the two fibers
touch (the origin) is thought of as two different boundary points of 2\ { the fibers }, then these
solutions are always C* in the interior and up to the boundary of Q \ { the fibers }. With
this convention we also have that all the derivatives of order > 1 vanish at the origin. In the
case ap = 0, and for a certain symmetry of the data, we generically have that the solution u°
is multivalued at the origin, i.e., it has a different limit when approaching the origin from the

cusp on the left than when approaching the origin from the cusp on the right. For ag = oo, the
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Figure 3: The generic v as a function of ag for symmetrically touching conical shapes of interior
angle /2

solution u* is always single valued at the origin. We refer the reader to the appendix, where
these issues are discussed in more detail.

An interesting project would be to consider the case where the fibers are very close, but not
touching. Say, the circular cross-sections are € apart vertically. For the case of ag = 0 (as well
as ag = 00) the discontinuity mentioned above gives the existence of solutions, the gradients of
which become unbounded at the origin as the distance € approaches zero. This phenomenon has
been noted and studied in detail by several authors ( cf. [2], [8] and [6]). We again refer to the
appendix, where some of this work is discussed in a little more detail. For fixed 0 < ag < oo,
we conjecture that the gradient near the origin stays bounded independently of . We base
this conjecture, among other things, on some very accurate calculations communicated to us
by Borje Andersson of the Aeronautical Research Institute of Sweden [1]. For special boundary
conditions, such as those corresponding to the solutions considered in [2] and [8], it is not
unlikely that the mapping technique used there would make it possible to establish this uniform
boundedness. However, for general boundary conditions we have at the moment no proof of
this conjecture.

2 A reduced problem

Since 2 is symmetric in the z;-axis, the boundary condition u|sq = ¢(z) may also be written:
ulog = 3(¢(x) — #(Z)) + 3((x) + (T)), where T = (21, —22) denotes the reflection of the point
© = (#1,22). As a consequence, we may separate our boundary value problem into one of two
cases: 1) the solution u is odd in the z;-axis, 2) the solution w is even in the z;-axis.

In case the boundary data (and thus the solution, u) is even in the zi-axis, consider the
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Figure 4: The generic « as a function of a for a single conical shape of interior angle 7/2

a-harmonic conjugate to w. This function, v, is related to u by
_Ov
aVu:VvL:( %ﬁ) , (4)
8m1

and it solves

VeaHz)Vo=0 inQ .
From (4) it follows immediately that on 02

a*Vo-n = —a'Vo-7°t
= a Vot .7
Oou
or

where 7 denotes the counter-clockwise tangent. Since u is even it now follows that v (normalized
by [ov dz = 0) is odd in the z;-axis.

In the rest of this paper we shall concentrate on the case where u is odd in the x;-axis, and
prove that the gradient of u is bounded. The exact same argument that we present could of
course be applied to the (odd) function v (the only difference being that ag, the conductivity
inside the two fibers, gets replaced by ay') thus proving that the gradient of v stays bounded in
2. Because of the relationship (4) this immediately implies that Vu is also bounded in € in the
case where u is even in the z;-axis. By means of the splitting introduced at the beginning of
this section, this now verifies the boundedness of Vu in the general case (without any symmetry
assumptions).

Under the assumption that w is odd in the z;-axis it indeed suffices to consider the boundary
value problem in the half-domain, Q4 = { (z1,22) € @ : 0 < z, }, with the additional boundary
condition w = 0 at z; = 0 (cf. Figure 5). For simplicity we shall from now on assume that the
fiber has radius 1, so that its boundary is given by the equation z} + (23 — 1)* = 1.



Figure 5: The reduced geometric setup.

Figure 6: The geometric situation with the “auxiliary” boundary.

3 An auxiliary boundary value problem

Let D, denote the disk D, = {(z1,22) : @} + (z2 — €)> = €}, centered at (0, ¢), with radius
e. For small, positive € we introduce an auxiliary function u. as the solution to the boundary
value problem

V-a(z)Vu, = 0 in Q4 |
we = ¢ on Iy \{zy =0} ,
we = 0on {zy =0} and on 9D, .

For a geometric illustration, see Figure 6.

The conductivity, a, is as given before. The solution, w, whose gradient we are trying to bound,
solves the corresponding “limiting” boundary value problem

V.a(z)Vu = 0 in Qy
= ¢ on 6Q+\{x2:0} ’
= 0Oon {z; =0} .

A fairly direct argument shows that

Proposition 3.1 Let u, and v be as defined above, with u, extended to all of Q4 by setting
it to zero on D.. Then u, — w in H'(4) as e — 0. Let K denote a compact subset of
Q\{ 22+ (z2—1)2*=1}. Thenu. — u in C*(K) as e — 0.

Proof Let 0 < <1 bein COO(]Rz) with

P(y) =0 for |y <1, andep(y) =1 forlyl>2,



and define the function v, by

The function v, € H' ({24 ) satisfies

ve=¢ ondy \{z2=0} |,
ve=0 on{z=0} and on 4D, .

Thus, due to Dirichlet’s principle

1/2 - 1/2
[/ a|Vu,|? dw] < / a|Vu,|? dw}
Q4\De [/ €24 \De
L1 *9 — €

- 1/2 1
f a|Vaul? da:] 4 [/ alul2|[ V(2 276 ga
L Q4 \De Q4 \De € €

1/2

IN

€

- 1/2
= / a|Vul? dx} +o(1) .
Q4 \D.

