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SUMMARY

This paper is concerned with the rigorous investigation of the radiation properties of a planar patch
antenna on a photonic crystal substrate. Under the assumptions that the driving frequency of the antenna
lies within the band gap of the photonic crystal substrate and that the crystal satis%es a symmetry
condition, we prove that the power radiated into the substrate decays exponentially. To do this, we
reduce the radiation problem to the study of the well-posedness of a weakly singular integral equation
on the patch antenna, and to the study of the asymptotic behaviour of the corresponding Green’s
function. We also provide a mathematical justi%cation of the use of a photonic crystal substrate as a
perfect mirror at any incidence angle. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: photonic crystals; patch antennas; dielectric reFectors; perfect mirrors; integral
equations; Green’s functions

1. INTRODUCTION

A photonic crystal is a periodic dielectric structure that possesses the feature that electro-
magnetic waves of certain frequencies cannot propagate inside. The range of the prohibited
frequencies is called the complete band gap. The propagation of electromagnetic waves in
photonic crystals has been the subject of intensive study, since new fabrication techniques
have been developed to construct photonic crystals with a band gap in the region of visible
wavelengths. Photonic crystal technology promises many signi%cant technological applications
in devices where one wishes to guide electromagnetic waves with little loss of energy (%bre
optics, cellular telephones, spectroscopy, etc). The reader can refer for the physical aspects
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of the photonic crystals to the available surveys and proceedings [1–4; 43] devoted to this
topic, and especially to the book [5]. The bibliography [6] is also very useful.

It turns out that the Maxwell system provides a very accurate description of the photonic
band gap phenomena. Although some signi%cant mathematical results have already been ob-
tained on this topic, see Reference [7] for a survey, most of the mathematical problems in the
area of photonic crystals are still not explored or explored only tangentially. We hope that
this publication will play some role in publicizing this exciting and important topic in the
applied mathematical community. Photonic band gap structures provide a wealth of interesting
open problems. For example, it would be very interesting to study the eMects of the %niteness
of the samples and whether their geometry gives rise to surface waves. The development of
accurate numerical methods is very challenging, with obvious applications to problem design.
These involve the design of the crystals themselves, to optimize the features of their band
gaps, or the design of devices, such as planar antennas like those we are concerned with in
this paper.

Recent progress in the manufacturing of photonic crystals has opened the door to appli-
cations in the microwave range, and in particular to planar patch antennas [8–22]. Photonic
band-gap substrates have also been recognized as an important feature of dielectric mirrors,
resonant cavities, high Q %lters, novel %lter design for planar antennas and frequency selec-
tive surfaces. The reader is referred to References [5; 1] for an overview of these potential
applications. Classical planar antennas are mounted on a uniform dielectric substrate inside
which most of the radiated power is trapped, thus an eNcient use of such antennas is in ap-
plications where loss of power and formation of surface waves are undesirable, in particular
in communication systems.

It has been suggested in Reference [23] that it may be possible to use photonic crystals
as substrates for planar antennas. They have observed experimentally that highly eNcient
planar antennas can be made on photonic crystal regions made of periodic mixtures of semi-
conductors. When driven at a frequency that lies in the band gap of the photonic crystal,
the antenna radiates predominantly into the air rather than into the substrate. The basic idea,
behind this signi%cant advance in planar antenna technology, is that no power should be
radiated into the substrate at any incidence angle if the driving frequency of the antenna lies
within the band gap, since no propagation is allowed into the substrate. The photonic band-
gap substrates have also the possibility to eliminate losses due to waves propagating on the
surface.

The subject of this paper is the rigorous investigation of the radiation properties of a planar
antenna placed on a photonic crystal substrate. Our focus is on the mathematical concepts and
methods that give a solid mathematical basis to the work [23], for the quantities describing the
radiation properties of planar antenna on photonic crystal substrates. Throughout the paper, we
assume that the photonic crystal is symmetric with regards to the Ox1-axis. This assumption
allows us to show that the band gap of the photonic crystal, considered as a medium over the
whole of R2, lies in the band gap of the crystal considered as a medium over the half-plane
x2¡0 only. We believe that this property of band gaps is not true in general, as physicists have
observed, in similar devices, surface waves which could reFect the existence of exponentially
decaying eigenfunctions inside the band gap of the photonic crystal [24–26].

Under this symmetry assumption, we prove that the radiated electromagnetic wave decays
exponentially in the photonic crystal substrate and also along the crystal=air interface. This
suggests that it would be advantageous to use crystals, that are periodic along the axes tangent
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and normal to the interface along which an antenna or a printed circuit is mounted, and that
have a symmetric structure with respect to the interface: most of the energy would be radiated
in the region where it is desirable.

From a mathematical point of view, we reduce the propagation problem to a weakly singular
integral equation on the patch antenna. The well-posedness of this equation in an appropriate
framework is established via the construction of a Green’s function for the medium crystal=air.
We give a representation formula for this Green’s function, comparing it to a homogeneous
Green’s function in the air, and to a Green’s function for a crystal that would %ll the whole
of R2. Checking the consistency of the representation formula reduces the problem to solving
another integral equation, posed on the interface. We solve this equation in spaces of functions
with exponential decay: this very feature guarantees the ‘coercivity’ of the associated integral
operator. The behaviour at in%nity of the Green’s function is then easily established, which in
turn gives the behaviour of the radiated wave. We note that the qualitative description of the
Green’s function that follows from our analysis, suggests that a numerical method based on
boundary integral representation could prove very eNcient for computing the radiation pattern
of such antennas.

