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Abstract

The Neumann-Poincaré (NP) operator naturally appears in the
context of metamaterials as it may be used to represent the solutions
of elliptic transmission problems via potentiel theory. In particular,
its spectral properties are closely related to the well-posedness of these
PDE’s, in the typical case where one considers a bounded inclusion
of homogeneous plasmonic metamaterial embedded in a homogeneous
background dielectric medium. In a recent work [32], M. Perfekt and
M. Putinar have shown that the NP operator of a 2D curvilinear poly-
gon has an essential spectrum, which depends only on the angles of
the corners. Their proof is based on quasi-conformal mappings and
techniques from complex-analysis. In this work, we characterise the
spectrum of the NP operator for a 2D domain with corners in terms
of elliptic corner singularity functions, which gives insight on the be-
haviour of generalized eigenmodes.

1 Introduction

Plasmonic metamaterials are composite structures, in which some parts are
made of media with negative indices. Their fascinating properties of sub-
wavelength confinement and enhancement of electro-magnetic waves have
drawn considerable interest from the physics and mathematics communities.
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The progress in the controlled production of composites with characteristic
features of the order of optical wavelengths contributes to this activity, as it
may enable many applications to nano-optical-mechanical systems, cancer
therapy, neuro-science, energy and information storage and processing.

From the mathematical modelling point of view, these studies have also
renewed interest in the Neumann-Poincaré operator, the integral operator
derived from the normal derivative of the single layer potential. Indeed, it
proves to be an interesting tool to construct, represent and derive properties
of solutions to diffusion-like equations, in situations where the Lax-Milgram
theory does not apply, which is typically the case of negative index materials.

The spectral properties of this operator have proved interesting in several
contexts [1, 2, 13, 14, 15]. They are particularly relevant to metamaterials,
as they are closely related to the existence of surface plasmons, i.e., solutions
of the governing PDE (Maxwell, Helmholtz, acoustic equations) which are
supported in the vicinity of the interfaces where the coefficients change signs.

To fix ideas, we consider a single inclusion D made of negative index material
(typically metals, such as gold or silver at optical frequencies). It is embed-
ded in a homogeneous dielectric background medium and we by denote K∗D
the associated NP operator (its precise definition is given in section 2). For
particular frequencies, called plasmonic resonant frequencies, an incident
wave may excite electrons on the surface of the inclusion into a resonant
state, that generates highly oscillating and localised electromagnetic fields.
For gold and silver, plasmonic resonances occur when the diameter of the
particles is small compared to the wavelength. From the modelling point
of view, one may rescale the governing Maxwell or Helmholtz equations,
with respect to particule size, and take the limit of the resulting equations
to obtain the quasi-static regime, where only the higher-order terms of the
original PDE remain [29, 21, 3, 4]. Plasmonic resonances have been investi-
gated via layer potential techniques in [1]–[6].

When D has a smooth boundary (say C2) the operator K∗D is compact.
Its spectrum is real, contained in the interval (−1/2, 1/2], and consists in
a countable number of eigenvalues that accumulates to 0. In the context
of plasmonics, domains with corners present an obvious interest when one
attempts to concentrate electro-magnetic fields, and several authors have
considered geometries where the negative index materials are distributed in
regions with corners [11, 9, 23, 24]. When D has corners, K∗D is not com-
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pact [33]. In a recent work, M.-K. Perfekt and M. Putinar have shown,
relying on the relationship between complex analysis and potential theory,
that the NP operator associated to a planar domain with corners has essen-
tial spectrum, which they characterised to be

σess(K∗D) = [λ−, λ+], λ+ = −λ− =
1
2

(1− α

π
),

where α is the most acute angle of D. See [32, 31].

The objective of our paper is to give an alternative derivation of the essential
spectrum of K∗D when D has corners, and to establish a close connection
between the fact that K∗D has essential spectrum and the theory of elliptic
corner singularities initiated by Kondratiev in the 1970’s and developed in
many directions. See [27] and also [22, 17, 28] and the many references
therein. We emphasise that throughout the paper we use the word ‘elliptic’
to refer to scalar transmission problems of the form div(a∇u) = f where
the conductivity is real, positive and bounded away from 0, so that the
associated bilinear form is coercive and the Lax-Milgram theory applies.
This has been the usual framework of the work on corner singularities, until
negative index materials became an active topic of research, about a decade
ago [12, 19].

The Kondratiev theory shows that the solution u to an elliptic scalar equa-
tion in a domain O with corners splits as the sum u = ureg + using of a
regular part ureg ∈ H2(O) and a singular part using ∈ H1(O) \H2(O), lo-
cally around each corner. Up to a scaling factor, the expression of the latter
part, which we call ‘singularity function’, only depends on the geometry
of the corner, and on the nature of the boundary conditions. In the case
of a transmission problem, it depends on the angle and on the contrast in
material coefficients. Typically, using is a non-trivial solution of a homoge-
neous problem for the associated operator in the infinite domain obtained
by zooming around the vertex of the corner. For a transmission problem in
2D, it has the form

using = Crηϕ(θ), (1)

where (r, θ) denote the polar coordinates with origin at the vertex of the
corner under consideration. The exponent η is the root of a dispersion
relation, and ϕ is a smooth function (or piecewise smooth in the case of a
transmission problem).

This paper is organised in the following way. Section 2 of the paper describes
the setting and notations and reviews useful facts about the NP operator.
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Our analysis relies on the connection between the NP operator and the
conductivity equation

div(a(x)∇u(x)) = f. (2)

To avoid technicalities related to the behaviour of solutions at infinity, we
consider this equation in a bounded domain Ω and impose homogeneous
Dirichlet boundary conditions u = 0 on ∂Ω. We thus seek to construct solu-
tions to the conductivity equation in the Sobolev space H1

0 (Ω), the subspace
of the Sobolev space H1(Ω) of functions with 0-trace on ∂Ω. These solu-
tions are related to a Neumann-Poincaré operator, defined with the Green
function of (2) that vanishes on ∂Ω. Considering the conductivity equation
in the whole of R2 would have involved a different Neumann-Poincaré oper-
ator, defined with the Newtonian potential. As the difference between these
integral operators is compact, their essential spectra are however identical.

