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Abstract. We compute the spectrum of the Neumann-Poincaré operator for

two discs in R2. We show how the behavior of the eigenvalues relates to W 1,∞

estimates on the potential in 2D composites containing circular inclusions.

1. Introduction

This work is a contribution to the study of pointwise bounds on the gradients
of solutions to elliptic PDE’s in composite media made of inclusions embedded in a
matrix phase. In mechanics, regions where inclusions touch or are close to touching
are likely to concentrate stress, and therefore are likely to become preferred sites
for the onset of fracture. Similarly, in optics, electromagnetic fields are likely to
concentrate in narrow channels where the parameter contrast with surrounding
regions is large, a fact that could be useful in applications such as microscopy,
spectroscopy or bio-sensing. How do the sizes of the gradients depend on the
geometry and of the coefficient contrasts is therefore an important question.

Over the last decade, this topic has inspired a number of mathematical works.
In [8], the case of 2 circular inclusions separated by a distance δ was studied in the
context of a conduction equation. Using the maximum principle, a W 1,∞ bound
independent of δ, was established on the potential. This result was extended to a
general class of configurations by YanYan Li and M. Vogelius[15], who considered
piecewise Hölder media: Let Ω ⊂ Rn be a bounded domain with C1,α boundary,
which contains a finite number M of inclusions Dj with C1,α boundary. Assume
that the conductivity γ is C0,µ in each inclusion and in DM+1 = Ω \ ∪Mj=1Dj , and
that 0 < Λ ≤ γ(x) ≤ Λ−1 in Ω. If u ∈ H1(Ω) is a solution to

div(γ(x)∇u(x)) = 0 in Ω,(1.1)

then the following interior estimate holds for any ε > 0
M+1∑
j=1

||u||C1,α(Dj∩Ωε)
≤ C||u||L2(Ω),
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where Ωε = {x ∈ Ω, dist(x, ∂Ω) < ε}. The constant C in this estimate depends
on Ω, λ,M, µ, α but is independent on the inter-inclusion distance. This result
was later generalized to strongly elliptic systems and particularly to the system of
elasticity by YanYan Li and L. Nirenberg [14].

The situation is different if the material coefficients are degenerate (perfectly
conducting or insulating inclusions) where the gradients may blow up as the inclu-
sions come to touching (see e.g. [8]). How the bounds depend on the inter-inclusion
distance was explicited in [7], who studied the case of two perfectly conducting C2,α

inhomogeneities embedded in a domain Ω ⊂ Rn of conductivity γ = 1. The gradient
of the potential was shown to satifsy

(1.2)


||∇u||L∞ ≤ C√

δ
||u||L2(∂Ω) for n = 2,

||∇u||L∞ ≤ C

δ| ln δ|
||u||L2(∂Ω) for n = 3,

||∇u||L∞ ≤ C

δ
||u||L2(∂Ω) for n = 4.

The case n = 2 was derived independently by Yun, using conformal mapping tech-
niques [19].

Several works focus on particular geometrical configurations [5, 3, 2, 6, 9,
16]. There, the potential u may have a series representation that lends itself to
asymptotic analysis, so that one can address the question of how the bounds blow
up when both the inclusions come to touching and their conductivities degenerate.
Optimal upper and lower bounds on the potential gradients were obtained in [5, 3]
for nearly touching pairs of circular inclusions. Spherical inclusions were studied
in [2].

In this work, we consider the situation of 2 circular inclusions D1, D2 at a
distance δ from each other, embedded in R2. To fix ideas, we assume that D1, D2

have the same radius r = 1 and are centered at the points (1 + δ, 0), (−1 − δ, 0),
respectively. We assume that the conductivity γδ is piecewise constant, with values
γδ(x) = k, 0 < k < ∞, k 6= 1, in the inclusions and γδ(x) = 1 in R2 \ D1 ∪D2.
Given a function H harmonic in R2, the potential u solves{

div(γδ∇u) = 0 in R2

u−H → 0 as |x| → ∞.(1.3)

