ASYMPTOTIC FORMULAS FOR THE VOLTAGE POTENTIAL IN A
COMPOSITE MEDIUM CONTAINING CLOSE OR TOUCHING
DISKS OF SMALL DIAMETER

M. F. BEN HASSEN * AND E. BONNETIER

Abstract. We derive an expansion of the voltage potential in a composite medium, made of
circular conducting inclusions of small diameter ¢ embedded in a homogeneous matrix phase, when
the inhomogeneities are strongly interacting, i.e., when they are very close or even touching. The
asymptotics of the voltage potential depend on the position of the inclusions and on the contrast be-
tween the inclusions and matrix conductivities via a polarization tensor. We are especially interested
in determining an analytical expression of this tensor, in order to study how the terms in the expan-
sion depend on the inter-inclusion distance, the inclusion size, and the conductivity contrast. We
present numerical tests that compare the true voltage potential to our asymptotic formula when the
inclusions are treated as a single inhomogeneity, and to the asymptotic formula when the inclusions
are well-separated.
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1. Introduction. Let Q be a a bounded smooth domain of R? which represents
a composite medium, made of conducting inclusions embedded in a conducting matrix
phase. The voltage potential in €2, denoted by u,, is the solution to

div(y: (#)Vus) =0 in
(1.1) Jus
T a0 Y

For simplicity, the matrix phase is assumed to be homogeneous and 7. () = 1 in this
phase. The j'* inclusion, of constant conductivity v, = k;, has the form

(1.2) wl = eBj + 2;,

where B; is a bounded smooth domain of R? that contains the origin. We assume
that the centers of the inclusions z; are far from the boundary, i.e, that dist(w?, 082) >

dy >> € for some dy > 0. The applied boundary current g satisfies gdo, = 0,
a0
and v denotes the unit outward normal to 952.

When the number of inclusions is relatively small, u, 1s close to the solution u to
the homogeneous PDE

Au=10 n Q
(13) ou
ovoa Y

To guarantee the uniqueness of the solutions to the problems (1.1) and (1.3), we

choose the potentials u. and u such that / u, do, = / udo, = 0.
a0 a0
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An asymptotic expansion of u., when the inhomogeneities are assumed to be well-
separated from each other and well-separated from the boundary, has been derived
by D.J. Fengya, S. Moskow and M. Vogelius [12]. In this case, the inclusions are not
strongly interacting and the expansion takes the form

aG

us(2) —u(z) + 2/({m (ue(2) — u(z)) %(1‘, z)doy
" = 252§: 1 ;.kj VeG(z,2) - A Vaul(z)) + O(?), 2 €09

where (' 1s the fundamental solution of the Laplacian in 2-D, m is the number of
fibers. The polarization matrix A; is a symmetric matrix associated with the j-th
inclusion. It only depends on the shape and on the conductivity of the inclusion, and
can be computed from the corrections to the voltage potential at infinity created by
the rescaled j-th inclusion embedded in an infinite matrix phase.

This asymptotic formula is the basis of an efficient algorithm for conductivity
imperfection identification [5, 12, 13, 3] and has been generalized to elasticity and to
the Maxwell system [4, 21, 1].

When the inclusions are dispersed, well-separated and when their shape is regular,
their effect on the potential u. cannot be too drastic: it is a piecewise smooth function,
its gradient bounded. Such a picture could deteriorate when some inclusions are
allowed to get close, forming narrow channels where currents could concentrate. The
potential is still a piecewise smooth function (it globally has a C'* regularity), but
the values of its gradient could be much larger [18, 6]. These high gradients are
the source of great difficulties in the numerical determination of the potential. An
accurate computation of charge densities would require millions of Fourier coefficients
in a multipole expansion, as noted by H. Cheng and L. Greengard [11], who propose
a hybrid numerical method which combines multipole expansions and the method of
images. The same situation arises in elasticity where nearly touching inclusions could
create zones of large stresses which could potentially lead to fracture. Thus, it could
be interesting to develop algorithms that detect clusters of inclusions from boundary
measurements, which could be used to control the fabrication of certain composites.

The goal of this work 1s to study a model situation when 2 circular inclusions, of
diameter ¢ and at a distance de from each other, are interacting. We investigate how
the asymptotic formula (1.4) is modified. We are especially interested in the resulting
polarization tensor. In our particular geometry the solution to the auxiliary PDE,
from which the tensor is computed, can be represented as a series [8, 18] (see also [16]
where the so—called Added Mass tensor is computed as a series for two touching
disks). In a recent work, H. Ammari, H. Kang, E. Kim and M. Lim [2] derived an
asymptotic expansion for the voltage potential when Lipschitz inclusions are closely
spaced and showed that the polarization tensor of such cluster could be represented
by an equivalent ellipse. In this analysis, however, inclusions are not allowed to touch.
In the particular case of disks, these authors used multiple reflections to derive a series
representation of the polarization tensors.

In the cases of close or touching disks, we are able to analyze in a precise man-
ner the influence of the different parameters : distance between inclusions, contrast
between the conductivities of the inclusions and the homogeneous medium. In partic-
ular, the series that define the polarization tensor formally becomes singular as § — 0.
Using asymptotics of singular integrals [9, 10], we show however that the series can
be expanded and converges to the polarization tensor of two touching inclusions (as it
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should). The expression of these series is similar to the expression of the gradient of
the potential at the midpoint between the inclusions. Thus, we use the same kind of
asymptotics to study how the gradient of the potential blows up with the conductivity
contrast as the inclusions get nearer. We also show numerical tests concerning the
accuracy of our asymptotic expansion that treats the 2 inclusions as a single inhomo-
geneity. In particular we investigate when the true solution u. is better approximated
by our expansion, than by the expansion (1.4), when the inclusions are considered to
be well-separated.

The paper is organized as follows: In Section 2, we compute the polarization
tensors corresponding to two nearly touching and two touching disks. Section 3 is
devoted to showing the asymptotic expansion of the potential u. in our particular
geometry. The argument closely follows [12]. Section 4 presents the asymptotics of
the series that define the polarization tensor and the potential gradient when § — 0.
Finally, in Section 5 we present numerical results about the accuracy of our asymptotic
expansion.

2. Computation of the polarization tensor. We consider two conducting
disks By, By of radius 1, embedded in an infinite matrix phase. The conductivity of
this medium is y(z) = 1 in the matrix phase and y(x) = k # 1 in the inclusions. Let
w denote the solution to

(2.1) div(y(z)Vw) =0 in R?,
which satisfies the far-field boundary conditions

2

w(wy, x2) ~ chxj, as |z| = |(z1, z2)| = o0,
22) =
w(zy, x2) Zc x; — 0, as |z| = .
i=1

Equivalently, w can be written

[5V)

(2.3) w(zy, x2) Zc] x; —|—g0 (z1,22)),

j=1

where the functions () can be shown to decay at infinity as

2

; 1 x 1

(g) = —— - — \
(2.4) eV (x) 5 l_gl m; FE +0 <|x|2) , as |z| = oco.

