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Abstract. In this Note, we consider a layout optimization problem, where the dependence of
the material coefficient with respect to the density is nonlinear. The particular case
when the density only depends on one space variable is studied. We show that the
original design problem can be relaxed into an optimization that only involves three
shape variables. The structure of the optimal designs is characterized by expliciting
optimality conditions of a relaxed functional. © Académie des Sciences/Elsevier, Paris

Conditions d’optimalité pour un probleme d’optimisation
de formes relaxé

Résumé.  On considere un probleme d’optimisation de formes oit la relation entre les valeurs des
coefficients du matériau et la densité est non linéaire. Dans cette Note, on étudie le
cas particulier oit les formes ne dépendent que d’une seule variable d’espace. Nous
caractérisons la structure des formes optimales de la fonctionnelle relaxée. © Académie
des Sciences/Elsevier, Paris

Version francaise abrégée

Dans cette Note, on considére des problemes d’optimisation de la distribution d’un matériau de
densité a pour minimiser, sous une contrainte de volume, une fonctionnelle de cofit (3), qui dépend
des solutions de 1'edp (2). La conductivité du milieu est de la forme a¥ et donc est une fonction
non linéaire de la densité.

Ce type de probleme est mal posé, car en général, il n’y a pas de minimum. On est amené &
généraliser I’ensemble des distributions du matériau et a relaxer la fonctionnelle. Nous considérons
le cas ol @ ne dépend que d’une variable d’espace, pour lequel on peut trouver une relaxation
explicite de la fonctionnelle (théoreme 1.1). Le théoréme 1.5 montre que 1'ensemble des distributions
de matériau généralisées peut-&tre décrit par 3 variables de forme.

Note présentée par Jacques-Louis Lions.,
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En introduisant un multiplicateur de Lagrange associé a la contrainte de volume, nous écrivons
des conditions d’optimalité sur ces variables de forme pour la fonctionnelle relaxée. Les conditions
d’optimalité fournissent une caractérisation complete de la structure des formes généralisées optimales
et permettent de construire un algorithme numérique.

Des résultats de relaxation similaires ont €té obtenus auparavant par les auteurs dans le cadre de
I'optimization de la rigidité d’une plaque d’épaisseur variable (voir [2], [3]).

1. The optimization problem

We consider an open set {2 in R?, contained in the strip [z, z1] X R, which is filled with a conducting
material. The density of the material is represented by a L® function a(z,y), while its conductivity
is measured by some power, i.e. it has the form o?, for some positive constant p.

The conductivity is assumed to depend on one variable only and to be uniformely bounded and
elliptic. In other words, we assume that for two given constants @i, Gmax,

a€ A= {b(x,y) =b(x) € L*=([z0,21]) | 0 < @min < b(2) < @pax < oo for ae. z}. (H
Given a function f € H™1({2), let u denote the unique potential that satisfies
—div(e?Vu) = f in Q, =0 on d. (2)
Given a function g € L?(§2), we consider the functional
L@ = [ st )dady, @
and we minimize L(a) among all the conductivities that satisfy (1) and a volume constraint:

/. a{x)dxdy = V. (4)
0

The seminal work of Murat and Tartar, [7], [9], has shown that, in this form, the minimization
problem may not have a solution, since the functional L is not weakly lower-semi-continuous for the
L weak * topology. The remedy is to perform a relaxation. This process consists in enlarging the
space of admissible designs a(x), in order to cope with the effects of rapidly oscillating minimizing
sequences of original designs a(z), and in extending the functional L to these generalized designs.
The goal is to produce a functional which is weakly lower-semi-continuous on a compact set of
generalized designs. For our problem at hand, the answer is completely explicit, as the admissible
conductivities only depend on one variable.

Let A denote the set of functions (a,m.c) € (L°([2¢,21]))* such that

(a,m,e™ ") = w* —lim(a,,a?, a;?), ®)

for some sequence of designs a, € 4. For a triple (a,m,c™!) € _,Z, we consider the anisotropic
conductivity A(x) = <C

0 and let w denote the solution to
0 m

—div(AVa) = f inQ, u=0 on J0. (6)
Finally, let L denote the functional Z(a,m,c) = /gﬂdmdy.
Ja

THEOREM 1.1. — The pair (./T Z) is a relaxation of (A, L).
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The proof is based on explicit formulae for the limit, in the sense of H-convergence, of sequences
of conductivities tensors that only depend on one variable (see [6], [1], [2], [3]).