In [4], the function u is shown to decompose as a sum u = ur + us of a regular
part ur, the gradient of which remains bounded as δ → 0, and a singular part us.
Reformulated in terms of the configuration described above, their result states that
for some constants C1, C2, C3, independent of δ and k

(1.4)


|∇us|+(±δ, 0) ≥ C1

|∇H(0) · e2|
2k +

√
δ

||∇us||∞,Ω ≤ C2
|∇H(0) · e2|

2k +
√
δ

||∇ur||∞,Ω ≤ C3,
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if 0 < k < 1, while for k > 1 the estimates read

(1.5)


|∇us|+(±δ, 0) ≥ C1

|∇H(0) · e1|
2k−1 +

√
δ

||∇us||∞,Ω ≤ C2
|∇H(0) · e1|
2k−1 +

√
δ

||∇ur||∞,Ω ≤ C3,

Further development led to obtaining an asymptotic expansion of the potential with
an explicit characterization of the singular part [11].

In this work, we address the problem of bounding the gradient of u from the
point of view of integral representations and spectral decompositions. In section 2,
we consider an integral representation of u in terms of layer potentials ϕ = (ϕ1, ϕ2)
defined on the boundaries of the inclusions. They satisfy a system of integral
equation of the form

(λI −K∗)ϕ =
(
∂ν1H
∂ν2H

)
,(1.6)

where λ =
k + 1

2(k − 1)
and where K∗ is a compact operator. We note that the

contrast only enters the first part of the operator on the right-hand side, whereas
the inter-inclusion distance only appears in K∗, which motivates our interest in
the spectral decomposition of the latter operator. Indeed, the Neumann-Poincaré
operator K∗ has a spectral decomposition, albeit being non-self-adjoint. A new
scalar product can be defined on L2(∂D1) × L2(∂D2) for which K∗ becomes self-
adjoint. This process of symmetrization is due to T. Carleman [10], and was futher
developed by M. G. Krein [13]. It is studied in [12] in the particular context of
the Laplace operator. We note that an integral equation similar to (1.6) arises
in the context of cloacking by a plasmonic annulus. It was studied in [1] using
also a spectral decomposition of the Neumann-Poincaré operator. In section 3,
we compute the eigenvalues of K∗δ : we show that they split in 2 families λ±n , with
corresponding eigenfunctions ϕn,A/B,±, which converge to ±1/2. Next, we solve the
integral equation (1.6) using the spectral decomposition of K∗. We show that its
solution ϕ has a series representation on the basis of eigenfunctions that converges
pointwise. In section 4, we show that one can read off the blow-up rate of u
from this expansion, and recover the estimates (1.4,1.5). Throughout the text, we
denote De = R2 \ ∂D1 ∪ ∂D2, and u+(x) = limt→0+ u(x + tνi(x)) and u−(x) =
limt→0− u(x+ tνi(x)), for x ∈ ∂Di.

2. The system of integral equations

For δ > 0, we represent u solution to (1.3) as

u(x) = H(x) + Sϕ(x) := H(x) +
(
S1 0
0 S2

)(
ϕ1

ϕ2

)
,(2.1)

where Si denotes the single layer potential operator on ∂Di,

Siϕ(x) =
1

2π

∫
∂Di

log(|x− y|)ϕ(y)dσ(y).
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Expressing the transmission conditions satisfied by the solutions to (1.3) shows that
the layer potential ϕ satisfies (1.6) with

K∗
(
ϕ1

ϕ2

)
=

 K∗1
∂

∂ν1
S2

∂

∂ν2
S1 K∗2

( ϕ1

ϕ2

)
,

where the integral operators K∗i are defined on L2(∂Di) by

K∗i g(x) =
∫
∂Di

(x− y) · νi(x)
|x− y|2

g(y) dσ(y).

