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Abstract. In this article, we study the impact of a change in the type of boundary conditions of an elliptic
boundary value problem. In the context of the conductivity equation we consider a reference problem

with mixed homogeneous Dirichlet and Neumann boundary conditions. Two different perturbed versions of

this “background” situation are investigated, when (i) The homogeneous Neumann boundary condition is
replaced by a homogeneous Dirichlet boundary condition on a “small” subset ωε of the Neumann boundary;

and when (ii) The homogeneous Dirichlet boundary condition is replaced by a homogeneous Neumann

boundary condition on a “small” subset ωε of the Dirichlet boundary. The relevant quantity that measures
the “smallness” of the subset ωε differs in the two cases: while it is the harmonic capacity of ωε in the

former case, we introduce a notion of “Neumann capacity” to handle the latter. In the first part of this work

we derive representation formulas that catch the structure of the first non trivial term in the asymptotic
expansion of the voltage potential, for a general ωε, under the sole assumption that it is “small” in the

appropriate sense. In the second part, we explicitly calculate the first non trivial term in the asymptotic
expansion of the voltage potential, in the particular geometric situation where the subset ωε is a vanishing

surfacic ball.
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1. General setting of the problem

Understanding the perturbations in physical fields caused by the presence of small inhomogeneities in a
known ambient medium is crucial for a variety of purposes. For instance, it allows one to appraise the
robustness of the behavior of a body with respect to alterations of its constituent material, or to reconstruct
“small” inclusions with unknown locations, shapes and properties inside this body; see [6] for an overview of
such applications. From the mathematical point of view, this task translates into the asymptotic analysis of
the solution uε to a “physical” partial differential equation, whose defining domain or material coefficients
are perturbed at a small scale, parametrized by the vanishing parameter ε. Many instances of this general
question have been investigated: beyond the model setting of the conductivity equation, addressed for
instance in [15, 10, 16], let us mention the studies [9, 13] in the context of the linearized elasticity system,
or the works [11, 35] devoted to the Maxwell equations.

Here we investigate, in the physical context of the conductivity equation, an interesting variant of the
aforementioned problems, namely the variant when the type of the boundary condition is changed on small
sets.

Throughout this article, Ω ⊂ Rd is a smooth, bounded domain (d = 2 or 3), whose boundary is decomposed
as follows

(1.1) ∂Ω = ΓD ∪ ΓN , where ΓD, ΓN are disjoint, non empty, open Lipschitz subsets of ∂Ω ,

where we refer to Definition 2.1 below for the definition of an open Lipschitz subset of ∂Ω. The regions
ΓD and ΓN correspond to homogeneous Dirichlet, and homogeneous Neumann conditions for the voltage
potential, respectively; see Fig. 1 for an illustration of this setting (in the case d = 3). The domain Ω is
occupied by a medium with smooth isotropic conductivity γ ∈ C∞(Ω), satisfying the bounds

(1.2) ∀x ∈ Ω, α ≤ γ(x) ≤ β,
for some fixed constants 0 < α ≤ β. The “background” voltage potential u0, in response to a smooth
external source f ∈ C∞(Ω), is the unique H1(Ω) solution to the mixed boundary value problem

(1.3)


−div(γ∇u0) = f in Ω,

u0 = 0 on ΓD,

γ ∂u0

∂n = 0 on ΓN .

We notice that, as a consequence of the classical regularity theory for elliptic partial differential equations,
u0 is smooth except at the interface, Σ, between ΓD and ΓN , where the boundary condition changes type;
see e.g. [14, 34].

In this paper we analyze perturbed versions of (1.3), where the boundary conditions are modified on a
“small”, open Lipschitz subset ωε of the boundary ∂Ω. More precisely, we are interested in two different
situations:

• The case where the homogeneous Neumann boundary condition is replaced by a homogeneous Dirich-
let boundary condition on a “small” open Lipschitz subset ωε, lying strictly inside the region ΓN . In
this situation, the voltage potential uε is the unique H1(Ω) solution to the boundary value problem

(1.4)


−div(γ∇uε) = f in Ω,

uε = 0 on ΓD ∪ ωε,
γ ∂uε∂n = 0 on ΓN \ ωε.

• The case where the homogeneous Dirichlet boundary condition on ΓD is replaced by a homogeneous
Neumann boundary condition on a “small” open Lipschitz subset ωε, located strictly inside ΓD. The
voltage potential uε is then the unique H1(Ω) solution to the boundary value problem

(1.5)


−div(γ∇uε) = f in Ω,

uε = 0 on ΓD \ ωε,
γ ∂uε∂n = 0 on ΓN ∪ ωε.
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In either case, we assume that ωε lies “far” from the transition region Σ, in the sense that

(1.6) There exists a constant dmin > 0 such that, for all ε > 0, dist(ωε,Σ) ≥ dmin.
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Figure 1. The considered setting when the Neumann region ΓN is perturbed by a “small”
subset ωε bearing homogeneous Dirichlet boundary conditions.

Such problems show up in multiple physical applications. The former situation, where homogeneous
Neumann boundary conditions are replaced by Dirichlet boundary conditions, is sometimes referred to as
the “narrow escape problem” in the literature. Originating from acoustics, it has recently attracted much
attention due to its significance in the field of biology. In this setting indeed, Ω represents a cavity whose
boundary is reflecting except on the small absorbing window ωε ⊂ ∂Ω. The particles inside Ω are guided by
a Brownian motion; they may only leave through the region ωε and the solution uε to (1.4) then represents
their mean exit time. We refer to [38] and the references therein for an overview of the physical relevance of
this problem and for an account of recent developments. In this context, the asymptotic behavior of uε in
the limit where ε vanishes has been analyzed in [20, 57] by means of formal matched asymptotic expansions;
the rigorous proofs of these results were later provided in [19, 5] for “simple” sets ωε. Let us also mention the
interesting variant of this “narrow escape problem”, tackled in [45, 46], where the vanishing exit region ωε is
connected to a thin, elongated channel, whose presence is modeled through the replacement of homogeneous
Neumann conditions by Robin (and not Dirichlet) boundary conditions on ωε.

The case (1.5) where homogeneous Dirichlet boundary conditions are replaced by homogeneous Neumann
boundary conditions on the vanishing region ωε ⊂ ∂Ω seems to have been more rarely considered. Let us
however mention the early investigations conducted in [33, 32], where the asymptotics of the eigen elements
of the Laplace operator are examined as the boundary condition passes from Dirichlet to Neumann type on
a small surfacic ball ωε ⊂ ∂Ω. An analogous study is found in [58], where, in three space dimensions, the
small subset ωε is shaped as a thin neighborhood of a curve on ∂Ω. An interesting physical motivation for
this problem was recently provided in the work [41], devoted to the construction of metasurfaces capable
of affecting such changes in boundary conditions. This mechanism was analyzed from the mathematical
point of view, and the corresponding asymptotic behavior of uε was derived in 2d in [4], under the technical
assumption that the boundary of Ω is completely flat in a neighborhood of the ωε; these results were then
used in [3] so as to determine the optimal placement of such metasurfaces.

The present paper addresses both situations (1.4) and (1.5): our goal is to understand the asymptotic
behavior of uε as ε→ 0, a limiting regime in which the small inclusions ωε, where boundary conditions are
changed, “vanish” in an appropriate sense. As we shall see, the relevant measure of “smallness” for the set
ωε depends on which one of the above situations we are in. Our investigations go in two complementary
directions. In the first part of this paper, we work from a quite abstract point of view, making minimal
assumptions about the inclusion set ωε, apart from “smallness”. We derive the general structure of the
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lowest order terms in the asymptotic expansion of the perturbation uε−u0. In the second part of this paper,
we consider a more specific situation as far as the geometry of the inclusion set ωε is concerned: we assume
that ωε is a surfacic ball of radius ε on ∂Ω. In the two- and three-dimensional instances of (1.4) and (1.5),
we precisely calculate the lowest order terms in the asymptotic expansion of the perturbation uε − u0, thus
offering four non trivial examples of our more abstract formulas. As we shall see, our mathematical treatment
of these four cases, based on an integral equation method, displays some similarities but also important
differences. To emphasize both aspects, we shall use the same notation for corresponding quantities, as far
as possible.

This paper is organized as follows. In Section 2, we recall some background material from functional
analysis and potential theory, which is essential for the rest of our investigation. In Section 3 we analyze,
from an abstract point of view, the general structure of the (lowest order terms of the) perturbation uε−u0,
when the homogeneous Neumann boundary condition is replaced with a homogeneous Dirichlet boundary
condition on a small subset ωε b ΓN . In Section 4 we investigate the case when the homogeneous Dirichlet
boundary condition is replaced with a homogeneous Neumann boundary condition on a small subset ωε b ΓD.
Sections 5 and 6 are then devoted to the explicit asymptotic expansion of uε − u0 for both scenarios in the
particular case where ωε is a small surfacic ball, lying in ΓN or ΓD, respectively. In Section 7 we outline a
few natural ideas for future work, suggested by the present study. At the end this article are four appendices,
collecting several useful results from the litterature, as well as some technical calculations in close connection
with the topics discussed in the main parts of the text.

2. Preliminary material

We initiate our study by collecting some essential background material. In Section 2.1, we outline classical
results about fractional Sobolev spaces defined on the boundary of a smooth domain Ω, or on a relatively
open Lipschitz subset Γ ⊂ ∂Ω; in the latter case we emphasize the difference between the spaces Hs(Γ) and

H̃s(Γ). In Section 2.2 we summarize the main properties of layer potential operators, and in Section 2.3
we make a few remarks about the construction of fundamental solutions to boundary value problems with
variable coefficients. Finally, in Section 2.4 we introduce and discuss the notion of H1 capacity, which turns
out to be the relevant measure of smallness for sets supporting Dirichlet boundary conditions.

2.1. The Sobolev spaces Hs(∂Ω), Hs(Γ) and H̃s(Γ)

As is customary in the literature, for an arbitrary integer n ≥ 0, Hn(∂Ω) stands for the Sobolev space of
functions u ∈ L2(∂Ω) defined on the boundary of Ω, whose tangential derivatives up to order n also belong
to L2(∂Ω), and the space H−n(∂Ω) is the topological dual of Hn(∂Ω).

The definition of Sobolev spaces with fractional exponents on the closed hypersurface ∂Ω, or on an open
Lipschitz subset Γ ⊂ ∂Ω gives rise to some subtleties, which we briefly describe in this section, referring to
[49] and [36, 47] for more details.

Let us first consider Sobolev spaces of functions attached to the whole boundary ∂Ω. Given a real number
0 < s < 1, there are several equivalent ways of defining a norm on the fractional Sobolev Space Hs(∂Ω); we
use the following definition

‖v‖2Hs(∂Ω) = ‖v‖2L2(∂Ω) +

∫
∂Ω

∫
∂Ω

|v(x)− v(y)|2
|x− y|d−1+2s

ds(x) ds(y) .

Note that, in the literature the geodesic distance d∂Ω(x, y) between two points x, y ∈ ∂Ω is often used in
place of the Euclidean one |x − y| in the above formula. However, since Ω is smooth and compact, the
resulting norms are equivalent (with a constant depending on Ω); see Lemma A.1.

When −1 < s ≤ 0, Hs(∂Ω) is the topological dual of H−s(∂Ω).

We next turn to Sobolev spaces Hs(Γ), defined on a proper region Γ ⊂ ∂Ω, and to this end, we introduce
a definition.

Definition 2.1. An open, connected subset Γ ⊂ ∂Ω is called a Lipschitz subdomain if locally at its boundary,
Γ consists of all points located on one side of the graph of a Lipschitz function. A Lipschitz subset Γ ⊂ ∂Ω
is then defined to be the reunion of a finite number of Lipschitz subdomains, the closures of which do not
intersect.
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Let then Γ ⊂ ∂Ω be a Lipschitz subset of ∂Ω. For any real number 0 < s < 1 we introduce the following
two classes of Sobolev spaces on Γ:

• H̃s(Γ) denotes the space of (restrictions to Γ of) functions in Hs(∂Ω) with compact support inside
Γ. This space is equipped with the norm || · ||Hs(∂Ω); it is the closure in Hs(∂Ω) of the set of C∞
functions on ∂Ω with compact support inside Γ. Equivalently, u belongs to H̃s(Γ) if and only if its
extension by 0 to all of ∂Ω, which we throughout the following still denote by u, belongs to Hs(∂Ω).

