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Abstract

We study the spectrum of the Poincaré variational problem for two
close to touching inclusions in IR2. We derive the asymptotics of its
eigenvalues as the distance between the inclusions tends to zero.

1 Introduction

This work concerns the regularity of solutions of elliptic PDE’s in composite
media that contain touching or close to touching inhomogeneities, embedded
in a matrix phase. In mechanics, regions where the presence of hard inclu-
sions form narrow gaps are likely to concentrate stress, and therefore are
prone to fracture. In optics, electromagnetic fields are likely to concentrate
in narrow channels where the parameter contrast with surrounding regions
is large, a fact that could be useful in applications such as microscopy, spec-
troscopy or bio-sensing.

Over the last decade, adressing a question originally raised by I. Babuška
[8], a number of mathematical works have focused on estimating the size
of gradients in composite media containing inhomogeneities with smooth
boundaries, in terms of inter-inclusion distances and coefficient contrast.
The case of 2 circular inclusions with finite conductivity, separated by a
distance δ, was studied for the conduction equation in [11]. There, a W 1,∞

bound, uniform in δ, is established using the maximum principle. YanYan
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Li and M. Vogelius [20] extended this result to the case of a scalar equation
in piecewise Hölder media (i.e., in which the boundary of each inclusion
has C1,α regularity). The uniform boundedness of the gradient was then
generalized to strongly elliptic systems, including the system of elasticity,
by YanYan Li and L. Nirenberg [19].

In contrast, when the material coefficients are degenerate (perfectly con-
ducting or insulating inclusions), the gradients may blow up as the inclu-
sions come to touching (see e.g. [11]). In this case, the dependance of the
bounds on the inter-inclusion distance was explicited in [9], who studied the
case of two perfectly conducting C2,α inhomogeneities embedded in a domain
Ω ⊂ IRn of conductivity γ = 1. The gradient of the potential is shown there
to satisfy





||∇u||L∞ ≤ C√
δ
||u||L2(∂Ω) for n = 2,

||∇u||L∞ ≤ C
δ| ln δ| ||u||L2(∂Ω) for n = 3,

||∇u||L∞ ≤ C
δ ||u||L2(∂Ω) for n = 4.

(1)

The case n = 2 was derived independently by Yun, using conformal mapping
techniques [26].

How the bounds blow up when both the inclusions come to touching and
their conductivities degenerate has been analyzed in particular geometries,
where the potential u may have a series representation that lends itself to
asymptotic analysis [5, 4, 2, 12, 21]. Optimal upper and lower bounds on the
potential gradients are derived in [5, 4] for nearly touching pairs of circular
inclusions. Spherical inclusions are studied in [2].

In [6], the case of 2 discs D1,D2 ⊂ IR2 of constant conductivities, separated
by a distance δ, is considered. The potential u satisfies the PDE

{
div(γ(X)∇u(X)) = 0 in IR2

u(X) −H(X) → 0 as |X| → ∞,
(2)

where the conductivity γ is constant in each inclusion and in IR2 \D1 ∪D2,
and where H is a given harmonic function. The potential uδ is shown to
decompose as the sum ur + us of a regular and a singular part. Specified to
the case when the discs have the same radius r = 1 and the same conduc-
tivity k and are touching at the point 0 tangentially to the direction e1, the
result states that for some constant C1, C2, C3, independent of δ and k





|∇us|+(±δ, 0) ≥ C1
|∇H(0)|·e⊥1

2k+
√
δ

||∇us||∞,Ω ≤ C2
|∇H(0)|·e⊥1

2k+
√
δ

||∇ur||∞,Ω ≤ C3,

(3)
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if k > 1, while for 0 < k < 1 the estimates read





|∇us|+(±δ, 0) ≥ C1
|∇H(0)|·e1
2k−1+

√
δ

||∇us||∞,Ω ≤ C2
|∇H(0)|·e1
2k−1+

√
δ

||∇ur||∞,Ω ≤ C3.

(4)

Further development has recently led to obtaining an asymptotic expansion
of the potential with an explicit characterization of the singular part [14].

The results in [6] are based on the representation of uδ as a series derived
through the method of images. In a recent work [10], we studied the same
configuration of 2 discs from an integral equation point of view. More pre-
cisely, we considered (2) when D1,D2 are the discs of radius 1, respectively
centered at the points (0, 1 + δ/2) and (0,−1 − δ/2) so that the discs meet
tangentially to the x1–axis as δ → 0. One can seek the solution u of (2) in
the form

u(X) = H(X) + S[ϕ](X) := H(X) +

(
S1 0
0 S2

)(
ϕ1

ϕ2

)
, (5)

where Si denotes the single layer potential operator on Di

Si[g](X) =
1

2π

∫

∂Di

ln(|X − Y |)g(Y ) dσY .

Expressing the transmission conditions satisfied by u, one sees that the layer
potential ϕ = (ϕ1, ϕ2) satisfies

(λI −K∗)

(
ϕ1

ϕ2

)
=

(
∂ν1H|∂D1

∂ν2H|∂D2

)
, (6)

where νi denotes the outward normal to Di, λ = k+1
2(k−1) , and where

K∗
(
ϕ1

ϕ2

)
=

(
K∗

1
∂
∂ν1
S2

∂
∂ν2
S1 K∗

2

)(
ϕ1

ϕ2

)
. (7)

The operators K∗
i in the above expression are the standard layer potential

operators defined on a single inclusion: For g ∈ L2(∂Di),

K∗
i [g](X) =

∫

∂Di

(X − Y ) · νi(X)

|X − Y |2 g(Y ) dσY , X ∈ ∂Di. (8)
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One of the nice features of (6) is that it decouples the contrast k and the
distance δ. If K∗ had a spectral decomposition with eigenvectors (ϕn)n≥1

associated to eigenvalues λn, then one could easily construct a solution of (6)
in the form

ϕ =

(
ϕ1

ϕ2

)
=
∑

n≥1

〈
ϕn,

(
∂ν1H|∂D1

∂ν2H|∂D2

)〉

λ− λn
ϕn.

Injecting this expression in (5) shows that the blow-up of ∇u as δ → 0 and
as k → 0 or k → +∞ (i.e. λ → −1/2 or λ → 1/2 respectively) depends on
the behavior of λ−λn in the above expression. And indeed, in [10] we show
that λ− λ1 = 2k−

√
δ+O(δ) when k > 1, that λ− λ1 = 2k−1 +

√
δ+O(δ)

when 0 < k < 1, and that one does recover the estimates (3) through the
spectral analysis of K∗.

The operator K∗ is however not self adjoint, which complicates matters with
respect to its spectral decomposition. One can nevertheless symmetrize K∗

following a technique originally due to J. Plemelj [24] (see also the work of
Korn [16, 17]) and revisited in modern terms in [15] (see also [18]): The
Plemelj symmetrization principle implies that the operator K∗, and its ad-
joint, the Poincaré Neumann operator K, satisfy

SK∗ = KS.

