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Abstract

We consider composite media made of homogeneous inclusions with C1,α bound-
aries. Our goal is to compare the potential uε in a perfectly periodic composite to
the potential uε,d of a perturbed periodic medium, where the periodicity defects
consist of misplaced inclusions. We give an asymptotic expansion of the difference
uε,d −uε away from the defects and show that to first order, a misplaced inclusion
manifests itself via a polarization tensor, which is characterized.

1 Introduction

In this work , we consider a composite medium made of an array of inclusions embedded
in a homogeneous background material. We assume that the inclusions are centered on
a ε–periodic lattice, except for a small number of them that might have been misplaced:
the centers of these ‘defects’ are at a distance of order ε from the lattice points. Our
goal is to compare, sufficiently far from the defects, the potential uε,d of the perturbed
medium with the potential uε of a perfectly periodic medium.

When the reference or background medium is homogeneous (or sufficiently smooth)
D. Fengya, S. Moskow and M. Vogelius [10] (see also [3] and the references therein)
studied the perturbations of the potential caused by the presence of small inhomo-
geneities, and derived an asymptotic expansion for the difference between the perturbed
and background potentials. The first correction term in their asymptotic expansion is
of the order of the volume εn of the inhomogeneities and has the following structure

εn
m
∑

j=1

∇xu(zj) · Mj∇xG(zj , z), (1.1)

where u is the background potential and Mj is a polarization tensor which characterizes
how the presence of the j-th inhomogeneity, centered at zj , is felt in the far field.
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The above expression also involves the gradient of the background Green’s function
G(x, z), which makes the expansion particularly interesting for numerical detection
of inhomogeneities: linear sampling or MUSIC algorithms detect the singularities of
the Green functions, and have proven quite efficient in both impedance imaging of
inhomogeneities of low volume fraction [7] and inverse scattering by small inclusions [2].

In this paper we derive a similar asymptotic formula when the background medium is
periodic. Our main result, Theorem 4.1, shows that inhomogeneities or defects of size
comparable to the period affect the perturbed potential in a manner similar to the case
of a homogeneous background. Indeed, the first term in our asymptotic formula (4.4)
has the same structure as above. It involves the gradient of the homogenized potential
at the center of the inclusions, the gradient of the homogenized Green’s function, and
a polarization tensor that combines the influence of the defect at infinity and the
interaction of the defect with the periodic structure. Thus, numerical detection of such
periodicity defects should be possible using MUSIC algorithms, provided that one has
accurate knowledge of the background potential (which might be expensive in practice).

A possible application of our analysis concerns photonic cristals, periodic composite
arrays of dielectric materials. In these structures, propagation of waves may be prohib-
ited in certain intervals of frequencies, as a result of destructive interferences between
the waves and the structure of the composite [13]. For a mathematical perspective, see
the enthusiastic review of P. Kuchment [14].
Photonic crystals are an example of structures where periodicity or near–periodicity
seems to play an important role. As the current manufacturing processes may not
guarantee perfect periodicity, it is interesting to study the influence of periodicity
defects in these structures, in the view of developing methods for non–destructive
control.

Our analysis relies on fine regularity results on the potential gradients [16, 15], which
require that the inclusions be somewhat smooth: their boundaries have regularity C1,α

for some 0 < α ≤ 1. Under this hypothesis, ||∇uε,d||∞ can be shown to be bounded
independently of ε and independently of the distance between inclusions, misplaced or
not.

The paper is organized as follows. In Section 2, we recall classical results about Green
functions for uniformly elliptic operators in divergence form with merely bounded and
measurable coefficients. We are particularly interested in their behavior at infinity, and
throughout the paper we work in dimension 3 (although some of our results are valid
and given in any dimension).
Section 3 only concerns the background potential uε. In 3.1, we recall a few classical
results of periodic homogenization, while section 3.2, contains several estimates on the
potential uε and on its gradient: We recall such interior estimates, that were derived
by M. Avellaneda and F.H. Lin [4], when the coefficients of the medium have regularity
C0,µ. We then give interior estimates on the gradient ∇uε, in the case of a composite
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medium made of a homogeneous background conductor containing homogeneous inclu-
sions with C1,α boundaries (in which case the conductivity is only globally L∞). These
estimates are similar to those given in [15] (and so is their proof) but here we allow a
nonzero source term.
We chose to study the case of Neumann boundary conditions for the periodic and
perturbed media. The analysis also led us to compare the potentials uε,d and uε to the
potential u0 of the homogenized medium. In particular, we give a L2 error estimate
on uε − u0. This kind of estimate is well–known in the case of Dirichlet boundary
conditions. In the case of Neumann boundary conditions, our result generalizes to the
dimension 3, a 2D–estimate obtained by S. Moskow and M. Vogelius [20]. The proofs
of all the estimates in this section are given in the Appendix.
Section 4, contains the main result. We derive there the asymptotic expansion of the
potential in the domain with defects. We give the expression of the polarization tensor
associated to a periodicity defect and compare it to the formula of [10] that describes
the effect at infinity of an inhomogeneity embedded in a smooth matrix.
Throughout the paper, C denotes a generic positive constant, independent of ε.

2 Properties of the Green function

In this section, we present some known results and properties of the Green function
for the elliptic operator

Lu = −div(a(x)∇u), (2.1)

when the conductivity a(x) is merely a bounded measurable function in Rn. The
detailed proofs of the following results can be found in [18, 21, 22] in the symmetric
case and are extended to the case of non–symmetric coefficients in [12].
Let Ω be a smooth bounded domain in Rn. We consider a medium with conductivity
a ∈ L∞(Ω) which is uniformly elliptic

0 < λ ≤ a(x) ≤ Λ a.e. x ∈ Ω.

Given a Radon measure µ defined on Ω, a function u ∈ L1(Ω) is called a weak solution
vanishing at the boundary ∂Ω of the equation Lu = µ, if it satisfies

∫

Ω
uLΦ dx =

∫

Ω
Φ dµ,

for every Φ ∈ H1
0 (Ω) ∩ C0(Ω) such that LΦ ∈ C0(Ω).

If µ = f with f ∈ W−1,2(Ω), the Lax Milgram Lemma shows that there exists a unique
solution u ∈ H1

0 (Ω) of

Lu = f. (2.2)

One can thus define a continuous linear operator G : W−1,2(Ω) → H1
0 (Ω), called the

Green operator, such that, for f ∈ W−1,2(Ω), u = G(f) is the unique solution in H1
0 (Ω)

of Lu = f .
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A theorem of Stampacchia [22] extends the De Giorgi–Nash theorem on C0,α regularity
of solutions to elliptic equations and shows that when Ω is sufficiently smooth and
f ∈ W−1,p(Ω) with p > n, the solution u to (2.2) lies in C0(Ω). Moreover, one has

∀ f ∈ C0(Ω), max
Ω

|G(f)| ≤ C λ |Ω|1/n−1/p ‖f‖W−1,p , (2.3)

where C only depends on p. Consequently, given a Radon measure µ, a function u is
a weak solution vanishing on ∂Ω of the equation Lu = µ if and only if

∀ f ∈ C0(Ω),

∫

Ω
u f dx =

∫

Ω
G(f) dµ. (2.4)

There is at most one solution to this problem. By (2.3), this solution satisfies

∀ f ∈ C0(Ω),

∫

Ω
u f dx ≤ C λ |Ω|1/n−1/p

∫

Ω
|dµ| ‖f‖W−1,p(Ω).

Since, C0(Ω) is dense in W−1,p(Ω), we see that u ∈ W 1,p′

0 (Ω), 1/p + 1/p′ = 1/n, and

‖u‖
W 1,p′

0 (Ω)
≤ C λ |Ω|1/p′

∫

Ω
|dµ|.

The transformation µ → u is thus the adjoint operator G∗ of G: As G(W−1,p(Ω)) ⊂

C0(Ω), the image by G∗ of the space of Radon measures on Ω is contained in W 1,p′

0 (Ω).
This proves

Theorem 2.1 [18]
For every Radon measure µ, there exists a unique weak solution u to the equation
Lu = µ vanishing on ∂Ω, which lies in W 1,q

0 (Ω) for every q < n/(n − 1).
Moreover, u belongs to H1

0 (Ω) if and only if µ ∈ W−1,2(Ω).

As a consequence, one can define a Green function for L in Ω

Definition 2.2 The Green function G(x, y), associated with the operator L on Ω, is
defined as the weak solution vanishing on ∂Ω of the equation

LG = δy in Ω,

where δy is the Dirac mass at y.

The Green function provides a representation formula (see theorem 6.1 in [18]): For
every Radon measure µ, the integral

u(x) =

∫

G(x, y) dµ(y) (2.5)

is finite a.e. and is the weak solution vanishing on ∂Ω of the equation Lu = µ.

The Green function has the following properties
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Theorem 2.3 [18, 12] For each y ∈ Ω,

G(., y) ∈ L∗
n

n−2
(Ω) and ‖G‖L∗

n
n−2 (Ω)

≤ C(n)λ−1,

∇G(., y) ∈ L∗
n

n−1
(Ω) and ‖∇G‖L∗

n
n−2 (Ω)

≤ C(n, λ,Λ),

G(., y) ∈ W 1,s
0 (Ω) for s ∈ [1, n

n−1 [.