For the last estimate we have used the fact that Vi (y) vanishes for |y| > 2, and the fact that
w is continuous at 0 with »(0) = 0 (due to the result of DeGiorgi and Nash) to conclude that

1/2
1 Lo — €

[ A PIT EOR
Q+\D€ € €

Since u. has been extended to be zero on D, and since w is in H*(£2), it follows that

< (Ce max |u| = o(e) .
Qi n{e]+(zs—e)? <4e?}

/ a| V| de g/ a|Vaul? de + o(1) . (5)
Q4 Q4
On the other hand, Dirichlet’s principle also gives
/ a|Vul? de < / a|Vu?® dz . (6)
Q4 Q4
A combination of (5) and (6) yields
/ a|Vu|? dz :/ a|Vul? dz + o(1) . (7)
Q4 Q4

It is easy to see that
/ a|V(u. —u)|* dz = / a|Vu.|* dz — / alVul? dz |
Q4 Q4 Q4

and therefore by insertion of (7)
/ alV(ue—u)>dz —0 ase—0 .
Q4

Since v, = u = 0 on { x5 = 0 }, it follows immediately that v, — v in H'(Q ).
The statement about C'™° convergence follows from elliptic regularity theory and from the
fact that ¢ comes from an odd C* function on all of 9. We have to exclude the curve

{22+ (z2 —1)> =1}, since the coefficient a is discontinuous across it.

O
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Figure 7: The geometric situation in the z-coordinates.

4 Preliminary estimates

It turns out to be somewhat simpler to work with the variables (z1, z5) = ®(z1,z2), given by
the conformal transformation

1 L2
@(.’Bl .’Bz) =
7 7
of + 23« + a3

The geometric situation is now as illustrated in Figure 7. The “outer” boundary 022N {z, > 0}
maps to the “inner” boundary S. The circle {#} + (x5 — 1)> = 1} (the fiber) and the circle
{z? + (z2 — €)* = €*} (the additional boundary for u.) map to the horizontal straight lines
zo = 1/2 and z, = 1/2¢ respectively. The inside of these circles map to the halfplanes z, > 1/2
and zy > 1/2¢ respectively. The lower boundary {z, = 0, — R < z; < R’} maps to the
straight part of the lower boundary, {zz = 0, 2z < —1/Ror1/R" < z}. Since ® is a
conformal mapping, it follows immediately that

2 _ 2 1
A+ a(z)| V4] dw_L(Q+)A(z)|VZV| dz Yo e H Q) . (8)

Here A and V are related to @ and v by
V(z) =vo® (z), A(z)=ao0d® '(2).

The transformed solutions U(z) = w o ® '(z) and U.(z) = u. o ®!(z) satisfy the differential
equations

V-A(z)VU =0 for z € &(2)

and

V- -A(z)VU. =0 for z € ®(Q4), 22 <1/2¢ .
The transformed conductivity A(z) = A(z2) has the form

A(z) =1for zo < 1/2, A(z) = ag for zo > 1/2 .
On the “inner” boundary S the functions U and U, satisfy the boundary conditions

U(z) =Uz) = po®(2) .



Furthermore, U satisfies
U =0 on the lower straight boundary {2z, =0, 2z < —1/Ror 1/R < 2z},
and U, satisfies
U. = 0 on the lower straight boundary {z; =0, 23 < —1/Ror 1/R' < z;}, and on {z; = 1/2¢} .

From the energy identity (8) and the fact that w,u. € H*(Q, ), with u. — w, it follows imme-
diately that

/ VU dz < 00 and / |VU.|? dz < C , independently of ¢ . (9)
B(924) B(4 )N {z<1/2¢}

The function U(z) tends to zero as |z| — oo (this follows from the fact that « is continuous
and has the value 0 at the origin). A simple calculation, using separation of variables, shows
that the auxiliary function, U, has the expansion

Ulz) = Z BrePne(z2)e”V Ane 2L for o sufficiently positive |, (10)
n=1

Ud(z) = Y. B .hne(z2)eV <™ for z sufficiently negative | (11)
n=1

where A, > 0 and ¢,,.(-) are the eigenvalues and the eigenvectors of the two point boundary
value problem

—(A()9) =AA()¢ , in (0,1/2¢)
$(0) = ¢(1/2¢) =0 . (12)

Since the coefficient A is bounded from above and is bounded away from zero, it is not difficult
to see that
d(ne)? < M\, < D(ne)® |

for some constants 0 < d < D, independent of n and e. We assume the ¢, . are normalized
by || fnellz2(0,1/2¢) = 1. Note that there are no exponentially increasing terms in either of the
representations (10) and (11) due to the second inequality from (9). Using the same inequality
from (9) (and a standard trace theorem) it follows that there exists z; > 0, such that

o)

S B2V A < CUelsms 3201 /20
n=1
< cf VUL dz
2(024)N{0<z <z} , 0<zm<1/2¢ }
< oo,

for any fixed € > 0. Similarly we get that

o

S (Bl e VA < oo

n=1

10



for any fixed € > 0. As a consequence of these two bounds and the fact that d(ne)* < )\, . <
D(ne)?, it follows immediately that

U.(2)] < C.e el

for |z| sufficiently large, uniformly in 0 < z5 < 1/2e. That is, for a fixed €, the function U,
converges exponentially to zero as |z;| — oo.

Consider the restriction of U, to the horizontal line zo = 1 (supposing € < 1/2). By simple
integration by parts and Holder’s inequality

2
/ U62 dz; < C (/ (iUe) dz —I—/ Ug dsz)
2=1 B(Q4)n{z<1} \ 022 s

Using the energy bound (9) for U. and the boundedness of the boundary values of U, on S, we
now obtain

/ U? dzy < C(/ VU, dz—l—/ (o2 ) dsz) < C . (13)
zo0=1 <I>(Q_|.)ﬂ{,22<1} S

The fact that U.(z) approaches 0 exponentially fast as z; — +oo along the line 2z, = 1, translates
into the fact that the function u.(z), restricted to the corresponding circle { #? + (z, —1/2)* =
1/4 },is C*°, with its value and all the values of its tangential derivatives vanishing at zero.
Let v. denote the solution to

Nv, = 0 in{ad4(za—1/2°<1/4} |
ve = u. on{ x4 (zy1/2)>=1/4} .
We introduce one more auxiliary function V,(z), the “push-forward” of the function v,
Ve(z) = v 0 @_1(z) .