• Hs(Γ) is the space of the restrictions to Γ of functions in Hs(∂Ω). This space is equipped with the
norm:

(2.1) ‖v‖2Hs(Γ) = ‖v‖2L2(Γ) + |v|2Hs(Γ), where |v|2Hs(Γ) :=

∫
Γ

∫
Γ

|v(x)− v(y)|2
|x− y|d−1+2s

ds(x) ds(y) ,

which is equivalent to the quotient norm induced by that of Hs(∂Ω), up to constants that may
depend on Γ.

Let us point out a few facts about the relation between both types of spaces:

• When 0 < s < 1/2, the spaces H̃s(Γ) and Hs(Γ) are identical, with equivalent norms. On the other

hand, when 1
2 ≤ s < 1, H̃s(Γ) is a proper subspace of Hs(Γ).

• When 1
2 < s < 1, the space H̃s(Γ) coincides with Hs

0(Γ), the closure in Hs(Γ) (for the natural norm
(2.1)) of the set of C∞ functions with compact support K b Γ.

For any real number −1 < s < 0, Hs(Γ) is still defined as the space of restrictions to Γ of distributions
in Hs(∂Ω) (equipped with the quotient norm). This space can be identified with the topological dual of

H̃−s(Γ), using as a pairing the natural extension of the L2(Γ) inner product, that we denote by:

〈u, v〉, u ∈ Hs(Γ), v ∈ H̃−s(Γ).

Similarly, H̃s(Γ) is the space of distributions in Hs(∂Ω) with compact support inside Γ. It is identified with
the dual space of H−s(Γ), using the same pairing (with the same notation).

The case when s = 1/2 is particular: H̃1/2(Γ) is a proper subspace of H1/2(Γ), with a strictly stronger

norm, while the latter space, incidentally, coincides with H
1/2
0 (Γ). To better appraise this distinction between

H̃1/2(Γ) and H1/2(Γ), we calculate the norm ‖u‖H̃1/2(Γ) = ‖u‖H1/2(∂Ω) of an arbitrary function u ∈ H̃1/2(Γ):

‖u‖2
H̃1/2(Γ)

= ||u||2L2(Γ) +

∫
Γ

∫
Γ

|u(x)− u(y)|2
|x− y|d ds(x) ds(y) + 2

∫
Γ

ρΓ(x)|u(x)|2 ds(x)

= ‖u‖2H1/2(Γ) + 2

∫
Γ

ρΓ(x)|u(x)|2 ds(x) .

The weight ρΓ is here defined by

∀x ∈ Γ, ρΓ(x) =

∫
∂Ω\Γ

1

|x− y|d ds(y) .

The above norm on the space H̃1/2(Γ) is stronger than that on H1/2(Γ), and in particular

(2.2)

(∫
Γ

ρΓ(x)|u(x)|2 ds(x)

) 1
2

≤ 1√
2
‖u‖H̃1/2(Γ) .

The spaces with exponents ± 1
2 are particularly relevant in the context of variational solutions to boundary

value problems like (1.3). By a variational solution to (1.3) we understand a function u0 in the functional
space

H1
ΓD (Ω) :=

{
u ∈ H1(Ω), u = 0 on ΓD

}
of H1(Ω) functions with vanishing trace on ΓD (in other words u0|ΓN ∈ H̃1/2(ΓN )), and for which∫

Ω

γ∇u0 · ∇v dx =

∫
Ω

fv dx ,
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for all v ∈ H1
ΓD

(Ω) (i.e., v|ΓN ∈ H̃1/2(ΓN )). Using integration by parts, this identity asserts that:

γ
∂u0

∂n
= 0 as an element in H−1/2(ΓN ), and so γ

∂u0

∂n
∈ H̃−1/2(ΓD) .

2.2. A short review of layer potentials

In the present section, we denote by D ⊂ Rd a smooth bounded domain, and we briefly recall some back-
ground material about layer potential operators associated with ∂D; we refer to [7, 30, 49, 61] for more
details about such operators.

Let G(x, y) be the fundamental solution of the operator −∆ in the free space Rd

(2.3) G(x, y) =

{ − 1
2π log |x− y| if d = 2 ,

1
4π|x−y| if d = 3 .

For x ∈ Rd, the function y 7→ G(x, y) satisfies

−∆yG(x, y) = δy=x ,

in the sense of distributions in Rd, where δy=x is the Dirac distribution at x.
For a smooth density function φ ∈ C∞(∂D), the single layer potential associated with φ is defined by

(2.4) SDφ(x) =

∫
∂D

G(x, y)φ(y) ds(y), x ∈ Rd \ ∂D,

and the corresponding double layer potential is defined by

DDφ(x) =

∫
∂D

∂G

∂ny
(x, y)φ(y) ds(y), x ∈ Rd \ ∂D.

The operators SD and DD extend to bounded operators from H−1/2(∂D) into H1
loc(Rd), and from H1/2(∂D)

into H1(D) ∪H1
loc(Rd \D), respectively. In addition, the functions SDφ and DDφ are both harmonic on D

and Rd \D. Of particular interest are their behavior at the interface ∂D. Let us denote by

(2.5) g±(x) := lim
t↓0

g(x± tn(x)), x ∈ ∂D

the one-sided limits of a function g which is smooth enough from either side of ∂D and by [g](x) := g+(x)−
g−(x) the corresponding jump across ∂D. The functions SDφ and DDφ satisfy the well-known jump relations:

(2.6) [SDφ] = 0 and

[
∂

∂n
(SDφ)

]
= −φ,

and

(2.7) [DDφ] = φ and

[
∂

∂n
(DDφ)

]
= 0.

The first and the last of these four jump relations allow to introduce the integral operators SD and RD,
defined for a smooth density function φ ∈ C∞(∂D) by:

SDφ = (SDφ)|∂D, SDφ(x) =

∫
∂D

G(x, y)φ(y) ds(y) , x ∈ ∂D,

and

RDφ =
∂

∂n
(DDφ) , RDφ(x) = f.p.

η↓0

∫
∂D\Bη(x)

∂2G

∂nx∂ny
(x, y)φ(y) ds(y) , x ∈ ∂D,

where f.p. refers to a finite part integral in the sense of Hadamard. These operators extend as bounded
mappings SD : H−1/2(∂D)→ H1/2(∂D) and RD : H1/2(∂D)→ H−1/2(∂D).

Lastly, we recall the decay properties of the single and double layer potentials at infinity. For a given
density φ ∈ H−1/2(∂D), it follows from the explicit expression (2.3) of the fundamental solution G(x, y)
that, for d = 3

(2.8) SDφ(x) = O
(

1

|x|

)
, and |∇SDφ(x)|= O

(
1

|x|2
)
,
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where we have used the convenient notation O
(

1
|x|2

)
to represent a function whose modulus is bounded by

C
|x| when |x| is large enough, for some constant C > 0.

The case d = 2 is a little more subtle, and in general one only has

SDφ(x) = O (| log |x||) , and |∇SDφ(x)|= O
(

1

|x|

)
,

however, if
∫
∂D

φ ds = 0, then it holds additionally

(2.9) SDφ(x) = O
(

1

|x|

)
, and |∇SDφ(x)|= O

(
1

|x|2
)
.

As far as the double layer potential is concerned, one has for φ ∈ H1/2(∂D) and d = 2, 3

(2.10) DDφ(x) = O
(

1

|x|d−1

)
, and |∇DDφ(x)|= O

(
1

|x|d
)
.

2.3. The fundamental solution N(x, y) to the background equation (1.3)

We turn our attention to the case when the reference problem under consideration is not the free-space
Laplace equation, but rather the background boundary value problem (1.3). The fundamental solution
N(x, y) to the latter is constructed from that G(x, y) associated to the operator −∆ in the free space, given
by (2.3), in a way which we now briefly describe. We refer, e.g., to [31] or [8] for similar results.

For any point x ∈ Ω, the function y 7→ N(x, y) satisfies the following equation

(2.11)


−divy(γ(y)∇yN(x, y)) = δy=x in Ω ,

N(x, y) = 0 for y ∈ ΓD ,
γ(y) ∂N∂ny (x, y) = 0 for y ∈ ΓN .

This means that, for any function ϕ ∈ C1(Ω) such that ϕ = 0 on ΓD, one has

ϕ(x) =

∫
Ω

γ(y)∇yN(x, y) · ∇ϕ(y) dy, x ∈ Ω.

By an easy adaptation of the proof of Lemma 2.36 in [30], one sees that the function N(x, y) is symmetric
in its arguments. Furthermore, it is related to the fundamental solution G(x, y) to the Laplace equation in
free space via the relation

N(x, y) =
1

γ(x)
G(x, y) +R(x, y) ,

where for given x ∈ Ω, y 7→ R(x, y) is the solution to the equation
−divy(γ(y)∇yR(x, y)) = 1

γ(x)∇γ(y) · ∇yG(x, y) in Ω ,

R(x, y) = − 1
γ(x)G(x, y) for y ∈ ΓD ,

γ(y) ∂R∂ny (x, y) = − γ(y)
γ(x)

∂G
∂ny

(x, y) for y ∈ ΓN .

The precise functional characterization of R(x, y) follows from standard elliptic regularity theory, depending
on the singularity of G(x, y), see [14, 34]. Without entering into technicalities, let us just mention that,
for fixed x ∈ Ω, the function y 7→ R(x, y) belongs (at least) to H1(Ω). Moreover, for every open subset
U b Rd \ (Σ ∪ {x}), it is of class C∞ on Ω ∩ U .

2.4. The capacity of a subset in Rd

In one of the two scenarios studied in this article, namely when ωε accounts for Dirichlet boundary conditions
being imposed inside the Neumann region ΓN (cf. Section 3), the key quantity to measure the “smallness”
of the set ωε will be the H1(Rd) capacity. For the convenience of the reader, we briefly recall the definition
and two simple results related to this notion, referring to [37] for further details.

Definition 2.2. The capacity cap(E) of an arbitrary subset E ⊂ Rd is defined by:

(2.12) cap(E) = inf
{
||v||2H1(Rd), v(x) ≥ 1 a.e. on an open neighborhood of E

}
.

A slightly different formula for cap(E) is that of the following lemma.
7



Lemma 2.1. For an arbitrary subset E ⊂ Rd, it holds

(2.13) cap(E) = inf
{
||v||2H1(Rd), v(x) = 1 a.e. on an open neighborhood of E

}
.

Proof. On the one hand, it follows immediately from the definition (2.12) that

cap(E) ≤ inf
{
||v||2H1(Rd), v(x) = 1 a.e. on an open neighborhood of E

}
.

Conversely, if vn ∈ H1(Rd) is a sequence of functions such that

vn ≥ 1 a.e. on an open neighborhood of E, ||vn||2H1(Rd)
n→∞−−−−→ cap(E) ,

then wn = min(vn, 1) defines a sequence of functions in H1(Rd) which satisfies

||wn||2H1(Rd) ≤ ||vn||2H1(Rd) ;

see for instance [37], Proposition 3.1.11. As a result,

inf
{
||v||2H1(Rd), v(x) = 1 a.e. on an open neighborhood of E

}
≤ ||wn||2H1(Rd) ≤ ||vn||2H1(Rd)

n→∞−−−−→ cap(E) ,

which proves (2.13). �

We now provide a useful lemma, whereby the capacity of a subset ω of the boundary ∂Ω of a smooth
domain Ω ⊂ Rd can be estimated in terms of the energy norm of a function whose trace equals 1 on ω.

Lemma 2.2. Let Ω be a smooth bounded domain in Rd, ω be a Lipschitz open subset of ∂Ω, and let u be a
function in H1(Rd). If u = 1 on ω in the sense of traces in H1/2(ω), then

cap(ω) ≤ ||u||2H1(Rd).

Proof. Let U be an open neighborhood of ω in Rd, and let φ be a C∞c (Rd) function which equals 1 identically
on U . We decompose the function u as:

u = φ+ u− φ .
Since the set of functions v ∈ H1(Rd) with vanishing trace on ω is exactly the closure of C∞c (Rd \ ω) in
H1(Rd) (see Section 2.1), and since the trace of u−φ equals 0 on ω, there exists a sequence vn ∈ C∞c (Rd \ω)
such that

‖u− φ− vn‖H1(Rd) ≤
1

n
.

