
Analysis of a One-dimensional Variational Model ofthe Equilibrium Shape of a Deformable Crystal*Eric Bonnetiery, Richard S. Falkz, and Michael A. GrinfeldxAbstract. The equilibrium con�gurations of a one-dimensional variational model that combines termsexpressing the bulk energy of a deformable crystal and its surface energy are studied. After eliminationof the displacement, the problem reduces to the minimization of a nonconvex and nonlocal functional of asingle function, the thickness. Depending on a parameter which strengthens one of the terms comprisingthe energy at the expense of the other, it is shown that this functional may have a stable absolute minimumor only a minimizing sequence in which the term corresponding to the bulk energy is forced to zero by theproduction of a crack in the material.Key words. Equilibrium shape, non-convex energy functional, variational problemAMS(MOS) subject classi�cations (1985 revision). Primary 49S, 73V251. Introduction.The morphological instabilities of interfaces is a topic of primary interest in physics(e.g., see [4]). Currently, many branches of the natural sciences, including low temperaturephysics, fracture, crystal growth, epitaxy of nano-scale �lms, metallurgy, geology, and ma-terials science show a rapidly growing interest in the so called stress driven rearrangementinstabilities (SDRI) of surfaces and interfaces in solids. Several examples of the SDRIhave been predicted on the basis of Gibbs thermodynamics [5] of heterogeneous systemsby studying the positive de�niteness of the second energy variations [7] of relevant func-tionals. At present, some of the predicted instabilities have been con�rmed experimentallyand found applications in the above mentioned areas.The thermodynamics of deformable solids with rearrangement leads to certain multi-dimensional variational problems with unknown boundaries and with di�erent speci�cconstraints. Despite its quite simple formulation, the problem in all its entirety is certainlyunobservable, and the study of its di�erent features with the help of simpler examples seemsquite desirable. Many mathematical aspects of the general problem of thermodynamics ofsolids with rearrangement can be studied in the framework of the problem of equilibriumshape of deformable crystals formulated in [7], [8]. This problem is of a certain physicalinterest on its own in the theory of nano-scale solid crystals [10]. Probably, it is the simplestmathematical problem possessing all of the crucial features of the most general situation.From a mathematical point of view, the problem of the equilibrium shape of a deformable*The second author was supported by NSF grant DMS-9704556.yCNRS-CMAP, Ecole Polytechnique, 91128 Paliseau, France. eopus@cmapx.polytechnique.frzDepartment of Mathematics, Piscataway, NJ 08854. falk@math.rutgers.eduxEducational Testing Service, Princeton, NJ. mgrinfeld@ets.orgbfgnew2 2/25/1998 DRAFT 1 Typeset by AMS-TEX



crystal is the natural synthesis of two classical problems of mathematical physics: (i) of theproblem of equilibrium shape of a rigid crystal of �xed total volume [11] and [12] and (ii)of the problem of the equilibrium of an elastic solid with �xed geometry. The symbiosis,however, gives some qualitatively new features absent in the ingredients. Some valuableanalytical facts for this problem can be established with the help of Nozieres's results [13].Because of the existing di�culties of the general 3D-problem, it is expedient to analyze �rstits simpler one-dimensional version which is studied in this and in a forthcoming paper.The one-dimensional problem has been formulated in [9] and it allows us to describesome phenomena in elastic shells and strips with movable defects. Below, we presentwithout derivation some facts relating to this problem. Mathematically it is formulatedas the minimization of the functional E depending on two unknown functions: an elasticdisplacement u(x) and a strip thickness h(x) of one variable x:E = Z L0 h(G=2)h(x)[u0(x)]2 + �p1 + [h0(x)]2i dxwhere G > 0 is the elastic modulus, � > 0 is the surface energy, u0(x) is the elasticdeformation, and p1 + [h0(x)]2 dx is the element of an outer boundary of the strip.We assume that the elastic displacements u(x) and the thickness h(x) are �xed at theend-points, i.e., u(0) = U0; u(L) = UL; h(0) = h0; h(L) = hLand that the total volume of the strip is also �xed, i.e.,Z L0 h(x) dx = A:For simplicity, we consider the case whenL = 1; U0 = 0; UL = 1; h0 = 1; hL = 1; A = 1; � = 1; G = 2N:We are thus led to the minimization problem: Find u 2 V and h 2 H such that(1.1) infu2V;h2H E(u; h) = infu2V;h2HN Z 10 h(x)[u0(x)]2 dx+ Z 10 p1 + [h0(x)]2 dx:The set of admissible displacements is V = fu 2 H1(0; 1) : u(0) = 0; u(1) = 1g, and theadmissible thicknesses lie in the set H of piecewise C1 functions on [0; 1] satisfying(1.2) h(x) > 0 in [0; 1]; h(0) = h(1) = 1; Z 10 h(x) dx = 1:bfgnew2 2/25/1998 DRAFT 2



