
ASYMPTOTIC FORMULAS FOR THE VOLTAGE POTENTIAL IN ACOMPOSITE MEDIUM CONTAINING CLOSE OR TOUCHINGDISKS OF SMALL DIAMETERM. F. BEN HASSEN � AND E. BONNETIER yAbstra
t. We derive an expansion of the voltage potential in a 
omposite medium, made of
ir
ular 
ondu
ting in
lusions of small diameter " embedded in a homogeneous matrix phase, whenthe inhomogeneities are strongly intera
ting, i.e., when they are very 
lose or even tou
hing. Theasymptoti
s of the voltage potential depend on the position of the in
lusions and on the 
ontrast be-tween the in
lusions and matrix 
ondu
tivities via a polarization tensor. We are espe
ially interestedin determining an analyti
al expression of this tensor, in order to study how the terms in the expan-sion depend on the inter-in
lusion distan
e, the in
lusion size, and the 
ondu
tivity 
ontrast. Wepresent numeri
al tests that 
ompare the true voltage potential to our asymptoti
 formula when thein
lusions are treated as a single inhomogeneity, and to the asymptoti
 formula when the in
lusionsare well-separated.Key words. Asymptoti
 expansions, polarization tensor, 
onformal mappingAMS subje
t 
lassi�
ations. 35J25, 74E301. Introdu
tion. Let 
 be a a bounded smooth domain of R2 whi
h representsa 
omposite medium,made of 
ondu
ting in
lusions embedded in a 
ondu
ting matrixphase. The voltage potential in 
, denoted by u", is the solution to8<: div(
"(x)ru") = 0 in 

" �u"�� =�
 = g :(1.1)For simpli
ity, the matrix phase is assumed to be homogeneous and 
"(x) = 1 in thisphase. The jth in
lusion, of 
onstant 
ondu
tivity 
" = kj, has the form!j" = "Bj + zj ;(1.2)where Bj is a bounded smooth domain of R2 that 
ontains the origin. We assumethat the 
enters of the in
lusions zj are far from the boundary, i.e, that dist(!j" ; �
) >d0 >> " for some d0 > 0. The applied boundary 
urrent g satis�es Z�
 g d�x = 0,and � denotes the unit outward normal to �
.When the number of in
lusions is relatively small, u" is 
lose to the solution u tothe homogeneous PDE 8<: �u = 0 in 
�u�� =�
 = g :(1.3)To guarantee the uniqueness of the solutions to the problems (1.1) and (1.3), we
hoose the potentials u" and u su
h that Z�
 u" d�x = Z�
 u d�x = 0.�LAMSIN, E
ole Nationale d'Ing�enieurs de Tunis, BP 37, 1002 Tunis le Belv�ed�ere, Tunisie,(fahmi.benhassen�enit.rnu.tn).yLaboratoire de Mod�elisation et Cal
ul, LMC{IMAG, Universit�e Joseph Fourier, BP 53, 38041Grenoble 
edex 9, Fran
e, (Eri
.Bonnetier�imag.fr).1



2 M. F. BEN HASSEN AND E. BONNETIERAn asymptoti
 expansion of u", when the inhomogeneities are assumed to be well-separated from ea
h other and well-separated from the boundary, has been derivedby D.J. Fengya, S. Moskow and M. Vogelius [12℄. In this 
ase, the in
lusions are notstrongly intera
ting and the expansion takes the formu"(z) � u(z) + 2 Z�
 (u"(x)� u(x)) �G��x (x; z) d�x= 2"2 mXj=1 1� kjkj rxG(zj ; z) �Ajrxu(zj) +O("5=2); z 2 �
 ;(1.4)where G is the fundamental solution of the Lapla
ian in 2-D, m is the number of�bers. The polarization matrix Aj is a symmetri
 matrix asso
iated with the j-thin
lusion. It only depends on the shape and on the 
ondu
tivity of the in
lusion, and
an be 
omputed from the 
orre
tions to the voltage potential at in�nity 
reated bythe res
aled j-th in
lusion embedded in an in�nite matrix phase.This asymptoti
 formula is the basis of an eÆ
ient algorithm for 
ondu
tivityimperfe
tion identi�
ation [5, 12, 13, 3℄ and has been generalized to elasti
ity and tothe Maxwell system [4, 21, 1℄.When the in
lusions are dispersed, well-separated and when their shape is regular,their e�e
t on the potential u" 
annot be too drasti
: it is a pie
ewise smooth fun
tion,its gradient bounded. Su
h a pi
ture 
ould deteriorate when some in
lusions areallowed to get 
lose, forming narrow 
hannels where 
urrents 
ould 
on
entrate. Thepotential is still a pie
ewise smooth fun
tion (it globally has a C1;� regularity), butthe values of its gradient 
ould be mu
h larger [18, 6℄. These high gradients arethe sour
e of great diÆ
ulties in the numeri
al determination of the potential. Ana

urate 
omputation of 
harge densities would require millions of Fourier 
oeÆ
ientsin a multipole expansion, as noted by H. Cheng and L. Greengard [11℄, who proposea hybrid numeri
al method whi
h 
ombines multipole expansions and the method ofimages. The same situation arises in elasti
ity where nearly tou
hing in
lusions 
ould
reate zones of large stresses whi
h 
ould potentially lead to fra
ture. Thus, it 
ouldbe interesting to develop algorithms that dete
t 
lusters of in
lusions from boundarymeasurements, whi
h 
ould be used to 
ontrol the fabri
ation of 
ertain 
omposites.The goal of this work is to study a model situation when 2 
ir
ular in
lusions, ofdiameter " and at a distan
e Æ" from ea
h other, are intera
ting. We investigate howthe asymptoti
 formula (1.4) is modi�ed. We are espe
ially interested in the resultingpolarization tensor. In our parti
ular geometry the solution to the auxiliary PDE,from whi
h the tensor is 
omputed, 
an be represented as a series [8, 18℄ (see also [16℄where the so{
alled Added Mass tensor is 
omputed as a series for two tou
hingdisks). In a re
ent work, H. Ammari, H. Kang, E. Kim and M. Lim [2℄ derived anasymptoti
 expansion for the voltage potential when Lips
hitz in
lusions are 
loselyspa
ed and showed that the polarization tensor of su
h 
luster 
ould be representedby an equivalent ellipse. In this analysis, however, in
lusions are not allowed to tou
h.In the parti
ular 
ase of disks, these authors used multiple re
e
tions to derive a seriesrepresentation of the polarization tensors.In the 
ases of 
lose or tou
hing disks, we are able to analyze in a pre
ise man-ner the in
uen
e of the di�erent parameters : distan
e between in
lusions, 
ontrastbetween the 
ondu
tivities of the in
lusions and the homogeneous medium. In parti
-ular, the series that de�ne the polarization tensor formally be
omes singular as Æ ! 0.Using asymptoti
s of singular integrals [9, 10℄, we show however that the series 
anbe expanded and 
onverges to the polarization tensor of two tou
hing in
lusions (as it



