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We consider fiber-reinforced composites, where the fibers present some distortion in their
longitudinal direction. The length scale of this distorsion is much larger than the spac-
ing of the fibers. We derive asymptotic formulas for a conduction problem. Reiterated
homogenization, i.e. homogenizing with respect to the smallest length scale, then with
respect to the largest does not capture the effects of distortion. Instead, we use a repre-
sentation formula to show how distortion influences the correction terms.
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1. Introduction

Fiber reinforced composites are most in use among composite materials. Automo-
biles, aircrafts, off-shore structures, skis, etc. have parts that are built with fiber
composites, in order to combine lightweight and strength. The mechanics of such
composites are very complex, involve several phenomena, at several length scales.
Decohesion, debonding are the results of the local strength of stress fields and
depend on the constituents of the fibers and the matrix, but may also depend
on defects in the manufacturing such as the spacing between the fibers (some of
them may touch), possible kinks or singularities in the fibers (for example at their
extremities).

The theory of homogenization6,8,15 idealizes a “real-life” fiber-reinforced com-
posite as a periodic layered medium, where the material properties do not depend
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on the longitudinal direction of the fibers. Assuming the period to be small, the lay-
ered medium is replaced by an effective homogeneous material, that has the same
response, in an average sense.

It is natural to question the validity of the homogenized model for prediction
and design purposes. For one thing, the scale of variations in “real-life” is small, but
not infinitesimal. Periodicity is not an assumption that the current manufacturing
processes can guarantee. The relevance of the homogenized model also depends on
the smoothness of the domain and of the loads. Homogenization may be regarded
as a first step in the modeling of composites, and there is a great need for more
understanding of the influence of “defects” in non-idealized situations.

In this paper, we attempt to take into account one category of defects, in the
particular case of fiber-reinforced composites: the distortion of fibers. We study
a model problem of a material where fibers are layered in the x2 direction, but
longitudinal distortion (in the x2 variable) affects the geometry of the layers.

Distortion is present in all “real-life” fiber-composites and its effect is of high
practical importance. In aeronautics, fibers are used that have a diameter of
several micrometers, and that have longitudinal oscillations over distances of a
few meters.1 Several experimental and computational works show how theoretical
bounds obtained for distortion-free models are affected (see e.g. Ref. 10 and the
references therein).

We study a two-dimensional model problem where we make the following sim-
plifying assumptions. Firstly, the medium is considered to be periodic, in both
directions, but with different length scales. Distortion is modeled as smooth oscilla-
tions in the longitudinal direction of the fibers. Secondly, we deal with a conduction
problem with a zeroth-order term (however, the results could be extended to elas-
ticity). Thirdly, we consider the problem on the whole space R

2.
This third assumption allows us to follow the approach developed by Babuška

and Morgan in a series of papers.2–4 These authors gave an integral representation
of the solution uε to a conduction equation for a periodic medium with period
ε (0, 2π)n filling the whole of Rn, and studied the properties of the associated kernel.
More precisely, they consider the following PDE in H1(Rn)

−div(aε(x)∇uε) + a0,ε(x)uε = f(x) in R
n, (1.1)

where (aε, a0,ε)(x) = (a, a0)(x/ε) for some functions a, a0, bounded above and
below, and periodic on the cube [0, 2π]n. Assuming f ∈ L2(Rn), the solution to (1.1)
has the representation

uε(x) =
∫

Rn

f̂(t)φ(x/ε, ε, t) eit·x dt, (1.2)

where f̂(t), t ∈ R2, denotes the Fourier transform of f . The kernel φ(y, ε, t) solves
a PDE in the reference cell of periodicity. The interest of this representation stems
from the properties of analycity of the kernel, with respect to the period ε and with
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respect to the Fourier variable t. Approximations for uε can be obtained by expand-
ing the kernel in powers of ε under the integral sign, if the load f is smooth. In this
way, one recovers the results of classical homogenization.2 In particular, corrector
terms are easily found at any order of ε. One could also expand the kernel with
respect to t (in particular for a nonsmooth load). Thus, different approximations of
the kernel lead to different types of approximations of uε. Numerical comparisons
of such different homogenizations are given in Ref. 4.

The representation (1.2) has the flavor of a Floquet–Bloch representation. How-
ever, determining the kernel φ, for a fixed Fourier frequency t, only requires the
resolution of a PDE with a particular right-hand side, instead of the whole spectral
information for that PDE. We refer to the work of Conca and Vanninathan7 for the
relationship between Bloch waves and homogenization (see also Ref. 17). In spite
of being established only for unbounded domains, the representation (1.2) has been
used also to construct special bases of finite elements, for elliptic problems with
locally periodic microstructure. These bases guarantee that the computational cost
is bounded independently of the scale of the periodic structure.11,12

In this work, we establish a similar integral representation for the potential. We
are dealing however with two length scales: the period of the distortion (along the
x2 variable) is much larger than the spacing of the fibers (in the x1 direction). More
precisely, we assume that the coefficients have the form

(aν , a0,ν)(x1, x2) = (a, a0)(x1/ν2, x2/ν),

where a and a0 are [0, 2π]2-periodic scalar functions. The relationship between the
x1 and x2 scales is consistent with the physical situation. Scales (νr, ν) with a
different value for r could also be treated, but would lead to different asymptotic
approximations. Let f ∈ L2(R2), we seek uν ∈ H1(R2), solution to the elliptic
differential equation

−div(aν(x)∇uν) + a0,ν(x)uν = f(x). (1.3)

In this paper, we show that uν has a representation, similar to (1.2),

uν(x) =
∫

Rn

f̂(t)φν(x1/ν2, x2/ν, t) eit·x dt. (1.4)

In Sec. 3, we indicate how the results of Ref. 3 are easily generalized to show
that φ is analytic on a complex neighborhood of any point (ν, t) with ν > 0, t ∈ R2.

The situation concerning ν = 0 is different. To explain why, let us examine the
case of a single scale. Let L2

# denote the space of square integrable functions which
are periodic on [0, 2π]n, and by T (ε, t), the operator defined on L2

# by

T (ε, t)u = −div
(
a(y)∇(u(y)eiεt·y)

)
e−iεt·y + ε2a0,ε(x)u(y). (1.5)

In Ref. 3, the kernel φ(·, ε, t) is found as the periodic solution to Tε,tφ(y, ε, t) = ε2.
As ε tends to 0, the limiting PDE degenerates: 0 is an eigenvalue of T0,t, with an
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eigenspace of dimension 1. A theorem of separation of spectrum9 allows one to write
the kernel as

φ(·, ε, t) =
ε2

λ(ε, t)
Pε,t(1) + ε2Rε,t(1),

where Pε,t is a projection onto the eigenspace of dimension 1 associated with an
eigenvalue λ(ε, t), such that λ(0, t) = 0. Moreover, the operators Pε, Rε and the
eigenvalue λ(ε, t) depend analytically on (ε, t) in a complex neighborhood of any
point (0, t0), t0 ∈ R2.

The analycity of φ(·, ε, t) follows upon showing that λ(ε, t) ∼ ε2 as ε → 0, so
that ε2/λ(ε, t) is analytic.