The matrix M = (mj;) is called the polarization tensor or the Pélya-Szego matrix [20].
Explicit formulas for M have been established in particular geometries (a cavity, a
single rigid circular or elliptical inclusion) [19].

The function w may also be viewed as the xs—component of the displacement in
the transverse shear loading of an infinite elastic matrix that contains two cylindrical
inclusions F;, with axes parallel to x3. The constants ¢; in (2.2) then correspond
to a constant stress—field applied at infinity ¢; = 7,4,,J = 1,2. Because of this
interpretation of the PDE (2.1) we sometimes refer to the inclusions as ‘fibers’.
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2.1. The case of two close inclusions . We consider the geometry illustrated
in Figure (a). It consists of two circular inclusions, centered at (+1(§ + 1),0), d > 0,
of radii 1 and conductivity k. In order to simplify the computations, we restrict
ourselves to the case when ¢; # 0 and ¢; = 0 at infinity (i.e. 7,, = 79 and 75,, =0 in
the plane shear problem), i.e.; we only present the calculation of the first line of the
polarization tensor Ms. The remaining coefficients can be computed in an analogous
fashion.

To evaluate the matrix Ms, we introduce the complex-valued function f(z), z =
X1 + 1w, such that

(2.5) w = ¢ Ref.

This function 1s analytic in the matrix and in the fibers, and satisfies
(2.6) f~z when |z] 5 .

The symmetries of the geometry and the uniqueness of w impose that

w(xlaxZ) = _w(_$1a_$2) = w($1a_$2)a

from which it follows that w(0, z5) = g—w(xl, 0) =0 and I'm f(0) = 0, hence
T2

(2.7) J(z) = —f(=2) = T(2).
Let far and fr denote the values of f in the matrix and in the right-hand fiber By,

respectively. According to the interface conditions, Ref and the conormal derivative

'y(z)a—(Ref) are continuous across 0B1. Due to the Cauchy Riemann equations, the
v
0
—(Im f) are
-
continuous across dBy, where §/971 denotes the tangential derivative. We then have

jump conditions satisfied by w across dB; imply that Ref and v(7)

(2.8) Re far +iIm fayy = Re fp + ikIm fp, along 0By,

where 2 = —1.

Let us consider the conformal mapping & = Z;—a, where a = /§(2 + ), which
z+a

y Z=x+y

~
S R ijjs

@ ®

sends the right-hand fiber into the interior of a circle 7, centered at & = 0 and of

-0
radius p = a?’ the left-hand fiber into the exterior of a circle C's, centered at &€ = 0
a
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and of radius 1/p, while the matrix phase is transformed into the annulus of radii
p < €] < p~1, bounded by the circles Cy and C5 [8]. Therefore we can write

(2.9) Mm=z2+gm()=a

where gps 18 an analytic function in the annulus. Using the Cauchy integral formula,
gar can be decomposed as

g (&) =91(§) +92(8), p<IEl<p™!,

where

g1(&) = ! /C g (7) do for |¢| < p~!

~ 2ir oc—&
and

gz(&):—i gm (o)

ur Jo, 0§

do  forp < |£].

Using the symmetry properties (2.7), we have
gm (&) = gm (&) = —gm (1/€),

hence, g1(€) = 91(€), 72(€) = g2(€) and g1(&) = —g2(1/€). Identity (2.9) becomes

Ful§) = a7 5 + 01(6) + 92(6)
(2.10) = a1+ 00— (1/6),

where g1(€) is analytic for [¢] < p7L.

In order to compute the coefficients of the tensor Ms, we seek an expansion of
far (&) as a power series of £. To this end, the following Lemma gives us a represen-
tation of the analytic function g; in the ball B(0, p~1).

LEMMA 1. [8] The function g, has the following expansion

(2.11) 91(§) = 91(0) + Z 3 when €| < p~!
n>1

where b, = 2ap®™ [A — pzn]_l and A= (k+1)/(k—1).
We obtain then the form of M; :

PROPOSITION 1. The polarization tensor Ms of two unit disks centered at (£(d +
1),0), > 0, is given by

p2n

2.12 M; = | 16a” ——;
( ) s 6a FZnA—F(—l)JpZ” 5 5
nzl 1<4,1<2

a—90
a+6

where A = (k+ 1)/(k — 1) depends on the contrast, a = \/d(2+3) and p =
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Proof : Using equation (2.11) and changing the variables back to the z-plane, we get

->ue-y g

:%:1[’” (ZCP ( Z_-i-lc):; - (z—la)i’))

(g QG(Z;_Q;)%ZM (ch p (2 _(Z_la)p))

According to the d’Alembert criterion, the series > nb, converges absolutely when
|pl < 1. We next prove that

(2'13) Zb” (Z C’P ( Z__:z:; B (z—la)P)) = O(Zi?)

n>2

As CPF2 = %Cﬁ_z, we get with g =p— 2,
n—2 (_1)(1
by, CP(2a)? by, CIr2(2q) 92 L
Lo (S ) -2 (3 e
n(n—1) q q+2 (=1)4
L (Z R TEST N e B
Hence,
p 2 n—2
S b, ZCP gap )| 2§y |y 2
=~ (z4+a)P )|~ |2+ a = z+a
n—2
|z—|—a|2 Z z+a

When |z| is large enough, ‘ " ‘ < 1/p and the series above is bounded by the series

Z annp—n+2 S Qoa Zn2pn+2’

n>2 n>2

1
which converges when |p| < 1. Thus, an (Z C?(2a)? —1) ) = O(=) as

n>2

+a)?
- 1
z — 0o. Similarly, we can show that ;bn (Z CP(2a)? GC_ay ) = O(—=), which
proves (2.13). In conclusion, -

f(2) = z—gm(€) = z—4a ann %—1—0(%)

n>1



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 7

; 1
We deduce that go(l)(xl, 22) = Ref(z)—x1 = L ?:1 mlj%+0 (W) from

T on
which we obtain my; and mi9. The other components of the polarization tensor M
can be computed in a similar fashion. The result is

2n

p .
mj = 16&271'2717,%(5]’1 g,l=1,2,
R

REMARK 1. These computations can be generalized to the case of two inclusions
By and By, with radii Ry < Ra, centered on the x1—azis, and at a distance 20 apart.
We assume that the conductivity of the matriz phase is kg, the conductivities of the
mnclustons are k1 and ko, and that the origin lies inside the right—hand nclusion By,
we use the following conformal mapping to transform 0By and d By into two concentric

circles. The mapping has the form z — £ = a‘fz where a = RoF and E s defined by

V(B—1)? —207(8” + 1) + (8 + 1)°

’
(074

F =

with « = 1 + #ﬁ%,ﬁ = g—;. The boundaries of By and By are mapped onto the
/ _ @2
circles centered at 0 of radit ri = RZ% and ry = R2E7”E2;'4'I'EQ.