(2.6)

Further, let G and G be the Green functions of two uniformly elliptic operators L and
L, with ellipticity constants λ,Λ and λ,Λ,respectively. Then, for any compact subset
K ⊂⊂ Ω, there exists positive constants c and C, which only depend on K, Ω, n and
on the ellipticity constants, such that

∀ (x, y) ∈ K × K, c G(x, y) ≤ G(x, y) ≤ C G(x, y). (2.7)

The Lorentz spaces L∗
p(Ω) involved in these estimates are defined by

L∗
p(Ω) := {f : Ω → R ∪ {∞}, f measurable and ‖f‖L∗

p(Ω) < ∞},

where

‖f‖L∗
p(Ω) := sup

t>0
t
∣

∣{x ∈ Ω : |f(x)| > t}
∣

∣

1/p
,

and are related to the classical Lp spaces via the estimates

(

p

β

)
1

p−β

|Ω|
−β

p(p−β)‖f‖Lp−β(Ω) ≤ ‖f‖L∗
p(Ω) ≤ ‖f‖Lp(Ω),

for 0 < β ≤ p − 1.
When n ≥ 3, as the radius of Ω goes to infinity, the Green function converge to
a function G(., y), Hölder continuous in Rn \ {y}. Moreover, G(., y) ∈ W 1,q

loc (Rn) ∩

W 1,2
loc (Rn\y), q < n/(n−1), and the representation formula (2.5) is valid. In particular,

given f ∈ W−1,2(Rn) the solution u ∈ W 1,2(Rn) of Lu = f can be represented by

u(x) =

∫

Rn

G(x, y)f(y)dy.

The estimates (2.7) hold uniformly in Rn with constants that only depend on the
ellipticity constants and on n. Comparing the Green functions of L and of the Laplace
operator in Rn, we see from (2.7) that

∀ (x, y) ∈ Rn × Rn, |G(x, y)| ≤ C|x − y|2−n (2.8)

where C only depends on λ,Λ and n.
In the rest of this paper, we will be concerned with families of operators of the form
Lε = div(a(x/ε)∇) defined in a smooth domain Ω ⊂ R3, where a is a [0, 1]3-periodic
piecewise constant function.



Ben Hassen and Bonnetier, Asymptotics in a perturbed ε–periodic composite 6

3 Asymptotic behavior of the background potential and

of the associated Green function in periodic composite

materials

Let Ω be a smooth bounded domain in R3 that contains a periodic composite medium
composed of cells of size ε. These cells are deduced from the unit cell Y = (0, 1)3 by
translation and rescaling, and are of the form εp+εY , p ∈ Z3. The unit cell Y contains
an inclusion D0 ⊂⊂ Y with boundary of class C1,α, 0 < α ≤ 1. We assume that

dist(D0, ∂Y ) ≥ d0 > 0. (3.1)

Let 0 < λ ≤ Λ and 0 < µ < 1. A(λ,Λ, µ, α) denotes the class of Y -periodic functions
a such that a is C0,µ in D0 and in Y \ D0 and such that 0 < λ ≤ a(x) ≤ Λ in Y . We
also denote L(λ,Λ, µ, α) the class of elliptic operators with coefficients in A(λ,Λ, µ, α)
of the form

Lε = −div(a(
x

ε
)∇·)) = −div(aε(x)∇·)), 0 < ε < 1, (3.2)

where aε(x) = a(x/ε). We call these media ‘composites with sufficiently smooth inclu-
sions’.

3.1 Homogenization

As ε tends to zero, we consider the sequence of elliptic problems











Lεuε = f in Ω

aε
∂uε

∂ν
= g on ∂Ω

(3.3)

with the normalization

∫

∂Ω
g dσx =

∫

Ω
f dx and

∫

Ω
uε dx = 0.

The effective behavior of the composite and the asymptotic behavior of uε are described
in terms of solutions χ ∈ (W 1,2

# (Y ))3 and Φ ∈ (W 1,2
# (Y ))3

2
to cell problems, defined by







−div(a(y)∇(χ(y) + y)) = 0 in R3
∫

Y
χ(y) dy = 0,

(3.4)











−div(a(y)∇yΦ(y)) = B(y) −

∫

Y
B(y) dy in Y ;

∫

Y
Φ(y) dy = 0,

(3.5)

with

B(y) = a(y)I + a(y)∇yχ(y) + divy(a(y)I ⊗ χ(y)) (3.6)
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(W 1,2
# denotes the subspace of periodic functions of W 1,2(Y )). The function uε can

formally be sought with the ansatz [6]

uε(x) = u0(x,
x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + ε3u3(x,

x

ε
) + . . . (3.7)

where, each function ui(x, y) is Y -periodic with respect to the fast variable y =
x

ε
.

The function u0(x, y) = u0(x) is independent from y and is the unique solution in
W 1,2(Ω) to the homogenized equation







L0u0 = −div(A∇u0) = f in Ω

A∇u0 · ν = g on ∂Ω,
(3.8)

with the normalization

∫

Ω
u0 dσx = 0. The effective properties of the medium are

expressed by the constant, symmetric, positive definite, homogenized matrix A defined
by

A =

∫

Y
a(y) (I + ∇χ(y)) dy.

The functions u1 and u2 can be written in terms of derivatives of u0, up to arbitrary
functions ũ1, ũ2 of the variable x only

u1(x,
x

ε
) = χ(

x

ε
) · ∇u0(x) + ũ1(x) (3.9)

u2(x,
x

ε
) = Φ(

x

ε
) : ∇u0(x) + χ(

x

ε
) · ∇ũ1(x) + ũ2(x). (3.10)

If we approximate uε to first order by (3.7), we may choose the function ũ1 to be 0.
If we seek an approximation up to second order away from the boundary (neglecting
boundary layers) ũ2 may be chosen to be 0, but ũ1 must satisfy

−div(A∇ũ1) = C0∇
3u0, (3.11)

where

C0 =

∫

Y
(a(y)∇Φ(y) + a(y)I ⊗ χ(y)) dy. (3.12)

3.2 Error estimates

In this section, we give W 1,∞–interior estimates for solutions uε to

Lεuε = f in Ω,

i.e., we are concerned only with perfectly periodic media. We are particularly interested
in pointwise estimates on the gradients of uε, which will be used in the proofs of
Section 4.
When the conductivity a has global Hölder regularity on Y , ‖a‖C0,µ(Y ) ≤ M , M. Avel-
laneda and F.H. Lin proved that the potentials uε are uniformly Lipschitz
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Theorem 3.1 (Theorem 2 in [4])
Let uε satisfy

Lεuε = f in Ω ⊂ Rn

uε = g on ∂Ω,

where, f ∈ Ln+δ for some δ > 0 and g ∈ C1,ν(∂Ω), 0 < ν ≤ 1. There exists a constant
C that only depends on λ,Λ, µ,M,Ω, ν and δ, such that

‖uε‖C0,1(Ω) ≤ C(‖g‖C1,ν (∂Ω) + ‖f‖Ln+δ(Ω)).

The regularity hypothesis on a can be relaxed to cover the case of composite me-
dia that contain inclusions with sufficiently smooth boundaries. For such media, one
can show that the gradient of the potential is uniformly bounded, independently of
the inter–inclusion distance. Results of this nature were first obtained by YanYan Li
and M. Vogelius[16], then generalized to strongly elliptic systems by YanYan Li and
L.Nirenberg [15]. We state here the version of [15] in the scalar case.
Let D be a bounded domain in R3 which contains L disjoint subdomains D1, · · · ,DL,
of class C1,α, 0 < α ≤ 1, with D = (∪L

l=1Dl) \ ∂D. We assume that any point x ∈ D
belongs to at most two of the boundaries of the Dl’s. For η > 0, we set

Dη = {x ∈ D; dist(x, ∂D) > η}.

Theorem 3.2 (Theorem 0.1 in [15])
Let 0 < µ < 1 and assume that the conductivity a is uniformly elliptic in D and belongs
to Cµ(Dl), 1 ≤ l ≤ L. Let h ∈ C0,µ(Dl), 1 ≤ l ≤ L, f ∈ L∞(D) and let u be a solution
in D to the equation

−div(a(x)∇u) = f + div(h).

For any η > 0, there exists a constant C such that for any 0 < α′ ≤ min{µ, α
2(α+1)}, u

satisfies

L
∑

l=1

‖u‖C1,α′ (Dl∩Dη) ≤ C

(

‖u‖L2(D) + ‖f‖L∞(D) +

L
∑

l=1

‖h‖Cα′ (Dl)

)

. (3.13)

Here C only depends on λ, Λ, µ, L, α, η, ‖a‖Cα′ (Dl)
and on the C1,α′

norm of the Dl’s.
In particular,

‖∇u‖L∞(Dη) ≤ C

(

‖u‖L2(D) + ‖f‖L∞(D) +
L
∑

l=1

‖h‖Cα′ (Dl)

)

. (3.14)

In the sequel, for each r, 0 < r < 1, and x ∈ R3, we set

B(x, r) = {y ∈ R3/|x − y| < r} and Br = B(0, r).
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The constant C in the above theorem may however grow with the number of inclusions.
However, in the case of periodic media, uniform pointwise estimates on the gradients
do hold as in theorem 3.1. This is established in the following result, due to YanYan
Li and L. Nirenberg (see also the remark in Section 5.3 of [4]). Its proof relies on
Theorem 3.2 and on the ‘three steps compactness method’ of [4].

Theorem 3.3 (Theorem 0.2 in [15])
Assume that a ∈ A(λ,Λ, µ, α) and Lε ∈ L(λ,Λ, µ, α). Let uε be a solution to

Lεuε = 0 in B1.

Then

‖∇uε‖L∞(B1/2) ≤ C‖uε‖L2(B1),

where C is independent of ε (thus, independent of the number of inclusions and of the
distance between their boundaries).

