
ASYMPTOTIC FORMULAS FOR THE VOLTAGE POTENTIAL IN ACOMPOSITE MEDIUM CONTAINING CLOSE OR TOUCHINGDISKS OF SMALL DIAMETERM. F. BEN HASSEN � AND E. BONNETIER yAbstrat. We derive an expansion of the voltage potential in a omposite medium, made ofirular onduting inlusions of small diameter " embedded in a homogeneous matrix phase, whenthe inhomogeneities are strongly interating, i.e., when they are very lose or even touhing. Theasymptotis of the voltage potential depend on the position of the inlusions and on the ontrast be-tween the inlusions and matrix ondutivities via a polarization tensor. We are espeially interestedin determining an analytial expression of this tensor, in order to study how the terms in the expan-sion depend on the inter-inlusion distane, the inlusion size, and the ondutivity ontrast. Wepresent numerial tests that ompare the true voltage potential to our asymptoti formula when theinlusions are treated as a single inhomogeneity, and to the asymptoti formula when the inlusionsare well-separated.Key words. Asymptoti expansions, polarization tensor, onformal mappingAMS subjet lassi�ations. 35J25, 74E301. Introdution. Let 
 be a a bounded smooth domain of R2 whih representsa omposite medium,made of onduting inlusions embedded in a onduting matrixphase. The voltage potential in 
, denoted by u", is the solution to8<: div("(x)ru") = 0 in 
" �u"�� =�
 = g :(1.1)For simpliity, the matrix phase is assumed to be homogeneous and "(x) = 1 in thisphase. The jth inlusion, of onstant ondutivity " = kj, has the form!j" = "Bj + zj ;(1.2)where Bj is a bounded smooth domain of R2 that ontains the origin. We assumethat the enters of the inlusions zj are far from the boundary, i.e, that dist(!j" ; �
) >d0 >> " for some d0 > 0. The applied boundary urrent g satis�es Z�
 g d�x = 0,and � denotes the unit outward normal to �
.When the number of inlusions is relatively small, u" is lose to the solution u tothe homogeneous PDE 8<: �u = 0 in 
�u�� =�
 = g :(1.3)To guarantee the uniqueness of the solutions to the problems (1.1) and (1.3), wehoose the potentials u" and u suh that Z�
 u" d�x = Z�
 u d�x = 0.�LAMSIN, Eole Nationale d'Ing�enieurs de Tunis, BP 37, 1002 Tunis le Belv�ed�ere, Tunisie,(fahmi.benhassen�enit.rnu.tn).yLaboratoire de Mod�elisation et Calul, LMC{IMAG, Universit�e Joseph Fourier, BP 53, 38041Grenoble edex 9, Frane, (Eri.Bonnetier�imag.fr).1



2 M. F. BEN HASSEN AND E. BONNETIERAn asymptoti expansion of u", when the inhomogeneities are assumed to be well-separated from eah other and well-separated from the boundary, has been derivedby D.J. Fengya, S. Moskow and M. Vogelius [12℄. In this ase, the inlusions are notstrongly interating and the expansion takes the formu"(z) � u(z) + 2 Z�
 (u"(x)� u(x)) �G��x (x; z) d�x= 2"2 mXj=1 1� kjkj rxG(zj ; z) �Ajrxu(zj) +O("5=2); z 2 �
 ;(1.4)where G is the fundamental solution of the Laplaian in 2-D, m is the number of�bers. The polarization matrix Aj is a symmetri matrix assoiated with the j-thinlusion. It only depends on the shape and on the ondutivity of the inlusion, andan be omputed from the orretions to the voltage potential at in�nity reated bythe resaled j-th inlusion embedded in an in�nite matrix phase.This asymptoti formula is the basis of an eÆient algorithm for ondutivityimperfetion identi�ation [5, 12, 13, 3℄ and has been generalized to elastiity and tothe Maxwell system [4, 21, 1℄.When the inlusions are dispersed, well-separated and when their shape is regular,their e�et on the potential u" annot be too drasti: it is a pieewise smooth funtion,its gradient bounded. Suh a piture ould deteriorate when some inlusions areallowed to get lose, forming narrow hannels where urrents ould onentrate. Thepotential is still a pieewise smooth funtion (it globally has a C1;� regularity), butthe values of its gradient ould be muh larger [18, 6℄. These high gradients arethe soure of great diÆulties in the numerial determination of the potential. Anaurate omputation of harge densities would require millions of Fourier oeÆientsin a multipole expansion, as noted by H. Cheng and L. Greengard [11℄, who proposea hybrid numerial method whih ombines multipole expansions and the method ofimages. The same situation arises in elastiity where nearly touhing inlusions ouldreate zones of large stresses whih ould potentially lead to frature. Thus, it ouldbe interesting to develop algorithms that detet lusters of inlusions from boundarymeasurements, whih ould be used to ontrol the fabriation of ertain omposites.The goal of this work is to study a model situation when 2 irular inlusions, ofdiameter " and at a distane Æ" from eah other, are interating. We investigate howthe asymptoti formula (1.4) is modi�ed. We are espeially interested in the resultingpolarization tensor. In our partiular geometry the solution to the auxiliary PDE,from whih the tensor is omputed, an be represented as a series [8, 18℄ (see also [16℄where the so{alled Added Mass tensor is omputed as a series for two touhingdisks). In a reent work, H. Ammari, H. Kang, E. Kim and M. Lim [2℄ derived anasymptoti expansion for the voltage potential when Lipshitz inlusions are loselyspaed and showed that the polarization tensor of suh luster ould be representedby an equivalent ellipse. In this analysis, however, inlusions are not allowed to touh.In the partiular ase of disks, these authors used multiple reetions to derive a seriesrepresentation of the polarization tensors.In the ases of lose or touhing disks, we are able to analyze in a preise man-ner the inuene of the di�erent parameters : distane between inlusions, ontrastbetween the ondutivities of the inlusions and the homogeneous medium. In parti-ular, the series that de�ne the polarization tensor formally beomes singular as Æ ! 0.Using asymptotis of singular integrals [9, 10℄, we show however that the series anbe expanded and onverges to the polarization tensor of two touhing inlusions (as it