The organization of this paper is as follows: in Section 2 we review the essential features of
photonic band gap materials, and explain what makes them attractive for many applications.
In Section 3 we formulate a model problem and review some useful results. Section 4 is
devoted to studying the asymptotic behaviours of the Green’s function of the model problem.
In Section 5, we derive a weakly singular integral equation on the patch and prove that
it is well posed. In Section 6 we show that if the driving frequency of the patch antenna
lies within the band gap of the photonic crystal then the unique weak solution to the integral
equation decays exponentially in the photonic crystal substrate. In Section 7, we formulate the
radiation problem for an array of patch antennas placed on a photonic crystal, and we prove
the exponential decay of the solution in the photonic crystal substrate. The paper concludes
with some remarks on the generalization of our approach. We believe that the mathematical
techniques developed here may be applied to study the three-dimensional radiation problem
for a single patch antenna, or for an array of patch antennas, placed on a photonic crystal
substrate. The integral equation formulation should also permit comprehension of surface wave
formation due to the %niteness of the photonic band-gap structures.

2. A QUICK SURVEY OF PHOTONIC CRYSTALS

We only present here some essential results about photonic band gap materials (for a very
nice and complete survey, see Reference [7]). A photonic crystal is a periodic mixture of
dielectrics. The propagation of electromagnetic waves in a photonic crystal is governed by
the macroscopic Maxwell equations. Assuming that the crystal is non-magnetic (i.e. that its
magnetic permeability is equal to 1), they take the form

∇×E = −9tH; ∇ ·H =0

∇×H = −”p9tE; ∇ · (”pE)=0

Here, ”p denotes the electric permittivity: it is assumed to be a periodic function and charac-
terizes the material properties. As the coeNcients are time-independent, Fourier transform in
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time reduces the study of the system to the case of monochromatic waves, where the %elds
have the form E(x; t)= ei!tE(x); H (x; t)= ei!tH (x). The functions E(x); H (x) satisfy then

∇× E =−i!H; ∇ ·H = 0

∇×H = i!”pE; ∇ · (”pE) = 0

We will consider, in particular, photonic crystals the electric permittivity of which is in-
dependent of one of the co-ordinates, say the x3-co-ordinate. The Maxwell system can then
be decoupled in two scalar equations, in R2: the transverse magnetic (TM) Helmholtz equa-
tion where the electric %eld is parallel to the x3-direction, and the transverse electric (TE)
Helmholtz equation where the magnetic %eld is parallel to the x3-direction. In particular, we
will focus on the TM equation at the frequency !, which takes the form

(R+!2”p)u = 0 (1)

The main property of photonic crystal, which make them so attractive for many applications,
is the possible existence of gaps in the spectrum of the Maxwell operator or of the TM or
TE Helmholtz operators, considered as operators acting on L2(R2). The presence of gaps is
essentially due to the periodic character of the material coeNcients: it is well known that
the spectrum of dielectrics with constant coeNcients is a half-line. For photonic crystals, the
spectrum may consist of a %nite union of intervals.

The main tool to study the spectral properties of these materials is the Floquet–Bloch
transform, which is to PDEs with periodic coeNcients what the Fourier transform is to PDEs
with constant coeNcients. We present it in the context of the TM Helmholtz equation, when
the medium is assumed to be periodic with period Y =[0; 1]2.

Let k ∈R2. A regular function v is called k-quasi-periodic if and only if

∀x∈R2; ∀j∈Z2; v(x + j)= eik·jv(x) (2)

Let u(x) be a regular function de%ned on R2, that decays suNciently fast at in%nity. We
de%ne its Floquet transform by

Fu(x; k)=
∑
j∈Z2

u(x − j)eik·j

One easily checks that Fu(: ; k) is k-quasi-periodic with respect to the %rst variable. Moreover,
it is periodic with respect to the variable k, called quasi-momentum. It is then suNcient to
know the function Fu for (x; k)∈Y ×B, where B is any period relative to k. Solid-state
physicists usually choose B=[−�; �]2, which is called the %rst Brillouin zone.

It turns out that the Floquet transform commutes with diMerential operators with periodic
coeNcients. In the particular case we are interested in, Equation (1) transforms into

RFu(x; k) +!2”p(x)Fu(x; k)=0

The Floquet transform allows us to represent a function of L2(R2) as a sum of quasi-
periodic functions, a result analogous to the Plancherel Theorem for the Fourier transform.
Indeed, the Floquet transform de%nes an isometry between L2(R2) and L2(B; L2

#(Y )). Also,
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the following inversion formula holds:

(F−1v) (x)=
1
|B|
∫
B
v(x; k) dk

for any function v in L2(B; L2
#(Y )) which is k-quasi-periodic. Together with its commuta-

tion properties on operators with periodic coeNcients, this isometric character makes the
Floquet transform very useful to study spectral problems. Indeed, the spectral problem for
an operator L, acting on functions de%ned on the whole R2, becomes a family of spectral
problems for operators L(k) (formally the same operator, but with a domain that depends on
the quasi-momenta k) acting on functions de%ned on a bounded set. For the TM Helmholtz
operator, because of positivity, these spectral problems take the form: for any k ∈B, %nd !
and v :Y →C, k-quasi-periodic, such that

Rv(x) +!2”p(x)v(x)=0

Each of the operators L(k) is self-adjoint and has compact resolvent, hence has a discrete
spectrum of countably many eigenvalues �n(k). The spectrum of L can be reconstructed as
the union of these discrete spectra. Since the eigenvalues �n(k) (counted with their multi-
plicity) are continuous functions of k, the spectrum consists of the collection of intervals
[mink �n(k);maxk �n(k)].