In Section 3, we study how elliptic corner singularity functions depend on the
conductivity contrast. In the very interesting papers [10, 11, 9], it is shown
that functions of the form (1) only exist when the conductivity contrast λ
lies outside a critical interval [λ−, λ+]. When λ ∈ [λ−, λ+], the elliptic corner
singularity functions still have the form using but their expression involves
a complex exponent η. In [9], the use of the Mellin transform converts
the search of these singular functions to that of propagative mode in an
infinite wave-guide. These functions are called plasmonic black-hole waves,
reflecting the fact that they are not in the energy space H1(Ω). In Section 4,
we show that the critical interval is contained in the essential spectrum
σess(K∗D), by generating singular Weyl sequences [8] using the singularity
functions. In Section 5, the reverse inclusion is proved. In particular, we use
a construction inspired by [30] to transform, around the vertex of the corner,
the PDE with sign changing conditions into a system of PDE’s defined in
the inhomogeneity only, that satisfies complementing boundary conditions
in the sense of Agmon, Douglis and Nirenberg, and for which we prove well-
posedness. Finally in Section 6, we show that these results extend to smooth
curvilinear polygons.

2 The Neumann-Poincaré operator and the Poin-
caré variational operator

Throughout the text, Ω ⊂ R2 denotes a bounded open set with smooth
boundary, that strictly contains a connected inclusion D. For simplicity, we
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assume that ∂D is smooth, except for one corner point, of angle α, 0 < α <
Π, located at the origin. We also assume that ∂D has straight edges in the
vicinity of the corner, in other words, we assume that for some R0 > 0,

D ∩BR0 = {x = (r cos(θ), r sin(θ)), 0 ≤ r < R0, |θ| < α/2}, (3)

where, for any ρ > 0, Bρ denotes the ball of radius ρ centred at 0. We make
these simplifying assumptions so as to focus only on the core mechanisms
that are responsible for the creation of essential spectrum, and so as to relate
them to the generic behaviour of solutions to elliptic PDE’s near corners.
However, we show in Section 6 that our results extend to smooth curvilinear
polygons.

The spaceH1
0 (Ω) is equipped with the following inner product and associated

norm

< u, v >H1
0

=
∫

Ω
∇u · ∇v dx, ||u||H1

0
=
(∫

Ω
|∇u|2 dx

)1/2

.

Our work concerns the following diffusion equation: given a function f ∈ L2(Ω),
we seek u such that{

−div(a(x)∇u(x)) = f in Ω,
u(x) = 0 on ∂Ω,

(4)

where the conductivity a is piecewise constant

a(x) =
{
k ∈ C x ∈ D,

1 x ∈ Ω \D. (5)

It is well known that when k is strictly positive, or when k ∈ C and
Im(k) 6= 0, this problem has a unique solution in H1(Ω), and that

||u||H1
0
≤ C(k) ||f ||L2 ,

for some constant C(k) > 0 that depends on k.

Let P (x, y) denote the Poisson kernel associated to Ω, defined by

P (x, y) = G(x, y) +Rx(y), x, y ∈ Ω,

where G(x, y) denotes the free space Green function

G(x, y) =
1

2π
ln |x− y|,
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and where Rx(y) is the smooth solution to{
∆yRx(y) = 0 y ∈ Ω,
Rx(y) = −G(x, y) y ∈ ∂Ω.

With the Poisson kernel, we define the single layer potential SDϕ ∈ L2(∂D)
of a function ϕ ∈ L2(∂D) by

SDϕ(x) =
∫
∂D

P (x, y)ϕ(y) ds(y), x ∈ D ∪ (Ω \D).

where ds denotes the surface measure on ∂D. It is well known [20, 33] that
SDϕ is harmonic in D and in Ω \ D, continous in Ω, and that its normal
derivatives satisfy the Plemelj jump conditions

∂SDϕ
∂ν
|±(x) = (±1

2
I +K∗D)ϕ(x), x ∈ ∂D. (6)

where K∗D is the Neumann-Poincaré operator, defined by

K∗Dϕ(x) =
∫
∂D

∂P

∂νy
(x, y)ϕ(y) ds(y).

It is shown in [16] that this definition makes sense for Lipschitz domains,
and in that case, the operator K∗D is continuous from L2(∂D) → L2(∂D),
which extends as an operator H−1/2(∂D)→ H−1/2(∂D).

The solution u to (4) can then be represented in the form

u(x) = SDϕ(x) +H(x), (7)

where the harmonic part is given by

H(x) =
∫

Ω
P (x, y)f(y) ds(y).

The jump conditions (6), constrain the layer potential ϕ ∈ H−1/2(∂D) to
satisfy the integral equation

(λI −K∗D)ϕ(x) = ∂νH|∂D(x), x ∈ ∂D,

where λ = k+1
2(k−1) (when k 6= 1).

We also introduce the Poincaré variational operator TD : H1
0 (Ω)→ H1

0 (Ω),
defined for u ∈ H1

0 (Ω) by

∀ v ∈ H1
0 (Ω),

∫
Ω
∇TDu · ∇v dx =

∫
D
∇u · ∇v dx. (8)

Some of its properties are described in the following proposition (see [13] for
a proof).
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Proposition 1. The operator TD is bounded, self-adjoint, and satisfies
||TD|| = 1. Moreover,

(i) Its spectrum σ(TD) is contained in the interval [0, 1].

(ii) Its kernel, the eigenspace associated to β = 0, is

Ker(TD) = {u ∈ H1
0 (Ω), u = const on D}.

(iii) 1 ∈ σ(TD) and the associated eigenspace is

Ker(I − TD) = {u ∈ H1
0 (Ω), u = 0 in Ω \D},

(and thus, can be identified with H1
0 (D)).

(iv) The space H1
0 (Ω) decomposes as

H1
0 (Ω) = Ker(TD)⊕Ker(I − TD)⊕H,

where H is the closed subspace defined by

H = {u ∈ H1
0 (Ω),∆u = 0 in D ∪ (Ω \D),

∫
∂D

∂u+

∂ν
ds = 0}.

We denote HS = H ⊕ Ker(TD) the space of single layer potentials. It is
isomorphic to

H
−1/2
0 (∂D) = {ϕ ∈ H1/2(∂D), < ϕ, 1 >H−1/2,H1/2= 0}.