V. is defined on the halfplane {z, > 1}. V,, together with all its derivatives with respect to z,
converges to zero as |z| — oo, and it satisfies

AVe=0 in{z,>1} , V.=U, on{z=1}.
We have the following representation for V;
(ZZ — 1) /OO U6(37 1)
€ ’ = d >
Velz1, 22) T —oc (21— 8)2 4 (22 — 1)? i

from which it immediately follows that

1
(z1 —+)* + (22 — 1)? le(=oc.00)

Oz = 1) Uy Do) - (14)

Here 1 < p < o0, and %—I—é = 1. Note that we are not asserting that ||U.(-,1)||1r(—c0,00) 1s finite
for all 1 < p < oo. For any integer k > 1, we similarly get

9 k
(a—Zl) Vve(zlv Z2)

The estimates (13), (14) and (15) (the latter two for p = 2) lead to

Ve(z,22)[ = Oz = DI[Ue(; 1) 2o(=00,00)

IN

< Oz = )7 77U Do) - (15)

11



Lemma 4.1 Let 0 < a. Then there exists a constant C, independent of €, such that

(8%)2 Ue(2)

< Clz|**, and < Clz|7%%

0
< -1/2
(AR LR R

for z € { max(2,a|z|) < zy <1/2¢ }.
Proof Let V. be as above. The function U, — V_ satisfies

AU-V.)) = 0 in{l<z<1/2¢} ,
U.—V. = 0 on{z=1}, (16)
U.—V. = OKWe) on{z=1/2¢} .

The estimate of U, — V. on { z, = 1/2¢ } follows from (13) and (14) with p = 2. For any fixed €
we also have that (U, — V.)(z) — 0 as |z1| — oo (uniformly on 1 < z; < 1/2¢). An application
of the maximum principle to (16) now yields

(Ue =Vo)(2)| < CVe on{l<z<1/2} ,
and therefore, based on (13) and (14) with p =2
U.(2)| < C(ve+ 2" on{2<z<1/2} .
It follows from this that
Ue(2)| < Ol on { max(2,a]z]) < 2 < 1/2¢ }
as desired. A similar argument may be used to derive the desired estimates for a%UE and

(%)2 U., the only difference being that one applies (15) with & =1 and 2 in place of (14).

O
The following result will prove convenient both here and later.

Lemma 4.2 Let 0 < My, 0 <7 and 0 < a, with arctan a < ﬁ Suppose W, is continuous

on{ My <z, 0<2z < i }, continuously differentiable on each of the sets { My < z; , % <
29 < i Yand { Mo <z, 0<z < % }, and satisfies, in a weak sense

VA VW, = 0 in{ My<z, 0<z,<1/2}
We = 0on{ My<z, z22=1/2¢ }and { My <z, 20=0} .

Suppose furthermore that |W.(My, z2)| < Ko for 0 < zo < aMy, and that, for fived e, W.(2)z] —
0 as z; — oo, uniformly on 0 < zo < 1/2¢. Then

[We(2)] S Colz|™" on { Mo <z, aMy<z <1/2¢ }N{ 2z =0z}
tmplies that
[We(2)| < Cilz|™ on { My <z, 0< 2y <min(az, 1/2¢) } ,

with C} depending on Co, My, Ko, @ and v, but otherwise independent of W, (and ¢€).

12
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Figure 8: The semi-infinite strip. The dashed line represents the conductivity discontinuity at
zo = 1/2. The “inner” boundary S is illustrated as a semi-circle.

Proof The proof differs slightly depending on whether ag < 1 or ag > 1. We start by
considering the case ag < 1. Let p(z) denote the function

p(z) =r"siny(6 +90) ,

where (r,6) denotes polar coordinates centered at the origin. Let P. denote the semi-infinite
strip bounded by the four lines { z2 =0 }, { 21 = My }, { 22 = @z }, and { 2o = 1/2¢ } (see
Figure 8).

The function p is clearly harmonic in P.. We also calculate

0 0 60
8—52 = sin (90—/: CO: a—'g = —yr 7 Y(sinfsiny(f + §) — cosH cosy(0 + 8) )
= yr " leos( (v +1)0 +46) .
Due to the condition arctan a < ﬁ, it follows that 0 < 8 < arctan o < m on P.. By
selecting 0 < ¢ sufficiently small we may thus obtain
0<(y+1)f+~85<7/2 onP. .
It follows immediately that
_ O
p(z) >0 forz€ P. , and a—(z) >0 forze P, . (17)
E2)
Now consider the function
We(z)
we(z) =
1#(z)
A simple calculation gives that
1
Awe+2—Vp-Vw, =0 in P.\{z=1/2}, (18)
[
and dut o 5
W, We 1 .
aoa—zz " 0m =(1- ao)#aiwe on the half-line { z, =1/2 } N P, . (19)

13



The equation (18) , the fact that w,. attains the value 0 on JP,, and the fact that w.(z) — 0
as z; — 0o, imply that w, attains it extremal values (min and max) on dP. or on the half-line
{ z2 = 1/2 } N P.. The condition (19) rules out the posibility that an extremal value can be
attained on { z, = 1/2 } N P, unless w, is constant (= 0): if a maximum was attained at

zo € { 22 =1/2 } N P. then w.(%) > 0 and thus, according to (17) and (19),

Qwe™ .\ _ dwe”

a06z2 (0) 0z, (20) 2.0

(Remember we are in the case ap < 1). However, Hopf’s version of the maximum principle
asserts that if w, is not constant (= 0) then g—qj;+(z0) < 0 and gg’;_(zo) > 0, and at least one

of these values is nonzero. Consequently

Ow.t ow,.~

o 822 (ZO B 622

(z0) <0

and this represents a contradiction. Corresponding to a minimum we would have w.(z) < 0,
and the same argument as above would lead to a contradiction (unless w. = 0).
We may therefore conclude that the extremal values of w, are always attained on JP.. Let
dy denote the constant
do = sinyd .

