An asymptotic formula for the voltage potential in a
perturbed e—periodic composite medium containing
misplaced inclusions of size €
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Abstract

We consider composite media made of homogeneous inclusions with C'® bound-
aries. Our goal is to compare the potential u. in a perfectly periodic composite to
the potential u. q of a perturbed periodic medium, where the periodicity defects
consist of misplaced inclusions. We give an asymptotic expansion of the difference
Ue,d — Ue away from the defects and show that to first order, a misplaced inclusion
manifests itself via a polarization tensor, which is characterized.

1 Introduction

In this work , we consider a composite medium made of an array of inclusions embedded
in a homogeneous background material. We assume that the inclusions are centered on
a e—periodic lattice, except for a small number of them that might have been misplaced:
the centers of these ‘defects’ are at a distance of order £ from the lattice points. Our
goal is to compare, sufficiently far from the defects, the potential u, 4 of the perturbed
medium with the potential u. of a perfectly periodic medium.

When the reference or background medium is homogeneous (or sufficiently smooth)
D. Fengya, S. Moskow and M. Vogelius [10] (see also [3] and the references therein)
studied the perturbations of the potential caused by the presence of small inhomo-
geneities, and derived an asymptotic expansion for the difference between the perturbed
and background potentials. The first correction term in their asymptotic expansion is
of the order of the volume £" of the inhomogeneities and has the following structure

E”Z Vau(zj) - M;V,G(24, 2), (1.1)

J=1

where u is the background potential and Mj is a polarization tensor which characterizes
how the presence of the j-th inhomogeneity, centered at z;, is felt in the far field.
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The above expression also involves the gradient of the background Green’s function
G(z,z), which makes the expansion particularly interesting for numerical detection
of inhomogeneities: linear sampling or MUSIC algorithms detect the singularities of
the Green functions, and have proven quite efficient in both impedance imaging of
inhomogeneities of low volume fraction [7] and inverse scattering by small inclusions [2].

In this paper we derive a similar asymptotic formula when the background medium is
periodic. Our main result, Theorem 4.1, shows that inhomogeneities or defects of size
comparable to the period affect the perturbed potential in a manner similar to the case
of a homogeneous background. Indeed, the first term in our asymptotic formula (4.4)
has the same structure as above. It involves the gradient of the homogenized potential
at the center of the inclusions, the gradient of the homogenized Green’s function, and
a polarization tensor that combines the influence of the defect at infinity and the
interaction of the defect with the periodic structure. Thus, numerical detection of such
periodicity defects should be possible using MUSIC algorithms, provided that one has
accurate knowledge of the background potential (which might be expensive in practice).

A possible application of our analysis concerns photonic cristals, periodic composite
arrays of dielectric materials. In these structures, propagation of waves may be prohib-
ited in certain intervals of frequencies, as a result of destructive interferences between
the waves and the structure of the composite [13]. For a mathematical perspective, see
the enthusiastic review of P. Kuchment [14].

Photonic crystals are an example of structures where periodicity or near—periodicity
seems to play an important role. As the current manufacturing processes may not
guarantee perfect periodicity, it is interesting to study the influence of periodicity
defects in these structures, in the view of developing methods for non—destructive
control.

Our analysis relies on fine regularity results on the potential gradients [16, 15], which
require that the inclusions be somewhat smooth: their boundaries have regularity C1®
for some 0 < a < 1. Under this hypothesis, ||Vu, 4||oc can be shown to be bounded
independently of € and independently of the distance between inclusions, misplaced or
not.

The paper is organized as follows. In Section 2, we recall classical results about Green
functions for uniformly elliptic operators in divergence form with merely bounded and
measurable coefficients. We are particularly interested in their behavior at infinity, and
throughout the paper we work in dimension 3 (although some of our results are valid
and given in any dimension).

Section 3 only concerns the background potential u.. In 3.1, we recall a few classical
results of periodic homogenization, while section 3.2, contains several estimates on the
potential u. and on its gradient: We recall such interior estimates, that were derived
by M. Avellaneda and F.H. Lin [4], when the coefficients of the medium have regularity
C%". We then give interior estimates on the gradient Vu,, in the case of a composite
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medium made of a homogeneous background conductor containing homogeneous inclu-
sions with C1*® boundaries (in which case the conductivity is only globally L>). These
estimates are similar to those given in [15] (and so is their proof) but here we allow a
nonzero source term.

We chose to study the case of Neumann boundary conditions for the periodic and
perturbed media. The analysis also led us to compare the potentials u. 4 and u. to the
potential ug of the homogenized medium. In particular, we give a L? error estimate
on us — ug. This kind of estimate is well-known in the case of Dirichlet boundary
conditions. In the case of Neumann boundary conditions, our result generalizes to the
dimension 3, a 2D-estimate obtained by S. Moskow and M. Vogelius [20]. The proofs
of all the estimates in this section are given in the Appendix.

Section 4, contains the main result. We derive there the asymptotic expansion of the
potential in the domain with defects. We give the expression of the polarization tensor
associated to a periodicity defect and compare it to the formula of [10] that describes
the effect at infinity of an inhomogeneity embedded in a smooth matrix.

Throughout the paper, C denotes a generic positive constant, independent of .

2 Properties of the Green function

In this section, we present some known results and properties of the Green function
for the elliptic operator
Lu = —div(a(z)Vu), (2.1)

when the conductivity a(z) is merely a bounded measurable function in R™. The
detailed proofs of the following results can be found in [18, 21, 22] in the symmetric
case and are extended to the case of non-symmetric coefficients in [12].

Let 2 be a smooth bounded domain in R"™. We consider a medium with conductivity
a € L*>®(§2) which is uniformly elliptic

0 <A <alx) <A aexzefl

Given a Radon measure  defined on 2, a function u € L'(Q) is called a weak solution
vanishing at the boundary 0f2 of the equation Lu = p, if it satisfies

/uL@d:ﬁ = /<I>d,u,
Q Q

for every ® € H}(Q2) NC°(Q) such that L® € C°(Q).
If p = f with f € W=12(Q), the Lax Milgram Lemma shows that there exists a unique
solution u € H(Q) of

Lu = f. (2.2)

One can thus define a continuous linear operator G : W~12(Q) — H}(Q), called the
Green operator, such that, for f € W=52(Q), u = G(f) is the unique solution in H} ()
of Lu = f.
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A theorem of Stampacchia [22] extends the De Giorgi-Nash theorem on C%® regularity
of solutions to elliptic equations and shows that when  is sufficiently smooth and
f € W=LP(Q) with p > n, the solution u to (2.2) lies in C°(Q). Moreover, one has

Ve @),  max|G(f)l < CXQTVPf s, (2:3)
Q

where C only depends on p. Consequently, given a Radon measure pu, a function u is
a weak solution vanishing on 0f2 of the equation Lu = p if and only if

v fec’ (), /Qufd:v = /Qg(f)du. (2.4)

There is at most one solution to this problem. By (2.3), this solution satisfies
vre@,  [ufde < AR [ dul | flwsoe
Q Q
Since, C(2) is dense in W~1P(Q), we see that u € Wol’pl(Q), 1/p+1/p' =1/n, and

gy < CAI [

The transformation p — wu is thus the adjoint operator G* of G: As G(W~1P(Q)) C
C°(Q), the image by G* of the space of Radon measures on (2 is contained in VVO1 Q).
This proves

Theorem 2.1 [18]

For every Radon measure u, there exists a unique weak solution uw to the equation
Lu = p vanishing on 092, which lies in Wol’q(Q) for every g <n/(n—1).

Moreover, u belongs to HY(Q) if and only if p € W=12(Q).

As a consequence, one can define a Green function for L in

Definition 2.2 The Green function G(z,y), associated with the operator L on €, is
defined as the weak solution vanishing on OS2 of the equation

LG = 9, in Q,
where 0, is the Dirac mass at y.