Since S is non-positive and self-adjoint, one can define a new inner-product
on the space L2(∂D1) × L2(∂D2) by setting

< ϕ,ψ >S = < −S[ϕ], ψ >L2

:= −
∫

∂D1

S1[ϕ1]ψ1 −
∫

∂D2

S2[ϕ2]ψ2, (9)

for which K∗ becomes a compact self-adjoint operator, which therefore has
a spectral decomposition. See [15] and also [1], where an operator similar to
K∗ is studied in the context of cloaking. Moreover, the eigenvalues of K∗

can be obtained via a min-max principle. This idea was originally developed
by Poincaré, when he was trying to extend Neumann’s proof of existence of
solutions to the Dirichlet problem to the case of non-convex domains [25, 13,
15]. The Poincaré variational problem (in the terminology of [15]) consists
in optimizing the ratio J ′(u)/J(u) where (in the context described above)

J(u) =

∫

D
|∇u|2 J ′(u) =

∫

D′

|∇u|2
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among all functions u ∈ W 1,2(IR2) whose restriction to D = D1 ∪ D2 and
to D′ = IR2 \D1 ∪D2 are harmonic.

O

D 2

D1

δ e2

Figure 1: The inclusions D1 and D2 .

In this work, we extend our work on discs to more general inclusionsD1,D2 ⊂
IR2 and study the spectrum of the corresponding Poincaré variational prob-
lem. To fix ideas, we assume that D1 and D2 are translates of 2 reference
touching inclusions

D1 = D0
1 + (0, δ/2) D2 = D0

2 + (0,−δ/2).

We assume that D0
1 lies in the lower half–plane x2 < 0, D0

2 in the upper
half–plane, and that they meet at the point 0 tangentially to the x1–axis.
We make the following additional assumptions on the geometry:

A1. The inclusions are strictly convex and only meet at the point 0.

A2. Around the point 0, ∂D0
1 and ∂D0

2 are parametrized by 2 curves
(x, ψ1(x)) and (x,−ψ2(x)) respectively. The graph of ψ1 (resp. ψ2)
lies above (resp. below) the x–axis.

A3. The boundary ∂D0
i of each inclusion is globally C1,α for some 0 < α.

A4. The function ψ1(x) + ψ2(x) is equivalent to C|x|m as x → 0, where
m ≥ 2 is a fixed integer and C is a positive constant.

To simplify the notations, we set D := D1 ∪ D2, D
′ = IR2 \ D, and ψ =

ψ1 + ψ2 ≥ 0.
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Our main result relates the behavior of the non-degenerate eigenvalues of
K∗ as δ → 0 to the geometry of the contact when the inclusions touch.

Theorem 1. For two close to touching inclusions with contact of order m,
the eigenvalues of the Poincaré variational problem contained in ]−1/2, 1/2[

split in two families (λδ,±n )n≥1, with

{
λδ,+n ∼ 1/2 − c+n δ

1− 1
m + o(δ1−

1
m )

λδ,−n ∼ −1/2 + c−n δ
1− 1

m + o(δ1−
1
m )

(10)

where (c±n )n≥1 are increasing sequences of positive numbers, that only depend
on the shapes of the inclusions, and that satisfy c±n ∼ n as n→ ∞.

The paper is organized as follows: Section 2 introduces some elements of
potential theory and spaces of functions. In section 3, we show that the
solution to (2) can be expanded on a basis of eigenfunctions associated to
the Poincaré variational problem. Our version is slightly different from that
exposed in [15] (see also [7]) as we optimize

J(u)

J(u) + J ′(u)
=

∫
D |∇u|2∫
IR2 |∇u|2

(11)

on the subspace of single layer potentials HS . Roughly speaking, these are
H1
loc functions which are harmonic in D and in D′, and which tend to 0

at infinity, see the precise definition (16). In Section 4, we show that the
ratio (11) defines a norm on HS . We also show that if ε > 0 is sufficiently
small, this norm is equivalent to equivalent to

∑
j ||u||2Ḣ1/2(∂Dj)

∑
j ||u||2Ḣ1/2(∂Dj)

+
∫ ε
−ε

|u|∂D1
−u|∂D2|

2

ψ(x1)+δ dx1

.

This result is inspired from the work of Mazy’a, who derived asymptotic
expansions of the solutions to elliptic problems in domains with cusps [22].
Essentially, the weight in the integral constrains the behavior of u as δ → 0
so as to keep the electrostatic energy

∫
IR2 |∇u|2 uniformly bounded. Finally,

we prove Theorem 1 in Section 5.

As explained in [15], H. Poincaré had foreseen that a min-max principle was
lurking behind the spectral properties of the operators K and K∗. However,
at that time, he did not have all the Hilbert-space theoretical tools to make

6



his insights rigorous. He suggested in particular that K and K∗ would only
have a positive spectrum. Our study provides another example (with those
described in [15]) where these operators have both positive and negative
eigenvalues.

2 Preliminaries

To cope with the usual difficulties related with the unboundedness of the
Newtonian potential in 2D, we introduce the weighted Sobolev space

W1,−1(IR2) :=

{
u;

u(X)

(1 + |X|2)1/2 log(2 + |X|2) ∈ L2(IR2), ∇u ∈ L2(IR2)

}
.

This space contains the constant functions and may be used to invert the
Laplace operator in the plane [23]:

Proposition 1. Let g be in H1/2(∂D). The PDE

{
∆w(X) = 0 in D′,
w(X) = g(X) on ∂D,

(12)

has a unique solution w ∈ W1,−1(D′). In addition, w satisfies
∫

D′

|∇w(X)|2 dX ≤
∫

D′

|∇v(X)|2 dX,

for all v in W1,−1(D′) such that v(X) = g(X) on ∂D.

We denote by W1,−1
0 (IR2) the subset of functions u ∈ W1,−1(IR2) such

that u(X) = o(1) as |X| → ∞. It follows from Hardy’s inequality that
W1,−1

0 (IR2) endowed with the scalar product

(u, v)W :=

∫

IR2
∇u(X)∇v(X)dX, (13)

is a Hilbert space (see for instance [23]). Given a harmonic function H, the
Lax-Milgram lemma shows that there exists a unique solution to

{
div ([1 + (k − 1)1D(x)]∇u(x)) = 0 in IR2

u(x) −H(x) ∈ W1,−1
0 (IR2),

(14)

Let G(X,Y ) = 1
2π ln(|X − Y |) denote the fundamental solution to the

Laplace operator in dimension 2. We denote the single and double layer
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potentials on ∂D of functions f ∈ H− 1
2 (∂D) and g ∈ H

1
2 (∂D) as S[f ] and

D[g] respectively, where

S[f ](X) =

∫

∂D
G(X,Y )f(Y )dσY X ∈ IR2

D[g](X) =

∫

∂D

∂G(X,Y )

∂ν(Y )
g(Y )dσY X ∈ D′.

These operators are well defined, even if D = D1 ∪ D2 is not connected,
since δ > 0 and since each boundary ∂Di is smooth. They satisfy the jump
conditions across ∂D [23]:

S[f ]+(X) = S[f ]−(X) X ∈ ∂D,

D[g]±(X) =

(
∓1

2
+K

)
[g](X) X ∈ ∂D,

∂

∂ν
S[f ]±(X) =

(
±1

2
+K∗

)
[f ](X) X ∈ ∂D,

where K∗ : H− 1
2 (∂D) → H− 1

2 (∂D) is a compact operator defined by

K∗[f ](X) :=
1

2π

∫

∂D

(X − Y ) · ν(X)

|X − Y |2 g(Y )dσY ,

and K : H
1
2 (∂D) → H

1
2 (∂D) is the L2 adjoint of K∗, defined by

K[g](X) =
1

2π

∫

∂D

(Y −X) · ν(Y )

|X − Y |2 g(Y ) dσY .