It follows that 0 < dp, and that dy only depends on v and 4. It is quite easy to see that
(=) < Kody " MI(1+ a?)""?
on {z1 = My, 0< 2z < aMy}, and that
|we(z)| < Cody*
on {My <z, aMy < zs <1/2¢} N {z5 = az1}. Together these two estimates show that
w0 (2)| < G} on 0P, |

with C} = d* max(Co, KoM (1 + a2)7/2). Since the extremal values of w, are attained on the
boundary of P., we immediately conclude that |w.(z)| < C{ in P., and thus

We(2)| < Colz[™7 in P.

exactly as desired (for ag < 1).
In the case ap > 1 we introduce the funtion g = 777 cosy6. We now calculate
6—'“ = sinﬁa—’u cos@@_,u

Ozs or r 08

—~7r ™77 (sin # cos y8 + cos Hsin 8 )
= —yp 7t sin(y + 1)8 .
Therefore

— 0
p(z) >0 forze€ P., and 6_,u<0 for z € P. .
Z2
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The argument from before works in an identical fashion with this function, since the signs of
1 —ap and %,u have both changed, so that %(1 — ao)%ﬂ stays positive. The constant dy gets
replaced by

dy = cosy8, >0

with 8, = arctan o«. This shows that
(We(2)| < Cglz[™" in P,

exactly as desired (for ag > 1 as well).

Based on the two previous lemmas it is now fairly simple to prove

Proposition 4.3 There exists a constant C, independent of €, such that the functions U,

satisfy
o\’
() vto

Proof Select 0 < « so that arctan a < 7/3, and select 0 < M so that 2 < aM, and so that
the line { z; = M } does not intersect the “inner” boundary S. Elliptic regularity results (in
combination with the uniform energy bound for U,) easily give

< Clz|™*% , and < Clz|7¥%

0
< -1/2 —
|Uc(2)| < C|#| , ‘321 Ud(z)

for z € ®(Qp)N{ 2z < 1/2¢ }.

|U(M,z)| < K for0<z <aM |,

with K independent of e. We also have that Ue(z)zi/2 — 0 as z; — oo (uniformly on 0 < z5 <
1/2¢). Indeed, U, decreases exponentially as z; — oo. From Lemma 4.1 we know that

U(2)| < Clz[™* on{M <z, aM<z<1/2}0{z=az} .
Application of Lemma 4.2 with v = 1/2 now gives
|Uc(2)| < C'|z|_1/2 on {M <z, 0 <z <min(az, 1/2¢) } ,

with C’ independent of €. For 0 < z;, max(aM, az;) < z5 < 1/2¢ it follows immediately from
Lemma 4.1 that |U.(z)] < C|z|_1/2 . For z outside S, 0 < 23 < M and 0 < 2z, < aM (the
remainder of ®(Q2;)N{ 0 < z;, 25 < 1/2¢ }) elliptic regularity results yield that |U.(z)] < C <
C|z|~Y/? . In summary, we have thus verified that

U.(2)] < Clz|? in ®(Q)N{0< 21, 2 <1/2¢ } .

A similar argument (e.g. using U.(—z1,22) in place of U(z1, 22)) proves the same estimate in
P(Q4)N{ z1 <0, 2o < 1/2€ }, thus completing the proof of the first assertion of this proposition.
Almost identical arguments with v = 3/2 and v = 5/2 lead to the desired estimates for %Us
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2
and (%) U, respectively. Note that these functions also solve the type of boundary value

problem required in Lemma 4.2.

O
Since U, — U, %UE — %U and (%)2 U. — (&)2 U pointwise inside ®(24)\{z, = 1/2}
2
(Proposition 3.1) and since U, %U, and (%) U are all continuous in ®(£2; ), we derive from
the above proposition

Corollary 4.4 There exists a constant C' such that

<Ol

(2)

Based on the use of Proposition 4.3 we are able to establish improved estimates for U, and

UG < ORI [ 00s)| < Ol ana
1

for z € ®(Qy4).
U that immediately lead to a proof of our main theorem.

5 The improved estimates

We extend the function A to all of the halfplane 0 < z, by setting it to 1 in the domain bounded
by S = (9@ N {zy > 0}) and {z; = 0}, and we introduce the new variables z = (Z1, Z2) as
follows

ag—1
{z2—|— Sl m>1/2 (20)

z2 ]_
1 = — _ d =
amAa . 2 ao/(; A(s) y apzs , ze < 1/2.

The transformed function U(2) = U(z) solves

() () ()

with the domain ®(Q,) defined by

U=0 forzedQy) ,

e ®(Qy) if and only if z € B(Qy) .

See Figure 9. We have illustrated the stretched “inner” boundary S as the upper half of an
ellipse.

The function A is defined by A(%z) = A(z,), where Z, and z, are related by the second
formula in (20). From the above definitions it follows immediately that

A;U =0 for ap/2 < zy

and

AU =(1- 1)(8) U for 2 € ®(Qy) N {2 < ao/2} .

16



Figure 9: The streched geometry. The dashed line represents the location of the discontinuity
of the coefficient A.