The Green function provides a representation formula (see theorem 6.1 in [18]): For
every Radon measure p, the integral

u(z) = / Gl y) du(y) (2.5)

is finite a.e. and is the weak solution vanishing on 9€2 of the equation Lu = p.

The Green function has the following properties
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Theorem 2.3 [18, 12/ For each y € Q,

G(.,y) € L*L(Q) and |G|~ < C(n))‘_17
n—2 s (Q)

VG(.,y) € L*, @ and VG|, < C(n,\A), (2.6)
n—1 =z (

G(.,y) € Wy°(Q)  for sel[l,-[

Q)

Further, let G and G be the Green functions of two uniformly elliptic operators L and
L, with ellipticity constants X\, A and X, A,respectively. Then, for any compact subset
K CC Q, there exists positive constants ¢ and C, which only depend on K, ), n and
on the ellipticity constants, such that

V(z,y) € K x K, cG(z,y) < G(z,y) < CG(x,y). (2.7)
The Lorentz spaces Ly(§2) involved in these estimates are defined by
L) = {f:9Q— RU{oo}, f measurable and | f|zs ) < oo},
where

170 = sup t|{w € Q7@ > 6},

and are related to the classical LP spaces via the estimates

1

p\ P~ -8
3 QPP fllzr-s) < 1fllzs@) < 1fllze@)
for0<fg<p—1.

When n > 3, as the radius of 2 goes to infinity, the Green function converge to
a function G(.,y), Holder continuous in R™ \ {y}. Moreover, G(.,y) € W4 (R") N

loc

WL2(R™\y), ¢ < n/(n—1), and the representation formula (2.5) is valid. In particular,

loc

given f € W~1L2(R") the solution u € W1H2(R") of Lu = f can be represented by

u(z) = G(z,y) f(y)dy.
R'n
The estimates (2.7) hold uniformly in R™ with constants that only depend on the
ellipticity constants and on n. Comparing the Green functions of L and of the Laplace
operator in R", we see from (2.7) that

V(z,y) eR"xR", |G(z,y)| < Clz—y*" (2.8)

where C only depends on A, A and n.

In the rest of this paper, we will be concerned with families of operators of the form
L. = div(a(x/£)V) defined in a smooth domain 2 C R3, where a is a [0, 1]3-periodic
piecewise constant function.
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3 Asymptotic behavior of the background potential and
of the associated Green function in periodic composite
materials

Let © be a smooth bounded domain in R? that contains a periodic composite medium
composed of cells of size €. These cells are deduced from the unit cell Y = (0,1)% by
translation and rescaling, and are of the form ep+¢Y, p € Z3. The unit cell Y contains
an inclusion Dy CC Y with boundary of class C1*,0 < o < 1. We assume that

dist(Do, OY) > dy > 0. (3.1)

Let 0 < A< Aand 0 < < 1. AN\ A, p, ) denotes the class of Y-periodic functions
a such that a is C%* in Dy and in Y \ Dy and such that 0 < A < a(z) < Ain Y. We
also denote L(A, A, i, ) the class of elliptic operators with coefficients in A(X, A, i, @)
of the form

L. = —div(a(g)V-)) = —div(a.(x)V"), 0<e<l, (3.2)

where a.(z) = a(x/e). We call these media ‘composites with sufficiently smooth inclu-
sions’.

3.1 Homogenization

As e tends to zero, we consider the sequence of elliptic problems

Lous. = f inQ
(3.3)
aa% = g onJdf}
v

with the normalization / gdo, = / fdx and / us dz = 0.
o0 Q Q
The effective behavior of the composite and the asymptotic behavior of u. are described

in terms of solutions x € (W#Q(Y))?’ and ¢ € (VV;E’Q(Y))?’2 to cell problems, defined by

—div(a(y)V(x(y) +¥)) =0 in R

/ x(y) dy = 0, (34)
Y
~div(a(y)V,2(0)) = BG) - | Bly)dy i Y:

v (3.5)
[ owar=o.

with

B(y) = a)+a(y)Vyx(y) + divy(a(y)I @ x(y)) (3.6)
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(I/quﬁ’2 denotes the subspace of periodic functions of W12(Y)). The function u. can
formally be sought with the ansatz [6]

x x x T
us(r) = uo(az,g)—keul(az,g)+E2u2(m,g)+€3u3(az,g)+... (3.7

x
where, each function u;(x,y) is Y-periodic with respect to the fast variable y = —.
€

The function wug(x,y) = wp(x) is independent from y and is the unique solution in
W12(Q) to the homogenized equation

Louo = —diV(AV’U,O) = f in
(3.8)
AVugy - v = g on 0},

with the normalization / ugdo, = 0. The effective properties of the medium are
Q
expressed by the constant, symmetric, positive definite, homogenized matrix A defined

by

A = /Y a(y) (I + Vx(v)) dy.

The functions uy and ug can be written in terms of derivatives of ug, up to arbitrary
functions 1, tig of the variable x only

X

w(e2) = x(3)- Vuole) + () (3.9)
us(z, g) - @(g) L Vo (z) + X(g) Vi (2) + is(z). (3.10)

If we approximate u. to first order by (3.7), we may choose the function @; to be 0.
If we seek an approximation up to second order away from the boundary (neglecting
boundary layers) 4y may be chosen to be 0, but % must satisfy

—div(AViy) = CoViuy, (3.11)

where

Co = /Y (a(y)VO(y) + a(v)] ® X(v)) dy. (3.12)

3.2 Error estimates
In this section, we give W1 >—interior estimates for solutions u. to
Lous. = fin Q,

i.e., we are concerned only with perfectly periodic media. We are particularly interested
in pointwise estimates on the gradients of u., which will be used in the proofs of
Section 4.

When the conductivity a has global Hélder regularity on Y, [la||conyy < M, M. Avel-
laneda and F.H. Lin proved that the potentials u. are uniformly Lipschitz
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Theorem 3.1 (Theorem 2 in [4}])
Let ue satisfy
Lou. = f inQCR”
us = g ondfl,

where, f € L™ for some § > 0 and g € CHV(9Q), 0 < v < 1. There exists a constant
C that only depends on A\, A, u, M,Q, v and §, such that

[uellcor @y < Clgllerr o) + 1 fllLnts@))-

The regularity hypothesis on a can be relaxed to cover the case of composite me-
dia that contain inclusions with sufficiently smooth boundaries. For such media, one
can show that the gradient of the potential is uniformly bounded, independently of
the inter—inclusion distance. Results of this nature were first obtained by YanYan Li
and M. Vogelius[16], then generalized to strongly elliptic systems by YanYan Li and
L.Nirenberg [15]. We state here the version of [15] in the scalar case.

Let D be a bounded domain in R? which contains L disjoint subdomains Dy, --- , Dy,
of class C1®, 0 < « < 1, with D = (UL, D)) \ dD. We assume that any point z € D
belongs to at most two of the boundaries of the D;’s. For n > 0, we set

D, = {z € D;dist(z,0D) > n}.

Theorem 3.2 (Theorem 0.1 in [15])

Let 0 < u < 1 and assume that the conductivity a is uniformly elliptic in D and belongs
to CH(Dy),1 <1< L. Let h € C%*(D)),1 <1< L, f € L°(D) and let u be a solution
i D to the equation

—div(a(x)Vu) = [+ div(h).

a

For any n > 0, there exists a constant C such that for any 0 < o/ < min{u, m}, U
satisfies

L L
Z lullevor yap,) < C (”UHL2(D) + [ fll oo Dy + Z ”hHCa'(Dl)> - (3.13)
=1 =1

Here C only depends on \, A, u, L, a, n, Ha”ca/(ﬁl) and on the CY* norm of the D;’s.
In particular,

L
[Vulpep,) < C (HUHLQ(D) + || fllLoe Dy + Z Hh”ca/(Dl)> : (3.14)
=1

In the sequel, for each r, 0 < r < 1, and = € R?, we set

B(z,r) = {y e R¥/|xr —y| <r} and B, = B(0,r).
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The constant C' in the above theorem may however grow with the number of inclusions.
However, in the case of periodic media, uniform pointwise estimates on the gradients
do hold as in theorem 3.1. This is established in the following result, due to YanYan
Li and L. Nirenberg (see also the remark in Section 5.3 of [4]). Its proof relies on
Theorem 3.2 and on the ‘three steps compactness method’ of [4].