In dimension two the single layer potential is not always invertible. The
following result can be found in [3] for connected domains.

Proposition 2. The operator S : H− 1
2 (∂D) × IR −→ H

1
2 (∂D) × IR defined

by

S[f, a] =


S[f ]|∂D + a,

2∑

j=1

∫

∂Dδ
j

f(Y )dσY


 ,

is invertible.
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Proof. The operator S is Fredholm of index zero [23] and thus S has the
same property. To show that it has a bounded inverse, we only need to
prove that it is injective.
Let (f, a) ∈ H− 1

2 (∂D) × IR such that S[f, a] = (0, 0), i.e.,

S[f ]|∂D = −a, and

2∑

j=1

∫

∂Dδ
j

f(Y )dσY = 0.

The asymptotic properties of the Newtonian potential and the second equa-
tion above imply that

S[f ](X) = O(
1

|X| ) as |X| → +∞,

and it follows that
∫

IR2
|∇S[f ](X)|2 dX = −

∫

∂D
S[f ]|D(X)f(X)dσX ,

= a

2∑

j=1

∫

∂Dj

f(Y )dσY = 0.

It follows that S[f ] is constant, S[f ](X) = −a = 0 for all X ∈ IR2. Finally,
the jump of the normal derivative of the single layer potential gives f = 0
which finishes the proof.

Let H be the space of harmonic functions on D∪D′, which vanish at infinity
and with finite energy semi-norm

‖h‖2
H =

∫

D∪D′

|∇h|2 dX. (15)

An element h ∈ H ⊂
(
C∞

0 (IR2)
)′

can be viewed as a distribution defined on
IR2, which satisfies

∆h = µ ∈
(
C∞

0 (IR2)
)′
,

with supp(µ) ⊂ ∂D. We note that a function h ∈ H lies in W1,−1
0 (IR2) if

and only if h+ = h− on ∂D. We define

HS := H ∩W1,−1
0 (IR2)

=
{
h ∈ H; h+ = h− on ∂D

}
. (16)
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Proposition 3. The space HS is the subspace of single layer potentials in
W1,−1

0 (IR2), i.e.

HS = {S[ϕ];ϕ ∈ H−1/2(∂D),

∫

∂D1

ϕ|D1 +

∫

∂D2

ϕ|D2 = 0}.

Proof. The properties of the Newtonian potential at infinty show that the
set on the right is contained in HS . Conversely, if u ∈ HS , then we infer
from Proposition 2 that for some ϕ ∈ H−1/2(∂D) and a ∈ IR,

u|∂D = S[ϕ] + a and

∫

∂D1

ϕ|D1 +

∫

∂D2

ϕ|D2 = 0.

By proposition 1 and by the uniqueness to solutions of the Dirichlet problem
in a bounded domain

u(X) = S[ϕ](X) + a, ∀ X ∈ IR2.

The requirement that u ∈ W−1,1
0 (IR2) shows that a = 0, hence the result.

The orthogonal space to HS with respect to the scalar product

< f, g >H =

∫

D
∇f · ∇g +

∫

D′

∇f · ∇g

is the subspace of double layer potentials. It is shown in [15] that

HD :=

{
h ∈ H;

∂h

∂ν

+

=
∂h

∂ν

−
on ∂D

}
.

3 The Poincaré variational problem

In this paragraph, we introduce an operator whose spectrum is obtained by
optimizing (11).
For u ∈ W1,−1

0 (IR2), we infer from the Riesz Theorem that there exists a

unique Tδu(X) ∈ W1,−1
0 (IR2) such that for all v ∈ W1,−1

0 (IR2)

∫

IR2
∇Tδu(X)∇v(X)dX =

∫

D
∇u(X)∇v(X)dX. (17)
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The operator Tδ : W1,−1
0 (IR2) → W1,−1

0 (IR2) is easily seen to be self-
adjoint and bounded with with norm ‖Tδ‖ ≤ 1. The spectral problem for
Tδ writes as:
Find (w, β) ∈ W1,−1

0 (IR2)× (IR\{0, 1}), w 6= 0, such that ∀ v ∈ W1,−1
0 (IR2),

β

∫

IR2
∇w(X)∇v(X)dX =

∫

D
∇w(X)∇v(X)dX. (18)

Integrating by parts, one immediately obtains that any eigenfunction w
is harmonic in D and in D′, and for X ∈ ∂D satisfies the transmission
conditions

w|+∂D(X) = w|−∂D(X)
∂w

∂ν
|+∂D(X) =

(
1 − 1

β

)
∂w

∂ν
|−∂D(X),

where w(X)|± = limt→0w(X + tν(X)) for X ∈ ∂D. In other words, w is a
solution to (14) for k := 1− 1/β and H ≡ 0. Further, we note that if w is a
non-trivial solution of the homogeneous equation (14) for k = 1/β, then the
harmonic conjugate w̃ of w (see for instance the construction in [5], section
3) satisfies

{
div
(
[1 + (k̃ − 1)1D(x)]∇w̃(x)

)
= 0 in IR2

w̃(x) ∈ W1,−1
0 (IR2).

with k̃ = k−1. In other words, w̃ is an eigenvalue of Tδ associated to the
eigenvalue β̃ = 1

1−k̃ = 1 − β. We thus obtain:

Proposition 4. The non-trivial solutions to the homogeneous equation (14)
are the eigenfunctions of the spectral problem (18) associated to the non-
degenerate eigenvalues (i.e., β 6= 0 and β 6= 1). Moreover, the eigenvalues
are symmetric with respect to the eigenvalue β = 1/2.

Lemma 1. The following assertions hold.

• The eigenspace of Tδ associated to the eigenvalue β = 1 is

Ker (I − Tδ) = {v|D′ ≡ 0, v|D ∈ H1
0 (D)}.

This eigenspace does not contains any element of HS except v = 0.
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• The eigenspace of Tδ associated to the eigenvalue β = 0 is

Ker (Tδ) = {v|D′ ∈ W1,−1
0 (D′), v|D ≡ 0} ∪ IRw0,

where w0 is defined by





∆w0(X) = 0 in D′,
w0(X) = Cj on ∂Dj j = 1, 2,∫
∂Dj

∂w0
∂ν = (−1)j j = 1, 2.

(19)

where C1, C2 ∈ IR are chosen so that w0 ∈ W1,−1
0 (IR2). Moreover, the

only elements of HS in this eigenspace are the multiples of w0.

Proof. Let w ∈ Ker (I − Tδ), so that (Tδw, v)W = (w, v)W for all v ∈
W1,−1

0 (IR2), and thus

∫

D′

∇w(X)∇v(X)dX = 0 ∀ v ∈ W1,−1
0 (IR2).

Given the behavior of w at infinity, it follows that w ≡ 0 in D′, and in
particular w|+∂D = 0. Since w has no jump across ∂D, it follows that w|D ∈
H1

0 (D). Conversely, the definition of Tδ shows that if w|D ∈ H1
0 (D) and

w|D′ ≡ 0, then Tδ(w) = w. Next, if v ∈ Ker (I − Tδ) ∩ HS , then v|D′ ≡
0, v|D ∈ H1

0 (D) and ∆v = 0 in D. It follows that v ≡ 0.

