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Abstract. In this Note. we consider a layout optimization problem, where the dependence of 
the material coefficient with respect to the density is nonlinear. The particular case 
when the density only depends on one space variable is studied. We show that the 
original design problem can be relaxed into an optimization that only involves three 
shape variables. The structure of the optimal designs is characterized by expliciting 
optimality conditions of a relaxed functional. 0 AcadCmie des ScienceslElsevier, Paris 

RCsumC. 

Conditions d’optimalid pour un problkme d bptimisation 

de formes relax6 

On considhe un prohlt?me d’optimisution de.fiwmes oLi la relation entre les valeurs des 
coejjicients du mate’riau et la densite’ est non linkaire. Dans cette Note, on Ptudie le 
cas particulier 02 les formes ne dkpendent que d’une seule variable d’espuce. Nous 
caracte’risons la structure desformes optimales de la,fonctionnelle relaxe’e. 0 Acadkmie 
des Sciences/Elsevier, Paris 

Version franpise abrdge’e 

Dans cette Note, on considttre des probkmes d’optimisation de la distribution d’un matkiau de 
densit& a pour minimiser, sous une contrainte de volume, une fonctionnelle de cotit (3), qui dCpend 
des solutions de l’edp (2). La conductivitt du milieu est de la forme (P et done est une fonction 
non linkaire de la densitk. 

Ce type de probkme est ma1 PO&, car en gCnCra1, il n’y a pas de minimum. On est amen6 B 
gCnCraliser l’ensemble des distributions du matkriau et g relaxer la fonctionnelle. Nous considCrons 
le cas ofi II ne dCpend que d’une variable d’espace, pour lequel on peut trouver une relaxation 
explicite de la fonctionnelle (thkorkme 1.1). Le thCor&me 1.5 montre que l’ensemble des distributions 
de matCriau gCnCralisCes peut-&tre dCcrit par 3 variables de forme. 

Note prbentke par Jacques-Louis LIONS. 
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En introduisant un multiplicateur de Lagrange associe a la contrainte de volume, nous Ccrivons 
des conditions d’optimalite sur ces variables de forme pour la fonctionnelle relaxee. Les conditions 
d’optimalite fournissent une caracterisation complete de la structure des formes gCnCralisCes optimales 
et permettent de construire un algorithme numerique. 

Des resultats de relaxation similaires ont et6 obtenus auparavant par les auteurs dans le cadre de 
l’optimization de la rigidite d’une plaque d’epaisseur variable (voir [2], [3]). 

1. The optimization problem 

We consider an open set 12 in R2, contained in the strip [XO, XI] x R, which is filled with a conducting 
material. The density of the material is represented by a L” function a(:~, :(I), while its conductivity 
is measured by some power, i.e. it has the form n r’ for some positive constant p. , 

The conductivity is assumed to depend on one variable only and to be uniformely bounded and 
elliptic. In other words, we assume that for two given constants a,;,, amax, 

fL E A E {b(.C, 1/) S b(.7;) E Loo([3:rj: :X1]) IO < (L,,,i*l 5 h(X) 5 (I,,,, < Co for a.e. X}. 

Given a function f E H-‘(O), let 7~ denote the unique potential that satisfies 

(1) 

-div(@VrL) = f in R, 76 = 0 on 30. (2) 

Given a function g E L’(It), we consider the functional 

and we minimize L(a) among all the conductivities that satisfy (1) and a volume constraint: 

.I n(:c)dn:tly = V. 
R 

(3) 

The seminal work of Murat and Tartar, [7], [9], has shown that, in this form, the minimization 
problem may not have a solution, since the functional L is not weakly lower-semi-continuous for the 
Lm weak * topology. The remedy is to perform a relaxation. This process consists in enlarging the 
space of admissible designs (I(X), in order to cope with the effects of rapidly oscillating minimizing 
sequences of original designs (I,(X), and in extending the functional L to these generalized designs. 
The goal is to produce a functional which is weakly lower-semi-continuous on a compact set of 
generalized designs. For our problem at hand, the answer is completely explicit, as the admissible 
conductivities only depend on one variable. 

Let 2 denote the set of functions (o,, VL. c) E (L”([Q, ~~1))~ such that 

(n: 711, c-l) = IU* - lim(a,,, n:,, Q), (5) 

for some sequence of designs CL,, E A. For a triple (n, m, c-‘) E A, we consider the anisotropic 

conductivity A(X) = and let 6 denote the solution to 

-div(AV6) = f in C2, ii=0 0ndR. (6) 

Finally, let ,? denote the functional i(n, 711, c) = 

I’ 

gzdzdy. 
. II 

THEOREM 1. I. - The pair (x, z) is a relaxation of (A, L). 
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The proof is based on explicit formulae for the limit, in the sense of H-convergence, of sequences 
of conductivities tensors that only depend on one variable (see [6], [I], [2], [3]). 