Theorem 3.3 (Theorem 0.2 in [15])
Assume that a € AN\, A, p,«) and L. € L(\, A, pu, «). Let ue be a solution to

L.ou. = 0 inBj.
Then

IVucllzees,,) < Clluellr2(sy),

where C' is independent of € (thus, independent of the number of inclusions and of the
distance between their boundaries).

We will need a slightly different version of Theorem 3.3, for solutions of elliptic equa-
tions in divergence form, with a source term of a particular form :

Theorem 3.4 (Interior gradient estimates)

Assume that 1 < s-%—. Let a € A\ A, p,a), f € L=®(By), h € CO(B,)? and
2(a+1)

L. € LN A, p, ). Let b be a'Y —periodic function such that b has regularity C°* in Dqg
and in'Y \ Dgy. Assume that ue is a solution to

L.ou. = f+ediv(b:h) inBj.
Then,

[uelleon (s, ) + IVuellLee (B, )
< C (luellpzipyy + 1 f lpee By + Rllcow(sy)) » (3.15)

where C' is independent of € (thus, of the number of inclusions and of the distances
between their boundaries).

On the basis of theorem 3.4, one can proceed as in [5], and generalize to composite
media with sufficiently smooth inclusions, error estimates between the potential wu.
and the homogenized potential ug, and between the e—periodic Green function and the
Green function for the homogenized medium.

However, as we intend to apply such results in Neumann problems, we first state the
following L? error estimate :
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Lemma 3.5 Assume that ) is a smooth bounded domain in R? and that g € C*(99)
such that fagg = 0. Let u. denote the solution to

div(a:Vu:) = 0 in)

{ a:Vus-v = g ondf, (3.16)
normalized with the condition that fQ ue = 0. Let ug denote the solution to the
corresponding homogenized problem

div(AVuy) = 0 inQ
{ AVug-v = g ondQ, (3.17)

also normalized by fQ ug = 0. Then, the following estimate holds

lue —wollz2@) < Célluol|g2(q)-

Estimates of this sort are well known for Dirichlet boundary conditions [6, 1, 19]. For
Neumann boundary conditions, a similar error estimate was derived in 2D by S. Moskow
and M. Vogelius [20] in the case of a convex polygon using harmonic conjugates. We
show in section A.2 how this estimate generalizes to 3D.

We now state uniform error estimates between u. and wug:

Theorem 3.6 Let w CC ). Assume that us. and ug solve L.u. = 0 and Loug = 0 in
Q. Assume also that

lue —wollr2@ < Ce%,

for some 0 < 0 < 1. Then there exists a constant C' that only depends on A\, A, i, a, 2
and w such that,

|ue —uollze@w) < Cée7 (3.18)
HVug—(I+Vyx(./€))Vu0HLoo(w) < Ce°. (3.19)

We remark that by Lemma 3.5, this theorem applies to solutions of (3.16, 3.17).

Let G and G denote the respective Green functions, vanishing on 0f2, of the operators
L. and Lg. From theorem 3.6, we derive an estimate on the convergence rate of G; to
Gy. This result is applied in section 4 when the source is far from the defect. For this
reason, we consider below G¢(x,y) when z € w CC Q and y € Q\w with dist(y,w) > 0.
In [5], when the coefficients have Holder regularity, similar estimates are established,
which are valid on the whole of  (away from the source). Their derivation requires
uniform boundary estimates on L.— harmonic functions. It would be interesting to
study whether such estimates also hold in our context.
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Theorem 3.7 Assume that w CC € is a smooth domain. Let G, and Gy be the Green
functions, vanishing on 0SY, for the operators L. and Lo (see section 2). There ezists
a positive constant C, independent of €, such that for y € Q\ w with dist(y,w) > 0

1G=(vy) = Golos )l < CeY4, (3.20)
IVaGeloyy) = (I + Viyx(./e))VaGoly) ey < CeV (3.21)

4 Main result: asymptotics of the perturbed potential

Let Y denotes the unit cell (0,1)? in R3. We assume that Y contains an inclusion Dy,
the boundary of which has regularity C1'® for some 0 < a < 1. We also assume that

d’iSt(Do,@Y) > dy > 0.
Let a be a measurable Y-periodic function equal to a constant k in Dy, 0 < k < oo,
k # 1, and equal to 1 in Y\ Dy.
As in section 3, we consider a bounded domain 2 C R3 formed by the union of cells,
translated and rescaled by ¢ from the elementary cell Y. The conductivity in € is
denoted by a.(z) = a(x/c). We consider the elliptic operator L, = —div(a.(x)V-). We
call background electrostatic potential in €2, the solution u. to

L.us =0 in Q
LT
v o0 Y (4.1)

We study the influence of a particular perturbation of such a medium which consists
in misplacing one inclusion. More precisely, let p € Z3 such that Y2 :=e(p +Y) C Q,
and so that dist(Y?,09Q) >> . If the medium were completely periodic, the inclusion
contained in the cell Y2 would occupy the subset w.1 := e(p + Dy). Instead, the
inclusion lies in a subset w2 = e(p + d + Dy), for some 0 < || < 1. For simplicity, we
asume that w. o does not intersect any of the remaining inclusions. Let w. denote the
symmetric difference of the sets w. 1 and w, 2.

The conductivity a. 4 of the perturbed medium is thus given by

a.q = a. inQ\w;
eg = 1 inweg\weo
acqg = k inweo\we.

The associated potential u. 4 solves

div(as ¢(x)Vue g) =0 in Q

a 8u57d _

=5y o0 Y (4.2)
gdoy = | ucqdr = 0.

o Q
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Without loss of generality, we assume that o = 0 belongs to the convex hull of w,. Let
Q. = {x/e, 2 QY & = {x/e, x €w.},

(note that @ is independent of £) and define the function a4 in R? by a4(y) = ac.a(ey)).
Throughout this Section, we denote by a™(z) and a™(z) the outward and inward limits
of the discontinuous function a through an interface.

Let G- be the Green function associated to the operator L., solution to

—div(a:VGe(z,2)) =6, in Q, (4.3)

vanishing on 99 (see Section 2)and G the Green function of the homogenized operator
Ly, defined by (3.8).

We now state the main result of this paper: an asymptotic expansion for u. 4 — u..
This expansion has the same structure as that derived in the case of a homogeneous
background medium [10], though it involves the homogenized potential uy and the
homogenized Green’s function GGy. As mentionned in the Introduction, the presence
of the Green function (and its singularity) should make this expansion interesting for
numerical detection purposes.

We note that our analysis easily extends to the case of several misplaced inclusions (or
to the case of O(e) defects with different constant conductivities) provided that they
are at distances larger than O(e) apart.

Theorem 4.1 Assume that Q) and the Neumann data g are sufficiently reqular so that
the homogenized potential ug is smooth inside Q. For any z € Q at a distance dy > 0
away from w., we have

ua’d(z) a UE(Z) + Lg(ue,d(x) - Ua(m))aa—lcjz dog
= —E3VmGO($0,Z) - MV zug(xg) + 0(53+1/4), (4.4)

The term O(€3+1/4) is uniformly bounded by Ce3TY4, where the constant C' depends
on do, k, . The polarization tensor M is given by

J’_

a” . o] J
M;; = /a (= =D+ X)) <a+<y>;’%d +a () <yj + 51;%”)) do,  (45)

Qg

for 1 < i,j < 3, where the cell function x = (x")1<i<3 is defined by (3.4) and where
the auziliary functions ;q are defined by (4.14) below.