Concerning the second claim of the lemma, a straightforward computation
shows that w0 is an eigenfunction of Tδ associated to β = 0. Suppose next
that w ∈ Ker(Tδ). It follows from (17) that

∫

D
∇w(X)∇v(X)dX = 0 ∀ v ∈ W1,−1

0 (IR2).

Taking v = w shows that ∇w(X) = 0 in D. Thus, w is constant in D. If
w = 0 on both inclusions, then w|D′ ∈ W1,−1

0 (D′). Otherwise, Proposition 1
shows that w must be a linear combination of the two functions w10, w20 ∈
W1,−1(IR2) solutions to

{
∆wi0(X) = 0 in D′,
wi0(X) = δij on ∂Dj j = 1, 2,

where δij is the Kronecker delta. The existence of w10 and w20 is again
guaranteed by Proposition 1. We also note that they are orthogonal for the
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scalar product (13). Writing w = c1w10 + c2w20 a straightforward compu-
tation shows that the condition that w vanishes when |X| → +∞ implies
w ∈ IRw0.
Finally, we note that if v ∈ Ker(Tδ)∩HS is not a multiple of w0, then v ≡ 0
on ∂D, and since v has to be harmonic on D′, Proposition 1 implies that
v ≡ 0.

Remark 1. i) Since the constant function v ≡ 1 is the only harmonic
fonction in W1,−1(IR2) that takes the value 1 on ∂D, w10 + w20 ≡ 1
in IR2.

ii) When D1 and D2 are discs, the function w0 can be calculated explicitely
(see for instance [10]). For instance, in the case of discs of radius 1,
one has

w0(X) =
1

2π
log

( |X − a|
|X + a|

)
,

where a =
√
δ(2 + δ).

In the rest of the section we study the spectrum of the restriction of Tδ
to the space HS . Since the Laplace operator is linear and since the trace
operator is continuous with respect to the H1 norm, HS is a closed subspace
of W1,−1

0 (IR2). Lemma 1 implies that TδHS ⊂ HS . We henceforth use the
notation Tδ for the restriction of Tδ to HS.

For u ∈ HS , there exists a unique function Rδu ∈ HS , such that for all
v ∈ HS

2

∫

IR2
∇Rδu(X)∇v(X)dX =

∫

D
∇u(X)∇v(X)dX

−
∫

D′

∇u(X)∇v(X)dX, (20)

The operator Rδ : HS → HS is a bounded operator with norm ‖Rδ‖ ≤ 1.

Theorem 2. The operator Rδ : HS → HS is compact and self-adjoint.

Proof. From (17) and (20) we infer that Tδ = 1
2I + Rδ. It follows that Rδ

is a bounded self-adjoint operator. Next, given u, v,∈ HS , we see from (20)
that since u and v are harmonic in D ∪D′ and continuous across ∂D

2

∫

IR2
∇Rδu(X)∇v(X) =

∫

∂D

(
∂u

∂ν

+

+
∂u

∂ν

−)
v(X)dX,

13



Applying Proposition 3, we rewrite u = S[ϕ] with ϕ ∈ H−1/2(∂D) and

∫

∂D1

ϕ|D1 +

∫

∂D2

ϕ|D2 = 0.

The jump conditions yield that for X ∈ ∂D,

∂u

∂ν
|+ +

∂u

∂ν

−
= 2K∗[ϕ] = 2K∗ [iH−1/2oS−1 [(u|∂D, 0)]

]
(X),

where iH−1/2 : H− 1
2 (∂D) × IR −→ H− 1

2 (∂D) is defined by iH−1/2 (f, a) = f .
Recalling the Calderon identity [15, 23] SK∗ = KS, we find

∫

IR2
∇Rδu(X)∇v(X)dX =

∫

∂D
iH−1/2oS−1 [(K [u|∂D, 0)]] (X)v(X),

and since K is a compact operator, we deduce that Rδ is also compact.

Since Tδ = 1
2I + Rδ, an immediate consequence of the above Theorem is

that Tδ is a Fredholm operator of index zero and that its spectrum is real,
discrete, contained in (0, 1) and symmetric with respect to 1

2 , with only 1
2 as

an accumulation point. We denote by
(
βδ,±n

)
n≥1

the nontrivial eigenvalues

of Tδ, ordered as follows:

0 < βδ,+1 ≤ βδ,+2 ≤ · · · ≤ 1

2
,

the eigenvalues in (0, 1/2] and, similarly,

1 > βδ,−1 ≥ βδ,−2 ≥ · · · ≥ 1

2
,

the eigenvalues in [1/2, 1). The eigenvalue 1/2 is the unique accumulation
point of the spectrum. In view of the symmetry discussed in Proposition 4,
we actually have βδ,−n = 1− βδ,+n . The notation ± is consistent with Propo-
sition 4 and with the notation used in the introduction:




k+
n = 1 − 1/β+

n ∈ ] −∞,−1[ λ+
n = k+

n +1
2(k+

n −1)
∈ ]0, 1/2[

k−n = 1 − 1/β−n ∈ ]1, 0[ λ−n = k−n +1
2(k−n −1)

∈ ] − 1/2, 0[.
(21)

In addition,
(
βδ,±n

)
n≥1

satisfy the following min-max principle:

14



Lemma 2. Let
(
βδ,±n

)
n≥1

be the eigenvalues of Tδ repeated according to

their multiplicity, and let
(
wδ,±n

)

n≥1
be the corresponding eigenfunctions.

Then

βδ,+n = min
u∈HS ,⊥w0,w

δ,+
1 ,··· ,wδ,+

n

∫
D |∇u(X)|2 dX
∫
IR2 |∇u(X)|2 dX

= max
Fn ⊂ HS

dim(Fn) = n+ 1

min
u∈Fn

∫
D |∇u(X)|2 dX
∫
IR2 |∇u(X)|2 dX

and similarly

βδ,−n = max
u∈HS , w

δ,−
1 ,··· ,wδ,−

n

∫
D |∇u(X)|2 dX
∫
IR2 |∇u(X)|2 dX

,

= min
Fn ⊂ HS

dim(Fn) = n

max
u∈Fn

∫
D |∇u(X)|2 dX
∫
IR2 |∇u(X)|2 dX

.

Proof. It is a direct consequence of the Theorem 2 and of the min-max
principle for the compact self-adjoint operator Rδ.

It follows from Theorem 2 and Lemma 1 that any function u ∈ HS can be
decomposed as

u = u0w0 +
∑

n≥1

(u,wδ,±n )W

||wδ,±n ||2W
wδ,±n , (22)

with u0 ∈ IR, and where the series is convergent in W1,−1
0 (IR2).

Proposition 5. The solution u to (14) has the following decomposition in
HS :

u(X) = H(X) +
∑

n≥1

u±nw
δ,±
n (X), X ∈ IR2, (23)

where

u±n =
βδ,±n

1
1−k − βδ,±n

∫
D∇H(X)∇wδ,±n (X)dX
∫
D

∣∣∣∇wδ,±n (X)
∣∣∣
2
dX

. (24)

The series is convergent with respect to the norm ‖ · ‖W .
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Proof. We remark that u −H lies in HS so that it decomposes as (22) on

the eigenfunctions w0 and wδ,±n . We first note that

∫

IR2
∇w0 · ∇(u−H) =

∫

D′

∇w0∇(u−H)

=

∫

∂D
∂n(u−H)|+w0

=
∑

i=1,2

k Ci

∫

∂Di

∂n(u−H)|− = 0.