Normally the bands overlap, however it may happens that the spectrum has gaps. This
feature strongly depends on the form of ”p. When the crystal considered consists of a periodic
mixture of two phases, the existence of gaps depends on the geometry of the arrangement.
Rigorous proofs for existence of gaps have been obtained in Reference [27] (see also Reference
[47]) for the TM and TE operators, when the contrast between the permittivities is large, for
special geometries: periodic array of large bubbles of material with a low permittivity (e.g.
air) separated by thin walls of a material with high permittivity. Some interesting numerical
results are provided in Reference [45].

Another important property of the Floquet transform concerns the characterization of the
decay of functions in L2(Rn) (n=2 or 3) in term of the smoothness of their transform, such
in the same spirit as the Paley–Wiener theorem [28]. Consider the Green’s function of the
TM operator in R2, de%ned by

(R+!2”p)Gp = �(x − y) in R2 (3)

where �(x − y) denotes the Dirac delta function at 0. When the frequency ! lies in a band
gap, it has been established in Reference [29], that the Floquet transform of Gp is analytic
with respect to !, in a complex neighbourhood of the real axis. In view of the Paley–Wiener-
type theorems just mentioned, the analyticity of FGp is the key ingredient to the proof of the
following result (see Reference [29] for a proof):

Lemma 2.1. There exists two positive constants C1 and C2 such that

|Gp(!; x; y)|6 C1e−C2|x−y| for |x − y|→+∞ (4)

The behaviour at in%nity of Gp is the essential feature of PBG materials: it explains why
localized defects in photonic crystals may act as perfect cavities, when the frequency lies in
a band gap. Electromagnetic waves can be represented in terms of Gp and thus inherit the
exponential decay property.
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Many applications take advantage of this principle: defects are made in the periodic
structure, to create channels where waves, that propagate at frequencies within a gap, will be
(practically) localized. Coupled with a pair of waveguides, such a device will act as a very
sharp %lter, and could be used to enhance the eNciency of a laser, or in telecommunications
to sort out signals. Wave guide bends can be created in this manner too, where one can
sharply bend a channel of light with nearly no losses, on very small distances (of order of
the wavelength).

3. NOTATION AND PRELIMINARY RESULTS

Let (e1; e2) be an orthonormal basis of R2. We %rst present the electromagnetic structure that
we study: a planar patch antenna on a photonic crystal substrate.

The antenna consists of a perfectly conducting segment U= ] − h; h[×{0}; h¿0, see
Figure 1. The photonic crystal %lls in the lower domain Vp =R× ]−∞; 0[.

The domain Ve =R× ]0;+∞[, above the photonic crystal, is occupied by a homogeneous
medium (say air), with constant electromagnetic characteristics (”e; �e = 1). Here, ”e is a %xed
positive constant. The characteristics of the photonic crystal are (”p; �p =�e = 1), where the
dielectric function ”p is real valued and periodic and belongs to the set {”p ∈L∞; 0¡”1 6
”p 6 ”2 a.e.} where ”1 and ”2 are %xed.

We assume that the crystal is periodic with period [0; 1]2; i.e. that ”p(x + n)= ”p(x) for
almost all x∈R2 and all n∈Z2. We note that the interface is thus assumed to be parallel to
one of the directions of periodicity. Furthermore, we make a symmetry assumption that bear
on both the structure of the crystal and the position of the interface: we suppose that

”p(x1;−x2)= ”p(x1; x2)
for almost all (x1; x2)∈R2.

Throughout this paper, we set

”=

{
”e in Ve

”p in Vp

Let W denote the interface air=photonic crystal substrate: W= (R\[−h; h])×{0}.

Figure 1. The electromagnetic structure.
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The propagation of electromagnetic waves is governed by the Maxwell’s equations. It is
common to reduce these equations to two sets of scalar equations. The %rst set of equations are
associated with the terminology transverse magnetic (TM), the second set with the terminology
transverse electric (TE). In this paper we focus on the TM case. Assuming now that the planar
patch antenna is radiating into R2\ XU at the frequency !, the problem is modeled in the TM
case by the Helmholtz equations

(R +!2”p)u=0 in Vp (5)

(R +!2”e)u=0 in Ve (6)

with the boundary condition

u=f on U (7)

the transmission relations across the interface W

[u]W = [9x2u]W =0 (8)

and the radiation condition

lim
r→+∞

√
r(9ru− i!

√
”eu)=0 for x2¿0 (9)

Here, r=
√
x21 + x22, f is a given function in H 1=2(U) and [g]W denotes the jump of the function

g across W.
As for the local behaviour of Ge and Gp, i.e. when |x − y|→ 0, the following result of

logarithmic singularity holds:

Lemma 3.1. The functions Gp−(1=2�) log |x−y| and Ge−(1=2�) log |x−y| are continuous
for |x − y|→ 0.