We now estimate

‖u‖H1(Rd) = ‖φ+ vn + u− φ− vn‖H1(Rd)

≥ ‖φ+ vn‖H1(Rd) − ‖u− φ− vn‖H1(Rd)

≥ ‖φ+ vn‖H1(Rd) −
1

n
.

The function φ+ vn lies in H1(Rd) (actually it lies in C∞c (Rd)) and it equals 1 on an open neighborhood of
ω in Rd. From the definition of cap(ω) it follows that

‖φ+ vn‖H1(Rd) ≥ (cap(ω))
1/2

,

and so by combination with the previous estimate we get:

‖u‖H1(Rd) ≥ (cap(ω))
1/2 − 1

n
.

By passing to the limit as n→∞ we arrive at the desired conclusion.
�

Remark 2.1. From the physical point of view, the capacity of a compact subset E ⊂ Rd is the total energy
of the electric field in the whole ambient space Rd, in the equilibrium regime where the potential is constant
on E (equal to 1). Different notions of capacity are found in the literature, depending on the kernel relating
the charge distribution (i.e., the source term) to the induced potential. A very natural notion of capacity is
attached to the fundamental solution to the Laplace operator with homogeneous Dirichlet boundary conditions
on a “ground surface” A (where the potential is set to 0); this concept is often associated with the name
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condenser capacity. The version proposed in Definition 2.2 is convenient for our purpose, since it is somehow
“universal” (it does not depend on the choice of a fixed grounding subset A for the potential), and it involves
the Bessel kernel. It is equivalent to the notion of condenser capacity, up to constants depending on the subset
A; see for instance Lemma 3.1 for a result in this direction. We refer to [1] for an extensive discussion of
the concept of capacity; see also [43, 28].

Remark 2.2. In Section 5 we shall be particularly interested in subsets of Rd of the form

(2.14) Dε :=
{
x = (x1, . . . , xd−1, 0) ∈ Rd, |x| < ε

}
.

Dε is a line segment of length 2ε, when d = 2, and a planar disk with radius ε, when d = 3. The following
estimates of the capacity of Dε will come in handy

(2.15) cap(Dε) ≤
C2

| log ε| when d = 2, cap(Dε) ≤ C3ε when d = 3,

where C2 and C3 are universal constants; see for instance Chap. 2 in [43].

3. Replacing Neumann conditions by Dirichlet conditions on a “small set”

In this section, we consider an arbitrary sequence ωε of open, Lipschitz subsets of the Neumann region ΓN ,
which are all “well-separated” from the Dirichlet region ΓD in the sense that the assumption (1.6) holds.
The homogeneous Neumann boundary condition satisfied on ΓN by the background potential u0 (see (1.3))
is dropped on ωε, where it is replaced by a homogeneous Dirichlet condition. The perturbed potential uε in
this situation is the solution to the equation (1.4).

As we shall see, the potential uε converges to u0 as ε → 0, when the set ωε vanishes in an appropriate
sense. In this general setting, where no additional hypothesis is made about ωε, our aim is to establish an
abstract representation formula for the first non-trivial term in the limiting asymptotics of uε − u0.

3.1. Some preliminary estimates

We start with some a priori estimates related to modified versions of the perturbed boundary value problem
(1.4). The first of these results is concerned with the unique solution χε ∈ H1(Ω) to the problem

(3.1)


−∆χε = 0 in Ω ,
χε = 1 on ωε ,
χε = 0 on ΓD ,
∂χε
∂n = 0 on ΓN \ ωε .

Let us recall that, by a solution to (3.1) we understand a function χε ∈ H1
ΓD

(Ω) such that χε = 1 on ωε and

(3.2) ∀v ∈ H1
ΓD (Ω) with v = 0 on ωε,

∫
Ω

∇χε · ∇v dx = 0 .

Lemma 3.1. Let ωε be an open Lipschitz subset of the region ΓN ⊂ ∂Ω, which lies “far” from ΓD in the
sense that (1.6) holds, and let χε be the solution to (3.1). There exist two constants 0 < m ≤M which depend
only on Ω, ΓD and the lower bound dmin on the distance from ωε to ΓD, but are otherwise independent of
ωε, such that

(3.3) m cap(ωε) ≤ ||χε||2H1(Ω) ≤Mcap(ωε) .

Proof. We start with the proof of the inequality m cap(ωε) ≤ ||χε||2H1(Ω). Because of the smoothness of Ω,

there exists an extension χ̃ε ∈ H1(Rd) to the whole space Rd such that

(3.4) ||χ̃ε||H1(Rd) ≤ C||χε||H1(Ω) ,

where the constant C depends only on Ω (see e.g. Appendix A in [49]). Using Lemma 2.2 we may estimate
the capacity of the subset ωε ⊂ ∂Ω, where the trace of χ̃ε equals 1, by

cap(ωε) ≤ ||χ̃ε||2H1(Rd) .

This inequality, combined with (3.4), yields the desired result.
9



We now prove that ||χε||2H1(Ω) ≤ Mcap(ωε). Let us first observe that, due to a classical variation of the

Poincaré inequality, there exists a constant C > 0 which depends only on Ω and ΓD, such that

(3.5) ||χε||2H1(Ω) ≤ C||∇χε||2L2(Ω)d .

Because of the separation assumption (1.6), there exists a function h ∈ C1(Ω) such that, for any ε > 0
small enough, one has

h(x) = 1 for x ∈ ωε, h(x) = 0 for x ∈ ΓD, and ‖h‖C1(Ω) ≤ C ,

where C depends on dmin, but is otherwise independent of ωε. For any function χ ∈ H1(Rd) such that χ = 1
on an open neighborhood of ωε, we now have

||∇χε||2L2(Ω)d =

∫
Ω

∇χε · ∇χε dx

=

∫
Ω

∇χε · ∇(χh) dx

≤ C||∇χε||L2(Ω)d ||χ||H1(Rd) .

Here we have used the fact that χε−χh vanishes on ΓD∪ωε, together with the variational formulation (3.2),
to pass from the first line to the second. We immediately conclude that

||∇χε||2L2(Ω)d ≤ C||χ||2H1(Rd) .

Since this holds for any function χ ∈ H1(Rd) which equals identically 1 on an open neighborhood of ωε, the
desired upper bound for ||χε||2H1(Ω) follows by taking the infimum over all such functions χ ∈ H1(Rd) and

using the formula (2.13) for the capacity, as well as the Poincaré inequality (3.5). �

The second result in this section is concerned with solutions to a slight generalization of (3.1), where the
prescribed Dirichlet data on ωε is given by a function g (and not constantly equal to 1) and the conductivity
1 is replaced by γ. More precisely, we now consider the unique solution vε ∈ H1(Ω) to the boundary value
problem:

(3.6)


−div(γ∇vε) = 0 in Ω,

vε = g on ωε,
vε = 0 on ΓD,

γ ∂vε∂n = 0 on ΓN \ ωε ,

where g is a given function in C1(Ω). By a solution to (3.6) we understand a function vε ∈ H1
ΓD

(Ω) such
that vε = g on ωε and

(3.7) ∀v ∈ H1
ΓD (Ω) with v = 0 on ωε,

∫
Ω

γ∇vε · ∇v dx = 0 .

Lemma 3.2. Suppose d = 2 or d = 3. Let ωε be an open Lipschitz subset of the region ΓN ⊂ ∂Ω, satisfying
(1.6), and let vε ∈ H1(Ω) be the solution to (3.6). There exists a constant M which depends only on α, β,
the ellipticity constants of γ, Ω, ΓD and dmin, but is otherwise independent of ωε, such that

(3.8) ||vε||H1(Ω) ≤M ||g||C1(Ω)cap(ωε)
1
2 .

In addition, vε satisfies the following improved L2 estimate

(3.9) ||vε||L2(Ω) ≤M ||g||C1(Ω)cap(ωε)
3
4 .

Proof. We first prove (3.8). Notice that, due to (a modified version of) the Poincaré inequality, it suffices
to show that the term ||∇vε||2L2(Ω)d satisfies the desired upper bound. To this end we introduce the solution

10



χε ∈ H1(Ω) to (3.1). Since vε − gχε = 0 on ωε ∪ ΓD, the variational formulation (3.7) yields

||∇vε||2L2(Ω)d ≤ C

∫
Ω

γ∇vε · ∇vε dx

= C

∫
Ω

γ∇vε · ∇(gχε) dx

≤ C‖gχε‖H1(Ω)‖vε‖H1(Ω)

≤ C‖g‖C1(Ω)‖χε‖H1(Ω)‖vε‖H1(Ω) .

Using the upper bound for ‖χε‖H1(Ω) supplied by Lemma 3.1, and the Poincaré inequality for vε we conclude
that

||∇vε||L2(Ω)d ≤M‖g‖C1(Ω)cap(ωε)
1
2 ,

which is the desired estimate (3.8).

We proceed to prove (3.9). To this end we rely on a variant of the “classical” Aubin-Nitsche trick [12, 54, 21].
Let wε denote the unique solution in H1

ΓD
(Ω) to the boundary value problem
−div(γ∇wε) = vε in Ω ,

wε = 0 on ΓD ,

γ ∂wε∂n = 0 on ΓN ,

or rather, in its variational form:

wε ∈ H1
ΓD (Ω), and

∫
Ω

γ∇wε · ∇v dx =

∫
Ω

vεv dx for all v ∈ H1
ΓD (Ω) .

Since (1.6) holds, there exists a cut-off function η ∈ C∞c (Rd) with the property

η = 1 on a neighborhood of all the ωε and η = 0 on an open set U of Rd with ΓD b U .

The key ingredient of the following derivation is that wε shows improved regularity with respect to vε (away
from the interface between ΓD and ΓN ). In particular, standard interior elliptic regularity results, discussed
e.g. in [14, 34], give

||ηwε||H3(Ω) ≤ C||vε||H1(Ω) .

In addition, since d = 2 or 3, the classical Sobolev Embedding Theorem ensures that

H3(Ω) ⊂ C1(Ω) and for all v ∈ H3(Ω), ‖v‖C1(Ω) ≤ C‖v‖H3(Ω) ,

see e.g. [2]. It follows immediately from this and the previous regularity estimate that

(3.10) ‖ηwε‖C1(Ω) ≤ C||ηwε||H3(Ω) ≤ C||vε||H1(Ω) .

We now calculate ∫
Ω

v2
ε dx =

∫
Ω

γ∇wε · ∇vε dx

=

∫
Ω

γ∇(χεηwε) · ∇vε dx,

where we have introduced the solution χε ∈ H1(Ω) to (3.1), as well as the fixed cut-off function η from
above. We have also used that wε − χεηwε = 0 on ωε ∪ ΓD and the variational formulation (3.7). It now
follows that

(3.11)
||vε||2L2(Ω) ≤ C||vε||H1(Ω)||χε||H1(Ω)||ηwε||C1(Ω)

≤ C||vε||2H1(Ω)||χε||H1(Ω) ,

where we have employed (3.10) for the last inequality. Finally, using the estimate

||χε||H1(Ω) ≤Mcap(ωε)
1
2

from Lemma 3.1, together with the already established H1 estimate (3.8) for vε, it follows from (3.11) that

||vε||2L2(Ω) ≤ C||g||2C1(Ω)
cap(ωε)

3
2 ,

as desired. �
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Remark 3.1. We observe that the conclusions of Lemma 3.2, and their proofs, extend verbatim to the case
where the scalar conductivity γ is replaced by a smooth conductivity matrix A ∈ C∞(Ω)d×d satisfying the
bounds

(3.12) ∀ξ ∈ Rd, α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2, x ∈ Ω.

More precisely, the H1 and L2 estimates (3.8) and (3.9) still hold true when vε is the solution to the following
anisotropic counterpart of (3.6) 

−div(A∇vε) = 0 in Ω,
vε = g on ωε,
vε = 0 on ΓD,

(A∇vε) · n = 0 on ΓN \ ωε .

3.2. The representation formula

The deviation rε := uε − u0 between the perturbed potential and the background potential is the unique
H1(Ω) solution to

(3.13)


−div(γ∇rε) = 0 in Ω ,

rε = −u0 on ωε ,
rε = 0 on ΓD ,

γ ∂rε∂n = 0 on ΓN \ ωε .

Because of our separation assumption (1.6), there exists a smooth compact subset K b ΓN such that ωε ⊂ K
for all ε. Owing to local elliptic regularity estimates for the background problem (1.3), we have

‖u0‖C1(K) ≤ C‖f‖Hm(Ω) ,

for a sufficiently large integer m (again, see e.g. [14, 34]). Hence, we may construct a C1 function g0 on all
of Ω with the properties that

g0 = −u0 on K , and ‖g0‖C1(Ω) ≤ C‖u0‖C1(K) ≤ C‖f‖Hm(Ω) .