Next, since Tδw
δ,±
n = βδ,±n , we have

∫

D
∇wδ,±n · ∇(u−H) = βδ,±n

∫

IR2
∇wδ,±n · ∇(u−H)

∫

D′

∇wδ,±n · ∇(u−H) = (1 − βδ,±n )

∫

IR2
∇wδ,±n · ∇(u−H).

It follows that

βδ,±n un||wδ±n ||2W = βδ,±n

∫

IR2
∇wδ,±n · ∇(u−H)

=

∫

D
∇wδ,±n · ∇(u−H)

=

∫

∂D
wδ,±n

∂u

∂ν
|− −

∫

D
∇wδ,±n · ∇H

=
1

k

∫

∂D
wδ,±n

∂

∂ν
(u−H)|+ + (

1

k
− 1)

∫

D
∇wδ,±n · ∇H

=
−1

k

∫

D′

∇wδ,±n · ∇(u−H) + (
1

k
− 1)

∫

D
∇wδ,±n · ∇H

=
−(1 − βδ±n )

k
un ||wδ±n ||2W + (

1

k
− 1)

∫

D
∇wδ,±n · ∇H.

Noticing that

∫

D
|∇wδ,±n |2 = βδ,±n

∫

IR2
|∇wδ,±n |2,

yields (24).
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4 Behavior of the eigenvalues as δ → 0

In this section we prove Theorem 1, which gives the first order asymptotics
of the eigenvalues as δ → 0. Reformulated in terms of βδ,±n = 1/2 − λδ,±n ,
see (21), the Theorem states that for n ≥ 1,

{
βδ,+n = cnδ

1− 1
m + o(δ1−

1
m )

βδ,−n = 1 − cnδ
1− 1

m + o(δ1−
1
m ),

(25)

where cn ≥ 0 is a real increasing sequence that only depends on the shape
of the inclusions D0

1,D
0
2 (and therefore is independent of δ) and satisfies

cn ∼ n as n→ ∞. (26)

4.1 An estimate of the exterior energy

Let ε ∈ (0, 1
2) be small enough such that

c1|x|m ≤ ψ(x) ≤ c2|x|m for x ∈ (−ε, ε),

for some c1, c2 ∈ IR. We consider the spaces Ḣ1/2(∂D) := H1/2(∂D)/IR
and Ḣ1/2(∂Dj) = H1/2(∂Dj)/IR, j = 1, 2, with the norms

‖w‖Ḣ1/2(∂D) = inf
c∈IR

‖w + c‖H1/2(∂D), (27)

‖w‖Ḣ1/2(∂Dj)
= inf

c∈IR
‖w + c‖H1/2(∂Dj)

, j = 1, 2.

For w ∈ Ḣ1/2(∂D), we introduce the norm

[w]21/2 =
2∑

j=1

‖w‖2
Ḣ1/2(∂Dj)

+

∫ ε

−ε

|w+(x) − w−(x)|2

ψ(x) + δ
dx, (28)

where w+(x) = w(x, ψ1(x) + δ/2) and w−(x) = w(x,−ψ2(x) − δ/2).
The function x→ ψ(x) + δ is in fact the vertical distance dist(∂D1, ∂D2) in
the region where the inclusions are close to touching. If δ > 0 is fixed, the
norm [·]1/2 is equivalent to the norm (27) on Ḣ1/2(∂Dδ).

Next we show that the norm (15) of HS , as a subspace of W1,−1
0 (IR2), is

equivalent to the norm (28).
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Theorem 3. Assume that Di, i = 1, 2 satisfy the assumptions A1–A4.
Then, there exists constants Ci > 0, i = 1, 2, which only depend on D0

i , i =
1, 2 such that

C1 [v]21/2 ≤
∫
D′ |∇v(X)|2 dX ≤ C2 [v]21/2, (29)

for all v ∈ HS.

Proof. The proof is split in 2 steps. Firstly, we prove the right-hand in-
equality in (29) by constructing a suitable function ṽ which has the same
Dirichlet boundary as v and by using the fact that v is harmonic in D′ and
has minimal energy. Secondly, we prove the left-hand inequality.
Step 1.

We divide the domain D′ into three parts. To this end, we introduce two
auxiliary functions ψ1,ε, ψ2,ε, defined on IR, which satisfy (see Figure 2) :

ψj,ε ≡ ψj , j = 1, 2, |x| ≤ ε, (30)

||ψj,ε||C1,β ≤ 2||ψj ||C1,αεν , (31)

where ν = α− β > 0. The existence of such functions follows from the C1,α

regularity of ψ1 and ψ2, and from the fact that

ψj(0) = ψ′
j(0) = 0.

For instance, one can take

ψj,ε(x) =





ψj(x), |x| < ε,
2ψj(±ε) − ψj(±2ε∓ x), ε ≤ ±x ≤ 2ε
2ψj(±ε), ±x > 2ε.

We also introduce the narrow strip Qε,δ defined by

Qε,δ =

{
X = (x1, x2); x1 ∈ IR, −ψ2,ε(x1) −

δ

2
< x2 < ψ1,ε(x1) +

δ

2

}
.

Denote ∂Qiε,δ = {X = (x1, ψi,ε(x1)); x1 ∈ IR} , i = 1, 2 the top and bottom
boundaries of Qε,δ.

Let v ∈ HS . We recall that v ∈ W1,−1
0 (IR2) and is harmonic in D and in D′.

Classical results in potential theory (see for instance [23]) show that there
exists two functions vj ∈ W1,−1(IR2 \Dj), j = 1, 2, such that

{
∆vj(X) = 0 in IR2 \Dj

vj(X) = v(X) on ∂Dj ,
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D

D2

1

x

(x,ψ
2,ε

ε

(x) −   /2)δ

(x,ψ
1,ε(x) +    /2) δ

Figure 2: A possible contruction of ψj,ε, j = 1, 2: the part between (ε, 2ε) is
obtained by rotating the part between (0, ε) around the point (ε, ψj(ε))

In addition, there exists a constant C > 0, that only depends on the shape
of each inclusion, such that

‖vj‖2
W1,−1(IR2\Dj)

≤ C‖v‖2

H
1
2 (∂D)

, (32)

from which one also obtain
∫

IR2\Dj

|∇vj |2 dX ≤ C‖v‖2

Ḣ
1
2 (∂D)

. (33)

We now fix 0 < r0 large enough such that the ball Br0(0) contains the two
inclusions. Let χ(X) ∈ C2

0 (IR2) and r1 > r0 such that

χ(X) =





1 for X ∈ Br0(0),
‖χ‖C1(IR2) ≤ 1.

supp(χ) ⊂ Sr1 := [−r1, r1]2.

We set vij(x1) = vi|∂Qj
ε,δ

(x1, ψj,ε(x1)+ δ/2), i, j = 1, 2. The trace Thereom

implies that vij ∈ H
1
2 (IR) and that there exists a constant C, that only

depends on the shape of each inclusion, such that

‖χvij‖2

H
1
2 (IR)

≤ C‖vi‖2
W1,−1(IR2\Di)

i, j = 1, 2.