Proof. We %rst recall that Gp is de%ned so that the function

wy(x)=
(
Gp − 1

2�
log |x − y|

)

lies in H 1(R2) and satis%es the Helmholtz equation

Rwy +!2”pwy= − 1
2�
!2”p log |x − y| in R2 (10)

Since ! is in a band gap of the Helmholtz operator (R+!2”p) in R2, wy can be de%ned as
the convolution product

wy(x)= − !2

2�

∫
R2
Gp(!; x; y′)”p(y′) log |y − y′| dy′

The exponential decay of Gp guarantees that such wy ∈H 1(R2). Further, since the right-
hand side in (10) is locally square integrable, classical H 2-interior estimates [30] together
with the continuous Sobolev embedding of H 2 into C0 give that Gp − (1=2�) log |x − y| is
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continuous for |x−y|→ 0. Classical arguments [31] and [48] show the result for Ge − (1=2�)
log |x − y|.

As a consequence of Lemma 3.1, the potentials

Y(x) =
∫
R
Gp(!; x1; x2; y1; 0)’(y1) dy1

Z(x) =
∫
R
9y2Gp(!; x1; x2; y1; 0)’(y1) dy1

de%ned for x2 �=0 and for ’ suNciently smooth, satisfy the well-known jump relations for the
(logarithmic) surface potentials, on x2 = 0 [31].

We recall now a result on the unique solvability of a weak singular integral equation on
the open boundary U. Following Reference [32], we introduce the Sobolev spaces

H±1=2(U)= {’̃|U; ’̃∈H±1=2(R)}
H̃−1=2(U)= (H 1=2(U))′

H̃ 1=2(U)= (H−1=2(U))′

Let S be the operator de%ned by

S :’∈ H̃−1=2(U) �→
∫
U
log |x1 − y1|’(y1) dy1 ∈H 1=2(U)

In Reference [32], the following lemma is proven.

Lemma 3.2. There exists a positive constant C such that

|(S(’); ’)H 1=2(U); H̃−1=2(U)|¿C‖’‖2H̃−1=2(U) (11)

for all ’∈ H̃−1=2(U).

4. THE GREEN’S FUNCTION

In this section we construct a Green’s function for the propagation problem (5)–(9). To do
this, we state some preliminary results.

For &¿0, we introduce the weighted Sobolev spaces:

Hs
& (R)=

{
f∈Hs(R) :

∫
R
(1 + (21)

s|F(e&x1f)((1)|2 d(1¡+∞
}

Hs
& (R; H

s
& (]0;+∞[) =

{
f∈Hs(R× ]0;+∞[) :

∫
R

∫ +∞

0
(1 + (21 + (22)

s|F(e&(x1+x2)f)((1; (2)|2 d(1 d(2¡+∞
}

where F denotes the Fourier transform and s¿0. The embedding Hs′
& (R) ,→ Hs

& (R) is
compact, for any 0¡s¡s′: Further, functions in Hs

& (R) are exponentially decreasing, thus
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their Fourier transform is analytic: this property is essential in the proof of the uniqueness
Lemma 3.3 below, and is the reason for the choice of such spaces.

The following results hold.

Lemma 4.1. Let &¿0. Let f∈H 1=2
& (R). There exists a unique solution v to the Helmholtz

equation

(R +!2”e)v=0 in x2¿0 (12)

v|x2 = 0 =f (13)

lim
r→+∞

√
r(9rv− i!

√
”ev)=0 (14)

Furthermore;

9x2v|x2 = 0 =N (f)

where the pseudo-diMerential operator N is de%ned by

N (f)=
i
2�

∫
R

√
!2”e − (21F(f)((1)ei(1x1 d(1

The proof of Lemma 4.1 easily follows from the Fourier representation of the solution w
to (12)–(14).

Lemma 4.2. There exists &0¿0 such that for any 0¡&¡&0 the pseudo-diMerential
operator L:

f∈H 1=2
& (R) �→ 1

2
f +

∫
R
GpN (f)−

∫
R
9y2Gpf∈H 1=2

& (R)

is of Fredholm type with index 0.

Proof. Since Gp decays exponentially, there exists &0¿0 (small enough) such that for any
0¡&¡&0 and for any f∈H 1=2

& (R), we have L(f)∈H 1=2
& (R): So, to prove the claim, it suNces

to consider the operator L as an operator from H 1=2
& (R) into H 1=2(R).

We %rst rewrite the %rst part of the above operator as follows:

1
2
f +

∫
R
GpN (f)=

1
2
f +

1
2�

∫
R
log |x1 − y1|N (f)(y1) dy1 +

∫
R
RN (f)

The kernel R is continuous by Lemma 2.2, and the last term is compact. Thus, it suNces to
show that the operator

f∈H 1=2
& (R)

�→ 1
2
f +

i
4�2

∫
R
log |x1 − y1|

∫
R

√
!2”e − (21F(f)((1)ei(1y1 d(1 dy1 ∈H 1=2(R) (15)
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is of Fredholm type with index 0. To do this, we determine its symbol, when treated as a
pseudo-diMerential operator.