Equivalently, the set of generalized designs A is the set of moments ({v,., A}, (Vy, AP}, (v, A7),
of all Young measures with support in [Gmin, @max] (see [2]). For fixed @ € [x(,x], the set of
moments M ((v., A}, (v., AP), (v, A7P)) is convex and every point inside M can be represented by
a convex combination of images of Dirac masses, which are its extreme points. In other words, given
a positive Radon measure v, with support in [@ymin, @max], there exists N points @; € [@mins Cmax]
and weights #; € [0,1] such that

N

(o, (AN AT =5 601 aiaf 0] 7).
=1

Such a representation furnishes a parametrization of M, and we seek the simplest one. In particular, we
seek the minimal number of points necessary to span the entire set M. A classical quadrature result [8]
answers this question for the moments of the polynomials A, A2, A3,... A2"~! Only n points are
required in this case. theorem 1.3 [4] below, shows that it remains true for more general moments:

DerFiNiTION 1.2, — A set of n 4+ 1 continuous functions ¢q, ..., ¢, is said to form a Tchebychev
system if and only if

(/I)U(a()) tr (/)U(“n)

det : # 0,
‘lsn(a(]) T ¢'r1(an)
whenever a,;, < ag < a1 < - < dy;, < Gpax-
THEOREM 1.3. — If ¢g = 1,..., pon_1 forms a Tchebychev system over an interval [a,nin, Gmax), then
the set of moments (1, (v, ¢1),...,{V, ¢p2,_1)) is spanned by convex combinations of at most n. points.

It turns out that the functions (1, a,a®,a™"), that are relevant in the optimization problem, form
a Tchebychev system.

ProposiTioN 1.4. — If a, b, ¢, d are distinct positive reals, then

1 1 1 1

a b c d
det W @ #0 Vp#1. (7

a”P b7P P TP

Proof. — We assume that (a, b, c,d) are distinct and that the determinant vanishes. Subtracting the
first column to the remaining three and developing the resulting determinant gives

1 1 1
b? — a? c? —aP P — a?
b—a c—a d—a =0.
b —aq™P P —q P dP—qgP
b—a c—a d—a
In order words, the points
b? — aP P —al dP — a?
B = b—g — g—zl ) C= C*I(; _ 2—1’ ’ D= dﬂ(Jl _ Z—P
b—-a c—a d—a
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are on the same line: for instance, C can be assumed to lie on the segment [B, D], and we can
infer that, for some 0 < 6 < 1,

6B +(1-6)D = C. (8)

It is convenient to define, for all x > 0, the following functions:

{’“(m = —(p+a? +apz T a7,

h(z) = (p— 1)a? — apx?~! + a?. ©

We remark that A'(z) = p(p — 1)a?~%(x — a) has the sign of (p — 1)(z — a). Also, h only vanishes
at x = a and is positive (resp. negative) if p > 1 (resp. if p < 1).
Let us further assume that p > 1 (the case p < 1 can be proved in the same way). The functions

P _ P ~P _ q7P

d(z) = T "% and Plz) = T 7% e increasing and define bijections from ]0, oo onto 0, 00|
z—a r—a

and ] — oo, 0[ respectively. Thus, the function F(y) = ¥ o ¢~ *(y) maps Ja?~!, co[ onto | — o0, 0],

and condition (8) is equivalent to

OF($(b)) + (1 = )F(p(d)) = F(04(b) + (1 = )(d)).

We now show that F is strictly concave except at one point, which contradicts this last condition.
Indeed,

gy = [w'w—%y»}_ L4 )L ket

dy [#(@)] ~ () de [¢() ] ~ ¢'a) 2
Since h only vanishes at x = a and since ¢’ > 0, the sign of F” is the sign of
Eh—h'k=plz—a)z 2H(a/z).
where H(X) = 2(p+ 1)(p — 1) — 2p®°X + (p + 1)X? — (p — 1)X 2. One easily checks that
+1
H(1) = 0 and that H'(X) = G(X?~1), with G(Y) = —2p® + p(p + 1)Y + p(p — 1)Y ~+-1. Since
GY)=p(p+ 1)(1 - Y‘%i‘l) has the same sign as ¥ — 1 and since G(1) = 0, the function H
has the same sign as X — 1. We conclude that k’h — b’k is negative and only vanishes at z = qa,
which proves the claim about the convexity of F. O

To wrap up this section, we apply Theorem 1.3 and Proposition 1.4, to get a simple parametrization
of the set of generalized designs.

THEOREM 1.5. — Let A* denote the set of functions (0, a1, as) such that 6 € L™([z¢,x1];[0,1]) and
(a1,a2) € L*([20, 21); [amin, Gmax])®. Let

(a(z), m(z),c™ (@) = 6(z)(a1(x), 6} (), a; P (2)) + (1 = B(x))(az(2), &5 (), a5 "(z)).  (10)
Let u, denote the solution to (6) with the coefficients m and c of the conductivity tensor defined by (10)
and let L*(8,a1,a2) = / gu.dxdy. Then, (A*,L*) is a relaxation of (A, L).
Q
2. Optimality conditions for the energy

In this section, the function g, that appears in the cost functional, is chosen to be equal to the applied
load f. We derive optimality conditions, that further reduce the form of the optimal generalized design.
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We reformulate the problem, introducing a Lagrange multiplier { to take the volume constraint into
account. In other words, instead of (3), we seck the infimum of

J(a) = /qu—la(a:),

on the set of functions satisfying (1). With the notations of Theorem 1.5, this infimum is equal to
the minimum of J*(#,a;,az) over the set A*, where

J*(G,al,az)=/qu*—l(9a1+(l—0)a2)
¢ 0
=/Q(O m)Vu*-Vu*—l(ﬂal—i-(l—@)az).