For a given thickness h 2 H, one can easily check thatu0h(x) = �Z 10 [h(x)]�1 dx��1 1h(x)minimizes E(u; h) in V . Thus the displacement can be eliminated in (1.1) and the originalproblem reduces to minimizing over h 2 H the functional(1.3) I(h) = NR 10 [h(x)]�1 dx + Z 10 p1 + [h0(x)]2 dx:It is a standard feature in such problems of the calculus of variations, that I may not attainits in�mum on the space of C1 functions. Generally, minimizing sequences may developoscillations if I does not have the right properties of convexity. In the case at hand, thesecond term of I is convex since@2@f2p1 + f2 = �1 + f2��3=2 > 0;but the �rst term is concave, so the standard direct method is not applicable. Minimizingsequences may also tend to functions which lie outside the initial set of candidates andwhich are usually less regular. To ensure well-posedness, the problem must be relaxed: alarger class of admissible designs must be allowed and the functional must be extendedaccordingly [3].The uniform thickness h0 � 1 will be called the trivial solution. The value of its energyis N + 1. One readily checks that h0 satis�es the Euler-Lagrange equation associated to(1.3) (however, this is not a su�cient condition for h0 to be the absolute minimum !). Manyother examples of variational problems whose minimizers do not satisfy the Euler-Lagrangeequation can be found in [1]. Because of the nonlocal nature of the term correspondingto the bulk energy in the functional I(h), the problem discussed here falls outside of theclassical theory.The main results of the paper are the following. In the next section, we consider thestandard linearized stability analysis and show that the second variation of the energy forsmooth perturbations about the thickness h0 � 1 is positive for N � 2�2. However, thisdoes not guarantee that h0 � 1 is a minimizer even for N in this range. In x 3, we show thatthere exists an N0 > 0 (� 1:159) such that for all N � N0, h0 � 1 is an absolute minimizerof the functional I. In x 4, we prove that for N � 2, infh2H I(h) � 2 + �=4. Then,in the following section, we explicitly constuct a minimizing sequence h� 2 H such thatI(h�)! 2 + �=4 as �! 0, which proves that infh2H I(h) = 2 + �=4. For this minimizingsequence, the term corresponding to the bulk elastic energy tends to 0, and the functionalreduces to a measure of the length of the curve de�ned by h�. The disappearance ofthe bulk energy term is achieved by the production of a crack in the specimen and thebfgnew2 2/25/1998 DRAFT 3



energy cost for this is equal to twice the extra length induced by the crack. This is shownexplicitly by the construction of a non-parametric curve H�, the length of which equals2 + �=4, such that h� converges to H� a.e. Finally, x 6 states a relaxation result: sinceminimizing sequences for I satisfy natural bounds in the space BV of functions of boundedvariation, we de�ne an extension J of I on a compact set of BV functions and show thatthis extension is lower semi-continuous with respect to BV .2. Stability for the linearized problem. In this section, we consider the standardlinearized stability analysis for the trivial solution h0 � 1 and establish the following result.Lemma 2.1. If N � 2�2, and k is a smooth function satisfying R 10 k dx = 0, thenD2I(h0)k 
 k > 0.Before proving this result, we note that we shall show in x 4 that h0 � 1 is not aminimum for values of N which are much lower than 2�2. This is not contradictory withthe lemma, since the linearized analysis only gives information about smooth perturbations.Proof. If an admissible function h is smooth, bounded away from 0, and if k is a smoothfunction such that R 10 k dx = 0, thenI(h+ �k) = I(h) + � Z 10 h0(x)k0(x)p1 + [h0(x)]2 dx+N� Z 10 k(x)[h(x)]2 dx�Z 10 [h(x)]�1 dx��2+N�2 �Z 10 k(x)[h(x)]2 dx�2�Z 10 [h(x)]�1 dx��3�N�2 Z 10 [k(x)]2[h(x)]3 dx�Z 10 [h(x)]�1 dx��2 + �22 Z 10 [k0(x)]2(1 + [h0(x)]2)3=2 dx +O(�3):In particular, for the function h0 � 1, the above becomesI(h0 + �k) = I(h0) + �22 Z 10 �[k0(x)]2 � 2N [k(x)]2� dx+O(�3):Hence h0 � 1 has a lower energy than a smooth perturbation, provided that(2.1) Z 10 �[k0(x)]2 � 2N [k(x)]2� dx � 0 8 k 2 H10 (0; 1) such that Z 10 k dx = 0:Now the functions en(x) = sin(n�x), n � 1, form a basis of H10 (0; 1) and satisfyZ 10 (e0n)2(x) dx = n2�2 Z 10 e2n(x) dx = n2�2=2;Z 10 e2n(x) dx = 0; Z 10 e2n+1(x) dx = 12n+ 1 2� :bfgnew2 2/25/1998 DRAFT 4