The computation of the polarization tensor follows the same lines as above. One

finds (see [14])

mi; = 2ma’ky Z na"cgf)éij.

The coefficients ¢, are given by
) = Da(Dyar T+ (=) Dsa™) Ly ifn >0
) = —Dy(Dyamr;? 4+ (=)D Dya=VL_, ifn <0

with Ln = (DlDzrgnrl_zn — D3D4)_1, D1 = k’l + k’o, D2 = k’z + k’o, D3 = k’l — k’o
and D4 = k’z — k’o.

2.2. The case of two touching inclusions . This case deserves special treat-
ment as the series appearing in (2.12) diverges when 6 =0 (i.e p = 1).

The polarization tensor is again defined via the solution w to (2.1), where B;,
J = 1,2, now denote two circular inclusions of radius 1 with centers (£1,0). The
conductivity v(x) is equal to k # 1 inside B;, and to 1 in the outside matrix phase.
Again, we only detail the calculation when ¢; # 0 and ¢; = 0, in which case w has
the following asymptotic behavior :

(2.14) w(zy, wa) = 21 + oM (e, 20),  |Jz]| = oo,

with (1 (x) = 0 at infinity.

A generic representation of solutions to such problems can be obtained as follows
(see [18]). By symmetry, w is even with respect to the zs—axis and odd with respect to
the z—axis. Setting z = 21 +ixs, the conformal mapping z — £ = 1/z transforms the
complex plane containing the two unit circles centered at &1 onto the complex plane
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with the vertical lines Re§ = —1/2 and Re& = 1/2. The interior of the right-hand
circle is mapped onto Ref > 1/2 and that of the left one to Ref < —1/2, while the
exterior of the fibers is mapped onto the layer —1/2 < Re& < 1/2.

Let ¢ be an odd function of &, analytic in C\ 0, which satisfies also :

(2.15) 3(&) = (&)
(2.16) 16(6)] < CplR=l 172 < |Reg],

for some 0 < 3 < |A|. We define

B(&) = T D ATG(n =€), if Re€ < —1/2
(2.17) (&) =)+ D AT (b(n+& —(n—¢)), if —1/2< Ret < 1/2

2 =, . .
<1>(5):m;JA d(n+€), if1/2< Ret.
PROPOSITION 2. The function w(z1,x2) = Re ®(1/z) solves
(2.18) div(y(2)Vw) = 0.

This function is even with respect to the xq-axis and odd with respect to the x1—axis.

We choose ¢(£) = 1/£ in Proposition 2, which satisfies hypotheses (2.15) and
(2.16) for 8 = 1. We next show that this choice guarantees that the corresponding w
grows linearly as z — oco. Indeed, in the layer —1/2 < Re& < 1/2, we have

I &=, ( 1 1
26) E+ZA <n+£_n—£)

[l
S|
+
I
g
3
4
b
|
™~
\
=
[S%)

I
S| =
|
s

3
e
3
N
3 |
T
=3
N~—

n=1 n=1 p=0
When |2| is sufficiently large, th ili ! Zl >
en |z| 1s sufficien arge, the series =
v arge, ntAn (nz)?r n?A" (nz)? -1
n=1 p=0 n>1
converges and 1s bounded b Z L Therefore
g y Z AR )

P(¢)=2—2 (Z #) %+ 0(1/2%).

n=1
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Hence it follows that

1 _ C 1 1 3
oW (21, 29) = Re (_2 (Z W) -+0(1/z ))

me 0(1/la[?),

and the coefficients my; of the first line of the polarization tensor My prove to be
=1
my] = 471'2 AnZ and mqs =0.
n=1

The remaining coefficients of the polarization tensor are determined by seeking
solutions to (2.1) which are odd with respect to the zy—axis, and the adequate choice

of ¢ yields

°° i i
, = Re(—i/€+ —H)"AT" — ,
wlenwa) = Relifs+ -0 (g - e )
which grows linearly as z — oo. It follows that

(o) _1 n
Mooy = —471'2 (712/\)” and mo; = 0.

n=1

We have thus proved the following
ProrosITION 3. The polarization tensor My of two touching inclusions centered
at the points (£1,0) is given by

°© J+1
(2.19) My = (—1)U+4 Z

3. Derivation of the asymptotic formula. This Section follows closely the
work of D.G. Fengya, S. Moskow and M. Vogelius. Merely, we show that the proof [12]
still holds when two close fibers are considered a single inhomogeneity.

When the inclusions are not degenerate (i.e. their conductivity is k; > 0, k; # 1)
the first term in the expansion of u. i1s the background potential u, solution to the
homogeneous problem (1.3). In fact, u. converges strongly in H(Q) to u when &
tends to 0. This is a consequence of the following estimate of the H'(Q) norm of
Ue — U:

LEMMA 2. [12] There exists a constant C, independent of ¢, such that

/ (IV(u— uo))? + Ju — u.|*) de < Ce”.
Q

Henceforth, we focus on our particular geometry, i.e.; that of two inclusions of
the form

(3.1) w! =eRB+z;, j=1,2,
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where B is the unit ball centered at the origin, R a dilatation parameter, and where
the points z; are the centers of the touching or close disks. Without loss of generality,
we assume that R = 1 and z; = ((=1)7¢(6 + 1),0), 6 > 0 small. Let us consider the
sets

Q. ={z/e:2€Q}
and w ={x/e: v € w.}

deduced from Q and from w. = w! Uw? by the rescaling y = z/e. Let v, be the

outward unit normal to both 3(25 and 0w. We introduce the solutions v and v. to the
two following PDE’s:

Aypw=0inw Ayv=0in R\&

v 1s continuous across Ow

(3.2) vt ov~ .
% — kﬁ—yy =(k—1)Vou(0) - v, on 0w
LG u(0)- M2+ 0(L) when |y -
v=——V.u(0) M—— ——) when |y 00
2m |y]? |y]?
and
Ay =0in o Ayv. =01in Qa\dz
v, 1s continuous across 0w
(3.3) o7 — k@va_ =(k—1)V,u(0) vy, on dw
vy vy v Y
Ove =0 on 3(25, / ve = 0.
vy a1,

REMARK 2. The function v is connected to the background potential u and to the
functions V) and ¢, introduced in the previous section and satisfying (2.3)-(2.4),
by the relation

(3.4) v(y) =Y =—(0)p ) (y).