Equivalently, the set of generalized designs 3 is the set of moments ( ( v:~ : X), (11,. . P), (I/, i X-r’)), 
of all Young measures with support in [CL,,,;,,, (L,,,,,] (see [2]). For fixed :I: E [mu, :rr], the set of 
moments M((v.,, A), (I/,,, A”), (v,, Xep)) is convex and every point inside M can be represented by 
a convex combination of images of Dirac masses, which are its extreme points. In other words, given 
a positive Radon measure I/, with support in [~~,nli~~> CL,~~~,J, there exists N points (I,, E [amirr, nmax] 
and weights Hi E [0, l] such that 

Such a representation furnishes a parametrization of M, and we seek the simplest one. In particular, we 
seek the minimal number of points necessary to span the entire set M. A classical quadrature result [8] 
answers this question for the moments of the polynomials X, X2, X”, . . . : X2’r-1. Only n points are 
required in this case. theorem 1.3 [4] below, shows that it remains true for more general moments: 

DEFINITION I .2. - A set of rr + 1 continuous functions tio5 . . , &,, is said to form a Tchebyche\~ 
system if and only if 

Oo(~o) .” 45o((~n) 

detm ; # 0, 

dn (a”) . . . 4n (GL) 

whenever rL”lio 5 no < al < . < (L,, 5 nrnlax 

THEOREM 1.3. - If4o = 1;. . , ,$ 2n 1 arms a Tchebychev system over an interval [amin. a,,,,], then _ .f 
thesetofmoments(l,(v,y)~),...,(~~,y3~,-1))’ p 1s s anned by convex combinations of at most n points. 

It turns out that the functions (1, a7 nP, K-P), that are relevant in the optimization problem, form 
a Tchebychev system. 

PROPOSITION 1.4. - If a, b, c, d are distinct positive reals, then 

11 1 1 l/ 

Proof. - We assume that (a, h, c, d) are distinct and that the determinant vanishes. Subtracting the 
first column to the remaining three and developing the resulting determinant gives 

1 61’ - ($1 1 1 
cp - up $1 - ($ 

b-a c - n d - a = 0. 
b-11 _ u-~ c-1’ _ tL-P 0-P - (-L-p 

b-U c - n d - (1, 

In order words, the points 
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are on the same line: for instance, C can be assumed to lie on the segment [B, D], and we can 
infer that, for some 0 5 0 5 1, 

0B + (1 - B)D = c. (8) 

It is convenient to define, for all z > 0, the following functions: 

t 

k(x) = -(p + 1)x-P + czpz-y-1 + a-p! 
h(x) = (p - l):? - upz”-l + a’-. (9) 

We remark that h’(z) = p(p - l)~“-~ (Z - u) has the sign of (p - l)(s - u). Also, h only vanishes 
at 5 = a and is positive (resp. negative) if p > 1 (resp. if p < 1). 

Let us further assume that p > 1 (the case p < 1 can be proved in the same way). The functions 

4(x) = s and +(z) = 
x-9 - a--P 

x-a 
are increasing and define bijections from IO! m[ onto 10, co[ 

and ] - m, 0[ respectively. Thus, the function F(y) = $1 o d-‘(y) maps l&--l, m[ onto ] - oo,O[, 
and condition (8) is equivalent to 

QF(40)) + (1 - vT4(4) = F(W(b) + (1 - W(4). 

We now show that F is strictly concave except at one point, which contradicts this last condition. 
Indeed, 

Since h only vanishes at x = a and since (b’ > 0, the sign of F” is the sign of 

k’h - h’k = p(x - a)x-2H(a/x). 

where H(X) = 2(~ + l)(p - 1) - 2p2X + (p + 1)XP - (p - 1)X-P. One easily checks that 
H(1) = 0 and that W’(X) = G(XJ+l), with G(Y) = -2~’ + p(p + l)Y + p(p - l)Y-5. Since 
G’(Y) = p(p + l)(l - Y-s-‘> has the same sign as Y - 1 and since G(1) = 0, the function H 

has the same sign as X - 1. We conclude that k’h - h’k is negative and only vanishes at x = a, 
which proves the claim about the convexity of F. 0 

To wrap up this section, we apply Theorem 1.3 and Proposition 1.4, to get a simple parametrization 
of the set of generalized designs. 

THEOREM 1 S. - Let A* denote the set of functions (8, al, u2) such that 0 E L”([Q, ~~1; [0, 11) and 
(a~, a2) E L”([Xo3 Xi]; [hi,,, amax]j2. Let 

(a(x)! m(x)! c-‘(x)) = 0(x)(al(x), a:(x), u;‘(x)) + (1 - O(x))(az(x), a;(x), a;‘(x)). (10) 

Let u* denote the solution to (6) with the coeficients m and c of the conductivity tensor dejined by (10) 

and let L*(e, al, ~2) = 
s 

gu,dxdy. Then, (A*; L*) is a relaxation of (A, L). 
R 

2. Optimality conditions for the energy 

In this section, the function 9, that appears in the cost functional, is chosen to be equal to the applied 
load f. We derive optimality conditions, that further reduce the form of the optimal generalized design. 

