Optimal Design of Periodic Diffractive Structures

Gang Bao
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027, USA

Eric Bonnetier
Centre de Mathématiques Appliquées, CNRS UMR . 7641,
Ecole Polytechnique
91128 Palaiseau, France

Abstract

The problem of designing a periodic interface between two different materials, which gives
rise to a specified far-field diffraction pattern for a given incoming plane wave, is considered. The
time harmonic waves are assumed to be TM (transverse magnetic) polarized. The diffraction
problem is modeled by a generalized Helmholtz equation with transparent boundary conditions.
In this paper, the design problem is relaxed to include highly oscillatory profiles. Existence of
an optimal design is established. The principal method is based on homogenization theory for
the model equation.
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1 Introduction

We consider the problem of designing a periodic interface between two different materials which
gives rise to a specified far-field diffraction pattern for a given incoming plane wave. Through-
out, the medium is assumed to be nonmagnetic and invariant in the y direction. We study the
diffraction problem in TM (traverse magnetic) polarization, i.e., the magnetic field is transver-
sal to the (z, z)-plane. The case when the electric field is transversal to the (z,z)-plane is called
TE (transverse electric) polarization. These two polarizations are of primary importance since
any other polarization may be decomposed into a simple combination of them. The differential
equations derived from time harmonic Maxwell’s equations are quite different for the TE and TM
cases: In the TE case, (A + k?)u = 0, where the electric field E = (0, u(z, 2),0); In the TM case,
V- (k%Vu) + u = 0, where the magnetic field H = (0,u(z, 2z),0). In both cases, k is the index of
refraction of the medium. Our goal in this paper is to formulate and study aspects of the optimal
shape design problem.

Because of many important applications in micro-optics, the optimal design of periodic or grat-
ing structures has recently received considerable attention. See Achdou [1], Achdou and Pironneau
[2], Dobson [18] [19], and Elschner and Schmidt [13] for mathematical and computational results
in the TE case. Basically, the design problem can be posed as a nonlinear least-squares problem
over a set of variables that describe the class of admissible interfaces. In this work, an admissible
interface is represented by the characteristic function of the set occupied by one of the dielectric
materials. The interface can be very general without any smoothness assumption. In fact, it is only
required to be a graph. The following difficulties arise immediately since the scattering pattern
depends on the interface in a very implicit fashion:



e the set of admissible characteristic functions is not closed for the natural topology,
e the cost functional is not weakly sequentially lower semi-continuous.

As a consequence, existence of a minimizer is not guaranteed. The remedy is to consider a relaxed
problem that extends the problem setting in order to take into account highly oscillatory interfaces,
in such a way that well-posedness is ensured. In [1] [2] [18] [19], the design problem in the TE case
was solved by using a “relaxation” technique similar to that of Kohn and Strang [21], as well as
a weak convergence argument. See Cox and Dobson [12] for a recent related work on maximizing
band gaps in photonic crystals in TE polarization.

This work focuses on the optimal design problem in TM polarization. The model, method, and
results are quite different from the TE case. In fact, the solution in the TE case is more regular
than in the TM case for £ € L®. Also, in the TM case, the nonsmooth coefficients appear in the
principal part as opposed to the lower terms for TE polarization. The analysis on the effect of
the highly oscillatory coefficients in the principal part is amenable by homogenization theory. The
homogenization limit is anisotropic. This is fundamentally different from the TE case in which a
weak convergence analysis suffices and the resulting weak limit of the coefficients remains isotropic.
We believe that the idea and method here may be extended to study the optimal design of biperiodic
structures, where the model is in a 3-D vector form. An interesting future direction is to develop
computational schemes for solving the design problems. Progress has been made for the TE case
in [1] [2] [18] [19] [13]. However, no computational result is available in the TM case.

Homogenization theory has become the standard tool for obtaining an expression of the relaxed
functional. The general approach has been applied to diffusion systems [26] [23], to the 2-D and
3-D elasticity systems [3] [20] [15], and to the biharmonic equation [22, 8]. Note that in these
applications, the original sets of designs are those of all characteristic functions. In the present
case, however, additional constraints induced by the choice of admissible interfaces must also be
taken into account. In this regard, our work is related to that of Brizzi [10, 11] and Nevard and
Keller [27] on homogenization of rough boundaries.