With this notation, rε is the unique H1(Ω) solution to
−div(γ∇rε) = 0 in Ω ,

rε = g0 on ωε ,
rε = 0 on ΓD ,

γ ∂rε∂n = 0 on ΓN \ ωε .

As a straightforward consequence of Lemma 3.2, it follows that

(3.14) ||rε||H1(Ω) ≤ C||f ||Hm(Ω)cap(ωε)
1/2 ,

and we now search for the next term in the asymptotic expansion of uε. Our main result is the following.

Theorem 3.1. Suppose d = 2 or d = 3, and suppose ωε is a sequence of non-empty, open Lipschitz subsets
of ∂Ω, which are all contained in ΓN and well-separated from ΓD in the sense that (1.6) holds. Let uε denote
the solution to (1.4). Assume that the capacity cap(ωε) of ωε tends to 0 as ε → 0. Then there exists a
subsequence, still labeled by ε, and a non-trivial distribution µ in the dual space of C1(∂Ω), such that for
any fixed point x ∈ Ω, and any η ∈ C∞(∂Ω) with η = 1 on {y ∈ ∂Ω, dist(y,ΓD) > dmin/2} and η = 0 on
{y ∈ ∂Ω, dist(y,ΓD) < dmin/3}, it holds

(3.15) uε(x) = u0(x)− cap(ωε)µy [η(y)γ(y)u0(y)N(x, y)] + o(cap(ωε)) , as ε→ 0 .

The term o(cap(ωε)) goes to zero faster than cap(ωε) uniformly for x ∈ K, where K is any compact subset
of Ω. The distribution µ depends only on the subsequence ωε, Ω, and ΓN .
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Proof. Introducing the fundamental solution N(x, y) of the background operator defined in Section 2.3, we
obtain for any x ∈ Ω

rε(x) =

∫
Ω

rε(y)(−divy(γ(y)∇yN(x, y))) dy

=

∫
Ω

γ(y)∇rε(y) · ∇yN(x, y) dy −
∫
∂Ω

γ(y)
∂N

∂ny
(x, y)rε(y) ds(y)

=

∫
∂Ω

γ(y)
∂rε
∂n

(y)N(x, y) ds(y)−
∫
∂Ω

γ(y)
∂N

∂ny
(x, y)rε(y) ds(y) .

Since y 7→ γ(y) ∂N∂ny (x, y) vanishes on ΓN (i.e. as an element in H−1/2(ΓN )) and rε vanishes on ΓD (i.e.,

rε ∈ H̃1/2(ΓN )), the second integral in the above right-hand side equals 0, and so

(3.16) rε(x) =

∫
∂Ω

γ(y)
∂rε
∂n

(y)N(x, y) ds(y) .

To proceed, we now use the same “compensated compactness”, or “clever integration by parts” technique as in
[15], see also [50]. Let φ ∈ C1(∂Ω) be an arbitrary function, which vanishes on the set {y ∈ ∂Ω : dist(y,ΓD) <
dmin/3}. Since Ω is smooth, it is easy to construct a function ψ ∈ C1(Ω) such that

(3.17) ψ = φ on ∂Ω, and ||ψ||C1(Ω) ≤ C||φ||C1(∂Ω) ,

where the constant C depends only on Ω. As before, let χε denote the solution to (3.1). Since the function
(φ− χεψ) belongs to H1/2(∂Ω), and vanishes on ΓD ∪ ωε, we have∫

∂Ω

γ
∂rε
∂n

φ ds =

∫
∂Ω

γ
∂rε
∂n

χεψ ds .

An integration by parts now yields

(3.18)

∫
∂Ω

γ
∂rε
∂n

φ ds =

∫
Ω

γ∇rε · ∇(χεψ) dy

=

∫
Ω

ψγ∇rε · ∇χε dy +

∫
Ω

χεγ∇rε · ∇ψ dy .

Using (3.14) and the estimate (3.9) applied to χε, we may control the second term in the above right-hand
as follows

(3.19)

∣∣∣∣∫
Ω

χεγ∇rε · ∇ψ dy

∣∣∣∣ ≤ C||χε||L2(Ω)||rε||H1(Ω)||ψ||C1(Ω)

≤ Ccap(ωε)
5
4 ‖f‖Hm(Ω)‖φ‖C1(∂Ω) .

A similar argument makes it possible to rewrite the first term in the right-hand side of (3.18) as∫
Ω

ψγ∇rε · ∇χε dy =

∫
Ω

∇(γψrε) · ∇χε dy −
∫

Ω

rε∇(γψ) · ∇χε dy

=

∫
Ω

∇(γψrε) · ∇χε dy +O(cap(ωε)
5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω) .

Inserting these two facts into (3.18) we get∫
∂Ω

γ
∂rε
∂n

φ ds =

∫
Ω

∇(γψrε) · ∇χε dy + O(cap(ωε)
5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω) ,

and so, after another integration by parts∫
∂Ω

γ
∂rε
∂n

φ ds =

∫
∂Ω

∂χε
∂n

γφrε ds + O(cap(ωε)
5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω) .

Since ∂χε
∂n = 0 on ΓN \ ωε, and since rε = −u0χε on ωε ∪ ΓD, we may replace rε with −u0χε in the integral

of the above right-hand side, thus obtaining

(3.20)

∫
∂Ω

γ
∂rε
∂n

φ ds = −
∫
∂Ω

∂χε
∂n

χεu0γφ ds + O(cap(ωε)
5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω) .
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Now let η be a function as introduced in the statement of this theorem:

η ∈ C∞(∂Ω), η = 1 on {y ∈ ∂Ω, dist(y,ΓD) > dmin/2} and η = 0 on {y ∈ ∂Ω, dist(y,ΓD) < dmin/3}.
Then, N(x, ·)η(·) is a C∞ function on ∂Ω which vanishes on the set {y ∈ ∂Ω : dist(y,ΓD) < dmin/3} and
coincides with N(x, ·) on ωε ∪ ΓD. By a combination of (3.16) and (3.20), with φ(·) = N(x, ·)η(·), it follows
that

rε(x) =

∫
∂Ω

γ(y)
∂rε
∂n

(y)N(x, y) ds(y)

=

∫
∂Ω

γ(y)
∂rε
∂n

(y)N(x, y)η(y) ds(y)(3.21)

= −
∫
∂Ω

∂χε
∂n

(y)χε(y)u0(y)γ(y)N(x, y)η(y) ds(y) +O(cap(ωε)
5
4 )‖f‖Hm(Ω)‖N(x, ·)η(·)‖C1(∂Ω) .

Finally, the upper bound in Lemma 3.1 reveals that cap(ωε) > 0 (since the ωε are non-empty), and that for
any function φ ∈ C1(∂Ω)∣∣∣∣ 1

cap(ωε)

∫
∂Ω

∂χε
∂n

χεφ ds

∣∣∣∣ =

∣∣∣∣ 1

cap(ωε)

∫
Ω

∇χε · ∇(χεφ) dy

∣∣∣∣ ≤ C||φ||C1(∂Ω) .

It follows from the Banach-Alaoglu theorem that, up to extraction of a subsequence, which we still label by
ε, there exists a bounded linear functional µ on C1(∂Ω) such that, for any φ ∈ C1(∂Ω):

1

cap(ωε)

∫
∂Ω

∂χε
∂n

χεφ ds
ε→0−−−→ µ(φ) .

The lower bound in Lemma 3.1, in combination with Poincaré’s inequality, reveals that µ(1) > 0, in other
words that µ is non-trivial. A combination of Section 3.2 and the above convergence result (with φ(·) =
u0(·)γ(·)N(x, ·)η(·)) yields the desired representation formula

rε(x) = −cap(ωε)µy [η(y)u0(y)γ(y)N(x, y)] + o(cap(ωε)) .

The uniformity of the convergence of the remainder term, when the point x is confined to a fixed compact
subset K b Ω, follows from the fact that the set of functions {u0(·)γ(·)N(x, ·)η(·)}x∈K ⊂ C1(∂Ω) is compact
in the C1 topology. �

3.3. Properties of the limiting distribution µ

The limiting distribution µ introduced in Theorem 3.1 is a priori a distribution of order one on ∂Ω, and as
such it may depend on first-order derivatives of the argument function φ. We now show that this is not the
case, and that µ is actually a non negative Radon measure on ∂Ω.

Proposition 3.1. The distribution µ in (3.15) is a non-trivial, non negative Radon measure on ∂Ω. More-
over, the support of µ is contained in any compact subset K ⊂ ∂Ω such that ωε ⊂ K for ε > 0 small
enough.

Proof. We recall from the proof of Theorem 3.1 that the distribution µ is defined by:

∀φ ∈ C1(∂Ω), µ(φ) = lim
ε→0

1

cap(ωε)

∫
∂Ω

∂χε
∂n

χεφ ds ,

where the limit is taken along a subsequence, and χε ∈ H1(Ω) is the solution to the equation (3.1). Let φ

be an arbitrary function φ ∈ C1(∂Ω). Since ∂Ω is smooth, it is easy to construct a function ψ̃ ∈ C1(Ω) such
that

(3.22) ψ̃ = φ on ∂Ω, and ||ψ̃||C0(Ω) = ||φ||C0(∂Ω) .

Green’s formula then yields∫
∂Ω

∂χε
∂n

χεφ ds =

∫
Ω

(∇χε · ∇χε)ψ̃ dx+

∫
Ω

(∇χε · ∇ψ̃)χε dx .
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As in the proof of Theorem 3.1 (see (3.19)), the estimates of Lemma 3.2 show that

lim
ε→0

1

cap(ωε)

∫
Ω

(∇χε · ∇ψ̃)χε dx = 0 ,

and as a consequence

(3.23) µ(φ) = lim
ε→0

1

cap(ωε)

∫
Ω

(∇χε · ∇χε)ψ̃ dx ,

for any function φ ∈ C1(∂Ω), where ψ̃ ∈ C1(Ω) is related to φ by (3.22). On the other hand, using Lemma 3.1,
there exists a constant C > 0 such that

(3.24) ∀ψ ∈ C0(Ω),
1

cap(ωε)

∣∣∣∣∫
Ω

(∇χε · ∇χε)ψ dx

∣∣∣∣ ≤ C||ψ||C0(Ω).

Hence, using again the Banach-Alaoglu theorem, there exists a subsequence of the ε’s and a non negative
Radon measure ν on Ω such that

∀ψ ∈ C0(Ω),
1

cap(ωε)

∫
Ω

(∇χε · ∇χε)ψ dx→
∫

Ω

ψ dν .

Combining this with (3.23) we conclude that:

µ(φ) =

∫
Ω

ψ̃ dν

for any φ ∈ C1(∂Ω), where ψ̃ ∈ C1(Ω) is related to φ by (3.22). Moreover,∣∣∣∣∫
Ω

ψ̃ dν

∣∣∣∣ ≤ C‖ψ̃‖C0(Ω) = C||φ||C0(∂Ω),

and we have thus proved that, for any φ ∈ C1(∂Ω)

|µ(φ)| ≤ C||φ||C0(∂Ω) .

This shows that µ is a Radon measure on ∂Ω, the non negativity of which follows from that of ν. Moreover,
the proof of Theorem 3.1 has already revealed that µ is non trivial since µ(1) > 0.

Finally, let K b ∂Ω be a compact subset of ∂Ω such that ωε ⊂ K for ε > 0 small enough. Let φ ∈ C1(∂Ω)
be an arbitrary function with support in the relatively open subset U := ∂Ω \ K. Then, χεφ belongs to
H1/2(∂Ω) and vanishes on ωε ∪ ΓD, so that∫

∂Ω

∂χε
∂n

χεφ ds = 0 .

It follows that

µ(φ) = lim
ε→0

1

cap(ωε)

∫
∂Ω

∂χε
∂n

χεφ ds = 0 .

Since this holds true for any φ ∈ C1(∂Ω) with support in U , the desired result about the support of µ
follows. �

Proposition 3.1 immediately leads to the following Corollary to Theorem 3.1.