To prove the Theorem, we first establish three Lemmas. We introduce two auxiliary
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functions v, 4 and vy, respective solutions to:

( div(a(y)vyva,d) =0 in QE\E A'Ua’d =0 in w
U:d—v;d =0 ondw
vy Ovg _ ) . (46)
at =t —ag—=t = (0" —ag)(I+ VX )Vaue(0) v, om0
v, N
adM:O on 99, /Usdzo,
vy 5
and
divy(aq(y)Vyve) = p inR?
(4.7)
va(y) — 0 when |y| — oo,

with p = divy ((aqg — a)(I + Vyx)Vzuo(0)).
Lemma 4.2 The function vq, solution of (4.7), decays at infinity as

va(y) = O(lyl™)
{Vyvd(y) = O(ly|™?). (4.8)

Proof: Since the support of u is included in @, the function v4 can be represented in
terms of the Green function G associated to L = —div,(aq(y)V,-) in R3

valy) = /R Gy, 2)dp(z) = / Gy, 2) dulz). (4.9)

(see theorem 6.1 in [18] where it is shown that the integral on the above right hand
side exists a.e. as a consequence of Fubini’s Theorem)
It follows from (2.8) that

va(y) = Oyl ™), as Jy| — co.
Fix z € R? and R > 4 diam(®@). As a function of y, G(y, z) satisfies
divy(aq(y)VyG(y,2)) = 0 in B(z,4R)\ B(z, R/4).

Thus, the rescaled function g(z, z/R) = G(Rx, z) solves div,(aq(Rx)Vg9(x,z/R)) =0
in the set B(z/R,4) \ B(z/R,1/4). Applying theorem 3.4 and (2.8), we obtain

IVyG(y, 2) Lo (Be2r\BR2) < B IVeg(y/R, 2/R)|| LB/ R2\BG/R1/2)
< CR Mg(., 2/ R)||oe (B(z/RaN\B(/ B, 1/2))
< CR7YG(, 2)|lpe (B(ar)\B(2,R/1)
< CR'sup{ / y € B(z,4R)\ B(z,R/4)}.

ly — 2|
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It follows that
IVyG(y,2)] = O(ly—=2"?) as|y— 2| — . (4.10)

Noting that G(.,z) is C'** away from y = z as a consequence of theorem 3.2, we can
differentiate (4.9) with respect to y, and we conclude from (4.10) that

IVyva(y)| = O(lyl*),

which proves the Lemma. [ |

Lemma 4.3 There exists a constant C' > 0, independent of €, such that
IV, (e ale) = ue(er) —evea)ll o,y < Cce2. (4.11)

Proof: Let z 4(y) = ue d(ey) — ue(ey) — ve q(y). According to the equations (4.2, 4.1)
and (4.6), z. q satisfies

( div(a(y)Vyzeq) = 0 inQ.\D andin®
z:d —2.4, = 0 ondw
+ &erd _ 0z, _ _ _ _
A5, "%, = —elam —ag) (Vaus (ey) — (I + Vyx™ () Vauo(0) - vy
aq Fed 0 on 9.
\ vy

Thus, integrating by parts yields

/~ aq (y) vyzs,dvyzs,d dy

Qe

= /Q\~ ad(y)Vyz&dVyz&ddy—F[ad(y)Vyze,dVyze,ddy

_l’_ —
L027, _ 0z,

= — a4 P Zed T a, P Ze.d
& v ) Vy

- /8 (a7 (y) — a3 (1) (Vauz (9) — (I + Vyx™ (1) Varo(0)) - vy2e

= € / (a(y) — aa(y)) (Vaous(ey) — (I + Vyx(4))Vauo(0)) - Vy2ea
ce [[Vaue(e.) = (I + Vyx)Vauo(0)l| L2 @) 1Vy2zeall 2@

IA

Lemma 3.5, theorem 3.6 and the smoothness of the homogenized potential ugy show
that

[Vaue — (I+Vyx(./€)) Vauo(0)| Lo (w.)
< I Vaue = (I + Vyx(./€)) Vauo ()l e w.)
+ (I + Vyx(-/€)) (Vauo(.) = Vauo(0)) || oo (w)
< Ce.
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Since a. is bounded, we conclude that

Vy Zad||L2(Q < | Vyzealle@y < e Vyzell 2.y

Lemma 4.4 : There exists a constant C, independent of €, such that
IVy (uzale) = uele) = eva) o,y < Ce*2. (4.12)
Proof: Lemma 4.3 shows that it is sufficient to prove that

||vy(va,d_vd)||L2(QE) < el

To this end, let ¢. g = ve 4(y) — va(y) — ce, where c. is chosen so that [ ¢, 4 =0.
0Ne
In view of (4.6) and (4.7), ¢, 4 solves :

div(aq(y)Véeq) = 0 in Q.

0. ov ~
W)L = ) gt on 00,
Yy Yy
5 ¢e,d = 0.

e

Integrating by parts and changing variables back to the fixed domain €2, we see that
Ovg
_ ad(Y)VypeaVydeady = | _ada e ado,
Qe 0

= 5—2/89 —adgyy(ac/s)qbgd(x/a?)ddr

IN

o, OV
e |52 (/o)L= o0y I be.a(-/2) 22 o).
Y

The trace Theorem and the Poincaré-Wirtinger inequality imply that

I6e.a(-/E)l200) < Cllgeal-/o)lwrz@) < Ce2(Vydeal@/e)ll 2
Since vy decays at infinity (see (4.8)), we have

avd

15, (/E)IILoo(aQ) = 0(),

and therefore

IVydea@/oiag < C | ac(ey)VyeaVydeady
() a
Ce'/? ”Vy%,dum(ﬁ)

N

and the Lemma is proved. [ |
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Proof of Theorem 4.1:

Let u. q and u. be the electrostatic potentials solutions to (4.2) and (4.1) respectively.
Let z be a point in 2, at a distance d > 0 away from w.. We apply the Green formula
in € to get

usq(z) = —/ng,ddiv(aa(a:)VCla(x,z))d:r

= / ac () Ve gV Ge dm—i—/ ac(x)Vyue gV, Ge dx
QN\we

oG,
B /a e e(a) = do

= / 9Gedoy — / ua,dae% doy
o0 o0 Ovy

ou’ ou_
. + €,d — €,d G d
/&ug (aE vy e vy > = (0w,

us(z) = /anngJx—/angag%dax.

Using the continuity of u. 4 and the jump conditions satisfied by its normal derivative
across Jwe, the difference between these two equations yields

oG
U q(2) — ue(2) — / (e — Ue,q) %8—6 dog
N Vg

o Ougy
_ /a a7 )t Gedo,

_ _ ou;  Ovy 3 _oroy
— /aws(ae —a_g) <81/m + 8—uy> G.do, + /aws(ae - aa’d)a—%G6 do,
= NI+ 1, (4.13)

and

where r. () = ue g(x) — u:(z) — evg(x/e).

Combining the W*-error estimate (3.21) for the Green function G, and the fact that
V:u. is bounded on every compact subset of 2 that contains w. (Theorem 3.4), shows
that

_ _ . [OuZ  Ovy
[t ) (G + G ) (Gulo2) = Goton2) = VGt (/o) do

< COlVaue + Vyval r2(w,) [IVaGe = (I + Vyx(z/€))VGo(2)) 2 (w0)
< C¥2(|Vatel L (o) + IVyvallr2(a))

2| VoGe = (I + Vyx(2/))VGo(2))|| Lo w2)
OE3+1/4.