In the case of two scales, the situation is more complicated when ν = 0. The
corresponding operator T (0, t) has a kernel of infinite dimension and the theorem
of separation of spectrum quoted above cannot be applied uniformly with respect
to ν. Nevertheless, we show that φν can be expanded in powers of ν in a sector of
points (ν, t) that contains [0,∞) × R2.

The paper is organized as follows: Sec. 2 describes the setting and the notations
of the problem and states the main results. Following Ref. 3, we briefly indicate in
Sec. 3 how one can prove analytic of φν in the neighborhood of a point (ν, τ) with
ν > 0. In Sec. 4, we proceed to a formal asymptotic expansion of φν around ν = 0.
Section 5 is devoted to showing the convergence of the expansion in a neighborhood
of points (0, t). In view of these results, the representation formula (1.4) is justified
in Sec. 6. Finally, we show in Appendix A why the strategy of Ref. 3 cannot be
used to show analytic around ν = 0 and in Appendix B we derive the form of the
constant term in the first corrector.

2. Setting of the Problem and Statement of the Main Results

Throughout the paper, we use the following notations. The reference period [0, 2π]2

is called Y . A subscript # refers to spaces of Y -periodic functions and ‖u‖p,Ω

denotes the norm of the Sobolev space Hp(Ω). The norm of H1(Y ) may simply
be denoted by ‖u‖p, when the context is unambiguous. The symbols ∂i and

∫
yj

f

respectively stand for ∂/∂yi and
∫ 2π

0 f(yj)dyj .
We will use the following definition of analytic functions of several complex

variables, with value in a Banach space B (see Ref. 9).

Definition 2.1. A function f ∈ G ⊂ C3 → B is analytic if for each z0 ∈ G,
there exists an open ball B(z0, ρ), ρ > 0, and coefficients (fα) ⊂ B, such that∑

0≤|α| fα (z − z0)α converges in B to f(z), for each z ∈ B(z0, ρ).

We assume that the coefficients aν and a0,ν describe a medium layered in the
x1-direction, with layers that are oscillating in the x2-direction, on a scale much
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larger than the spacing of the fibers. More precisely, the material properties are
defined by

(aν , a0,ν)(x1, x2) = (a, a0)(x1/ν2, x2/ν)

= (ã, ã0)(x1/ν2 + γ(x2/ν)), (2.1)

where ã and ã0 are bounded periodic functions and γ is a smooth 2π-periodic
function such that

∫
y2

γ = 0. We further assume uniform ellipticity, i.e. that
there exist constants 0 < α < M , such that α ≤ ã(y), ã0(y) ≤ M , for a.e. y

in [0, 2π].
The problem of finding approximations for uν could be treated as a problem of

reiterated homogenization: one would homogenize first with respect to the fastest
scale, then homogenize the resulting problem with respect to the slower one. How-
ever, for this particular medium, homogenization with respect to the fastest scale
yields a homogeneous operator with respect to both variables (x1, x2) where dis-
tortion has disappeared. Although one could obtain results about correctors in this
manner, we think that their convergence is easier to establish using a representation
formula like (1.2).

We seek uν in the form

uν(x1, x2) =
∫

R2
f̂(t)φν(x1/ν2, x2/ν, t) eit·x dt, (2.2)

where φν(y1, y2, t) is Y -periodic with respect to (y1, y2). Introduction of this expres-
sion into (2.1) and performing the change of variables (x1/ν2, x2/ν) = (y1, y2) shows
that φ formally solves

T (ν, t)φν = −∂1

[
a(y1, y2)∂1

(
φν(y1, y2, t)eiξ·y)]

e−iξ·y

− ν2∂2

[
a(y1, y2)∂2

(
φν(y1, y2, t)eiξ·y)]

e−iξ·y

+ ν4a0φν(y1, y2, t) = ν4, (2.3)

where ξ = ξ(ν, t) = (ν2t1, νt2).
We consider T (ν, t), defined by (2.3), as an unbounded operator on L2

#(Y )
with domain H2

#(Y ). In addition, we consider the following sesquilinear form on
H1

#(Y ) × H1
#(Y ), with values in C.

A(ν, t)[v, w] =
∫

Y

a(y)∂1

(
veiξ·y)

∂1

(
we−iξ·y)

dy

+ ν2

∫
Y

a(y)∂2

(
veiξ·y)

∂2

(
we−iξ·y)

dy

+
∫

Y

a0(y)vw dy. (2.4)
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As usual in homogenization, we introduce auxiliary functions: Let χ̃ denote the
solution in H1

#(0, 2π) to the 1-D variational problem

∀ v ∈ H1
#(0, 2π),

∫ 2π

0

ã

(
dχ

dz
+ 1

)
dv

dz
= 0,

normalized to have 0 mean value on [0, 2π], and let{
χ1(y1, y2, t) = it1 χ̃(y1 + γ(y2)),
χ2(y1, y2, t) = it2 γ′(y2) χ̃(y1 + γ(y2)).

(2.5)

It is easy to check that χj ∈ H1
#(Y ) solves

−∂1(a(y1, y2)∂1χj(y1, y2, t)) = itj ∂ja(y1, y2), (2.6)

and that its Y -mean value is equal to 0.

This paper is devoted to proving the following results:

Theorem 2.1. There exists a sector G in C3, that contains (0,∞)×R2, such that,
for (ν, t) ∈ G, there exists a unique solution φν(·, t) ∈ H1

#(Y ) to (2.3). Moreover,
the mapping (ν, t) → φν(·, t) is analytic in G.

Theorem 2.2. For any t ∈ R
2, the function φν(·, t) can be expanded as

φν(y1, y2, t) = φ0(y1, y2, t) +
∑
j≥2

νjφj(y1, y2, t), (2.7)

where each function φj(y1, y2, t) ∈ H1
#(Y ) is analytic in t. The expansion is con-

vergent in a neighborhood of (0, t) ∩ G and the following estimate holds:∥∥∥∥∥∥φν(y1, y2, t) − φ0(y1, y2, t) −
∑

2≤j≤k

νjφj(y1, y2, t)

∥∥∥∥∥∥
1,Y

≤ Ck(t)νk−2

where Ck(t) is a constant independent of ν. The function φ0 does not depend on
distortion

φ0(t) =
4π2

−it1
∫

Y
a∂1χ1 +

∫
Y
|t|2a + a0

. (2.8)

Influence of distortion is only felt at the order ν2, and φ2 has the expression
φ2(y1, y2, t) = φ0(t)χ1(y1, y2, t) + ρ2(y2, t) + σ2(t), where ρ2 and σ2, defined
by (4.17), (4.22) depend on γ.

Remark. The form of the zeroth-order term was expected as the zeroth-order
term of the homogenization of a stratified medium. With a different relative scaling
between the spacing of the fibers and distortion, influence of the latter will affect
terms of different orders.

With these two theorems, the proof of the following representation theorem
can be easily adapted from the proof of theorem 11 of Ref. 2. Let H1

η (R2) denote
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the weighted Sobolev space equal to the completion of C∞ functions with compact
support in R2 for the norm

‖u‖2
1,η =

∫
R2

(|u|2 + |∇u|2) e2η|x|dx.