The next two lemmas were proved in [12] for a domain containing a single inclu-
sion. We give the proof of these two results for our particular geometry.
LEMMA 3. There exists a constant C', independent of ¢, such that

(3:5) 1V (us () — u(ey) —eve (W)ll2q,) < O™

Proof: We define z. (y) = u.(cy) — u(ey) — ev: (y) — c., the constant ¢, being chosen

so that / ze = 0.
&
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According to equations (1.1), (1.3) and (3.3), z. solves the problem
Ayze=0ina Ayz. =01n Qa\&)

z. continuous across 0w

3.6 ANy ;
(3.6) 5 ’“auy = e(1 — k)(Vou(0) — Vou(ey)) vy on 9@
Oze ~
o, =0 on 0.

We consider the quantity

/~ Ye (ey)Vy2e Vyze dy = /~ Vyz:Vyze dy + / kV yz.Vyze dy
. \@ &

If we integrate by parts the integrals on the right-hand side and use the transmission
conditions satisfied by z. across 9@, we get

0zt dz7

Ye(ey)Vy2zeVyze dy = — za—l—/ k—2,
[ (e)Vs ! o0 Ovy o0 Ovy

]

ek —=1) /a* (Veu(0) = Vou(ey)) - vyz:

< elk = 1[[(Vou(0) = Vouley)) - vyllrz(aa) 2|2 (00)

The Taylor expansion and the fact that u and all its first and second derivatives are
uniformly bounded in w. imply that

1(Veu(0) = Vouley)) - vyllLe(oa) = O(e)-

Using the Trace Theorem, the Poincaré Wirtinger inequality, and the fact that ~. is
bounded we get

662”25 ||L2(6G))
(Z‘62||vyzE ||L2(G))

662||Z€||H1(@)

CEzHVyZaHU(ﬁE)’

||vyzfl|i2(ﬁs) S
<

IAIA

which proves the Lemma. [ |

LEMMA 4. There exists a constant C', independent of ¢, such that
(3.7) IVy (us () — uley) —ev(¥) llp2q,) < Ce™.
Proof: According to Lemma 3, it suffices to prove that ||V (ve () —v(¥))]| .- (G, S e

To this end, we set ¢. = v.(y) — v(y) — cc, where ¢, is chosen so that [ ¢. = 0.
8.
Using equations (3.2) and (3.3), we deduce that ¢. is the solution to

div(v: (ey)Vé:) = 0 in Q.

(3.8) R
09. = —ﬂ on 0. and ¢. = 0.
vy vy a6,
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Integrating by parts and changing variables back to the fixed domain €2, yields
v

a., Ovy

/~75(5y)vy¢a(y)vy¢a(y)dy _ /a

]

()¢ (v)
_ Ov
- G (/e

Jv
6_1||37(1‘/6)||L2(aﬂ) o< (x/e)|lL2(o0)-
Yy

IA

According to the Trace Theorem and to the Poincaré Wirtinger inequality, we have
= (x/e)llL2(00) < cllés(x/E)lmr(a) < cllVyde W2 a.)

while the asymptotic behavior (2.4) of ¢ implies that

v 9
%(1‘/6) = 0(e”).

We conclude that

I¥06e(e/2M ) < € [ 2ele) Ty 5,00 dy

]

< eel|Vyoe(z/e)ll2 s,
and the lemma is proved. [ |

Let GG denote the fundamental solution of the Laplacian in R?
1
Gx,y) = —2—log |t —y|, forxz,yeQ Qcc.
T

The asymptotic behavior of the potential u. can now be deduced from (3.7)

THEOREM 1. Let Q be an open bounded smooth domain in R?, containing two
circular inclusions with centers z; € 2, corresponding to the geometry (3.1). Denote
by zo the middle of the segment [z1, z2]. Let u. and u be the potentials, solutions of the
problems (1.1) and (1.3) respectively. Then, for all z € 9Q and for ¢ small enough,
we have

us(2) —u(z) + Q/E)Q(ua(x) — u(a:))gli do,
(3.9) = —2e?V,.G(20, 2) - MsVyu(z0) + O(e?).

When the distance between inclusions is equal to 26e > 0, the polarization tensor Ms
is given by (2.12), while in the case of touching fibers it is given by (2.19).

Proof : We only consider the case of two inclusions centered at ((—1)7¢(6 + 1),0),
d > 0, of radii ¢ with R = 1. Let z be a point in £2 which lies at a fixed distance d
away from the fibers. From Green’s formula we have

ue(z) = _/ngAxG(g;,z) dx

:/ vxuavadx+/ qugvadx—/ uaﬁ—Gdo'x
Q\w. We oL 61/@‘
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+ -
= / gG do, — du; Gdo, + aﬁG do, — / Ue 3_G do,
a9 dwe vy dwe vy on  Ovg
:/ gG(l‘,Z)do’x—l—(l—k’)/ 6U€_G($’Z)do-x_/ ufa—G($’Z)de’
a0 dw. IVz a0 v,

where in the last equation we have used the transmission condition du}/dv, =
k(Ou_ /Ovy) on Ow,. Introducing r. (z) = u.(2) —u(z) —ev(x/c), where v denotes the
solution to (3.2), we have

0G
u:(z) = gG —u.—) do,
0= [ w6-u5

ou ov~ or>
1 1—k -— £ G do,
(3.10) ul )/g;ws (3% + 31@) G+ Ovy G do

Integrating by parts the last term in (3.10) and changing the variables, we obtain
or;

dwe 6I/x

()G (z,z)doy = 6/~ Vyre (ey) Vo Gley, 2) dy.

According to Lemma 4, ||Vyr€(6y)||L2(ﬁs) < ce?, and since V,G(ey, z) is uniformly
bounded on &, we deduce that

or;

dwe 81/1‘

(3.11) (2)G(x,2) do, = O(c?).

Expanding the kernel G in a Taylor series about the origin, in the second term in the

right—hand side of (3.10), yields

Oou  Ov~
/(’)ws <8Vx * a—Vy) G do

E/M (5;: (ey) + ?T;(y)) G(ey, z) doy
60.5) [ (e + G- doy

ou ov~
2 3
+e*V,G(0, 2) /aa; (3% (ey) + —81/y (3/)) ydoy +O0(e”).

u Ov~
05 OV (63/) Oy /aa; 31/y (Ey) Oy , we obtain

Ou dv” _ .2 Ju ov~ 3
/aws (ayx + a—yy) Gdoy =e"V.G(0,2) /aw (6% (ey) + 3—%(@/)) ydo, + O(c?).