Corollary 3.1. Suppose d = 2 or d = 3. Let ωε be a sequence of non-empty, open Lipschitz subsets of ∂Ω,
which are all contained in ΓN and are well-separated from ΓD in the sense that (1.6) holds. Let uε denote
the solution to (1.4). Assume furthermore that the capacity cap(ωε) of ωε goes to 0 as ε → 0. Then there
exists a subsequence, still denoted by ε, and a non-trivial, non negative Radon measure µ on ∂Ω, such that
for any fixed point x ∈ Ω

uε(x) = u0(x)− cap(ωε)

∫
∂Ω

u0(y)γ(y)N(x, y) dµ(y) + o(cap(ωε)).

The measure µ depends only on the subsequence ωε, Ω, and ΓN . The support of µ lies inside any compact
subset K ⊂ ∂Ω containing the ωε for ε > 0 small enough, and the term o(cap(ωε)) goes to zero faster than
cap(ωε) uniformly (in x) on compact subsets of Ω.

Remark 3.2. Let us comment about the physical meaning of the representation formula of Corollary 3.1.
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• The first order term in this expansion arises as the superposition of the potentials u0(y)γ(y)N(x, y)
created at x by point sources (monopoles) which are distributed on the “limiting location” of the
vanishing subsets ωε. The negative sign in front of this term indicates that these point sources have
been replaced by a “ground” (homogeneous Dirichlet boundary condition) when passing from the
background physical situation to the perturbed one.

• Assuming for simplicity that f has compact support inside Ω, the fact that the term o(cap(ωε)) (in
Corollary 3.1) is uniformly small on compact subsets of Ω leads to the following asymptotic expansion
for the compliance (or power consumption) of Ω:∫

Ω

f uε dx =

∫
Ω

f u0 dx− cap(ωε)

∫
Ω

f(x)

∫
∂Ω

γ(y)u0(y)N(x, y) dµ(y) dx+ o(cap(ωε)) .

Due to the symmetry of the fundamental solution (see Section 2.3), we have

u0(y) =

∫
Ω

N(x, y)f(x) dx ,

and this now implies∫
Ω

f uε dx =

∫
Ω

f u0 dx− cap(ωε)

∫
∂Ω

γ(x)u2
0(x) dµ(x) + o(cap(ωε)) .

In particular, the emergence of a small Dirichlet region within the homogeneous Neumann zone ΓN
always decreases the value of the compliance, which is consistent with physical intuition, since it
amounts to enlarging the region of the boundary ∂Ω where the voltage potential is grounded.

4. Replacing Dirichlet conditions by Neumann conditions on a “small set”

We presently turn to the opposite situation of that considered in Section 3. The considered sequence ωε of
“small”, open Lipschitz subsets of ∂Ω is now included in ΓD, and it is well-separated from ΓN in the sense
that (1.6) holds. The homogeneous Dirichlet boundary condition satisfied by the “background” voltage
potential u0 on ΓD (see (1.3)) is dropped on ωε, where it is replaced by a homogeneous Neumann boundary
condition: the perturbed voltage potential uε is then the solution to the equation (1.5). Like in Section 3,
without any further assumption on ωε, we aim to derive a representation formula for uε − u0 as ε→ 0.

Let us start by defining the quantity e(ωε) which will measure the “smallness” of a set ωε in the present
setting. When ω ⊂ Rd is an arbitrary finite collection of disjoint Lipschitz hypersurfaces, we introduce:

(4.1) e(ω) = max
κ∈C∞c (Rd),

κ(x)=±1 for x∈ω

{∫
Rd\ω

(z2 + |∇z|2) dx, z ∈ H1(Rd \ ω) s.t.

{
−∆z + z = 0 in Rd \ ω,

∂z
∂n = κ on ω

}
.

In the above formulation, n stands for any smooth unit normal vector field on (each connected component
of) ω, and the value of e(ω) does not depend on the choice of the particular direction(s) of n, due to the
presence of the maximum. More precisely, when ω has only one connected component, e(ω) is the energy of
the unique H1(Rd \ ω) solution z to the equation

(4.2)

{
−∆z + z = 0 in Rd \ ω ,

∂z
∂n = 1 on ω ,

and the choice of an orientation for the normal vector n to ω only affects the sign of z and not the value of
the energy e(ω). When ω has several connected components, a direction for n can be set independently on
each connected component of ω; the possible choices for κ in (4.1) correspond to all possible configurations
of the field n, and the quantity e(ω) captures the configuration with maximum energy.

In view of the discussion in Section 2.4 (see notably Remark 2.1), it is very tempting to interpret e(ω) as
a sort of “capacity” of the set ω, which, in a Neumann context, measures the energy of the potential in an
“equilibrium” situation where the current passing through ω is constant, with amplitude equal to 1.

Remark 4.1. In spite of its intuitive physical interpretation, the quantity e(ω) is not very explicit, since it
involves the solution of a boundary value problem posed on the whole ambient space Rd. For this reason, we
derive in Appendix A several interesting surrogate quantities, depending only on the geometry of ω, which in
some particular cases are equivalent to e(ω).
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In Section 6, we shall conduct explicit calculations of the solution uε to (1.5), in the particular case where
the inclusion set ωε is a “surfacic ball” on ∂Ω. The following estimates for the “smallness” of the planar
disk Dε defined in (2.14), which follow straighforwardly from Appendix A (see in particular Remark A.1),
will be used repeatedly:

(4.3) e(Dε) ≤ C2ε
2 if d = 2, and e(Dε) ≤ C3ε

3 if d = 3,

for some universal constants C2, C3.

4.1. Preliminary estimates

We start with a preliminary result, which is analogous to Lemma 3.1, and is essential for the derivation of
our asymptotic representation formula. Let ζε be the unique H1(Ω) solution to

(4.4)


−∆ζε = 0 in Ω ,
ζε = 0 on ΓD \ ωε ,
∂ζε
∂n = 1 on ωε ,
∂ζε
∂n = 0 on ΓN .

The following lemma relates the energy of ζε with the quantity e(ωε) defined in (4.1).

Lemma 4.1. Let ωε be an open Lipschitz subset of the region ΓD ⊂ ∂Ω, which lies “far” from ΓN in the
sense that (1.6) holds, and let ζε be the solution to (4.4). There exist two constants 0 < m ≤ M , which
depend only on Ω, ΓD and the lower bound dmin on the distance from ωε to ΓN , but are otherwise independent
of ωε, such that

m e(ωε) ≤ ||ζε||2H1(Ω) ≤M e(ωε).

Proof. We start by looking at the right-hand inequality. The latter is actually quite natural, since ζε can be
seen as arising from the solution z to (an equation like) (4.2), for a suitable function κ, by “adding Dirichlet
boundary conditions”. An adapted version of the Poincaré inequality for functions with vanishing trace on
the set

{x ∈ ΓD, dist(x,ΓN ) < dmin/3}
reveals that there exists a constant C > 0 which only depends on Ω, ΓN and dmin such that

(4.5) ||ζε||H1(Ω) ≤ C||∇ζε||L2(Ω)d .

Let zε be the solution to (4.2), where n is the unit normal vector to ∂Ω pointing outward from Ω (in
particular, it is normal to ωε) and κ constantly equals 1 on ωε. An integration by parts, using the boundary
conditions satisfied by ζε and zε, yields

||∇ζε||2L2(Ω)d =

∫
Ω

∇ζε · ∇ζε dx

=

∫
ωε

∂ζε
∂n

ζε ds

=

∫
ωε

∂zε
∂n

ζε ds

=

∫
∂Ω

∂zε
∂n

(ηζε) ds ,

where η is a smooth function such that

η ≡ 1 on {x ∈ ΓD, dist(x,ΓN ) > dmin/2} and η ≡ 0 on {x ∈ ∂Ω, dist(x,ΓN ) < dmin/3} .
It follows that

||∇ζε||2L2(Ω)d =

∫
Ω

(
∇zε · ∇(ηζε) + zεηζε

)
dx

≤ C||zε||H1(Ω)||ζε||H1(Ω)

≤ C||zε||H1(Rd\ωε)||∇ζε||L2(Ω)d ,

where we have used the Poincaré inequality (4.5). The desired inequality now follows from the definition
(4.1) of e(ωε) and repeated use of the Poincaré inequality (4.5).
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Let us now turn to the left-hand inequality. To this end, let zε be the H1(Rd \ ωε) solution to (an equation
like) (4.2), where κ is any C∞c (Rd) function taking values 1 or −1 on ωε, and n again is chosen to be the unit
normal to ∂Ω, pointing outward Ω. The variational formulation associated to (an equation like) (4.2) and
an integration by parts immediately imply that

||zε||2H1(Rd\ωε) =

∫
Rd\ωε

(
z2
ε +∇zε · ∇zε

)
dx

= −
∫
ωε

κ(z+
ε − z−ε ) ds .

Here we have denoted by z+
ε and z−ε the one-sided traces of zε on ωε from the exterior and the interior of Ω,

respectively (see (2.5)). We obtain

||zε||2H1(Rd\ωε) ≤
∫
ωε

∂ζε
∂n
|z+
ε − z−ε | ds

=

∫
∂Ω

∂ζε
∂n
|z+
ε − z−ε | ds ,

where we have used the fact that zε is continuous across ∂Ω (in the sense of traces) except on ωε. Since Ω
is smooth, there exists a bounded linear extension operator E : H1/2(∂Ω)→ H1(Ω) such that

∀u ∈ H1/2(∂Ω), ||Eu||H1(Ω) ≤ C||u||H1/2(∂Ω) and Eu = u on ∂Ω ,

for a constant C which depends only on Ω. Based on the previous estimate we calculate

||zε||2H1(Rd\ωε) ≤
∫
∂Ω

∂ζε
∂n
|Ez+

ε − z−ε | ds

=

∫
Ω

∇ζε · ∇|Ez+
ε − zε| dx

≤ C||∇ζε||L2(Ω)d ||Ez+
ε − zε||H1(Ω)

≤ C||∇ζε||L2(Ω)d
(
||z+
ε ||H1/2(∂Ω) + ||zε||H1(Ω)

)
≤ C||∇ζε||L2(Ω)d ||zε||H1(Rd\ωε) ,

which finally results in the desired inequality

||zε||H1(Rd\ωε) ≤ C||∇ζε||L2(Ω)d .

Since this holds for any choice of the function κ ∈ C∞c (Rd) having values 1 or −1 on ωε, the desired inequality
follows by taking the maximum with respect to any such choice. �

We now consider the H1(Ω) solution vε to the boundary value problem

(4.6)


−div(γ∇vε) = 0 in Ω ,

vε = 0 on ΓD \ ωε ,
γ ∂vε∂n = g on ωε ,

γ ∂vε∂n = 0 on ΓN ,

where g is a given C0(Ω) function. Our next result provides norm bounds for vε in terms of the expression
e(ωε).

Lemma 4.2. Suppose d = 2 or d = 3. Let ωε be an open Lipschitz subset of the region ΓD ⊂ ∂Ω, which lies
“far” from ΓN in the sense that (1.6) holds. There exists a constant M , which depends only on α, β, the
coercivity constants of γ, Ω, ΓN and the lower bound dmin on the distance from ωε to ΓN , but is otherwise
independent of ωε, such that the function vε in (4.6) satisfies the following H1 estimate

(4.7) ||vε||H1(Ω) ≤Me(ωε)
1
2 ||g||C0(Ω) .

In addition, the following “improved” L2 estimate holds

(4.8) ||vε||L2(Ω) ≤Me(ωε)
3
4 ||g||C0(Ω) .

The quantity e(ωε) is that defined in (4.1).
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Proof. We start by proving (4.7). Since ωε lies inside ΓD with dist(ωε,ΓN ) > dmin > 0, a variant of the
Poincaré’s inequality for functions whose trace vanishes on the fixed region {x ∈ ΓD, dist(x,ΓN ) < dmin}
yields the existence of a constant C > 0, depending only on ∂Ω, ΓD and dmin, such that

(4.9) ||vε||H1(Ω) ≤ C||∇vε||L2(Ω)d .

We then calculate

||∇vε||2L2(Ω) ≤ C

∫
Ω

γ∇vε · ∇vε dx

= C

∫
∂Ω

γ
∂vε
∂n

vε ds

= C

∫
ωε

gvε ds .