Similarly,
A;U. =0 for a0/2<22<w ,
€
and ,
. 1 0 - .= .
AU = (1 — —2) - U. for z € ®(Qy)N{23 < ag/2} .
ag’ \ 0%

Let E denote the domain bounded by the inner boundary S and {Z2 = 0}. In Figure 9 it
is represented by the inside of the half-ellipse. We now extend both U (and U.) to all of the
halfplane 0 < Z» (the strip 0 < 2, < %
on z; = 0 and are C:z’ﬁ bounded in a neighborhood of E (independently of €). This may be
done since, near S, U and U, are C*, and uniformly bounded in all C* norms (due to elliptic

regularity results and the uniform energy estimate). As a consequence we get that

) in such a way that the extensions are zero

AU = 0 for ag/2 < 29

2
Agﬁ = (].—iz) (i) ﬁ+f(2) fOI’O<22<(l0/2 N
ai’ \ 0%

where f is uniformly bounded and supported in the closure of E. We also get that

. 1 -1
AN;U, = 0 forag/2 < 25 < % \
€
i 1. (0\ - i i
AgUE = (]. — —2) ~ U. + fE(Z) for 0 < z5 < a0/2 ,
ad’ \ 0%

where the f. are uniformly bounded (independently of €) and supported in the closure of E.
The functions U, U, and the gradients V;U, VU, are continuous across the line z, = ag/2,
so the above piecewise formulas entirely describe (the distributions) Az;U and A;U.. Let g.

denote the function g. = (1 — %) (%)2 U. + f. (in E) and define

2_
7z = %=1

€

]. 5 2 > _t2
dmal L(s,t) : O<t<ag/2N\E [ Og(|z1 8%+ |z, | )
9\’ -
—log(|z — 8|2 + |20 + t|2)] (6_) Uc(s,t) dsdt
]
+i/ log (|21 — 3|2 + |2, — t|2)
A7 JE
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—log(|z1 — s|* + |22 + t|*)| ge(s, 1) dsdt .

It is not difficult to see that V* satisfies

Agf/: = 0 forag/2 <2y ,

. 1 o\ .

AV = (1- _2) ( po ) Uc+ fe(2) for 0 < 23 < ag/2 , and
ag’ \ 0z

V* = O at 22 = 0 .

€

V> and V;V* are continuous across the line Z; = ag/2, so the above piecewise formula entirely

2 .
describe (the distribution) A;V* . The second order derivative (%) V> 1s also continuous

2]

2 .
across the line Zo = ag/2, but the second order derivative (E) V_* is in general discontinuous.

Lemma 5.1 For any fized € we have that

2
V@I =0, 621‘75*(2) ~0, and (aazl) 7 (3)| -0
as |Z1| — oo, uniformly for 2 € { 0 < 23 < % 1.

Proof Since the function g, is uniformly bounded independently of €, and since

2(22 4+ 9)
20— 8|2+ |22+ 02

log(|21 — s|* + |2a — t|*) —log(|21 — s|* + |22 + t[*) = —2¢

where —ao/2 < § < ao/2 (when 0 <t < a/2) it follows immediately that the last integral in
the definition of V7,

1 . . . .

L [loguzl = 22— 1) —Tog(12 — sf? + |2 + %) (s, ) dsdt

converges to 0 as |z1| — oo (uniformly for 0 < z; < ﬂ;"—_ll) . Let E° denote the set
EC={(st) : 0<t<ag/2}\E .

The first integral in the definition of f/;* may be bounded by

C’/~ [log 2 — 8%+ |3y — t|?
Ecn{|sl—s|<|zl|/z}‘ (121 =P+ |22 = 17

2
+ ‘]0g(|21 P4 | t|2)‘]| (%) U.(s,t)| dsdt

%, + 6| o\’ -
+C/ - . TN O.(s,8)| dsdt . 91
Ben |z -al2 | 1/2 ) |Z1—S|2—|—|z2+9|2| 5s) Uels: 1)l ds (21)
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As |z = oo (for 0 < 2, < %) the second integral in (21) is bounded by

1 a\* -
CEW /E‘ﬂ| (as) UE(S,t)| dsdt |

which clearly approaches 0 (the integral in this estimate is uniformly bounded in € according
to Proposition 4.3). For 0 < 2z, < W, 0 <t < ag/2 we have

[log(|21 — s|* + |22 — *)| < [log(|21 — s[*)| + K.
and
[log(|21 — s|” + |22 +t*)| < [log(|21 — s*)| + K. .
so that the first integral in (21) becomes bounded by
9\
C, log(|z1 — /)| 4+ D[ | =) U.(s,t)| dsdt
iy, (st =P 0 () OG0

< Ceclal . log(|z1 — s|*)| + 1) dsdt
B stz 1| BRI D)

< Ceem Pz [log(|2*)] as [z1] — o0 .

Here we used that |Z; — s| < |Z1]/2 = |s| > |#1]|/2, and that

2 .
(%) Ue(S,t)‘ decreases expo-
nentially in |s| (uniformly in ¢, for fixed €). This proves that the first integral in the definition

of V* converges to 0 as |Z1| — oo (uniformly for 0 < z, < ﬂgf—_ll) and it thus verifies the

asymptotic statement concerning V: For the first and second order derivatives of TN/;* with
respect to z; we write (for |2;] large)

AN TR =y log((2 — s + |22 £}
z) = og(lz1 — 8 Zo —
0% ¢ dmal J{(st) : 0<t<ag/2\B sli= 2
a 2+k~
flog(|21 *S|2+ |22+t|2):| (a—) UE(S,t) det
S
1 a\" ) . ,
E/E[(agl) log([z1 — s + |22 — 1)

k
— ( ON ) log(|21 — 3|2 + |2, —|—t|2)}ge(s,t) dsdt
621

and apply an argument very similar to that above.