Classical integral operator theory shows that when δ > 0, the solution of this
system is uniquely defined and is smooth. Indeed, each operator K∗i : Hs(∂Di) −→
Hs(∂Di) is compact [18]. Further, since the kernels of the extradiagonal terms of
K∗ have the form

(x− y) · νi(x)
|x− y|2

, (x, y) ∈ ∂D1 × ∂D2 or (x, y) ∈ ∂D2 × ∂D1,

their denominator is bounded below by δ, and so these terms are also compact.
Classical potential theory applies to show that if |λ| > 1/2, then (1.6) has a unique
solution ϕ ∈ L2(∂D1)× L2(∂D2), such that∫

∂Di

ϕi = 0, i = 1, 2.

The operator K∗ is not selfadjoint. Indeed, it is well known that the L2-adjoint
of K∗i is the operator Ki defined by

Kig(x) =
∫
∂Di

(y − x) · νi(y)
|x− y|2

g(y) dσ(y),

and one easily checks that the adjoint of the extra-diagonal term (∂ν1S2)|∂D1 is

L2g(x) =
∫
∂D1

(y − x) · ν1(y)
|x− y|2

g(y) dσ(y), x ∈ ∂D2,

and a similar expression for the adjoint L1 of (∂ν2S1)|∂D2 . The adjoint of K∗ is
thus

K

(
ϕ1

ϕ2

)
=

(
K1 L1

L2 K2

)(
ϕ1

ϕ2

)
.

From the Plemelj symmetrization principle, the operators K,K∗ satisfy

SK∗ = KS.

Since S is non-positive and self-adjoint (see lemma 2.1 in [12]), one can define a
new inner-product on the space L2(∂D1)× L2(∂D2) by setting

< ϕ,ψ >S := < −Sϕ,ψ >L2(2.2)

:= −
∫
∂D1

Sϕ1ψ1 −
∫
∂D2

Sϕ2ψ2,

which turnsK∗ into a self-adjoint operator. However, since S is a pseudo-differential
operator of order 1, the space L2(∂D1) × L2(∂D2) is not complete for this inner-
product.
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It follows from [12] that the spectrum of K∗ is contained in [−1/2, 1/2] and
consists in a sequence of eigenvalues which converges to 0. Furthermore, the eigen-
vectors of K∗, including the null vectors, span L2(∂D1)× L2(∂D2). We introduce
the weighted Sobolev space

W1,−1(R2) :=
{
u :

u(x)
(1 + |x|2)1/2 log(2 + |x2|)

∈ L2(R2), ∇u ∈ L2(R2)
}
.

This space, which contains the constant functions, can be used to invert the Lapla-
cian in the plane [17].

We first note that λ = 1/2 is an eigenvalue of K∗. Indeed, consider a solution
to  ∇w = 0 in R2 \D1 ∪D2

w = ci on Di i = 1, 2,
w = O(|x|−1) as |x| → ∞,

where the constants c1, c2 are chosen so that∫
∂D1

∂νw +
∫
∂D2

∂νw = 0.

Using the conformal mapping described in section 3 below, w is in fact a multiple

of the function log |x− a
x+ a

|, with a =
√
δ(2 + δ). Since w is constant inside D1 and

D2, one easily obtain from the Plemejl formulas that

ϕ0 = (∂νw|+∂D1
, ∂νw|+∂D2

)(2.3)

satisfies K∗ϕ0 =
1
2
ϕ0. If ψ ∈ H−1/2(∂D1)×H−1/2(∂D2) such that∫

∂D1

ψ1 +
∫
∂D2

ψ2 = 0,

were another eigenvector of K∗ associated to the eigenvalue 1/2, the function v =
Sψ would be harmonic in R2 \D1 ∪D2 and due to the Plemelj formulas, would be
equal to constants C1, C2 on the discsD1, D2. But then uniqueness of the solution to

the Dirichlet problem inW 1,−1(R2) (see [17]) would imply that v = C1w+C2−
C1c2
c1

and in particular that ∂νv = C1∂νw on ∂Di, i = 1, 2. It follows that 1/2 is an
eigenvalue of K∗ and that the associated eigenspace has dimension 1.