Recalling that

R
(

1
2�

log |x − y|
)
= �(x − y) for x=(x1; x2); y=(y1; y2)∈R2

we have |(|2F((1=2�) log |x − y|)=−1, so that

1
2�

log |x1 − y1|= − 1
2�

∫
R2

ei(1(x1−y1)

|(|2 d(1 d(2

For x=(x1; 0) we have:

1
2�

∫
R
log |x1 − y1|N (f)(y1) dy1 =− 1

2�

∫
R

∫
R2

ei(1(x1−y1)

|(|2 d(N (f)(y1) dy1

=− 1
2�i

∫
R

[ ∫
R

ei(1(x1−y1)

2|(1|
(∫

R

1
(2 − i|(1| −

1
(2 + i|(1|

)
d(2 d(1

]

×N (f)(y1) dy1

which gives by the Residue Theorem

1
2�

∫
R
log |x1 − y1|N (f)(y1) dy1 =−

∫
R2

ei(1(x1−y1)

2|(1| N (f)(y1) dy1 d(1

=−
∫
R

ei(1x1

2|(1|
∫
R
e−i(1y1N (f)(y1) dy1 d(1

=−i
∫
R

ei(1x1

2|(1|
√
!2”e − (21F(f)((1) d(1

To obtain the last equality, we have used the explicit form of the operator N . Thus, the
symbol of the pseudo-diMerential operator de%ned by (15) is

1
2

(
1− i

√
!2”e − |(1|2

|(1|

)
=1+O

(
1

|(1|2
)
; |(1|→ +∞

which yields the desired claim [33].
We now turn to the remaining term ∫

R
9y2Gpf

We can prove from Lemma 2.2 that the kernel 9y2 (Gp − (1=2�) log |x − y|) has a logarithmic
singularity when |x − y|→ 0. Since the operator

f∈H 1=2
& (R) �→

∫
R
log |x1 − y1|f(y1) dy1 ∈H 1=2(R)
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is compact and ∫
R
9y2 (log |x − y|)|x2=y2=0f(y1) dy1 = 0

for any f∈H 1=2
& (R), we obtain that the operator

f∈H 1=2
& (R) �→

∫
R
9y2Gpf∈H 1=2

& (R)

is also compact. The proof is now complete.

Therefore, the classical Fredholm alternative holds. Existence follows from uniqueness of
solutions.

Lemma 4.3. There exists &0¿0 such that for any 0¡&¡&0 and for any g in H 1=2
& (R), there

exists a unique solution f∈H 1=2
& (R) to the integral equation

1
2
f −

∫
R
9y2Gpf +

∫
R
GpN (f)= g on R

Proof. From Lemma 4.2, it follows that the classical Fredholm alternative holds. Existence
follows then from the uniqueness of solutions. The proof is divided into two steps.

Let us %rst show that the trivial solution is the unique solution in H 1
& (R; H 1

& (]0;+∞[)) to
the Dirichlet problem in the half-space:

(R +!2”p)v=0 in R×]0;+∞[; and v=0 on x2 = 0 (16)

De%ning

ṽ(x1; x2)=

{
v(x1; x2) for x2¿0
−v(x1;−x2) for x26 0

the extension ṽ∈H 1(R2) and it satis%es

(R +!2”p)ṽ=!2(”p(x1; x2)− ”p(x1;−x2))ṽ=0

It is precisely here, that we use our assumption on the symmetry of the crystal. Now, since
! lies in a band gap of the photonic crystal, it follows that ṽ=0 in R2.

Next, let f∈H 1=2
& (R) be a solution to the homogeneous integral equation

1
2
f −

∫
R
9y2Gpf +

∫
R
GpN (f)=0 on R

and consider the function v de%ned by

v=
∫
R
9y2Gpf −

∫
R
GpN (f) in R2\(R×{0})

It is easy to show, since Gp satis%es the logarithmic jump conditions, that v satis%es

(R +!2”p)v = 0 in R×]0;+∞[; v|x2 → 0+ =0

(R+!2”p)v = 0 in R×]−∞; 0[; v|x2 → 0− =f
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and that

[9x2v]=N (f)

The uniqueness of a solution to the Dirichlet problem (16) in the half-space shows that
9x2v|x2 → 0+ =0. Let v, (resp. f,) be the Floquet transform of v (resp. of f):

v,(x1; x2)=
∑
j∈Z

v(x1 + j; x2)e−i,j

f,(x1; x2)=
∑
j∈Z

f(x1 + j; x2)e−i,j

for ,∈ [0; 2�]. Each function v, satis%es

((9x1 + i,)2 + 92x2)v, +!2”pv,=0 in x2¡0

v,=f, on x2 = 0

9x2v,=N,(f,) on x2 = 0

where the operator N, is de%ned by

N,(g)=
∑
j∈Z

i
√
!2”e − (,+ 2�j)2gjei(,+2�j)x1

for g=
∑

j∈Z gj e
i(,+2�j)x1 . Multiplying by v, and integrating by parts over ]0; 1[×]0;−∞[

yields

∫
]0;1[×]0;−∞[

|(9x1 + i,)v,|2 + |9x2v,|2 −!2
∫
]0;1[×]0;−∞[

”p|v,|2 =
∫ 1

0
N,(f,)f,

which gives

Im
∫ 1

0
N,(f,)f,=0

for any ,∈ [0; 2�]. The Parseval equality for the Floquet transform yields

∫
R
N (f) Xf=

1
2�

∫ 2�

0

∫ 1

0
N,(f,)f, d,

Thus

Im
∫
R
N (f) Xf=0

which gives F(f)=0 for |(1|¡!√”e. However, since f is exponentially decaying, F(f)
is analytic [34], and thus F(f) vanishes identically. We conclude that f=0 on R, which
completes the proof.
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Assume that y∈Ve. Since Gp has exponential decrease, there exists &¿0 such that Gp(x1; 0)
∈H 1=2

& (R). We seek a Green’s function G to the propagation problem (5)–(9), solution to

(R +!2”)G= �(x − y) in R2 (17)

[G]R×{0} =[9x2G]R×{0} =0 (18)

lim
r→+∞

√
r(9rG − i!