Let H(z,y) denote the function
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For ag/2 < z, a fairly straightforward computation gives

o\ - ag—1
V) = S |
(821) - (21, %) 4mad J{(st) : 0<t<ao/2]\E

[H(El — s, —t)

2
—H(% —s,20+ t)} (§> U.(s,t) dsdt

s
1

T

By use of Taylor’s formula we now get

o\~
(aél) Vi3, 2)

/; [H(3, — 5,5 —t) — H(31 — 5,35 + )] gu(s, ) dsdt .
E

al—1 8\ -
. % H (3 — 5,50+ 0) () T.(s.8) dsdt
4mal A(s,t):0<t<a0/2}\E A )(83) (5,2) ds
1
——/_ % Hy(31 — 8,3 + 0)g.(s,1) dsdt (22)
4n JE

where 6 lies between —a/2 and a¢/2 (and depends on Z; — s, Z5 and ¢). The derivative H,, is
given by
y(12z* — 4y?)

@ 1 7 |<Cy™® 1<y . (23)

|Hy(2,y)| = |

From Proposition 4.3 we know that

o\’ -
v < 2 2\—5/4
(as) Ud(s,t)] < C(s* +17)

for (s,t) € E°. We also know that g. is uniformly bounded on E, independently of e. Combining
these two facts with (22) and (23) we now conclude that

o\’ .
(azl) Ve(a,2)

with C independent of e. By an entirely similar argument (taking just one derivative, or no
derivative at all) we obtain the estimates

[
% Vi(%1, 22)
The estimates (24) and (25) are stronger than the corresponding estimates (14) and (15) (with

p = 2) by a factor of 22_1/2. Not surprisingly, these estimates for VE* lead to improvements of

<Cz° 14ap/2< 2, (24)

<Cz?, and [V(5,5)| <050 for l4ag/2< 5 . (25)

the results of Lemma 4.1 by a factor of |z|7/2.

Lemma 5.2 Let 0 < a. Then there exists C, independent of €, such that

(2) e

O < ORI [ tde) < O and <0,

for z € { max(2, a|z]) <z, <1/2¢ }.
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Proof The function U, — VE* satisfies

. 1 —-1
AU~V = 0 forO<22<+€(2ao) :
€
U.—V* = 0 atz=0,
. 1 —1
UE _ I/E* — O(e) at 22 — % ,
€

and U, — V* — 0 as |z| — oo (uniformly for 0 < z, < %) The desired estimate for U,

follows by an application of the maximum principle just as in the proof of Lemma 4.1 (possibly
with a smaller coefficient «') and then a return to the z coordinates. The estimates for %UE

2
and (%) U, follow in a completely similar manner.

Based on Lemma 4.2 and Lemma 5.2 it is now possible to establish

Proposition 5.3 There exists a constant C, independent of €, such that the functions U,

satisfy
|U.(2)] < C|z|™ iU(z) <Cl|z|™?, and 9 2U ()| < Clz|?

¢ - ’ 621 ‘ - ’ 8z1 ¢ - ’
for z € ®(Q)N{ 22 < 1/2¢ }.
Proof The proof is exactly the same as that of Proposition 4.3.

O
Taking the limit € — 0, we conclude just as before
Corollary 5.4 There exists a constant C, such that
|U(z)] < Clz|™! iU(z) <Cl|z|™?, and 9 2U(z) < Clz|™®
- ’ 621 - ’ azl - ’

for z € ®(Qy4).
6 The proof of the main theorem
Going back to the function U , one can check that it has the representation formula

. a?—1

U(z) = 29 / 1 s L2 512

(%) Amal J{(ss) : 0<t<ao/2}\E [ og(|5 ="+ 12 )
a\" -
—log(|z — s|* + |22 + t|2)] (8) Ul(s,t) dsdt
s
+i/ log(|21 — s* + |22 — t?) (26)
A7 JE S 2

—log(|z — s* + |2, + tz)] g(s,t) dsdt
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where g denotes the function

92(1—%)(821) U+f .

in E. To see this, it suffices to notice that the right hand side of (26) satisfies the same equation
and the same boundary condition as (7, and to verify that it also converges to zero as |Z| tends
to infinity. The fact that the two integrals in (26) converge to zero for 0 < 2, < K as |2;| — oo,
follows from an argument very similar to that used in the proof of Lemma 5.1 (one compensates
for the fact that U does not necessarily decrease exponentially in z; by using the decay estimate
of Corollary 4.4). As we shall observe later, it is not difficult to prove that these two integrals
are also bounded by C'Z;! (uniformly in Z,) as Z; — co. A combination of these two facts yields
that the right hand side in the formula (26) converges to zero as |Z| — oo, which now implies
that it is indeed a representation of U. For ao/2 < % we calculate
(9[? ag—l/ 2(2, — t)
025 (%) = dmad J{(st) : o<t<ao/2]\E | |21 — 8|2 + |22 — t|?

2% + 1) a\" -
— — t) dsdt
|21—s|2+|zz+t|2] (a) Uie,t) ds

1 / 2%y — t)
it JE |21—3|2+|22—t|2
2(22 + t)

a2zt

} g(s,t) dsdt .