For X in the strip Qε,δ, we set

L(X) =
x2 + ψ2,ε(x1) + δ/2

ψ1,ε(x1) + ψ2,ε(x1) + δ
,
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and we define

ṽ(X) = χ(X)





v1(X) X ∈ IR2
+ \

(
Qε,δ ∪D1

)
,

(v1(X) − v2(X))L(X) + v2(X) X ∈ Qε,δ,

v2(X) X ∈ IR2
− \

(
Qε,δ ∪D2

)
.

Since L(X) ∈ W 1,∞(Qε,δ) and takes the values 1 and 0 respectively on

∂Q1
ε,δ and ∂Q2

ε,δ, the function ṽ ∈ W1,−1
0 (IR2) and coincides with v on ∂D.

Proposition 1 implies that

∫

IR2\D
|∇v|2 dX ≤

∫

IR2\D
|∇ṽ|2 dX

≤
∫

IR2\D1

|∇(χv1)|2 dX +

∫

IR2\D2

|∇(χv2)|2 dX

+

∫

Qε,δ∩Sr1

|∇ṽ|2 dX. (34)

The estimate (32) combined with fact that ‖χ‖C1(IR2) ≤ 1 give the desired
bound for the first two terms on the right hand side. We now focus on
the last term. To simplify the notation we denote Qr1,ε,δ := Qε,δ ∩ Sr1. A
straightforward computation shows that

∫

Qr1,ε,δ

|∇ṽ|2 dX ≤ C

(∫

Qr1,ε,δ

|∇v1|2 + |∇v2|2 dX +

∫

Qr1ε,δ

v2
1 + v2

2 dX

+

∫

Qr1,ε,δ

(v1 − v2)
2 |∇L|2 dX

)
.

Here we have used the facts that ‖L(X)‖C0(IR2), ‖χ‖C1(IR2) ≤ 1. We infer
from (32) that the first two integrals of the right hand side of the last
inequality are bounded by C‖v‖H1/2(∂D). A simple calculation yields

|∇L(X)| ≤ C

ψε(x1) + δ
X ∈ Qε,δ,

where ψε(x1) = ψ1,ε(x1) + ψ2,ε(x1). We note that for x1 > ε, the width of
Qε,δ, ψε(x) + δ is bounded below independently of δ, and therefore

∫

Qr1,ε,δ

(v1 − v2)
2 |∇L|2 ≤ C

∫

Qr1,ε,δ

(v1 − v2)
2

(ψε(x1) + δ)2
=: CI
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For fixed x1, let J(x1) denote the interval ]−ψ2,ε(x1)− δ/2, ψ1,ε(x1) + δ/2[.
Since the function x2 + ψ2,ε(x1) + δ/2 vanishes on ∂Q2

ε,δ, an integration by
parts shows that
∫

J(x1)
(v1 − v2)

2 dx2 = (ψε(x1) + δ) (v11 − v21)
2 (x1)

−
∫

J(x1)
∂x2

[
(v1 − v2)

2
]
(x2 + ψ2,ε(x1) + δ/2) dx2.

It follows that

I ≤
∫ r1

−r1

(v11 − v21)
2 (x1)

ψε(x1) + δ
dx1 + 2

∫

Qr1,ε,δ

|v1 − v2| |∂x2(v1 − v2)|
ψε(x1) + δ

dX,

≤
∫ r1

−r1

(v11 − v21)
2 (x1)

ψε(x1) + δ
dx1 + 4

∫

Qε,δ

(
|∇v1|2 + |∇v2|2

)
dX + I/2,

from which we deduce

I ≤ 8

(∫ r1

−r1

(v11 − v21)
2 (x1)

ψε(x1) + δ
dx1 +

∫

IR2\D1

|∇v1|2 dX +

∫

IR2\D2

|∇v2|2 dX
)
.

On the other hand, we can write

v21(x1) − v22(x1) =

∫

J(x1)
∂x2v2(x1, x2)dx2,

so that

(v21 − v22)
2 (x1)

ψε(x1) + δ
≤

∫

J(x1)
|∂x2v2(x1, x2)|2 dx2,

and consequently

I ≤ C

(∫ r1

−r1

(v11 − v22)
2 (x1)

ψε(x1) + δ
dx1 +

∫

IR2\D1

|∇v1|2 dX +

∫

IR2\D2

|∇v2|2 dX
)
,

where C > 0 is a constant that does not depend on δ. Further, since ψε
is bounded away from 0 independently of δ for |x1| > ε, and invoking the
trace Theorem and (32) we see that
∫ r1

−r1

(v11 − v22)
2 (x1)

ψε(x1) + δ
dx1 ≤

∫ ε

−ε

(v11 − v22)
2 (x1)

ψε(x1) + δ
dx1

+ C
(
||v1||2W−1,1(IR2\D1)

+ ||v2||2W−1,1(IR2\D1)

)

≤
∫ ε

−ε

(v11 − v22)
2 (x1)

ψε(x1) + δ
dx1 + C ||v||2

H1/2(∂D)
,
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where C depends on ε, but is independent of δ. Recalling (34), we finally
obtain

∫

D′

|∇v|2 ≤ C

(
||v||2

H1/2(∂D)
+

∫ ε

−ε

(v11 − v22)
2

ψε(x1) + δ
dx1

)
,

where C is independent of δ and v. One can check that this inequality also
holds when v is replaced by v + c, where c is any constant. Taking the
minimum over c ∈ IR proves the right-hand inequality in (29).

Step 2. Here we prove the left-hand side inequality in (29). Recall that the
semi-norm

∫

IR2
|∇v|2 dX,

is a norm on W1,−1
0 (IR2) [23]. Thus, we deduce from the trace Theorem

that there exists a constant C > 0 that only depends on the shape of each
inclusion, such that

C‖v‖2

Ḣ
1
2 (∂D)

≤
∫

IR2
|∇v|2 dX.

We define

v0(X) = v(X) − (ψ(x1) + δ)−1
∫

J(x1)
v(x1, x2)dx2.

Since v0(x1, ·) has 0 vertical average, the Poincaré inequality yields
∫

Qε,ε,δ

(ψ(x1) + δ)−2 |v0(X)|2 dX ≤ C

∫

Qε,ε,δ

|∂x2 (v0(X))|2 dX

≤ C

∫

Qε,ε,δ

|∇v(X)|2 dX, (35)

where C is a constant independent of δ. A simple calculation shows that
∫ ε

−ε
(ψ(x1) + δ)−1 (v2

0(x1, ψ1(x1) + δ/2) + v2
0(x1,−ψ2(x1) − δ/2)

)
dx1

=

∫

Qε,ε,δ

(ψ(x1) + δ)−2 ∂x2

(
(2x2 + ψ2(x1) − ψ1(x1))v

2
0(X)

)
dX

≤ 2

∫

Qε,ε,δ

(ψ(x1) + δ)−2 (v2
0 + (ψ(x1) + δ) v0∂x2v0

)
dX

≤ 3

∫

Qε,ε,δ

(∂x2v0)
2 + (ψ(x1) + δ)−2 v2

0dX. (36)
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It follows that
∫ ε

−ε
(ψ(x1) + δ)−1 (v(x1, ψ1(x1) + δ/2) − v(x1,−ψ2(x1) − δ/2))2 dx1

=

∫ ε

−ε
(ψ(x1) + δ)−1 (v0(x1, ψ1(x1) + δ/2) − v0(x1,−ψ2(x1) − δ/2))2 dx1

≤ 2

∫ ε

−ε
(ψ(x1) + δ)−1 (v2

0(x1, ψ1(x1) + δ/2) + v2
0(x1,−ψ2(x1) − δ/2)

)
dx1.