Let k(x) =Pn�1 anen(x). The condition that the average of k vanishes yieldsa21 = ��=2 Z 10 [k(x) � a1e1(x)] dx�2 = �2=40@Z 10 Xp�1 a2p+1e2p+1(x) dx1A2= �2=40@Xp�1 a2p+1 12p+ 1 2�1A2 �Xp�1 a22p+1Xp�1 1(2p+ 1)2= ��28 � 1�Xp�1 a22p+1:Condition (2.1) reduces to Xn�1 a2n(n2�2 � 2N) � 0:Obviously, this condition is ful�lled if 2N � �2. Using (2.1) directly, we see N mustbe smaller than 2�2, since the second eigenfunction e2 has a zero average. However, if�2 � 2N < 0, the estimate on a1 yieldsXn�1 a2n(n2�2 � 2N) �Xp�1 a22p+1[(2p+ 1)2�2 � 2N + (�2 � 2N)(�2=8� 1)]+Xp�1 a22p(4p2�2 � 2N):Since the factor in the �rst sum of the expression on the right hand side is positive forN � 2�2, we conclude that D2I(h0)k 
 k is positive for N is this range.3. Stability of the trivial solution. In this section, the trivial solution h0 � 1 isshown to be the unique minimum of I, if N is su�ciently small. Speci�cally, we prove thefollowing.Theorem 3.1. The trivial solution h0 � 1 is a stable minimum with respect to perturba-tions of magnitude k < 1, provided that N �  (k) � (p1 + 4k2� 1)(1� k+ k2)=k2. Also,h0 is an absolute minimum if N � N0 � inf0<k�1  (k) � 1:16.Proof. We begin by seeking a lower bound for the elastic energy that is quadratic in termsof the maximal and minimal values of h, for any admissible thickness h 2 H. Since I istranslation invariant, we can always assume thath(x) = 1 +K(x) � 1 on [0; �]; h(x) = 1� k(x) � 1 on [�; 1]:bfgnew2 2/25/1998 DRAFT 5



The volume constraint on h becomes(3.1) Z �0 K(x) dx � Z 1� k(x) dx = 0:Let 1 + K0 and 1 � k0 denote the maximum and minimum of h, 0 � K0, 0 � k0 < 1.Straightforward computations show that if �0 = (1� k0)�1,11 +K � 1�K +K2 8 0 � K � K0; 11� k � 1 + k + �0k2 8 0 � k � k0:Using (3.1), it follows thatZ 10 [h(x)]�1 dx = Z �0 [1 +K(x)]�1 dx + Z 1� [1� k(x)]�1 dx� Z �0 [1�K(x) +K2(x)] dx + Z 1� [1 + k(x) + �0k2(x)] dx� 1 + �K20 + (1� �)�0k20:Thus, the elastic part of the energy can be estimated by(3.2) NR 10 [h(x)]�1 dx � N1 + �K20 + (1 � �)�0k20 :On the other hand, a term such as R �0 p1 + (h0)2 dx is the length of a curve that joinsthe points (0; 1) to (�; 1), and that rises up to the level 1+K0. Suppose that h(
�) = 1+K0for some 0 < 
 < 1. The Jensen inequality applied to the convex function p1 + x2 yieldsZ 
�0 p1 + (h0)2 dx � 
� 1 + �Z 
�0 h0(x) dx
��2!1=2 =q
2�2 +K20 :Similarly, on the piece [
�;�], we haveZ �
�p1 + (h0)2 dx �q(1 � 
)2�2 +K20 :Using the convexity of p�2 + x2,q
2�2 +K20 +q(1� 
)2�2 +K20 = 
s�2 +�K0
 �2 + (1� 
)s�2 +� K0(1� 
)�2�q�2 + 4K20 :bfgnew2 2/25/1998 DRAFT 6



Hence we obtain Z �0 p1 + (h0)2 dx �q�2 + 4K20 :A similar estimate holds on the portion [�; 1], with a lower boundp(1 � �)2 + 4k20. Again,by convexity, adding these two estimates yields(3.3) Z 10 p1 + (h0)2 dx �p1 + 4(K0 + k0)2:Adding (3.2) and (3.3), we obtainI(h) � N1 + �K20 + (1� �)�0k20 +p1 + 4(K0 + k0)2:As a function of �, the �rst term on the right hand side is increasing if K20 < �0k20. In thiscase, the lowest value corresponds to � = 0 so thatI(h) � N(1� k0)1� k0 + k20 +q1 + 4k20:Thus, I(h) � I(1), provided N is less than m(k0) = p1 + 4k20 � 1k20 (1 � k0 + k20):If, on the other hand, K20 � �0k20, then the lowest value of the bound corresponds to� = 1, and then I(h) � N1 +K20 +q1 + 4K20 :The trivial solution achieves the smallest bound, provided N is smaller than M (K0) = p1 + 4K20 � 1K20 (1 +K20 ):The �rst statement of the theorem then follows from the observation that  m(k) < M (k) for k 2 (0; 1). This together with some straightforward computations which showthat  M is an increasing function of k and that inf0<k�1  (k) � 1:16 establish the secondstatement.4. A generalized minimizer for N � 2. In this section, we compute the in�mumof (1.3) for values of N � 2 and show that it corresponds to the length of a parametriccurve representing a generalized thickness.bfgnew2 2/25/1998 DRAFT 7