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 3should). The expression of these series is similar to the expression of the gradient ofthe potential at the midpoint between the in
lusions. Thus, we use the same kind ofasymptoti
s to study how the gradient of the potential blows up with the 
ondu
tivity
ontrast as the in
lusions get nearer. We also show numeri
al tests 
on
erning thea

ura
y of our asymptoti
 expansion that treats the 2 in
lusions as a single inhomo-geneity. In parti
ular we investigate when the true solution u" is better approximatedby our expansion, than by the expansion (1.4), when the in
lusions are 
onsidered tobe well-separated.The paper is organized as follows: In Se
tion 2, we 
ompute the polarizationtensors 
orresponding to two nearly tou
hing and two tou
hing disks. Se
tion 3 isdevoted to showing the asymptoti
 expansion of the potential u" in our parti
ulargeometry. The argument 
losely follows [12℄. Se
tion 4 presents the asymptoti
s ofthe series that de�ne the polarization tensor and the potential gradient when Æ ! 0.Finally, in Se
tion 5 we present numeri
al results about the a

ura
y of our asymptoti
expansion.2. Computation of the polarization tensor. We 
onsider two 
ondu
tingdisks B1; B2 of radius 1, embedded in an in�nite matrix phase. The 
ondu
tivity ofthis medium is 
(x) = 1 in the matrix phase and 
(x) = k 6= 1 in the in
lusions. Letw denote the solution to div(
(x)rw) = 0 in R2;(2.1)whi
h satis�es the far-�eld boundary 
onditions8>>>><>>>>: w(x1; x2) � 2Xj=1 
jxj; as jxj = j(x1; x2)j ! 1;w(x1; x2)� 2Xi=1 
jxj ! 0; as jxj ! 1:(2.2)Equivalently, w 
an be writtenw(x1; x2) = 2Xj=1 
j(xj + '(j)(x1; x2));(2.3)where the fun
tions '(j) 
an be shown to de
ay at in�nity as'(j)(x) = � 12� 2Xl=1 mjl xljxj2 +O� 1jxj2� ; as jxj ! 1:(2.4)The matrixM = (mjl) is 
alled the polarization tensor or the P�olya-Szego matrix [20℄.Expli
it formulas for M have been established in parti
ular geometries (a 
avity, asingle rigid 
ir
ular or ellipti
al in
lusion) [19℄.The fun
tion w may also be viewed as the x3{
omponent of the displa
ement inthe transverse shear loading of an in�nite elasti
 matrix that 
ontains two 
ylindri
alin
lusions Fj, with axes parallel to x3. The 
onstants 
j in (2.2) then 
orrespondto a 
onstant stress{�eld applied at in�nity 
j = �xjx3 ; j = 1; 2. Be
ause of thisinterpretation of the PDE (2.1) we sometimes refer to the in
lusions as `�bers'.



4 M. F. BEN HASSEN AND E. BONNETIER2.1. The 
ase of two 
lose in
lusions . We 
onsider the geometry illustratedin Figure (a). It 
onsists of two 
ir
ular in
lusions, 
entered at (�1(Æ + 1); 0), Æ > 0,of radii 1 and 
ondu
tivity k. In order to simplify the 
omputations, we restri
tourselves to the 
ase when 
1 6= 0 and 
2 = 0 at in�nity (i.e. �x1z = �0 and �x2z = 0 inthe plane shear problem), i.e., we only present the 
al
ulation of the �rst line of thepolarization tensor MÆ. The remaining 
oeÆ
ients 
an be 
omputed in an analogousfashion.To evaluate the matrix MÆ , we introdu
e the 
omplex-valued fun
tion f(z), z =x1 + ix2, su
h that w = 
1Ref:(2.5)This fun
tion is analyti
 in the matrix and in the �bers, and satis�esf � z; when jzj ! 1:(2.6)The symmetries of the geometry and the uniqueness of w impose thatw(x1; x2) = �w(�x1;�x2) = w(x1;�x2);from whi
h it follows that w(0; x2) = �w�x2 (x1; 0) = 0 and Imf(0) = 0, hen
ef(z) = �f(�z) = f (z):(2.7)Let fM and fF denote the values of f in the matrix and in the right-hand �ber B1,respe
tively. A

ording to the interfa
e 
onditions, Ref and the 
onormal derivative
(z) ��� (Ref) are 
ontinuous a
ross �B1. Due to the Cau
hy Riemann equations, thejump 
onditions satis�ed by w a
ross �B1 imply that Ref and 
(Z) ��� (Imf) are
ontinuous a
ross �B1, where �=�� denotes the tangential derivative. We then haveRe fM + iIm fM = Re fF + ikImfF ; along �B1;(2.8)where i2 = �1.Let us 
onsider the 
onformal mapping � = z � az + a , where a = pÆ(2 + Æ), whi
h
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S.
δsends the right-hand �ber into the interior of a 
ir
le C1, 
entered at � = 0 and ofradius � = a� Æa+ Æ , the left-hand �ber into the exterior of a 
ir
le C2, 
entered at � = 0



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 5and of radius 1=�, while the matrix phase is transformed into the annulus of radii� < j�j < ��1, bounded by the 
ir
les C1 and C2 [8℄. Therefore we 
an writefM = z + gM (�) = a1 + �1� � + gM (�);(2.9)where gM is an analyti
 fun
tion in the annulus. Using the Cau
hy integral formula,gM 
an be de
omposed asgM (�) = g1(�) + g2(�); � < j�j < ��1;where g1(�) = 12i� ZC2 gM(�)� � � d� for j�j < ��1andg2(�) = � 12i� ZC1 gM (�)� � � d� for� < j�j:Using the symmetry properties (2.7), we havegM (�) = gM (�) = �gM (1=�);hen
e, g1(�) = g1(�), g2(�) = g2(�) and g1(�) = �g2(1=�). Identity (2.9) be
omesfM (�) = a1 + �1� � + g1(�) + g2(�)= a1 + �1� � + g1(�) � g1(1=�);(2.10)where g1(�) is analyti
 for j�j < ��1.In order to 
ompute the 
oeÆ
ients of the tensor MÆ, we seek an expansion offM (�) as a power series of �. To this end, the following Lemma gives us a represen-tation of the analyti
 fun
tion g1 in the ball B(0; ��1).Lemma 1. [8℄ The fun
tion g1 has the following expansiong1(�) = g1(0) +Xn�1 bn�n when j�j � ��1(2.11)where bn = 2a�2n �� � �2n��1 and � = (k + 1)=(k � 1).We obtain then the form of MÆ :Proposition 1. The polarization tensor MÆ of two unit disks 
entered at (�(Æ+1); 0), Æ > 0, is given byMÆ = 0�16a2�Xn�1n �2n�+ (�1)j�2n Æjl1A1�j;l�2 ;(2.12)where � = (k + 1)=(k � 1) depends on the 
ontrast, a =pÆ(2 + Æ) and � = a� Æa+ Æ .



6 M. F. BEN HASSEN AND E. BONNETIERProof : Using equation (2.11) and 
hanging the variables ba
k to the z-plane, we getgM (�) =Xn�1 bn�n �Xn�1 bn�n=Xn�1 bn nXp=0Cpn(2a)p� (�1)p(z + a)p � 1(z � a)p�!= 0�Xn�1nbn1A 2a� �2zz2 � a2�+Xn�2 bn nXp=2Cpn(2a)p� (�1)p(z + a)p � 1(z � a)p�!A

ording to the d'Alembert 
riterion, the series Pnbn 
onverges absolutely whenj�j < 1. We next prove thatXn�2 bn nXp=2Cpn(2a)p� (�1)p(z + a)p � 1(z � a)p�! = O( 1z2 ):(2.13)As Cp+2n = n(n�1)(p+2)(p+1)Cpn�2, we get with q = p� 2 ,Xn�2 bn nXp=2Cpn(2a)p (�1)p(z + a)p! =Xn�2 bn n�2Xq=0 Cq+2n (2a)q+2 (�1)q(z + a)q+2!=Xn�2 bn n�2Xq=0 n(n� 1)(q + 2)(q + 1)Cqn�2(2a)q+2 (�1)q(z + a)q+2!Hen
e, ������Xn�2 bn nXp=2Cpn(2a)p (�1)p(z + a)p!������ � 2a2jz + aj2 Xn�2n2bn ����1� 2az + a ����n�2� 2a2jz + aj2 Xn�2n2bn ����z � az + a ����n�2 :When jzj is large enough, ����z � az + a ���� < 1=� and the series above is bounded by the seriesXn�2n2bn��n+2 � 2�a Xn�2n2�n+2;whi
h 
onverges when j�j < 1. Thus, Xn�2 bn nXp=2Cpn(2a)p (�1)p(z + a)p! = O( 1z2 ) asz !1. Similarly, we 
an show thatXn�2 bn nXp=2Cpn(2a)p 1(z � a)p! = O( 1z2 ), whi
hproves (2.13). In 
on
lusion,f(z) = z � gM (�) = z � 4a0�Xn�1nbn1A 1z + O( 1z2 ):