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 3should). The expression of these series is similar to the expression of the gradient ofthe potential at the midpoint between the inlusions. Thus, we use the same kind ofasymptotis to study how the gradient of the potential blows up with the ondutivityontrast as the inlusions get nearer. We also show numerial tests onerning theauray of our asymptoti expansion that treats the 2 inlusions as a single inhomo-geneity. In partiular we investigate when the true solution u" is better approximatedby our expansion, than by the expansion (1.4), when the inlusions are onsidered tobe well-separated.The paper is organized as follows: In Setion 2, we ompute the polarizationtensors orresponding to two nearly touhing and two touhing disks. Setion 3 isdevoted to showing the asymptoti expansion of the potential u" in our partiulargeometry. The argument losely follows [12℄. Setion 4 presents the asymptotis ofthe series that de�ne the polarization tensor and the potential gradient when Æ ! 0.Finally, in Setion 5 we present numerial results about the auray of our asymptotiexpansion.2. Computation of the polarization tensor. We onsider two ondutingdisks B1; B2 of radius 1, embedded in an in�nite matrix phase. The ondutivity ofthis medium is (x) = 1 in the matrix phase and (x) = k 6= 1 in the inlusions. Letw denote the solution to div((x)rw) = 0 in R2;(2.1)whih satis�es the far-�eld boundary onditions8>>>><>>>>: w(x1; x2) � 2Xj=1 jxj; as jxj = j(x1; x2)j ! 1;w(x1; x2)� 2Xi=1 jxj ! 0; as jxj ! 1:(2.2)Equivalently, w an be writtenw(x1; x2) = 2Xj=1 j(xj + '(j)(x1; x2));(2.3)where the funtions '(j) an be shown to deay at in�nity as'(j)(x) = � 12� 2Xl=1 mjl xljxj2 +O� 1jxj2� ; as jxj ! 1:(2.4)The matrixM = (mjl) is alled the polarization tensor or the P�olya-Szego matrix [20℄.Expliit formulas for M have been established in partiular geometries (a avity, asingle rigid irular or elliptial inlusion) [19℄.The funtion w may also be viewed as the x3{omponent of the displaement inthe transverse shear loading of an in�nite elasti matrix that ontains two ylindrialinlusions Fj, with axes parallel to x3. The onstants j in (2.2) then orrespondto a onstant stress{�eld applied at in�nity j = �xjx3 ; j = 1; 2. Beause of thisinterpretation of the PDE (2.1) we sometimes refer to the inlusions as `�bers'.



4 M. F. BEN HASSEN AND E. BONNETIER2.1. The ase of two lose inlusions . We onsider the geometry illustratedin Figure (a). It onsists of two irular inlusions, entered at (�1(Æ + 1); 0), Æ > 0,of radii 1 and ondutivity k. In order to simplify the omputations, we restritourselves to the ase when 1 6= 0 and 2 = 0 at in�nity (i.e. �x1z = �0 and �x2z = 0 inthe plane shear problem), i.e., we only present the alulation of the �rst line of thepolarization tensor MÆ. The remaining oeÆients an be omputed in an analogousfashion.To evaluate the matrix MÆ , we introdue the omplex-valued funtion f(z), z =x1 + ix2, suh that w = 1Ref:(2.5)This funtion is analyti in the matrix and in the �bers, and satis�esf � z; when jzj ! 1:(2.6)The symmetries of the geometry and the uniqueness of w impose thatw(x1; x2) = �w(�x1;�x2) = w(x1;�x2);from whih it follows that w(0; x2) = �w�x2 (x1; 0) = 0 and Imf(0) = 0, henef(z) = �f(�z) = f (z):(2.7)Let fM and fF denote the values of f in the matrix and in the right-hand �ber B1,respetively. Aording to the interfae onditions, Ref and the onormal derivative(z) ��� (Ref) are ontinuous aross �B1. Due to the Cauhy Riemann equations, thejump onditions satis�ed by w aross �B1 imply that Ref and (Z) ��� (Imf) areontinuous aross �B1, where �=�� denotes the tangential derivative. We then haveRe fM + iIm fM = Re fF + ikImfF ; along �B1;(2.8)where i2 = �1.Let us onsider the onformal mapping � = z � az + a , where a = pÆ(2 + Æ), whih
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δsends the right-hand �ber into the interior of a irle C1, entered at � = 0 and ofradius � = a� Æa+ Æ , the left-hand �ber into the exterior of a irle C2, entered at � = 0



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 5and of radius 1=�, while the matrix phase is transformed into the annulus of radii� < j�j < ��1, bounded by the irles C1 and C2 [8℄. Therefore we an writefM = z + gM (�) = a1 + �1� � + gM (�);(2.9)where gM is an analyti funtion in the annulus. Using the Cauhy integral formula,gM an be deomposed asgM (�) = g1(�) + g2(�); � < j�j < ��1;where g1(�) = 12i� ZC2 gM(�)� � � d� for j�j < ��1andg2(�) = � 12i� ZC1 gM (�)� � � d� for� < j�j:Using the symmetry properties (2.7), we havegM (�) = gM (�) = �gM (1=�);hene, g1(�) = g1(�), g2(�) = g2(�) and g1(�) = �g2(1=�). Identity (2.9) beomesfM (�) = a1 + �1� � + g1(�) + g2(�)= a1 + �1� � + g1(�) � g1(1=�);(2.10)where g1(�) is analyti for j�j < ��1.In order to ompute the oeÆients of the tensor MÆ, we seek an expansion offM (�) as a power series of �. To this end, the following Lemma gives us a represen-tation of the analyti funtion g1 in the ball B(0; ��1).Lemma 1. [8℄ The funtion g1 has the following expansiong1(�) = g1(0) +Xn�1 bn�n when j�j � ��1(2.11)where bn = 2a�2n �� � �2n��1 and � = (k + 1)=(k � 1).We obtain then the form of MÆ :Proposition 1. The polarization tensor MÆ of two unit disks entered at (�(Æ+1); 0), Æ > 0, is given byMÆ = 0�16a2�Xn�1n �2n�+ (�1)j�2n Æjl1A1�j;l�2 ;(2.12)where � = (k + 1)=(k � 1) depends on the ontrast, a =pÆ(2 + Æ) and � = a� Æa+ Æ .



6 M. F. BEN HASSEN AND E. BONNETIERProof : Using equation (2.11) and hanging the variables bak to the z-plane, we getgM (�) =Xn�1 bn�n �Xn�1 bn�n=Xn�1 bn nXp=0Cpn(2a)p� (�1)p(z + a)p � 1(z � a)p�!= 0�Xn�1nbn1A 2a� �2zz2 � a2�+Xn�2 bn nXp=2Cpn(2a)p� (�1)p(z + a)p � 1(z � a)p�!Aording to the d'Alembert riterion, the series Pnbn onverges absolutely whenj�j < 1. We next prove thatXn�2 bn nXp=2Cpn(2a)p� (�1)p(z + a)p � 1(z � a)p�! = O( 1z2 ):(2.13)As Cp+2n = n(n�1)(p+2)(p+1)Cpn�2, we get with q = p� 2 ,Xn�2 bn nXp=2Cpn(2a)p (�1)p(z + a)p! =Xn�2 bn n�2Xq=0 Cq+2n (2a)q+2 (�1)q(z + a)q+2!=Xn�2 bn n�2Xq=0 n(n� 1)(q + 2)(q + 1)Cqn�2(2a)q+2 (�1)q(z + a)q+2!Hene, ������Xn�2 bn nXp=2Cpn(2a)p (�1)p(z + a)p!������ � 2a2jz + aj2 Xn�2n2bn ����1� 2az + a ����n�2� 2a2jz + aj2 Xn�2n2bn ����z � az + a ����n�2 :When jzj is large enough, ����z � az + a ���� < 1=� and the series above is bounded by the seriesXn�2n2bn��n+2 � 2�a Xn�2n2�n+2;whih onverges when j�j < 1. Thus, Xn�2 bn nXp=2Cpn(2a)p (�1)p(z + a)p! = O( 1z2 ) asz !1. Similarly, we an show thatXn�2 bn nXp=2Cpn(2a)p 1(z � a)p! = O( 1z2 ), whihproves (2.13). In onlusion,f(z) = z � gM (�) = z � 4a0�Xn�1nbn1A 1z + O( 1z2 ):