Combining (35), (36) with this last estimate, we find

∫ ε

−ε
(ψ(x1) + δ)−1 (v(x1, ψ1(x1) + δ/2) − v(x1,−ψ2(x1) − δ/2))2 dx1

≤ C

∫

D′

|∇v|2 dX,

which concludes the proof.

Remark 2. Applying Theorem 3 to the functions w10(X) and w20(X) de-
fined in the proof of Lemma 1 we find
∫

IR2
|∇w10(X)|2 dX =

∫

IR2
|∇w20(X)|2 dX ∼ δ

1−m
m as δ → 0

This result was obtained in [9] using a variational approach.

We recall that if βδ,±n with n ≥ 1 is an eigenvalue of Tδ and if wδ,±n (X) is
the associated eigenfunction, we have

βδ,±n =

∫
D

∣∣∇wδn(X)
∣∣2 dX

∫
IR2 |∇wδn(X)|2 dX

.

As a consequence of Theorem 3, we next derive explicit lower and upper
bounds for the L2 norm of the gradient of wδn, inside and outside the inclu-
sions, in terms of

[
wδn
]
1/2

, ‖wδn‖Ḣ1/2(∂D) and ‖wδn‖Ḣ1/2(∂Dj)
, j = 1, 2.

Corollary 1. There exists a constant C > 0, that only depends on the shape
of each inclusion, such that for any w ∈ HS \ {0}

1

C

∑2
j=1 ‖w‖2

Ḣ1/2(∂Dj)

[w]21/2
≤

R

D|∇w(X)|2dX
R

IR2 |∇w(X)|2dX ≤ C

∑2
j=1 ‖w‖2

Ḣ1/2(∂Dj)

[w]21/2
.(37)
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Proof. It is well known that
∫

Dj

|∇w(X)|2 dX ∼ ‖w‖2
Ḣ1/2(∂Dj)

,

for all harmonic functions w ∈ H1(Dj), j = 1, 2. Combining this estimate
with Theorem 3 yields the result.

4.2 A uniform bound on the energy.

In this paragraph, we derive an estimate of the total energy of u−H. For
technical reasons, we assume until the end of the paragraph that k > 1 or
equivalently that λ = k+1

2(k−1) > 1/2. A similar resut can be obtained in the

case 0 < k < 1 (i.e. λ < −1/2) considering the harmonic conjugates.

Proposition 5 shows that u−H has the following decomposition in HS :

u(X) = H(X) +
∑

n≥1

u±nw
δ,±
n (X), X ∈ IR2,

where

u±n =
βδ,±n

1
1−k − βδ,±n

∫
D∇H(X)∇wδ,±n (X)dX
∫
D

∣∣∣∇wδ,±n (X)
∣∣∣
2
dX

.

Let H̃ be the harmonic extension in W−1,1(IR2) of H|D to D′. In other
words H̃ coincides with H on D and satisfies

{
∆H̃(X) = 0 in D′,
H̃ ∈ W−1,1(D′).

Proposition 2 shows that there exist φH ∈ H− 1
2 (∂D) and aH ∈ IR such that

H̃(X) = S[φH ](X) + aH X ∈ IR2

2∑

j=1

∫

∂Dj

φHdσX = 0.

Since H̃(X) − aH ∈ W−1,1
0 (IR2), we see from (18) that

∫

D
∇H(X)∇wδ,±n (X)dX = βδ,±n

∫

IR2
∇H̃(X)∇wδ,±n (X)dX n ≥ 1,
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and consequently, we have

u±n =
βδ,±n

1
1−k − βδ,±n

∫
IR2 ∇H̃(X)∇wδ,±n (X)dX
∫
IR2

∣∣∣∇wδ,±n (X)
∣∣∣
2
dX

.

The orthogonality of the eigenfunctions implies that
∫

IR2
|∇(u−H)|2 =

∑

n≥1

(
u±n
)2
∫

IR2

∣∣∣∇wδ,±n
∣∣∣
2

≤
∑

n≥1

(∫
IR2 ∇H̃(X)∇wδ,±n (X)dX

)2

∫
IR2

∣∣∣∇wδ,±n (X)
∣∣∣
2
dX

, (38)

since due to our assumption k > 1 we see that
∣∣∣∣∣

βδ,±n
1

1−k − βδ,±n

∣∣∣∣∣ ≤ 1.

Further, since H̃ − aH ∈ HS , it has a decomposition in the basis of eigen-
functions of the form

∫

IR2

∣∣∣∇H̃
∣∣∣
2
dX = h2

0 +
∑

n≥1

(∫
IR2 ∇H̃(X)∇wδ,±n (X)dX

)2

∫
IR2

∣∣∣∇wδ,±n (X)
∣∣∣
2
dX

,

where

h2
0 =

(∫
IR2\D∇H̃(X)∇w0(X)dX

)2

∫
IR2\D |∇w0(X)|2 dX

,

so that in view of (38), we obtain
∫

IR2
|∇(u−H)|2 ≤

∫

IR2

∣∣∣∇H̃
∣∣∣
2
dX. (39)

Hence, we have the following

Proposition 6. Let u be the solution to (14). Then
∫

IR2
|∇(u−H)|2 ≤ C

(
‖H‖2

Ḣ
1
2 (∂D)

+ ‖∂x2H‖2
L∞(Bε(0))

)
, (40)

where C is a constant independent of δ.
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Proof. Since H̃ − aH ∈ HS we have by Theorem 3

∫

IR2

∣∣∣∇H̃
∣∣∣
2
dX ≤ C [H̃ − aH ]21

2
+

∫

D
|∇H|2dX ≤ C [H]21

2
+ ‖H‖

Ḣ
1
2 (∂D)

,

for some C independent of δ. A direct calculation shows that

[H]21
2

≤ C

(
‖H‖2

Ḣ
1
2 (∂D)

+ ‖∂x2H‖2
L∞(Bε(0))

)
.

Combining these estimates with inequality (39) we get the desired result.

We recall that if βδ,±n with n 6= 0 is an eigenvalue with associated eigenfunc-
tion wδ,±n (X), we have

βδ,±n =

∫
D

∣∣∣∇wδ,±n (X)
∣∣∣
2
dX

∫
IR2

∣∣∣∇wδ,,±n (X)
∣∣∣
2
dX

.

Next, we derive explicit lower and upper bounds on the L2 norm of the

gradient of wδ,±n , inside and outside the inclusions, in terms of
∣∣∣wδ,±n

∣∣∣
1/2

and

‖wδ,±n ‖Ḣ1/2(∂Dδ
j ), j = 1, 2.

Corollary 2. There exists a constant C > 0 that only depends on the in-
clusions Dj , such that for any w ∈ HS \ 0,

1

C

∑2
j=1 ‖w‖2

Ḣ1/2(∂Dδ)j

|w|21/2
≤
∫
D |∇W (X)|2 dX
∫
IR2 |∇w(X)|2 dX

≤ C

∑2
j=1 ‖w‖2

Ḣ1/2(∂Dδ
j )

|w|21/2
, (41)

Proof. It is well known that

∫

Dj

|∇w(X)|2 dX ∼ ‖w‖2
Ḣ1/2(∂Dj)

,

for any w ∈ H1(Dj), j=1, 2, which, combined with Theorem 3, ends the
proof.
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4.3 Proof of Theorem 1.