This latter space is equipped with the inner product

< ϕ,ψ >S = −
∫
∂D

ϕSψ dσ (9)

for which the operator K∗D : H−1/2
0 (∂D) → H

−1/2
0 (∂D) is self-adjoint as

a result of the Calderón identity [26]. We denote by || · ||S the associated
norm. In particular, if u, v ∈ HS are such that u = SDϕ, v = SDψ, then the
jump conditions (6) and integration by parts show that∫

Ω
∇u · ∇v = < ϕ,ψ >S . (10)
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When the domain D has a C2 boundary, the Poincaré-Neumann operator
K∗D : H−1/2

0 (∂D) → H
−1/2
0 (∂D) is compact. Its spectrum σ(K∗D) is con-

tained in [−1/2, 1/2], and consists of a sequence of real eigenvalues that
accumulates to 0. In this case, σ(K∗D) is directly related to σ(TD). Indeed,
if u ∈ H1

0 (Ω) and β ∈ R, β 6= 1, satisfy TDu = βu, it follows from (8) that

∀ v ∈ H1
0 (Ω), β

∫
Ω\D
∇u · ∇v dx+ (β − 1)

∫
D
∇u · ∇v dx = 0,

so that u is a non-zero solution to{
div(a(x)∇u(x)) = 0 in Ω,

u(x) = 0 on ∂Ω,
(11)

where the conductivity a equals β in Ω \D and (β − 1) in D. Expressing u
in the form u = SDϕ yields the integral equation

(λI −K∗D)ϕ(x) = 0, x ∈ ∂D,

where λ = 1/2− β is thus an eigenvalue of K∗D. It follows that

σ(TD) = (1/2− σ(K∗D)) ∪ {0, 1}.

As recalled above, when D is a domain with corners, σ(K∗D) contains an
interval of essential spectrum [32]. We have

Proposition 2. The essential spectra of TD and K∗D are related by σess(TD) =
1/2− σess(K∗D).

Proof: Let λ ∈ σess(K∗D). By definition, there exists a singular Weyl se-
quence, i.e., a sequence of functions (ϕε) ⊂ H−1/2

0 such that
(λI −K∗D)ϕε → 0 strongly in H−1/2

0 ,
||ϕε||S = 1,
ϕε ⇀ 0 weakly in H−1/2

0 .

Let β = 1/2 − λ and uε = SDϕε ∈ HS . Let v ∈ HS so that v = SDψ for
some ψ ∈ H−1/2

0 (∂D). It follows from (10) that∫
Ω
∇uε · ∇v = < ϕε, ψ >→ 0.
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This equality also holds for v ∈ Ker(I−TD) since this subspace is orthogonal
to HS , and thus

uε ⇀ 0 weakly in H1
0 (Ω). (12)

Additionally, invoking (10) again, we see that∫
Ω
|∇uε|2 = < ϕε, ϕε >S = 1. (13)

Finally, we compute, for v = SDψ ∈ HS ,∫
Ω
∇ ((βI − TD)uε) · ∇v =

∫
Ω
β∇uε · ∇v −

∫
D
∇uε · ∇v

=
∫

Ω\D
β∇uε · ∇v +

∫
D

(β − 1)∇uε · ∇v

= −β
∫
∂D

∂νuε|+v + (β − 1)
∫
∂D

∂νuε|−v.

Inserting (6) in place of the normal derivatives of uε we see that∣∣∣∣ ∫
Ω
∇ ((βI − TD)uε) · ∇v

∣∣∣∣ = |< (λI −K∗D)ϕε, ψ >S |

≤ ||(λI −K∗D)ϕε||S ||ψ||S .

It follows that

||(βI − TD)uε||H1 ≤ ||(λI −K∗D)ϕε||S → 0. (14)

we conclude from (12–14) that uε is a singular Weyl sequence associated to
β, so that β ∈ σess(TD). The same argument proves the reverse inclusion
σess(TD) ⊂ (1/2− σess(K∗D)).

3 Corner singularity functions

Elliptic corner singularities have been the subject of much research since
the pioneering works of Kondratiev [27], Grisvard [22] (see also [17, 28]).
Essentially, the theory focuses on the regularity of solutions to elliptic PDEs
near a corner of the domain, or in the case of a transmission problem such
as (4), near a corner of the interface between several phases. The following
is a typical statement:
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Theorem 1. Let k > 0. The solution u ∈ H1
0 (Ω) to (4) decomposes as

u = using + ureg,

where ureg ∈ H2(Ω) and where using has the form

using(x) = rηϕ(θ)ζ(x), x ∈ Ω. (15)

Here x = (r cos(θ), r sin(θ)) in polar coordinates, ζ is a smooth cut-off func-
tion, such that, for some s > 0

ζ(x) =
{

1 |x| < s,
0 |x| > 2s.

Moreover, for some constant C = C(α, k), the following estimate holds

||using||H1(Ω) + ||ureg||H2(Ω) ≤ C
(
||u||H1(Ω) + ||f ||L2(Ω)

)
. (16)

Most of these results have been derived in the case of strongly elliptic coef-
ficients, i.e., when k > 0. In the context of plasmonic metamaterials, it is
natural to try to extend them to complex values of k. To our best knowledge,
the first steps in this direction have been obtained in [10, 11] and concern
the existence of singularity functions of the form (15).

3.1 Regular corner singularity functions

In this paragraph, we investigate whether one can define singular functions
such as (15) when k may also take negative values. More precisely, we seek
H1
loc(R

2) solutions to

div(a(x)∇u(x)) = 0 in R2, (17)

of the form

u(x) = rηϕ(θ), η ∈ R, (18)

when the conductivity a(x) is defined in the whole of R2 by

a(x) =
{
k |θ| < α/2,
1 otherwise.

(19)

Since we are only interested in singular solutions which belong to H1(Ω) \
H2(Ω), we may restrict η to lie in (0, 1). As u is harmonic in each sector
|θ| < α/2 and α/2 < θ < 2π − α/2, it follows that ϕ has the form

ϕ =
{
a1 cos(η(θ + α/2)) + b1 sin(η(θ + α/2)) if − α/2 < θ < α/2,
a2 cos(η(θ + α/2)) + b2 sin(η(θ + α/2)) if α/2 < θ < 2π − α/2 (20)
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for some ai, bi, i = 1, 2. Expressing the continuity of u and of a(x)∂νu across
the interfaces, shows that a non-trivial solution exists if and only if the
following dispersion relation is satisfied

det


1 0 − cos(2πη) − sin(2πη)

cos(αη) sin(αη) − cos(αη) − sin(αη)
0 k sin(2πη) − cos(2πη)

−k sin(αη) k cos(αη) − sin(αη) − cos(αη)

 = 0,

which, after elementary manipulations, can be rewritten in the form

2k
k2 + 1

=
sin(αη) sin((2π − α)η)

1− cos(αη) cos((2π − α)η)
=: F (η, α). (21)

A Taylor expansion around η = 0 shows that F (η, α) can be extended by
continuity to a function defined on the whole of [0, 1] by setting

F (0, α) =
−2α(2π − α)
α2 + (2π − α)2

.