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 7We dedue that '(1)(x1; x2) = Ref(z)�x1 = � 12�P2j=1m1j xjjxj2 +O� 1jxj2�, fromwhih we obtain m11 and m12. The other omponents of the polarization tensor Man be omputed in a similar fashion. The result ismjl = 16a2�Xn�1n �2n�+ (�1)j�2n Æjl j; l = 1; 2;Remark 1. These omputations an be generalized to the ase of two inlusionsB1 and B2, with radii R1 � R2, entered on the x1{axis, and at a distane 2Æ apart.We assume that the ondutivity of the matrix phase is k0, the ondutivities of theinlusions are k1 and k2, and that the origin lies inside the right{hand inlusion B1,we use the following onformal mapping to transform �B1 and �B2 into two onentriirles. The mapping has the form z ! � = aza+z where a = R2E and E is de�ned byE = p(� � 1)2 � 2�2(�2 + 1) + �4(� + 1)2� ;with � = 1 + 2ÆR1+R2 ; � = R1R2 . The boundaries of B1 and B2 are mapped onto theirles entered at 0 of radii r1 = R2EpE2+4�2�E22� and r2 = R2EpE2+4+E22 .The omputation of the polarization tensor follows the same lines as above. One�nds (see [14℄) mij = 2�a2k0 1Xn=�1nan(i)n Æij :The oeÆients n are given by(i)n = D4(D1anr�2n1 + (�1)(i+1)D3a�n)Ln if n > 0(i)n = �D3(D2anr�2n2 + (�1)(i+1)D4a�n)L�n if n < 0with Ln = (D1D2r2n2 r�2n1 �D3D4)�1, D1 = k1 + k0, D2 = k2 + k0, D3 = k1 � k0and D4 = k2 � k0.2.2. The ase of two touhing inlusions . This ase deserves speial treat-ment as the series appearing in (2.12) diverges when Æ = 0 (i.e � = 1).The polarization tensor is again de�ned via the solution w to (2.1), where Bj ,j = 1; 2, now denote two irular inlusions of radius 1 with enters (�1; 0). Theondutivity (x) is equal to k 6= 1 inside Bj , and to 1 in the outside matrix phase.Again, we only detail the alulation when 1 6= 0 and 2 = 0, in whih ase w hasthe following asymptoti behavior :w(x1; x2) = x1 + '(1)(x1; x2); kxk !1;(2.14)with '(1)(x)! 0 at in�nity.A generi representation of solutions to suh problems an be obtained as follows(see [18℄). By symmetry,w is even with respet to the x2{axis and odd with respet tothe x1{axis. Setting z = x1+ix2, the onformal mapping z ! � = 1=z transforms theomplex plane ontaining the two unit irles entered at �1 onto the omplex plane



8 M. F. BEN HASSEN AND E. BONNETIERwith the vertial lines Re� = �1=2 and Re� = 1=2. The interior of the right-handirle is mapped onto Re� > 1=2 and that of the left one to Re� < �1=2, while theexterior of the �bers is mapped onto the layer �1=2 < Re� < 1=2.Let � be an odd funtion of �, analyti in C n 0, whih satis�es also :�(�) = �(�)(2.15) j�(�)j � C�jRe�j; 1=2 < jRe�j;(2.16)for some 0 < � < j�j. We de�ne�(�) = � 2k + 1 1Xn=0��n�(n� �); if Re� < �1=2�(�) = �(�) + 1Xn=1��n (�(n+ �)� �(n� �)) ; if � 1=2 < Re� < 1=2�(�) = 2k + 1 1Xn=0��n�(n+ �); if 1=2 < Re�:(2.17)Proposition 2. The funtion w(x1; x2) = Re�(1=z) solvesdiv((x)rw) = 0:(2.18)This funtion is even with respet to the x2-axis and odd with respet to the x1{axis.We hoose �(�) = 1=� in Proposition 2, whih satis�es hypotheses (2.15) and(2.16) for � = 1. We next show that this hoie guarantees that the orresponding wgrows linearly as z !1. Indeed, in the layer �1=2 < Re� < 1=2, we have�(�) = 1� + 1Xn=1��n� 1n+ � � 1n � ��= 1� + 1Xn=1��n�2�n2 11� (�=n)2= 1� � 2� 1Xn=1 1n2�n  1Xp=0( �n )2p!= z � 2 1Xn=1 1n2�n! 1z � 2 1Xn=1 1n4�n 1Xp=0 1(nz)2p! 1z3When jzj is suÆiently large, the series 1Xn=1 1n4�n 1Xp=0 1(nz)2p = Xn�1 1n2�n z2(nz)2 � 1onverges and is bounded by Xn�1 1n2�n . Therefore,�(�) = z � 2 1Xn=1 1n2�n! 1z + O(1=z3):



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 9Hene it follows that'(1)(x1; x2) = Re �2 1Xn=1 1n2�n! 1z + O(1=z3)!= � 12� 2Xj=1m1j xjjxj2 + O(1=jxj2);and the oeÆients m1j of the �rst line of the polarization tensor M0 prove to bem11 = 4� 1Xn=1 1�nn2 and m12 = 0:The remaining oeÆients of the polarization tensor are determined by seekingsolutions to (2.1) whih are odd with respet to the x2{axis, and the adequate hoieof � yields w(x1; x2) = Re(�i=� + 1Xn=1(�1)n��n� in� � � in+ ��);whih grows linearly as z !1. It follows thatm22 = �4� 1Xn=1 (�1)nn2�n and m21 = 0:We have thus proved the followingProposition 3. The polarization tensor M0 of two touhing inlusions enteredat the points (�1; 0) is given byM0;ij = (�1)(j+1)4� 1Xn=1 (�1)(j+1)n�nn2 :(2.19)3. Derivation of the asymptoti formula. This Setion follows losely thework of D.G. Fengya, S. Moskow and M. Vogelius. Merely, we show that the proof [12℄still holds when two lose �bers are onsidered a single inhomogeneity.When the inlusions are not degenerate (i.e. their ondutivity is kj > 0; kj 6= 1)the �rst term in the expansion of u" is the bakground potential u, solution to thehomogeneous problem (1.3). In fat, u" onverges strongly in H1(
) to u when "tends to 0. This is a onsequene of the following estimate of the H1(
) norm ofu" � u:Lemma 2. [12℄ There exists a onstant C, independent of ", suh thatZ
 �jr(u� u")j2 + ju� u"j2� dx � C"2:Heneforth, we fous on our partiular geometry, i.e., that of two inlusions ofthe form !j" = "RB + zj ; j = 1; 2;(3.1)