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 7We dedu
e that '(1)(x1; x2) = Ref(z)�x1 = � 12�P2j=1m1j xjjxj2 +O� 1jxj2�, fromwhi
h we obtain m11 and m12. The other 
omponents of the polarization tensor M
an be 
omputed in a similar fashion. The result ismjl = 16a2�Xn�1n �2n�+ (�1)j�2n Æjl j; l = 1; 2;Remark 1. These 
omputations 
an be generalized to the 
ase of two in
lusionsB1 and B2, with radii R1 � R2, 
entered on the x1{axis, and at a distan
e 2Æ apart.We assume that the 
ondu
tivity of the matrix phase is k0, the 
ondu
tivities of thein
lusions are k1 and k2, and that the origin lies inside the right{hand in
lusion B1,we use the following 
onformal mapping to transform �B1 and �B2 into two 
on
entri

ir
les. The mapping has the form z ! � = aza+z where a = R2E and E is de�ned byE = p(� � 1)2 � 2�2(�2 + 1) + �4(� + 1)2� ;with � = 1 + 2ÆR1+R2 ; � = R1R2 . The boundaries of B1 and B2 are mapped onto the
ir
les 
entered at 0 of radii r1 = R2EpE2+4�2�E22� and r2 = R2EpE2+4+E22 .The 
omputation of the polarization tensor follows the same lines as above. One�nds (see [14℄) mij = 2�a2k0 1Xn=�1nan
(i)n Æij :The 
oeÆ
ients 
n are given by
(i)n = D4(D1anr�2n1 + (�1)(i+1)D3a�n)Ln if n > 0
(i)n = �D3(D2anr�2n2 + (�1)(i+1)D4a�n)L�n if n < 0with Ln = (D1D2r2n2 r�2n1 �D3D4)�1, D1 = k1 + k0, D2 = k2 + k0, D3 = k1 � k0and D4 = k2 � k0.2.2. The 
ase of two tou
hing in
lusions . This 
ase deserves spe
ial treat-ment as the series appearing in (2.12) diverges when Æ = 0 (i.e � = 1).The polarization tensor is again de�ned via the solution w to (2.1), where Bj ,j = 1; 2, now denote two 
ir
ular in
lusions of radius 1 with 
enters (�1; 0). The
ondu
tivity 
(x) is equal to k 6= 1 inside Bj , and to 1 in the outside matrix phase.Again, we only detail the 
al
ulation when 
1 6= 0 and 
2 = 0, in whi
h 
ase w hasthe following asymptoti
 behavior :w(x1; x2) = x1 + '(1)(x1; x2); kxk !1;(2.14)with '(1)(x)! 0 at in�nity.A generi
 representation of solutions to su
h problems 
an be obtained as follows(see [18℄). By symmetry,w is even with respe
t to the x2{axis and odd with respe
t tothe x1{axis. Setting z = x1+ix2, the 
onformal mapping z ! � = 1=z transforms the
omplex plane 
ontaining the two unit 
ir
les 
entered at �1 onto the 
omplex plane



8 M. F. BEN HASSEN AND E. BONNETIERwith the verti
al lines Re� = �1=2 and Re� = 1=2. The interior of the right-hand
ir
le is mapped onto Re� > 1=2 and that of the left one to Re� < �1=2, while theexterior of the �bers is mapped onto the layer �1=2 < Re� < 1=2.Let � be an odd fun
tion of �, analyti
 in C n 0, whi
h satis�es also :�(�) = �(�)(2.15) j�(�)j � C�jRe�j; 1=2 < jRe�j;(2.16)for some 0 < � < j�j. We de�ne�(�) = � 2k + 1 1Xn=0��n�(n� �); if Re� < �1=2�(�) = �(�) + 1Xn=1��n (�(n+ �)� �(n� �)) ; if � 1=2 < Re� < 1=2�(�) = 2k + 1 1Xn=0��n�(n+ �); if 1=2 < Re�:(2.17)Proposition 2. The fun
tion w(x1; x2) = Re�(1=z) solvesdiv(
(x)rw) = 0:(2.18)This fun
tion is even with respe
t to the x2-axis and odd with respe
t to the x1{axis.We 
hoose �(�) = 1=� in Proposition 2, whi
h satis�es hypotheses (2.15) and(2.16) for � = 1. We next show that this 
hoi
e guarantees that the 
orresponding wgrows linearly as z !1. Indeed, in the layer �1=2 < Re� < 1=2, we have�(�) = 1� + 1Xn=1��n� 1n+ � � 1n � ��= 1� + 1Xn=1��n�2�n2 11� (�=n)2= 1� � 2� 1Xn=1 1n2�n  1Xp=0( �n )2p!= z � 2 1Xn=1 1n2�n! 1z � 2 1Xn=1 1n4�n 1Xp=0 1(nz)2p! 1z3When jzj is suÆ
iently large, the series 1Xn=1 1n4�n 1Xp=0 1(nz)2p = Xn�1 1n2�n z2(nz)2 � 1
onverges and is bounded by Xn�1 1n2�n . Therefore,�(�) = z � 2 1Xn=1 1n2�n! 1z + O(1=z3):



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 9Hen
e it follows that'(1)(x1; x2) = Re �2 1Xn=1 1n2�n! 1z + O(1=z3)!= � 12� 2Xj=1m1j xjjxj2 + O(1=jxj2);and the 
oeÆ
ients m1j of the �rst line of the polarization tensor M0 prove to bem11 = 4� 1Xn=1 1�nn2 and m12 = 0:The remaining 
oeÆ
ients of the polarization tensor are determined by seekingsolutions to (2.1) whi
h are odd with respe
t to the x2{axis, and the adequate 
hoi
eof � yields w(x1; x2) = Re(�i=� + 1Xn=1(�1)n��n� in� � � in+ ��);whi
h grows linearly as z !1. It follows thatm22 = �4� 1Xn=1 (�1)nn2�n and m21 = 0:We have thus proved the followingProposition 3. The polarization tensor M0 of two tou
hing in
lusions 
enteredat the points (�1; 0) is given byM0;ij = (�1)(j+1)4� 1Xn=1 (�1)(j+1)n�nn2 :(2.19)3. Derivation of the asymptoti
 formula. This Se
tion follows 
losely thework of D.G. Fengya, S. Moskow and M. Vogelius. Merely, we show that the proof [12℄still holds when two 
lose �bers are 
onsidered a single inhomogeneity.When the in
lusions are not degenerate (i.e. their 
ondu
tivity is kj > 0; kj 6= 1)the �rst term in the expansion of u" is the ba
kground potential u, solution to thehomogeneous problem (1.3). In fa
t, u" 
onverges strongly in H1(
) to u when "tends to 0. This is a 
onsequen
e of the following estimate of the H1(
) norm ofu" � u:Lemma 2. [12℄ There exists a 
onstant C, independent of ", su
h thatZ
 �jr(u� u")j2 + ju� u"j2� dx � C"2:Hen
eforth, we fo
us on our parti
ular geometry, i.e., that of two in
lusions ofthe form !j" = "RB + zj ; j = 1; 2;(3.1)