An application of (4.9) and introduction of the function ζε – defined in (4.4) and estimated in Lemma 4.1 –
now yields

||vε||2H1(Ω) ≤ C||g||C0(Ω)

∫
ωε

|vε| ds

= C||g||C0(Ω)

∫
∂Ω

|vε|
∂ζε
∂n

ds

= C||g||C0(Ω)

∫
Ω

∇|vε| · ∇ζε dx

≤ C||g||C0(Ω)‖vε‖H1(Ω)e(ωε)
1
2 ,

and the desired estimate (4.7) follows.

Let us now consider the improved L2 estimate (4.8). To establish this, we proceed along the lines of the
proof of Lemma 3.2. As in that proof, let wε denote the unique H1(Ω) solution to the boundary value
problem 

−div(γ∇wε) = vε in Ω ,
wε = 0 on ΓD ,

γ ∂wε∂n = 0 on ΓN .

Taking advantage of the separation assumption (1.6), we may introduce a cut-off function η ∈ C∞c (Rd) with
the property

η = 1 on a fixed neighborhood of all the ωε and η = 0 on an open set U in Rd with ΓN b U .

The function wε shows improved regularity with respect to vε, away from the interface Σ between the
Dirichlet and Neumann regions ΓD and ΓN . More precisely, arguing as in the proof of Lemma 3.2 (see in
particular (3.10)), one obtains that

(4.10) ‖ηwε‖C1(Ω) ≤ C||ηwε||H3(Ω) ≤ C||vε||H1(Ω) .

We now calculate ∫
Ω

v2
ε dx = −

∫
Ω

div(γ∇wε) vε dx

=

∫
Ω

γ∇wε · ∇vε dx−
∫
ωε

γ
∂wε
∂n

vε ds

= −
∫
ωε

γ
∂

∂n
(ηwε)vε ds .
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Using the regularity estimate (4.10) for ηwε and introducing the function ζε, – defined in (4.4), and estimated
in Lemma 4.1 – we are now led to∫

Ω

v2
ε dx ≤ C

∣∣∣∣∣∣∣∣∂(ηwε)

∂n

∣∣∣∣∣∣∣∣
C0(∂Ω)

∫
ωε

|vε| ds

= C

∣∣∣∣∣∣∣∣∂(ηwε)

∂n

∣∣∣∣∣∣∣∣
C0(∂Ω)

∫
∂Ω

|vε|
∂ζε
∂n

ds

= C

∣∣∣∣∣∣∣∣∂(ηwε)

∂n

∣∣∣∣∣∣∣∣
C0(∂Ω)

∫
Ω

∇|vε| · ∇ζε dx

≤ C||vε||2H1(Ω)e(ωε)
1
2 .

In combination with the already established estimate (4.7), this yields∫
Ω

v2
ε dx ≤ C e(ωε)

3
2 ||g||2C0(Ω)

,

exactly as asserted in (4.8). �

Remark 4.2. As in Section 3 (see Remark 3.1) close inspection of the above proof reveals that both estimates
(4.7) and (4.8) still hold true when the function vε from (4.6) is replaced by the solution to the following
anisotropic boundary value problem 

−div(A∇vε) = 0 in Ω,
vε = 0 on ΓD \ ωε,

(A∇vε) · n = g on ωε,
(A∇vε) · n = 0 on ΓN ,

where A ∈ C(Ω)d×d is a smooth conductivity matrix satisfying the bounds (3.12).

4.2. The representation formula

One of our main results in this section is the following representation theorem.

Theorem 4.1. Suppose that d = 2 or d = 3 and that ωε is a sequence of non-empty, open Lipschitz subsets
of ∂Ω, which are all contained in ΓD and well-separated from ΓN in the sense that (1.6) holds. Let uε denote
the solution to (1.5). Assume that the quantity e(ωε), given by (4.1), goes to 0 as ε → 0. Then there exists
a subsequence, still labeled by ε, and a non-trivial distribution µ in the dual space of C1(∂Ω) such that for
any fixed point x ∈ Ω, and any η ∈ C∞(∂Ω) with η = 1 on {y ∈ ∂Ω, dist(y,ΓN ) > dmin/2} and η = 0 on
{y ∈ ∂Ω, dist(y,ΓN ) < dmin/3}

(4.11) uε(x) = u0(x) + e(ωε) µy

(
η(y)

∂u0

∂n
(y)γ(y)

∂N

∂ny
(x, y)

)
+ o(e(ωε)) .

The term o(e(ωε)) goes to zero faster than e(ωε), uniformly for x in any fixed compact subset K of Ω. The
distribution µ depends only on the subsequence ωε, Ω, and ΓD.

Proof. The proof parallels that of Theorem 3.1 with appropriate changes. We give a fairly detailed outline
of it, except in a few places where we refer back to the proof of Theorem 3.1. Let rε denote the remainder
rε := uε − u0, which is now the unique H1(Ω) solution to the following problem

(4.12)


−div(γ∇rε) = 0 in Ω ,

rε = 0 in ΓD \ ωε ,
γ ∂rε∂n = −γ ∂u0

∂n on ωε ,

γ ∂rε∂n = 0 on ΓN .

Let x be a fixed point inside Ω. From the definition (2.11) of the fundamental solution N(x, y) to the
background equation, we obtain after integration by parts

rε(x) =

∫
Ω

rε(y)(−divy(γ(y)∇yN(x, y))) dy

= −
∫
ωε

rε(y)γ(y)
∂N

∂ny
(x, y) ds(y) +

∫
Ω

γ(y)∇rε(y) · ∇yN(x, y) dy .
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Another integration by parts of the second term in the above right-hand side reveals that the latter actually
vanishes, so in conclusion

(4.13)

rε(x) = −
∫
ωε

rε(y)γ(y)
∂N

∂ny
(x, y) ds(y)

= −
∫
ωε

rε(y)η(y)γ(y)
∂N

∂ny
(x, y) ds(y) .

Following the proof of Theorem 3.1, we now proceed to calculate, for any given function φ ∈ C1(∂Ω) vanishing
on {y ∈ ∂Ω, dist(y,ΓN ) < dmin/3}, the limit of the quantity

−
∫
ωε

rε(y)φ(y) ds(y) .

For this purpose we introduce an extension ψ ∈ C1(Ω) of φ satisfying the properties (see (3.17))

ψ = φ on ∂Ω, and ||ψ||C1(Ω) ≤ C||φ||C1(∂Ω) ,

and we consider the unique H1(Ω) solution ζε to the boundary value problem (4.4). We calculate

−
∫
ωε

rε(y)φ(y) ds(y) = −
∫
∂Ω

∂ζε
∂n

rεψ ds

= −
∫

Ω

(∇ζε · ∇rε)ψ dy −
∫

Ω

(∇ζε · ∇ψ)rε dy

= −
∫

Ω

(∇ζε · γ∇rε)
ψ

γ
dy + O(e(ωε)

5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω) ,

where the last identity follows from the improved L2 estimate (applied to rε) and the H1 estimate (applied
to ζε) from Lemma 4.2; see the proof of Theorem 3.1 for details. A repeated use of the same estimates (with
the roles of rε and ζε interchanged) followed by an integration by parts yields

−
∫
ωε

rε(y)φ(y) ds(y) = −
∫

Ω

γ∇rε · ∇
(
ψζε
γ

)
dx+O(e(ωε)

5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω)

= −
∫
∂Ω

∂rε
∂n

φζε ds+O(e(ωε)
5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω);

see the proof of Theorem 3.1. Using the boundary conditions satisfied by rε and ζε we finally end up with

(4.14) −
∫
ωε

rε(y)φ(y) ds(y) =

∫
∂Ω

(
∂ζε
∂n

ζε

)
∂u0

∂n
φ ds+O(e(ωε)

5
4 )‖f‖Hm(Ω)‖φ‖C1(∂Ω) .

From Lemma 4.1, we infer that the sequence 1
e(ωε)

(
∂ζε
∂n ζε

)
has bounded norm in the dual space of C1(∂Ω);

see more precisely (3.24) in the proof of Theorem 3.1. From the Banach-Alaoglu theorem, it now follows,
after extraction of a subsequence (still labeled by ε), that there exists a bounded linear functional µ on
C1(∂Ω) such that

(4.15) ∀ϕ ∈ C1(∂Ω),

∫
∂Ω

1

e(ωε)

(
∂ζε
∂n

ζε

)
ϕ ds

ε→0−−−→ µ(ϕ) .

Also, due to Lemma 4.1, it follows that µ(1) > 0, thus revealing that µ is non trivial. Insertion of φ(y) =
η(y)γ(y) ∂N∂ny (x, y) into (4.14) and application of (4.15) with ϕ(y) = ∂u0

∂n (y)η(y)γ(y) ∂N∂ny (x, y) now gives

−
∫
ωε

rε(y)η(y)γ(y)
∂N

∂ny
(x, y) ds(y) = e(ωε)µy

[
η(y)

∂u0

∂n
(y)γ(y)

∂N

∂ny
(x, y)

]
+ o(e(ωε)) ,

which in combination with (4.13) leads to the desired representation formula (4.11). The uniformity of the
convergence of the remainder o(e(ωε)), when x is confined to a fixed compact subset of Ω, follows as in the
proof of Theorem 3.1. �

Just as in Section 3 we may show that the distribution µ is a non negative Radon measure compactly
supported “near” the sets ωε; in other words, the following analogue of Proposition 3.1 holds in the present
context, whose nearly identical proof is left to the reader.
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Proposition 4.1. The limiting distribution µ introduced in Theorem 4.1 is a non negative Radon measure
on ∂Ω. Moreover, the support of µ is contained in any compact subset K of ∂Ω such that ωε ⊂ K for ε > 0
sufficiently small.

This proposition immediately leads to the following corollary to Theorem 4.1.

Corollary 4.1. Suppose d = 2 or d = 3 and suppose ωε is a sequence of non-empty, open Lipschitz subsets
of ∂Ω, which are all contained in ΓD and are well-separated from ΓN , in the sense that (1.6) holds; let uε
denote the solution to (1.5). Assume that the quantity e(ωε), defined by (4.1), goes to 0 as ε → 0. Then
there exists a subsequence, still labeled by ε, and a non-trivial, non negative Radon measure µ on ∂Ω, whose
support is included in any compact subset K ⊂ ∂Ω containing the ωε for ε > 0 small enough, such that the
following asymptotic expansion

uε(x) = u0(x) + e(ωε)

∫
∂Ω

∂u0

∂n
(y)γ(y)

∂N

∂ny
(x, y) dµ(y) + o(e(ωε)) ,

holds at any fixed point x ∈ Ω. The term o(e(ωε)) goes to zero faster than e(ωε) uniformly (in x) on compact
subsets of Ω. The measure µ depends only on the subsequence ωε, Ω, and ΓD.

Remark 4.3. From the physical viewpoint, the second term in the representation formula of Corollary 4.1
accounts for the potential created at x by a distribution of dipoles located at the “limiting position” of the
sets ωε. We notice the sign change, when compared to the second term of the expansion in Section 3. A
calculation similar to that found in Remark 3.2 (and under the same assumptions regarding the source term
f) now leads to a non negative first term in the perturbation of the compliance, reflecting the intuitive fact
that the compliance of Ω necessarily (asymptotically) increases when the homogeneous Dirichlet boundary
condition on ωε is turned into a homogeneous Neumann condition.

5. An explicit asymptotic formula for the case of substituting Dirichlet conditions

In this section, we investigate a particular instance of the general situation of Section 3, where the homo-
geneous Neumann boundary condition satisfied by the background potential u0 on the whole region ΓN is
modified to a Dirichlet boundary condition on a subset ωε ⊂ ΓN taking the form of a vanishing “surfacic
ball”.

Without loss of generality, we assume that the origin 0 belongs to ΓN , and that the normal vector n(0) at
0 coincides with the last coordinate vector ed. We select a smooth bounded domain O ⊂ Rd, and construct
a smooth diffeomorphism T : Rd → Rd such that Ω = T (O), and

(i) The domain O lies inside the lower half-space H, and it coincides with H in a fixed open
neighborhood U of 0:

O ⊂ H, and O ∩ U = H ∩ U, where H :=
{
x = (x1, . . . , xd) ∈ Rd, xd < 0

}
.

(ii) T (0) = 0 and ∇T (0) = Id.

Given such T and O, the subset ωε ⊂ ΓN is now defined as follows:

(5.1) ωε = T (Dε), where Dε := {x = (x1, . . . , xd−1, 0) ∈ ∂H, |x| < ε} ,
for ε sufficiently small, see Fig. 2 for an illustration. We denote by Γ̂N ⊂ ∂O the boundary set Γ̂N :=
T−1(ΓN ), and purely for simplicity we also assume that O and T are selected in such aa way that T
coincides with the identity mapping “far” from 0, so that in particular T−1(ΓD) = ΓD (in terms of the
original domain Ω this is achievable through the assumption that Ω lies below its tangent plane at 0).