Theorem 4.1. If N � 2, then infh2H I(h) � 2+�=4. In addition, if H� is the parametriccurve de�ned by the functionsh�(x) = 1� �=8 +p(x + x�)(1 � x � x�) if 0 � x < 1� x�;h�(x) = 1� �=8 +p(x + x� � 1)(2 � x� x�) if 1� x� � x � 1;and the segment x = 1 � x�, 0 < y < 1 � �=8, with x� = (4 � p16� �2)=8, then thein�mum of I corresponds to the length of H�, where the length of the vertical part of H�is counted twice.Proof. To establish this result, we rewrite the minimization problem in the following form.(4.1) infh2H I(h) = inf0<��1� infh2H� I(h)� ;where H� is the set of piecewise C1 functions satisfying the constraints (1.2) andminx2[0;1]h(x) = �:For h 2 H�, 1=h � 1=�, so the �rst term in I is bounded from below by N�. Thus, we get(4.2) infh2H� I(h) � N� + infh2H� L(h);where L(h) � R 10 p1 + [h0(x)]2 dx is the length of the curve h. The second term in theabove expression is the minimal length of a curve that takes the value 1 at its end points,reaches the value � as its minimum, and bounds an area equal to 1.Let F� be the set of piecewise C1 curves satisfyingf(x) � � in [0; 1]; f(0) = f(1) = �; Z 10 f(x) dx = 1:To each element f of F�, we associate an element h of H� in the following way. If 0 < � < 1,the area constraint forces f to take the value 1. Let x1 be the �rst point where f = 1. Seth(x) = f(x + x1) for 0 � x � 1� x1; h(x) = f(x � 1 + x1) for 1� x1 < x � 1:Since the volume constraint and the length of the curve are translation invariant, thefunction h lies in H�. In a similar fashion, we can associate to a function h 2 H�, afunction f 2 F�: if x� is the �rst point where h achieves the value �, we setf(x) = h(x+ x�) for 0 � x � 1� x�; f(x) = h(x � 1 + x�) for 1� x� � x � 1:It follows that the in�mum of L can be computed either on H� or on F�. The latter isa case of the isoperimetric problem. Its solution is described in the next proposition, theproof of which is given in the Appendix.bfgnew2 2/25/1998 DRAFT 8



Proposition 4.2. If (1 � �=8) � � � 1, the curve of minimal length, with value � at itsend points, lying above the value �, and bounding an area equal to 1, is the arc of circle ofradius R� given by(4.3) 1� � = �p4R2� � 1=4 +R2� arcsin(1=[2R�]):Moreover, the corresponding length is inff2F� L(f) = 2R� arcsin(1=[2R�]).If 0 � � < 1 � �=8, the in�mum of L(f) is attained by the curve consisting of thevertical straight lines [0; y]; � � y � 1��=8 and [1; y]; � � y � 1��=8, and the half-circleof radius 1=2 joining the point (0; 1 � �=8) to the point (1; 1 � �=8). The minimal lengthis then inff2F� L(f) = 2(1� �) + �=4:Returning to (4.2), we can bound the energy from below byI1(�) = N� + 2R� arcsin(1=[2R�]) if 1� �=8 � � � 1;I2(�) = (N � 2)�+ 2 + �=4 if 0 � � < 1� �=8;and it follows from (4.1) that(4.4) infh2H I(h) � min� inf1��=8���1 I1(�); inf0<�<1��=8 I2(�)� :We next show that for N � 2, the in�mum in (4.4) is attained at � = 0. Di�erentiatingI1 with respect to �, we get@I1@� = N + 2 arcsin(1=[2R�]) � 1p4R2� � 1! @R�@� :On the other hand, the de�nition (4.3) of R� yields1 = 2 R�p4R2� � 1 �R� arcsin(1=[2R�])! @R�@� :Eliminating @R�=@� between these two relations shows that@I1@� = N � 1R� � N � 2;since R� � 1=2. Thus, for N � 2, I1 is an increasing function of �. On the other hand, I2is also increasing in this case, which establishes the result.bfgnew2 2/25/1998 DRAFT 9