10 M. F. BEN HASSEN AND E. BONNETIERwhere B is the unit ball entered at the origin, R a dilatation parameter, and wherethe points zj are the enters of the touhing or lose disks. Without loss of generality,we assume that R = 1 and zj = ((�1)j"(Æ + 1); 0), Æ � 0 small. Let us onsider thesets ~
" = fx=" : x 2 
gand ~! = fx=" : x 2 !"gdedued from 
 and from !" = !1" [ !2" by the resaling y = x=". Let �y be theoutward unit normal to both � ~
" and �~!. We introdue the solutions v and v" to thetwo following PDE's:8>>>>>>>>>>>><>>>>>>>>>>>>: �yv = 0 in ~! �yv = 0 in R2n~!v is ontinuous aross �~!�v+��y � k�v���y = (k � 1)rxu(0) � �y on �~!v = � 12�rxu(0) �M yjyj2 + O( 1jyj2 ) when jyj ! 1(3.2)and 8>>>>>>>>>>>><>>>>>>>>>>>>: �yv" = 0 in ~! �yv" = 0 in ~
"n~!v" is ontinuous aross �~!�v+"��y � k�v�"��y = (k � 1)rxu(0) � �y on �~!�v"��y = 0 on � ~
"; Z�~
" v" = 0:(3.3)Remark 2. The funtion v is onneted to the bakground potential u and to thefuntions '(1) and '(2), introdued in the previous setion and satisfying (2.3)-(2.4),by the relation v(y) = 2Xj=1 �u�xj (0)'(j)(y):(3.4)The next two lemmas were proved in [12℄ for a domain ontaining a single inlu-sion. We give the proof of these two results for our partiular geometry.Lemma 3. There exists a onstant C, independent of ", suh thatkry(u"("y) � u("y) � "v"(y))kL2(~
") � C"2:(3.5)Proof: We de�ne z"(y) = u"("y)�u("y)� "v"(y)� ", the onstant " being hosenso that Z�~! z" = 0.



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 11Aording to equations (1.1), (1.3) and (3.3), z" solves the problem8>>>>>>>>>>>><>>>>>>>>>>>>: �yz" = 0 in ~! �yz" = 0 in ~
"n~!z" ontinuous aross �~!�z+"��y � k�z�"��y = "(1� k)(rxu(0)�rxu("y)) � �y on �~!�z"��y = 0 on � ~
"(3.6)We onsider the quantityZ~
" "("y)ryz"ryz" dy = Z~
"n~!ryz"ryz" dy + Z~! kryz"ryz" dyIf we integrate by parts the integrals on the right-hand side and use the transmissiononditions satis�ed by z" aross �~!, we getZ~
" "("y)ryz"ryz" dy = � Z�~! �z+"��y z" + Z�~! k�z�"��y z"= "(k � 1) Z�~!(rxu(0)�rxu("y)) � �yz"� "jk � 1jk(rxu(0)�rxu("y)) � �ykL2(�~!)kz"kL2(�~!)The Taylor expansion and the fat that u and all its �rst and seond derivatives areuniformly bounded in !" imply thatk(rxu(0)�rxu("y)) � �ykL1(�~!) = O("):Using the Trae Theorem, the Poinar�e Wirtinger inequality, and the fat that " isbounded we getkryz"k2L2(~
") � "2kz"kL2(�~!) � "2kz"kH1(~!)� "2kryz"kL2(~!) � "2kryz"kL2(~
");whih proves the Lemma.Lemma 4. There exists a onstant C, independent of ", suh thatkry (u"("y) � u("y) � "v(y)) kL2(~
") � C"2:(3.7)Proof: Aording to Lemma3, it suÆes to prove that kry(v"(y)�v(y))kL2 (~
") � ".To this end, we set �" = v"(y) � v(y) � ", where " is hosen so that Z�~
" �" = 0.Using equations (3.2) and (3.3), we dedue that �" is the solution to8>><>>: div("("y)r�") = 0 in ~
"��"��y = � �v��y on � ~
" and Z�~
" �" = 0:(3.8)



12 M. F. BEN HASSEN AND E. BONNETIERIntegrating by parts and hanging variables bak to the �xed domain 
, yieldsZ~
" "("y)ry�"(y)ry�"(y) dy = Z� ~
" � �v��y (y)�"(y)= "�1 Z�
� �v��y (x=")�"(x=")� "�1k �v��y (x=")kL2(�
) k�"(x=")kL2(�
):Aording to the Trae Theorem and to the Poinar�e Wirtinger inequality, we havek�"(x=")kL2(�
) � k�"(x=")kH1(
) � kry�"(y)kL2(~
");while the asymptoti behavior (2.4) of '(j) implies that�v��y (x=") = O("2):We onlude that kry�"(x=")k2L2(~
") �  Z~
" "("y)ry�"ry�" dy� "kry�"(x=")kL2(~
");and the lemma is proved.Let G denote the fundamental solution of the Laplaian in R2G(x; y) = � 12� log jx� yj; for x; y 2 
0; 
 �� 
0:The asymptoti behavior of the potential u" an now be dedued from (3.7)Theorem 1. Let 
 be an open bounded smooth domain in R2, ontaining twoirular inlusions with enters zi 2 
, orresponding to the geometry (3.1). Denoteby z0 the middle of the segment [z1; z2℄. Let u" and u be the potentials, solutions of theproblems (1.1) and (1.3) respetively. Then, for all z 2 �
 and for " small enough,we have u"(z) � u(z) + 2 Z�
(u"(x)� u(x)) �G��x d�x= �2"2rxG(z0; z) �MÆrxu(z0) + O("3):(3.9)When the distane between inlusions is equal to 2Æ" > 0, the polarization tensor MÆis given by (2.12), while in the ase of touhing �bers it is given by (2.19).Proof : We only onsider the ase of two inlusions entered at ((�1)j"(Æ + 1); 0),Æ � 0, of radii " with R = 1. Let z be a point in 
 whih lies at a �xed distane daway from the �bers. From Green's formula we haveu"(z) = � Z
 u"�xG(x; z) dx= Z
n!" rxu"rxGdx+ Z!" rxu"rxGdx� Z�
 u" �G��x d�x



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 13= Z�
 gGd�x � Z�!" �u+"��x Gd�x + Z�!" �u�"��x Gd�x � Z�
 u" �G��x d�x= Z�
 gG(x; z) d�x + (1� k) Z�!" �u�"��x G(x; z) d�x � Z�
 u" �G��x (x; z) d�x;where in the last equation we have used the transmission ondition �u+" =��x =k(�u�" =��x) on �!". Introduing r"(x) = u"(x)�u(x)� "v(x="), where v denotes thesolution to (3.2), we haveu"(z) = Z�
(gG � u" �G��x ) d�x+(1� k) Z�!" � �u��x + �v���y �G + �r�"��x G d�x(3.10)Integrating by parts the last term in (3.10) and hanging the variables, we obtainZ�!" �r�"��x (x)G(x; z) d�x = " Z~!ryr"("y)rxG("y; z) dy:Aording to Lemma 4, kryr"("y)kL2 (~
") � "2, and sine rxG("y; z) is uniformlybounded on ~!, we dedue thatZ�!" �r�"��x (x)G(x; z) d�x = O("3):(3.11)Expanding the kernel G in a Taylor series about the origin, in the seond term in theright{hand side of (3.10), yieldsZ�!" � �u��x + �v���y �Gd�x = " Z�~! � �u��x ("y) + �v���y (y)�G("y; z) d�y= "G(0; z) Z�~! � �u��x ("y) + �v���y (y)� d�y+"2rxG(0; z) Z�~!� �u��x ("y) + �v���y (y)� y d�y +O("3):Sine Z�~! �u��x ("y) d�y = Z�~! �v���y ("y) d�y = 0, we obtainZ�!" � �u��x + �v���y �Gd�x = "2rxG(0; z) Z�~! � �u��x ("y) + �v���y (y)� y d�y +O("3):Using the transmission onditions of v aross �!", and inserting the above identityand (3.11) in (3.10), leads tou"(z) = Z�
(gG�u" �G��x )+"2(1�k)rxG(0; z) Z�~!�rxu(0) � �y + �v���y (y)� y+O("3):Combining the last equation and (3.4), the representation formula for u" beomesu"(z) = Z�
(gG� u" �G��x ) d�x + "2 1� kk rxG(0; z) �Arxu(0) +O("3);(3.12)