√
”eG)=0 (19)

Consider G̃e the unique solution of

(R +!2”e)G̃e = �(x − y) in Ve

G̃e =Gp on R×{0}

lim
r→+∞

√
r(9rG̃e − i!

√
”eG̃e)=0

Then, if G is a solution to (17)–(19), G − G̃e satis%es

(R +!2”e)(G − G̃e)=0 in Ve (20)

G − G̃e = (G − G̃e)|x2=0 on R×{0} (21)

lim
r→+∞

√
r(9r(G − G̃e)− i!

√
”e(G − G̃e))=0 (22)

Thus, from the de%nition of the operator N , it follows that

9x2 (G − G̃e)|x2=0 =N (f) (23)

where

f=(G − G̃e)|x2=0

Solving (20)–(22) by Fourier transform, we have

G= G̃e +
1
2�

∫
R
F(f)((1)ei

√
!2”e−(21x2ei(1x1 d(1 in Ve (24)

Furthermore, G −Gp is a solution to

(R +!2”p)(G −Gp)=0 in Vp

G −Gp = (G − G̃e)|x2=0 on R×{0}

It follows that (G −Gp) has the following integral representation in terms of Gp:

G −Gp =−
∫
R×{0}

Gp9y2 (G −Gp)|y2=0 +
∫
R×{0}

9y2Gp(G −Gp)|y2=0 in Vp
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Since [9x2G]R×{0} must be equal to 0, identity (23) together with the jump relations for the
potential Gp, constrain G to satisfy

1
2
f −

∫
R
9y2Gp(x1; 0; y1; 0)f(y1) dy1 +

∫
R
Gp(x1; 0; y1; 0)N (f)(y1) dy1 = g(x1) on R (25)

where

g=−
∫
R×{0}

Gp9y2 (G̃e −Gp)|y2=0

lies in H 1=2
& (R); for & small enough. Thus, solving (17)–(19) reduces to the resolution of the

integral equation (25).
Lemma 4.3 shows that it has a unique solution f∈H 1=2

& (R). Knowing f, we construct G
in Ve by (24) and G in Vp by the representation formula:

G=Gp −
∫
R×{0}

GpN (f) +
∫
R×{0}

9y2Gpf + g in Vp (26)

If y∈Vp then G can be constructed by exactly the same procedure.
Representations (24)–(26) yield the following theorem, that describes the behaviour of the

Green’s function G.

Theorem 4.1. There exists two positive constants C1, C2, independent of x and y, such
that

|G(!; x1; x2; y1; y2)|6C1e−C2|x2| for x2 →−∞ (27)

|(G − G̃e)(!; x1; x2; y1; y2)|6C1e−C2x2 for x2 →+∞ (28)

|G(!; x1; x2 = 0; y1; y2)|6C1e−C2|x1| for |x1|→+∞ (29)

Moreover, the function G − (1=2�) log |x − y| is continuous for |x − y|→ 0.

Note that the proof of (28) relies on the fact that (G− G̃e)|y2=0 is exponentially decreasing
and therefore its Fourier transform is analytic in (1. Further, from References [32; 35], we
obtain without any diNculty that problem (5)–(9) is equivalent to solving the integral equation

∫
U
Gg=f on U

where the unknown g=[9x2u]U ∈ H̃−1=2(U).
Estimates (27)–(29), show, in particular, that the energy radiated in the substrate decays

exponentially. Further, it also follows from Theorem 4.1 that the Green’s function G behaves
in Ve like that associated to the homogeneous acoustic half-space with a Dirichlet boundary
condition on x2 = 0.
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5. THE INTEGRAL EQUATION

In this section, we %rst establish the uniqueness of a solution to the integral equation: %nd
g∈ H̃−1=2(U) such that∫

U
G(!; x1; x2 = 0; y1; y2 = 0)g(y1) dy1 =f(x1) for all x=(x1; 0)∈U (30)

Lemma 5.1. Let f be in H 1=2(U). There exists at most one solution g in H̃−1=2(U) to the
integral equation (30).

Proof. Let g∈ H̃−1=2(U). Denote

u(x1; x2)=
∫
U
G(!; x1; x2; y1; y2 = 0)g(y1) dy1 for x=(x1; x2)∈R2\ XU (31)

Then, u satis%es

(R +!”)u= g�U in R2 (32)

where �U is the delta function on U. Further, estimate (28) in Theorem 4.1 implies that u
satis%es the radiation condition.