The “background” and perturbed potentials u0 and uε are the H1(Ω) solutions to the following equations:

(5.2)


−div(γ∇u0) = f in Ω,

u0 = 0 on ΓD,

γ ∂u0

∂n = 0 on ΓN ,
and


−div(γ∇uε) = f in Ω,

uε = 0 on ΓD ∪ ωε,
γ ∂uε∂n = 0 on ΓN \ ωε,

where the source term f ∈ C∞(Ω) is smooth. Invoking classical elliptic regularity results, we observe that
u0 and uε are smooth, except in the vicinity of the points x ∈ ∂Ω where boundary conditions change type.
More precisely, with Σ = ΓD ∩ ΓN

• The function u0 is of class C∞ in a neighborhood of any point x ∈ Ω \ Σ;
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Figure 2. The setting in Section 5.

• The function uε is of class C∞ in a neighborhood of any point x ∈ Ω \ (Σ ∪ ∂ωε);
see for instance [14], §9.6, or [34].

We aim to derive a precise first order asymptotic expansion of uε when ε → 0, thus exemplifying the
abstract structure of Theorem 3.1. We start by providing the complete analysis for the two-dimensional
case in Section 5.1. The analysis for the three-dimensional case, which is quite similar in many aspects, is
outlined in Section 5.2.

5.1. Asymptotic expansion of the perturbed potential uε in 2d

This section deals with the case d = 2, and our main result is

Theorem 5.1. The following asymptotic expansion holds at any point x ∈ Ω, x /∈ Σ ∪ {0}:

(5.3) uε(x) = u0(x)− π

| log ε|γ(0)u0(0)N(x, 0) + o

(
1

| log ε|

)
.

Proof. We proceed in four steps, relying on several intermediate, technical results, whose proofs are postponed
to the end of the section for the sake of clarity.

Step 1. We establish a representation formula for uε which relates its value at a point x ∈ ∂Ω “far” from
the inclusion set ωε to its values inside ωε by means of the fundamental solution N(x, y) to the background
operator, defined by (2.11).

Considering a fixed point x ∈ Ω, using the definition of N(x, y) and integrating by parts twice, we obtain

uε(x) = −
∫

Ω

divy(γ(y)∇yN(x, y))uε(y) dy

=

∫
Ω

γ(y)∇yN(x, y) · ∇uε(y) dy

=

∫
∂Ω

γ(y)
∂uε
∂ny

(y)N(x, y) ds(y) +

∫
Ω

f(y)N(x, y) dy,

where the second line follows from the facts that γ(y) ∂N∂ny (x, y) = 0 on ΓN and uε = 0 on ΓD; see (5.2).

Using the background problem (5.2) satisfied by u0 and the boundary conditions for uε and N , we arrive at
the following formula, for any point x ∈ Ω

(5.4)

uε(x) = u0(x) +

∫
ωε

γ(y)
∂uε
∂ny

(y)N(x, y) ds(y)

= u0(x) +

∫
ωε

γ(y)
∂rε
∂ny

(y)N(x, y) ds(y) .

Here we have taken advantage of the fact that u0 satisfies homogeneous Neumann boundary conditions on
ΓN to introduce the error rε = uε − u0 in the last integral of the above right-hand side. Note that the
identity (5.4) extends to the case of points x ∈ ∂Ω, x /∈ Σ ∪ {0} in the sense of traces, provided ε is small
enough, since all the quantities involved are smooth at such points.

23



Next, we introduce the mapped potentials v0 := u0 ◦ T and vε := uε ◦ T . A change of variables in the
variational formulations of (5.2) reveals that v0 and vε are the unique H1(O) solutions to the problems

(5.5)


−div(A∇v0) = g in O,

v0 = 0 on ΓD,

(A∇v0) · n = 0 on Γ̂N ,

and


−div(A∇vε) = g in O,

vε = 0 on ΓD ∪ Dε,
(A∇vε) · n = 0 on Γ̂N \ Dε,

where g ∈ C∞(R2) and A ∈ C∞(R2,R2×2) are the smooth function and the matrix field defined by

(5.6) g(y) = |det(∇T (y))|f(T (y)) , and A(y) = |det(∇T (y))|γ(T (y))∇T (y)−1(∇T (y)t)−1.

Recalling the definition (5.1) of ωε, we now change variables in (5.4) and then rescale the resulting integral
to obtain

(5.7)

uε(x) = u0(x) +

∫
Dε

(A(y)∇sε(y)) · n(y)N(x, T (y)) ds(y)

= u0(x) +

∫
D1

ϕε(z)N(x, T (εz)) ds(z) ,

where we have introduced sε := vε − v0 = rε ◦ T , and the quantity

(5.8) ϕε(z) = ε(A∇sε · n)(εz) ∈ H̃−1/2(D1) .

The formula (5.7) leads us to study the asymptotic behavior of ϕε as ε→ 0.

Step 2. We characterize ϕε as the solution to an integral equation. To this end, we essentially repeat the
derivation of Step 1, except that we now use an approximate, explicit fundamental solution instead of the
function N(x, y).

For any symmetric, positive definite matrix A, and any x ∈ H, let LA(x, y) be a solution to the following
equation posed on the lower half-space H:

(5.9)

{
−divy(A∇yLA(x, y)) = δy=x in H ,
A∇yLA(x, y) · n(y) = 0 on ∂H .

The next lemma provides an explicit expression for such a function; its proof is postponed to the end of the
present section.

Lemma 5.1. Let A be a symmetric, positive definite 2× 2 matrix, and let M := A−1/2. Let G(x, y) be the
fundamental solution of the operator −∆ in the free space, defined in (2.3). The function

(5.10) LA(x, y) = |detM |
(
G(Mx,My) +G

(
Mx,My − 2y2

M−1e2

|M−1e2|2
))

, x 6= y,

satisfies the equation (5.9).

Remark 5.1. A straightforward calculation shows that, for x ∈ ∂H, y ∈ R2, y 6= x,

|Mx−My| =
∣∣∣∣Mx−My + 2y2

M−1e2

|M−1e2|2
∣∣∣∣ .

For a given point x ∈ H, we now consider the function y 7→ LA(x)(x, y) (by substituting A(x) for A in
(5.10)) which satisfies

(5.11)

{
−divy(A(x)∇yLA(x)(x, y)) = δy=x in H,
A(x)∇yLA(x)(x, y) · n(y) = 0 on ∂H.
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For a point x ∈ O, we obtain from (5.11) and integration by parts that

vε(x) = −
∫
O

divy(A(x)∇yLA(x)(x, y))vε(y) dy

= −
∫
∂O

A(x)∇yLA(x)(x, y) · n(y)vε(y) ds(y) +

∫
O
A(x)∇yLA(x)(x, y) · ∇vε(y) dy

= −
∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)vε(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇vε(y) dy

+

∫
O
A(y)∇yLA(x)(x, y) · ∇vε(y) dy

= −
∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)vε(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇vε(y) dy

+

∫
∂O

(A∇vε · n)(y) LA(x)(x, y) ds(y) +

∫
O
g(y)LA(x)(x, y) dy ,

where the third line follows from the equation (5.11) satisfied by LA(x)(x, y), and the fact that ∂O ∩ U =
∂H ∩ U . A similar calculation applied to v0 instead of vε yields

v0(x) = −
∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)v0(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇v0(y) dy

+

∫
∂O

(A∇v0 · n)(y) LA(x)(x, y) ds(y) +

∫
O
g(y)LA(x)(x, y) dy .

Forming the difference of these identities, we get

sε(x) = −
∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇sε(y) dy

+

∫
ΓD

(A∇sε · n)(y) LA(x)(x, y) ds(y) +

∫
Dε

(A∇sε · n)(y) LA(x)(x, y) ds(y) .

Letting x tend to Dε, and invoking the boundary continuity of single layer potentials (as in the last term),
we obtain for a.e. x ∈ Dε

−v0(x) = −
∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇sε(y) dy

+

∫
ΓD

(A∇sε · n)(y) LA(x)(x, y) ds(y) +

∫
Dε

(A∇sε · n)(y) LA(x)(x, y) ds(y) .(5.12)

Rescaling the above equation, we finally obtain, for a.e. x ∈ D1

−v0(εx) = −
∫
∂O\U

A(εx)∇yLA(εx)(εx, y) · n(y)sε(y) ds(y)+

∫
O

(A(εx)−A(y))∇yLA(εx)(εx, y) · ∇sε(y) dy

+

∫
ΓD

(A∇sε · n)(y) LA(εx)(εx, y) ds(y) +

∫
D1

ϕε(z) LA(εx)(εx, εz) ds(z),

where ϕε ∈ H̃−1/2(D1) is the function (5.8) introduced in the course of Step 1. We recast this equation in
the form

(5.13) Tεϕε = −u0(0) + ηε ,

where Tε : H̃−1/2(D1)→ H1/2(D1) is the integral operator defined by

(5.14) Tεϕ(x) =

∫
D1

ϕ(z) LA(εx)(εx, εz) ds(z) ,
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and where the remainder ηε ∈ H1/2(D1) is given by

(5.15) ηε(x) =
(
u0(0)− v0(εx)

)
+

∫
∂O\U

A(εx)∇yLA(εx)(εx, y) · n(y)sε(y) ds(y)

−
∫
O

(A(εx)−A(y))∇yLA(εx)(εx, y) · ∇sε(y) dy −
∫

ΓD

(A∇sε · n)(y) LA(εx)(x, y) ds(y) .

Step 3. We infer the asymptotic behavior of ϕε from the analysis of the integral equation (5.13). The key
ingredients in this direction are the next two lemmas; for clarity, their proofs are postponed to the end of
this section.

Lemma 5.2. The quantity ηε ∈ H1/2(D1), defined in (5.15), satisfies

(5.16) ηε
ε→0−−−→ 0 strongly in H1/2(D1) .

Lemma 5.3. The following asymptotic expansion holds

sup
ϕ∈H̃−1/2(D1)

||ϕ||
H̃−1/2(D1)

≤1

∣∣∣∣∣∣∣∣ Tεϕ− 1

πγ(0)
(| log ε|+ α)

∫
D1

ϕ ds− 2

γ(0)
S1ϕ

∣∣∣∣∣∣∣∣
H1/2(D1)

ε→0−−−→ 0 ,

where α = 1
2 log γ(0) and S1 : H̃−1/2(D1)→ H1/2(D1) is the self-adjoint operator defined by

(5.17) S1ϕ(x) = − 1

2π

∫
D1

log |x− y|ϕ(y) ds(y), x ∈ D1 .

By use of these results, the integral equation (5.13) may be rewritten

(5.18) (| log ε|+ α)〈ϕε, 1〉+ 2πS1ϕε +Rεϕε = −πγ(0)u0(0) + πγ(0)ηε ,

where ηε converges to 0 strongly in H1/2(D1) and Rε : H̃−1/2(D1)→ H1/2(D1) is a sequence whose operator
norm converges to 0. The study of the approximate version (5.18) of our integral equation (5.13) is based
on yet another lemma, whose proof is also postponed.

Lemma 5.4.

(i) The operator S1 : H̃−1/2(D1)→ H1/2(D1) is invertible.

(ii) For ε > 0 small enough, the operator Vε : H̃−1/2(D1)→ H1/2(D1), defined by

Vεϕ = (| log ε|+ α)〈ϕ, 1〉+ 2πS1ϕ ,

is invertible with the uniformly bounded inverse

(5.19) V −1
ε g =

1

2π
S−1

1 g − (| log ε|+ α) 〈S−1
1 g, 1〉

2π + (| log ε|+ α) 〈S−1
1 1, 1〉

1

2π
S−1

1 1 ,

〈S−1
1 1, 1〉 = 2π/ log 2. In particular,

(5.20) 〈V −1
ε g, 1〉 =

〈S−1
1 g, 1〉

2π + (| log ε|+ α)〈S−1
1 1, 1〉 .