.
Theorem 2.3. Let f ∈ L2(R2). There exists η0 > 0 such that for η < η0, the
solution uν of (1.3) has the following representation:

uν(x) = lim
N→∞

1
2π

∫
|t|≤N

f̂(t)φν(x1/ν2, x2/ν, t)eit·xdt,

where the integral is defined as a Bochner integral of H1−η-valued functions.

Theorem 2.4. Let f ∈ L2(R2) and uν be the solution to (1.3). Let η < η0 given
by Theorem 2.3. Then∥∥∥∥uν(x) − 1

2π

∫
R2

f̂(t)
(
φ0(t) + ν2φ2(x1/ν2, x2/ν, t)

)
eit·xdt

∥∥∥∥
0,−η

→ 0,

as ν → 0, ν ∈ G.

3. Proof of Theorem 2.1

In this section, we follow closely Ref. 3 and only sketch the argument. Let

G = {(ν, t) ∈ C
3, such that 0 < |Im(ν)| < (

√
2 − 1)Re(ν)}.

Lemma 3.1. For (ν, t) ∈ G, there exists a pair of real-valued functions δ(ν, t) > 0,
M(ν, t) > 0, and a continuous real-valued function µ(ν, t) such that, for all (u, v) ∈
(H1

#(Y ))2),

|A(ν, t)[u, v]| ≤ M(ν, t)‖u‖1‖v‖1

δ(ν, t)‖v‖2
1 ≤ Re(A(ν, t)[v, v]) + µ(ν, t)‖v‖2

0.
(3.1)

Proof. Using the hypothesis on the coefficients a, a0 and the Cauchy–Schwartz
inequality, we can easily check that, for (u, v) ∈ (H1

#(Y ))2,

|A(ν, t)[u, v]| =
∣∣∣∣
∫

Y

a∂1u ∂1v + it1ν
2

∫
Y

a(u∂1v − v∂1u)

+ ν2

∫
Y

a∂2u ∂2v + it2ν
3

∫
Y

a(u∂2v − v∂2u)

+ ν4

∫
Y

(a|t|2 + a0)uv

∣∣∣∣
≤ M [1 + (1 + |t1|)|ν|2 + |t2||ν3| + (1 + |t|2)|ν|4]‖u‖1‖v‖1.
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We also have for all δ1 > 0, δ2 > 0

Re(A(ν, t)[v, v]) ≥ (1 − δ1)
∫

Y

a|∂1v|2 + (Re(ν2) − δ2)
∫

Y

a|∂2v|2

−
( |ν2t1|2

δ1
+

|ν3t2|2
δ2

) ∫
Y

a|v|2 + Re(ν4)
∫

Y

(a|t|2 + a0)|v|2,

and choosing δ1 = 1/2, δ2 = |ν|2/2, we get

Re(A(ν, t)[v, v]) + 2M

( |ν2t1|2
2

+
|ν|4|t2|2

2

) ∫
Y

|v|2

≥ α/2
∫

Y

a|∂1v|2 + α(Re(ν2) − |ν|2/2)
∫

Y

a|∂2v|2

+ α Re(ν4)(1 + |t|2)
∫

Y

|v|2.

If (ν, t) ∈ G, δ = min
(
α/2, α(Re(ν2) − |ν|2/2), Re(ν4)(1 + |t|2)) > 0 verifies the

claim.

Lemma 3.2. When (ν, t) ∈ G ∩ R3 with ν > 0, the sesquilinear form A(ν, t)
satisfies the hypothesis of the Lax–Milgram lemma.

Proof. Using the notation ξ = (νt1, ν
2t2) ∈ R2, we notice first that for w ∈ H1(Y ),∫

Y

|∇(we−iξ·y)|2 + |we−iξ·y |2 ≤
∫

Y

|∇w|2 − 2ξ · Re(w∇w) + (1 + |ξ|2)|w|2

≤ (1 + 2|ξ|2)‖w‖2
1,Y ≤ 2(1 + |ξ|)2‖w‖2

1,Y .

Applying this inequality to w = veiξ·y shows that

∀ v ∈ H1
#(Y ),

1√
2(1 + |ξ|)‖v‖1 ≤ ‖veiξ·y‖1. (3.2)

Next, for v ∈ H1
#(Y ), the above inequality yields

A(ν, t)[v, v] ≥ αν2

∫
Y

|∇(veiξ·y)|2 + ν4

∫
Y

a0|v|2

≥ min
(

αν2

2(1 + |ξ|)2 , αν4

)
‖v‖1,

which shows the coercivity of A(ν, t).

According to Theorem 15 in Ref. 3, for each (ν, t) ∈ G, the above lemma allows
us to define a closed operator T (ν, t) ∈ C(H1

#(Y ), L2
#(Y )) with domain D(T (ν, t))

dense in H1
#(Y ), such that{

∀u ∈ D(T (ν, t))

∀ v ∈ H1
#(Y ),

A(ν, t)[u, v] =
∫

Y

T (ν, t)u v.
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Equation (2.3) for the kernel φν can be rewritten in the form

T (ν, t)φν(·, ·, t) = ν4.

When (ν0, t0) ∈ G ∩ R
3 with ν > 0, Lemma 3.2 shows that T (ν0, t0) is invertible, i.e.

0 is in the resolvent set of T (ν0, t0). Results of analytic perturbation theory3,9,16

imply that T (ν, t) is invertible in a complex neighborhood of (ν0, t0), on which
φν = ν4T (ν, t)−1(1) is analytic with respect to (ν, t).

4. Formal Expansion

4.1. Preliminaries

In this section, we formally derive an expansion of φν(·, ·, t) with respect to ν > 0,
as ν → 0. Inserting

φν(y1, y2, ν, t) =
∑

j

νjφj(y1, y2, ν, t), (4.1)

in Eq. (2.3), and regrouping the terms with the same powers of ν we obtain

∀ v ∈ H1
#(Y ), A0[φj , v] + A2[φj−2, v] + A3[φj−3, v] + A4[φj−4, v] = δj,4

∫
Y

v,

(4.2)

where we have used the following notations


A0[φ, v] =
∫

Y

a∂1φ∂1v

A2[φ, v] =
∫

Y

a∂2φ∂2v + it1

∫
Y

aφ∂1 v − a∂1φ v

A3[φ, v] = it2

∫
Y

aφ∂2 v − a∂2φ v

A4[φ, v] =
∫

Y

(a|t|2 + a0)φ v,

(4.3)

and where φj ≡ 0 for j < 0.
We notice that if c ≡ c(t) does not depend on y1 and y2, we have

∀ v ∈ H1
#(Y ),




A2[c, v] = it1

∫
Y

a∂1v = −cA0[χ1, v]

A3[c, v] = it1

∫
Y

a∂2v = −cA0[χ2, v].
(4.4)

Furthermore, since
∫

y1
a is independent of y2, these relations simplify if w ∈ H1

#(Y )
only depends on y2 {

A2[c, w] = 0,

A3[c, w] = 0.
(4.5)



October 31, 2006 16:48 WSPC/103-M3AS 00174

1870 E. Bonnetier & F. Khayat

Each of the Eqs. (4.2) can be viewed as a system of equations of the form

A0[φj , v] = Rj(v), (4.6)

in the variable y1, parametrized by y2. A necessary condition for the existence of a
y1-periodic solution φj(·, y2) is

∀w = w(y2) ∈ H1
#(0, 2π), Rj(w) = 0. (4.7)

This condition imposes constraints on the form of the expansion, but is not sufficient
for the solvability of (4.6). We will nevertheless be able to construct the correctors,
due to the special form of the coefficient a. To this end, we use the following lemmas.