We will need a slightly different version of Theorem 3.3, for solutions of elliptic equa-
tions in divergence form, with a source term of a particular form :

Theorem 3.4 (Interior gradient estimates)
Assume that µ ≤ α

2(α+1) . Let a ∈ A(λ,Λ, µ, α), f ∈ L∞(B1), h ∈ C0,µ(B1)
3 and

Lε ∈ L(λ,Λ, µ, α). Let b be a Y –periodic function such that b has regularity C0,µ in D0

and in Y \ D0. Assume that uε is a solution to

Lεuε = f + εdiv(bεh) inB1.

Then,

‖uε‖C0,µ(B1/2) + ‖∇uε‖L∞(B1/2)

≤ C
(

‖uε‖L2(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)

)

, (3.15)

where C is independent of ε (thus, of the number of inclusions and of the distances
between their boundaries).

On the basis of theorem 3.4, one can proceed as in [5], and generalize to composite
media with sufficiently smooth inclusions, error estimates between the potential uε

and the homogenized potential u0, and between the ε–periodic Green function and the
Green function for the homogenized medium.
However, as we intend to apply such results in Neumann problems, we first state the
following L2 error estimate :
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Lemma 3.5 Assume that Ω is a smooth bounded domain in R3 and that g ∈ C∞(∂Ω)
such that

∫

∂Ω g = 0. Let uε denote the solution to

{

div(aε∇uε) = 0 in Ω
aε∇uε · ν = g on ∂Ω,

(3.16)

normalized with the condition that
∫

Ω uε = 0. Let u0 denote the solution to the
corresponding homogenized problem

{

div(A∇u0) = 0 in Ω
A∇u0 · ν = g on ∂Ω,

(3.17)

also normalized by
∫

Ω u0 = 0. Then, the following estimate holds

||uε − u0||L2(Ω) ≤ Cε||u0||H2(Ω).

Estimates of this sort are well known for Dirichlet boundary conditions [6, 1, 19]. For
Neumann boundary conditions, a similar error estimate was derived in 2D by S. Moskow
and M. Vogelius [20] in the case of a convex polygon using harmonic conjugates. We
show in section A.2 how this estimate generalizes to 3D.

We now state uniform error estimates between uε and u0:

Theorem 3.6 Let ω ⊂⊂ Ω. Assume that uε and u0 solve Lεuε = 0 and L0u0 = 0 in
Ω. Assume also that

‖uε − u0‖L2(Ω) ≤ Cεσ,

for some 0 < σ ≤ 1. Then there exists a constant C that only depends on λ,Λ, µ, α,Ω
and ω such that,

‖uε − u0‖L∞(ω) ≤ C εσ (3.18)

‖∇uε − (I + ∇yχ(./ε))∇u0‖L∞(ω) ≤ C εσ. (3.19)

We remark that by Lemma 3.5, this theorem applies to solutions of (3.16, 3.17).

Let Gε and G0 denote the respective Green functions, vanishing on ∂Ω, of the operators
Lε and L0. From theorem 3.6, we derive an estimate on the convergence rate of Gε to
G0. This result is applied in section 4 when the source is far from the defect. For this
reason, we consider below Gε(x, y) when x ∈ ω ⊂⊂ Ω and y ∈ Ω\ω with dist(y, ω) > 0.
In [5], when the coefficients have Hölder regularity, similar estimates are established,
which are valid on the whole of Ω (away from the source). Their derivation requires
uniform boundary estimates on Lε– harmonic functions. It would be interesting to
study whether such estimates also hold in our context.
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Theorem 3.7 Assume that ω ⊂⊂ Ω is a smooth domain. Let Gε and G0 be the Green
functions, vanishing on ∂Ω, for the operators Lε and L0 (see section 2). There exists
a positive constant C, independent of ε, such that for y ∈ Ω \ ω with dist(y, ω) > 0

‖Gε(., y) − G0(., y)‖L∞(ω) ≤ Cε1/4, (3.20)

‖∇xGε(., y) − (I + ∇yχ(./ε))∇xG0(., y)‖L∞(ω) ≤ Cε1/4. (3.21)

4 Main result: asymptotics of the perturbed potential

Let Y denotes the unit cell (0, 1)3 in R3. We assume that Y contains an inclusion D0,
the boundary of which has regularity C1,α for some 0 < α < 1. We also assume that

dist(D0, ∂Y ) ≥ d0 > 0.

Let a be a measurable Y -periodic function equal to a constant k in D0, 0 < k < ∞,
k 6= 1, and equal to 1 in Y \D0.

As in section 3, we consider a bounded domain Ω ⊂ R3 formed by the union of cells,
translated and rescaled by ε from the elementary cell Y . The conductivity in Ω is
denoted by aε(x) = a(x/ε). We consider the elliptic operator Lε = −div(aε(x)∇·). We
call background electrostatic potential in Ω, the solution uε to



















Lεuε = 0 in Ω

aε
∂uε

∂ν /∂Ω
= g

∫

∂Ω
g dσx =

∫

Ω
uε dx = 0

(4.1)

We study the influence of a particular perturbation of such a medium which consists
in misplacing one inclusion. More precisely, let p ∈ Z3 such that Y p

ε := ε(p + Y ) ⊂ Ω,
and so that dist(Y p

ε , ∂Ω) >> ε. If the medium were completely periodic, the inclusion
contained in the cell Y p

ε would occupy the subset ωε,1 := ε(p + D0). Instead, the
inclusion lies in a subset ωε,2 = ε(p + δ + D0), for some 0 < |δ| < 1. For simplicity, we
asume that ωε,2 does not intersect any of the remaining inclusions. Let ωε denote the
symmetric difference of the sets ωε,1 and ωε,2.
The conductivity aε,d of the perturbed medium is thus given by







aε,d = aε in Ω \ ωε

aε,d = 1 in ωε,1 \ ωε,2

aε,d = k in ωε,2 \ ωε,1.

The associated potential uε,d solves


















div(aε,d(x)∇uε,d) = 0 in Ω

aε,d
∂uε,d

∂ν /∂Ω
= g

∫

∂Ω
g dσx =

∫

Ω
uε,d dx = 0.

(4.2)
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Without loss of generality, we assume that x0 = 0 belongs to the convex hull of ωε. Let

Ω̃ε = {x/ε, x ∈ Ω} ω̃ = {x/ε, x ∈ ωε},

(note that ω̃ is independent of ε) and define the function ad in R3 by ad(y) = aε,d(εy)).
Throughout this Section, we denote by a+(x) and a−(x) the outward and inward limits
of the discontinuous function a through an interface.
Let Gε be the Green function associated to the operator Lε, solution to

−div(aε∇Gε(x, z)) = δz in Ω, (4.3)

vanishing on ∂Ω (see Section 2)and G0 the Green function of the homogenized operator
L0, defined by (3.8).
We now state the main result of this paper: an asymptotic expansion for uε,d − uε.
This expansion has the same structure as that derived in the case of a homogeneous
background medium [10], though it involves the homogenized potential u0 and the
homogenized Green’s function G0. As mentionned in the Introduction, the presence
of the Green function (and its singularity) should make this expansion interesting for
numerical detection purposes.
We note that our analysis easily extends to the case of several misplaced inclusions (or
to the case of O(ε) defects with different constant conductivities) provided that they
are at distances larger than O(ε) apart.

Theorem 4.1 Assume that Ω and the Neumann data g are sufficiently regular so that
the homogenized potential u0 is smooth inside Ω. For any z ∈ Ω at a distance d0 > 0
away from ωε, we have

uε,d(z) − uε(z) +

∫

∂Ω
(uε,d(x) − uε(x))

∂Gε

∂νx
dσx

= −ε3∇xG0(x0, z) · M∇xu0(x0) + O(ε3+1/4). (4.4)

The term O(ε3+1/4) is uniformly bounded by Cε3+1/4, where the constant C depends
on d0, k, α. The polarization tensor M is given by

Mij =

∫

∂ω̃
(
a−

a−d
− 1)(yi + χi(y))

(

a+(y)
∂ϕ+

j,d

∂νy
+ a−(y)

(

νj +
∂χj(y)

∂νy

)

)

dσy (4.5)

for 1 ≤ i, j ≤ 3, where the cell function χ = (χi)1≤i≤3 is defined by (3.4) and where
the auxiliary functions ϕj,d are defined by (4.14) below.

To prove the Theorem, we first establish three Lemmas. We introduce two auxiliary
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functions vε,d and vd, respective solutions to:























































div(a(y)∇yvε,d) = 0 in Ω̃ε \ ω̃ ∆vε,d = 0 in ω̃

v+
ε,d − v−ε,d = 0 on ∂ω̃

a+
∂v+

ε,d

∂ν
− a−d

∂v−ε,d
∂ν

= −(a− − a−d )(I + ∇yχ
−)∇xu0(0) · νy on ∂ω̃

ad
∂vε,d

∂νy
= 0 on ∂Ω̃ε

∫

Ω̃ε

vε,d = 0,

(4.6)

and






divy(ad(y)∇yvd) = µ in R3

vd(y) → 0 when |y| → ∞,
(4.7)

with µ = divy ((ad − a)(I + ∇yχ)∇xu0(0)).

Lemma 4.2 The function vd, solution of (4.7), decays at infinity as

{

vd(y) = O(|y|−1)
∇yvd(y) = O(|y|−2).

(4.8)

Proof: Since the support of µ is included in ω̃, the function vd can be represented in
terms of the Green function G associated to L = −divy(ad(y)∇y·) in R3

vd(y) =

∫

R3

G(y, z) dµ(z) =

∫

ω̃
G(y, z) dµ(z). (4.9)

(see theorem 6.1 in [18] where it is shown that the integral on the above right hand
side exists a.e. as a consequence of Fubini’s Theorem)
It follows from (2.8) that

vd(y) = O(|y|−1), as |y| → ∞.