14 M. F. BEN HASSEN AND E. BONNETIERwhere the oeÆients of the matrix A are given byalj = k Z�~! �j + �'(j)���y ! yl d�y:(3.13)Next, we determine A expliitly from the expression of the polarization tensor Mand from the asymptoti behavior of '(j); j = 1; 2. The jump ondition �'(j)+=�� �k�'(j)�=�� = (k � 1)�j, satis�ed by '(j) aross �~!, shows thatZ�~! �'(j)���y yl d�y = 1k Z�~! �'(j)+��y yl d�y + 1� kk Z�~! �jyl d�y;(3.14)and as '(j) is harmoni in ~! and in R2 n ~!, it follows thatZ�~! �'(j)+��y yl d�y = limR!1�Z�BR �'(j)��y yl d�y � Z�BR '(j)�l d�y�+ Z�~! '(j)�l d�y= limR!1�Z�BR �'(j)��y yl � Z�BR '(j)�l�+ Z�~! �'(j)���y yl(3.15)Consequently, inserting identity (3.15) in (3.14),Z�~! �'(j)���y yl d�y = 1k � 1 limR!1�Z�BR �'(j)��y yl d�y � Z�BR '(j)�l d�y��Z�~! �jyl d�y;(3.16)and substituting (3.16) in (3.13) yieldsalj = kk � 1 limR!1�Z�BR �'(j)��y yl d�y � Z�BR '(j)�l d�y� :The right-hand side an be omputed from the asymptoti behavior of the funtions'(j); j = 1; 2, and it follows thatalj = kk � 1mjjÆlj = kk � 1mlj 1 � i; j � 2;with mjj as in (2.12) or (2.19).Finally, Green's formula applied to the bakground potential shows thatu"(z) = Z�
(gG� u" �G��x ) d�x;so that for all z 2 
 \ fdist(z; ~
") � d0g, (3.12) beomesu"(z) � u(z) = Z�
(u(x) � u"(x)) �G��x d�x � "2rxG(0; z) �Mrxu(0) + O("3):When z onverges to �
, the double layer potential Z�
(u(x) � u"(x)) �G��x d�x on-verges uniformly on �
 to�12(u(z)� u"(z)) + Z�
(u(x)� u"(x)) �G��x d�x:By ontinuity, we obtain the desired formula (3.9).



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 154. Convergene properties of the polarization tensor and r! as Æ ! 0.4.1. Preliminaries. We again onsider the on�gurations of paragraphs 2.1 and2.2 : two irular inlusions of radius 1, entered at (�(1 + Æ); 0), with Æ � 0. Theinlusions are �lled with a material of ondutivity k and the rest of the plane hasondutivity 1. Let wÆ denote the potential solution to� div(a(x)rwÆ) = 0 in R2w � x2 as jxj ! 1: Æ > 0:(4.1)When Æ ! 0, wÆ onverges to w0 and thus we expet that the polarization tensors MÆonverge to M0. This is however not obvious given the expressions of the series (2.12)and (2.19). We reall that the polarization tensor MÆ = (mjl)1�j;l�2 is equal tomjl = 16a2�Xn�1n �2n�+ (�1)j�2n Æjl(4.2)where a = pÆ(2 + Æ), � = a� Æa+ Æ and � = k + 1k � 1 . This series onverges uniformly for�xed � and for 0 � � � �0 < 1. When Æ ! 0, �! 1 and summing the series formallyamounts to summing the divergent series 1� + 1Xn�1(�1)nn.The series that give the oeÆients of the polarization tensors are very similar tothe series that express the values of the gradient of wÆ at the midpoint between theinlusions. The same asymptotis may then be performed on the series for rwÆ(0).In the ontext of antiplane shear, for instane, arw represents the stresses. Mostlinear frature models suppose that the fraturing will our at points with extremestress onentrations. The symmetries of our on�guration imply that rw is extremalat the origin, whih explains the interest of omputing rw(0) for lose-to-touhinginlusions. In fat, in this ase, the urrent onentrates in a narrow hannel. Thegradient of the potential ould be very large even if the potential is still smooth.The behavior of the potential gradient, near points where two irular �bers arelose or touh, was studied in [6℄, and shown to remain bounded independently of thedistane between the inlusions. This regularity result was then generalized to thease of arbitrary C1;� inlusions by YanYan Li and M. Vogelius [18℄ and to stronglyellipti systems by Yan Yan Li and L. Nirenberg [17℄. The bounds on the gradient maydegenerate as the ondutivity ontrast beomes large [6℄. Our alulations providean example where we an study preisely how the gradient blows up with the ontrast.The funtion wÆ is the real part of a pieewise analyti funtion f given byf(z) = �iz + g1(�)� g1(1=�);(4.3)for a point z outside the inlusions where � = z � az + a . From Lemma 1, the funtion g1has the following expansiong1(�) = g1(0) +Xn�1 bn�n when j�j � ��1where bn = 2a �2n� + �2n .



16 M. F. BEN HASSEN AND E. BONNETIERTo ompute the gradient of the potential, we di�erentiate (4.3) at z = 0f 0(0) = �i + 2a(z + a)2 =z=0 �g0(�) + 1=�2g0(1=�)�=�=�1= �i0�1 + 4=a Xn�1(�1)nnbn1A= �i0�1 + 8Xn�1(�1)nn �2n�+ �2n1A :(4.4)We study the behavior of MÆ with the tehniques developed for singular asymp-totis by C. Callias and X. Markenso� [9, 10℄, and expand the series (4.2) and (4.4)in terms of s = �2Log(�) � 2p2Æ.Let us �x " > 0. Our �rst step onsists in rewriting the series S0 =Xn�1n �2n�+ �2nand S1 =Xn�1(�1)nn �2n�+ �2n , when � < 1, in the formSp =Xn�1 ne�sn�+ e�sn os(�np)= 12i ZC H(sz; 1=z) os(�pz) ot(�z)dz p = 0; 1;(4.5)where C is the ontour fIm(z) = �"; 1=2 � Re(z)g[fRe(z) = 1=2;�" < Im(z) < "gand H(sz; 1=z) = z e�sz�+e�sz . This follows from the analyity of z ! H(sz; 1=z) in eahretangle Rn = [n� 1=2; n+ 1=2℄� [�"; "℄ and from the Residue Theorem :12i� Z�Rn H(sz; 1=z) os(�pz) ot(�z)dz = Ind(�Rn)Res (H(sz; 1=z) os(�pz) ot(�z); Rn)= (�1)np� H(sn; 1=n):Moreover, sinejos (�p(x� i")) ot (�(x� i"))j � osh(�"p) j1 + e�2i�xe�2�"1� e�2i�xe�2�" j� osh(�"p) 1 + e2�"j1� e�2�"j ;one easily heks that the integral in (4.5) is well de�ned.To expand the integral with respet to s, we introdue a smooth ut-o� funtion�(z), whih is equal to 1 for jzj > 2 and whih vanishes for jzj < 1 and we split theintegral into 2iSp = ZC(1� �(z))H(sz; 1=z) os(�pz) ot(�z)dz+ ZC\fIm(z)>0g �(z)H(sz; 1=z) os(�pz) ot(�z)dz