It is then easily checked that I2(0) = 2 + �=4 is the length of the curve F� de�ned bythe function f�(x) = 1� �=8 +px(1 � x) if 0 < x < 1:and by the two vertical linesx = 0; 0 � y � 1� �=8; x = 1; 0 � y � 1� �=8 :To go back to the original boundary conditions, let x� = (4�p16� �2)=8, let(4.5) h�(x) = f�(x + x�) if 0 � x � 1� x�; h�(x) = f�(x + x� � 1) if 1� x� < x � 1;and let H�(x) be the curve de�ned by h� and the segment x = x�, 0 � y � 1� �=8. ThenH�(x) satis�es the conclusion of the theorem.The curve F�(x) and corresponding \generalized thickness" H�(x) are shown in Figure1 below. As is easily seen, h� is obtained as a rearrangement of f� by �rst taking the partof f� lying above y = 1 and then appending the part lying below y = 1.
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For 0 < � < 1 � �=8; � > 0; � > 0, we consider the function f�;� which is continuouson [0; 1], linear on [0; �] [ [1� �; 1], with value � at x = 0; 1 and slope s�;� = �(1� �=8 +�� �+p�(1� �))=�, and for x 2 [�; 1 � �],f�;�(x) = 1� �=8 + �+px(1 � x) :The constant � is selected so that f�;� satis�es the volume constraintZ 10 f�;� = 2Z �0 [s�;�x+ �] dx + Z 1��� h1� �=8 + �+px(1 � x)i dx= � h1� �=8 + �� � +p�(1 � �)i+ (1 � 2�)(1� �=8 + �)+p�(1 � �)(1� 2�)=2 + arcsin(1� 2�)=4 + 2��:The volume constraint yields� = �(1� �) + �=8(1 � �) �p�(1 � �)=2� arcsin(1 � 2�)=41� � :Expanding � as a series in � yields � = (1� �=8� �)� +O(�3=2), so that � is positive andtends to 0 as � ! 0. Thus, when � is small enough, f�;� is an admissible function.Let us now compute the energy I(f�;�). For the surface energy, we haveZ 10 q1 + (f 0�;�)2 dx = K1 +K2;where K1 is the length of the linear part, i.e.,K1 = 2Z �0 q1 + s2�;� dx = 2r�2 + h1� �=8 + �� �+p�(1� �)i2and K2 is the length of the arc of the circle, i.e.,K2 = Z 1��� q1 + (f 0�;�)2 dx = �=2� arccos(1� 2�):For the elastic part, let Z 10 1f�;� = J1 + J2;where J1 corresponds to the linear part, i.e.,J1 = 2Z �0 1s�;�x + � dx= 2�1� �=8 + �� �+p�(1� �) log 1 + 1� �=8 + �� �+p�(1� �)� ! :bfgnew2 2/25/1998 DRAFT 11



The term J2 is the contribution of the arc of the circle0 � J2 = Z 1��� 1f�;� dx � 11� �=8 :Thus, the total energy isI(f�;�) = �=2 � arccos(1� 2�) + 2r�2 + h1� �=8 + �� �+p�(1� �)i2+N "J2 + 2�1� �=8 + �� �+p�(1� �) log 1 + 1� �=8 + �� �+p�(1� �)� !#�1where J2 is bounded. When �, �, and � tend to 0, this quantity behaves likeI(f�;�) � �=2 + 2(1 � �=8) +N �J2 + 2�1� �=8 log�1� �=8� ���1 :The choice � = [log(1=�)]�1=2 shows that I(f�;�) ! 2 + �=4 = I2(0), the length of F�(x),when � ! 0. On the other hand, the sequence f�;� converges pointwise to f�. Therefore,it follows from Theorem 4.1 that f�;� is a minimizing sequence, when N � 2.
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6. A relaxed form of the energy. In the result of stability for values of N � 2,we constructed a sequence of piecewise C1 functions hn, the energies of which converge tothe value of the in�mum 2 + �=4. This number is also the length of the non-parametriccurve H�, de�ned in Theorem 4.1. The sequence fhng, satis�es the estimateskhnkL1 = 1; Z 10 jh0nj dx � Z 10 p1 + (h0n)2 dx �Mfor some constant M . In other words, fhng is a sequence in the space BV of functionsof bounded variation [6], which is bounded in the norm in BV . It follows that fhng isprecompact in BV [6], i.e., that upon extracting a subsequence, fhng converges to the BVfunction h� de�ned by (4.5):h�(x) = 1� �=8 +p(x+ x�)(1� x � x�) for 0 � x � 1� x� = (4 +p16� �2)=8;h�(x) = 1� �=8 +p(x+ x� � 1)(2 � x� x�) for 1� x� < x � 1 :The convergence holds in the following sense :hn �! h� strongly in L1(0; 1);lim infn!1 Z 10 p1 + (h0n)2 dx � Z 10 p1 + (h0�)2 dx:We would like to cast the problem of minimizing (1.3) in a setting that ensures well-posedness. In other words, we would like to consider a functional, which is lower semi-continuous in the natural norm, and which is de�ned on a compact set of admissiblethicknesses.The space BV seems to be the natural space and for h 2 BV , strictly positive, thede�nition of I(h) in (1.3) makes sense. The closure of this subset of BV functions how-ever, contains functions that vanish, for which we need to extend the de�nition of I.Clearly, the trouble comes from the term (R 10 [h(x)]�1 dx)�1 that re
ects the fact that nouniform coercive estimates on the displacements are available in the original minimizationproblem (1.1).Let H� denote the set of positive BV functions, satisfying the boundary conditionsand the volume constraint of (1.2). In H�, we de�neJ (h) = min 2 min(h); NR 10 [h(x)]�1 dx!+ Z 10 p1 + (h0)2 dx; if min(h) > 0;J (h) = Z 10 p1 + (h0)2 dx; otherwise:bfgnew2 2/25/1998 DRAFT 13