Lemma 4.1. Let φ = φ(y1) ∈ H1
#(0, 2π). Then the function Φ(y1, y2) − φ(y1 +

γ(y2)) is in H1
#(Y ) and

∇Φ = φ′(y1 + γ(y2))
(

1
γ′(y2)

)
.

Proof. (a) The conclusion is obvious when φ ∈ C∞
# (0, 2π).

(b) Let φ ∈ H1
#(0, 2π). Since γ is smooth, the functions φ(y1 +γ(y2)), φ′(y1 +γ(y2))

and γ′(y2)φ′(y1 +γ(y2)) are in L2
#(Y ). Moreover, if (φn) ⊂ C∞

# (0, 2π) approximates
φ in H1

#(0, 2π), it follows from the Fubini and the Lebesgue theorem that for all
w ∈ H1

#(Y ),∫
Y

φ(y1 + γ(y2)) ∂iw = lim
n

∫
y2

∫
y1

φn(y1 + γ(y2)) ∂iw

= −lim
n

∫
y2

∫
y1

∂iγ(y2)φ′
n(y1 + γ(y2))w

= −
∫

Y

∂iγ(y2)φ′(y1 + γ(y2))w.

Lemma 4.2. Let κ ∈ L2
#(0, 2π), λ ∈ H1

#(0, 2π) and w ∈ H1
#(Y ). Then∫

Y

a(y1 + γ(y2))κ(y1 + γ(y2))λ(y2) ∂2w

=
∫

Y

a(y1 + γ(y2))κ(y1 + γ(y2))γ′(y2)λ(y2) ∂1w

−
∫

Y

a(y1 + γ(y2))κ(y1 + γ(y2))λ′(y2)w.

Proof. If κ is smooth, the relations (2.6) give for any w ∈ H1
#(Y )∫

Y

a(y1 + γ(y2)) ∂2w =
∫

Y

a(y1 + γ(y2))∂1 [γ′(y2)χ̃(y1 + γ(y2))] ∂1w

=
∫

Y

a(y1 + γ(y2)) ∂1 [γ′(y2)w] .
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Thus, we have ∫
Y

a(y1 + γ(y2))κ(y1 + γ(y2))λ(y2) ∂2w

=
∫

Y

a∂2(κλw) −
∫

Y

a(κ′γ′λ + κλ′)w

=
∫

Y

a∂1(κγ′λw) −
∫

Y

a(κ′γ′λ + κλ′)w

=
∫

Y

aκγ′λ∂1w −
∫

Y

aκλ′ w.

The general case follows by approximating κ by smooth functions.

We now consider the equation for ψ ∈ H1
#(Y )


∀ v ∈ H1

#(Y ),

A0[ψ, v] + A2[ψ2, v] + A3[ψ3, v] + A4[ψ4, v] =
∫

Y

gv,
(4.8)

where the ψi’s 1 ≤ i ≤ 3, and g are given functions which satisfy the following
assumptions:

(i) Each function ψi has the form

ψi(y1, y2) =
N(i)∑
j=1

κj
i (y1 + γ(y2))λ

j
i (y2) + ρi(y2) + σi

where κj
i ∈ H1

#(0, 2π), where λj
i , ρi are smooth and 2π-periodic with∫ 2π

0
ρi(y) = 0, and where σi does not depend on y1 and y2.

(ii) The function g = g(y1+γ(y2), y2) is smooth with respect to its second variable,
and for a.e. y2 it defines a L2

#-periodic function of y1.
(iii) For all w = w(y2) ∈ H1

#(0, 2π), we have

A2[ψ2, w] + A3[ψ3, w] + A4[ψ4, w] =
∫

Y

gw. (4.9)

Lemma 4.3. There exists a unique solution ψ ∈ H1
#(Y ) to (4.8) determined up to

a function of y2 only. It has the form

ψ(y1, y2) = τ(y1 + γ(y2), y2) + ρ(y2) + σ, (4.10)

where τ is a finite sum of products of a H1
#(0, 2π)-function of y1 + γ(y2) times a

smooth function of y2, ρ has average 0, and σ does not depend on y1, y2.

Proof. We show that (4.8) can be interpreted as an equation for functions of y1,
parametrized by y2. To this end, we transform all the terms that contain ∂2v in
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terms that only involve v or ∂1v. Using Lemma 4.2, we compute for v ∈ H1
#(Y )

and for κ, λ functions of one variable only

A2[κ(y1 + γ(y2))λ(y2), v]

=
∫

Y

a∂2(κλ) ∂2v + it1

∫
Y

a [κλ∂1v − v (∂1κ)λ]

=
∫

Y

a∂1

[
κλ(γ′)2

]
∂1v +

∫
Y

a [κλ′γ′ ∂1v − v ∂1(κλ′γ′)]

−
∫

Y

a [∂1κ(λγ′′) + κλ′′] v + it1

∫
Y

a [κλ∂1v − v (∂1κ)λ] .

In a similar fashion,

A3[κ(y1 + γ(y2))λ(y2), v]

= it2

∫
Y

a [κλ∂2v − v ∂2(κλ)]

= it2

∫
Y

a [κλγ′ ∂1v − v ∂1κλγ′] − it2

∫
Y

aκλ′v.

Consequently, (4.8) can be rewritten in the form∫
Y

a∂1ψ ∂1v =
∫

Y

R1 ∂1v + R2 v,

where R1 and R2 are sums of products of a periodic function of y1 + γ(y2) times
a smooth periodic function of y2. Choosing v = ϕ(y1)w(y2), we see that we must
have for a.e. y2 and for all ϕ ∈ H1

#(0, 2π)∫
y1

a∂1ψ ∂1ϕ =
∫

y1

R1 ∂1ϕ + R2 ϕ. (4.11)

Moreover, the condition (4.9) shows that
∫

y1
R2 = 0, so that (4.11) can be solved

uniquely in H1
#(0, 2π) for a.e. y2. Since the right-hand side depends smoothly on

y2 and is y2-periodic, we can construct ψ ∈ H1
#(Y ) with the form (4.10), solution

to (4.8).

4.2. Construction of the correctors

We now construct the first terms in the asymptotic expansion (4.1), i.e. solutions
to (4.2) that satisfy the constraint (4.7). We easily check that we can choose φ0, φ1

independent of y1. Since the average of a(y1, y2) with respect to y1 does not depend
on y2, the condition (4.7) for j = 2 reduces to

∀w = w(y2) ∈ H1
#(0, 2π), A2[φ0, w] =

∫
Y

a∂2φ0 ∂2w

=
( ∫

y1

a

) ∫
y2

∂2φ0 ∂2w, (4.12)
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from which we deduce that φ0 ≡ φ0(t) does not depend on y2 either. In view of (4.5),
when j = 3 the condition (4.7) takes the form

∀w = w(y2) ∈ H1
#(0, 2π), A2[φ1, w] = 0,

and thus φ1 ≡ φ1(t) is also independent of y1, y2.
With this form of φ0, φ1, Eq. (4.2) for j = 2 and j = 3 can be solved: using (4.5),

they reduce to

∀ v ∈ H1
#(0, 2π),

{
A0[φ2 − φ0χ1, v] = 0,

A0[φ3 − φ1χ1 − φ0χ2, v] = 0,

and the general form of solutions is{
φ2 = φ0χ1 + ρ2(y2, t) + σ2(t),

φ3 = φ1χ1 − φ0χ2 + ρ3(y2, t) + σ3(t),

where each ρj is a y2-periodic function with average 0. Since we are seeking φj in
H1

#(Y ), we may assume ρj ∈ H1
#(0, 2π).