IN
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Hence,

ou-  Ov,;
L = c —a, . ! e U0y
1 /&ug(ag (x) a&d(aj)) (81/95 + 8I/y> G, do

= & [0 (G + G ) @l ox) Vet

+ 0(534—1/4).

Thus, by a Taylor expansion of G, about the origin,
ou-  Ov,
I, = & - — a7 e 4 Z7d
1 e“Go(0, 2) /a&](a a;) (81/30 + 81@) doy

+53 /ag,(a_ — CL;) <881;5; + ?73) (VzGo(Q Z) . (y 4 X(y))) dO'y

+O(€3+1/4).

Since u. 4 and vg are harmonic in @, the first term in the right hand side of the above
expression vanishes and I; reduces to

ou-  Ov;
_ .3 . - € Zd
I = &3V,Go(0,2) /&D(a ay) (8% + ayy> (y + x(y)) doy

+ 0(53+1/4).

Invoking Theorem 3.6 in a fixed subset w CC 2 that contains w,, we see that

[Vaue(ey) = (I + Vyx(y))Vauo(ey)llr=@) < Cé,
for some constant C' independent of ¢, and thus

V,Go(0, 2) - /Er(a_ - a;)gi (y + x(y)) doy,

(@™ —ay)Vaue - (I + Vx(y))VoGo(0, 2) dy

I
e~

(@™ —ag)(I + Vx(y)Vauo(ey) - (I + Vx)VaGo(0, 2) dy + O(e)

= VLGo(0.2) [ (0 =)+ VX)) Tual0) v (5 + x(0) do, + O(e).

Thus, up to O(€3+1/4), the term I is equal to

37, Go(0, 2) - /

N (a™ —ay) ((I + Vx(y))Vug(0) - v + av—d_> (y+x(y)) doy

Ovy
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Turning to I, integration by parts and the change of variables y = x/e give

N 2
12 = /a (a€ —a&d)a—y’Gg dO’x = £ /(a_ad)vyra,dvGa dy

Lemma 4.4 shows that [[Vyre a(ey)|l 2(q,) < ce®/2. Moreover, Theorem 3.4 implies that
V. Ge(z, 2) is uniformly bounded in w.. Consequently,

L = O@E"?).
Thus, (4.13) yields
0G.
Ue,d(2) —us(z) — /ém(u\€ - u&d)aga—yx do,
-~ ov;
= 99.600.2)- [ (@~ ap) (4 Tx@)IVaol0) v+ 5L 3+ x(0) doy
o Y
+O(€3+1/4).

To enlight the structure of this expression, we introduce the functions ¢; 4, 1 < j <3,
solutions to

( divy(aq(y)Vepjq) =0 in @ div(aq(y)Veja) = 0 in R)\@

©j,d is continuous across 0w

. | 4.14)
dot, 0y L Y i (
az{(y) a;f —ay (y) a;f =(a; —a )(v; + i;/(yy)) on Ow

[ ¢j.aly) — 0 when |y| — oo
> ou
Noticing that vg(y) = Z gpj,d(y)8—0(0) allows us to rewrite
2
j=1 I

0G,
Ued(2) —us(z) = /Cm(ug - ue,d)ag({)T do,

+ 3V, Go(0, 2) MV up(0) + O(3T1/4)

where the tensor M is defined by

N ’
My = /&D(a_(y) _ a;(y))(yz +Y'(y)) (;‘%]y’d + <I/j + Ox (y)>> doy.

vy

Using the jump condition satisfied by ¢; 4 across dw,

8g0;d 1 +8('0;_d - - X’
8—1/@, = E(ada—nyr(a _ad)(yj+7)(y) ;
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one sees that M;; can be expressed as

a” i 00la O’ (y)
My = A@(g—l)(yﬂrx(y)) <a+(y)—+a (y) <Vj+ v, > v,

vy

which proves Theorem 4.1. [ ]

This formula defines a polarization tensor in the same spirit as in [10, 9]. It describes
the influence on the far field of a localized defect within the periodic medium. One
easily checks that the expression of M;; reduce to that given in [10], when instead
of a misplaced inclusion, one considers a defect (ag # 1 in w.2) in a homogeneous
background medium (a constant and x = 0). Also, adapting the proof of Lemma 5
in [10] shows that M is symmetric.

A Proofs of the estimates

The proofs of theorems 3.4-3.7 and of Lemma 3.5 are collected in this Appendix.

A.1 Proof of Theorem 3.4

The proof of this result is based on two main ingredients: The first is the ‘three-step
compactness method’ of M. Avellaneda and F.H. Lin [4, 5], who proved Hélder and Lip-
schitz estimates on u., when the coefficients of L. are smooth (Holder continuous). The
second is the Holder regularity results for the gradients in composite media containing
inclusions with C1**-regular boundaries [16, 15]. Theorem 3.4 generalizes Theorem 3.3
to nonzero right—hand side. Its proof closely follows the proof of Theorem 3.3 (Theorem
0.2 in [15]), which itself is based on the arguments of [4, 5].

In the sequel, for each r, 0 < r < 1, and = € R3, we set

B(z,r) = {yeR*/|lz—y|<r}, B, = B(0,r),

][Df N ﬁ/z)‘f’ (Ee)or = ][B(m,r)ua.

We recall the classical characterization of Holder spaces [8] in terms of the semi-norm

|u(z) — u(z’)]
Upoa@ =  SUp
[ ]CO @) x,x' € |33 — ZL‘/|a

For each 0 < a < 1, there exist positive constants cq, co, which only depend on §2 and
a, such that for all u € C%¥(Q),

1/2
1 _
c1[u]eo.a @) < supsup m][QﬂB( )(u - (u)xr)2] < c2lufco.n(m)- (A.1)

zeQ r>0
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We assume that the coefficient a is piecewise smooth and that the boundaries of the

inclusions have regularity C® for some 0 < o < 1. Let pu = . We begin with

a
2(a+1)
proving interior Holder estimates on u. (see Theorem 5.1 in [15]).

Theorem A.1 (interior Holder estimates)
Let f € L%®(By) and h € CO*(B1)3. Assume that u. satisfies

L.ou. = f+ediv(b-h) in Bj.

There exists a constant C', which only depends on p, A, A and «, but which is indepen-
dent of € and of the distances between the inclusions, such that

lucllconm,) < Cllluellaay) + I1f (s + 1llcor(sy))- (A.2)

(S

The Theorem results from the three following Lemmas. The difference with [4] mainly
lies in the proof of the third Lemma, where the regularity hypotheses on the conduc-
tivity are determinant.

Lemma A.2 (One-step improvement) There exist 0 > 0 and 0 < g9 < 1, which only
depend on p,a, A and A, such that, if ue, f and h satisfy

L.u. = f+ediv(b:h) in B
7[31|u6|2 < 1
ey < €0
[Pllcon(myy < €0,
then, for 0 < e < &g,
][ us — (@)opl> < 67 (A.3)
By

Proof: Let u < p/ < 1. As the homogenized operator Lg is elliptic with constant
coefficients, solutions to —div(AVug) = 0 in B; are smooth. In particular, there exists
0 < 0 < 1 such that

][39 (uo — (W)oe)* < 6% ][Bl ug. (A.4)

We fix a value of 6 for which (A.4) holds. We prove (A.3) by contradiction: Assume
that there is a sequence Léj,ugj, Je;» he; which satisfies

Llue, = fo; +ejdiv(behe;) inBi,

with fBlugj <1 and lim || f, | oo (B,) = lim || Ag;[|co.u(p,) = lime; = 0, and such that

][ lue, — (@5 )og? > 6% (A.5)

By
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Extracting a subsequence, we find an operator Lg, limit of the operators ng in the
sense of homogenization, and a function ug € H&)C(Bl), such that

ue;, — wp weakly in L*(By),
ue; — wup weakly in H'(By).