By solving
2k

k2 + 1
= F (0, α),

we obtain two solutions

k+ =
−(2π − α)

α
, k− =

−α
2π − α

. (22)

Additionally, it is easy to check that |F (η, α)| ≤ 1 and

∂ηF =
cos((2π − α)η)− cos(αη)) [a sin((2π − α)η)− (2π − α) sin(αη)]

[1− cos(αη) cos((2π − α)η)]2
.

We note that ∂ηF (0, α) = ∂ηF (1, α) = 0 and show below that F (·, α) is
strictly increasing.

Lemma 1. For any 0 < α < π and 0 ≤ η ≤ 1, the following inequalities
hold

cos((2π − α)η)− cos(αη) < 0, (23)
a sin((2π − α)η)− (2π − α) sin(αη) < 0.
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Proof: To prove the first inequality, we first note that α < (2π−α) so that
αη < (2π − α)η. If (2π − α)η ≤ π, then (23) follows from the monotonicity
of the cosine function on [0, π]. If (2π − α)η > π, then

cos((2π − α)η) = cos(π − β), with (2π − α)η =: π + β.

Noticing that

αη ≤ αη + 2π(1− η) = π − β < π,

we infer that cos(π − β) < cos(αη), which yields the result.

The second inequality follows from the fact that

∂η [a sin((2π − α)η)− (2π − α) sin(αη)]
= α(2π − α) [cos((2π − α)η)− cos(αη)] ,

which according to (23) is negative.

As a consequence of (21), we obtain

Proposition 3. Singular solutions in H1
loc(R

2) of the form (18) exists for
the equation (17) only when k ∈ (−∞, k+) ∪ (k−,+∞), see Figure 3.1. In
terms of the contrast λ = k+1

2(k−1) this condition is equivalent to

λ /∈ [λ−, λ+] := [−1
2

(1− α

π
),

1
2

(1− α

π
)].

In other words, singular solutions of the form (18) only exist when λ =
k+1

2(k−1) is not in σess(K∗D).

3.2 Singular corner singularity functions

We now construct local singular solutions when k ∈ [k+, k−]. By this we
mean functions which satisfy the PDE (17), but which may only be in
H1
loc(R

2 \{0}). To this end, we seek u(x) = rηϕ(θ), with ϕ in the form (20),
but assume now that η ∈ C. The same algebra leads to the same dispersion
relation (21). In particular if we restrict η to be a pure imaginary number,
η = iξ, this relation takes the form

2k
k2 + 1

=
sinh(αξ) sinh((2π − α)ξ)

1− cosh(αξ) cosh((2π − α)ξ)
=: F̃ (ξ, α).
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Figure 3.1: Left: Plot of the function k → 2k/(k2 + 1). Right: Plot of
η → F (η, α) (blue), and of ξ → F̃ (ξ, α) (green), for α = π/2. The dotted
line indicates the value of 2k/(k2 + 1) below which the dispersion relation
has no solution η ∈ R.

It is easy to check that the function ξ → F̃ (ξ, α) can be extended by conti-
nuity at ξ = 0 by setting

F̃ (0, α) =
2α(2π − α)

α2 + (2π − α)2
=

2k±
k2
± + 1

(and we note that F̃ (0, α) = F (0, α)). In addition, we compute

∂ξF̃ =
(cosh((2π − α)ξ)− cosh(αξ)) [(2π − α) sinh(αξ)− α sinh((2π − α)ξ)]

[1− cosh(αξ) cosh((2π − α)ξ)]2
.

Just as in Proposition 1, one can show that for any ξ > 0 and 0 < α < π,
the product of the two factors in the above numerator is negative, so that
F̃ (·, α) is strictly decreasing on R+ and its range is equal to [F (0, α),−1),
see Figure 3.1. We also note that limη→∞ F̃ (η, α) = −1, so that the value
−1 (which corresponds to k = −1) is never attained. Summarizing, we have
shown that

Proposition 4. For any value of λ ∈ (λ−, λ+), λ 6= 0, there exists ξ > 0 and
a function u(x) = riξϕ(θ), which is a local solution to div(a(x)∇u(x)) = 0,
where a is defined by (19), with λ = k+1

2(k−1) .

4 Construction of singular Weyl sequences

In this section we prove
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Theorem 2. The set [λ−, λ+] is contained in σess(TD).

Proof:
Since σess(K∗D) is a closed set, it is sufficient to show that (λ−, λ+) \ {0} ⊂
σess(TD). We proceed as follows: We consider λ ∈ (λ−, λ+), λ 6= 0, and show
that β = 1/2− λ ∈ σess(TD) by constructing a singular Weyl sequence, i.e.,
a sequence of functions uε ∈ H1

0 (Ω), such that
||uε||H1

0
= 1,

(βI − TD)uε → 0 strongly in H1
0 (Ω),

uε ⇀ 0 weakly in H1
0 (Ω).

(24)

According to Proposition 4, there exists ξ > 0 and coefficients a1, b2, a2, b2 ∈
C, not all equal to 0, such that the function

u(x) = Re(riξ)ϕ(θ) =


Re(riξ) [a1 cos(iξ(θ + α/2)) + b1 sin(iξ(θ + α/2))]

if − α/2 < θ < α/2,

Re(riξ) [a2 cos(iξ(θ + α/2)) + b2 sin(iξ(θ + α/2))]
otherwise,

(25)

is harmonic in (D ∩ BR0) \ {0} and in
(
(Ω \D) ∩BR0

)
\ {0}, and satisfies

the transmission conditions at the interfaces θ = ±α/2.

Let r0 < R0/2 and let χ1, χ2 : R+ → [0, 1] denote two smooth cut-off
functions, such that for some constant C > 0

χ1(s) = 0 |s| ≤ 1, χ2(s) = 0 |s| ≥ 2r0,
χ1(s) = 1 |s| ≥ 2, χ2(s) = 1 |s| ≤ r0,
|χ′1(s)| ≤ C, |χ′2(s)| ≤ C.

We set χε1(r) = χ1(r/ε), and define

uε(x) = sεχ
ε
1(r)χ2(r)u(x), x ∈ Ω. (26)

The function u is not in H1 as its gradient blows up like r−1 near the corner,
consequently

mε :=
∫ r0

ε

∫ 2π

0
|∇u(x)|2 rdrdθ → ∞ as ε→ 0.
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We choose sε in (26) so that ||uε||H1
0

= 1, in other words

s−2
ε =

∫ 2ε

ε

∫ 2π

0
|u∇χε1 + χε1∇u|2 + mε +

∫ 2r0

r0

∫ 2π

0
|u∇χ2 + χ2∇u|2

=: J1 +mε + J2.