Using the transmission conditions of v across dw., and inserting the above identity

and (3.11) in (3.10), leads to

Since

Jv

y

ug(z):/ (gG—uain)+62(1—k)VxG(0,z)/

ow

(y)) y+0(e%).
Combining the last equation and (3.4), the representation formula for u. becomes
1—k

(3.12) ue(z) = / (9G — uaﬁ—G) doy +e?——V,G(0, 2) - AV,u(0) + O(e%),
19 81/1‘ k
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where the coefficients of the matrix A are given by

)™
1 =k e — doy,.
(3.13) ai; /M (1/] + v y doy,

Next, we determine A explicitly from the expression of the polarization tensor M
and from the asymptotic behavior of (), j = 1,2. The jump condition 3g0(j)+/31/ —
ko)™ Jov = (k — 1)v;, satisfied by ©U) across 0%, shows that

Hl)™ 1 Hpli)* 1—k
—ydo, = — ——y d —_— yp d
& 3”@/ ey k Jog 3”@/ wdoy+ k /aa; ri Aoy,

and as ©Y) is harmonic in & and in R?\ @, it follows that

doy = 1 do, — Dy, d / Dy d
[ S = i (], Torwaes= [, ey} [ i,

) dplh) ) dplh)
1 _ ") /
R (/(’)BR vy 4 /(’)BR 4 Vl) * on  Ovy

Consequently, inserting identity (3.15) in (3.14),

)™ 1 ) dplh) )
= ydo, = —— 1 do, — Dy de, | — / y d
o5 8I/y Y Aoy r—1 R1—>Hc10 /(’)BR 81/3/ Y Aoy /(’)BR @IV A0y o Viyp A0y,

(3.16)
and substituting (3.16) in (3.13) yields

k ) dplh) :
a;; = —— lim (/ y do —/ go(])yl doy | .
I k—1R—> 8Br 61/3/ Y dBRr Y
The right-hand side can be computed from the asymptotic behavior of the functions

Sp(j)’j = 1,2, and it follows that

k k
R =
with m;; as in (2.12) or (2.19).

Finally, Green’s formula applied to the background potential shows that

oG
U z2) = gG—ua— dO’x,
(2) /m< -

so that for all z € QN {dist(z,Q.) > do}, (3.12) becomes

ue(z) — u(z) = /(rm(u(x) — ug(x))g—G doy —e*V,G(0,2) - MV, u(0) + O(c%).

xr

(3.14)

(3.15)

12

ar; = my; 1§Za.7§2a

When z converges to 0f2, the double layer potential / (u(x) — ua(x))g—G do, con-
l9) Vg
verges uniformly on 0 to
1 0G
) o)+ [ (o) w5 e

By continuity, we obtain the desired formula (3.9). ]
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4. Convergence properties of the polarization tensor and Vw as § — 0.

4.1. Preliminaries. We again consider the configurations of paragraphs 2.1 and
2.2 : two circular inclusions of radius 1, centered at (£(1 4 ¢),0), with & > 0. The
inclusions are filled with a material of conductivity & and the rest of the plane has
conductivity 1. Let ws denote the potential solution to

(4.1)

. _ .
{ div(a(#)Vws) = 0 inR 5> 0.

w ~ xy as|z|— oo.

When § — 0, ws converges to wy and thus we expect that the polarization tensors Mg
converge to My. This is however not obvious given the expressions of the series (2.12)
and (2.19). We recall that the polarization tensor Ms = (m;;)1<; <2 is equal to

2n
164> 5
(4.2) mj = 16a ﬂ;n/\_i_ T 351

-0 k+1
3 and A = % This series converges uniformly for
fixed A and for 0 < p < pg < 1. When § — 0, p — 1 and summing the series formally

where a = \/6(2+9), p= a
a

. . . 1 n
amounts to summing the divergent series Arl ;(_1) n.

The series that give the coefficients of the polarization tensors are very similar to
the series that express the values of the gradient of ws at the midpoint between the
inclusions. The same asymptotics may then be performed on the series for Vws(0).

In the context of antiplane shear, for instance, aVw represents the stresses. Most
linear fracture models suppose that the fracturing will occur at points with extreme
stress concentrations. The symmetries of our configuration imply that Vw is extremal
at the origin, which explains the interest of computing Vw(0) for close-to-touching
inclusions. In fact, in this case, the current concentrates in a narrow channel. The
gradient of the potential could be very large even if the potential is still smooth.

The behavior of the potential gradient, near points where two circular fibers are
close or touch, was studied in [6], and shown to remain bounded independently of the
distance between the inclusions. This regularity result was then generalized to the
case of arbitrary 1% inclusions by YanYan Li and M. Vogelius [18] and to strongly
elliptic systems by Yan Yan Li and L. Nirenberg [17]. The bounds on the gradient may
degenerate as the conductivity contrast becomes large [6]. Our calculations provide
an example where we can study precisely how the gradient blows up with the contrast.

The function ws is the real part of a piecewise analytic function f given by

(4.3) f(z) = =iz + 91(6) = 1 (1/€),

. . . . Z—a .
for a point z outside the inclusions where £ = T a From Lemma 1, the function g;
z+a

has the following expansion
91(€) = g1(0) + > _bs&"  when [¢] < p*
n>1

2n

A+p2n

where b,, = 2a
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To compute the gradient of the potential, we differentiate (4.3) at z =0

2a
(Z + Cl)2 /z=0

F1(0)=—i+ (9'(€) + 1/ (1/€)) o,

=—i|1+4/a ) (~1)"nb,

n>1

2n

: n P
4.4 =—:|1 -1
(4.4 DN s

We study the behavior of My with the techniques developed for singular asymp-
totics by C. Callias and X. Markenscoff [9, 10], and expand the series (4.2) and (4.4)
in terms of s = —=2Log(p) ~ 2v/24.

2n
Let us fix € > 0. Our first step consists in rewriting the series Sy = Z n—F
n>1 A + p2n
2n -
and S} = ;(—1)’%#, when p < 1, in the form
ne—sn
Sp = ———;7 cos(mnp)

=1 Ate

1
(4.5) = 2—/ H(sz,1/z) cos(npz) cot(rz)dz p=0,1,

tJe

where C is the contour {Im(z) = +¢,1/2 < Re(z)} U{Re(z) = 1/2,—e < Im(z) < &}

and H(sz,1/z) = A4c—=- This follows from the analycity of z — H(sz,1/z) in each

rectangle R, = [n—1/2,n+ 1/2] x [—¢,¢] and from the Residue Theorem :

% - H(sz,1/z) cos(npz) cot(rz)dz = Ind (IR, )Res (H (sz,1/z) cos(npz) cot(mwz), Ry)
= (_jr)np H(sn,1/n).

Moreover, since
14+ e—Ziﬂxe:I:Zﬂ'a
|cos (mp(x + ig)) cot (m(x + ig))| < cosh(mwep) |W|

1 + 6271'5

S COSh(?TEp) m,

one easily checks that the integral in (4.5) is well defined.

To expand the integral with respect to s, we introduce a smooth cut-off function
x(z), which is equal to 1 for |z| > 2 and which vanishes for |z| < 1 and we split the
integral into

205, = /C(l —x(7)) H(sz,1/z) cos(mpz) cot(nz)dz

+ / x(z) H(sz,1/z) cos(npz) cot(rz)dz
Cn{Im(z)>0}
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+ / x(z) H(sz,1/z) cos(npz) cot(rz)dz
Cn{Im(z)<0}
(4.6) =L+t +1.