The diffraction theory in periodic structures has many applications in micro-optics, the reader
is referred to the books [14] for a description of mathematical problems which arise in these ap-
plications. A good introduction to the problem of electromagnetic diffraction through periodic
structures, along with some numerical methods, can be found in the collection of papers in [28].
Results on a related inverse diffraction problem in the TM case may be found in [7] and [5]. See
also [6] for a survey of recent developments in the mathematical modeling of diffractive optics.

We now outline the rest of this paper. Section 2 is devoted to a formulation of the scattering
problem. Using the radiation condition and periodicity, the problem can be reduced to a bounded
domain with transparent boundary conditions. In Section 3, we introduce two specific optimal
design problems in TM polarization. We derive the relaxed optimization problem in Section 4
by homogenization theory. Finally, in Section 5, we obtain a characterization of the admissible
generalized dielectric coefficients and establish the existence of optimal generalized designs.



2 The model problem

We first specify the problem geometry. Let S be a simple curve imbedded in the strip
Qo = {(z,2) € R?: —by < z < by},

where b is some positive constant. We assume that S defines a periodic grating in the z-direction
with period 27. For a constant b > by, let D1 = {(z,2) € R?: 2z > b}, Dy = {(x,2) € R®>: z < —b},
and Q = {(x,2z) € R?>: —b < z < b}. Define the boundaries Ty = {z = b}, Ty = {z = —b}.
Assume also that the curve S divides Q into two connected components D} (which meets D) and
DY (which meets Ds).

The whole space is filled with two materials with periodic dielectric coefficients ¢; of period 2,

E(fL') o €1 in Di Ul?l s
" | & inDfUD,,

where €; and ey are constants, €; is real and positive, and Re e > 0, Im eo > 0. The case
Im €2 > 0 corresponds to a substrate which absorbs energy. For convenience, we also define the
“index of refraction” k = /e, where € is dielectric constant and y is the magnetic permeability
constant. Note that in the literature, it is the term wk (w is angular frequency) that is called
index of refraction. Suppose also that the media are nonmagnetic, ¢.e., the magnetic permeability
constant y is a fixed constant (e.g. u = 1) everywhere.

We want to solve the generalized Helmholtz equation derived from Maxwell’s system of equations

1

V(s

Vu) +w?u =0, inR? (1)

when an incoming plane wave
ur = ezamfzﬂlz
is incident on S from Dy,

a = wky sinf, (1 = wky cosb,

and —F < 6 < 7 is the angle of incidence.

We seek a quasiperiodic solution, i.e., a function u such that u,(z,z) = u(z,2)e™% is 27-
periodic. It is easily seen that u, satisfies
1 2 B2
Vo (5Valia) + w'u, =0, in R, (2)

k2
where the operator V,, is defined by

Vo=V +i(a,0).

Due to the 27 periodicity of the problem with respect to the z-variable, we can identify 2 with
the cylinder Q/(27Z x {0}), and similarly identify the boundaries I'; with I'; /27 Z. All functions
defined on © and I'; will be regarded as being 2m-periodic in the z-variable.

To determine the general form of u, far away from the interface, we expand u, in a Fourier
series:

ua(,2) = > ul (2)e",

where



Define for j = 1,2 the coefficients

B () = €22 — (n+ @)?V2, ne Z,

where
vj = arg(kajZ —(n+a)?), 0< i < 2m.

Assume that kaJZ # (n+a)? foralln € Z, j = 1,2. This condition excludes “resonance” cases
and ensures that a fundamental solution for (2) exists inside Dy and Ds. In particular, for real ko,
we have the following equivalent form of (2)

Ww2k? — (n+a)?, W’k? > (n+a)?,
B (@) = \/ ; (2 2)2 2 ( )2
z\/(n+a) —w?ky, wk; <(n+a).

It follows that u, can be expressed, inside D; and Ds, as a sum of plane waves in the following
way :
. o(n) .
S aflet i j— 6
nez

'Ufa|Dj =

where the constants ag-n) are complex scalars.

We next impose a radiation condition on the scattering problem. Since ﬂ](n) is real for at most
finitely many n, there are only a finite number of propagating plane waves in the sum (3), the
remaining waves are exponentially damped (so-called evanescent waves) or radiate (unbounded) as
|z| = oo. We impose that u, should contain only bounded outgoing plane waves in Dy and D,
plus the incident incomi?g wave uy in Dj.