Proposition 6.1. The functional J extends the functional I in the following sense :(i) if h 2 H� is bounded away from 0, i.e., h(x) � � > 0 a.e. in [0; 1], then I(h) � J (h).(ii) if fhng is a sequence of functions in H� that converges to h 2 H� in L1(0; 1), such thateach hn is bounded away from 0, then lim infn!1 I(hn) � J (h).Proof. The �rst statement is a trivial consequence of the de�nition of J . To prove thesecond point, we consider a sequence fhng � H�, such that for each n, min(hn) = mn > 0,and hn(x) ! h in L1(0; 1). By density, we can always assume that the functions hn areC1 on [0; 1] [6].Case 1 : if min(h) = 0, thenlim infn!1 I(hn) � lim infn!1 Z 10 p1 + (h0n)2 dx � Z 10 p1 + (h0)2 dx = J (h);where the last inequality follows from the lower semi-continuity of R 10 p1 + (h0)2 dx (i.e.,the length of h) in BV [6].Case 2 : if min(h) = m > 0 and lim infn!1mn > 0, then, h�1 2 L1(0; 1) and for asubsequence hn ! h a.e.; h�1n ! h�1 a.e. :From the Lebesgue Dominated Convergence Theorem, it follows thatNR 10 h�1n dx ! NR 10 h�1 dx :Thus, using again the lower semi-continuity of the length in BV , we obtainlim infn!1 I(hn) � NR 10 h�1 dx + Z 10 p1 + (h0)2 dx � J (h):Case 3 : if min(h) =m > 0 and lim infn!1mn = 0, then we can always assume that thewhole sequence hn tends to h a.e. and that(6.1) mn ! 0 :Let � > 0 be such that m� � > m=2 > 0. For n larger than some N0, mn+ � < m� �. Let�n(x) = sup(m � �; hn(x)). Since hn � �n � sup(h; hn) a.e.,(6.2) �n ! h a.e. :Moreover, since hn is continuous, for n > N0 there exists an interval [xn; yn], of length dn,such that hn(xn) = hn(yn) = m� �min(hn) = mn in [xn; yn]hn � m� � in [xn; yn] :bfgnew2 2/25/1998 DRAFT 14



The length of hn on [xn; yn] is greater than the length of two straight lines connecting thepoints (xn;m� �); ([xn + yn]=2;mn); (yn;m� �). Hence,Z ynxn p1 + (h0n)2 dx �pd2n + 4(m� ��mn)2 :On the other hand, since the length of �n on that segment is simply dn, we get(6.3) Z 10 p1 + (h0n)2 dx � Z 10 p1 + (�0n)2 dx+pd2n + 4(m� ��mn)2 � dn :We claim that(6.4) dn ! 0 as n!1 :Indeed, if dn ! � > 0, we could �nd a subsequence such that xn ! x ; yn ! y, and for nlarge enough, xn � �=5 < x < xn + �=5 < yn � �=5 < y < yn + �=5;so that we would have hn �m�� on [x+�=5; y��=5] for n large enough. This contradictsthe fact that hn ! h a.e.Finally, using (6.1) { (6.4) and the semi-continuity of the length in BV , we havelim infn!1 I(hn) � lim infn!1 Z 10 p1 + (h0n)2 dx� lim infn!1 �Z 10 p1 + (�0n)2 dx+pd2n + 4(m� � �mn)2 � dn�� Z 10 p1 + (h0)2 dx+ 2(m� �):Letting � tend to 0, we obtain lim infn!1 I(hn) � J (h).Proposition 6.2. The functional J is lower semi-continuous on H�.Proof. Let fhng � H� be such that hn ! h in L1(0; 1) and R p1 + (h0n)2 dx is bounded.We want to show that(6.5) lim infn!1 J (hn) � J (h) :We can always assume that the functions hn are C1 [6].bfgnew2 2/25/1998 DRAFT 15



If min(h) = 0, then (6.5) is satis�ed trivially. If min(h) = m > 0 and min(hn) = mntends to some value m� � m, thenmin 2mn; NR 10 [hn]�1 dx!! min 2m�; NR 10 h�1 dx! � min 2m; NR 10 h�1 dx! ;and (6.5) follows from the lower semi-continuity of the length.Ifm� < m, then let � > 0 be such thatm�+� < m�� and let �n(x) = sup(m��; hn(x)).Then, by the same arguments as those of Proposition 6.1,lim infn!1 Z 10 p1 + (h0n)2 dx � lim infn!1 �Z 10 p1 + (�0n)2 dx+pd2n + 4(m� ��mn)2 � dn�� Z 10 p1 + (h0)2 dx+ 2(m� ��m�) :Ifm� = 0, since lim infn!1J (hn) is larger than the right-hand side of the above inequality,(6.5) is obtained by letting �! 0.If m� > 0, then we getlim infn!1 �2mn + Z 10 p1 + (h0n)2 dx� � J (h)� 2� :On the other hand, the Dominated Convergence Theorem and the lower semi-continuityof the length yieldlim infn!1 " NR 10 [hn]�1 dx + Z 10 p1 + (h0n)2 dx# � NR 10 h�1 dx + Z 10 p1 + (h0)2 dx � J (h);and (6.5) follows from these last two inequalities by letting � tend to 0.Proposition 6.2 and the precompactness of sequences in H� in the norm in BV implythat J achieves a minimum in H�. For N � 2,NR 10 h�1 dx � NR 10 [min(h)]�1 dx � 2min(h)and thus, 8h 2 H�; J (h) = 2 min(h) + Z 10 p1 + (h0)2 dx:The arguments of x 4 show not only that I(h) � 2 + �=4, but also that J (h) � 2 + �=4.On the other hand, the function h�, de�ned by (4.5) satis�esJ (h�) = 2 + �=4 = min J :bfgnew2 2/25/1998 DRAFT 16