Clearly, the first term can be expanded in s as the integrand is a smooth function and
integration is performed on a compact set. The result is

Iy = /C(l —x(2)) H(0,1/z) cos(mpz) cot(mz)dz + O(s)

1

4. -
(4.7) At /e

(1 — x(z)) z cos(mpz) cot(mz)dz 4+ O(s).

The difficulties lie in the remaining terms, which, after the change of variables
z = 1/x % ie, can be rewritten in the form

(4.8) 2is% It = / x(1/x) hy(s/x,s) ¢x(x)dx,
0
where we have set
5 ] e—y:Fisa
hi(y,s) =y (yil&f)m
éx(x) = cos (mp(l/x £ ie)) cot (r(1/x £ ie)), p=0,1.

We focus on I~ (omitting the subscript for simplicity). Our goal is to expand I~
with respect to s. The results on singular integrals of C. Callias and X. Markenscoff
show that such an integral can be expanded up to order n in s, provided the integrand
is in C**! and satisfies appropriate decay conditions.

In the expression of I, the function x(1/z)h(s,s/x) is smooth up to = 0, but
¢ 1s smooth only for # > 0. To cast /= in a suitable form, we regularize ¢ in the
following way: we define ¢(1y by

and, for n > 1, we denote by ¢, 1) the regularization of ¢(,). We can then transform
I~ by integration by parts

(2is®) I~ = /000 x(1/x)h(s/x,s) Oy [xqb(l)(x)] dx
= [X(l/x)h(s/x, z) x(/)(l)(x)];o — /000 Ox [x(1/x)h(s/x,s)] xp(1)(x)dx
= | 0, = 00 W12l 10 )

Notice that the boundary terms in the above computation vanish, because x(1/x) has
compact support in & and because of the exponential factor in 4. Integrating by parts
again, we obtain, for n > 1

(4.9) (2is®) I~ = /Ooo(yﬁy —28,)" [x(1/2)h(y, 5)]/y:s/x P (n)(x)dz.
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Proposition 5 below, shows that ¢, is indeed of class C"~'. The integrand has the
form H(x,y,s) = (y0y — ©0:)" [x(1/x)h(y, s)] d(n)(x).

THEOREM 2. [9] Let H satisfies:

i/ H e (0,00) x [0, )

it/ M has a compact support in x uniformly in y,

it/ for every triple (B,q,r) of non-negative integers, for every y > 0 and for

0 < s <1,
107020, H (y, 5)| < Hp g (v) 771,

xYyYs

1
with/ Hp 4 (1/t)dt < o0,
0

then, the following asymptotic expansion holds

| I—j
410/ H(x,s/z,s)d :ZS—{AJ—I—ZAJ "+ In(s Z:B%1 }—I—RH_l
where Rip1 = O(s't1),

Al :/ M (x,0,0)dx
0

m—1
Al = UL (M) + Li, (M) + Bl Y 1/A
A=1
. 1 .
Jj m—1 am 9j
Bl = T wax araI#(0,0,0)
. 1 o
J — m am 97
A1) =~ 1)'/0 n() OO BT H (2,0, 0) da
. 1 0
L0 =~ S w0 [enari L 0.17)] de
0

and where R’ a1 18 the remainder in the Taylor series of 0] H(z,y,0) about y =0 at
order m, t.e.,

Rjyyi(,y) = 0 (2, y,0) — /\'3;‘3‘77{(36 0,0).
A=0

The next two propositions show that the above Theorem applies in our context.
PROPOSITION 4. The function F(x,y,s) = x(1/x)h(y, s), satisfies
i/ FeC®RT xRt x R1),
it/ F has compactl support in x,
itt/ For every triple (B,q,r) of non-negative integers, there erists a function
Hg 4, (y) such that for x,y >0,
07030, F (2,9, 5)] < Ha,g,r ()37,

xYyYs

1
and such that/ Hp o (1/t)dt < 0.
0
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In the terminology of [10], F is of extended class B.

Proof: The first and second point result from the exponential in the numerator of
h and from the compact support of x(1/x) in x. Since x(1/z) is smooth and is
identically equal to 1 when 0 < z < 1, it suffices to show that for every couple (¢, r)
of non-negative integers and for every y > 0,

|(y9y) 105 h(y, s)| < Her(y),

1
with / H,,(1/t)dt < co. One easily checks that (yd,)?0; h(y, s) has the form
0

e~V p (y’e—y’ (A + e—(y+i86))—1) ’
where P is a polynomial, so that one can choose H ,(y) = e Y|P]. [ ]

PROPOSITION 5. The regularizations of the functions ¢(x) = cos(pr(l/z —
ie))cot(m(1/x — ic)), where p = 0,1, satisfy

(i) ¢>(n) € C”_l([o,oor)n),

(ii) V0O < m < n, (/)(n)(O) = 0.

gt =0
(it)) YO <n, ¢m(0) = { (;Z i}fppz_l.

Proof: (See also [10]). The function ¢ has the form

ezn’/x+ﬂ'a 4 e—zn’/x—ﬂ'a

(f)(l‘) — 2/2 (e(iﬂ'/x+ﬂ'a)p + e(—iﬂ'/x—ﬂ'a)p)

eim/ztme _ o—im/z—me
e2me +e—2iﬂ'/x

—i/2 (e(iﬂ'/x-l-ﬂ'a)p n e(—i?‘r/x—?‘ra)p)

e2me _ o—2in/w
_ eipﬂ'/xf_l_ ((e—m/x)z) 4oy ((e—m/x)z) ’

where fi(Z) and f_(Z) are analytic functions of 7, for |Z| < 1+ 5 for some n > 0
and p = 0, 1. These functions have a power series expansion that converges absolutely
in Z, for |Z| < 1+ 1, so that ¢ can be rewritten

(411) g/)(m) = Zf+,q6_”(2q_p)/x 4 f—,qe_iﬂ(2q+p)/x~
q=0

Due to the absolute convergence of the series, ¢ can be regularized term by term.
It is thus sufficient to show that the Proposition applies to each term e~ 7(2¢Er)/@
p=0,1, of the expansion.
One easily checks that if ¢ € C'([0,00)), and 1) (0) =0 for 0 < j < [, then P(1)
xd

has the same properties. Expanding a function ¢ € C'([0, 00)) as Zé’:o Sp(j)(O),—' +
J!
G)(0) = —1_ ()
R(x) shows then that go(l)(O) =7 1% (0).

Further, if &« #0,{ > 0 and ¢;(z) = 2'e’®/* integration by parts shows that

(o) (y(x) =i/ [@rer () = (1 +2)(rg1) () (2)]
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from which 1t follows that
(4.12) (e1) () € CFTH([0, oo))and(gol)(i) (0) =0 forj<l+4+n-—1.