The value of φ0 is obtained from (4.7) when j = 4

∀w ∈ H1
#(0, 2π), A2[φ2, w] + A3[φ1, w] + A4[φ0, w] =

∫
Y

w. (4.13)

Noticing that A3[φ1, w(y2)] = 0, we choose w ≡ 1 and substitute the expression of
φ2 to get

A2[φ2, 1] + A4[φ0, 1] = A2[φ0χ1, 1] + A4[φ0, 1] = |Y |. (4.14)

We conclude that

φ0 =
|Y |

A4[1, 1] + A2[χ1, 1]
=

4π2∫
Y

(a|t|2 + a0) − it1
∫

Y
a∂1χ1

. (4.15)

The above expression is well-defined, as its denominator is positive: indeed,∫
Y

(a|t|2 + a0) − it1

∫
Y

a∂1χ1 =
∫

Y

(at22 + a0) + A0[χ1 + it1y1, χ1 + it1y1] > 0.

With this choice of φ0, Eq. (4.13), viewed as an equation for ρ2(y2, t) in the
variable y2, becomes

∀w = w(y2) ∈ H1
#(0, 2π),

A2[ρ2, w] =
∫

Y

w − A2[φ0χ1 + σ2, w] − A4[φ0, w].

Using (4.4), we obtain( ∫
y1

a

) ∫
y2

∂2ρ2 ∂2w =
∫

Y

w − A2[φ0χ1, w] − A4[φ0, w], (4.16)

where the right-hand side vanishes when w ≡ 1. It follows that ρ2 is uniquely
determined in H1

#(0, 2π), with the normalization
∫

Y
ρ2 = 0. Setting W equal to w
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minus its average, the above equation reduces to( ∫
y1

a

) ∫
y2

∂2ρ2 ∂2W = −
∫

y2

( ∫
y1

aφ0∂1χ1

)
γ′(y2) ∂2W,

and since we assumed that
∫

y2
γ = 0, we conclude that

ρ2(y2) = −φ0

∫
y1

a∂1χ1∫
y1

a
γ(y2). (4.17)

Finally, we consider Eq. (4.2) with j = 4:

∀ v ∈ H1
#(Y ),

A0[φ4, v] + A2[φ0χ1 + ρ2 + σ2, v] + A3[φ1, v] + A4[φ0, v] =
∫

Y

v. (4.18)

The relations (4.4) allow us to group the unknown quantities to obtain

∀ v ∈ H1
#(Y ),

A0[φ4 − σ2χ1 − φ1χ2, v] = −A2[φ0χ1 + ρ2, v] − A4[φ0, v] +
∫

Y

v, (4.19)

where all the terms on the right-hand side have been determined. Since condi-
tion (4.9) reduces to (4.13), it follows from Lemma 4.3 that φ4 − σ2χ1 − φ1χ2 can
be determined from this equation in H1

#(Y ), up to a function ρ4(y2, t)+σ4(t) (where
ρ4 has average 0).

An induction argument gives the general form of the φj ’s and the following:

Theorem 4.1. The jth term in the expansion of φ can be constructed with the
form

φj(y1, y2, t) = τj(y1 + γ(y2), y2, t) + ρj(y2, t) + σj(t), (4.20)

where τj is a sum of products of smooth functions of y2 times H1-periodic functions
of (y1 + γ(y2)) with y1-average 0, and where ρj ∈ H1

#(0, 2π) has y2-average 0.

Proof. Let j ≥ 4 and assume that we have determined


τk for 0 ≤ k ≤ j,

ρk for 0 ≤ k ≤ j − 2,

σk for 0 ≤ k ≤ j − 4,

where the functions τk, ρk and the constants σk are as in Lemma 4.3 and where
φk(y1, y2) = τk(y1 + γ(y2)) + ρk(y2) + σk satisfies (4.2) and (4.7) for 0 ≤ k ≤ j and
for 0 ≤ k ≤ j − 2 respectively.
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We seek ρk−1 by imposing (4.7) for k = j − 1, i.e. for any w ∈ H1
#(0, 2π)

A2[ρj−1, w] = −A2[τj−1, w] − A3[τj−2 + ρj−2, w] − A4[τj−2 + ρj−2 + σj−3, w],

which can be rewritten( ∫
y1

a

) ∫
y2

∂2ρj−1∂2 w =
∫

y2

( ∫
y1

R1(y1 + γ(y2), y2)
)

∂2 w

+
∫

y2

(∫
y1

R2(y1 + γ(y2), y2)
)

w, (4.21)

where R1, R2 are known functions. We can thus determine ρj−1 ∈ H1
#(0, 2π)/R

uniquely provided that

A2[τj−1, 1] − A3[τj−2 + ρj−2, 1] − A4[τj−2 + ρj−2 + σj−3, 1] = 0,

which determines σj−3. We then seek φj+1 from (4.2): for any v ∈ H1
#(Y ) we

must have

A0[φj+1, v] + A2[φj−1, v] + A3[φj−2, v] + A4[φj−3, v] = 0,

which, using (4.4) rewrites

A0[φj+1 − σj−1χ1 − σj−2χ2, v] = A2[τj−1 + ρj−1, v] + A3[τj−2 + ρj−2, v]

+A4[φj−3, v],

where the right-hand side only contains known quantities. Applying Lemma 4.3
shows that φj+1 is uniquely determined up to ρj+1(y2) + σj+1. Thus, the φj ’s can
be determined inductively.

Remark. Carrying on the computations yields the following form for the first
correctors in the expansion:

φ1 = 0,

φ2 = φ0(t)χ1(y1 + γ(y2)) + ρ2(y2, t) + σ2(t),

with

ρ2(y2, t) = −φ0(t)

∫
y1

a∂1χ1∫
y1

a
γ(y2),

σ2(t) = −A2[φ0χ1 + ρ2, χ1] + A3[φ0χ2, 1]
A4[1, 1]− A0[χ1, χ1]

.

(4.22)
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The derivation of σ2 is detailed in Appendix B. These expressions and (4.15)
show that

|φ0(t)| ≤ C

1 + |t|2 , (4.23)

|φ2(t)| ≤ C|t|
1 + |t|2 , (4.24)

uniformly in t, for some constant C.