The following proposition is easily deduced from the jump relations satisfied
by the single layer potential:

Proposition 2.1. Let λ ∈ (−1/2, 1/2) be an eigenvalue of K∗ and let ψ =
(ψ1, ψ2) ∈ H−1/2(∂D1)×H−1/2(∂D2), such that∫

∂D1

∂νw +
∫
∂D2

∂νw = 0,

denote an associated eigenvector. Set

u(x) = S1ψ1 + S2ψ2.
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Then u ∈ W−1,1(R2) and satisfies

(2.4)


∆u = 0 in De ∪D1 ∪D2

u+ = u− on ∂Di, i = 1, 2
∂+
νiu = k∂−νiu on ∂Di, i = 1, 2.
|u|(x) → 0 as |x| → ∞

where k = −
(

1 + 2λ
1− 2λ

)
< 0.

Conversely, if u ∈W 1,−1(R2) satisfies (2.4), and if ψi := (∂νiu
+ − ∂νiu−)|∂Di , i =

1, 2, then ψ = (ψ1, ψ2) is an eigenvector of K∗ associated to λ.

3. The spectrum of the Neumann-Poincaré operator for a pair of
close-to-touching discs

To compute the spectrum of K∗, we define

a =
√
δ(δ + 2) ρ =

a− δ
a+ δ

,(3.1)

and we transform the close-to touching discs via the conformal map

x = x1 + ix2 −→ ξ =
x− a
x+ a

.

The disc D1 is mapped into the disc B(0, ρ), while D2 is mapped into the com-
plementary of the disc B(0, ρ−1) (see Figure 1). Using Proposition (2.1), we seek

Figure 1. The conformal map

a non-trivial function u solution to (2.4) as the real part of a function which is
harmonic on each component:

f(ξ) =


f1(ξ) =

∑
n≥0(A1

n + iB1
n)ξn, if |ξ| < ρ

f2(ξ) =
∑
n≥0(A2

n + iB2
n)ξ−n, if |ξ| > ρ−1

fM (ξ) =
∑
n≥0(a1

n + ib1n)ξn +
∑
n<0(a2

n + ib2n)ξ−n, if ρ < |ξ| < ρ−1,
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where the coefficients ain, b
i
n, A

i
n, B

i
n are real numbers to be determined. The func-

tion f should satisfy the transmission conditions{
Re(f1) + ikIm(f1) = Re(fM ) + iIm(fM ) on |ξ| = ρ
Re(f2) + ikIm(f2) = Re(fM ) + iIm(fM ) on |ξ| = ρ−1

Expliciting these conditions when ξ = ρeinθ or when ξ = ρ−1einθ, we obtain for
n > 0

1 0 −1 −ρ−2n

k 0 −1 ρ−2n

0 1 −ρ−2n −1
0 k ρ−2n −1




A1
n

A2
n

a1
n

a2
n

 =


1 0 −1 ρ−2n

k 0 −1 −ρ−2n

0 1 ρ−2n −1
0 k −ρ−2n −1




B1
n

B2
n

b1n
b2n

 = 0,

whereas when n = 0, the transmission conditions yield{
A1

0 = a1
0 = A2

0, on |ξ| = ρ
kB1

0 = b10 = kB2
0 , on |ξ| = ρ−1.

The condition that solutions to (2.4) satisfy u(x) → 0 as |x| → ∞ implies that
f(1) = 0 and so a1

0 = b10 = 0. It follows that there is no eigenmode associated with
n = 0. The above matrices have the same determinant, which vanishes for

k = k−n = −1− ρ2n

1 + ρ2n
∈ (−1, 0)

or k = k+
n = −1 + ρ2n

1− ρ2n
∈ (−∞,−1).

The associated eigenvectors split in A-modes and B-modes, corresponding to func-
tions u which are even or odd in the ξ-plane. From Proposition 2.1, we deduce

Proposition 3.1. In addition to the eigenvalue 1/2, the spectrum of K∗ is
composed of the two families

λ−n =
−ρ2n

2
∈ (−1/2, 0), λ+

n =
ρ2n

2
∈ (0, 1/2), n > 0.