1008 



Optimality conditions for a relaxed layout optimization problem 

We reformulate the problem, introducing a Lagrange multiplier 1 to take the volume constraint into 
account. In other words, instead of (3), we seek the infimum of 

J(u) = 
.I’ 

fu - h(x), 
n 

on the set of functions satisfying (1). With the notations of Theorem 1.5, this infimum is equal to 
the minimum of J*(0, a1,a2) over the set A*, where 

@J*ce, a13 a*) = 
J 

fu, - Z(Ba1 + (1 - Q,) 
R 

=l(E AL) vu* vu* - l(BUl + (1 - B)uz). 

Using a standard duality argument, we set C = {a E L”(fl)“ldiv(g) = f}, and transform the 
minimization into 

mi*nJ’(B,ui!(L2) = r$i mm Al (7 J-1) u. u - Z(BUl + (1 - quz). 

In this last expression, the minimization with respect to the shape parameters can be pulled inside 
the integral sign, as the functions (8, al, ~2) are not tied by any integral constraint. Denoting 
e(@,ul,u~,cT) = c-‘G~ + rnP1uz - Z(t?ul + (1 - 0)u2), we obtain that 

mAin J*(0,a.l, as) = min 
J 

min e(8: al, u2,0). 
UEC Q @,a1 ,a2 (11) 

We now focus on the pointwise minimization of the energy density e with respect to the shape 
parameters. If (0, al, ~2) is a minimum for a given 0, admissible perturbations 68, 6al, Su2 must satisfy 

- 06Ul p u,“-‘CTf + @$ 
[C > 1 + 1 - (1 - @a2 p u,“%f + u;-1”: 

I( m2 > 1 + I (12) - 50 [ -(UT" - u;p 4 ,u: + (UT - u;>- + (a1 - u2)Z w&2 I _> 0. 
If 6’ = 0, 6 = 1 or al = us, the design at that point cprresponds to an original design with pure 

material. The interesting case is whether a composite can occur and how its structure is restricted 
by the optimality conditions. 

If (~9, al, u2) is an interior point, i.e., if 0 < 19 < 1 and if amin < a # u2 < amax, the factors 

of SO, 6~1, 6~2 in (12) must vanish. Thus, must be solution to a homogeneous 3 x 3 

system, the determinant of which is 

pa;@ pay 1 
pu;p-1 pu;-l 1 

(GP - al”) (u’; - u;) (Ul - u2) 
= y$$f? [(UT - 4(Q + u2) - p(aY + cg)(Ul - u2)]. 

To study its zeroes, let [(x, u) = ( xp - u”)(x + u) - p(zP + u”)(x - a). Its z-derivative is equal to 
-(p + 1) times th e f unctions h of (9), and so t only vanishes when 5 = a. Consequently, if al # u2, 
the determinant is different from zero, which forces o1 = u2 = 1 = 0. It follows, that the minimum 
cannot be attained at an interior point, if for instance (CJ[ # 0. 
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Assume now that 0 < 8 < 1 and that amin = al < uz < urnax. It ~110~s from (12), that the factors 

of Saz and 619 must vanish. Solving these equations for of and 2, then injecting the result in the 
m2 

factor of 6al, which must be positive, we arrive at the condition 

(p + l)(a1aT + a,$) - (p - l)(@fl + .p+l) - Z(al;+L; + &L;+‘) 2 0. (13) 

Here, we have used the fact that 2 is negative (since the factor of Sa2 vanishes). The left hand side 
can be rewritten as ay+‘.q(u2/al) with 

g(X) = (p + 1)(X2P + X) - (p - l)(x2”+1 + 1) - 2(x”+1 + X”) 

= (X” - l)[(X” - 1)(X + 1) - p(XP + 1)(X - l)] 

= (X” - l)<(X - 1). 

Since 2 = -(p + l)h(X), and recalling the properties of h, the left hand side of (13) turns out 

to be negative (resp. positive) if p > 1 (resp. p < 1). We conclude that a configuration such that 

(11 = &in < a2 < alnax is only possible at the minimum if p < 1. 
A symmetric situation holds if for instance amin < al < u2 = amax. We summarize the results 

in the following 

THEOREM 2.1. - At the optimal conjiguration, the design is: 
- either made of pure material, i.e., (a, m, c) = (al, a:, a:) for some amin 5 al 5 amax; 
- or made of a mixture of aIrlax and another conductivity amin 5 ul < atnax if p > 1 (if p < 1, a 

mixture Of CLrnin and some atnin < ~1 5 a,,,). 

Remark 2.2. - An iterative numerical algorithm can be designed very easily using the formulation (1 1) 
and the optimality conditions. A related relaxation result has been obtained in the case of the 
optmization of the compliance for a plate with variable thickness [2], [3]. The underlying operator is 
then of fourth order. Optimality can be worked out in that case in the similar manner as here, leading 
to an analogous result about the structure of the optimizes. For the plate problem, another form of 
relaxation has been proposed by J. Mufioz and P. Pedregal [5]. 
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