5. Convergence of the Expansion as ν → 0

This section is devoted to proving convergence results for the expansion (4.1) as
ν → 0. We first estimate the difference of φν with the first term:

Theorem 5.1. There exists a function C0(t) > 0, continuous in t, such that

‖φν − φ0‖1 ≤ C0(t)ν. (5.1)

Proof. (a) Multiplying (2.3) by φν , integrating and using the ellipticity of a, we
easily derive the following a priori estimates: there exists a constant C, independent
of ν and t, such that 


‖φν‖0 ≤ C,

‖∂1(φνeiξ·y)‖0 ≤ Cα−1/2ν2,

‖∂2(φνeiξ·y)‖0 ≤ Cα−1/2ν,

(5.2)

where again ξ = (ν2t1, νt2). Expanding ∂1(φνeiξ·y), we get
1
ν2

‖∂1φν‖0 ≤ 1
ν2

(‖∂1(φνeiξ·y)‖0 + ν2|t1| ‖φν‖0

)
≤ C(α−1/2 + |t1|). (5.3)

In a similar fashion, we can estimate ∂2φν :
1
ν
‖∂2φν‖0 = C(α−1/2 + |t2|). (5.4)

(b) Let l denote the following linear form on H1
#(Y ):

l(u) =
φ0

|Y | (A2[u, χ1] + A4[u, 1]) .

The definition (2.8) of φ0 shows that ∀ λ ∈ C, l(λ) = λ. We next compute

ν4

(
|Y | + ν2

∫
Y

χ1

)
= Aν [φν , 1 + ν2χ1]

= (A0 + A2 + A3 + A4) [φν , 1 + ν2χ1]

= ν2 (A2[φν , 1] + A0[φν , χ1]) + ν3A3[φν , 1]

+ ν4 (A4[φν , 1] + A2[φν , 1]) + ν5A3[φν , χ1] + ν6A4[φν , χ1]

= −ν3A0[φν , χ2] +
|Y |
φ0

l(φν) + ν5A3[φν , χ1] + ν6A4[φν , χ1],
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where we have used (4.4). It follows that

l(φν) =
φ0

|Y |
{
|Y | + ν2

∫
Y

χ1 +
1
ν
A0[φν , χ2] − νA3[φν , χ1] − ν2A4[φν , χ1]

}
.

In other words, we get

l(φν) − l(φ0) =
φ0

|Y |
{

ν2

∫
Y

χ1 +
1
ν
A0[φν , χ2] − νA3[φν , χ1] − ν2A4[φν , χ1]

}
.

Further, we note that the H1 norms of χ1 and χ2 are bounded by an independent
constant, times |t1| and |t2| respectively. Thus, the a priori estimates (5.3), (5.4)
show that

|ν−1A0[φν , χ2]| ≤ 1
ν

M‖∂1φν‖0 ‖∂1χ2‖0

≤ νC(α−1/2 + |t1|) |t1|

|νA3[φν , χ1]| =
∣∣∣∣νit2

∫
Y

aφν∂2χ1 − νit2

∫
y

a∂2φνχ1

∣∣∣∣
≤ νc C(1 + α−1/2 + |t2|) |t1t2|

|ν2A4[φν , χ1]| ≤ ν2(1 + |t|2)C|t1|,
for some constant C independent of t and ν. Next, the generalized Poincaré
inequality ensures the existence of a constant CY (t) > 0, such that for any
v ∈ H1

#(Y ),

‖v − l(v)‖1 ≤ CY (t)‖∇v‖0. (5.5)

Using these estimates, we conclude that there exists C0(t) > 0, that depends con-
tinuously on t, such that

‖φν − φ0‖1 ≤ ‖φν − l(φν)‖1 + ‖l(φν) − l(φν)‖0

≤ CY (t)‖∇φν‖0 + |Y | |l(φν) − l(φ0)|
≤ νC0(t).

To prove finer estimates, we use Tartar’s method as in standard homo-
genization.6 To this end, let

ψ(k)
ν = φ0 + ν2φ2 + · · · + νkφk.

Theorem 5.2. There exists a constant Ck(t) > 0, continuous in t such that
for k ≥ 2

‖φν − ψ(k)
ν ‖2

1 ≤ Ck(t)νk. (5.6)

Proof. (a) Let k > 2 and let C(k) denote a generic constant that only depends on
k. Using (4.4) and the recurrence relations that determine the φk’s, we compute,
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for v ∈ H1
#(Y ),

Aν [ψ(k)
ν , v] =

k∑
j=0

νj
{
A0[φj , v] + ν2A2[φj , v] + ν3A3[φj , v] + ν4A4[φj , v]

}
= A0[φ0, v] + ν2 (A0[φ2, v] + A2[φ0, v])

+ ν3 (A0[φ3, v] + A3[φ0, v])

+
k∑

j=4

νj {A0[φj , v] + A2[φj−2, v] + A3[φj−3, v] + A4[φj−4, v]}

+ νk+1 (A2[φk−1, v] + A3[φk−2, v] + A4[φk−3, v])

+ νk+2 (A2[φk, v] + A3[φk−1, v] + A4[φk−2, v])

+ νk+3 (A3[φk, v] + A4[φk−1, v]) + νk+4A4[φk, v]

= ν4

∫
Y

v − νk+1A0[φk+1, v] − νk+2A0[φk+2, v]

+ νk+3 (A3[φk, v] + A4[φk−1, v]) + νk+4A4[φk, v]. (5.7)

(b) We then form

Aν [φν − ψ(k)
ν , φν − ψ(k)

ν ] = Aν [φν , φν ] − Aν [φν , ψ(k)
ν ] − Aν [ψ(k)

ν , φν ]

−Aν [ψ(k)
ν , ψ(k)

ν ]

= ν4

∫
Y

φν − ν4

∫
Y

ψ
(k)
ν − Aν [ψ(k)

ν , φν ] − Aν [ψ(k)
ν , ψ(k)

ν ].

In (5.7), we substitute φν and ψ
(k)
ν for v to treat the last two terms in the above

expression

Aν [φν − ψ(k)
ν , φν − ψ(k)

ν ] = νk+1A0[φk+1, φν ] − νk+1A0[φk+1, ψ
(k)
ν ] + νk+2Rk,

where the remaining terms Rk are bounded independently of ν (the bound however
depends on k). Theorem 5.1 implies that

A0[φk+1, φν ] = A0[φk+1, φν − φ0]

≤ M‖φk+1‖1‖φν − φ0‖1 ≤ C(k)ν

A0[φk+1, ψ
(k)
ν ] = A0[φk+1, ψ

(k)
ν − φ0]

≤ A0[φk+1, ν
2φ2 + · · · + νkφk]1 ≤ C(k)ν2.

It follows that Aν [φν − ψ
(k)
ν , φν − ψ

(k)
ν ] ≤ C(k)νk+2, from which we deduce that


‖∂1(φν − ψ

(k)
ν )‖2

0 ≤ C(k)νk+2,

‖∂2(φν − ψ
(k)
ν )‖2

0 ≤ C(k)νk,

‖φν − ψ
(k)
ν ‖2

0 ≤ C(k)νk−2,

and thus ‖φν − ψ
(k)
ν ‖2

1 ≤ C(k)νk−2. Since φk+1, φk+2 are independent of ν, we
finally get

‖φν − ψ(k−2)
ν ‖2

1 ≤ C(k)νk−2.
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6. Proof of the Representation Formula and Approximation of uν

Again, we dwell on the work of Babuška and Morgan2 and will only give details
about the parts that are different from their proof. In this section, we assume that
0 < ν < 1.