Each eigenvalue has multiplicity two, and is associated with an A mode and a B
mode. The corresponding eigenspace is spanned by

ϕn,A,± =
|1− ξ|2

2a
cos(nθ)

(
±2nρ−n−1

−2nρ−n+1

)
ϕn,B,± =

|1− ξ|2

2a
sin(nθ)

(
∓2nρ−n−1

2nρ−n+1

)
,

for the A and B-modes respectively, where we write ξ =
z − a
z + a

= ρeiθ. To each

mode is associated a function Un,A,± or Un,B,± solution to (2.4), which in the ξ
variables writes

Un,A,±(ξ) =

 (1∓ ρ−2n)rn cos(nθ) if r < ρ
(rn ∓ r−n) cos(nθ) if ρ < r < ρ−1

∓(1∓ ρ−2n)rn cos(nθ) if ρ−1 < r

Un,B,±(ξ) =

 (1∓ ρ−2n)rn sin(nθ) if r < ρ
(rn ± r−n) sin(nθ) if ρ < r < ρ−1

±(1∓ ρ−2n)rn sin(nθ) if ρ−1 < r
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Remark 3.2. As δ → 0, the eigenvalues λ±n converge to ±1/2 as illustrated in
Fig. 2. This behavior shows the non-uniform compactness of the cross terms L1, L2

of K∗ as δ → 0.

Figure 2. Graph of the eigenvalues λ±n in terms of δ

The results of [12] show that the eigenfunctions ϕn,A,±, ϕn,B,± form a complete
set in H−1/2(∂D1)×H−1/2(∂D2) for the norm ‖ · ‖S :=< ·, · >1/2

S . The right-hand
side ∂νH of (1.6) expands as

(∂νH|∂D1 , ∂νH∂D2) =
∞∑
n=1

αn,±ϕn,A,± + βn,±ϕn,B,±,

where αn,± =
< ϕn,A,±, ∂νH >S
< ϕn,A,±, ϕn,A,± >S

and βn,± =
< ϕn,B,±, ∂νH >S
< ϕn,B,±, ϕn,B,± >S

. Recall-

ing (??), we note that since H is harmonic,

< ϕ0, ∂νH >S = −
∫
∂D1

w∂νH −
∫
∂D2

w∂νH

= −c1
∫
∂D1

∂νH − c2
∫
∂D2

∂νH = 0,

and thus the right-hand side has no component on the eigenvector associated to
λ = 1/2. It follows that the layer potential defined by

ϕ =
∞∑
n=1

αn,±

λ− λ±n
ϕn,A,± +

βn,±

λ− λ±n
ϕn,B,±

is the solution of the integral equation (1.6).

The coefficients αn,±, βn,± in the above expansion can be computed explicitely.
For example, in the case of A+ modes (i.e. modes of the A-family associated with
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λ+
n ) we obtain

< ϕn,A,+, ϕn,A,+ >S = −
∫
∂D1

Sϕn,A,+|∂D1ϕn,A,+ −
∫
∂D2

Sϕn,A,+|∂D2ϕn,A,+

=
∫

R2
|∇Un,A,+|2

=
∫
r=ρ

Un,A,+(∂rUn,A,+|− − ∂rUn,A,+|+)

−
∫
r=ρ−1

Un,A,+(∂rUn,A,+|− − ∂rUn,A,+|+)

= 4πn(ρ−2n − 1).