The term J2 is independent of ε and is O(1), and in particular

J2 = o(mε) as ε→ 0.

The other term can be estimated as follows

J1 =
∫ 2ε

ε

∫ 2π

0

∣∣∣∣riξ + r−iξ

2
ϕ(θ)χ′1(r/ε)/ε+ iξ

riξ−1 − r−iξ−1

2
ϕ(θ)χ1(r/ε)

∣∣∣∣2
+
∣∣∣∣riξ−1 − r−iξ−1

2
ϕ′(θ)χ1(r/ε)

∣∣∣∣2 rdrdθ (27)

≤ C

∫ 2π

0

(
|ϕ(θ)|2 + |ϕ′(θ)|2

)
dθ

∫ 2ε

ε

(
||χ′1||2∞/ε2 + r−2||χ1||∞

)
rdr

≤ C

∫ 2π

0

(
|ϕ(θ)|2 + |ϕ′(θ)|2

)
dθ
(
3/2||χ′1||2∞ + (ln(2ε)− ln(ε))||χ1||∞

)
.

Since ϕ is independent of ε, we see that

J1 = O(1) = o(mε), as ε→ 0,

and so sε ∼ m−1/2
ε → 0.

We next show that ||(βI − TD)uε||H1 → 0. Indeed, let v ∈ H1
0 (Ω) and

consider

J =
∫

Ω
∇(βI − TD)uε · ∇v

=
∫

Ω\D
β∇uε · ∇v +

∫
D

(β − 1)∇uε · ∇v,

in view of the definition of TD. Inserting the expression (26) of uε, we see
that

J = sε

∫
Ω\D

β∇u · ∇(χε1χ2v) + sε

∫
D

(β − 1)∇u · ∇(χε1χ2v)

+ sε

∫
Ω\D

βu∇(χε1χ2) · ∇v + sε

∫
D

(β − 1)u∇(χε1χ2) · ∇v

− sε
∫

Ω\D
β∇u · v∇(χε1χ2) − sε

∫
D

(β − 1)∇u · v∇(χε1χ2).

15



Since u is a local solution to (17), the sum of the first two integrals vanishes,
and we are left with

J =

(
sε

∫
Ω
au∇(χε1χ2) · ∇v + sε

∫
Ω∩(B2r0\Br0 )

au∇(χ2) · ∇v

)

+ sε

∫
Ω∩(B2ε\Bε)

av∇(χε1) · ∇u =: sε(J3 + J4), (28)

where a = β in Ω \D and a = β − 1 in D. The Cauchy-Schwarz inequality
allows us to estimate the first two terms on the right-hand side by

|J3| ≤ C ||v||H1

{∫ 2ε

0

∫ 2π

0

(
|u|2|χ′1|2/ε2 + |∇u|2|χ1|2

)
rdrdθ

+
∫ 2r0

r0

∫ 2π

0

(
|u|2|χ′2|2 + |∇u|2|χ2|2

)
rdrdθ

}
. (29)

and the same arguments as those used to control the term J1 in (27) show
that the two integrals above are O(1). As for the last term in (28), we write

J4 :=
∫
B2ε\Bε

a∇u · v∇χε

=
∫
B2ε\Bε

a∇u · v∇χε +
∫
B2ε\Bε

a∇u · (v − v)∇χε,

where v = |B2ε|−1
∫
B2ε

v(x) dx. We note that the first integral in the above
right-hand side reduces to

v

∫ 2π

0
a(θ)ϕ(θ) dθ

∫ 2ε

ε
iξ

(
riξ−1 − r−iξ−1

2

)
χ′1(r/ε)

ε
rdr = 0.

Indeed, since ϕ is a solution to (a(θ)ϕ′(θ))′ − ξ2a(θ)ϕ(θ) = 0, with periodic
boundary conditions, it satisfies∫ 2π

0
a(θ)ϕ(θ) dθ = 0.

It follows that

|J4| ≤

(∫
B2ε\Bε

a2|∇u · ∇χε|2 dx

)1/2(∫
B2ε

|v − v|2
)1/2

.
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Using the following Poincaré inequality∫
B2ε

|v − v|2 ≤ 4|B2ε|
∫
B2ε

|∇v|2,

we obtain

|J4| ≤ Cε||v||H1(Ω)

(∫ 2π

0
a(θ)2|ϕ(θ)|2 dθ

)1/2

(∫ 2ε

ε
|iξ r

iξ−1 − r−iξ−1

2
|2 [χ′(r/ε)]2

ε2
rdr

)1/2

≤ C

(∫ 2ε

ε
r−1dr

)1/2

||v||H1(Ω)

≤ C
√
ln(2)||v||H1(Ω) = O(1)||v||H1(Ω).

Altogether, (28, 29) and the above estimate show that

∀ v ∈ H1
0 (Ω),

∣∣∣∣ ∫
Ω
∇(βI − TD)uε · ∇v

∣∣∣∣ ≤ O(sε)||v||H1 ,

which proves the claim since sε → 0.

Finally, we show that uε → 0 weakly in H1(Ω). In fact, since this sequence
is uniformly bounded in H1, it suffices to show that uε → 0 strongly in L2,
which follows from (26), from the boundedness of χ1 and χ2 and from the
fact that sε → 0.

5 Characterisation of the essential spectrum

In this section, we consider λ /∈ [λ−, λ+], β = 1/2−λ, and k = 1−1/β. The
latter satisfies

k < k+ =
−(2π − α)

α
< 0 or k− =

−α
2π − α

< k < 0. (30)

We show that β /∈ σess(TD), so that according to Proposition 2, λ /∈ σess(K∗D).

We proceed by contradiction: If β ∈ σess(TD), then there exists a singu-
lar Weyl sequence uε, that satisfies the conditions (24). In the next three
sections, we show

17



Proposition 5. The sequence uε converges to 0 strongly in H1(Ω).

This contradicts the fact that ||uε||H1 = 1. Consequently, in view of Theo-
rem 2, this proves

Theorem 3. The essential spectrum of K∗D is exactly

σess(K∗D) = [λ−, λ+].

5.1 Controlling the energy of uε away from the corner

Let zε = βuε − TDuε ∈ H1
0 (Ω). Let ρ < R0 and let χρ denote a smooth,

radial cut-off function, such that

χρ(x) =
{

1 if |x| ≤ ρ/2,
0 if |x| ≥ ρ. (31)

Let vε = (1− χρ)uε. We show that

Proposition 6. The sequence vε converges strongly to 0 in H1.