Introducing K (z,y) = we obtain

2+27

0 al—1
aZ2U() -

2
2K, (21 — 8,22+ 0) ( 0 ) [j(s,t) dsdt

Ama? ./%(;;,t) : 0<t<ag/2}\E 0s

1 o~ ~
1 é2tKy(21 — 8,23+ 0)g(s,t) dsdt

with lying between —ag/2 and ao/2 (and depending on z; — s, Zy and t). Since |K,(z,y)| =

|?i§j_; | < Cy~2, 1<y, the known decay of (%)2 U (Corollary 4.4) and the boundedness of
g lmply
0
—U(3)| <Cz%, 14a0/2<% . (27)
622

An argument identical to that given just above (taking no derivative) would immediately yield
that the two integrals in the right hand of the formula (26) are bounded by C'25' (we needed
this fact earlier when we showed that (26) is indeed a representation of (}) Rewritten in terms
of the z coordinates, (27) gives

< Cz? ) 1/24+c< 2z, (28)

‘822
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for some 0 < ¢. Using the fact that

(%A(zz)%U(z)) — —A(z) (a%)z U(z) = 0(|2]) . z€®(Qy) . (29)

as asserted by Corollary 5.4, we are now able to prove that

Lemma 6.1 There ezists a constant C, such that

2 UG s ol
for z € ®(Q4)\ {z2 = 1/2}.
Proof From (28) it follows immediately that
9 —2 —2
a—zzU(z) < Cz* < Cl7 for max(1/2 +¢,|z1]) < 22 . (30)

For 0 < z5 and max(K, z5) < |z| (with K sufficiently large) we have that

) 0 a0 0
(AO—@U) (21, 21) — (Aa_zf]> (21,22) = /% (a_zzAa_@U) (z1,1) di

and therefore

) o
‘(Aa—zz) Uz, z)| < Clz| 2+ 0/% (]2 + |t12)7%2 dt

< Clz|™*  for max(K, z2) < |z . (31)

Here we have used the estimates (29) and (30) (and the fact that we may select K > 1/2 4 ¢)
to derive the first inequality. Based on a combination of (30) and (31) we conclude that

iU(z)

3 < Clz|™2  for |z| > V2K, z¢ {z, =1/2} .
22

The function A is discontinuous across {z; = 1/2} and the derivative %U i1s not properly
defined there; this is why we subtract the set {z5 = 1/2}. The above estimate in combination
with an elliptic regularity estimate (for |z| small) immediately leads to the desired result.

a

Combining Corollary 5.4 and Lemma 6.1 we finally arrive at

Theorem 6.2 The solution, w € H'(), to the boundary value problem (1), with conductivity
a given by (8), is in WH=(Q) for any fized 0 < ag < oo

Proof We already know (cf. [4]) that v € CP() for some 3 > 0. From standard elliptic
regularity results we also know that w is smooth, and therefore bounded, near 9Q. It thus
suffices to prove that Vu € L>(). As already explained earlier (in section two) we may
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restrict attention to w that are odd in the #;-axis. For such u, it suffices to show that |Vu| < C
in Q\{zi4+(z2—-12=1}=@QnN{0<zy })\ {23+ (25 —1)> =1 }. The solution u has
the form

w(z) =U o ®(x) ,

where U has been studied in the preceeding three sections. We calculate

Vu(z) = DO (z)(V,U)(P(z)) . (32)
The matrix D® is given by
_| Ox1 O
PP 0m 0m |
6131 8:102
and a simple computation yields
8zl~ (5”(:13% —|— :Bg) — 2131;.’133; 1
= <(C——— Q.
s, Givaty |- Catra TS5 (3)
At the same time, Corollary 5.4 and Lemma 6.1 give that
V.U(®(2))] < Clb(x)| " = C(at +23) forseQ\{zi+(m—1 =1} .  (34)

Combining (32), (33), and (34) we finally obtain
V@) <C weQ\{ad+(m—17=1} .

as desired.

a

Remark In the appendix we shall see that the case which formally corresponds to ag = 0
admits solutions that are discontinuous at the origin. Thus, it would not be reasonable to
expect the solution w (given fixed boundary data) to have a gradient that is uniformly bounded,
independently of ag. The L* norm of |Vu| may well become unbounded as aq approaches 0.
By duality the same phenomenon may also occur as ag approaches oo.

7 Appendix

In this appendix we give a short review of what happens in the two cases that at least formally
correspond to ap = 0 and ap = co. In both cases the relevant boundary value problems live in

Q\ { the fibers }. They require that

Au’ = Au™ =0 in Q\{ the fibers } , (35)

with P
8—u0 =0 on the boundaries of the fibers |, (36)

n
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and
(o)

u™ = constant on the boundary of each fiber |, (37)

respectively. The constants in the boundary condition (37) are not arbitrary, they are those for
which the energy expression attains its smallest value. On the boundary 0f2, the two solutions
satisfy the common boundary condition

uozuoong .

Given smooth boundaries, the solutions «° and 4> would be obtained as limits of the solution
to (1), as ao tends to 0 and as ao tends to oo respectively. We suspect that the same holds true
for boundaries with cusps as here, but we have not carried out the analysis. This is why we
use the terminology “formally corresponding to ag = 0 and ag = 00”.

In the transformed variables z = ®(x), with ® as before, the equations (35)—(37) become

AU =AU®=0 in{z€®Q), —1/2<z<1/2} , (38)
with P
a—zzUOZO on 22:i1/2 s (39)
and
U¥=cy onz==1/2 , (40)

respectively. The common boundary condition on 92 transforms into
U'=U®=¢po® ' on P(00)

For the moment we restrict attention to the boundary value problem for U°. At the very end
of this section, we return to make some remarks about the boundary value problem for U*.
As mentioned previously, any solution to this boundary value problem may be written as a
sum of two harmonic functions in { z € ®(2) , —1/2 < z5 < 1/2 }, one which is even in the
z1-axis and one which is odd. These two functions have somewhat different behaviour. We first
consider the even function, which, when restricted to the interval 0 < z, < 1/2, is a solution to

AU’ = in{ze®(Q), 0<z<1/2}
O%UO = 0 on{z=1/2} andon { z€ ®(R), 2z2=0} , (41)
2

U = ¢po® ton{zec®0), 0<z} .