10 M. F. BEN HASSEN AND E. BONNETIERwhere B is the unit ball 
entered at the origin, R a dilatation parameter, and wherethe points zj are the 
enters of the tou
hing or 
lose disks. Without loss of generality,we assume that R = 1 and zj = ((�1)j"(Æ + 1); 0), Æ � 0 small. Let us 
onsider thesets ~
" = fx=" : x 2 
gand ~! = fx=" : x 2 !"gdedu
ed from 
 and from !" = !1" [ !2" by the res
aling y = x=". Let �y be theoutward unit normal to both � ~
" and �~!. We introdu
e the solutions v and v" to thetwo following PDE's:8>>>>>>>>>>>><>>>>>>>>>>>>: �yv = 0 in ~! �yv = 0 in R2n~!v is 
ontinuous a
ross �~!�v+��y � k�v���y = (k � 1)rxu(0) � �y on �~!v = � 12�rxu(0) �M yjyj2 + O( 1jyj2 ) when jyj ! 1(3.2)and 8>>>>>>>>>>>><>>>>>>>>>>>>: �yv" = 0 in ~! �yv" = 0 in ~
"n~!v" is 
ontinuous a
ross �~!�v+"��y � k�v�"��y = (k � 1)rxu(0) � �y on �~!�v"��y = 0 on � ~
"; Z�~
" v" = 0:(3.3)Remark 2. The fun
tion v is 
onne
ted to the ba
kground potential u and to thefun
tions '(1) and '(2), introdu
ed in the previous se
tion and satisfying (2.3)-(2.4),by the relation v(y) = 2Xj=1 �u�xj (0)'(j)(y):(3.4)The next two lemmas were proved in [12℄ for a domain 
ontaining a single in
lu-sion. We give the proof of these two results for our parti
ular geometry.Lemma 3. There exists a 
onstant C, independent of ", su
h thatkry(u"("y) � u("y) � "v"(y))kL2(~
") � C"2:(3.5)Proof: We de�ne z"(y) = u"("y)�u("y)� "v"(y)� 
", the 
onstant 
" being 
hosenso that Z�~! z" = 0.



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 11A

ording to equations (1.1), (1.3) and (3.3), z" solves the problem8>>>>>>>>>>>><>>>>>>>>>>>>: �yz" = 0 in ~! �yz" = 0 in ~
"n~!z" 
ontinuous a
ross �~!�z+"��y � k�z�"��y = "(1� k)(rxu(0)�rxu("y)) � �y on �~!�z"��y = 0 on � ~
"(3.6)We 
onsider the quantityZ~
" 
"("y)ryz"ryz" dy = Z~
"n~!ryz"ryz" dy + Z~! kryz"ryz" dyIf we integrate by parts the integrals on the right-hand side and use the transmission
onditions satis�ed by z" a
ross �~!, we getZ~
" 
"("y)ryz"ryz" dy = � Z�~! �z+"��y z" + Z�~! k�z�"��y z"= "(k � 1) Z�~!(rxu(0)�rxu("y)) � �yz"� "jk � 1jk(rxu(0)�rxu("y)) � �ykL2(�~!)kz"kL2(�~!)The Taylor expansion and the fa
t that u and all its �rst and se
ond derivatives areuniformly bounded in !" imply thatk(rxu(0)�rxu("y)) � �ykL1(�~!) = O("):Using the Tra
e Theorem, the Poin
ar�e Wirtinger inequality, and the fa
t that 
" isbounded we getkryz"k2L2(~
") � 
"2kz"kL2(�~!) � 
"2kz"kH1(~!)� 
"2kryz"kL2(~!) � 
"2kryz"kL2(~
");whi
h proves the Lemma.Lemma 4. There exists a 
onstant C, independent of ", su
h thatkry (u"("y) � u("y) � "v(y)) kL2(~
") � C"2:(3.7)Proof: A

ording to Lemma3, it suÆ
es to prove that kry(v"(y)�v(y))kL2 (~
") � 
".To this end, we set �" = v"(y) � v(y) � 
", where 
" is 
hosen so that Z�~
" �" = 0.Using equations (3.2) and (3.3), we dedu
e that �" is the solution to8>><>>: div(
"("y)r�") = 0 in ~
"��"��y = � �v��y on � ~
" and Z�~
" �" = 0:(3.8)



12 M. F. BEN HASSEN AND E. BONNETIERIntegrating by parts and 
hanging variables ba
k to the �xed domain 
, yieldsZ~
" 
"("y)ry�"(y)ry�"(y) dy = Z� ~
" � �v��y (y)�"(y)= "�1 Z�
� �v��y (x=")�"(x=")� "�1k �v��y (x=")kL2(�
) k�"(x=")kL2(�
):A

ording to the Tra
e Theorem and to the Poin
ar�e Wirtinger inequality, we havek�"(x=")kL2(�
) � 
k�"(x=")kH1(
) � 
kry�"(y)kL2(~
");while the asymptoti
 behavior (2.4) of '(j) implies that�v��y (x=") = O("2):We 
on
lude that kry�"(x=")k2L2(~
") � 
 Z~
" 
"("y)ry�"ry�" dy� 
"kry�"(x=")kL2(~
");and the lemma is proved.Let G denote the fundamental solution of the Lapla
ian in R2G(x; y) = � 12� log jx� yj; for x; y 2 
0; 
 �� 
0:The asymptoti
 behavior of the potential u" 
an now be dedu
ed from (3.7)Theorem 1. Let 
 be an open bounded smooth domain in R2, 
ontaining two
ir
ular in
lusions with 
enters zi 2 
, 
orresponding to the geometry (3.1). Denoteby z0 the middle of the segment [z1; z2℄. Let u" and u be the potentials, solutions of theproblems (1.1) and (1.3) respe
tively. Then, for all z 2 �
 and for " small enough,we have u"(z) � u(z) + 2 Z�
(u"(x)� u(x)) �G��x d�x= �2"2rxG(z0; z) �MÆrxu(z0) + O("3):(3.9)When the distan
e between in
lusions is equal to 2Æ" > 0, the polarization tensor MÆis given by (2.12), while in the 
ase of tou
hing �bers it is given by (2.19).Proof : We only 
onsider the 
ase of two in
lusions 
entered at ((�1)j"(Æ + 1); 0),Æ � 0, of radii " with R = 1. Let z be a point in 
 whi
h lies at a �xed distan
e daway from the �bers. From Green's formula we haveu"(z) = � Z
 u"�xG(x; z) dx= Z
n!" rxu"rxGdx+ Z!" rxu"rxGdx� Z�
 u" �G��x d�x
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 gGd�x � Z�!" �u+"��x Gd�x + Z�!" �u�"��x Gd�x � Z�
 u" �G��x d�x= Z�
 gG(x; z) d�x + (1� k) Z�!" �u�"��x G(x; z) d�x � Z�
 u" �G��x (x; z) d�x;where in the last equation we have used the transmission 
ondition �u+" =��x =k(�u�" =��x) on �!". Introdu
ing r"(x) = u"(x)�u(x)� "v(x="), where v denotes thesolution to (3.2), we haveu"(z) = Z�
(gG � u" �G��x ) d�x+(1� k) Z�!" � �u��x + �v���y �G + �r�"��x G d�x(3.10)Integrating by parts the last term in (3.10) and 
hanging the variables, we obtainZ�!" �r�"��x (x)G(x; z) d�x = " Z~!ryr"("y)rxG("y; z) dy:A

ording to Lemma 4, kryr"("y)kL2 (~
") � 
"2, and sin
e rxG("y; z) is uniformlybounded on ~!, we dedu
e thatZ�!" �r�"��x (x)G(x; z) d�x = O("3):(3.11)Expanding the kernel G in a Taylor series about the origin, in the se
ond term in theright{hand side of (3.10), yieldsZ�!" � �u��x + �v���y �Gd�x = " Z�~! � �u��x ("y) + �v���y (y)�G("y; z) d�y= "G(0; z) Z�~! � �u��x ("y) + �v���y (y)� d�y+"2rxG(0; z) Z�~!� �u��x ("y) + �v���y (y)� y d�y +O("3):Sin
e Z�~! �u��x ("y) d�y = Z�~! �v���y ("y) d�y = 0, we obtainZ�!" � �u��x + �v���y �Gd�x = "2rxG(0; z) Z�~! � �u��x ("y) + �v���y (y)� y d�y +O("3):Using the transmission 
onditions of v a
ross �!", and inserting the above identityand (3.11) in (3.10), leads tou"(z) = Z�
(gG�u" �G��x )+"2(1�k)rxG(0; z) Z�~!�rxu(0) � �y + �v���y (y)� y+O("3):Combining the last equation and (3.4), the representation formula for u" be
omesu"(z) = Z�
(gG� u" �G��x ) d�x + "2 1� kk rxG(0; z) �Arxu(0) +O("3);(3.12)