As fe; + g;div(be, he;) converges to 0 strongly in H~1(By), we see that Lo(up) = 0 in
Bj. Taking limits in (A.5) we get
o < ][ luo — (@)oo < 62,
By

a contradiction. Hence, (A.3) holds for some gy > 0. ]

Lemma A.3 (Iteration)
Let 0 and o be as in Lemma A.2. Then, for all u. € L*(By),f € L*®(B1) and
h € CO*(By) which satisfy

L.ou. = f+ediv(b-h) in By,

and for all k > 1 such that E/Qk < ¢gg,

i

Proof: The proof is by induction on k. Lemma A.2 shows that (A.6) holds for k = 1.
Let

2 2
e — @osl? < 67 (][ w) el o) + llenegny) (A6)
k B1 E\0

[4

1/2 1 2
J = [<][ |Ua|2> + _(HfHLOO(Bl) + ||h||CO7“(Bl))] . (A?)
B €0

and, for k satisfying /0¥ < ¢y and x € By, let
we(w) = O fua(0h0) — (@) e
Then w, solves

L‘E/@k’w‘E = f5+%div(b5/9kﬁg),

where for x € By, fo(x) = J'0F@ 1 f(0Fz), and he(x) = J10*CWp(0Fz). One
easily checks that

Ifellemy < J7OCP | flpmimy < e,
hellcon(my < T |hllconis,y < eo.

By the induction hypothesis, we see that

][Bl“”*”“’)'z <1

Thus, we can apply lemma A.2: w. satisfies (A.3) which, expressed in terms of wu.,
yields (A.6). ]



Ben Hassen and Bonnetier, Asymptotics in a perturbed e—periodic composite 22

Lemma A.4 (Blow up)
Assume that ue € L*(By), f € L®(By) and h € C**(By) satisfy

L.ue = f +ediv(beh)  in By.

Then there exists a constant C, that only depends on p, \, A and the reqularity of the
dividing interfaces, such that

luclicon(p, ) < C(lluelleasy) + 1l sy) + [Bllcon(s)) - (A.8)

Proof: In view of (A.1), we need only prove that

_ 2
][B( )Iue—(ua)x,rl2 < O (|luell 2(syy + 1z (myy + Rllcown(sy)) ™ (A9)

for all 0 < r <1/4 and |z| < 1/2. We establish (A.9) for z = 0. By Lemma A.3, (A.9)
with @ = 0 holds for 7 > €/gq. For y € By, let

wa(y) = E_u(ug(f;‘y) - (U_E)O,Qa/ao)'
Applying (A.9) with r = 2¢ /e, shows that

g 2m

=’ ][ (e () — ()02 o0)? d
B25/80

2
”wEHLz(BQ/Eo) EO

-2 9
€ €21 12
— ()™

< OJ% (A.10)

with J as in (A.7), so that w is uniformly bounded in L?(Bjy).,). Moreover, w, solves
an equation where the operator and the domain (and in particular the number of
inclusions) are independent of ¢: indeed,

Liw. = f-+div(bihe) in By, (A.11)

with, for € By, fo(z) = €2 f(ex) and h(zx) = €2 #h(ex). We notice that

Al < grm o0 ,

||fa||L (Bajey) < 2_y||f||L (B1) (A12)
hellcon(p,,.) < € lhllcon(ay),

and that b(y)he (y) has regularity C%* on each of the inclusions elDy, | € Z?, contained

in By, and has the same regularity on their complementary in By, .

Therefore, we can apply the interior Holder gradient estimates (3.13) to we, to obtain

lwelleonisyg) < C (Ilwelzegmy.y) + 1fellzeBy) + lhellconis,.y)) -
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Thus, for all s < 1/gg, we have

2][ e () — (@)oo der = ][ e — (@)oo
BES BS

~ ~ 2
< O™ (e, ) + Ml + lhellconis,,.)) - (A13)

Setting r = se and combining this last identity with (A.12), (A.10) and (A.13), we
finally obtain

][ ue = (@)or* < O (luellpesy) + 1 llze(my) + Ihllcows,))?,

T

which is (A.9) at x = 0. By translation, this estimate remains true for all z € B ,.
The Lemma (and Theorem A.1) is proved. ]

Let x be the cell function defined in (3.4). To prove Theorem 3.4, we apply again the
three-steps method, this time to estimate the quantity

lue (@) = u:(0) = (z + ex(@/e)) (Vue)ooll L= (5,)-

Lemma A.5 (One-step improvement) There exist 0 < 0,e9 < 1 which only depends
on A\, A, p, o, such that, if ue, f and h satisfy

L.u. = f+ediv(b:h) in By,
with ||uc||poo gy < LIIfIIL(B1) <1 and ||hcon(p,) < 1 then, for 0 < e < e,

o jus(2) = ue(0) = (z + ex(w/e))(Vuc)op| < 72 (A.14)

Proof: Let u < p/ < 1. Recalling (3.8), let ug and fj satisfy
Lo’LLO = fo in Bl.

Classical regularity estimates [11] show that ug € CH#(£2). Thus, there exists 0 < 0 < 1,
which only depends on A and A, such that

‘Sl‘lpe luo(z) — ug(0) — z(Vuglog| < 072 (|luoll o (my) + I foll oo (3r))- (A-15)
x|<

Fixing this value of 6, we prove (A.14) by contradiction.

Suppose on the contrary that there is a sequence €; — 0 and sequences ng, (N
and he, such that

Llue, = fo; +e5div(behe;) inBi,
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and
”quHLOO(Bl) < 17
[fellze)y < 1,
[hellconmy <1,
and for which
sup [ue,(2) — u;(0) — (x + e5x(2/e;)) Ve, Jop| > 012 (A.16)

|x| <6

Passing to a subsequence (not renamed) and using Theorem A.1, we find an operator
Ly and functions ug € Hlloc(Bl) and fy € L°°(By), such that

fe; —  foweakly in L*°(By), ue; — ug uniformly in By,
ue; — wug weakly *in L*°(By), Vu., — Vugweakly in L?(By).

J
We also notice that e;div(be;he;) — 0 strongly in H~1(B1) so that Loug = fo in By.

Before passing to the limit in (A.16), we show that |(Vuc,)oe| is uniformly bounded
by a constant that only depends on . Indeed, let v € C§°(B(146)/2) satisfy 0 < v <1
and v =1 on By. We have

- 1
Ve, = |— Vi,
(Teosl = gy [, ¥
1 ) 1/2
< — V(u,.
~ |Bg|/? <\/Bg‘ (e, >
1 , 1/2
< 7|Be|1/2 </B1 |V (vue, )| > )
One easily checks that
/ IV (vue,)|* = Vugj-V(vzqu)—i-/ u? |Vol?
B B B1
<

2 2
fe,v U, —sj/ be;he; - V(v7ue,)
Bl Bl

—I—/ u? |Vol?
B

Therefore, given the uniform bounds on u.; and f;, we conclude that
|(Vue;)ool < C(0)
and
Tr . -
sup |e;x(—)(Vue;)ool < €;C(0) —0

|z| <6 €j

Returning to (A.16), and passing to the limit ¢; — 0 yields

o < \Sl\lpg|“0($)—uo(0) — 2(Vug)oe| < 611#/2
x|<

which contradicts the fact that 6 < 1. [ ]
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Lemma A.6 (Iteration)
Let 0 and ¢¢ be as in Lemma A.5. Suppose that u. € L*(By), f € L*°(B;) and
h € CO"(By) satisfy

L.ou. = f+ediv(b:h) in By.
Then for all k > 1 with E/Hk < €9, there emist aj, € R and B € R? such that

laz] < C1(lucllpoe(myy + I f ooy + Ihllcon(sy)) (A.17)
k
Bil < Co(1+ > 07") (lucllpoo(my) + I f ooy + IBllcowsmyy) » (A18)
j=1
and such that

\Sfi%’k |ue () — ue(0) — eay, — [ + ex(z/e)] By

< 0O (|lu || oo )y + | fll oo (8y) + [hllcow(py)) - (A.19)
Here C7 and Cy are generic constants, which only depend on 0,eg, A, A.