Separation of variables now immediately gives that U° must have the form

U°(#1,22) = Bo+ D, Bncos(2nmzs)e 2™ for z sufficiently positive | (42)
n=1
U°(z1,22) = By + Y B, cos(2nmzs)e*™  for z sufficiently negative . (43)
n=1

Conversely any function, U°, that is defined by (42) for z; > 0 and by (43) for 2; < 0, is a
solution to

AU’ =0 in {z # 0}
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Figure 10: The function f.

with boundary conditions

iUO =0 on {2z =0} and on {z, =1/2} .
024
We shall now use this fact to construct a rather large class of solutions.

Select By and G arbitrarily, and let f(z) denote any smooth, even and periodic function
with period 1, such that f(z2) = B — o for r < z2 < 1/2 (0 < r) and such that f01/2 f(s) ds =0.
A graph of such a function on the interval (0,1/2) is illustrated in Figure 10. The value of r is
selected small enough, so that the line segment {z; =0, 0 < zy < r } lies inside ®(IR*\ Q).

Let £,, n > 1, be the cosine Fourier coefficients of the function f/2, i.e.

2 ij:lﬁn cos(2nmze) = f(za) . (44)

Since the integral of f is zero, the expansion does not contain any 0’th order term . Since f is
smooth, the (3, converge very fast to zero.
Let 3/, n > 1, be given by
B= P . (45)

and consider U° defined by (42) for z; > 0, respectively by (43) for z; < 0. Due to (44), (45),
and the fact that f(zs) = 3] — By for r < 25 < 1/2, we observe that U° is continuous across the
line segment { z; =0, 7 < z2 < 1/2 }. The fact that 8/, = —f3,, insures that %UO 1s even in
z1, and thus automatically continuous across the line segment { z; =0, r < 2z, <1/2 }. We
conclude that this U° is indeed harmonic in all of $(Q) N { 0 < 2, < 1/2 }, and satisfies the
boundary conditions

0

a—UOZD on{z=1/2} andon{z€®(Q), z=0} .
22
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The values of U? on $(9Q) N { 0 < 2z, } (the remainder of the boundary) naturally depend on
f, and correspond to a particular choice of ¢.

Since 3y and ) were chosen arbitrarily we have ) # [y in general. In the z coordinates
and (3 are the limits of U® at z; = +o0o and z; = —oo respectively. In the z-coordinates these
are the limits of u" as we approach the origin through the cusp on the right and through the
cusp on the left respectively.

We have thus constructed a family of solutions which are discontinuous at the origin (and
even in the #;-axis). This should be the typical behaviour of solutions, when the data ¢ is odd
in the zs-axis (and even in the x;-axis).

If the data ¢ is even in both the z,- and the z;-axis, then we must necessarily have g, = 3,
for all 0 < n (in the expansion (42) and (43)) and so u° has to be continuous at the origin. If
the data ¢ is odd in the z;-axis then it is very easy, again by separation of variables, to see
that u° is continuous at the origin (its value is zero).

In all the cases considered above the function u° is C* inside each of the cusps and all its
derivatives (of order > 1) vanish at the origin.

Let us now briefly return to the case ag = co. When ¢ is even in the z;-axis, separation of
variables readily gives that U>(z) must have the form

U™(z1,22) —co = Y Bncos((2n + L)mzy)e” D™ for 2 sufficiently positive |
n=1

U*(z1,22) —co = Z Bl cos((2n + 1)7rz2)e(2”+1)”1 for z; sufficiently negative |,
n=1

where ¢g is the common value attained on the fibers (there is just one constant value, due
to the evenness of the solution). It follows immediately that «™ is continuous at 0 (in the
z-coordinates), and that all its derivatives vanish at 0. When ¢ is odd in the z;-axis, so are

0

u™ and U™. Separation of variables thus yields

U™ (21, 22) — 2¢oz = Z B sin(2n7rz2)6_2mz1 for z; sufficiently positive |, (46)
n=1
U™ (z1,22) — 2022 = E Bl sin(Zmrzz)ez"m1 for z; sufficiently negative |, (47)
n=1

where ¢g 1s the value attained on the upper fiber. However, in this case the requirement that
u>* be H! in the z-coordinates, implies that the gradients Vu™ and VU> must be L? in the
z- and in the z-coordinates respectively. Thus, ¢y must be equal to 0. It follows, using the
representation (46) and (47), that ™ is continuous at # = 0 (it has value 0), and that, similarly,
all its derivatives vanish at z = 0.

The fact that all the solutions are C*°, when regarded as functions in just each individual
cusp, would also follow from the analysis in [7].

As mentioned earlier, it would be very interesting to analyse the geometric setting, when
the fibers are close but not quite touching, say, the cross-sections are € apart vertically. A few
things can be said related to the calculations carried out above, as the distance e tends to 0.
When the boundary value ¢ is odd in the z,-axis but even in the z;-axis, then the singularity

mentioned above for u’ gives rise to a gradient (an z;-derivative %US(O)) which becomes
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unbounded as € tends to zero. The solution «* for the case of a ¢, which is even in the z,-axis
but odd in the z;-axis, is related to the previous solution by harmonic conjugation (rotation
of the gradient by 90 degrees). We thus in general, in this case, also obtain a gradient (an
zo-derivative a‘%u;’o(())) which becomes unbounded as € tends to zero. This in spite of the fact
that there is no irregularity in the “himiting” solution when the fibers touch. The rate at which
this gradient becomes unbounded has actually been calculated in [2], for a special solution
corresponding to uniform antiplane shear (see also [8]). For this special solution, the rate turns
out to be €7/%; we believe this is the generic rate for the above mentioned symmetries in the
boundary data. It should also be mentioned that for two touching fibers and 0 < ap < oo,
Budiansky and Carrier ([2]) calculate a finite value for the stress (aa%u) (0) of the same special
(antiplane shear) solution. This calculation relates (aa%u) (0) to the “shear at infinity”.
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