For functions f € H2(I';) (regarded as a complex-valued functions on the circle, with Sobolev
regularity HY/ 2), we consider the Dirichlet to Neumann operator T, defined by

(T2 f)(z) = 3 i (o) fM e, (4)

nez

where (") = L o7 f(z)e~ ™ and where the equality is taken in the sense of distributions. Tt is
easily seen [4] that the operator T} : H%(Fj) — H*%(Fj) is continuous.

Introducing the operators T7* allows to reformulate the scattering problem in the bounded
domain 2, in the following way : find u, € H*() such that

1
Va- (ﬁvaua) +w*uy, = 0 inQ, (5)
(T — %)ua = 2ife P’ onTy, (6)
0
(Ts" — E)UQ = 0 only. (7)

Theorem 2.1 There exists a constant wy > 0 independent of the shape of the interface S, such that
Jor 0 < w < wy, the model problem admits a unique solution u, € H'(Q). Furthermore, |[ual| g1 (q)
1s bounded independently of the interface S.

We refer to [4] for a proof of the result.
Remark 2.1. For a more general function k£ € L*°(Q), the model problem admits a unique solu-
tion for all but possibly a discrete set of frequencies. The low frequency assumption corresponding



to small period of the structure is reasonable for micro-optics applications. The assumption may
be dropped in the case €3 has a positive imaginary part, ¢.e., the substrate is absorbing.

Theorem 2.1 can be generalized. In particular, an analogous result holds in the case when the
dielectric media are separated by another dielectric medium, instead of an interface : Assume that
A(z, z) is a positive definite, matrix-valued function in L (), such that

Alz,z) = am for z > by ,
Az, z) = a9 for z < —by
0< Ay <A(z,2) < Az < oo otherwise ,

the last inequality being understood in the sense of quadratic forms. Then we have

Theorem 2.2 Let 0 < 6y < /2 be some mazimum incidence angle. There ezrists a constant
wo > 0 depending on the constants ai,as, A1, Ay only, such that for incidence angles |0| < 6y and
for frequencies 0 < w < wy, the problem

Vo (AVaug) + w?ug = 0 inQ, (8)

with boundary conditions (6, 7), admits a unique solution u, € H'(Q). Furthermore, ||uq|| g1 (q) is
bounded by a constant that only depends on ay, a2, A1, As,b, 0y and wy.

For simplicity, from now on, we shall remove the subscript and superscript and denote u,, Tja
by u, T}, respectively.

3 The optimal design problem

We present optimal design problems in TM polarization. For simplicity, we shall restrict to the
case in which the frequency w is sufficiently small. It then follows from Theorem 2.1 that there is
a unique quasi-periodic solution u, to the model problem and ||ua||g1 () is bounded independent
of the interface S.

Here, we consider two examples of the design problems. The rest of the paper will be devoted
to a study of existence for the optimal design in a general framework which includes these two
examples.

Set a; = 5]-_1. We can associate with each interface S a function ag € L*°(Q) by

s
st ={ o RO
Example 1. We first consider the optimal design of antireflective structures. To demonstrate
the idea, we further assume that the frequency w is so small that I'm ﬂ%n) > 0 for all n # 0.
Thus, there is only one propagating (outgoing) plane wave reflected from the structure, for a given
incoming plane wave.
In this situation, it is easy to compute the reflection coefficient

—ifib

€ —2if1b

To(ua) = G /F U — € b
1

Clearly, the total reflected energy |ro(uq)|? depends on the interface S in an implicit way.



We are now ready to present the optimal design of an antireflective structure: determine a curve
S (or equivalently a distribution of material coefficients ag) which minimizes the functional

«

Min J(ag) = /  ro(ua, ) 2da (9)

a1
over a given range of incidence angles 6 € [0y, 0;]. Here oy, = wkysinfy for k = 1,2.

Example 2. This example is concerned with designing periodic structures with specified scat-
tered far-field patterns (low frequency). The outward propagating modes correspond to indices n
for which B](-n) are real-valued.

Denote

Aj={neZ: ImB")=0}, j=12.

The coefficients of each propagating reflected mode are

i 3(n)
rn = up(b)e 1 forneA, n#0,

ro = ug(b)e” Pl — 721l forpn =10,

The energy of each propagating mode is ﬂgn)|rn|2 /1.
Similarly, the coefficients of each propagating transmitted mode are

i g(m)
b = U (—=b)e™ 20 for m e A, .