Fix z ∈ R3 and R > 4 diam(ω̃). As a function of y, G(y, z) satisfies

divy(ad(y)∇yG(y, z)) = 0 in B(z, 4R) \ B(z,R/4).

Thus, the rescaled function g(x, z/R) = G(Rx, z) solves divx(ad(Rx)∇xg(x, z/R)) = 0
in the set B(z/R, 4) \ B(z/R, 1/4). Applying theorem 3.4 and (2.8), we obtain

‖∇yG(y, z)‖L∞(B(z,2R)\B(z,R/2)) ≤ R−1‖∇xg(y/R, z/R)‖L∞(B(z/R,2)\B(z/R,1/2))

≤ CR−1||g(., z/R)||L∞(B(z/R,4)\B(z/R,1/4))

≤ CR−1||G(., z)||L∞(B(z,4R)\B(z,R/4))

≤ CR−1 sup{
1

|y − z|
/ y ∈ B(z, 4R) \ B(z,R/4)}.
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It follows that

|∇yG(y, z)| = O(|y − z|−2) as |y − z| → ∞. (4.10)

Noting that G(., z) is C1,µ away from y = z as a consequence of theorem 3.2, we can
differentiate (4.9) with respect to y, and we conclude from (4.10) that

|∇yvd(y)| = O(|y|2),

which proves the Lemma.

Lemma 4.3 There exists a constant C > 0, independent of ε, such that

‖∇y(uε,d(ε·) − uε(ε·) − εvε,d)‖L2(Ω̃ε) ≤ Cε2. (4.11)

Proof: Let zε,d(y) = uε,d(εy)−uε(εy)− εvε,d(y). According to the equations (4.2, 4.1)
and (4.6), zε,d satisfies































div(a(y)∇yzε,d) = 0 in Ω̃ε \ ω̃ and in ω̃
z+
ε,d − z−ε,d = 0 on ∂ω̃

a+
d

∂z+
ε,d

∂ν
− a−d

∂z−ε,d
∂ν

= −ε(a− − a−d ) (∇xu
−
ε (εy) − (I + ∇yχ

−(y))∇xu0(0)) · νy

ad
∂zε,d

∂νy
= 0 on ∂Ω̃ε

Thus, integrating by parts yields
∫

Ω̃ε

ad(y)∇yzε,d∇yzε,d dy

=

∫

Ω̃ε\ω̃
ad(y)∇yzε,d∇yzε,d dy +

∫

ω̃
ad(y)∇yzε,d∇yzε,d dy

= −

∫

∂ω̃
a+

d

∂z+
ε,d

∂νy
zε,d +

∫

∂ω̃
a−d

∂z−ε,d
∂νy

zε,d

= −ε

∫

∂ω̃
(a−(y) − a−d (y))

(

∇xu−
ε (εy) − (I + ∇yχ

−(y))∇xu0(0)
)

· νyzε,d

= ε

∫

ω̃
(a(y) − ad(y)) (∇xuε(εy) − (I + ∇yχ(y))∇xu0(0)) · ∇yzε,d

≤ cε ‖∇xuε(ε.) − (I + ∇yχ)∇xu0(0)‖L2(ω̃) ‖∇yzε,d‖L2(ω̃)

Lemma 3.5, theorem 3.6 and the smoothness of the homogenized potential u0 show
that

‖∇xuε − (I + ∇yχ(./ε))∇xu0(0)‖L∞(ωε)

≤ ‖∇xuε − (I + ∇yχ(./ε))∇xu0(.)‖L∞(ωε)

+ ‖ (I + ∇yχ(./ε)) (∇xu0(.) −∇xu0(0)) ‖L∞(ωε)

≤ Cε.
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Since aε is bounded, we conclude that

‖∇yzε,d‖
2
L2(Ω̃ε)

≤ cε2‖∇yzε,d‖L2(ω̃) ≤ cε2‖∇yzε,d‖L2(Ω̃ε).

Lemma 4.4 : There exists a constant C, independent of ε, such that

‖∇y (uε,d(ε.) − uε(ε.) − εvd) ‖L2(Ω̃ε) ≤ Cε3/2. (4.12)

Proof: Lemma 4.3 shows that it is sufficient to prove that

‖∇y(vε,d − vd)‖L2(Ω̃ε)
≤ cε1/2.

To this end, let φε,d = vε,d(y) − vd(y) − cε, where cε is chosen so that

∫

∂Ω̃ε

φε,d = 0.

In view of (4.6) and (4.7), φε,d solves :























div(ad(y)∇φε,d) = 0 in Ω̃ε

ad(y)
∂φε,d

∂νy
= −ad(y)

∂vd

∂νy
on ∂Ω̃ε

∫

∂Ω̃ε

φε,d = 0.

Integrating by parts and changing variables back to the fixed domain Ω, we see that
∫

Ω̃ε

ad(y)∇yφε,d∇yφε,d dy =

∫

∂Ω̃ε

−ad
∂vd

∂νy
φε,ddσy

= ε−2

∫

∂Ω
−ad

∂vd

∂νy
(x/ε)φε,d(x/ε)dσx

≤ cε−2‖
∂vd

∂νy
(./ε)‖L∞(∂Ω) ‖φε,d(./ε)‖L2(∂Ω).

The trace Theorem and the Poincaré–Wirtinger inequality imply that

‖φε,d(./ε)‖L2(∂Ω) ≤ C‖φε,d(./ε)‖W 1,2(Ω) ≤ Cε1/2‖∇yφε,d(x/ε)‖L2(Ω̃).

Since vd decays at infinity (see (4.8)), we have

‖
∂vd

∂νy
(./ε)‖L∞(∂Ω) = O(ε2),

and therefore

‖∇yφε,d(x/ε)‖2
L2(Ω̃)

≤ C

∫

Ω̃
aε(εy)∇yφε,d∇yφε,d dy

≤ Cε1/2‖∇yφε,d‖L2(Ω̃)

and the Lemma is proved.
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Proof of Theorem 4.1:
Let uε,d and uε be the electrostatic potentials solutions to (4.2) and (4.1) respectively.
Let z be a point in Ω, at a distance d > 0 away from ωε. We apply the Green formula
in Ω to get

uε,d(z) = −

∫

Ω
uε,d div(aε(x)∇Gε(x, z)) dx

=

∫

Ω\ωε

aε(x)∇xuε,d∇xGε dx +

∫

ωε

aε(x)∇xuε,d∇xGε dx

−

∫

∂Ω
uε,daε(x)

∂Gε

∂νx
dσx

=

∫

∂Ω
gGε dσx −

∫

∂Ω
uε,daε

∂Gε

∂νx
dσx

−

∫

∂ωε

(

a+
ε

∂u+
ε,d

∂νx
− a−ε

∂u−
ε,d

∂νx

)

Gε dσx,

and

uε(z) =

∫

∂Ω
gGε dσx −

∫

∂Ω
uεaε

∂Gε

∂νx
dσx.

Using the continuity of uε,d and the jump conditions satisfied by its normal derivative
across ∂ωε, the difference between these two equations yields

uε,d(z) − uε(z) −

∫

∂Ω
(uε − uε,d) aε

∂Gε

∂νx
dσx

=

∫

∂ωε

(a−ε − a−ε,d)
∂u−

ε,d

∂νx
Gε dσx

=

∫

∂ωε

(a−ε − a−ε,d)

(

∂u−
ε

∂νx
+

∂v−d
∂νy

)

Gε dσx +

∫

∂ωε

(a−ε − a−ε,d)
∂r−ε,d
∂νx

Gε dσx

= I1 + I2, (4.13)

where rε,d(x) = uε,d(x) − uε(x) − εvd(x/ε).
Combining the W 1,∞-error estimate (3.21) for the Green function Gε and the fact that
∇xuε is bounded on every compact subset of Ω that contains ωε (Theorem 3.4), shows
that

∫

∂ωε

(a−ε − a−ε,d)

(

∂u−
ε

∂νx
+

∂v−d
∂νy

)

(Gε(x, z) − G0(x, z) − ε∇G0(x, z)χ(x/ε)) dσx

≤ C‖∇xuε + ∇yvd‖L2(ωε) ‖∇xGε − (I + ∇yχ(x/ε))∇G0(x))‖L2(ωε)

≤ Cε3/2(‖∇xuε‖L∞(ωε) + ‖∇yvd‖L2(ω̃))

ε3/2‖∇xGε − (I + ∇yχ(x/ε))∇G0(x))‖L∞(ωε)

≤ Cε3+1/4.
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Hence,

I1 =

∫

∂ωε

(a−ε (x) − a−ε,d(x))

(

∂u−
ε

∂νx
+

∂v−d
∂νy

)

Gε dσx

= ε2

∫

∂ω̃
(a−(y) − a−d (y))

(

∂u−
ε

∂νx
+

∂v−d
∂νy

)

(G0(εy, z) + εχ(y) · ∇xG0(εy, z)) dσy

+ O(ε3+1/4).

Thus, by a Taylor expansion of Gε about the origin,

I1 = ε2G0(0, z)

∫

∂ω̃
(a− − a−d )

(

∂u−
ε

∂νx
+

∂v−d
∂νy

)

dσy

+ε3

∫

∂ω̃
(a− − a−d )

(

∂u−
ε

∂νx
+

∂v−d
∂νy

)

(∇xG0(0, z) · (y + χ(y))) dσy

+O(ε3+1/4).