Appendix: Proof of Proposition 4.2. Assume f 2 Fe0 , i.e., that f is a piecewiseC1 function such thatf(0) = f(1) = e0; f(x) � e0; x 2 [0; 1]; Z 10 f(x) dx = 1:Since the minimal length of f 2 Fe0 depends on the value of e0, we shall consider twocases.Case 1 : 1� �=8 � e0 � 1In this case, we �rst show that there is an arc of a circle which is an admissible curve. Tothis e�ect, we seek y0 and Re0, such thatf0(x) = y0 +qR2e0 � (x � 1=2)2de�nes an arc of a circle that connects the point (0; e0) to (1; e0), that encloses an areaequal to 1, and that lies above the level e0. Expressing these conditions, we get(e0 � y0) =qR2e0 � 1=4;1 = Z 10 hy0 +qR2e0 � (x � 1=2)2i dx = y0 + p4R2e0 � 14 +R2e0 arcsin(1=[2Re0]):It follows that(7.1) e0 = 1 + (1=4)q4R2e0 � 1�R2e0 arcsin(1=[2Re0 ]):For r 2 (1=2;1), let�(r) = 1 + (1=4)p4 r2 � 1� r2 arcsin(1=[2 r]):Then �0(r) = 2r�(r) where �(r) = (4r2�1)�1=2�arcsin(1=[2 r]). Since �0(r) = �1=[r(4r2�1)3=2] < 0 for r > 1=2, � is a decreasing function. Since � tends to zero as r tends to in�nity,it follows that � and hence �0(r) are positive, which implies that � is a strictly increasingfunction. It is easy to check that � maps (1=2;1) onto (1 � �=8; 1). Thus, for each1 � �=8 < e0 < 1, there is a unique Re0 solution of (7.1). Furthermore, Re0 tends to 1=2(resp. 1) as e0 tends to 1� �=8 (resp. 1).Let D0 denote the upper half of the disc of radius Re0 , centered at (1=2; y0), and let �0denote the part of its boundary that lies below e0 and above y0. The domain D enclosedby �0, the line y = y0, and the curve de�ned by f has the same area as D0. The classicalisoperimetric inequality [2] implies that the length of the boundary of D is greater or equalto the length of the boundary of D0. ThusZ 10 p1 + (f 0)2 dx � Z 10 q1 + (f 00)2 dx = 2Re0 arcsin(1=[2Re0 ]):bfgnew2 2/25/1998 DRAFT 17



Case 2 : 0 � e0 < 1� �=8We can no longer draw an arc of a circle bounding an area of 1 through the points (0; e0)and (1; e0). The proof of this case is divided into two steps. In the �rst one, we replace fby another function f� that has length less than or equal to the length of f . Then in thesecond step, we obtain a lower bound on the length of f�.Step 1:In addition to the previous hypotheses, assume that f is piecewise linear. We shall subse-quently extend the results obtained by a density argument. Let eM be the maximum off . For e 2 [e0; eM ], we de�ne
e = f0 � x � 1 : f(x) � eg; g(e) = Z
e(f � e) dx; h(e) = �=8 j
ej2:The function h is the area of a half circle of diameter j
ej. It is a right-continuous,decreasing function. The function g measures the area enclosed by f above the level e.One can readily check that g is decreasing and continuous: if e < e0,g(e) = Z
0e(f � e) dx + Z
en
0e (f � e) dx� Z
0e(f � e0) dx + Z
0e(e0 � e) dx + (e0 � e) j
e n 
0ej� g(e0) + (e0 � e):Also, we have(7.2) g(e0) = 1� e0 > �=8 = h(e0):Again, we consider several cases.Case a: h(e) � g(e) for some value of e 2 (e0; eM ) or h(eM ) > g(eM ).The motonicity and continuity properties of g and h, together with (7.2), imply thath(e�) = g(e�), for some value e� 2 (e0; eM ).Since the area enclosed by f and the length of f are translation invariant, 
e� can beassumed to be connected and centered at some point x�. Then, the function f�, given byf�(x) = f(x) if x 2 [0; 1] n 
e� ;f�(x) = e� +qj
2e� j=4� (x� x�)2 if x 2 
e�also encloses an area equal to 1. It is a consequence of the standard isoperimetric inequalityon 
e� , that f� has a smaller length than f .Case b: h(e) < g(e) for all e 2 (e0; eM ) and h(eM ) � g(eM ).First, observe that if 
eM contains a subset ! where f is 
at, then g(eM ) = 0, whilebfgnew2 2/25/1998 DRAFT 18