The energy for each transmitted mode is ﬁén) [tal?/ Bo.
Define the vectors

r= (rn)nEA1 3 t= (tm)mEAz )

which clearly are functions of the interface S.

We can now state another optimal design problem. For some specified reflection and transmis-
sion vectors 70 and #°, determine the curve S, (or equivalently a distribution of material coefficients
as), such that r(S), t(S) are close to r°, t° in the least-squares sense, respectively:

Min J(as) = ||r(S) = r°[]* + [[¢(S) — ¢°|° . (10)

From now on, we will denote by J(A) or J(u(A)) the above functionals associated with a
material distribution A(z, z) in the region .

4 Homogenization for the design problem

This section is devoted to a formulation of the relaxed problem in the terminology of [21]. The
idea is to replace the original problem with that of minimizing an extended functional over a set of
generalized interfaces. The set should be closed in the weak * topology. The extended functional
is required to be weakly lower semi-continuous. Also, when evaluated at an admissible original
interface, it should coincide with the original functional. The form of the relaxed functional can
then be determined by studying the limiting behavior of sequences of solutions u, = u(xy) with
respect to a sequence of admissible interfaces.

For simplicity, admissible interfaces are chosen to be graphs of L* functions h(z) in the z vari-
able with values in a fixed band [—bg, by]. Recall that by is a fixed constant satisfying 0 < by < b.



We can describe an admissible interface by the characteristic function x of its subgraph, i.e., for
h € L*(0,2n) with ||h||ec < bo,

wsies = {4 19 )

Let X denote the set of those characteristic functions.

This choice is certainly not the most general one that can be handled by our method. In fact,
the proofs below remain valid, provided that admissible minimizing sequences of characteristic
functions satisfy

0, Xn is compact in H 1(9) . (12)

We will show that the set X satisfies this property. From a manufacturing point of view, it is a
natural choice since gratings of small scales are usually fabricated by micro-lithographic techniques.
The constraints on the values of h are also natural from the point of view of design. After all, the
boundaries z = £b of Q are artificial.

Let {xn} C X be a sequence that converges weakly * in L*°(Q2) to some function 7. For
simplicity, we set ay,(z,2) = &(z,2)”™" = xn(z,2)a1 + (1 — xn(z,2))az. We also denote by
m(z,z) and ¢(z, z) the arithmetic and harmonic averages of the weak-* limit of a,, i.e.,

m(z,z) = n(z,z)ar + (1 —n(z,2))az = wlima,, , (13)
Z,% 1—n(z,2)\ I
c(r,z) = (77((11 ) + Zi )> = (w*lim axi) L (14)

and let A* denote the tensor
% clz,z 0
A = <(0’ ) (15)

Let u, = u(xn) denote the solution to
Va - (ay, Vauy) + wWwu, = 0,

with the boundary conditions (6,7). and let u = u(n) denote the solution to
Vo (A*()Vau) +*u = 0,

with the boundary conditions (6,7).

Theorem 4.1 Assume that w < wy and |0] < 0y, where wy and Oy are given by Theorem 2.2.
Assume xpn — 1 weakly * in L>(Q). Then the corresponding sequence of solutions {un} converges
weakly in H'(Q) to u = u(n). Moreover, if J is weakly continuous with respect to u, then

J(un) — J(u(n)) .
Remark 4.1. In particular, for the functionals defined in Section 3, we have
Jlay,) — J(A*(n)) - (16)

In order to prove the theorem, we need the following two lemmas.



Lemma 4.1 Let {xn,} C X satisfy xn, — n in L=(Q) weak*. Then, O,xn, —> 0,n strongly in
H=1(Q).

Proof :  The proof relies on the following classical result of Murat [24]: Assume that {f,} is a
sequence of positive distributions and is bounded in W=12(Q), for some p > 2. Then f, lies in a
compact set of H~(Q).