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 17+ ZC\fIm(z)<0g �(z)H(sz; 1=z) os(�pz) ot(�z)dz= I0 + I+ + I�:(4.6)Clearly, the �rst term an be expanded in s as the integrand is a smooth funtion andintegration is performed on a ompat set. The result isI0 = ZC(1� �(z))H(0; 1=z) os(�pz) ot(�z)dz +O(s)= 1� + 1 ZC(1� �(z)) z os(�pz) ot(�z)dz + O(s):(4.7)The diÆulties lie in the remaining terms, whih, after the hange of variablesz = 1=x� i", an be rewritten in the form2is3 I� = Z 10 �(1=x)h�(s=x; s)��(x)dx;(4.8)where we have seth�(y; s) = y2(y � is") e�y�is"�+ e�y�is"��(x) = os (�p(1=x� i")) ot (�(1=x� i")) ; p = 0; 1:We fous on I� (omitting the subsript for simpliity). Our goal is to expand I�with respet to s. The results on singular integrals of C. Callias and X. Markenso�show that suh an integral an be expanded up to order n in s, provided the integrandis in Cn+1 and satis�es appropriate deay onditions.In the expression of I�, the funtion �(1=x)h(s; s=x) is smooth up to x = 0, but� is smooth only for x > 0. To ast I� in a suitable form, we regularize � in thefollowing way: we de�ne �(1) by�(1)(x) = 1x Z x0 �(t)dt;and, for n � 1, we denote by �(n+1) the regularization of �(n). We an then transformI� by integration by parts(2is3) I� = Z 10 �(1=x)h(s=x; s) �x �x�(1)(x)� dx= ��(1=x)h(s=x; x)x�(1)(x)�10 � Z 10 �x [�(1=x)h(s=x; s)℄x�(1)(x)dx= Z 10 (y�y � x�x) [�(1=x)h(y; s)℄=y=s=x �(1)(x)dx:Notie that the boundary terms in the above omputation vanish, beause �(1=x) hasompat support in x and beause of the exponential fator in h. Integrating by partsagain, we obtain, for n � 1(2is3) I� = Z 10 (y�y � x�x)n [�(1=x)h(y; s)℄=y=s=x �(n)(x)dx:(4.9)



18 M. F. BEN HASSEN AND E. BONNETIERProposition 5 below, shows that �(n) is indeed of lass Cn�1. The integrand has theform H(x; y; s) = (y�y � x�x)n [�(1=x)h(y; s)℄�(n)(x).Theorem 2. [9℄ Let H satis�es:i/ H 2 Cn ([0;1)� [0;1)) ,ii/ H has a ompat support in x uniformly in y,iii/ for every triple (�; q; r) of non-negative integers, for every y � 0 and for0 � s � 1, j��x�qy�rsH(y; s)j � H�;q;r(y) y��q ;with Z 10 H�;q;r(1=t)dt <1,then, the following asymptoti expansion holdsZ 10 H(x; s=x; s)dx = lXj=0 sjj! (Aj0 + l�jXm=1Ajmsm + ln(s) l�jXm=1Bjmsm) +Rl+1(4.10)where Rl+1 = O(sl+1),Aj0 = Z 10 �jsH(x; 0; 0)dxAjm = U jm(H) + Ljm(H) + Bjm m�1X�=1 1=�Bjm = 1m!(m � 1)!�m�1x �my �jsH(0; 0; 0)U jm(H) = � 1m!(m � 1)! Z 10 ln(x)�mx �my �jsH(x; 0; 0)dxLjm(H) = � 1(m � 1)! Z 10 ln(�)�� h�m�m�1x Rjm+1(0; 1=�)i d�;and where Rjm+1 is the remainder in the Taylor series of �jsH(x; y; 0) about y = 0 atorder m, i.e., Rjm+1(x; y) = �jsH(x; y; 0) � mX�=0 y��! ��y �jsH(x; 0; 0):The next two propositions show that the above Theorem applies in our ontext.Proposition 4. The funtion F (x; y; s) = �(1=x)h(y; s), satis�esi/ F 2 C1(R+ �R+ �R+),ii/ F has ompat support in x,iii/ For every triple (�; q; r) of non-negative integers, there exists a funtionH�;q;r(y) suh that for x; y � 0,j��x�qy�rsF (x; y; s)j � H�;q;r(y)yp�q ;and suh that Z 10 H�;q;r(1=t)dt <1.



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 19In the terminology of [10℄, F is of extended lass B.Proof: The �rst and seond point result from the exponential in the numerator ofh and from the ompat support of �(1=x) in x. Sine �(1=x) is smooth and isidentially equal to 1 when 0 � x � 1, it suÆes to show that for every ouple (q; r)of non-negative integers and for every y � 0,j(y�y)q�rsh(y; s)j � Hq;r(y);with Z 10 Hq;r(1=t)dt <1. One easily heks that (y�y)q�rsh(y; s) has the forme�y P �y; e�y; (� + e�(y+is"))�1� ;where P is a polynomial, so that one an hoose Hq;r(y) = e�yjP j.Proposition 5. The regularizations of the funtions �(x) = os(p�(1=x �i")) ot(�(1=x� i")), where p = 0; 1, satisfy(i) �(n) 2 Cn�1([0;1)),(ii) 8 0 < m < n; dmdxm�(n)(0) = 0:(iii) 8 0 < n; �(n)(0) = � �i if p = 00 if p = 1:Proof: (See also [10℄). The funtion � has the form�(x) = i=2 �e(i�=x+�")p + e(�i�=x��")p� ei�=x+�" + e�i�=x��"ei�=x+�" � e�i�=x��"= i=2 �e(i�=x+�")p + e(�i�=x��")p� e2�" + e�2i�=xe2�" � e�2i�=x= eip�=xf+ �(e�i�=x)2�+ e�ip�=xf� �(e�i�=x)2� ;where f+(Z) and f�(Z) are analyti funtions of Z, for jZj < 1 + � for some � > 0and p = 0; 1. These funtions have a power series expansion that onverges absolutelyin Z, for jZj < 1 + �, so that � an be rewritten�(x) = 1Xq=0 f+;qe�i�(2q�p)=x + f�;qe�i�(2q+p)=x:(4.11)Due to the absolute onvergene of the series, � an be regularized term by term.It is thus suÆient to show that the Proposition applies to eah term e�i�(2q�p)=x,p = 0; 1, of the expansion.One easily heks that if ' 2 Cl([0;1)), and '(j)(0) = 0 for 0 � j � l, then '(1)has the same properties. Expanding a funtion ' 2 Cl([0;1)) as Plj=0 '(j)(0)xjj! +R(x) shows then that '(j)(1)(0) = 1j + 1'(j)(0).Further, if � 6= 0; l � 0 and 'l(x) = xlei�=x, integration by parts shows that('l)(1)(x) = i=� �'l+1(x)� (l + 2)('l+1)(1)(x)� ;