Since uε,d and vd are harmonic in ω̃, the first term in the right hand side of the above
expression vanishes and I1 reduces to

I1 = ε3∇xG0(0, z) ·

∫

∂ω̃
(a− − a−d )

(

∂u−
ε

∂νx
+

∂v−d
∂νy

)

(y + χ(y)) dσy

+ O(ε3+1/4).

Invoking Theorem 3.6 in a fixed subset ω ⊂⊂ Ω that contains ωε, we see that

||∇xuε(εy) − (I + ∇yχ(y))∇xu0(εy)||L∞(ω̃) ≤ Cε,

for some constant C independent of ε, and thus

∇xG0(0, z) ·

∫

∂ω̃
(a− − a−d )

∂u−
ε

∂νx
(y + χ(y)) dσy

=

∫

ω̃
(a− − a−d )∇xuε · (I + ∇χ(y))∇xG0(0, z) dy

=

∫

ω̃
(a− − a−d )(I + ∇χ(y))∇xu0(εy) · (I + ∇χ)∇xG0(0, z) dy + O(ε)

= ∇xG0(0, z)

∫

∂ω̃
(a− − a−d )(I + ∇χ(y))∇u0(0) · ν (y + χ(y)) dσy + O(ε).

Thus, up to O(ε3+1/4), the term I1 is equal to

ε3∇xG0(0, z) ·

∫

∂ω̃
(a− − a−d )

(

(I + ∇χ(y))∇u0(0) · ν +
∂v−d
∂νy

)

(y + χ(y)) dσy
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Turning to I2, integration by parts and the change of variables y = x/ε give

I2 =

∫

∂ωε

(a−ε − a−ε,d)
∂r−ε,d
∂νx

Gε dσx = ε2

∫

ω̃
(a − ad)∇yrε,d∇Gε dy.

Lemma 4.4 shows that ‖∇yrε,d(εy)‖L2(Ω̃ε)
≤ cε3/2. Moreover, Theorem 3.4 implies that

∇xGε(x, z) is uniformly bounded in ωε. Consequently,

I2 = O(ε7/2).

Thus, (4.13) yields

uε,d(z) − uε(z) −

∫

∂Ω
(uε − uε,d)aε

∂Gε

∂νx
dσx

= ε3∇xG0(0, z) ·

∫

∂ω̃
(a− − a−d )

(

(I + ∇χ(y))∇u0(0) · ν +
∂v−d
∂νy

)

(y + χ(y)) dσy

+O(ε3+1/4).

To enlight the structure of this expression, we introduce the functions ϕj,d, 1 ≤ j ≤ 3,
solutions to



















































divy(ad(y)∇ϕj,d) = 0 in ω̃ div(ad(y)∇ϕj,d) = 0 in R3\ω̃

ϕj,d is continuous across ∂ω̃

a+
d (y)

∂ϕ+
j,d

∂νy
− a−d (y)

∂ϕ−
j,d

∂νy
= (a−d − a−)(νj +

∂χj(y)

∂νy
) on ∂ω̃

ϕj,d(y) → 0 when |y| → ∞

(4.14)

Noticing that vd(y) =

3
∑

j=1

ϕj,d(y)
∂u0

∂xj
(0) allows us to rewrite

uε,d(z) − uε(z) =

∫

∂Ω
(uε − uε,d)aε

∂Gε

∂νx
dσx

+ ε3∇xG0(0, z)M∇xu0(0) + O(ε3+1/4)

where the tensor M is defined by

Mij =

∫

∂ω̃
(a−(y) − a−d (y))(yi + χi(y))

(

∂ϕ−
j,d

∂νy
+

(

νj +
∂χj(y)

∂νy

)

)

dσy.

Using the jump condition satisfied by ϕj,d across ∂ω̃,

∂ϕ−
j,d

∂νy
=

1

a−d

(

a+
d

∂ϕ+
j,d

∂νy
+ (a− − a−d )(νj +

∂χj

∂νy
)(y)

)

,
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one sees that Mij can be expressed as

Mij =

∫

∂ω̃
(
a−

a−d
− 1)(yi + χi(y))

(

a+(y)
∂ϕ+

j,d

∂νy
+ a−(y)

(

νj +
∂χj(y)

∂νy

)

)

dσy,

which proves Theorem 4.1.

This formula defines a polarization tensor in the same spirit as in [10, 9]. It describes
the influence on the far field of a localized defect within the periodic medium. One
easily checks that the expression of Mij reduce to that given in [10], when instead
of a misplaced inclusion, one considers a defect (ad 6= 1 in ωε,2) in a homogeneous
background medium (a constant and χ = 0). Also, adapting the proof of Lemma 5
in [10] shows that M is symmetric.

A Proofs of the estimates

The proofs of theorems 3.4–3.7 and of Lemma 3.5 are collected in this Appendix.

A.1 Proof of Theorem 3.4

The proof of this result is based on two main ingredients: The first is the ‘three-step
compactness method’ of M. Avellaneda and F.H. Lin [4, 5], who proved Hölder and Lip-
schitz estimates on uε, when the coefficients of Lε are smooth (Hölder continuous). The
second is the Hölder regularity results for the gradients in composite media containing
inclusions with C1,α–regular boundaries [16, 15]. Theorem 3.4 generalizes Theorem 3.3
to nonzero right–hand side. Its proof closely follows the proof of Theorem 3.3 (Theorem
0.2 in [15]), which itself is based on the arguments of [4, 5].

In the sequel, for each r, 0 < r < 1, and x ∈ R3, we set

B(x, r) = {y ∈ R3/|x − y| < r}, Br = B(0, r),
∫

−
D

f =
1

|D|

∫

D
f, (uε)x,r =

∫

−
B(x,r)

uε.

We recall the classical characterization of Hölder spaces [8] in terms of the semi-norm

[u]C0,α(Ω) = sup
x,x′∈Ω

|u(x) − u(x′)|

|x − x′|α
.

For each 0 < α < 1, there exist positive constants c1, c2, which only depend on Ω and
α, such that for all u ∈ C0,α(Ω),

c1[u]C0,α(Ω) ≤ sup
x∈Ω

sup
r>0

[

1

r2α

∫

−
Ω∩B(x,r)

(u − (u)x,r)
2

]1/2

≤ c2[u]C0,α(Ω). (A.1)
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We assume that the coefficient a is piecewise smooth and that the boundaries of the

inclusions have regularity C1,α for some 0 < α < 1. Let µ =
α

2(α + 1)
. We begin with

proving interior Hölder estimates on uε (see Theorem 5.1 in [15]).

Theorem A.1 (interior Hölder estimates)
Let f ∈ L∞(B1) and h ∈ C0,µ(B1)

3. Assume that uε satisfies

Lεuε = f + εdiv(bεh) in B1.

There exists a constant C, which only depends on µ, λ, Λ and α, but which is indepen-
dent of ε and of the distances between the inclusions, such that

‖uε‖C0,µ(B 1
2
) ≤ C(‖uε‖L2(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)). (A.2)

The Theorem results from the three following Lemmas. The difference with [4] mainly
lies in the proof of the third Lemma, where the regularity hypotheses on the conduc-
tivity are determinant.

Lemma A.2 (One–step improvement) There exist θ > 0 and 0 < ε0 < 1, which only
depend on µ, α, λ and Λ, such that, if uε, f and h satisfy















Lεuε = f + εdiv(bεh) in B1
∫

−B1
|uε|

2 ≤ 1

||f ||L∞(B1) ≤ ε0

||h||C0,µ(B1) ≤ ε0,

then, for 0 < ε ≤ ε0,
∫

−
Bθ

|uε − (uε)0,θ|
2 ≤ θ2µ. (A.3)

Proof: Let µ < µ′ < 1. As the homogenized operator L0 is elliptic with constant
coefficients, solutions to −div(A∇u0) = 0 in B1 are smooth. In particular, there exists
0 < θ < 1 such that

∫

−
Bθ

(u0 − (u0)0,θ)
2 ≤ θ2µ′

∫

−
B1

u2
0. (A.4)

We fix a value of θ for which (A.4) holds. We prove (A.3) by contradiction: Assume
that there is a sequence Lj

εj , uεj , fεj , hεj which satisfies

Lj
εj

uεj = fεj + εjdiv(bεjhεj ) in B1,

with
∫

−B1
u2

εj
≤ 1 and lim ‖fεj‖L∞(B1) = lim ‖hεj‖C0,µ(B1) = lim εj = 0, and such that

∫

−
Bθ

|uεj − (uεj )0,θ|
2 > θ2µ. (A.5)
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Extracting a subsequence, we find an operator L0, limit of the operators Lj
εj in the

sense of homogenization, and a function u0 ∈ H1
loc

(B1), such that
{

uεj ⇀ u0 weakly in L2(B1),
uεj ⇀ u0 weakly in H1(Bθ).

As fεj + εjdiv(bεjhεj) converges to 0 strongly in H−1(B1), we see that L0(u0) = 0 in
B1. Taking limits in (A.5) we get

θ2µ ≤

∫

−
Bθ

|u0 − (u0)0,θ|
2 ≤ θ2µ′

,

a contradiction. Hence, (A.3) holds for some ε0 > 0.

Lemma A.3 (Iteration)
Let θ and ε0 be as in Lemma A.2. Then, for all uε ∈ L2(B1), f ∈ L∞(B1) and
h ∈ C0,µ(B1) which satisfy

Lεuε = f + εdiv(bεh) in B1,

and for all k ≥ 1 such that ε/θk ≤ ε0,

∫

−
B

θk

|uε − (uε)0,θk |2 ≤ θ2kµ

[

(
∫

−
B1

|uε|
2

)1/2

+
1

ε0
(‖fε‖L∞(B1) + ‖h‖C0,α(B1))

]2

.(A.6)

Proof: The proof is by induction on k. Lemma A.2 shows that (A.6) holds for k = 1.
Let

J =

[

(
∫

−
B1

|uε|
2

)1/2

+
1

ε0
(‖f‖L∞(B1) + ‖h‖C0,µ(B1))

]2

. (A.7)

and, for k satisfying ε/θk ≤ ε0 and x ∈ B1, let

wε(x) = J−1θ−kµ
[

uε(θ
kx) − (uε)0,θk

]

.