Proof: Assume that it is not the case. Then there exists δ > 0 and a
subsequence (still labeled with ε) such that

||vε||H1
0
≥ δ. (32)

We note that for any v ∈ H1
0 (Ω),∫

Ω
∇zε · ∇v =

∫
Ω
∇(βuε − TDuε) · ∇v (33)

= β

∫
Ω
∇uε · ∇v −

∫
D
∇uε · ∇v

=
∫

Ω
a∇uε · ∇v,

where a(x) = β for x ∈ Ω\D, and a(x) = β−1 for x ∈ D. Given v ∈ H1
0 (Ω),

we compute∫
Ω
a∇vε · ∇v =

∫
Ω
a∇ [(1− χρ)uε] · ∇v

=
∫

Ω
a [(1− χρ)∇uε − uε∇χρ] · ∇v

=
∫

Ω
a∇uε · [∇ ((1− χρ)v) + v∇χρ] − auε∇χρ · ∇v

=
∫

Ω
∇zε · ∇ ((1− χρ)v) − uε∇ · (av∇χρ) − auε∇χρ · ∇v.

18



Invoking the Cauchy-Schwarz and the Poincaré inequality, it follows that∣∣∣∣ ∫
Ω
∇ ((βI − TD)vε) · ∇v

∣∣∣∣ =
∣∣∣∣ ∫

Ω
a∇vε · ∇v

∣∣∣∣
≤ C

(
||uε||L2 + ||zε||H1

0

)
||v||H1

0
.

As uε → 0 strongly in L2(Ω) since it converges weakly to 0 in H1, we
conclude that

(βI − TD)vε → 0 strongly in H1
0 (Ω). (34)

We note that since vε has support in Ω \Bρ/2,

TDvε = TD̃vε,

where D̃ denotes any smooth connected inclusion, such that (D \ Bρ/2) ≡
(D̃ \Bρ/2), and thus (34) also reads

(βI − TD̃)vε → 0 strongly in H1
0 (Ω).

It is easily seen that vε ⇀ 0 weakly in H1
0 (Ω), and, upon rescaling in view

of (32), we conclude from the above estimate that vε/||vε||H1
0

is a singular
Weyl sequence for TD̃. But D̃ is smooth, so that the associated Neumann-
Poincaré operator is compact and does not have essential spectrum, which
contradicts this fact, and proves the Proposition.

5.2 Controlling the energy of uε near the corner

We now focus on wε := χρuε, which has compact support in Bρ. In view
of (33), it is easy to check that wε satisfies

∂2
rrwε + 1/r∂rwε + 1/r2∂2

θθwε = f̃ε,

in D ∩Bρ and in (Ω \D) ∩Bρ. The right-hand side is defined as

f̃ε =
1
a
χρ∆zε +∇χρ · ∇uε +∇uε · ∇χρ + uε∆χρ,

where a(x) = β for x ∈ Ω \D, and a(x) = β − 1 for x ∈ D. We note that
f̃ε converges strongly to 0 in H−1(Ω). Moreover, since the function χρ is
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radial, wε satisfies the following transmission conditions on the edges of the
corner 

wε(r, α2 |−) = wε(r, α2 |+)
wε(r,−α

2 |−) = wε(r,−α
2 |+),

(β − 1)∂θwε(r, α2 |−) = β∂θwε(r, α2 |+),
(β − 1)∂θwε(r,−α

2 |−) = β∂θwε(r,−α
2 |+),

where the notations |−, |+ indicate taking the limit from left and right sides
respectively.
We set

A =
α

2π − α
∈ (0, 1), (35)

and consider the change of variables (r, θ) ∈ (0, ρ)× (−α/2, α/2)→ (r, π −
θ/A), which maps D ∩Bρ into (Ω \D) ∩Bρ. We define{

vε(r, θ) = wε(r, π − θ/A)
g̃ε(r, θ) = f̃ε(r, π − θ/A),

for (r, θ) ∈ D ∩Bρ.

It is easy to check that when (f, g) = (f̃ε, g̃ε), the functions (w, v) =
(wε|D∩Bρ , vε) satisfy the following system{

∂2
rrw + 1/r∂rw + 1/r2∂2

θθw = f,
∂2
rrv + 1/r∂rv +A2/r2∂2

θθv = g,
(36)

with the boundary conditions
v(ρ, θ) = w(ρ, θ) = 0,
v(r,±α/2) = w(r,±α/2),
∂θv(r,±α/2) = −k

A ∂θw(r,±α/2).
(37)

In other words, wε and vε both satisfy an elliptic equation and take nearly
the same Cauchy data on the edges of the corner.

To study the above system, we introduce the (closed) subspace V1 ⊂ H1(D∩
Bρ)×H1(D ∩Bρ) of functions (w, v) that satisfy{

v(ρ, θ) = w(ρ, θ) = 0 |θ| < α/2
v(r,±α/2) = w(r,±α/2) 0 < r < ρ.

Theorem 4. The system (36–37) has a unique solution (w, v) ∈ V1. More-
over, there exists a constant C > 0, such that

||∇w||L2(D∩Bρ) + ||∇v||L2(D∩Bρ) ≤ C
(
||f ||H−1(D∩Bρ) + ||g||H−1(D∩Bρ)

)
.
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Proof: On V1 we consider the norm

||(w, v)|| :=

(∫
D∩Bρ

|∇w|2 + |∇v|2
)1/2

. (38)

We multiply the equations (36) by two functions φ, ψ ∈ H1(D ∩ Bρ) that
vanish on D ∩ ∂Bρ, and integrate to obtain∫

D∩Bρ
fφ + gψ

=
∫ ρ

0

∫ α/2

−α/2

(
∂rw
1
r∂θw

)
·
(

∂rφ
1
r∂θφ

)
+
(

∂rv
A2

r ∂θv

)
·
(

∂rψ
1
r∂θψ

)
rdrdθ

−
∫
θ=±α/2

(
1
r
∂θwφ +

A2

r
∂θvψ

)
.

We note that that the last integral can be rewritten as∫
θ=±α/2

1
r
∂θw(φ−Akψ) +

A2

r

[
∂θv +

k

A
∂θw

]
ψ.