20 M. F. BEN HASSEN AND E. BONNETIERfrom whih it follows that('l)(n) 2 Cl+n�1([0;1))and('l)(j)(n)(0) = 0 for j � l + n� 1:(4.12)This shows (i) and (ii).Additionally, if p = 0, we dedue from (4.11) and (4.12) that8 0 < n; �(n)(0) = (f+;0 + f�;0) = �i;while if p = 1, (4.12) implies that 8 0 < n; �(n)(0) = 0.4.2. Asymptotis of the polarization tensor. First, we fous on the om-putation of the terms of the series S0. We seek the term of order s in (4.8), whens! 0. After regularizing � = ot(�(1=x� i")) three times, I� beomesI� = Z 10 H(x; y; s)dx = Z 10 (y�y � x�x)3 [�(1=x)h(y; s)℄�(3)(x)dx:where h� = y2(y � is") e�y+is"�+ e�y+is" .4.2.1. Computation of the terms of the series. For simpliity, we denoteby �(x) the funtion �(1=x) and we notie that all its derivatives vanish at x = 0.Applying Theorem 2, the integral rewrites as(2is3)I� = Z 10 (y�y � x�x)3 [�(x)h(y; s)℄y=s=x �(3)(x)dx= 1Xj=0 sjj! (Aj0 + 1�jXm=1Ajm sm + ln(s) 1�jXm=1Bjm sm) +O(s2)= A00 + �A10 +A01 + ln(s)B01� s +O(s2):� The terms Ak0; k = 0; 1: Their expression isAj0 = Z 10 (y�y � x�x)3 ��(x)�jsh(y; 0)�=y=0 �(3)(x)dx:The integrand an be rewritten in the form3Xq=0� 3q � (y�y)q�jsh(y; 0)=y=0 (�1)3�q(x�x)3�q� �(3)(x):(4.13)The expression of h shows that �jsh(y; 0) = O(y2) for 0 � j � 1 and thus(y�y)q�jsh(y; 0) = O(y2);(4.14)so that all the terms Aj0 are equal to 0.� The term B01 : (4.13) and (4.14) show thatB01 = �y h(y�y � x�x)3 (�(x)h(y; 0))=y=s=x �(3)(x)i(x;y)=(0;0) = 0:



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 21� The term A01, whih redues to U01 + L01: U01 is an integral of ln(x) f01 (x; 0), wheref01 (x; y) = �x�y �(y�y � x�x)3(�(x)h)�(3)(x)�(x;y)=(x;0)= 3Xq=0� 3q ��y(y�y)qh(y; 0) (�1)3�q�x �(x�x)3�q�(x)�(3)(x)� :Again from (4.14), f01 (x; 0) = 0, whih implies that U01 = 0. As for L01, we haveL01 = limd!0�� Z 1d R02(0; 1=�)d�+ ln(d)�y h(y�y � x�x)3 (�(x)h(y; 0))=y=s=x �(3)(x)i(x;y)=(0;0)� :Computing �yh shows that the last term vanishes. The remainder R02 in the Taylorexpansion of H(x; y; 0) about y = 0 up to order y2 is atually equal to H(x; y; 0).Thus, R2(0; 1=�) = (y�y � x�x)3 ��(x) y3e�y�+e�y �x=0;y=1=� �(3)(0). From Proposition 5,�(3)(0) = �i. and sine all the derivatives of �(x) vanish at x = 0, and sine �(0) = 1,we �nally get A1 = L01 = �i Z �+1�0 ln(t)1� t dt = i Z �1�0 ln(1� v)v dv:Sine � = k + 1k � 1 > 1, ln(1� v), for jvj < 1=� < 1, an be expanded as a power seriesin v to obtain A1 = �i 1Xn=1 1n Z � 1�0 vn�1d v = �i 1Xn=1 (�1)n�nn2 ;4.2.2. The leading term in (4.2) . The above alulations show that theintegral I� an be expanded with respet to s asI� = � 12s2 1X1 (�1)n�nn2 +O(1s ):Similar alulations yield the asymptotis of I+, and (4.7), show thatS0 = � 1s2 1X1 (�1)n�nn2 +O(1s ):from whih we dedue the term m22 of the polarization tensorm22 = �16�a2s2 1X1 (�1)n�nn2 + O(a2s ):The same kind of omputations an be arried out for m11. The results are given inthe following (realling that a2 � 2Æ and s � 2p2Æ)



22 M. F. BEN HASSEN AND E. BONNETIERProposition 6. The polarization tensor MÆ = (mjl)1�j;l�2, of a on�gurationwith two irular inlusions at a distane 2Æ apart, satis�esmjl = (�1)(j+1)4� 1Xn=1 (�1)(j+1)n�nn2 Æjl + O(pÆ):(4.15)In other words, MÆ onverges to M0, the polarization tensor of two touhing diss, asÆ ! 0.4.3. Computation of rw(0). In this ase, we are interested in the term oforder s0 in the series S1 i.e. in the term of order s3 in (4.8) when p = 1. Therefore,we regularize � �ve times and apply (4.10) withH(x; y; s) = (y�y � x�x)5 [�(x)h(y; s)℄ �(5)(x);where again all the derivatives at x = 0 of �(x) = �(1=x) vanish.4.3.1. Computation of the terms of the series. Applying Theorem 2, theintegral I� rewrites as(2is3)I� = Z 10 (y�y � x�x)5 [�(x)h(y; s)℄y=s=x �(5)(x)dx= 3Xj=0 sjj! (Aj0 + 3�jXm=1Ajm sm + ln(s) 3�jXm=1Bjm sm) + O(s4):� The terms Bjm : We reall thatBjm = 1m!(m � 1)!�m�1x �my h(y�y � x�x)5 ��(x)�jsh(y; 0)�=y=s=x �(5)(x)i(x;y)=(0;0) :By Proposition 5, �m�1x �(5)(0) = 0, for 0 � m � 1 < 5. Sine 0 � j � 3 and1 � m � 3� j, one easily heks that Bjm = 0.� The terms Ljm: These terms are interpreted in the following senseLjm = limd!0f� Z 1d �m�1�m�1x Rjm+1(0; 1=�)d�+ ln(d)m! �m�1x �my h(y�y � x�x)5 ��(x)�jsh(y; 0)�=y=s=x �(5)(x)i(x;y)=(0;0)g:Again, Proposition 5 shows that the last term in the above expression vanishes. UsingLeibniz's rule, we rewriteRjm+1(x; y) = 5Xq=0� 5q � "(y�y)q �jh�sj (y; 0)� mXl=0 yll! �l�yl (y�y)q �jh�sj (y; 0)#(�1)5�q�m�1x �(x�x)5�q� �(5)(x)� :We onlude by Proposition 5, that sine �m�1x �(5)(0) = 0, for 0 � m � 1 < 5,��m�1x Rjm+1(x; y)�=x=0 = 0;