Then wε solves

Lε/θkwε = f̂ε +
ε

θk
div(bε/θk ĥε),

where for x ∈ B1, f̂ε(x) = J−1θk(2−µ)f(θkx), and ĥε(x) = J−1θk(2−µ)h(θkx). One
easily checks that

{

‖f̂ε‖L∞(B1) ≤ J−1θk(2−µ) ‖f‖L∞(B1) ≤ ε0,

‖ĥε‖C0,µ(B1) ≤ J−1θk(2−µ) ‖h‖C0,µ(B1) ≤ ε0.

By the induction hypothesis, we see that
∫

−
B1

|wε(x)|2 ≤ 1.

Thus, we can apply lemma A.2: wε satisfies (A.3) which, expressed in terms of uε,
yields (A.6).
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Lemma A.4 (Blow up)
Assume that uε ∈ L2(B1), f ∈ L∞(B1) and h ∈ C0,µ(B1) satisfy

Lεuε = f + εdiv(bεh) in B1.

Then there exists a constant C, that only depends on µ, λ,Λ and the regularity of the
dividing interfaces, such that

‖uε‖C0,µ(B1/2) ≤ C
(

‖uε‖L2(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)

)

. (A.8)

Proof: In view of (A.1), we need only prove that

∫

−
B(x,r)

|uε − (uε)x,r|
2 ≤ Cr2µ

(

‖uε‖L2(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)

)2
, (A.9)

for all 0 < r ≤ 1/4 and |x| < 1/2. We establish (A.9) for x = 0. By Lemma A.3, (A.9)
with x = 0 holds for r ≥ ε/ε0. For y ∈ B2/ε0

, let

wε(y) = ε−µ(uε(εy) − (uε)0,2ε/ε0
).

Applying (A.9) with r = 2ε/ε0, shows that

‖wε‖
2
L2(B2/ε0

) =
ε−2µ

ε3
0

∫

−
B2ε/ε0

(uε(x) − (uε)0,2ε/ε0
)2 dx

≤
ε−2µ

ε3
0

(
2ε

ε0
)2µJ2

≤ CJ2, (A.10)

with J as in (A.7), so that wε is uniformly bounded in L2(B2/ε0
). Moreover, wε solves

an equation where the operator and the domain (and in particular the number of
inclusions) are independent of ε: indeed,

L1wε = f̂ε + div(b1ĥε) in B2/ε0
, (A.11)

with, for x ∈ B2/ε0
, f̂ε(x) = ε2−µf(εx) and ĥε(x) = ε2−µh(εx). We notice that

{

‖f̂ε‖L∞(B2/ε0
) ≤ ε2−µ‖f‖L∞(B1),

‖ĥε‖C0,µ(B2/ε0
) ≤ ε2−ν‖h‖C0,µ(B1),

(A.12)

and that b(y)ĥε(y) has regularity C0,µ on each of the inclusions εlD0, l ∈ Z3, contained
in B2/ε0

and has the same regularity on their complementary in B2/ε0
.

Therefore, we can apply the interior Hölder gradient estimates (3.13) to wε, to obtain

‖wε‖C0,µ(B1/ε0
) ≤ C

(

‖wε‖L2(B2/ε0
) + ‖f̂ε‖L∞(B2/ε0

) + ‖ĥε‖C0,µ(B2/ε0
)

)

.
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Thus, for all s ≤ 1/ε0, we have

ε−2µ

∫

−
Bεs

|uε(x) − (uε)0,εs|
2 dx =

∫

−
Bs

|wε − (wε)0,s|
2

≤ Cs2µ
(

‖wε‖L2(B2/ε0
) + ‖f̂ε‖L∞(B2/ε0

) + ‖ĥε‖C0,µ(B2/ε0
)

)2
. (A.13)

Setting r = sε and combining this last identity with (A.12), (A.10) and (A.13), we
finally obtain

∫

−
Br

|uε − (uε)0,r|
2 ≤ Cr2ν(‖uε‖L2(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1))

2,

which is (A.9) at x = 0. By translation, this estimate remains true for all x ∈ B1/2.
The Lemma (and Theorem A.1) is proved.

Let χ be the cell function defined in (3.4). To prove Theorem 3.4, we apply again the
three-steps method, this time to estimate the quantity

‖uε(x) − uε(0) − (x + εχ(x/ε))(∇uε)0,θ‖L∞(Bθ).

Lemma A.5 (One-step improvement) There exist 0 < θ, ε0 < 1 which only depends
on λ,Λ, µ, α, such that, if uε, f and h satisfy

Lεuε = f + εdiv(bεh) in B1,

with ‖uε‖L∞(B1) ≤ 1, ‖f‖L∞(B1) ≤ 1 and ‖h‖C0,µ(B1) ≤ 1 then, for 0 < ε ≤ ε0,

sup
|x|<θ

|uε(x) − uε(0) − (x + εχ(x/ε))(∇uε)0,θ| ≤ θ1+µ/2. (A.14)

Proof: Let µ < µ′ < 1. Recalling (3.8), let u0 and f0 satisfy

L0u0 = f0 in B1.

Classical regularity estimates [11] show that u0 ∈ C1,µ(Ω). Thus, there exists 0 < θ < 1,
which only depends on λ and Λ, such that

sup
|x|<θ

|u0(x) − u0(0) − x(∇u0)0,θ| ≤ θ1+µ′/2(‖u0‖L∞(B1) + ‖f0‖L∞(B1)). (A.15)

Fixing this value of θ, we prove (A.14) by contradiction.

Suppose on the contrary that there is a sequence εj → 0 and sequences Lj
εj , uεj , fεj

and hεj , such that

Lj
εj

uεj = fεj + εjdiv(bεjhεj ) in B1,
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and






‖uεj‖L∞(B1) ≤ 1,

‖fεj‖L∞(B1) ≤ 1,

‖hεj‖C0,µ(B1) ≤ 1,

and for which

sup
|x|<θ

|uεj(x) − uεj(0) − (x + εjχ(x/εj))(∇uεj )0,θ| > θ1+µ/2. (A.16)

Passing to a subsequence (not renamed) and using Theorem A.1, we find an operator
L0 and functions u0 ∈ H1

loc(B1) and f0 ∈ L∞(B1), such that

fεj ⇀ f0 weakly in L∞(B1), uεj → u0 uniformly in Bθ,
uεj ⇀ u0 weakly * in L∞(B1), ∇uεj ⇀ ∇u0 weakly in L2(Bθ).

We also notice that εjdiv(bεjhεj ) → 0 strongly in H−1(B1) so that L0u0 = f0 in B1.

Before passing to the limit in (A.16), we show that |(∇uεj)0,θ| is uniformly bounded
by a constant that only depends on θ. Indeed, let v ∈ C∞

0 (B(1+θ)/2) satisfy 0 ≤ v ≤ 1
and v ≡ 1 on Bθ. We have

|(∇uεj)0,θ| = |
1

|Bθ|

∫

Bθ

∇uεj |

≤
1

|Bθ|1/2

(
∫

Bθ

|∇(uεj )|
2

)1/2

≤
1

|Bθ|1/2

(
∫

B1

|∇(vuεj )|
2

)1/2

.

One easily checks that
∫

B1

|∇(vuεj )|
2 =

∫

B1

∇uεj · ∇(v2uεj ) +

∫

B1

u2
εj
|∇v|2

≤

∫

B1

fεjv
2uεj − εj

∫

B1

bεjhεj · ∇(v2uεj)

+

∫

B1

u2
εj
|∇v|2.

Therefore, given the uniform bounds on uεj and fεj , we conclude that

|(∇uεj )0,θ| ≤ C(θ)

and

sup
|x|<θ

|εjχ(
x

εj
)(∇uεj )0,θ| ≤ εjC(θ) → 0

Returning to (A.16), and passing to the limit εj → 0 yields

θ1+µ/2 ≤ sup
|x|<θ

|u0(x) − u0(0) − x(∇u0)0,θ| ≤ θ1+µ′/2,

which contradicts the fact that θ < 1.
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Lemma A.6 (Iteration)
Let θ and ε0 be as in Lemma A.5. Suppose that uε ∈ L∞(B1), f ∈ L∞(B1) and
h ∈ C0,µ(B1) satisfy

Lεuε = f + εdiv(bεh) in B1.

Then for all k ≥ 1 with ε/θk ≤ ε0, there exist aε
k ∈ R and Bε

k ∈ R3 such that

|aε
k| ≤ C1

(

‖uε‖L∞(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)

)

, (A.17)

|Bε
k| ≤ C2(1 +

k
∑

j=1

θjµ/2)
(

‖uε‖L∞(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)

)

, (A.18)

and such that

sup
|x|<θk

|uε(x) − uε(0) − εaε
k − [x + εχ(x/ε)]Bε

k |

≤ θk(1+µ/2)
(

‖uε‖L∞(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)

)

. (A.19)

Here C1 and C2 are generic constants, which only depend on θ, ε0, λ,Λ.

Proof: We set

J =
(

‖uε‖L∞(B1) + ‖f‖L∞(B1) + ‖h‖C0,µ(B1)

)

. (A.20)

The proof is by induction on k. By lemma A.5, estimate (A.19) holds for k = 1, with
aε

1 = 0 and Bε
1 = (∇uε)0,θ.