Assume that∫
U
G(!; x1; x2 = 0; y1; y2 = 0)g(y1) dy1 = 0 for all x=(x1; 0)∈U (33)

Multiplying (32) by Xu and integrating by parts over a ball BR, for R large enough, gives∫
BR\ XU

|∇u|2 −!2
∫
BR\ XU

”|u|2 −
∫
9BR
9ru Xu=0 (34)

Taking the imaginary part of (34) implies

Im
∫
9BR
9ru Xu=0 (35)

Since ∫
9BR

|9ru|2 +!2”e
∫
9BR

|u|2 + 2!
√
”e Im

∫
9BR
9ru Xu=

∫
9BR

|9ru− i!
√
”eu|2

which goes to 0 as R→+∞, according to the radiation condition, it follows that∫
9BR

|u|2 → 0; R→+∞

Hence

u= o
(

1√
R

)
for R→+∞ (36)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:1021–1042



1036 H. AMMARI ET AL.

Recalling the de%nition of the operator T and combining estimate (36) together with the
asymptotic behaviour (29) of G in Theorem 4.1 we obtain from (31) that

∫ R
−R N (u) Xu goes to

0 as R→+∞. Consequently, (36) together with the fact that u|x2=0 which is given by (31)
is exponentially decaying when |x1|→+∞ yields

u(x1; x2 = 0)=0

for any x1. By the unique solvability of the Dirichlet problem in both the homogeneous half-
space and the photonic band-gap substrate u is identically zero in R2 and [9x2u] must vanish
identically on x2 = 0, and thus, g=0 on U. This completes the proof of uniqueness.

The existence of a solution to the integral equation (30) follows now from the last statement
in Theorem 4.1:

Theorem 5.1. Let f∈H 1=2(U). There exists a unique solution g in H̃−1=2(U) to the integral
equation (30).

6. THE RADIATION PROPERTIES

The following theorem is an immediate consequence of Lemma 2.1 and Theorem 4.1; it shows
the exponential decay of the solution to the problem of propagation in the photonic crystal
substrate.

Theorem 6.1. If ! is in a band gap of the periodic operator (R + !2”p) in R2 then the
following estimate holds

|u(x)|6C1e−C2|x2| as x2 →−∞

where the positive constants C1 and C2 are independent of x.

A relevant question is then to estimate the decay of u at the interface photonic crystal=air
as |x1|→+∞. The following result which shows that, under the symmetry hypothesis on ”p,
a photonic crystal substrate permits reduction of the radiated energy even at the air=substrate
interface, is also an easy consequence of Theorem 4.1.

Theorem 6.2. If ! is in a band gap of the periodic operator (R + !2”p) in R2 then
there exists two positive constants C1 and C2 which are independent of the variable x1, such
that

|u(x1; x2 = 0)|6C1e−C2|x1| as |x1|→+∞
Theorems 4.1 and 6.2 provide a mathematical justi%cation of the use of a photonic crystal

substrate as a perfect mirror at any incidence angle. Mirrors, probably the most prevalent
of optical devices, are used for imaging and solar energy collection and in laser cavities.
One can distinguish between two types of mirrors, the age-old metallic and the more recent
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dielectric. The fabrication of dielectric reFectors may be the most signi%cant advance in
mirror technology. It promises to have signi%cant applications in many %elds, including %bre
optics, cellular telephones, energy conservation, spectroscopy and even medicine. Unlike the
dielectric reFectors, the metallic mirrors cannot be used in applications like communications
and high-powered lasers, where minimizing energy loss is important. At infra-red and optical
frequencies, a few percent of the incident power is typically lost because of absorption. For
applications in which energy loss is important scientists depend on a more sophisticated
device. As we have seen by dielectric structures one can make mirrors that are nearly perfect
reFectors. The ability to reFect light with extremely low loss is associated with the existence
of a band gap, which can exist only in a system with a dielectric function that is periodic.
Another useful property of dielectric mirrors is that they can be designed to reFect only a small
range of frequencies and let the rest pass unmolested. For example, periodic dielectric mirrors
can be designed to reFect infra-red light but transmit visible light. Because of their very high
reFectivity over a limited angular and spectral range they are also very useful for planar
cavities [36]. Periodic dielectric mirrors could also be useful in improving thermophotovoltaic
cells, devices that trap waste heat and convert it to energy. Since these mirrors could be made
now to reFect radio waves, they could be used to boost the performance of cellular telephones
[37; 38].

7. RADIATION PROPERTIES OF AN ARRAY OF PATCH ANTENNAS ON A
PHOTONIC CRYSTAL SUBSTRATE

In this section, we consider an array of patch antennas on a photonic crystal substrate, as
shown in Figure 2. These one-dimensional periodic structures are widely used devices, known
for their polarization diplexing properties. Their main application concerns polarization twisters
in antenna design. Power loss or coupling of diMerent antennas may seriously modify the
scattering characteristics of the device. The use of a periodic dielectric with a complete band
gap as a substrate could lead to improved, more eNcient devices.

Let Uj = {x=(x1 + jh′; 0) : (x1; 0)∈U}, where j∈Z , h′¿2h. Let , be in [0; 2�[.

Figure 2. Array of patch antennas.
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The radiation pattern induced by the array of patch antennas is modelled by the Helmholtz
equations

(R +!2”p)u=0 in Vp (37)

(R +!2”e)u=0 in Ve (38)

with the boundary condition

u=ei,jf(x1 − jh′) on Uj for j∈Z (39)

and the transmission relations across the interface W=R×{0}\⋃j∈Z XUj

[u]W = [9x2u]W =0 (40)

To formulate the radiation condition on u, let us %rst introduce the following de%nition:

De.nition 7.1. A regular function v is ,-quasi-periodic in the x1 variable if and only if

∀(x1; x2)∈R2; ∀j∈Z; v(x1 + jh′; x2)= ei,jv(x1; x2) (41)

Since the boundary condition on
⋃
j∈Z Uj is ,-quasi-periodic, we may seek a solution u that

satis%es (41).
Problem (37)–(41) is completed by the ,-quasi-periodic radiation condition [39]: u consists

of a sum of a %nite number of outgoing plane waves plus an in%nite number of exponentially
vanishing plane waves, as x2 →+∞.