Now, since {xy} is bounded in L*>(£2), 9, Xy is bounded in W~1?(Q), for any p > 1. Moreover,
for ¢ € D(Q), ¢ >0, we have

<azXna¢> = _/Xnaz¢n
Q

2 b
= f/ d:v/ 0y n(x, 2)dz
0 h(x)
2

= [ g b))z > 0,
0

and the Lemma follows. O

Lemma 4.2 (The div-curl Lemma of Murat and Tartar [26]) Assume that {f,}, {gn} are two
bounded sequences in L*(Qq)?, such that

fo—=f,s gn—9, weakly in LZ(QO)2
and

div(fn) — div(f) strongly in H *(Q) ,
curl(g,) — curl(g) strongly in H ()2 .

Then
fngn = fg in D'(Qp) .

Proof of Theorem 4.1. By Theorem 2.2, {u,,} is uniformly bounded in H'(f2). A subsequence
can be extracted with the properties that

Up — U weakly in H'(€2)
& = apVou, —= & weakly in L?(Q) .

We subdivide €2 into three parts :

Q1 = (0,2m) X (bo,b) ,
QO = (0,27T)><(—b0,b0),
Q = (0,27) x (=b,—bp) .

Since the dielectric coefficients are constant for |z| > by, it is obvious that

& = aq;Vou inQ;, for 1 =1,2.



Also, since the operators T; are linear, one can verify directly that u and £* satisfy

Vo & +w?u = 0inQ,

W Ti(u) = 2iﬂle_i’31b onT',
8—U—T2(u) = 0onlsy.
ov

To identify the relationship between £* and V,u in the remaining part gy, we choose f,, = &, in
Lemma 4.2. Since

div(&,) = —iabi,—w’u,,
is uniformly bounded in L?(€Qq), which is compactly embedded in H~1(£), we have
div(¢,) —  div(¢*) strongly in H 1(Qp) .

On the other hand, let g, = (1/ay(z,2),0). By Lemma 4.1, curl(g,) = (1/a1 —1/a2)d,x, converges
strongly in H (). It follows that

(8$+’L.Oé)un = 1/an£1,n = fn-gn - f'g = c_l(x,z)fi‘,

hence & = ¢(z, z) (0 + i) u. For the identification of &5, let ¢ € D(€2) and consider

/sz,nsﬁ = /Qanazun¢

. —/ﬂun (0, (xna1 + (1 = Xn)az)  + an Do) .

As u, — u, weakly in H'(£2), Lemma 4.1 shows that

/ tp 0;(xna1 + (1 — xn)a2) ¢ — / 10, (nay + (1 —n)az) ¢
Q Q

= /Uazm¢ ’
Q

while the strong convergence of u, in L?()) and the weak convergence of a,, to m imply that

/unanaz(j) — /um@zqﬁ .

Q Q

We conclude that
[@np = [uw@métmog) = [ moup.
Q Q Q

Since the limit is unique, it is the whole sequence u,, that converges weakly to u. This establishes
the first part of Theorem 4.1. O

Remark 4.2. The weak lower semi-continuity of J with respect to u yields (16) for the functional
of Example 2 of Section 3. For Example 1, the convergence (16) can be shown by a combination of
the fact that o (¢a,y,) — Ta(¥ay) for a.e. a € (o, az) and the Lebesgue Dominated Convergence
Theorem. m|

Remark 4.3. Theorem 4.1 extends previous results of R. Brizzi [10] [11] (see also [27]) about
homogenization of a periodic transmission problem, i.e., assuming that a,(z,z) = a(nz,z), the



function a being 1-periodic in z € RY, for any dimension N > 0. We believe that the method may
be modified to study the biperiodic structures case (3-D), i.e., the case of periodic coefficients in
(z,y). In this situation, due to the local character of H-convergence, the local value of the effective
matrix in the non-periodic case, is equal to an effective matrix that can be obtained by periodic
homogenization [16]. The effective matrix takes a more complicated form
B* 0 ]

7

0 m(x,z)

A (z,2z) = [

where B* is a 2 X 2 matrix, the eigenvalues of which can be described in terms of n(z,y, z) [29].

5 The relaxed problem and existence of a generalized minimizer

Theorem 4.1 gives useful indications for the proper form of the relaxed problem. Let J*(n) =
J(A*(n)), where u(n) is the solution to (8) with A = A* and the boundary conditions (6,7). The
original problem, minycxJ(a,) is replaced with the problem of minimizing J*(n) over the set
of densities which are weak* limits of admissible characteristic functions of X. In this section,
we characterize this set of densities and show that the relaxed problem is well-posed, i.e., has a
minimum.