Suppose that (A.19) holds for some k such that ε/θk ≤ ε0. For |x| < 1 let

wε(x) = θ−k(1+µ/2)J−1
(

uε(θ
kx) − uε(0) − εaε

k − [θkx + εχ(θkx/ε)]Bε
k

)

.

This function solves

Lε/θkwε = f̂ε +
ε

θk
div(bε/θk ĥε) in B(0, 1),

where for x ∈ B1, f̂ε(x) = θk(1−µ/2)J−1f(θkx) and ĥε(x) = θk(1−µ/2)J−1h(θkx). One
easily sees that ‖f̂ε‖L∞(B1) ≤ 1 and ‖ĥε‖C0,µ(B1) ≤ 1. By the induction hypothe-
ses (A.19), ‖wε‖L∞(B1) ≤ 1, so that applying Lemma A.5 to wε, we get

sup
|x|<θ

|wε(x) − wε(0) − [x + ε/θkχ(θkx/ε)](∇wε)0,θ| ≤ θ1+µ/2.

Rewriting this inequality in terms of uε, we obtain

sup
|x|<θ

∣

∣

∣
uε(θ

kx) − uε(0) + εχ(0)Bε
k −

[

θkx + εχ(θkx/ε)
]

(Bε
k + Jθkµ/2(∇wε)0,θ)

∣

∣

∣

≤ J θ(k+1)(1+µ/2). (A.21)
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If we set aε
k+1 = −χ(0)Bε

k, Bε
k+1 = Bε

k + Jθkµ/2(∇wε)0,θ, substitute these expressions

in (A.21), and make the change of variables θkx → x, we obtain (A.19) with k + 1
instead of k. Moreover, as in the proof of Lemma (A.5)

|(∇wε)0,θ| ≤ C,

where C depends on θ but not on ε, k, and given the initial choice of aε
1 and Bε

1, it
is easy to check that the sequences {aε

k} and {Bε
k} satisfy the estimates (A.17) and

(A.18). Lemma A.6 is thus proved.

Proof of Theorem 3.4:

Let k ∈ N be such that ε/θk ≤ ε0 ≤ ε/θk+1 . By lemma A.6 and recalling (A.20),

sup
|x|<ε/ε0

|uε(x) − uε(0) − εaε
k − (x + εχ(x/ε))Bε

k | ≤ θk(1+µ/2)J.

Invoking the estimates (A.17) and (A.18) and rescaling the above inequality, we get

sup
|x|<1/ε0

|
uε(εx) − uε(0)

ε
| ≤ |aε

k − [x + χ(x)]Bε
k| + ε0

θk(1+µ/2)

θk+1
J ≤ CJ.

For |x| < 1/ε, the function

vε(x) =
uε(εx) − uε(0)

ε
,

satisfies

L1vε = f̂ε(x) + div(b1(y)ĥε) in B1/ε0
,

where f̂ε(x) = εf(εx) and ĥε(x) = εh(εx), x ∈ B1/ε0
and











‖vε‖L∞(B1/ε0
) ≤ CJ,

‖f̂ε‖L∞(B1/ε0
) ≤ εJ,

‖ĥε‖C0,µ(B1/ε0
) ≤ εJ.

In the above equation, neither the operator nor the domain depend on ε. Also we re-
mark again that the function bĥε has regularity C0,µ on each of the inclusions contained
in B1/ε0

, and on the complementary of the inclusions in B1/ε0
. We can therefore apply

the interior gradient estimate (3.14) to vε, to obtain

‖∇vε‖L∞(B1/2ε0
) ≤ C

(

‖vε‖L∞(B1/ε0
) + ‖f̂ε‖L∞(B1/ε0

) + ‖ĥε‖C0,µ(B1/ε0
)

)

,

which shows that

‖∇uε‖L∞(Bε/2ε0
) ≤ CJ.

The same estimate can be established in B(x, ε/2ε0) for any x ∈ B1/2. The proof of
theorem 3.4 follows by combining this estimate with (A.2).
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A.2 Proof of Lemma 3.5

Error estimates in L2 between uε and u0 are well–known for Dirichlet problems. For
Neumann boundary conditions, S. Moskow and M. Vogelius [20] derived 2D estimates,
using the fact that the harmonic conjugate of the potential satisfies Dirichlet boundary
conditions. Our proof does not use this property, although we follow the structure of
S. Moskow and M. Vogelius’ argument.

step 1: We transform the equation into a first order system

{

aε∇uε − vε = 0
−div(vε) = 0.

and seek an asymptotic expansion for both uε and vε. Such an expansion is given
explicitely in 3D, in [6], pp. 58–65. Recalling the notations of Section 3.1, one easily
checks that the first term in the expansion of uε must be the potential u0 of (3.8) and
that







−divyv0 = 0
a(y)∇yu1 + a(y)∇xu0 − v0 = 0

−divyv1 − divxv0 = 0.
(A.22)

Denoting by ep, 1 ≤ p ≤ 3 the canonical basis of R3, we set

u1(x, y) = −χj(y)
∂u0

∂xj

and we define functions χ̃p ∈ H1
#(Y )3 by







curly
(

a−1(y)curly(χ̃p)
)

= curly(a
−1(y)ep)

divy(χ̃p) = 0
∫

−Y χ̃p = 0.
(A.23)

These functions are related to the usual correctors χj defined in (3.4) by

a−1(y)(I − curlyχ̃) = (I −∇yχ)A−1,

where curlyχ̃ and ∇yχ denote the matrices the columns of which are the vectors curlyχ̃p

and ∇χj respectively (see [6]). In particular, according to Theorem 3.2, the above
relation shows that, under our hypothesis on the conductivity, χ̃ ∈ W 1,∞(Y )3. It
also shows that χ̃(x/ε) has a trace on ∂Ω, which is uniformly bounded in L∞(∂Ω).
Following [6], we set







v0(x, y) = ρ(x) − curly(χ̃p(y)) ρp(x)
= (I − curlyχ̃)A∇u0(x)

v1(x, y) = −curlx(χ̃p(y)ρ(x)).
(A.24)

which satisfy (A.22) (note that ρ(x) =

∫

−
Y

v0(x, y)dy = A∇u0(x)).
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We then form

zε(x) = uε(x) − u0(x) − εu1(x, x/ε)

ηε(x) = aε(x)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε)

and note that zε and ηε are uniformly bounded in H1(Ω) and L2(Ω) respectively. Since
u0, u1, v0 and v1 satisfy (A.22), the proof of Proposition 1 in [19] shows that

div(ηε) = 0 in Ω (A.25)

||aε(x)∇zε − ηε||L2(Ω) ≤ Cε||u0||H2(Ω). (A.26)

As in [20], we introduce a boundary corrector defined by
{

−div(aε∇Bε) = 0 in Ω
aε(x)∇Bε · ν = ε−1ηε · ν on ∂Ω.

(A.27)

We note that as ηε ∈ L2(Ω) and div(ηε) = 0, the normal trace ηε · ν is well defined
in H−1/2(∂Ω).

We normalize Bε by requiring that

∫

Ω
εBεdσ =

∫

Ω
zεdσ =

∫

Ω
εu1dσ so that

∣

∣

∣

∣

∫

Ω
εBεdx

∣

∣

∣

∣

≤ Cε||u0||H1(Ω). (A.28)

step 2: It is easy to see that Proposition 1 in [20] also holds in 3D, which states that

||uε(x) − u0(x) − εu1(x, x/ε) − εBε(x)||H1(Ω) ≤ Cε||u0||H2(Ω). (A.29)

step 3: The regularity of u0, the boundedness of χ̃, and the definition of ηε show that

||ηε · ν||L2(∂Ω) ≤ C||u0||H2(Ω). (A.30)

We next show an estimate on ||ηε · ν||H−1(∂Ω). Let φ ∈ H1(∂Ω) and consider the
boundary value problem

{

−div(A∇v) = 0 in Ω
v = φ on ∂Ω.

(A.31)

From the definition of ηε and from (A.24), it follows that
∫

∂Ω
ηε · ν φdσ =

∫

Ω
ηε · ∇v (A.32)

=

∫

Ω
aε∇uε · ∇v −

∫

Ω
(v0 + εv1) · ∇v

=

∫

Ω
(aε∇uε − A∇u0) · ∇v +

∫

Ω

3
∑

p=1

curly(χ̃p)(x/ε)ρp(x) · ∇v

+ε

∫

Ω
curlx(χ̃ρ)(x, x/ε) · ∇v

= ε

∫

Ω

3
∑

p=1

curlx(χ̃p(x/ε))ρp(x) · ∇v + ε

∫

Ω
curlx(χ̃ρ)(x, x/ε) · ∇v
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Integrating by parts, we obtain

∫

∂Ω
ηε · ν φdσ = ε







∫

Ω

3
∑

p=1

χ̃(x/ε) · (∇ρp(x) ×∇v(x))

−

∫

∂Ω

3
∑

p=1

(χ̃(x/ε) × ν) · ρp(x)∇v(x) dσ

−

∫

∂Ω
(χ̃p(x/ε)ρp(x) × ν) · ∇v(x) dσ

}

= ε







∫

Ω

3
∑

p=1

χ̃(x/ε) · (∇ρp(x) ×∇v(x))

−

∫

∂Ω

3
∑

p=1

χ̃(x/ε) · ρp(x)(ν ×∇v(x)) dσ

−

∫

∂Ω
χ̃p(x/ε)ρp(x) · (ν ×∇v(x)) dσ

}

.