Let G,
p be the ,-quasi-periodic Green’s function of the periodic Helmholtz equation in R2:

(R +!2”p)G,
p = �

,(x − y)=∑
j∈Z

e−i,j�(x1 + jh′ − y1; x2 − y2)

Let

G,
e (!; x1; x2; y1; y2)=

i
4
∑
j∈Z

e−i,jH (1)
0 (!

√
”e
√
|x1 + jh′ − y1|2 + |x2 − y2|2)

From Reference [39], it follows that G,
e is the ,-quasi-periodic Green’s function of the

homogeneous Helmholtz equation in R2:

(R +!2”e)G,
e = �

,(x − y)

According to Reference [40], the Green’s functions G,
p and G,

e have the same logarithmic
singularity when |x− y|→ 0: the functions G,

p − (1=2�) log |x− y| and G,
e − (1=2�) log |x− y|

are continuous. Further, it can be shown that G,
p decays exponentially for |x2|→+∞, if ! is

in a band gap of the periodic Helmholtz operator in R2. This implies that the ,-quasi-periodic
Green’s function of the problem

(R+!2”)G,= �,(x − y)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:1021–1042



PLANAR ANTENNA ON PHOTONIC CRYSTAL SUBSTRATE 1039

decays exponentially when x2 →−∞. We may also arrive at the same conclusion by proving
as in Reference [39] that G, is, in fact, given by the following summation formula:

G,(!; x1; x2; y1; y2)=
∑
j∈Z

e−i,jG(!; x1 + jh′ − y1; x2 − y2) (42)

where G is the Green’s function which has been constructed in Section 3.
The radiation problem from the array of patch antennas described below can be reduced to

the resolution of the following integral equation in H̃−1=2(U):

f=
∫
U
G,g on U (43)

The approach we developed to prove Theorems 4.1 and 5.1, can be easily adapted to the
case of an array of patch antennas: it can be shown, following the same method step by step
or making use of the summation formula (42), that the integral equation (43) has a unique
solution in H̃−1=2(U). A statement analogue to that of Theorem 5.1 can be proved: more
precisely, let u be de%ned by

u=
∫
U
G,g

for −h′=2 + h¡x1¡h′=2 and x2 ∈R. Then the following estimate holds

|u|6C1e−C2|x2| for x2 →−∞

where the positive constants C1 and C2 are independent of x=(x1; x2).

8. CONCLUDING REMARKS AND EXTENSIONS

We have investigated the radiating properties of a single-patch antenna, or of an array of
phased patch antennas, placed on a substrate which is a photonic crystal.

For each situation, we have shown that a unique weak solution exists, when the driving
frequency of the electromagnetic device lies within the band gap of the photonic crystal
medium. Further, we have proven that the solution decays exponentially in the substrate, i.e.
that the main part of the energy is radiated in the air.

Additionally, we found in the case of a simple patch antenna, that the solution also decays
exponentially at the interface air=photonic crystal substrate.

Our analysis is based on the study of the asymptotic behaviour of the Green’s function
associated with the device: we have shown that its singular behaviour reduces to that of
the fundamental solution for the Laplace operator, and that at in%nity it behaves either like
the Green’s function of the homogeneous medium in R2 or like the Green’s function of the
photonic crystal in R2. Our analysis is based on two assumptions: the frequency ! lies in
a band gap of the photonic crystal (in R2) and the crystal can be extended by reFection to
a periodic structure in R2, i.e. that the periodic function ”p satis%es the symmetry condition
”p(x1;−x2)= ”p(x1; x2) for almost all (x1; x2)∈R2. This last assumption implies that ! also
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lies in a band gap for the operator R + !2”p in the half-plane with a Dirichlet boundary
condition. We believe that this statement is not true in general. Indeed, assume that

(R +!2”p)v=0 in R× ]0;+∞[; v∈H 1
& (R; H

1
& (]0;+∞[)) and v=0 on x2 = 0

as in the proof of Lemma 3.3, and consider

ṽ(x1; x2)=

{
v(x1; x2) for x2¿0
−v(x1;−x2) for x260

The extension ṽ∈H 1(R2) and it satis%es

(R +!2”p)ṽ=!2(”p(x1; x2)− ”p(x1;−x2))ṽ in R2

The term in the right-hand side is reminiscent of the eMect of a defect in the medium. In Ref-
erences [29; 41; 42; 46], the implications of a compactly supported defect in a photonic crystal
have been analysed. They have shown that the presence of a defect can create eigenvalues
in the band gap, associated with exponentially decaying eigenfunctions. A similar phenomena
might occur here. Moreover, experiments seem to consolidate our conjecture: surface waves
have been observed in this type of devices in References [24–26; 44]. It would be very in-
teresting to %nd out under which geometric conditions the band gap for the whole plane is
embedded in the band gap of the half-plane.

Our analysis provides a mathematical justi%cation of the use of a photonic crystal substrate
as a perfect mirror at any incidence angle, with exponentially decaying energy in the crystal.
According to Reference [5], this feature of photonic crystals has promising and signi%cant
technological applications in many %elds including %bre optics, cellular telephones and energy
conservation. It should also be noted that it also follows from our analysis that the use of
photonic band-gap substrates which can be extended by reFection to periodic structures in all
R2 as substrates for planar antennas and printed circuits eliminates the formation of surface
waves on the interface x2 = 0.
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