Let X*, be the set of L functions 7, such that

n(xz,z) =0 forz < —by

>0 i / )
n(w,z) =1 forz > by and d,n >0 in D'(Q)

0<n<1, {

X* is obviously closed for the L™ weak* topology.
Lemma 5.1 The set X* is the L*™° weak* closure of X.
Proof : Obviously, X C X*. Given n € X*, let H be the function defined on (0,1) x £ by

B 1 if ¢ <n(z,2)
H(( z,2) = {o if n(z,z)<¢

and extend H as a l-periodic function of ¢ on R x Q. Define x,(z,2) = H(nz,z,z). For fixed
n, since n(x, z) is increasing with z, x, defines an interface in X. Indeed, if x,(z,2) = 0 then for
2! < z we have

1@,#) < nzz) < no— [l

thus x,(z,2’) = 0 also. Conversely, if x,(z,z) = 1 then for 2’ > z we have

ne—[nz] < nlz,z) < nz,2)

thus x,(7,2') = 1. Let ¢ € L'(Q). It follows from the Fubini Theorem that for a.e. z € (—b,b),
#(.,z) € L'(0,27). Lemma A.l in the Appendix of [9] shows that for a.e. z € Q,

27 27
H(nz,z,z)p(x,z)de — / n(z, z)p(x, z)dz . (17)
0 0

Note that no extraction of subsequences is needed here, i.e., (17) holds pointwise. Furthermore,
2

™
the absolute value of the right hand side is uniformly bounded by / |p(, 2z)|dz which is a L'
0

function of z. It follows from the Fubini and Lebesgue Dominated Convergence Theorems that

/QXn¢—>/Q7]¢- O

10



In the next two lemmas, we show that J* is weakly continuous.

Lemma 5.2 Assume that {n,} C X* with n, — n € X*, weakly * in L*>°(2). Then,
Dy — O,m  strongly in H *(Q) . (18)

Proof :  We first show that if p(z) € L*(—b,b) is an increasing function and if ¢ € D(—b,b),
¢ >0, then

< sz, ¢ >H*1,H1(7b,b) > 0. (19)

b
Indeed, the right-hand side is equal to — / p(2)0,¢(z)dz. For N large enough, there exists a
b

subdivision —b < z; <--- < z; <--- < zy < b of (=b,b) and a piecewise constant function

N
PN(2) = D TiX(z41)
j=1

with r; < 7,11, that approximates p in L?. Since

[ 62) = o (e1)04] < llp = iz 061

and

—/pN(z)azcﬁ: Z(Tj —rji—1)p(z) = 0,
J

the inequality (19) follows.
To prove the lemma, consider now ¢ € D(2), ¢ > 0. For a.e. x € (0,27), the inequality (19)
implies that

[t 2000 = = 0,

which yields < 9.m,, ¢ >pg-1 g1(0) > 0. Finally, the proof is complete by an application of Murat’s
Lemma as in the proof of Lemma, 4.1. O

Lemma 5.3 Assume that {n,} C X*, such that n, — n weakly* in L*>. Then
S ) — Jm) -

Proof : Since the effective matrix A*(n,) is diagonal and 7, satisfies the right compactness prop-
erty (from Lemma 5.2), the proof follows exactly that of Theorem 4.1. From the weak convergence
of 1, to n, we get

m(ﬁn) - m77) ES o]
{C_l(ﬁn) i) weak-* L>°(Q) .

This convergence result is sufficient to verify that the effective limit of A*(n,) is A*(n). O

11



Combining Theorem 4.1, Lemmas 5.1 and 5.3, we arrive at the following relaxation result.

Theorem 5.1 Let J be the cost functional introduced in Section 3. The relazed problem mingex-J*(n)
has a solution. In addition

infuexJ(ay) = mingex-J*(n) .

Proof : Assume that {n,} C X* is a minimizing sequence. Upon extracting a subsequence that
converges weakly * to some n € X*, Lemma 5.3 yields lim inf,, o J*(n,) = lim inf,, o J(A*(n,)) >

J(A*(n)) = J*(n).
Consider now a minimizer 7 € X*. From Lemma 5.1, there exists a sequence of characteristic
functions x, that define admissible interfaces, such that

Xn — 1) -

It is immediate from Theorem 4.1 that lim,_.J(xn) = J*(n). 0
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