Using a standard duality argument, we set ¥ = {o € L%(Q)?|div(¢) = f}, and transform the
minimization into
. L b0
min J*(0,a1,02) = min 1}2)131/9 0 m-l]90- {(Bay + (1 — B)as).
In this last expression, the minimization with respect to the shape parameters can be pulled inside

the integral sign, as the functions (f,a;,a2) are not tied by any integral constraint. Denoting
e(f,a1,a2,0) = c7o? + m™1oZ — [(fa; + (1 — B)a,), we obtain that

min J*(6,a;,as) = min min e(#,a;,a2,0). 11
ol (0,a1,az) 062/;29,&1,02 (6,a1,0a2,0) (11

We now focus on the pointwise minimization of the energy density e with respect to the shape
parameters. If (€, a1, a,) is a minimum for a given o, admissible perturbations 66, §a;, Sas must satisfy

2 2
—p—1 _1 0 o 10
~ Béay [p(al Plot 4+ b EQE) + l} — (1~ f)day [p<a2 prlp2 g ab —m22> + l}

(12)

2
- —py .2 93
— 69]:-(111 P _ a2p)g'1 + (G,f - a‘;)ﬁ + (a1 — ag)l] > 0.
If #=0,6 =1 or a; = ay, the design at that point cprresponds to an original design with pure
material. The interesting case is whether a composite can occur and how its structure is restricted
by the optimality conditions.

If (#,a1,az) is an interior point, i.e., if 0 < # < 1 and if @i < a # az < @yax, the factors
2

. . . 0. .

of 68, ba,, Sa2 in (12) must vanish. Thus, (Uf, m—é,l) must be solution to a homogeneous 3 x 3

system, the determinant of which is

pa;”” pai”! 1

—p-1 p=~1 1 _ p(al — af) P P P p
pa; paj = —i1 11 Wel — a3)(a1 + a2) — p(af + af)(a; — a2)].
(a3” —a7?) (af —af) (a1 —ag)| 1 2

To study its zeroes, let {(z,a) = (27 — a?)(z + a) — p(z¥ + a?)(x — a). Its z-derivative is equal to
—(p+ 1) times the functions & of (9), and so £ only vanishes when z = a. Consequently, if a; # a,,
the determinant is different from zero, which forces o, = g9 = I = 0. It follows, that the minimum
cannot be attained at an interior point, if for instance |o| # 0.
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Assume now that 0 < € < 1 and that a,;, = a1 < @2 < Gmax- It follows from (12), that the factors

of $a; and 60 must vanish. Solving these equations for o7 and 22 , then injecting the result in the
m?2
factor of da;, which must be positive, we arrive at the condition

(p+ 1)(a1a3” + azai”) — (p — D(a{*! + a3"™!) — 2(af ' af + afah™") > 0. (13)

Here, we have used the fact that / is negative (since the factor of da» vanishes). The left hand side
can be rewritten as a>"*'g(ay/a;) with
9(X)=(p+ (X + X) — (p— (X7 +1) - 2(X7*! + X7)
= (X7 = D[(X? = 1)(X +1) = p(X? + 1)(X — 1)]
= (X? - 1)¢(X - 1).

Since g_& = —(p+ 1)h(X), and recalling the properties of 2, the left hand side of (13) turns out
xr

to be negative (resp. positive) if p > 1 (resp. p < 1). We conclude that a configuration such that
(1 = Gmin < @2 < @pax is only possible at the minimum if p < 1.

A symmetric situation holds if for instance oy < a1 < G2 = Gmax. We summarize the results
in the following

THEOREM 2.1. — At the optimal configuration, the design is:

— either made of pure material, i.e., (a,m,c) = (ay,a},a}) for some amin < a1 < Gmaxs

~ or made of a mixture of 4. and another conductivity @umin < @1 < Gmax if p > 1 (ifp< 1, a
mixture of Qyin and some Qumin < @1 < Gmax)-

Remark 2.2. - An iterative numerical algorithm can be designed very easily using the formulation (11)
and the optimality conditions. A related relaxation result has been obtained in the case of the
optmization of the compliance for a plate with variable thickness [2], [3]. The underlying operator is
then of fourth order. Optimality can be worked out in that case in the similar manner as here, leading
to an analogous result about the structure of the optimizes. For the plate problem, another form of
relaxation has been proposed by J. Mufioz and P. Pedregal [5].
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