< ϕn,A,+, ∂νH >S = −
∫
∂D1

Sϕn,A,+|∂D1∂νH −
∫
∂D2

Sϕn,A,+|∂D2∂νH

= −
∫
r<ρ

∇Un,A,+ · ∇h −
∫
r>ρ−1

∇Un,A,+ · ∇h

= −
∫
r=ρ

∂rUn,A,+|−h +
∫
r=ρ−1

∂rUn,A,+|−h

= nρn(ρ−2n − 1)
{∫ 2π

0

cos(nθ)
[
h(ρeiθ) dθ − h(ρ−1eiθ)

]
dθ

}
,

where we have set H(x) = h(ξ) = h(ρeiθ). Carrying out the computations for all
the modes, one obtains

αn,± =
1

4π
ρn
{∫ 2π

0

cos(nθ)
[
±h(ρeiθ)− h(ρ−1eiθ)

]
dθ

}
βn,± =

1
4π
ρn
{∫ 2π

0

sin(nθ)
[
∓h(ρeiθ) + h(ρ−1eiθ)

]
dθ

}
4. Asymptotics of the layer potential

In the particular case when H(x) = Ax1 +Bx2 is a linear function, we obtain

αn,+ = −Aaρ2n, αn,− = βn,+ = 0, βn,− = Baρ2n,

which yields the following expression for the layer potential

ϕ = |1− ξ|2
∞∑
n=1

{
(−A)

n cos(nθ)
λ− λ+

n

(
ρn−1

ρn+1

)
+B

n sin(nθ)
λ− λ−n

(
ρn−1

ρn+1

)}
(4.1)

When δ > 0 and thus ρ < 1, it is easy to check that the above series converges
pointwise, and not only in the sense of the norm associated with the scalar product
defined by (??). In this section, we show the following result.

Theorem 4.1. Assume that H is the linear function Ax1 + Bx2. Then the
layer potential ϕ solution to (1.6) satisfies the bound

||ϕ||L∞(∂D1∪∂D2) ≤ C|A|
|λ− λ+

1 |
+

C|B|
|λ− λ−1 |

,(4.2)

where the constant C is independent of δ and λ.
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Proof. Here we only focus on the part of series (4.1) that blows up when λ is
close to 1/2 (i.e. the A+ modes)

ϕA,+(θ) = −2A |1− ρeiθ|2
∞∑
n=1

nρn−1 cos(nθ)
2λ− ρ2n

.(4.3)

The remainder term of the series (4.1) only blows up when λ is close to −1/2 and
can be treated in a smilar way.

For λ > 1
2 , we have

1
2λ− ρ2n

=
1

2λ

∞∑
p=0

(
ρ2n

2λ

)p
.

When δ > 0, the series (4.3) converges uniformly on [0, 2π], and so the order
summation can be changed to obtain

ϕA,+(θ) = −A
λ
|1− ρeiθ|2

∞∑
p=0

(
1

2λ

)p ∞∑
n=1

n
(
ρ2p+1

)n
cos(nθ).(4.4)

A straightforward computation shows that
∞∑
n=1

nrn cos(nθ) = Re

(
reiθ

(1− reiθ)2

)
for r < 1.

It follows that

|ϕA,+(θ)| ≤ ρ|A|
λ

∞∑
p=0

(
ρ2

2λ

)p ∣∣∣∣ 1− ρeiθ

1− ρ2p+1eiθ

∣∣∣∣2 .
Using the fact that ∣∣∣∣ 1− ρeiθ

1− ρ2p+1eiθ

∣∣∣∣2 ≤ 1 + ρ,

uniformly with respect to θ and p ≥ 0, we get

|ϕA,+(θ)| ≤ (ρ+ ρ2)
λ

|A|
∞∑
p=0

(
ρ2

2λ

)p
.

Consequently

|ϕA,+(θ)| ≤ (ρ+ ρ2)
|A|

λ− ρ2

2

,

which gives the first bound in the desired inequality. �

Remark 4.2. 1. Since ρ = 1−
√

2
√
δ+O(δ) and in view of the definition of λ±1 ,

it is easy to check that the blow up rate of ϕ is the same as that of u in (1.4,1.5).
In fact, since u = S1ϕ|∂D1 + S2ϕ|∂D2 + H, since ∂D1 and ∂D2 are smooth, and
since the single layer operators S1 and S2 depend smoothly on δ, the W 1,∞ control
of u follows from (4.2).
2. In this section we only considered harmonic functions H which are linear. Indeed,
one can show that the blow up of ϕ may only occur when ∇H(0) 6= 0.
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