14 M. F. BEN HASSEN AND E. BONNETIERwhere the 
oeÆ
ients of the matrix A are given byalj = k Z�~! �j + �'(j)���y ! yl d�y:(3.13)Next, we determine A expli
itly from the expression of the polarization tensor Mand from the asymptoti
 behavior of '(j); j = 1; 2. The jump 
ondition �'(j)+=�� �k�'(j)�=�� = (k � 1)�j, satis�ed by '(j) a
ross �~!, shows thatZ�~! �'(j)���y yl d�y = 1k Z�~! �'(j)+��y yl d�y + 1� kk Z�~! �jyl d�y;(3.14)and as '(j) is harmoni
 in ~! and in R2 n ~!, it follows thatZ�~! �'(j)+��y yl d�y = limR!1�Z�BR �'(j)��y yl d�y � Z�BR '(j)�l d�y�+ Z�~! '(j)�l d�y= limR!1�Z�BR �'(j)��y yl � Z�BR '(j)�l�+ Z�~! �'(j)���y yl(3.15)Consequently, inserting identity (3.15) in (3.14),Z�~! �'(j)���y yl d�y = 1k � 1 limR!1�Z�BR �'(j)��y yl d�y � Z�BR '(j)�l d�y��Z�~! �jyl d�y;(3.16)and substituting (3.16) in (3.13) yieldsalj = kk � 1 limR!1�Z�BR �'(j)��y yl d�y � Z�BR '(j)�l d�y� :The right-hand side 
an be 
omputed from the asymptoti
 behavior of the fun
tions'(j); j = 1; 2, and it follows thatalj = kk � 1mjjÆlj = kk � 1mlj 1 � i; j � 2;with mjj as in (2.12) or (2.19).Finally, Green's formula applied to the ba
kground potential shows thatu"(z) = Z�
(gG� u" �G��x ) d�x;so that for all z 2 
 \ fdist(z; ~
") � d0g, (3.12) be
omesu"(z) � u(z) = Z�
(u(x) � u"(x)) �G��x d�x � "2rxG(0; z) �Mrxu(0) + O("3):When z 
onverges to �
, the double layer potential Z�
(u(x) � u"(x)) �G��x d�x 
on-verges uniformly on �
 to�12(u(z)� u"(z)) + Z�
(u(x)� u"(x)) �G��x d�x:By 
ontinuity, we obtain the desired formula (3.9).
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e properties of the polarization tensor and r! as Æ ! 0.4.1. Preliminaries. We again 
onsider the 
on�gurations of paragraphs 2.1 and2.2 : two 
ir
ular in
lusions of radius 1, 
entered at (�(1 + Æ); 0), with Æ � 0. Thein
lusions are �lled with a material of 
ondu
tivity k and the rest of the plane has
ondu
tivity 1. Let wÆ denote the potential solution to� div(a(x)rwÆ) = 0 in R2w � x2 as jxj ! 1: Æ > 0:(4.1)When Æ ! 0, wÆ 
onverges to w0 and thus we expe
t that the polarization tensors MÆ
onverge to M0. This is however not obvious given the expressions of the series (2.12)and (2.19). We re
all that the polarization tensor MÆ = (mjl)1�j;l�2 is equal tomjl = 16a2�Xn�1n �2n�+ (�1)j�2n Æjl(4.2)where a = pÆ(2 + Æ), � = a� Æa+ Æ and � = k + 1k � 1 . This series 
onverges uniformly for�xed � and for 0 � � � �0 < 1. When Æ ! 0, �! 1 and summing the series formallyamounts to summing the divergent series 1� + 1Xn�1(�1)nn.The series that give the 
oeÆ
ients of the polarization tensors are very similar tothe series that express the values of the gradient of wÆ at the midpoint between thein
lusions. The same asymptoti
s may then be performed on the series for rwÆ(0).In the 
ontext of antiplane shear, for instan
e, arw represents the stresses. Mostlinear fra
ture models suppose that the fra
turing will o

ur at points with extremestress 
on
entrations. The symmetries of our 
on�guration imply that rw is extremalat the origin, whi
h explains the interest of 
omputing rw(0) for 
lose-to-tou
hingin
lusions. In fa
t, in this 
ase, the 
urrent 
on
entrates in a narrow 
hannel. Thegradient of the potential 
ould be very large even if the potential is still smooth.The behavior of the potential gradient, near points where two 
ir
ular �bers are
lose or tou
h, was studied in [6℄, and shown to remain bounded independently of thedistan
e between the in
lusions. This regularity result was then generalized to the
ase of arbitrary C1;� in
lusions by YanYan Li and M. Vogelius [18℄ and to stronglyellipti
 systems by Yan Yan Li and L. Nirenberg [17℄. The bounds on the gradient maydegenerate as the 
ondu
tivity 
ontrast be
omes large [6℄. Our 
al
ulations providean example where we 
an study pre
isely how the gradient blows up with the 
ontrast.The fun
tion wÆ is the real part of a pie
ewise analyti
 fun
tion f given byf(z) = �iz + g1(�)� g1(1=�);(4.3)for a point z outside the in
lusions where � = z � az + a . From Lemma 1, the fun
tion g1has the following expansiong1(�) = g1(0) +Xn�1 bn�n when j�j � ��1where bn = 2a �2n� + �2n .