The solution uν to (1.3) has the variational characterization

∀ v ∈ H1(R2), Ψ(ν)[uν , v] :=
∫

R2
a

(x1

ν2
,
x2

ν

)
∇u · ∇v + a0

(x1

ν2
,
x2

ν

)
u v

=
∫

R2
fv.

The existence of uν is easily established, as the bilinear Ψ(ν) satisfies the hypothesis
of the Lax–Milgram lemma.

Any function v(y1, y2) ∈ L2
#(Y ), can be rescaled and extended by periodic-

ity to a function v(x1/ν2, x2/ν) defined on R2. Formally the function K(x, t) =
φν(x1/ν2, x2/ν, t)eit·x solves the above equation when f ≡ eit·x. However, this func-
tion is not in L2(R2), so to make sense of this claim, we consider Ψ as a bilinear
form defined on the weighted Sobolev spaces introduced in Sec. 2

Ψ(ν) : H1
−η(R2) × H1

η (R2) −→ C.

The arguments of Lemma 3 in Ref. 2 show that Ψ(ν) satisfies the inf–sup condition
in H1

−η(R2) × H1
η (R2), provided η is small enough. It is easily checked that the

corresponding coercivity constant depends on η, but is bounded above 0 uniformly
for 0 < ν < 1: there exists α(η) > 0 such that

inf
‖u‖1,−η=1

sup
‖v‖1,η=1

|Ψ(ν)[u, v]| ≥ α(η) > 0. (6.1)

We proceed with some estimates on the kernel K(x, t).

Lemma 6.1. There exists a constant C > 0, such that for all 0 < ν < 1, η > 0
and t ∈ R2,

∀ v ∈ L2
#(Y ),

∥∥∥v
(x1

ν2
,
x2

ν

)
eit·x

∥∥∥
0,−η

≤ C‖v‖0,Y ,

∀ v ∈ H1
#(Y ),

∥∥∥v
(x1

ν2
,
x2

ν

)
eit·x

∥∥∥
1,−η

≤ (1 + ν−2)C‖v‖1,Y

(6.2)

Proof. To compute the H1−η norm on the left-hand side of the second inequality,
let Y (p) denote the rectangle 2πν2(p1 + (0, 1) × 2πν(p2 + (0, 1)), p ∈ Z2. We have∥∥∥v

(x1

ν2
,
x2

ν

)
eit·x

∥∥∥2

1,−η

≤
∑
p∈Z2

∫
Y (p)

{
ν−4

∣∣∣∣ ∂v

∂y1

(x1

ν2
,
x2

ν

)
+ iν2t1v

(x1

ν2
,
x2

ν

)∣∣∣∣
2

+ ν−2

∣∣∣∣ ∂v

∂y2

(x1

ν2
,
x2

ν

)
+ iνt2v

(x1

ν2
,
x2

ν

)∣∣∣∣
2

+
∣∣∣v (x1

ν2
,
x2

ν

)∣∣∣2 }
e−2η|x|dx
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≤ (1 + ν−4)
∑
p∈Z2

∫
Y

{ ∣∣∇y(v(y1, y2)eiξ·y)
∣∣2

+ |v(y1, y2)|2
}
e−2η|(ν2(y1+2πp2),ν(y2+2πp2))| ν3dy

≤ (1 + ν−4)

{ ∑
p

ν3e−4πη(ν2|p1|+ν|p2|)
}
‖veiξ·y‖2

1,Y ,

where ξ = (ν2t1, νt2). Since
√

1 + ν−4 ≤ (1 + ν−2) and since

∑
p

ν3e−4πη(ν2|p1|+ν|p2|) ≤ ν3


2

∑
p1≥0

e−4πην2p1





2

∑
p2≥0

e−4πηνp2




≤ 4ν3

(1 − e−4πην2)(1 − e−4πην)
,

is bounded uniformly for 0 ≤ ν ≤ 1, 0 ≤ η ≤ η0, the proof of (6.2) follows from
Lemma 1. The first inequality is proved similarly.

Lemma 6.2. Let 0 < ν ≤ 1, t ∈ R2. The solution φν(·, ·, t) to (2.3) satisfies

‖φν(y1, y2, t)‖0,Y ≤ 2π/α,

‖φν(y1, y2, t)eiξ·y‖1,Y ≤ 2π/α,
(6.3)

with ξ = (ν2t1, νt2).

Proof. Multiplying (2.3) by φν and integrating yields∫
Y

a(y1, y2)
(|∂1(φνeiξ·t)|2 + ν2|∂2(φνeiξ·t)|2) + ν4a0|φν |2 ≤ ν4

∫
Y

φν ,

and the estimates follow from the Cauchy–Schwartz inequality and the assumptions
on the coefficients.

Lemma 6.3. For 0 < ν ≤ 1 and 0 < η < η0, the kernel φν(y1, y2, t) has the
following properties.

(i) x → φν

(x1

ν2
,
x2

ν
, t

)
eit·x ∈ H1

−η(R2),

(ii) Ψ(ν)
[
φν

(x1

ν2
,
x2

ν
, t

)
eit·x, v

]
=

∫
R2

eit·x v(x) ∀ v ∈ H1
η (R2),

(iii)
∥∥∥φν

(x1

ν2
,
x2

ν
, t

)
eit·x

∥∥∥
1,−η

≤ C

ηα(η)
.

The point (i) easily follows from Lemma 6.2. The proof of (ii) is the same as that
of Theorem 8 in Ref. 2. Finally, (iii) follows from (ii), the inf–sup condition (6.1)
and the estimate ∣∣∣∣

∫
R2

eit·x v(x)
∣∣∣∣ ≤ 1

η
‖v‖1,η.
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Lemma 6.4. For all ν > 0, the function

t ∈ R
2 → φν

(x1

ν2
,
x2

ν2
, t

)
eit·x ∈ H1

−η(R2)

is continuous.

Proof. The choice v = φν

(
x1
ν2 , x2

ν2 , σ
) − φν

(
x1
ν2 , x2

ν2 , τ
)

and t = 0 in the second
statement of Lemma 6.1 yields∥∥∥φν

(x1

ν2
,
x2

ν
, σ

)
− φν

(x1

ν2
,
x2

ν
, τ

)∥∥∥
1,−η

≤ (1 + ν−2)C‖φν(y1, y2, σ) − φν(y1, y2, τ)‖1,Y .

The analycity of (ν, t) → φν(·, ·, t) in a neighborhood of any point (ν, t), ν > 0, t ∈
R2, then shows that the above left-hand side tends to 0 as σ → τ , which concludes
the proof since t → eit·x is continuous.

For f ∈ L2(R2) let fN denote the inverse Fourier transform of the function
f̂(t)1{|t|≤N} :

fN (x) =
∫
|t≤N

f̂(t)eit·xdt.