Proof: We set

Jo= (luellzee(my) + 1flle(my) + 1hllcon(sy)) - (A.20)

The proof is by induction on k. By lemma A.5, estimate (A.19) holds for £ = 1, with
af =0 and B} = (Vue)o .

Suppose that (A.19) holds for some k such that /0% < &g. For |z| < 1 let
we(z) = o F+/2) 51 (ug(ﬂkm) — ue(0) — eas, — [0z + Ex(Qka;/E)]B,§> .

This function solves

L.jprwe = f5—|—%div(b€/6kﬁ5) in B(0,1),

where for = € By, fg(:r) = Hk(l_“/Q)J_lf(Hkx) and he(z) = 0FQ=#/2) J=1p(9kz). One
easily sees that [|fz|p~(p,) < 1 and [|hefconp,) < 1. By the induction hypothe-
ses (A.19), [lwe|lr(B,) < 1, so that applying Lemma A.5 to w., we get

ISlllpé’ |we () — we(0) — [z + E/GkX(ka/s)](v—%)Om < gltn/2,

Rewriting this inequality in terms of u., we obtain

sup [ue(0"2) — uc(0) + ex(0) B — [0%2 + ex(6"2/2) | (B + J0%/*(Vw.)op)
|x|<6

< JeUFDa+R/2) (A.21)
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If we set aj ., = —x(0)B;,, B;,, = B}, + JOFH2(Vw, ) 9, substitute these expressions
in (A.21), and make the change of variables #*z — z, we obtain (A.19) with k + 1
instead of k. Moreover, as in the proof of Lemma (A.5)

|(vw€)0,9| < Ca

where C' depends on ¢ but not on ¢, k, and given the initial choice of af and Bf, it
is easy to check that the sequences {ai} and {Bj}} satisfy the estimates (A.17) and
(A.18). Lemma A.6 is thus proved. ]

Proof of Theorem 3.4:
Let k € N be such that /0% < ¢y < ¢/6*t! . By lemma A.6 and recalling (A.20),

sup |ue(z) — ue(0) — ea§, — (x4 ex(z/e))B| < o+
|z|<e/eo

Invoking the estimates (A.17) and (A.18) and rescaling the above inequality, we get

R Ok (1+1/2)
M‘ < a§ — [z + x(2)|Bi| + co———J < CJ.

sup | S <

|z|<1/eo €

For |z| < 1/e, the function

satisfies
Liv. = f.(z)+div(bi(y)h.) in By,

where f.(z) = ef(ex) and h.(z) = eh(cx), x € By, and

[vellzoe B,y < CJs
||fa||Loo(Bl/50) < el
[ellcon(p,,.,) < €.

In the above equation, neither the operator nor the domain depend on . Also we re-
mark again that the function biAL6 has regularity C%* on each of the inclusions contained
in By, and on the complementary of the inclusions in By /.. We can therefore apply
the interior gradient estimate (3.14) to v, to obtain

IVvellzoo (). < € (HUEHLOO(BUEO) + ||f€||L°°(Bl/EO) + ||ils||00»u(31/50)) ,
which shows that
HVUSHLOO(BE/QEO) S OJ

The same estimate can be established in B(z,e/2¢g) for any z € By,. The proof of
theorem 3.4 follows by combining this estimate with (A.2). ]



Ben Hassen and Bonnetier, Asymptotics in a perturbed e—periodic composite 27

A.2 Proof of Lemma 3.5

Error estimates in L? between u. and ug are well-known for Dirichlet problems. For
Neumann boundary conditions, S. Moskow and M. Vogelius [20] derived 2D estimates,
using the fact that the harmonic conjugate of the potential satisfies Dirichlet boundary
conditions. Our proof does not use this property, although we follow the structure of
S. Moskow and M. Vogelius’ argument.

step 1: We transform the equation into a first order system

asVus, —v, = 0
—div(ve) = 0.

and seek an asymptotic expansion for both u. and v.. Such an expansion is given
explicitely in 3D, in [6], pp. 58-65. Recalling the notations of Section 3.1, one easily
checks that the first term in the expansion of u. must be the potential ug of (3.8) and
that

—divyvo = 0
a(y)Vyur + a(y)Vyug —vg = 0 (A.22)
—divyv; — divgvg = 0.

Denoting by ep,1 < p < 3 the canonical basis of R3, we set

auo
ui(r,y) = —Xa(y)aTj
and we define functions X, € H#(Y)?’ by
curly (a_l(y)curly(ip)) = curly(a_l(y)ep)
divy (%) = 0 (A.23)
7[Y>~<P = 0.

These functions are related to the usual correctors x; defined in (3.4) by
a Ny)(I —curl,y) = (I—V,x)A,

where curl, ¥ and V,x denote the matrices the columns of which are the vectors curly x,
and Vx; respectively (see [6]). In particular, according to Theorem 3.2, the above
relation shows that, under our hypothesis on the conductivity, ¥ € W1>(Y)3. It
also shows that y(z/e) has a trace on 02, which is uniformly bounded in L>°(0%2).
Following [6], we set

vo(z,y) = pla) — curly(Xp(y)) pp()
= (I —curlyx)AVug(x) (A.24)
vi(z,y) = —curly(Xp(y)p(@))-

which satisfy (A.22) (note that p(z) = ][ vo(x,y)dy = AVuy(z)).
Y
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We then form
ze(2) = ue(w) —uo(x) — eur(w,z/¢)
Ne(z) = ac(2)Vue(z) — vo(z,z/e) — vi(z, z/e)

and note that 2. and 7. are uniformly bounded in H(2) and L?(2) respectively. Since
up, u1, v and vy satisfy (A.22), the proof of Proposition 1 in [19] shows that

div(ns) = 0 inQ (A.25)
l|ac(®)Vze = nellr2) < Celluol|m2(0)- (A.26)
As in [20], we introduce a boundary corrector defined by

{—div(QSVBg) = 0 inQ

a-(z)VB.-v = e 'n.-v on Q. (A.27)

We note that as 1. € L?(2) and div(n.) = 0, the normal trace 7. - v is well defined
in H-12(00).

We normalize B, by requiring that /
Q

/ eB:dx
Q

step 2: It is easy to see that Proposition 1 in [20] also holds in 3D, which states that

eB.do = /zeda = /z—:ulda so that
Q Q

< Celluollgi(a)- (A.28)

lue(z) —uo(z) —eur(z,2/e) —eBe(2)l[lmr () < Celluollpz).  (A29)

step 3: The regularity of ug, the boundedness of x, and the definition of 7. show that

10 - vlizzeo) < Clluollm2o)- (A.30)

We next show an estimate on [|n. - v|[g-19q). Let ¢ € H1(09) and consider the
boundary value problem

—div(AVv) = 0 inQ
{ v = ¢ on 0. (A.31)
From the definition of 7. and from (A.24), it follows that
/ Ne-vodo = / Ne - Vv (A.32)
oN Q
= / asVug - Vv —/(Uo +ev1) - Vv
Q Q

3
= /Q(agVu\€ — AVug) - Vo + /Q;::lcurly(ip)(m/s)pp(m) -V
—l—z—:/ﬂcurlz(ip)(aj,a}/e) - Vo

3
= E/Q;::lcurlz(ip(x/e))pp(m)-Vv—i—E/ curl, (xp)(z,x/¢€) - Vo

Q
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Integrating by parts, we obtain

3

/m Ne vodo = sz:; x(z/e) - (Vpp(z) x Vo(zx))

3

/anz: X(xz/e) x v) - pp(x)Vu(z) do

=1

/8 (ipla/Elpula) x ) Tola) do

3

8 [ Y o(a/2) - (Topla) x V(o))

p=1

/anE: X(z/e) - pp(x)(v x Vo(zx)) do

=1

2
w

_/8 To(@/e)pp(x) - (v x Vo(a)) da}.