To satisfy the natural boundary conditions in (37), we are thus led to intro-
duce the subspace V2 ⊂ H1(D ∩Bρ)×H1(D ∩Bρ) of functions (φ, ψ) that
satisfy 

φ(ρ, θ) = ψ(ρ, θ) = 0, |θ| < α/2

φ(r,±α
2 )−Akψ(r,±α

2 ) = 0, 0 < r < ρ,

which we also equip with the norm (38). We also introduce the following
bilinear form B on V1 × V2 by

B

((
w
v

)
,

(
φ
ψ

))
=

∫ ρ

0

∫ α/2

−α/2

(
∂rw
1
r∂θw

)
·
(

∂rφ
1
r∂θφ

)
+
(

∂rv
A2

r ∂θv

)
·
(

∂rψ
1
r∂θψ

)
rdrdθ.

Thus, solving (36–37) amounts to solving the variational problem : find
W = (w, v) ∈ V1 such that

∀ Φ = (φ, ψ) ∈ V2, B(W,Φ) =
∫
D∩Bρ

fφ+ gψ.
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It is easily checked that the above right-hand side defines a continuous linear
form on V2, and that

∀ (W,Φ) ∈ V1 × V2, |B(W,Φ)| ≤ ||W || ||Φ||.

Therefore, the theorem will be proved upon showing that B satisfies the inf-
sup condition (for instance the version in [7]), i.e., that there exists δ > 0
such that

inf
W∈V1,||W ||=1

(
sup

Φ∈V2,||Φ||=1
B(W,Φ)

)
≥ δ. (39)

Let W = (w, v) ∈ V 1 and p, q, d ∈ R. We set

φ = (Akp+ d)w + (Akq − d)v, ψ = pw + qv,

so that both φ and ψ vanish on the curve r = ρ,−α/2 < θ < α/2, and
φ− Akψ = d(w − v) = 0 on the edges θ = ±α/2, 0 < r < ρ. It follows that
(φ, ψ) ∈ V2 is an admissible test function. The integrand in the expression
of B(W,φ) takes the form

e := ∂rw∂r [(Akp+ d)w + (Akq − d)v] + ∂rv∂r(pw + qv)

+ r−2∂θw∂θ [(Akp+ d)w + (Akq − d)v] +
A2

r2
∂θv∂θ(pw + qv)

= (Akp+ d)ξ2
1 + (Akq − d+ p)ξ1ξ3 + qξ2

3

+ (Akp+ d)ξ2
2 + (Akq − d+A2p)ξ2ξ4 +A2qξ2

4 ,

where ξ1 = ∂rw, ξ2 = r−1∂θw, ξ3 = ∂rv, ξ4 = r−1∂θv. Fixing q = 1, it follows
that e defines a positive definite quadratic form (pointwise) provided that
the polynomials

P1(ξ) = (Akp+ d) + (Ak − d+ p)ξ + ξ2,

P2(ξ) = (Akp+ d) + (Ak − d+A2p)ξ +A2ξ2,

are strictly positive, in other words, provided that{
(Ak − d+ p)2 − 4(Akp+ d) < 0,
(Ak − d+A2p)2 − 4A2(Akp+ d) < 0.

(40)

We regard these expressions as polynomials in p, the roots of which are
respectively

f±(d) = (d+Ak)± 2
√
d(1 +Ak),

g±(d) =
1
A2

[
(d+Ak)± 2A

√
d(1 + k/A)

]
.
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We remark that the roots are real if and only if{
k < −1/A if d < 0,
−A < k < 0 if d > 0,

i.e., recalling (35, 30), if and only if λ /∈ [λ−, λ+], which is our hypothesis.

It only remains to show that we can indeed find parameters p, d for which (40)
is satisfied, i.e. that we can find d such that

(f−(d), f+(d)) ∩ (g−(d), g+(d)) 6= ∅ (41)

(and then pick p in the intersection).

To this end, assume first that −A < k < 0, so that d+ := −Ak > 0. We
note that

f+(d+) + f−(d+)
2

= 0,

and that

g+(d+) =
2
A2

√
Ak(k/A− 1) > 0,

g−(d+) =
−2
A2

√
Ak(k/A− 1) < 0,

which yields (41).

If k < −1/A, one can see that d− = A2 + kA < 0 and that

f+(d−) + f−(d−)
2

= 2Ak +A2 < −1 = g+(d−).

On the other hand, since 0 < A < 1 and k < −1/A, we have

−2
A

√
d(1 + k/A) < −2

√
d(1 +Ak),

so that for any d < 0, g−(d) < f−(d), and in particular g−(d−) < f+(d−)+f−(d−)
2 .

It follows that (41) also holds in this case.
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5.3 Proof of Proposition 5

We come back to the singular Weyl sequence uε, which we split as uε =
(1− χρ)uε + χρuε. Proposition 6 shows that (1− χρ)uε converges strongly
to 0. On the other hand, Theorem 4 applied to χρuε shows that

||∇(χρuε)||L2(Bρ) ≤ C
(
||f̃ε||H−1(D∩Bρ) + ||g̃ε||H−1(D∩Bρ)

)
≤ C

(
||zε||H1(Ω) + ||uε||L2(Ω)

)
→ 0.

It thus follows that uε converges strongly to 0 in H1(Ω), which contradicts
the assumption that ||uε||H1(Ω) = 1, so that β /∈ σess(TD).

6 The case of smooth curvilinear polygons

This section has been added to answer the second referee’s question about
extension of the results to curvilinear polygons

So far, we assumed that for ρ > 0 small enough, the set D ∪ Bρ was a
perfect cone. The techniques developed in [31, 32] allow extension of the
characterisation (1) of σess(K∗D) to C2 curvilinear polygons (see the precise
definition in [31], chap.4). In particular, Lemmas 4.3 and 4.4. in [31] imply
that the Neumann-Poincaré operator associated to a C2 curvilinear polygon
is unitarily equivalent to that of a domain with the same number of corners
and which has straight edges in the neighbourhood of its vertices.

In this section, we show how our analysis, based on the Poincaré variational
operator, can be extended to curvilinear polygons. Let E ⊂ Ω, and F ⊂ Ω
be C1,1 curvilinear polygons. For simplicity, we assume that both E and F
have a single corner, at x = 0, with the same angle 0 < α < π.
Let Φ : Ω→ Ω be a C1,1-diffeomorphism such that for some 0 < ρ1 ≤ ρ0,

Φ(E ∩Bρ1) ⊂ (F ∩Bρ0),
Φ(∂E ∩Bρ1) ⊂ (∂F ∩Bρ0),
Φ(0) = 0, and DΦ(0) = I.