We also let

uν,N (x) =
1
2π

∫
|t|≤N

f̂(t)φν

(x1

ν2
,
x2

ν
, t

)
eit·xdt,

which is easily seen to be in H1
−η(R2). Lemmas 3.2–6.3 provide all the ingredients in

order to reproduce the arguments of Ref. 2 in our situation. In particular, uν,N can
be interpreted as a Bochner integral of H1−η(R2)-valued functions,14 which satisfies

Ψ(ν)[uν,N , v] =
∫

R2
fN(x)v(x)dx ∀ v ∈ H1

η (R2)

and which converges to uν, solution to (1.3) as ν → 0 (in H1
−η(R2) and in H1(R2)).

This shows that

uν(x) = lim
N→∞

1
2π

∫
|t|≤N

f̂(t)φν

(x1

ν2
,
x2

ν
, t

)
eit·xdt, (6.4)

where the right-hand side is a Bochner integral of a H1
−η(R2)-valued function. More-

over, since the coercivity constant α(η) of Ψ(ν) is uniformly positive for 0 < ν < 1,
we have

‖uν − uν,N‖1,−η ≤ 1
α(η)

‖f − fN‖0, (6.5)

for 0 < ν < 1.
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We conclude this section with an approximation result for uν , based on using
aproximate kernels in the representation formula. To this end, let

u0(x) =
1
2π

∫
R2

f̂(t)φ0(t)eit·xdt (6.6)

u2(x) =
1
2π

∫
R2

f̂(t)φ2

(x1

ν2
,
x2

ν
, t

)
eit·xdt. (6.7)

Lemma 6.5. The kernels φ0(t) and φ2(y1, y2, t) are continuous and uniformly
bounded with respect to t. Consequently, the integrals (6.6), (6.7) are well-defined
as Bochner integrals of H1

−η-valued functions.

The proof of the lemma follows from the continuity and boundedness properties
(with respect to t) of φ0(t) and φ2(y1, y2, t), with which one can easily adapt the
arguments of Ref. 2.

We are now ready to prove Theorem 2.4. Let ε > 0, and for N > 0 let

gν,N (x, t) =
1
2π

∫
|t|≤N

f̂(t)
(
φ0(t) + ν2φ2

(x1

ν2
,
x2

ν
, t

))
eit·xdt.

From the estimates (4.23) and Lemma 6.1, we have

‖u0 − ν2u2 − gν,N‖0,−η

≤ lim
M→∞

∫
N<t<M

|f̂(t)|
∥∥∥∥φ0(t) + ν2φ2

(x1

ν2
,
x2

ν
, t

)it·x∥∥∥∥
0,−η

dt

≤
∫

N<t

|f̂(t)|C‖φ0(t) + ν2φ2(y1, y2, t)‖0,Y dt

≤
∫

N<t

|f̂(t)|C 1 + ν2|t|
1 + |t|2 dt

≤ C

(∫
N<t

|f̂(t)|2dt

)1/2

.

Recalling (6.5), we can choose N large enough, so that for all 0 < ν < 1, both
‖uν − uν,N‖0,−η and ‖u0 − ν2u2 − gν,N‖0,−η are smaller than ε. We then have

‖uν − (u0 + ν2u2)‖0,−η

≤ 2‖uν − uν,N‖0,−η + ‖gν,N − (u0 + ν2u2)‖0,−η + ‖uν,N − gν,N‖0,−η

≤ 2ε +
1
2π

∫
|t|≤N

∥∥∥(
φν

(x1

ν2
,
x2

ν
, t

)
−

[
φ0(t) + ν2φ2

(x1

ν2
,
x2

ν
, t

)])∥∥∥
0,−η

|f̂(t)|dt

≤ 2ε +
1
2π

C

∫
|t|≤N

‖ (
φν(y1, y2, t) − [φ0(t) + ν2φ2(y1, y2, t)]

) ‖0,Y |f̂(t)|dt

≤ 2ε +
1
2π

Cν2

∫
|t|≤N

|f̂(t)|C2(ν, t)dt.
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The last inequality follows from Theorem 5.2 and it shows that the norm inside
the integrand can be made smaller than ε as ν → 0. We conclude that ‖uν − (u0 +
ν2u2)‖0,−η → 0.

Appendix A. Non-Separation of 0 from the Spectrum of T (ν, t)

Here, we justify the fact that 0 cannot be separated from the spectrum of T (ν, t),
uniformly with respect to ν in a sector around 0.

Recall that for u ∈ H1
#(Y ), we have

(T (ν, t)u, u) =
∫

Y

a|∂1(ueiξ·t)|2 + ν2

∫
Y

a|∂2(ueiξ·t)|2 + ν4

∫
Y

a0|u|2.

The uniform boundedness and the ellipticity of the coefficients show that, for all
u ∈ H1

#(Y ),

(Sα(ν)u, u) ≤ (T (ν, t)u, u) ≤ (SM (ν)u, u), (A.1)

where Sδ(ν) denotes the operator with constant coefficients defined by

(Sδ(ν)u, v) = δ

∫
Y

a∂1(ueiξ·t)∂1(veiξ·t)

+ ν2δ

∫
Y

a∂2(ueiξ·t)∂2(veiξ·t) + ν4

∫
Y

a0uv.

The eigenvalues of Sδ(ν), with periodic boundary conditions, are easily computed

λδ
m = δ[(m1 + ν2t1)2 + ν2(m2 + νt2)2] + ν4a0 > 0

where m ∈ Z2. The estimates (A.1) and the min–max principle13 show that the
eigenvalues λm(ν) of T (ν, t) can be compared to those of Sα(ν) and SM (ν).

In particular, any open interval around 0 contains countably many eigenvalues
of T (ν, t), when ν is small enough.

It would be very interesting to obtain more information about the spectrum of
T (ν, t). Formally, setting ν = 0 in the definition of T (ν, t), we obtain the degenerate
operator

T0u = −∂1 (a(y1, y2)∂1u) .

This operator, viewed as an operator defined on the space of L2
#(Y )-functions with

a y1-derivative in L2
#(Y ) has a spectrum which is easy to characterize. It consists

of isolated points λm (each with infinite multiplicity) which are the eigenvalues
of the one-dimensionnal operator − d

dx

(
ã(x)du

dx

)
defined on L2

#(0, 2π). It would be
particularly interesting to show that, like the operator Sδ(ν) defined above, one
could define bundles of regular curves ν → λm(ν) stemming from each value λm.
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Appendix B. Derivation of σ2

The value of σ2 is obtained from Eq. (4.7) when j = 6. Choosing w ≡ 1 in this
equation yields

A2[φ4, 1] + A3[φ3, 1] + A4[φ2, 1] = 0. (B.1)

Since A2[φ4, 1] = A2[1, φ4] = −A0[χ1, φ4] = −A0[φ4, χ1], (4.2) when j = 4, and
the fact that χ1 has 0-average, yield

A2[φ4, 1] = A2[φ2, χ1] + A4[φ0, χ1].

Furthermore, it is easy to check that from (4.2), j = 3 that φ3 = φ0χ2 + ρ3(y2, t)+
σ3(t). The left-hand side of (B.1) rearranges thus as

A2[φ0χ1 + ρ2 + σ2, χ1] + A4[φ0, χ1] + A3[φ0χ2, 1] + A4[φ0χ1 + ρ2 + σ2, 1],

which implies that

σ2 = −A2[φ0χ1 + ρ2, χ1] + A3[φ0χ2, 1]
A4[1, 1] − A0[χ1, χ1]

.

References
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