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 23and that all the terms Ljm are equal to 0.� The terms Aj0: Their expression isAj0 = Z 10 (y�y � x�x)5 ��(x)�jsh(y; 0)�=y=0 �(5)(x)dx;where the integrand an be rewritten in the form5Xq=0� 5q � (y�y)q�jsh(y; 0)=y=0 (�1)5�q(x�x)5�q� �(5)(x):The expression of h shows that �jsh(y; 0) = O(y2) for 0 � j � 3 and thus(y�y)q�jsh(y; 0) = O(y2);so that all the terms Aj0 are equal to 0.� The terms U jm: Their expression is �1m! (m � 1)! Z 10 ln(x) fjm(x; 0) dx, wherefjm(x; y) = �mx �my �(y�y � x�x)5(�(x)�jsh)�(5)(x)�(x;y)=(x;0)= 5Xq=0� 5q ��my (y�y)q�jsh(y; 0) (�1)5�q�mx �(x�x)5�q�(x)�(5)(x)� :It is easily heked that�my (y�y)q�jsh(y; 0)=y=0 = mq�my �jsh(0; 0);so that the term fjm simpli�es tofjm(x; 0) = �my �jsh(0; 0) �mx �(m � x�x)5�(x)�(5)(x)� :From the expression of h we ompute�yh(0; 0) = 0; �2yh(0; 0) = 0; �3yh(0; 0) = 6� + 1 ;�y�sh(0; 0) = 0;�2y�sh(0; 0) = �2i"�+ 1 ; �y�2sh(0; 0) = 0;thus all the U jm's vanish but U12 and U03 .4.3.2. The leading term in the series S1 . The above alulations show thatthe integral I� an be expanded with respet to s asI� = 12is3 �U03 s3 + U22 s3�+ O(s)= 1� + 1 ��3i Z 10 ln(x)�x �(1� x�x)5�(x)�(5)(x)� dx+i" Z 10 ln(x)�2x �(2� x�x)5�(x)�(5)(x)� dx�+ O(s):



24 M. F. BEN HASSEN AND E. BONNETIERSimilar alulations yield the asymptotis of I+:I+ = 1� + 1 ��3i Z 10 ln(x)�x �(1� x�x)5�(x)�(5)(x)� dx�i" Z 10 ln(x)�2x �(2� x�x)5�(x)�(5)(x)� dx�+ O(s):Realling (4.7), we �nally arrive atS1 = 1� + 1 �ZC(1� �(z)) z os(�z) ot(�z)dz�6i Z 10 ln(x)�x �(1� x�x)5�(1=x)�(5)(x)� dx�+O(s):To hek that the leading term in the expansion does not vanish, notie thatTheorem 2 an also be used to ompute the seriesS0 =Xn�1(�1)nne�sn= 12i ZC H 0(sz; 1=z) os(�z) ot(�z)dz;where C is the same ontour and where H 0(sz; 1=z) = z e�sz. Comparing the termsin the expansion for S1 and S0 shows thatS1 � S0�+ 1 = O(s):On the other hand, S0 an be omputed expliitly as the derivative of a geometriseries, and is equal to S0 = �e�s(1 + e�s)2 = �1=4 + O(s2):Thus S1 = �14(� + 1) +O(s). Realling (4.4) and the relationship between the omplexpotential and the funtion w, we onlude thatProposition 7. Consider two irular inlusions of ondutivity k, of radius 1,at distane 2Æ apart. Assume that k < 1, that w solves (4.1) (weakly ondutinginlusions, transverse urrent). Then the gradient rw at the midpoint between theinlusions satis�es�w�x1 (0; 0) = O(pÆ) �w�x2 (0; 0) = 1=k +O(pÆ):In partiular, the gradient blows up linearly like k�1 when k! 0.A similar results holds (onsidering harmoni onjugates) for strongly ondutinginlusions (k > 1) when w � x1 at in�nity : in this setting the x1 omponent of rwblows up like k as k !1.



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 255. Numerial results. In this part, we desribe some omputational experi-ments that attempt to quantify the errore1(z) = u"(z)� u(z) + 2 Z�
(u"(x)� u(x)) �G��x d�x + 2"2rxG(z0; z) �MÆrxu(z0);on �
, where, u" is the voltage potential in presene of the imperfetions, u is thebakground potential, and the polarization tensor MÆ is equal toMÆ = Q� m11 00 m22 �Qt;where Q is the rotation matrix of angle � between the x1{axis and the line (z1z2) andmij 's are given by (2.12) or by (2.19). We de�ne also the remainder
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Fig. 5.1. level lines of e2=e1, " = :1, 2 � k � 50, :001 � "Æ � :011e2(z) = u"(z)� u(z) + 2 Z�
 (u"(x)� u(x)) �G��x (x; z) d�x�2�"2 (1� k)1 + k 2Xj=1rxG(zj ; z) � rxu(zj); z 2 �
;between the true solution u" and the asymptoti expansion (1.4). When the distanebetween the two �bers and the ontrast vary, we ompare the remainder terms e1(z)and e2(z), to �nd out when the asymptoti formula (3.9) is more aurate than (??),i.e. when an one onsider the two inlusions as a single inhomogeneity rather thantwo well{separated objets. In all our omputations, we use the bakground voltagepotential u(x) = x1 orresponding to the boundary urrent g = �1. We also hoosethe bakground ondutivity (x) equal to one. The domain 
 is the unit ball andthe inlusions are disks zj + "B(0; 1).To generate the data on �
, we solve the diret Neumann problem (1.1) using P 1�nite elements. The boundary of eah inlusions is meshed with 80 uniformly spaedpoints, while the outer boundary is disretized with 300 points.



26 M. F. BEN HASSEN AND E. BONNETIERFigure 5.1 shows the level lines of the ratio e2=e1 for two inlusions of radius" = 0:1, entered along the x1-axis, as we vary their ondutivity k and the separatingdistane "Æ between them, 2 � k � 50 and :001 � "Æ � :011. As expeted, theremainder e1 is smaller than e2 and our asymptoti expansion is more aurate in thisase. In fat, for this on�guration, whih was analyzed by Keller in [15℄ and by L.Borea and G. Papaniolaou in [7℄, the urrent ow is hanneled horizontally throughthe �bers (there is a strong ow hanneling through the gap between the �bers alonga path whih is an horizontal branh onneting the two �bers). Therefore, there isa strong interation between the two inlusions whih inreases when "Æ goes to zeroand k to in�nity.
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Fig. 5.2. (a) level lines of u" � u=e2, (b) level lines of u" � u=e1" = :1, 2 � k � 50, 0:001 � "Æ � 0:011Fig. 5.2(b) shows that expansion (3.9) is a good approximation of the potentialu(x) : the error u" � u is at least 40 times e1. For the same on�guration, as wasalready noted in [12℄, Fig. 5.2(a) shows that for k >> 1, u"�u and e2 are of the sameorder and the expansion (1.4) annot be used to loate the inlusions with suÆientauray.When the �bers are entered along the x2-axis and k < 1, the on�guration is theharmoni onjugate of the previous one. The eletri urrent is onentrated in thehannel between the �bers. However, in this ase, it ows horizontally in the gap,avoiding the �bers. The interation between the inlusions is weak and formula (1.4)gives results of the same order as the expansion e1, as is shown in Figure 5.3. If k > 1,the interation between the inlusions is also weak, and e1 and e2 are of the sameorder (Figure 5.4).Finally, in Figure 5.5, we plot the level lines of e1=e2 when 2 � k � 50 and0:01 � "Æ � 0:1, for �bers of radius 0:05. We remark that the ratio e1=e2 inreases asthe radius of the �bers dereases and our formula is inreasingly more aurate thanthe expansion (1.4).Aknowledgments. The authors are grateful to M. Vogelius who stimulatedsome of the work presented in this paper.
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