(42)

Denoting TE and TF the Poincaré variational operators associated to E and
F respectively, we show the following

Proposition 7. Let 0 < β < 1. Assume that (Un)n≥1 is a singular Weyl se-
quence associated to β for TF , such that Suppt(Un) ⊂ Bρ0/n. Then (un)n≥1 =
(Un ◦ Φ)n≥1 is a singular Weyl sequence associated to β for TE.
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Proof: Let v ∈ H1
0 (Ω) and let V (x) = v(Φ(x)) for x ∈ Ω. Then V ∈ H1

0 (Ω)
and there is a constant C that only depends on ||Φ||C1,1 such that

||V ||H1
0 (Ω) ≤ C ||v||H1

0 (Ω). (43)

Let 0 < β < 1 and assume that (Un)n≥1 is a singular Weyl sequence for TF
associated to β, i.e. that (Un)n≥1 satisfies (24) with TF instead of TD. Let
us also assume that for n ≥ 1, Suppt(Un) ⊂ Bρ0/n. Let un(x) = Un(Φ(x))
for x ∈ Ω and notice that

Suppt(un) ⊂ Φ−1(Bρ0/n).

Since Φ is a diffeomorphism and since Φ(0) = 0, it follows that the support of
un shrinks to {0}, and we may assume that for n large enough, Φ−1(Bρ0/n) ⊂
Bρ1 . We estimate

I =
∫

Ω
∇(βI − TE)un · ∇v

=
∫

Φ−1(Bρ0/n)
∇(βI − TE)un · ∇v

= β

∫
Φ−1(Bρ0/n)

∇un · ∇v −
∫

Φ−1(Bρ0/n)∩E
∇un · ∇v

= β

∫
Bρ0/n

DΦT∇Un ·DΦT∇v JΦ −
∫
Bρ0/n∩F

DΦT∇Un ·DΦT∇v JΦ,

where JΦ denotes the Jacobian of Φ, and where we have used (42). Further,
we note that

||DΦ(x)− I||L∞(Bρ0/n) = ||DΦ(x)−DΦ(0)||L∞(Bρ0/n) ≤
||Φ||C1,1(Bρ0/n)

n
,

and a similar estimate holds for ||JΦ − 1||L∞(Bρ0/n). Recalling the normali-
sation ||Un||H1

0 (Ω) = 1 and (43), it follows that

|I| ≤

∣∣∣∣∣β
∫
Bρ0/n

∇Un · ∇V −
∫
Bρ0/n∩F

∇Un · ∇V

∣∣∣∣∣
+ C

||Φ||C1,1(Bρ0/n)

n
||∇Un||L2(Ω) ||∇V ||L2(Ω)

≤
∣∣∣∣β ∫

Ω
∇Un · ∇V −

∫
F
∇Un · ∇V

∣∣∣∣ + C
||Φ||C1,1(Bρ0/n)

n
||∇V ||L2(Ω)

≤ C

(
||(βI − TF )Un||H1

0 (Ω) +
1
n

)
||v||H1

0 (Ω),
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where C is independent of n. It follows that ||(βI − TE)un||H1
0 (Ω) → 0 as

n→∞.

A similar argument shows that∫
Ω
|∇un|2 =

∫
Φ−1(Bρ0/n)

|∇un|2

=
∫
Bρ0/n

|DΦT∇Un|2JΦ

=
∫

Ω
|∇Un|2 + O(

1
n

)||∇Un||2L2(Ω) = 1 +O(
1
n

).

Finally, since un(x) = Un(Φ(x)) for x ∈ Ω, we also see that un ⇀ 0 weakly
in H1

0 (Ω). We conclude that un
||un||H1

0(Ω)
is a singular Weyl sequence for TE ,

associated to β.

We now consider an inclusion D ⊂ Ω with a corner of aperture 0 < α < π
at x = 0, that satisfies the hypothesis of Section 2 : we assume that D has
straight edges in a neighbourhood of 0. Let D̃ be a C1,1 curvilinear polygon,
also with a single corner of aperture α at x = 0. Let Φ be a C1,1 change
of variable that satisfies (42) with (E,F ) = (D, D̃). Proposition 7 together
with theorems 2 and 3 imply the following

Proposition 8.

σess(TD̃) = σess(TD) = [λ−, λ+].

Proof: Let 0 < β < 1 such that λ = 1/2 − β ∈ [λ−, λ+]. Let ξ, u, χ1

be defined as in the proof of theorem 2, and, for 0 < ρ < ρ0, let χρ be as
in (31). In the spirit of (26), we set

uε,ρ(x) = sε,ρχ
ε
1(r)χρ(r)u(x), x ∈ Ω,

where sε is chosen so that ||uε,ρ||H1
0 (Ω) = 1. The proof of theorem 2 shows

that for fixed ρ, uε,ρ is a singular Weyl sequence for TD associated to β and
in particular that

||uε,ρ||H1
0

= 1,
(βI − TD)uε,ρ → 0 strongly in H1

0 (Ω),
uε,ρ → 0 a.e. in Ω.

Letting ρ = ρ0/n and using a diagonal extraction process yields a singular
Weyl sequence (Un), associated to β for TD such that Suppt(Un) ⊂ Bρ0/n.
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Proposition 7, with the choice (E,F ) = (D′, D) and Φ−1 in place of Φ, shows
that (un)n≥1 = (Un ◦Φ−1)n≥1 is a singular Weyl sequence for TD̃ associated
to β, and thus σess(TD) ⊂ σess(TD̃).

To prove the reverse inclusion, we proceed by contradiction and assume that
there exists β ∈ σess(TD̃)\σess(TD). Let ũε denote a singular Weyl sequence
associated to β for TD̃ and let χρ as in (31). Arguing as in Proposition 6
shows that the functions w̃ε,ρ = ( χρũε

||ũε||H1
0(Ω)

) form a singular Weyl sequence

for TD̃ associated to β. Choosing ρ = 1/n, a diagonalization process allows
us to construct from the w̃ε,ρ’s a singular Weyl sequence for TD̃, say (Un)n≥1,
such that for each n ≥ 1, Suppt(Un) ⊂ Bρ0/n. Proposition 7 implies then
that (un)n≥1 = (Un ◦ Φ)n≥1 is a singular Weyl sequence for TD associated
to β, which contradicts the hypothesis β /∈ σess(TD).
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mains. Prépublication IRMAR, 10-09. hal-00453934, version 2.

[18] M. Costabel and E. Stephan. A direct boundary integral equation
method for transmission problems. Journal of Mathematical Analysis
and Applications, 106 (1985), 367-413.

[19] M. Dauge and B. Texier. Problème de transmission non coercif dans
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