This shows (7) and (7).
Additionally, if p = 0, we deduce from (4.11) and (4.12) that

V< n, ¢(n)(0) = (f-l—,o + f—,O) = _ia
while if p = 1, (4.12) implies that V0 < n, ¢n)(0) =0. [ |
4.2. Asymptotics of the polarization tensor. First, we focus on the com-

putation of the terms of the series Sy. We seek the term of order s in (4.8), when
s = 0. After regularizing ¢ = cot(m(1/x —ic)) three times, I~ becomes

- _ /0007-[(96,3/, s)dx = /Ooo(ygy — 20,)? [x(1/2)h(y, 5)] b(0)(2)da.

e—y+isa
A + e—ytise’
4.2.1. Computation of the terms of the series. For simplicity, we denote

by o(x) the function x(1/#) and we notice that all its derivatives vanish at # = 0.
Applying Theorem 2, the integral rewrites as

where h_ = y?(y — is¢)

(2is®) 1~ = /Ooo(yay — 20:)° [0(2)h(y, 5)] )=y )0 B(3) (2) e

:Zj—]'{ ZAJS + In(s Z } O(s?)
)

= Ag+ <A0+A(1J+hl(5) 1)5+O(5

e The terms A% k = 0,1: Their expression is

A= /f(yay = 20.)° (o(2)3]h(y,0)) 1y 9 () dr-

The integrand can be rewritten in the form
3 5 '
(4.13) Z ( ¢ ) (¥9y) 10 h(y, 0) /y=0 (=1)*"9(x0,)* o P(3y(x).
q=0
The expression of h shows that 9Jh(y,0) = O(y?) for 0 < j < 1 and thus

(4.14) (y3y)?07 h(y, 0) = O(y*),

so that all the terms A‘é are equal to 0.
e The term BY : (4.13) and (4.14) show that

By = 0, [(u0y — 20.)° (0(2)h(y,0)) s 0 b3 (2) = 0.

(v,y)=(0,0)
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e The term A?, which reduces to U + L{: U} is an integral of In(z) f(z,0), where

f{) (l‘, y) = 6x6y [(yﬁy - x@x)?’(a(x)h) ¢(3)(x)](x7y):(x70)

- ( ; ) 0,(50,)h(y, 0) (=190, [(20)*~10(x) by (2)]

q=0

Again from (4.14), f{(x,0) = 0, which implies that U = 0. As for LY, we have
LY = lim {—/ RY(0,1/¢)d¢
d—0 d
In(d — 20y)3 h _ .
+ ()0, [(60, - 200 @Il 0)ospe b))

Computing dyh shows that the last term vanishes. The remainder RY in the Taylor
expansion of H(z,y,0) about y = 0 up to order y? is actually equal to H(z,y,0).

Thus, B0, 1/6) = (wd, = 20:)° (e()5555)

¢(3y(0) = —i. and since all the derivatives of o(z) vanish at x = 0, and since o(0) = 1,
we finally get

¢(3y(0). From Proposition 5,

At1 -1
A In(t A In(1 —
AlzL?:—i/ n()dt:i/ {1 =) g,
0 1—-1 0 v
. E+1 .
Since A = 1 > 1, In(1 —w), for |v] < 1/A < 1, can be expanded as a power series
in v to obtain
R N e N
A = _an_:lg/o " T dy = —znz_:l AT

4.2.2. The leading term in (4.2) . The above calculations show that the
integral /= can be expanded with respect to s as

S ey G D 1
P =522 Tw +O0)

Similar calculations yield the asymptotics of I, and (4.7), show that

So = —Sizi CU Loy,

"n S

from which we deduce the term mss of the polarization tensor

52 Ann?

2 o —1)" 2
Moy = —1671'&—2 (=1) + O(a?).
1

The same kind of computations can be carried out for my;. The results are given in

the following (recalling that a® ~ 2§ and s ~ 2v/26)
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PrOPOSITION 6. The polarization tensor Ms = (mji1)1<ji<2, of a configuration
with two circular inclusions at a distance 26 apart, satisfies

(4.15) my; = (=1)UF14 Z An2 ]l+0(\/5)

In other words, Ms converges to My, the polarization tensor of two touching discs, as

0 — 0.

4.3. Computation of Vw(0). In this case, we are interested in the term of
order s% in the series S7 i.e. in the term of order s in (4.8) when p = 1. Therefore,
we regularize ¢ five times and apply (4.10) with

%($’ Y, 5) = (yﬁy - $ax)5 [U($)h(y’ 5)] ¢>(5)(1‘),
where again all the derivatives at @ = 0 of o(x) = x(1/%) vanish.

4.3.1. Computation of the terms of the series. Applying Theorem 2, the
integral I~ rewrites as

(2is%) [~ = /0 Oo(yay — 28:) [o(2)h(y, )], =y /0 S(5) ()

:Zj—]'{ ZAJS + In(s Z } (54).

m=1

e The terms B% : We recall that

By = it 0 (00, — 920" (0(0)h(0.0)) . 9059

m ( (z,y)=(0,0) ’

By Proposition 5, 3;”_141)(5)(0) =0, for 0 <m—1 < 5. Since 0 < j < 3 and
1 <m < 3 —j, one easily checks that BJ, = 0.

e The terms LJ,: These terms are interpreted in the following sense

D= lim(= [ € or R 0.1/)d¢

h;(f!l) ay =ty {(yﬁy = 20:)° (0(2)0]h(y,0)) ), _, /. “5(5)(96)} g

(v,y)=(0,0)

Again, Proposition b shows that the last term in the above expression vanishes. Using
Leibniz’s rule, we rewrite

B =3 () [@ay)q%(y,o)—z%j—y,(yay) o, 0)]
(_I)S—qﬁgn—l [(l‘@ )5 q0_¢ ( )]

We conclude by Proposition 5, that since 3;”_141)(5)(0) =0,for 0<m—1<5,

(@ B ew) =0,
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and that all the terms L7, are equal to 0.

e The terms A}: Their expression is

A) = /f(yay —20:)° (o(2)3h(5,0)) g 915 (@),

where the integrand can be rewritten in the form

5

Z( 2 ) (¥0y) 07 h(y,0) py=0 (—1)° "% (20:)° "0 ¢ sy ().

q=0
The expression of h shows that 97 h(y,0) = O(y?) for 0 < j < 3 and thus
(¥9y) 102 h(y, 0) = O(y*),

so that all the terms A‘é are equal to 0.
-1

ml(m—1

Finle,y) = 0707 [(y0y — 20:)° (0(2)0LR) 6(5) ()] (1 )= 09

o The terms UJ,: Their expression is

)] /0°° In(x) f},(x,0) dx, where

=30 () o5 w0 110h00.0) (-1)700E [(100)° 00 e) s )]

It is easily checked that
3y (y0y) 0L h(y, 0) jy=0 =m0, 0L h(0,0),
so that the term fJ, simplifies to
F (2, 0) = 97701 h(0,0) 0 [(m — 202)°0(x) ¢(5) ()] -
From the expression of A we compute

8yh(0,0) = 0, 9;h(0,0) = 0, G5h(0,0) = ——

—2te
2 _ 2 —
0,8yash(0,0) - A—|—1’6y88h(0’0) -

8,8, h(0,0)

thus all the UJ,’s vanish but U4 and UJ.