16 M. F. BEN HASSEN AND E. BONNETIERTo 
ompute the gradient of the potential, we di�erentiate (4.3) at z = 0f 0(0) = �i + 2a(z + a)2 =z=0 �g0(�) + 1=�2g0(1=�)�=�=�1= �i0�1 + 4=a Xn�1(�1)nnbn1A= �i0�1 + 8Xn�1(�1)nn �2n�+ �2n1A :(4.4)We study the behavior of MÆ with the te
hniques developed for singular asymp-toti
s by C. Callias and X. Markens
o� [9, 10℄, and expand the series (4.2) and (4.4)in terms of s = �2Log(�) � 2p2Æ.Let us �x " > 0. Our �rst step 
onsists in rewriting the series S0 =Xn�1n �2n�+ �2nand S1 =Xn�1(�1)nn �2n�+ �2n , when � < 1, in the formSp =Xn�1 ne�sn�+ e�sn 
os(�np)= 12i ZC H(sz; 1=z) 
os(�pz) 
ot(�z)dz p = 0; 1;(4.5)where C is the 
ontour fIm(z) = �"; 1=2 � Re(z)g[fRe(z) = 1=2;�" < Im(z) < "gand H(sz; 1=z) = z e�sz�+e�sz . This follows from the analy
ity of z ! H(sz; 1=z) in ea
hre
tangle Rn = [n� 1=2; n+ 1=2℄� [�"; "℄ and from the Residue Theorem :12i� Z�Rn H(sz; 1=z) 
os(�pz) 
ot(�z)dz = Ind(�Rn)Res (H(sz; 1=z) 
os(�pz) 
ot(�z); Rn)= (�1)np� H(sn; 1=n):Moreover, sin
ej
os (�p(x� i")) 
ot (�(x� i"))j � 
osh(�"p) j1 + e�2i�xe�2�"1� e�2i�xe�2�" j� 
osh(�"p) 1 + e2�"j1� e�2�"j ;one easily 
he
ks that the integral in (4.5) is well de�ned.To expand the integral with respe
t to s, we introdu
e a smooth 
ut-o� fun
tion�(z), whi
h is equal to 1 for jzj > 2 and whi
h vanishes for jzj < 1 and we split theintegral into 2iSp = ZC(1� �(z))H(sz; 1=z) 
os(�pz) 
ot(�z)dz+ ZC\fIm(z)>0g �(z)H(sz; 1=z) 
os(�pz) 
ot(�z)dz
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os(�pz) 
ot(�z)dz= I0 + I+ + I�:(4.6)Clearly, the �rst term 
an be expanded in s as the integrand is a smooth fun
tion andintegration is performed on a 
ompa
t set. The result isI0 = ZC(1� �(z))H(0; 1=z) 
os(�pz) 
ot(�z)dz +O(s)= 1� + 1 ZC(1� �(z)) z 
os(�pz) 
ot(�z)dz + O(s):(4.7)The diÆ
ulties lie in the remaining terms, whi
h, after the 
hange of variablesz = 1=x� i", 
an be rewritten in the form2is3 I� = Z 10 �(1=x)h�(s=x; s)��(x)dx;(4.8)where we have seth�(y; s) = y2(y � is") e�y�is"�+ e�y�is"��(x) = 
os (�p(1=x� i")) 
ot (�(1=x� i")) ; p = 0; 1:We fo
us on I� (omitting the subs
ript for simpli
ity). Our goal is to expand I�with respe
t to s. The results on singular integrals of C. Callias and X. Markens
o�show that su
h an integral 
an be expanded up to order n in s, provided the integrandis in Cn+1 and satis�es appropriate de
ay 
onditions.In the expression of I�, the fun
tion �(1=x)h(s; s=x) is smooth up to x = 0, but� is smooth only for x > 0. To 
ast I� in a suitable form, we regularize � in thefollowing way: we de�ne �(1) by�(1)(x) = 1x Z x0 �(t)dt;and, for n � 1, we denote by �(n+1) the regularization of �(n). We 
an then transformI� by integration by parts(2is3) I� = Z 10 �(1=x)h(s=x; s) �x �x�(1)(x)� dx= ��(1=x)h(s=x; x)x�(1)(x)�10 � Z 10 �x [�(1=x)h(s=x; s)℄x�(1)(x)dx= Z 10 (y�y � x�x) [�(1=x)h(y; s)℄=y=s=x �(1)(x)dx:Noti
e that the boundary terms in the above 
omputation vanish, be
ause �(1=x) has
ompa
t support in x and be
ause of the exponential fa
tor in h. Integrating by partsagain, we obtain, for n � 1(2is3) I� = Z 10 (y�y � x�x)n [�(1=x)h(y; s)℄=y=s=x �(n)(x)dx:(4.9)



18 M. F. BEN HASSEN AND E. BONNETIERProposition 5 below, shows that �(n) is indeed of 
lass Cn�1. The integrand has theform H(x; y; s) = (y�y � x�x)n [�(1=x)h(y; s)℄�(n)(x).Theorem 2. [9℄ Let H satis�es:i/ H 2 Cn ([0;1)� [0;1)) ,ii/ H has a 
ompa
t support in x uniformly in y,iii/ for every triple (�; q; r) of non-negative integers, for every y � 0 and for0 � s � 1, j��x�qy�rsH(y; s)j � H�;q;r(y) y��q ;with Z 10 H�;q;r(1=t)dt <1,then, the following asymptoti
 expansion holdsZ 10 H(x; s=x; s)dx = lXj=0 sjj! (Aj0 + l�jXm=1Ajmsm + ln(s) l�jXm=1Bjmsm) +Rl+1(4.10)where Rl+1 = O(sl+1),Aj0 = Z 10 �jsH(x; 0; 0)dxAjm = U jm(H) + Ljm(H) + Bjm m�1X�=1 1=�Bjm = 1m!(m � 1)!�m�1x �my �jsH(0; 0; 0)U jm(H) = � 1m!(m � 1)! Z 10 ln(x)�mx �my �jsH(x; 0; 0)dxLjm(H) = � 1(m � 1)! Z 10 ln(�)�� h�m�m�1x Rjm+1(0; 1=�)i d�;and where Rjm+1 is the remainder in the Taylor series of �jsH(x; y; 0) about y = 0 atorder m, i.e., Rjm+1(x; y) = �jsH(x; y; 0) � mX�=0 y��! ��y �jsH(x; 0; 0):The next two propositions show that the above Theorem applies in our 
ontext.Proposition 4. The fun
tion F (x; y; s) = �(1=x)h(y; s), satis�esi/ F 2 C1(R+ �R+ �R+),ii/ F has 
ompa
t support in x,iii/ For every triple (�; q; r) of non-negative integers, there exists a fun
tionH�;q;r(y) su
h that for x; y � 0,j��x�qy�rsF (x; y; s)j � H�;q;r(y)yp�q ;and su
h that Z 10 H�;q;r(1=t)dt <1.



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 19In the terminology of [10℄, F is of extended 
lass B.Proof: The �rst and se
ond point result from the exponential in the numerator ofh and from the 
ompa
t support of �(1=x) in x. Sin
e �(1=x) is smooth and isidenti
ally equal to 1 when 0 � x � 1, it suÆ
es to show that for every 
ouple (q; r)of non-negative integers and for every y � 0,j(y�y)q�rsh(y; s)j � Hq;r(y);with Z 10 Hq;r(1=t)dt <1. One easily 
he
ks that (y�y)q�rsh(y; s) has the forme�y P �y; e�y; (� + e�(y+is"))�1� ;where P is a polynomial, so that one 
an 
hoose Hq;r(y) = e�yjP j.Proposition 5. The regularizations of the fun
tions �(x) = 
os(p�(1=x �i")) 
ot(�(1=x� i")), where p = 0; 1, satisfy(i) �(n) 2 Cn�1([0;1)),(ii) 8 0 < m < n; dmdxm�(n)(0) = 0:(iii) 8 0 < n; �(n)(0) = � �i if p = 00 if p = 1:Proof: (See also [10℄). The fun
tion � has the form�(x) = i=2 �e(i�=x+�")p + e(�i�=x��")p� ei�=x+�" + e�i�=x��"ei�=x+�" � e�i�=x��"= i=2 �e(i�=x+�")p + e(�i�=x��")p� e2�" + e�2i�=xe2�" � e�2i�=x= eip�=xf+ �(e�i�=x)2�+ e�ip�=xf� �(e�i�=x)2� ;where f+(Z) and f�(Z) are analyti
 fun
tions of Z, for jZj < 1 + � for some � > 0and p = 0; 1. These fun
tions have a power series expansion that 
onverges absolutelyin Z, for jZj < 1 + �, so that � 
an be rewritten�(x) = 1Xq=0 f+;qe�i�(2q�p)=x + f�;qe�i�(2q+p)=x:(4.11)Due to the absolute 
onvergen
e of the series, � 
an be regularized term by term.It is thus suÆ
ient to show that the Proposition applies to ea
h term e�i�(2q�p)=x,p = 0; 1, of the expansion.One easily 
he
ks that if ' 2 Cl([0;1)), and '(j)(0) = 0 for 0 � j � l, then '(1)has the same properties. Expanding a fun
tion ' 2 Cl([0;1)) as Plj=0 '(j)(0)xjj! +R(x) shows then that '(j)(1)(0) = 1j + 1'(j)(0).Further, if � 6= 0; l � 0 and 'l(x) = xlei�=x, integration by parts shows that('l)(1)(x) = i=� �'l+1(x)� (l + 2)('l+1)(1)(x)� ;