We remark that ||∇v||L2(Ω) ≤ C||φ||H1(∂Ω) and that ν × ∇v only involves tangential
derivatives of v, hence ν × ∇v ∈ L2(∂Ω) and ||ν × ∇v||L2(∂Ω) ≤ C||φ||H1(∂Ω). Since
χ̃(x/ε) is bounded in L∞(∂Ω) and since ρ(x) = A∇u0(x) is regular, it follows that

∫

∂Ω
ηε · ν φdσ ≤ Cε||u0||H2(Ω)||φ||H1(∂Ω),

in other words, ηε · ν/∂Ω ∈ H−1(∂Ω) and

||ηε · ν||H−1(∂Ω) ≤ Cε||u0||H2(Ω). (A.33)

By interpolation ([17], Theorem 12.3), we obtain from (A.30,A.33)

||aε∇(εBε) · ν||H−1/2(∂Ω) = ||ηε · ν||H−1/2(∂Ω) ≤ Cε1/2||u0||H2(Ω), (A.34)

and thus from standard elliptic theory we get

||εBε||H1(Ω) ≤ Cε1/2||u0||H2(Ω). (A.35)

step 4: Let h ∈ L2(Ω), with
∫

Ω h = 0, and let wε denote the solution to
{

−div(aε∇wε) = h in Ω
aε∇wε · ν = 0 on ∂Ω.

We define the first terms in the expansion of wε by w0, w1 and Cε analogously to u0, u1

and Bε. Similarly to (A.29), they satisfy

||wε(x) − w0(x) − εw1(x, x/ε) − εCε(x)||H1(Ω) ≤ Cε||w0||H2(Ω)

≤ Cε||h||L2(Ω). (A.36)
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From (A.35), we have
∣

∣

∣

∣

∫

Ω
εBεh

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω
aε∇(εBε) · ∇(w0 + εw1 + εCε)

∣

∣

∣

∣

+ Cε3/2||u0||H2(Ω)||w0||H2(Ω). (A.37)

We split the first term in the above right hand side in three parts:

I1 =

∫

Ω
aε∇(εBε) · ∇w0 =

∫

Ω
ηε · ∇w0,

has the same form as the right hand side of (A.32). Proceeding as in step 3, we see
that this term can be rewritten as

I1 = ε







∫

Ω

3
∑

p=1

χ̃(x/ε) · (∇ρp(x) ×∇w0) −

∫

∂Ω

3
∑

p=1

(χ̃(x/ε) × ν) · ρp(x)∇w0 dσ

−

∫

∂Ω
(χ̃ρ(x) × ν) · ∇w0 dσ

}

and thus, as χ̃(x/ε) is uniformly bounded in L∞(∂Ω), as ρ = A∇u0 and ∇w0 have at
least regularity H1(Ω) and H1/2(∂Ω), it follows that

|I1| ≤ Cε||u0||H2(Ω)||w0||H2(Ω). (A.38)

For the second term

|I2| =

∣

∣

∣

∣

∫

Ω
aε∇(εBε) · ∇(εw1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂Ω
aε∇(εBε) · ν εw1 dσ

∣

∣

∣

∣

≤ ε||aε∇(εBε) · ν||H−1/2(∂Ω) ||χj(x/ε)
∂w0

∂xj
||H1/2(∂Ω).

As χj ∈ W 1,∞(Y ) ∩ C1,µ(Y ), 1 ≤ j ≤ 3, one easily checks that ||χj(x/ε)
∂w0

∂xj
||L2(∂Ω)

and ε||χj(x/ε)
∂w0

∂xj
||H1(∂Ω) are uniformly bounded. By interpolation, it follows that

||χj(x/ε)
∂w0

∂xj
||H1/2(∂Ω) ≤ Cε−1/2,

so that, using (A.34), we obtain

I2 ≤ Cε||u0||H2(Ω)||w0||H2(Ω). (A.39)

Finally, the third term is easily controlled using (A.35) and its equivalent for Cε

|I3| =

∣

∣

∣

∣

∫

Ω
aε∇(εBε) · ∇(εCε)

∣

∣

∣

∣

≤ C||εBε||H1(Ω)||εCε||H1(Ω)

≤ Cε||u0||H2(Ω)||w0||H2(Ω). (A.40)
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We thus conclude from (A.37–A.40) that
∣

∣

∣

∣

∫

Ω
εBεh

∣

∣

∣

∣

≤ Cε||u0||H2(Ω)||h||L2(Ω)

and thus

||εBε||L2(Ω) ≤ Cε||u0||H2(Ω). (A.41)

step 5: Finally, the uniform boundedness of ||u1(x, x/ε)||L2(Ω), (A.29) and (A.41) yield

||uε(x) − u0(x)||L2(Ω) ≤ ||uε(x) − u0(x) − εu1(x, x/ε) − εBε(x)||H1(Ω)

+ ε||u1(x, x/ε)||L2(Ω) + ||εBε(x)||L2(Ω)

≤ Cε||u0||H2(Ω).

A.3 Proof of Theorem 3.6

Let χ and Φ be the first and the second-order matrix of correctors, solutions of the cell
problems (3.4) and (3.5)-(3.6) respectively.
Consider the auxiliary function

zε = uε − u0 − εχ(x/ε) · ∇u0 − ε2Φ(x/ε) : ∇2u0. (A.42)

Applying Lε to zε, we obtain (with χε(x) = χ(x/ε) and Φε(x) = Φ(x/ε))

Lεzε = div((aεI − A)∇u0) + εdiv(aε∇(χε∇u0)) + ε2div(aε∇(Φε∇
2u0))

= div ((aε(I + ∇yχ) − A)∇u0) + εdiv(aεχε∇
2u0)

+εdiv(aε∇yΦ∇2u0) + ε2div(aεΦε∇
3u0)

= (a(I + ∇yχ) − A)∇2u0 + εaχε∇
3u0 + divy(aχ)∇2u0

+divy(a∇yΦ)∇2u0 + εa∇yΦ∇3u0 + ε2div(aεΦε∇
3u0)

Since Φ is the solution of (3.5)-(3.6) and

∫

Y
B(y) dy = A(y), we get

Lεzε = ε [Fε + εdiv(bεHε)]

with

Fε(x) = a(x/ε)χ(x/ε)∇3u0(x) + a(x/ε)∇yΦ(x/ε)∇3u0(x)

b(y) = a(y)Φ(y),

Hε(x) = ∇3u0(x),
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Noting that Φ has regularity C0,µ in D0 and in Y \ D0 by (3.5) and (3.13), we can
apply theorem 3.4: for a suitable constant C

‖Fε‖L∞(Ω) + ‖Hε‖C0,µ(Ω) ≤ C.

The interior gradient estimates (3.15) applied to zε and lemma 3.5 show then that

||zε||L∞(ω) + ‖∇zε‖L∞(ω) ≤ (‖zε‖L2(Ω) + Cε).

Since by hypothesis ‖uε − u0‖L2(Ω) ≤ Cεσ, we conclude that

|uε(x) − u0(x)| + |∇uε(x) − (I + ∇yχ(x/ε))∇u0(x)| ≤ Cεσ a.e. x ∈ ω.

A.4 Proof of Theorem 3.7

Proof: From the results of section 2, we see that Gε is Hölder continuous away from
its singular point and that there exist a constant C that only depends on λ such that

‖Gε(., y)‖L2(Ω) ≤ C, for y ∈ Ω,

since L2(Ω) ⊂ L∗
n

n−2
(Ω) when n = 3.

Let ω1, ω2 be smooth domains such that ω ⊂⊂ ω1 ⊂⊂ ω2 ⊂⊂ Ω and let y ∈ Ω \ ω2.
Let

σε = sup{|Gε(x, y) − G0(x, y)| : x ∈ ω1}

=: |Gε(xε, y) − G0(xε, y)|.

As LεGε(., y) = 0 in ω2, theorem 3.4 shows that there is a positive constant C inde-
pendent of ε and y, such that

‖∇Gε(., y)‖L∞(ω2) + ‖∇G0(., y)‖L∞(ω2) ≤ C.

Setting ρ = min (σε/2C, dist(ω1, ω2)), we see that

|Gε(x, y) − G0(x, y)| ≥ σε/2, for x ∈ Bρ(xε) ∩ ω1. (A.43)

In particular, Gε(., y) − G0(., y) keeps a constant sign in Bρ(xε). Let f ∈ C∞
0 (Bρ(xε))

such that 0 ≤ f ≤ 1 and such that f ≡ 1 on Bρ/2(xε). We consider the solutions wε

and w0, vanishing on ∂Ω of

Lεwε = f and L0w0 = f in Ω.

Theorem 2.3 in [1] gives us an interior L2 estimate for the convergence rate of wε to
w0: for some constant C independent of ε

‖wε − w0‖L2(ω2) ≤ Cε.
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Applying Theorem 3.6, we see that

‖wε − w0‖L∞(ω1) ≤ Cε. (A.44)

Thus we obtain for x ∈ Bρ/2(xε) ∩ ω1

Cε ≥ |wε(x) − w0(x)| =

∫

Bρ(xε)
|Gε(x, y) − G0(x, y)|f(y) dy.

≥

∫

Bρ/2(xε)∩ω1

σε

2
dy.

As the Lebesgue measure of Bρ/2(xε) ∩ ω1 is proportional to ρ3, we conclude from its

definition that σε = O(ε1/4) and that

‖Gε(., y) − G0(., y)‖L∞(ω1) ≤ Cε1/4.

Moreover, as this estimate also holds in L2(ω1) , another application of Theorem 3.6
yields (3.20, 3.21).
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