We remark that |[Vvl|r2q) < Cl[¢[|g1s0) and that v x Vv only involves tangential
derivatives of v, hence v x Vv € L?(9€Q) and ||v x Vv||L2(aQ) < Cl|9[lg1(a0)- Since
X(x/¢e) is bounded in L*°(0%2) and since p(x) = AVug(z) is regular, it follows that

/mna'wda < Celfuol| 2oy 16l 11 o

in other words, 7. - V)90 € H™1(99) and
17 - vllm-1(00) < Celluol|mz(e)- (A.33)
By interpolation ([17], Theorem 12.3), we obtain from (A.30,A.33)
1a:V(EBe) - Vlg-120) = e vilg-1ep0) < CeY||uolli2q), (A.34)
and thus from standard elliptic theory we get

leBellm) < Ce’?uollgz(o)- (A.35)

step 4: Let h € L%(Q), with fQ h =0, and let w. denote the solution to

—div(a:Vw:) = h inQ
asVwe - v = 0 on0f.

We define the first terms in the expansion of w, by wg, w; and C. analogously to ug, uq
and B.. Similarly to (A.29), they satisfy

||we(z) — wo(x) — ewy(z,x/e) — eCe(@)||m(a) < Cellwollmz)
< Cellilla).  (A.36)
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From (A.35), we have
/ eB:h
Q

We split the first term in the above right hand side in three parts:

I, = /a€V(€BE)-Vw0 = /ne-Vwo,
Q Q

has the same form as the right hand side of (A.32). Proceeding as in step 3, we see
that this term can be rewritten as

<

/ a:V(eB;) - V(wy + cwy 4+ eCx)
Q

+ C32|Juo|| 2 l[wol | 2 (- (A.37)

/ ZX (x/e) - (Vpp(x) x Vwg) — / x(z/e) x v) - pp(x)Vwy do

- /8 (pla) %) Vo da}

and thus, as x(z/e) is uniformly bounded in L*>(0%2), as p = AVug and Vwy have at
least regularity H'(Q) and H'/2(9Q), it follows that

L] < Celluoll gz llwoll g2 (0)- (A.38)

For the second term

|I] = / a:V(eB:) - V(ewy)| = a:V(eB:) - vew; do
Q l9)
8w0
< ¢lla:V(eBe) - V||H—1/2(aQ) ||Xj($/€)%||ﬂl/2(aﬂ)'
As xj € WHe(Y)nClh#(Y),1 < j < 3, one easily checks that ||X](:L‘/€) ||L2(39)

0
and €||x;(z/ 5)%” H1(90) are uniformly bounded. By interpolation, it follows that
T

||XJ($/5) ||H1/2 o) = Ce /2,

so that, using (A.34), we obtain
I < Celluollg2(a)llwollm2 (@) (A.39)

Finally, the third term is easily controlled using (A.35) and its equivalent for C.

I3 =

/ a:V(eB:) - V(eCs)
Q

ClleBe|l g l1eCell m1(a)
Celluol| 2 (o)l lwol| g2 (q)- (A.40)

IN A
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We thus conclude from (A.37-A.40) that
‘ / eB:h
Q

leBellrzi) < Celluol| g2 (q)- (A.41)

< Celluollg2 @)l I/l L2

and thus

step 5: Finally, the uniform boundedness of ||u1(z, z/¢)|[12(q), (A.29) and (A.41) yield

ue(x) —uo(@)|lr20) < ue(®) —uo(x) — ur(x,x/e) — eBe(2)]| g (o)
+ ellur(z,2/e)||12(0) + |leBe(2)|l 120
Celluol| zr2(02)-

IA

A.3 Proof of Theorem 3.6

Let x and ® be the first and the second-order matrix of correctors, solutions of the cell
problems (3.4) and (3.5)-(3.6) respectively.
Consider the auxiliary function

Ze = ue — ug — ex(x/e) - Vug — 2®(x/e) : V2uy. (A.42)
Applying L. to z., we obtain (with x.(xz) = x(x/¢) and ®.(x) = ®(x/¢))
L.z. = div((a.d — A)Vug) + ediv(a.V(x:Vug)) + e2div(a.V(®.V>uq))
= div ((a:(I + Vyx) — A)Vug) + ediv(asx:V3up)
+ediv(a:V,®V2ug) + e2div(a:P-V3up)
= (a(I + Vyx) — A)V2ug + eax-V3ug + divy(ax) Vug
+divy (aVy®)V2ug + £aV, ®V3ug + £2div(a-P-V3up)
Since ® is the solution of (3.5)-(3.6) and / B(y)dy = A(y), we get

Y
L.z = ¢e|F:+ediv(b-H;)]

with

F.(x) = a(z/e)x(z/e)V3uo(x) + a(x/e)V,® (/) V3 up(z)

S
—
<
N—
I
S
—~
<
o
—~
<
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Noting that ® has regularity C* in Dy and in Y \ Dy by (3.5) and (3.13), we can
apply theorem 3.4: for a suitable constant C'

I Fell oo () + 1 Hellcom@y < C.
The interior gradient estimates (3.15) applied to z. and lemma 3.5 show then that
lzellzoo @) + IVZello@w) < (llzellz2@) + Ce).
Since by hypothesis [[us — ugl|r2(q) < Ce?, we conclude that

luc(x) — ug(x)| + |Vue(x) — (I + Vyx(z/e))Vup(z)] < Ce7 ae zecw.

A.4 Proof of Theorem 3.7

Proof: From the results of section 2, we see that G. is Holder continuous away from
its singular point and that there exist a constant C that only depends on A such that

1G( W)z < €, forye,

since L2(Q) C L*» () when n = 3.
n—2

Let wi,wy be smooth domains such that w CC w; CC wy CC N and let y € Q \ wo.
Let
oc = sup{|Ge(z,y) — Go(z,y)| : v €1}

= |Ge(ze,y) — Golz2,y)|.

As L.G.(.,y) = 0 in wy, theorem 3.4 shows that there is a positive constant C' inde-
pendent of € and ¥, such that

IVG( )l @a) + VGO 9)llzewyy < C
Setting p = min (0./2C, dist(w1,w2)), we see that
|Ge(x,y) — Go(z,y)| > 0./2, forx e By(x:)Nwr. (A.43)

In particular, G.(.,y) — Go(.,vy) keeps a constant sign in B,(z.). Let f € C5°(B,(z.))
such that 0 < f <1 and such that f =1 on B,/5(zc). We consider the solutions w
and wy, vanishing on 9€) of

Low.=f and Lowy=f in Q.

Theorem 2.3 in [1] gives us an interior L? estimate for the convergence rate of we to
wy: for some constant C' independent of

HwE—wOHLz(M) < Ce.
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Applying Theorem 3.6, we see that

[we —wollpoe@w,) < Ce. (A.44)

Thus we obtain for z € B, s(7:) Nw1

Ce > |we() - wole)] = /B L Gel9) oI ) o

> / 2dy.
B, ja(we)Nw1 2

As the Lebesgue measure of B, /9(z¢) Nw; is proportional to p3, we conclude from its
definition that o. = O(g!/*) and that

1G=(y) = Go(, YL (wy) < Cet/*,

Moreover, as this estimate also holds in L?(w;) , another application of Theorem 3.6
yields (3.20, 3.21). [
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