20 M. F. BEN HASSEN AND E. BONNETIERfrom whi
h it follows that('l)(n) 2 Cl+n�1([0;1))and('l)(j)(n)(0) = 0 for j � l + n� 1:(4.12)This shows (i) and (ii).Additionally, if p = 0, we dedu
e from (4.11) and (4.12) that8 0 < n; �(n)(0) = (f+;0 + f�;0) = �i;while if p = 1, (4.12) implies that 8 0 < n; �(n)(0) = 0.4.2. Asymptoti
s of the polarization tensor. First, we fo
us on the 
om-putation of the terms of the series S0. We seek the term of order s in (4.8), whens! 0. After regularizing � = 
ot(�(1=x� i")) three times, I� be
omesI� = Z 10 H(x; y; s)dx = Z 10 (y�y � x�x)3 [�(1=x)h(y; s)℄�(3)(x)dx:where h� = y2(y � is") e�y+is"�+ e�y+is" .4.2.1. Computation of the terms of the series. For simpli
ity, we denoteby �(x) the fun
tion �(1=x) and we noti
e that all its derivatives vanish at x = 0.Applying Theorem 2, the integral rewrites as(2is3)I� = Z 10 (y�y � x�x)3 [�(x)h(y; s)℄y=s=x �(3)(x)dx= 1Xj=0 sjj! (Aj0 + 1�jXm=1Ajm sm + ln(s) 1�jXm=1Bjm sm) +O(s2)= A00 + �A10 +A01 + ln(s)B01� s +O(s2):� The terms Ak0; k = 0; 1: Their expression isAj0 = Z 10 (y�y � x�x)3 ��(x)�jsh(y; 0)�=y=0 �(3)(x)dx:The integrand 
an be rewritten in the form3Xq=0� 3q � (y�y)q�jsh(y; 0)=y=0 (�1)3�q(x�x)3�q� �(3)(x):(4.13)The expression of h shows that �jsh(y; 0) = O(y2) for 0 � j � 1 and thus(y�y)q�jsh(y; 0) = O(y2);(4.14)so that all the terms Aj0 are equal to 0.� The term B01 : (4.13) and (4.14) show thatB01 = �y h(y�y � x�x)3 (�(x)h(y; 0))=y=s=x �(3)(x)i(x;y)=(0;0) = 0:
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h redu
es to U01 + L01: U01 is an integral of ln(x) f01 (x; 0), wheref01 (x; y) = �x�y �(y�y � x�x)3(�(x)h)�(3)(x)�(x;y)=(x;0)= 3Xq=0� 3q ��y(y�y)qh(y; 0) (�1)3�q�x �(x�x)3�q�(x)�(3)(x)� :Again from (4.14), f01 (x; 0) = 0, whi
h implies that U01 = 0. As for L01, we haveL01 = limd!0�� Z 1d R02(0; 1=�)d�+ ln(d)�y h(y�y � x�x)3 (�(x)h(y; 0))=y=s=x �(3)(x)i(x;y)=(0;0)� :Computing �yh shows that the last term vanishes. The remainder R02 in the Taylorexpansion of H(x; y; 0) about y = 0 up to order y2 is a
tually equal to H(x; y; 0).Thus, R2(0; 1=�) = (y�y � x�x)3 ��(x) y3e�y�+e�y �x=0;y=1=� �(3)(0). From Proposition 5,�(3)(0) = �i. and sin
e all the derivatives of �(x) vanish at x = 0, and sin
e �(0) = 1,we �nally get A1 = L01 = �i Z �+1�0 ln(t)1� t dt = i Z �1�0 ln(1� v)v dv:Sin
e � = k + 1k � 1 > 1, ln(1� v), for jvj < 1=� < 1, 
an be expanded as a power seriesin v to obtain A1 = �i 1Xn=1 1n Z � 1�0 vn�1d v = �i 1Xn=1 (�1)n�nn2 ;4.2.2. The leading term in (4.2) . The above 
al
ulations show that theintegral I� 
an be expanded with respe
t to s asI� = � 12s2 1X1 (�1)n�nn2 +O(1s ):Similar 
al
ulations yield the asymptoti
s of I+, and (4.7), show thatS0 = � 1s2 1X1 (�1)n�nn2 +O(1s ):from whi
h we dedu
e the term m22 of the polarization tensorm22 = �16�a2s2 1X1 (�1)n�nn2 + O(a2s ):The same kind of 
omputations 
an be 
arried out for m11. The results are given inthe following (re
alling that a2 � 2Æ and s � 2p2Æ)



22 M. F. BEN HASSEN AND E. BONNETIERProposition 6. The polarization tensor MÆ = (mjl)1�j;l�2, of a 
on�gurationwith two 
ir
ular in
lusions at a distan
e 2Æ apart, satis�esmjl = (�1)(j+1)4� 1Xn=1 (�1)(j+1)n�nn2 Æjl + O(pÆ):(4.15)In other words, MÆ 
onverges to M0, the polarization tensor of two tou
hing dis
s, asÆ ! 0.4.3. Computation of rw(0). In this 
ase, we are interested in the term oforder s0 in the series S1 i.e. in the term of order s3 in (4.8) when p = 1. Therefore,we regularize � �ve times and apply (4.10) withH(x; y; s) = (y�y � x�x)5 [�(x)h(y; s)℄ �(5)(x);where again all the derivatives at x = 0 of �(x) = �(1=x) vanish.4.3.1. Computation of the terms of the series. Applying Theorem 2, theintegral I� rewrites as(2is3)I� = Z 10 (y�y � x�x)5 [�(x)h(y; s)℄y=s=x �(5)(x)dx= 3Xj=0 sjj! (Aj0 + 3�jXm=1Ajm sm + ln(s) 3�jXm=1Bjm sm) + O(s4):� The terms Bjm : We re
all thatBjm = 1m!(m � 1)!�m�1x �my h(y�y � x�x)5 ��(x)�jsh(y; 0)�=y=s=x �(5)(x)i(x;y)=(0;0) :By Proposition 5, �m�1x �(5)(0) = 0, for 0 � m � 1 < 5. Sin
e 0 � j � 3 and1 � m � 3� j, one easily 
he
ks that Bjm = 0.� The terms Ljm: These terms are interpreted in the following senseLjm = limd!0f� Z 1d �m�1�m�1x Rjm+1(0; 1=�)d�+ ln(d)m! �m�1x �my h(y�y � x�x)5 ��(x)�jsh(y; 0)�=y=s=x �(5)(x)i(x;y)=(0;0)g:Again, Proposition 5 shows that the last term in the above expression vanishes. UsingLeibniz's rule, we rewriteRjm+1(x; y) = 5Xq=0� 5q � "(y�y)q �jh�sj (y; 0)� mXl=0 yll! �l�yl (y�y)q �jh�sj (y; 0)#(�1)5�q�m�1x �(x�x)5�q� �(5)(x)� :We 
on
lude by Proposition 5, that sin
e �m�1x �(5)(0) = 0, for 0 � m � 1 < 5,��m�1x Rjm+1(x; y)�=x=0 = 0;