h(eM ) � �=8 j!j2 > 0. Since this cannot occur under the hypothesis of Case b, weconclude that f 0 6= 0 a.e. in 
eM . Hence, for e close enough to eM , 
e consists of a �nitenumber of intervals 
e = [1�i�N [xi � r�i ; xi + r+i ];such that f is increasing on [xi� r�i ; xi] from f(e) to f(eM ) and decreasing on [xi; xi+ r+i ]from f(eM ) to f(e). Again, by translation invariance, 
e can be assumed to be connected(i.e., xi+ r+i = xi+1� r�i+1) and centered at some point x�. Since f is piecewise linear andhas a saw-tooth pro�le in 
e, we have(7.3) Z
e (f � e) dx = j
ej(eM � e)=2:Thus, h(e) < g(e) implies that (eM � e)=2� �=8 j
ej is positive. Hence,e� � e+ (eM � e)=2� �=8 j
ej = (eM + e)=2 � �=8 j
ej > e:Clearly, we also have e� < eM . Let f�(x) be the function de�ned byf�(x) = f(x) if x 2 [0; 1] n 
e;f�(x) = e� +pj
2ej=4� (x � x�)2 if x 2 
e; i.e., jx� x�j � j
ej=2;and let C� be the curve de�ned by the union of the half circle (x; f�(x)), jx�x�j � j
ej=2,and the two vertical segments [x� � j
ej=2; y], e � y � e� .According to the de�nition of e�,Z
e(f� � e) dx = Z
e h(e� � e) +pj
2ej=4� (x � x�)2i dx = (e� � e)j
ej+ �j
ej2=8= [(eM � e)=2 � �j
ej=8] j
ej+ �j
ej2=8 = j
ej(eM � e)=2 = Z
e(f � e) dx:Besides, (7.3) gives the following estimate of j
ej.(7.4) h(e) = �j
ej2=8 < g(e) = j
ej(eM � e)=2 i.e.; �j
ej=4 < eM � e:Now the length of f on 
e is given by= NXi=1 �q(r�i )2 + (eM � e)2 +q(r+i )2 + (eM � e)2�= NXi=10@ r�ij
ejsj
ej2 + � j
ejr�i (eM � e)�2 + r+ij
ejsj
ej2 + � j
ejr+i (eM � e)�21A�pj
ej2 + 4N2(eM � e)2 �pj
ej2 + 4(eM � e)2;bfgnew2 2/25/1998 DRAFT 19



by the convexity of the function pa2 + x2. On the other hand, using (7.4), the length ofC� is 2(e� � e) + �j
ej=2 = (eM � e) + �j
ej=4 � 2(eM � e) <pj
ej2 + 4(eM � e)2;and thus is smaller then the length of f .Step 2:So far, given a piecewise linear admissible function f , we have constructed another admis-sible function f�, which may have jumps, but whose length, l(f�), is less than or equal tothe length of f . In particular, the constraint on the area yields1 = Zff��e�g f� dx+ Z[0;1]nff��e�g f� dx:In Case a, 
e� is also the set where f� � e� and so it follows easily from the above that1 � Z
e� f� dx + e�(1� j
e� j) = (�=8)j
e� j2 + e� j
e� j+ e�(1 � j
e� j) � (�=8) + e�:In Case b, 
e is the set where f� � e� and so1 � Z
e f� dx + e�(1� j
ej) = (�=8)j
ej2 + e� j
ej+ e�(1 � j
ej) � (�=8) + e�:Hence, in both cases, e� � 1� �=8:Let D be the domain that consists of the area enclosed by f� above the level e0and its symmetric image about the line y = e0. Its area is A(D) = 2(1 � e0), and itslength is l(D) = 2l(f�). Further, by construction, D contains two discs of radius j
e� j=2,whose centers are separated by a distance d = 2(e� � e0). In this situation, the followingisoperimetric inequality holds [2, p.7].l(D)2 � 4�A(D) + 4d2;i.e.,l(f�)2 � 2�(1 � e0) + 4(e� � e0)2 � 2�(1 � e0) + 4(1� �=8� e0)2 = [2(1� e0) + �=4]2 :By density, it follows that for all f 2 Fe0Z 10 p1 + (f 0)2 dx � 2(1� e0) + �=4:It is easy to check that this value is attained by the curve consisting of a half circle of radius1=2 centered at (1=2; e�) and the two vertical segments [0; y], and [1; y], with e0 � y � e�,where e� = 1� �=8. Note that this is precisely the curve C� in the case when e = e0 (and
e = [0; 1]).bfgnew2 2/25/1998 DRAFT 20
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