23

4.3.2. The leading term in the series S; . The above calculations show that

the integral I~ can be expanded with respect to s as
_ 1
I~ = 23 (U§53 + U2253) + O(s)
1 Y 5
=ir1 (—31/0 In(x)dy [(1 — 203)°0(x) qb(g,)(x)] dx

—I—ia/ooo In(2)07 [(2 — 202) 0 (x) ¢(5)(x)] da:) + O(s).
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Similar calculations yield the asymptotics of I7T:

It = A%l (‘3i /OOO In(2)0, [(1 = 20:) 0 (x) f(s)(x)] da

—ia/ooo In(2)07 [(2 — 20:)°0(x) ¢(5y()] da:) + O(s).

Recalling (4.7), we finally arrive at

Sy = ALH (/Cu — x(2)) 2 cos(rz) cot (mz)dz

_6i/000 ln(x)ﬁx [(1 - l‘@x)sx(l/x) ¢(5)(1‘)] dl‘) +O(S).

To check that the leading term in the expansion does not vanish, notice that
Theorem 2 can also be used to compute the series

S/ — Z(_l)nne—sn
n>1
1 /
=— [ H'(sz,1/z)cos(mz) cot(nz)dz,
21 c
where C'is the same contour and where H'(sz,1/z) = ze**. Comparing the terms
in the expansion for S; and S’ shows that

S/

S e

O(s).

On the other hand, S’ can be computed explicitly as the derivative of a geometric
series, and is equal to

—S

=" = —1/4+0(5).
(T+e) /4+06")
-1
Thus S; = ————+0(s). Recalling (4.4) and the relationship between the complex

4(A+1)
potential and the function w, we conclude that
ProOPOSITION 7. Consider two circular inclusions of conductivity k, of radius 1,
at distance 20 apart. Assume that k < 1, that w solves (4.1) (weakly conducting
inclusions, transverse current). Then the gradient Vw at the midpoint between the
mnclustons satisfies

5_:(0’0) = 0(V9) 5—2(0,0) = 1/k+ O(V5).

In particular, the gradient blows up linearly like k=1 when k — 0.
A similar results holds (considering harmonic conjugates) for strongly conducting

inclusions (k > 1) when w ~ z; at infinity : in this setting the #; component of Vw
blows up like & as k — oo.
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5. Numerical results. In this part, we describe some computational experi-
ments that attempt to quantify the error

oG
e1(z) = ue(2) —u(2) + 2/ (us(z) — u(x))a— dog + 262va(20, z) - MsVgu(zo),
l9) Vg

on 052, where, u. is the voltage potential in presence of the imperfections, u is the
background potential, and the polarization tensor M is equal to

=)

ma

where @ is the rotation matrix of angle # between the x;—axis and the line (z;22) and
m;;’s are given by (2.12) or by (2.19). We define also the remainder

1<<k

Ik
)
)

Vu

FiG. 5.1. level lines of ea/e1, e = .1, 2 < k <50, .001 < &b <.011

ea(z) = ue(2) —u(z) + 2 ” (us () — u(x)) g}i (z,z)doy
—2me? (1 _T_ z) ZVxG(zj, z) - Veu(zj), =z €099,

between the true solution u. and the asymptotic expansion (1.4). When the distance
between the two fibers and the contrast vary, we compare the remainder terms e;(z)
and ez (z), to find out when the asymptotic formula (3.9) is more accurate than (?7),
t.e. when can one consider the two inclusions as a single inhomogeneity rather than
two well-separated objects. In all our computations, we use the background voltage
potential u(z) = 21 corresponding to the boundary current ¢ = v1. We also choose
the background conductivity y(x) equal to one. The domain € is the unit ball and
the inclusions are disks z; + ¢B(0,1).

To generate the data on 99, we solve the direct Neumann problem (1.1) using P!
finite elements. The boundary of each inclusions is meshed with 80 uniformly spaced
points, while the outer boundary is discretized with 300 points.
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Figure 5.1 shows the level lines of the ratio es/e; for two inclusions of radius
€ = 0.1, centered along the z;-axis, as we vary their conductivity £ and the separating
distance £6 between them, 2 < k£ < 50 and .001 < &§ < .011. As expected, the
remainder ey is smaller than es; and our asymptotic expansion is more accurate in this
case. In fact, for this configuration, which was analyzed by Keller in [15] and by L.
Borcea and G. Papanicolaou in [7], the current flow is channeled horizontally through
the fibers (there is a strong flow channeling through the gap between the fibers along
a path which is an horizontal branch connecting the two fibers). Therefore, there is
a strong interaction between the two inclusions which increases when £ goes to zero
and k to infinity.

@ (b)

Uk

distance distance

Fi1c. 5.2. (a) level lines of ue — ufea, (b) level lines of ue — u/ey
e=., 2<k<50, 0.001 <ed<0.011

Fig. 5.2(b) shows that expansion (3.9) is a good approximation of the potential
u(z) : the error u. — u is at least 40 times e;. For the same configuration, as was
already noted in [12], Fig. 5.2(a) shows that for £ >> 1, u. —u and ey are of the same
order and the expansion (1.4) cannot be used to locate the inclusions with sufficient
accuracy.

When the fibers are centered along the zs-axis and k < 1, the configuration is the
harmonic conjugate of the previous one. The electric current is concentrated in the
channel between the fibers. However, in this case, it flows horizontally in the gap,
avoiding the fibers. The interaction between the inclusions is weak and formula (1.4)
gives results of the same order as the expansion ey, as is shown in Figure 5.3. If & > 1,
the interaction between the inclusions is also weak, and e; and e; are of the same
order (Figure 5.4).

Finally, in Figure 5.5, we plot the level lines of e;/es when 2 < k < 50 and
0.01 < &6 < 0.1, for fibers of radius 0.05. We remark that the ratio e; /es increases as
the radius of the fibers decreases and our formula is increasingly more accurate than
the expansion (1.4).
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1>>k

L0

.004 006 008 K 012

distance

FiG. 5.3. level lines of ea/e1, e = .1, .1 < k< .8, .001 < &b <.012

1<<k

OO

Fi1G. 5.4. level lines of ea /e, e = .1, 3 < k < 50, .001 < &6 < .012
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