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 23and that all the terms Ljm are equal to 0.� The terms Aj0: Their expression isAj0 = Z 10 (y�y � x�x)5 ��(x)�jsh(y; 0)�=y=0 �(5)(x)dx;where the integrand 
an be rewritten in the form5Xq=0� 5q � (y�y)q�jsh(y; 0)=y=0 (�1)5�q(x�x)5�q� �(5)(x):The expression of h shows that �jsh(y; 0) = O(y2) for 0 � j � 3 and thus(y�y)q�jsh(y; 0) = O(y2);so that all the terms Aj0 are equal to 0.� The terms U jm: Their expression is �1m! (m � 1)! Z 10 ln(x) fjm(x; 0) dx, wherefjm(x; y) = �mx �my �(y�y � x�x)5(�(x)�jsh)�(5)(x)�(x;y)=(x;0)= 5Xq=0� 5q ��my (y�y)q�jsh(y; 0) (�1)5�q�mx �(x�x)5�q�(x)�(5)(x)� :It is easily 
he
ked that�my (y�y)q�jsh(y; 0)=y=0 = mq�my �jsh(0; 0);so that the term fjm simpli�es tofjm(x; 0) = �my �jsh(0; 0) �mx �(m � x�x)5�(x)�(5)(x)� :From the expression of h we 
ompute�yh(0; 0) = 0; �2yh(0; 0) = 0; �3yh(0; 0) = 6� + 1 ;�y�sh(0; 0) = 0;�2y�sh(0; 0) = �2i"�+ 1 ; �y�2sh(0; 0) = 0;thus all the U jm's vanish but U12 and U03 .4.3.2. The leading term in the series S1 . The above 
al
ulations show thatthe integral I� 
an be expanded with respe
t to s asI� = 12is3 �U03 s3 + U22 s3�+ O(s)= 1� + 1 ��3i Z 10 ln(x)�x �(1� x�x)5�(x)�(5)(x)� dx+i" Z 10 ln(x)�2x �(2� x�x)5�(x)�(5)(x)� dx�+ O(s):



24 M. F. BEN HASSEN AND E. BONNETIERSimilar 
al
ulations yield the asymptoti
s of I+:I+ = 1� + 1 ��3i Z 10 ln(x)�x �(1� x�x)5�(x)�(5)(x)� dx�i" Z 10 ln(x)�2x �(2� x�x)5�(x)�(5)(x)� dx�+ O(s):Re
alling (4.7), we �nally arrive atS1 = 1� + 1 �ZC(1� �(z)) z 
os(�z) 
ot(�z)dz�6i Z 10 ln(x)�x �(1� x�x)5�(1=x)�(5)(x)� dx�+O(s):To 
he
k that the leading term in the expansion does not vanish, noti
e thatTheorem 2 
an also be used to 
ompute the seriesS0 =Xn�1(�1)nne�sn= 12i ZC H 0(sz; 1=z) 
os(�z) 
ot(�z)dz;where C is the same 
ontour and where H 0(sz; 1=z) = z e�sz. Comparing the termsin the expansion for S1 and S0 shows thatS1 � S0�+ 1 = O(s):On the other hand, S0 
an be 
omputed expli
itly as the derivative of a geometri
series, and is equal to S0 = �e�s(1 + e�s)2 = �1=4 + O(s2):Thus S1 = �14(� + 1) +O(s). Re
alling (4.4) and the relationship between the 
omplexpotential and the fun
tion w, we 
on
lude thatProposition 7. Consider two 
ir
ular in
lusions of 
ondu
tivity k, of radius 1,at distan
e 2Æ apart. Assume that k < 1, that w solves (4.1) (weakly 
ondu
tingin
lusions, transverse 
urrent). Then the gradient rw at the midpoint between thein
lusions satis�es�w�x1 (0; 0) = O(pÆ) �w�x2 (0; 0) = 1=k +O(pÆ):In parti
ular, the gradient blows up linearly like k�1 when k! 0.A similar results holds (
onsidering harmoni
 
onjugates) for strongly 
ondu
tingin
lusions (k > 1) when w � x1 at in�nity : in this setting the x1 
omponent of rwblows up like k as k !1.



ASYMPTOTICS FOR CLOSE OR TOUCHING DISKS 255. Numeri
al results. In this part, we des
ribe some 
omputational experi-ments that attempt to quantify the errore1(z) = u"(z)� u(z) + 2 Z�
(u"(x)� u(x)) �G��x d�x + 2"2rxG(z0; z) �MÆrxu(z0);on �
, where, u" is the voltage potential in presen
e of the imperfe
tions, u is theba
kground potential, and the polarization tensor MÆ is equal toMÆ = Q� m11 00 m22 �Qt;where Q is the rotation matrix of angle � between the x1{axis and the line (z1z2) andmij 's are given by (2.12) or by (2.19). We de�ne also the remainder
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Fig. 5.1. level lines of e2=e1, " = :1, 2 � k � 50, :001 � "Æ � :011e2(z) = u"(z)� u(z) + 2 Z�
 (u"(x)� u(x)) �G��x (x; z) d�x�2�"2 (1� k)1 + k 2Xj=1rxG(zj ; z) � rxu(zj); z 2 �
;between the true solution u" and the asymptoti
 expansion (1.4). When the distan
ebetween the two �bers and the 
ontrast vary, we 
ompare the remainder terms e1(z)and e2(z), to �nd out when the asymptoti
 formula (3.9) is more a

urate than (??),i.e. when 
an one 
onsider the two in
lusions as a single inhomogeneity rather thantwo well{separated obje
ts. In all our 
omputations, we use the ba
kground voltagepotential u(x) = x1 
orresponding to the boundary 
urrent g = �1. We also 
hoosethe ba
kground 
ondu
tivity 
(x) equal to one. The domain 
 is the unit ball andthe in
lusions are disks zj + "B(0; 1).To generate the data on �
, we solve the dire
t Neumann problem (1.1) using P 1�nite elements. The boundary of ea
h in
lusions is meshed with 80 uniformly spa
edpoints, while the outer boundary is dis
retized with 300 points.



26 M. F. BEN HASSEN AND E. BONNETIERFigure 5.1 shows the level lines of the ratio e2=e1 for two in
lusions of radius" = 0:1, 
entered along the x1-axis, as we vary their 
ondu
tivity k and the separatingdistan
e "Æ between them, 2 � k � 50 and :001 � "Æ � :011. As expe
ted, theremainder e1 is smaller than e2 and our asymptoti
 expansion is more a

urate in this
ase. In fa
t, for this 
on�guration, whi
h was analyzed by Keller in [15℄ and by L.Bor
ea and G. Papani
olaou in [7℄, the 
urrent 
ow is 
hanneled horizontally throughthe �bers (there is a strong 
ow 
hanneling through the gap between the �bers alonga path whi
h is an horizontal bran
h 
onne
ting the two �bers). Therefore, there isa strong intera
tion between the two in
lusions whi
h in
reases when "Æ goes to zeroand k to in�nity.
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Fig. 5.2. (a) level lines of u" � u=e2, (b) level lines of u" � u=e1" = :1, 2 � k � 50, 0:001 � "Æ � 0:011Fig. 5.2(b) shows that expansion (3.9) is a good approximation of the potentialu(x) : the error u" � u is at least 40 times e1. For the same 
on�guration, as wasalready noted in [12℄, Fig. 5.2(a) shows that for k >> 1, u"�u and e2 are of the sameorder and the expansion (1.4) 
annot be used to lo
ate the in
lusions with suÆ
ienta

ura
y.When the �bers are 
entered along the x2-axis and k < 1, the 
on�guration is theharmoni
 
onjugate of the previous one. The ele
tri
 
urrent is 
on
entrated in the
hannel between the �bers. However, in this 
ase, it 
ows horizontally in the gap,avoiding the �bers. The intera
tion between the in
lusions is weak and formula (1.4)gives results of the same order as the expansion e1, as is shown in Figure 5.3. If k > 1,the intera
tion between the in
lusions is also weak, and e1 and e2 are of the sameorder (Figure 5.4).Finally, in Figure 5.5, we plot the level lines of e1=e2 when 2 � k � 50 and0:01 � "Æ � 0:1, for �bers of radius 0:05. We remark that the ratio e1=e2 in
reases asthe radius of the �bers de
reases and our formula is in
reasingly more a

urate thanthe expansion (1.4).A
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