We infer from Corollary 1 and Lemma 2 that

1

C
bδ,±n ≤ βδ,±n ≤ C bδ,±n ∀ n ≥ 1, (42)

where

bδ,−n := min
Fn ⊂ Ḣ1/2

dim(Fn) = n

max
w∈Fn\{0}

P2
j=1 ‖w‖2

Ḣ1/2(∂Dj )

‖w‖2

Ḣ1/2(∂Dδ)
+

R ε
−ε

|w+(x)−w−(x)|2
|x|m+δ

dx
,

bδ,+n := max
Fn ⊂ Ḣ1/2

dim(Fn) = n + 1

min
w∈Fn\{0}

P2
j=1 ‖w‖2

Ḣ1/2(∂Dj)

‖w‖2

Ḣ1/2(∂Dδ)
+

R ε
−ε

|w+(x)−w−(x)|2
|x|m+δ

dx
.

(43)

The min-max principle rewritten in the form above highlights the relation-
ship between geometry of the contact between D1 and D2 and the eigenval-
ues

(
βδ±n

)
n≥1

. Let us denote by σδ,±n and sδ,±n the eigenvalues of Tδ and the

numbers defined by (43) in the special case when D1 and D2 are the discs
of radius 1, centered at the points (0, 1 + δ/2) and (0,−1 − δ/2). For this
configuration, the exterior domain D′ can be mapped conformally onto an
annulus, via the mapping z = x1 + ix2 → z−a

z+a with a =
√
δ(2 − δ). One can

then compute explicitely the eigenvalues [10]

σδ,±n =
1

2
∓ ρ2n

2
, with ρ :=

a− δ

a+ δ
. (44)

As for the lower and upper bounds corresponding to (43), we obtain the
following:

Corollary 3. Assume that Dj , j = 1, 2 are the two discs B1 (Xj) , j = 1, 2
of radius 1, centered at centered at X1 = (0, 1 + δ/2) and X2 = (−1,−δ/2).
Then {

sδ,+n = n
√

2δ + o(
√
δ)

sδ,−n = 1 − n
√

2δ + o(
√

2δ).
(45)

In the rest of the section, we compare the eigenvalues
(
βδ,±n

)
n≥1

with the

eigenvalues of the configuration where the inclusions are discs.
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Since the inclusions are smooth and strictly convex around the point 0, there
exists a diffeomorphism Π : ∂D0

1 → ∂D0
2 such that

Π (x1, ψ1(x1)) = (x1,−ψ2(x1)) for x1 ∈ (−ε, ε).

Let Γ denote a diffeomorphism from the unit circle ∂B1(0) onto ∂D0
1, such

that Γ(0,−1) = (0, δ/2). Set Xδ
1 = (0, 1 + δ2/m

2 ),Xδ
2 = (0,−1 − δ2/m

2 ), let
Θ denote the symmetry with respect to x1-axis in the plane, and let τα
denote the translation X ∈ IR2 → X + (0, α). Then Υ1 = τ δ

2
◦ Γ ◦ τ−δ2/m

2

maps ∂B1(X
δ
1 ) into ∂D1 and satisfies Υ1(0, δ

2/m) = (0, δ/2). Similarly,
Υ2 = τ−δ

2
Π ◦ Γ ◦ τ−δ2/m

2

◦ Θ is a diffeomorphism that maps ∂B1(X
δ
2) onto

∂D2. In addition the two diffeomorphisms: Υj , j = 1, 2, satisfy

Υ−1
1 (x1, ψ1(x1)) = Θ ◦ Υ−1

2 (x1,−ψ2(x1)) for x1 ∈ (−ε, ε). (46)

This parametrization of the inclusions leaves the Sobolev norms essentially
unchanged, i.e., there exists a constant C, independent of δ such that for
any v ∈ H1/2(∂Dj)

1

C
‖v‖Ḣ1/2(∂Dj)

≤ ‖v ◦ Υj‖Ḣ1/2(∂B1(Xδ
j )) ≤ C ‖v‖Ḣ1/2(∂Dj)

.

In the sequel, we focus on the asymptotics of βδ,+n . The results for the βδ,−n
follow from the symmetry βδ,−n = 1 − βδ,+n . We note that the following
inequality holds

1

|x|m + δ
≤ 2δ−1+ 2

m

|x|2 + δ2/m
.

Hence, there exists a constant C > 0 independent of δ, such that

∑2
j=1 ‖w‖2

Ḣ1/2(∂Dj)

‖w‖2
Ḣ1/2(∂D)

+
∫ ε
−ε

|w+(x)−w−(x)|2
|x|m+δ dx

≥ Cδ1−
2
m

∑2
j=1 ‖w‖2

Ḣ1/2(∂Dj)

‖w‖2
Ḣ1/2(∂D)

+
∫ ε
−ε

|w+(x)−w−(x)|2

|x|2+δ 2
m

dx

≥ Cδ1−
2
m

∑2
j=1 ‖w ◦ Υj‖2

Ḣ1/2(∂B1(Xδ
j ))

‖w ◦ Υ‖2
Ḣ1/2(∪j∂B1(Xδ

j ))
+
∫ ε
−ε

|w◦Υ+(x)−w◦Υ−(x)|2

|x|2+δ 2
m

dx
,
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for all w ∈ Ḣ1/2(∂Dδ) \ {0}. Noticing that the last term on the right-hand
side is in fact the quantity to be minimized in the case of discs separated by
a distance δ

2
m , and in view of (42), we obtain the following lower bound for

the bδ,+n

Cδ1−
2
m sδ

2
m ,+
n ≤ bδ,+n , n ≥ 1. (47)

Recalling (45) we obtain the expression advertised in (25).

We next seek an upper bound for bδ,+n .

Lemma 3. Let f j = χ(X) (cos(jx1) − 1, cos(jx1) + 1) ∈ H1/2(∂D1) ×
H1/2(∂D2) for j ≥ 1, where χ is a smooth cut-off function such that χ(X) =
1 for −ε ≤ x1 ≤ ε. Then Fn = {fj , j = 0, · · · , n} satisfies

max
w∈Fn

∑2
j=1 ‖w‖2

Ḣ1/2(∂Dj)

‖w‖2
Ḣ1/2(∂Dδ)

+
∫ ε
−ε

|w+(x)−w−(x)|2
|x|m+δ dx

≤ C
nδ1−

1
m

nδ1−
1
m + 1

,

where C > 0 is a constant that does not depend on δ.

Proof. On the one hand, a simple calculation yields

‖fj‖Ḣ1/2(∂Dδ) =
∑

l

‖χ(X)(cos(jx1) + (−1)l)‖Ḣ1/2(∂Dl)
≤ Cj j = 1, · · · , n,

where C > 0 is independent of δ. On the other hand,

∫ ε

−ε

∣∣∣f+
j (x) − f−j (x)

∣∣∣
2

|x|m + δ
dx =

∫ ε

−ε

2

|x|m + δ
dx ∼ Cδ

1−m
m .

where C > 0 is a constant that does not depend on δ.

The upper bound in (25) is then a direct consequence of Corollary 1 as we
see from the above Lemma that

bδ,+n ≤ C
nδ1−

1
m

nδ1−
1
m + 1

. (48)
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