Since the operator norm of Rε : H̃−1/2(D1) → H1/2(D1) tends to 0, invoking (5.18), Lemma 5.4, and a

Neumann series for the solution of (5.18), we see that the function ϕε ∈ H̃−1/2(D1) satisfies

ϕε = −πγ(0)u0(0)V −1
ε 1 + V −1

ε η̃ε ,

for a sequence η̃ε converging to 0 strongly in H1/2(D1). In particular, there exists a constant C such that

(5.21) ||ϕε||H̃−1/2(D1) ≤ C .

Moreover, using (5.20), we calculate

(5.22)
〈ϕε, 1〉 = −πγ(0)u0(0)〈V −1

ε 1, 1〉+ 〈V −1
ε ηε, 1〉

= − π

| log ε|γ(0)u0(0) + o

(
1

| log ε|

)
,
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which is the needed information about ϕε for the following Step 4.

Step 4. We pass to the limit in the initial representation formula (5.7). Since x does not belong to Σ∪{0}, we
obtain from the estimate (5.21) and a Taylor expansion of the smooth function y 7→ N(x, y) in a neighborhood
of 0 ∣∣∣∣∫

D1

ϕε(z)(N(x, T (εz))−N(x, 0))ds(z)

∣∣∣∣ ≤ ||ϕε||H̃−1/2(D1)||N(x, T (ε·))−N(x, 0)||H1/2(D1)

≤ Cε ,

and so

uε(x) = u0(x) +

(∫
D1

ϕε(z)ds(z)

)
N(x, 0) +O(ε) .

Hence the desired expansion (5.3) follows from (5.22). �

We now provide the proofs of the missing links in the above analysis.

Proof of Lemma 5.1. We seek a function LA(x, y) that satisfies, for any point x ∈ H, and any smooth
function ψ ∈ C∞c (H),

(5.23) ψ(x) =

∫
H

A∇yLA(x, y) · ∇ψ(y) dy .

Introducing the symmetric, positive definite matrix M ∈ R2×2 for which M−2 = A, we may write the latter
requirement as follows

∀ψ ∈ C∞c (H), ψ(x) =

∫
H

(M−1∇yLA(x, y)) · (M−1∇ψ(y)) dy .

Changing variables and using test functions ψ ∈ C∞c (H) of the form ψ(y) = ψ̃(My), ψ̃ ∈ C∞c (MH), we
arrive at

∀x ∈MH, ∀ψ̃ ∈ C∞c (MH), ψ̃(x) =

∫
MH

|detM−1| ∇z(LA(M−1x,M−1z)) · ∇ψ̃(z) dz .

Therefore, it suffices that the function (x, y) 7→ 1
| detM |LA(M−1x,M−1y) be a Neumann function for the

Laplacian on the rotated half-space MH. Such a function can easily be constructed by reflection – more
precisely

(5.24)
1

|detM |LA(M−1x,M−1y) = G(x, y) +G(x, sM (y)),

where

sM (y) := y − 2

(
y · M

−1e2

|M−1e2|

)
M−1e2

|M−1e2|
is the symmetric image of a point y ∈ MH with respect to the hyperplane ∂(MH) (whose unit normal

vector equals M−1e2
|M−1e2| ). The desired expression (5.10) for LA(x, y) follows immediately.

�

We next turn to the proof of Lemma 5.2 concerning the remainder ηε.

Proof of Lemma 5.2. The definition of ηε as the right-hand side of (5.15) features four terms, which we
denote by Iiε(x), i = 1, . . . , 4, respectively. We prove that each of these converges to 0 strongly in H1/2(D1).

First, using the smoothness of v0 near the point 0 together with the fact that v0(0) = u0(0), we get

(5.25) I1
ε (x) := u0(0)− v0(εx)

ε→0−−−→ 0 strongly in H1/2(D1) .

Secondly, the term

(5.26) I2
ε (x) :=

∫
∂O\U

A(εx)∇yLA(εx)(εx, y) · n(y)sε(y) ds(y)
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is an integral over the set ∂O\U , which lies “far” from Dε. Since the function (x, y) 7→ A(εx)∇yLA(εx)(εx, y)

is smooth for x ∈ D1 and y ∈ ∂O \ U (uniformly with respect to ε), and since sε → 0 strongly in H1(O) by
virtue of Lemma 3.2 ( Remark 3.1) and (2.15), it follows easily that I2

ε (x)→ 0 strongly in H1/2(D1).
For the very same reason, the term

(5.27) I4
ε (x) := −

∫
ΓD

(A∇sε · n)(y) LA(εx)(x, y) ds(y)

also converges to 0 strongly in H1/2(D1). Finally, we consider the term

(5.28) I3
ε (x) := −

∫
O

(A(εx)−A(y))∇yLA(εx)(εx, y) · ∇sε(y) dy .

Using Lemma 5.1 and the subsequent Remark 5.1, we see that, for x ∈ D1 and y ∈ O,

∇yLA(εx)(εx, y) =
−1

π
√

det(A(εx))

M2(εx)(y − εx)

|M(εx)(y − εx)|2 .

As the matrix field A(y) is smooth, there exists a constant C > 0 such that:

∀x ∈ D1, y ∈ O, ||A(εx)−A(y)|| ≤ C|εx− y| ,
where || · || denotes any matrix norm. We then estimate

(5.29) |I3
ε (x)| ≤ C

∫
O
|∇sε(y)| dy ≤ C||sε||H1(O) .

Invoking again Lemma 3.2 (Remark 3.1) and (2.15), we conclude that

|I3
ε (x)| ε→0−−−→ 0 uniformly in x ∈ D1 ,

which implies, in particular, the strong L2(D1) convergence of I3
ε to 0. It remains to prove that I3

ε converges
to 0 strongly in H1/2(D1). To this end, we return to the formula Section 5.1, which reads

I3
ε

(x
ε

)
= −sε(x)−

∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y) +

∫
ΓD

(A∇sε · n)(y) LA(x)(x, y) ds(y)

+

∫
Γ̂N

(A∇sε · n)(y) LA(x)(x, y) ds(y), x ∈ Dε ,

where we have taken advantage of the fact that A∇sε ·n belongs to H̃−1/2(Dε) (and vanishes in Γ̂N \Dε) to

express the last integral in the above right-hand side as an integral on the whole set Γ̂N . Using the mapping
properties of the integral operator with kernel LA(x)(x, y) (see Theorem D.1), we obtain∣∣∣I3

ε

( ·
ε

)∣∣∣
H1/2(Dε)

≤ C||sε||H1(O) ,

where we recall the definition (2.1) of the semi-norm | · |H1/2(Dε). Changing variables in the definition of this
semi-norm to rescale the above left-hand side, we now get∣∣I3

ε

∣∣
H1/2(D1)

≤ C||sε||H1(O) .

We conclude from Lemma 3.2 ( Remark 3.1) and (2.15), that
∣∣I3
ε

∣∣
H1/2(D1)

→ 0. Finally, as we already know

that I3
ε converges to 0 strongly in L2(D1), it follows that I3

ε converges to 0 strongly in H1/2(D1), which
completes the proof of the lemma. �

We next turn to the proof of the approximation Lemma 5.3.

Proof of Lemma 5.3. Let D ⊂ R2 be a smooth bounded domain, whose boundary ∂D is a closed curve

containing D1 as a subset. Since H̃−1/2(D1) is the space of distributions in D1 whose extension by 0 to ∂D
belongs to H−1/2(∂D), and since H1/2(D1) is the space of restrictions to D1 of elements from H1/2(∂D) (see
Section 2.1), it is enough to prove that the asymptotic formula in the statement of Lemma 5.3 holds when
all the operators at play are seen as operators from H−1/2(∂D) into H1/2(∂D).
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To this end, let us first simplify the expression (5.10) for the function LA(εx)(εx, εy) featured in the
definition (5.14) of the operator Tε

∀x, y ∈ D1, x 6= y, LA(εx)(εx, εy) =
−1

π
√
|detA(εx)|

log |M(εx)(εx− εy)| .

The matrix field A is given by (5.6), and its definition readily implies that A(εx) tends to γ(0)I in Ck(V )
for any integer k ≥ 0 and any relatively compact open neighborhood V of 0 in R2. Hence, Tε may be
decomposed as:

(5.30) Tεϕ =
1

πγ(0)
(| log ε|+ α)

∫
D1

ϕ ds+
2

γ(0)
S1ϕ

+

(
1

π
√
|detA(εx)|

− 1

πγ(0)

)
(| log ε|+ α)

∫
D1

ϕ ds+ TKεϕ ,

where TKε is the integral operator with kernel Kε(x, x− y), and Kε is given by

Kε(x, z) :=
1

πγ(0)
log |z| − 1

π
√
|detA(εx)|

log
∣∣∣√γ(0)M(εx)z

∣∣∣ .
The first two terms in the right-hand side of (5.30) correspond to the desired limiting behavior for Tε, and
the third term is easily seen to converge to 0 as an operator from H−1/2(∂D) into H1/2(∂D). We then
focus on the operator TKε . It is easy to verify that Kε is a homogeneous kernel of class −1 in the sense of
Definition D.1. Hence, Theorem D.1 implies that TKε maps H−1/2(∂D) into H1/2(∂D). Note that we may
modify Kε, in such a way that it vanishes outside a sufficently large compact set (since the definition of TKε
only involves values Kε(x, x− y) for x, y ∈ ∂D). With this modification we have

sup
|α|≤k
|β|≤k

sup
x∈Rd

sup
|z|=1

∣∣∣∣ ∂α∂xα ∂β

∂zβ
Kε(x, z)

∣∣∣∣ ε→0−−−→ 0 ,

for any integer k. In view of Theorem D.1, TKε converges to 0 in the operator norm

sup
ϕ∈H−1/2(∂D)

||ϕ||
H−1/2(∂D)

≤1

||TKεϕ||H1/2(∂D)
ε→0−−−→ 0 ,

which finishes the proof. �

Proof of Lemma 5.4. Proof of (i). Let D ⊂ R2 be a smooth bounded domain, whose boundary ∂D is a
closed curve containing D1 as a subset. We also introduce another bounded Lipschitz domain V ⊂ R2 such
that D b V , and a smooth cut-off function χ ∈ C∞c (R2) such that χ ≡ 1 on a neighborhood of D and χ ≡ 0
on R2 \ V .

The proof follows an idea in [62, 63]; it relies on the connection between S1 and the single layer potential
SD : H−1/2(∂D)→ H1

loc(R2) associated with D, as defined in (2.4). More precisely

∀ϕ ∈ H̃−1/2(D1), S1ϕ = (SDϕ)|D1 ,

where the density ϕ in the right hand side is extended by 0 outside D1. We first show that S1 : H̃−1/2(D1)→
H1/2(D1) is a Fredholm operator with index 0 by adapting the argument of the proof of Th. 7.6 in [49]. The
classical mapping properties of the single layer potential SD imply that there exists a constant C > 0 such

that for any density ϕ ∈ H̃−1/2(D1), the associated potential u = SDϕ ∈ H1
loc(R2) satisfies

||χu||H1(R2) ≤ C||ϕ||H−1/2(∂D) .

Conversely, we infer from the jump relations (2.6) of the single layer potential that

(5.31) ||ϕ||H−1/2(∂D) =

∣∣∣∣∣∣∣∣∂(χu)+

∂n
− ∂(χu)−

∂n

∣∣∣∣∣∣∣∣
H−1/2(∂D)

≤ C||χu||H1(R2) .
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Now, using again (2.6) together with integration by parts, we obtain that, for ϕ ∈ H̃−1/2(D1),

〈S1ϕ,ϕ〉 =

∫
∂D

SDϕ ϕ ds =

∫
∂D

χu

(
∂(χu)+

∂n
− ∂(χu)−

∂n

)
ds

= −
∫
R2

|∇(χu)|2 dx−
∫
R2\D

∆(χu)χu dx

= −
∫
R2

|∇(χu)|2 dx−
∫
R2\D

(
∆χu+ 2∇χ · ∇u

)
χu dx

= −
∫
R2

|∇(χu)|2 dx−
∫
R2\D

(
χ(∆χ)u2 + 2u∇χ · ∇(χu)− 2u2|∇χ|2

)
dx ,

which we rewrite as

(5.32)

∫
R2

|∇(χu)|2 dx = −〈S1ϕ,ϕ〉 −
∫
R2\D

(
χ(∆χ)u2 + 2u∇χ · ∇(χu)− 2u2|∇χ|2

)
dx .

The Cauchy-Schwarz inequality (and rearrangement) now implies the existence of a constant C such that

||∇(χu)||2L2(R2)2 ≤ C
(
||S1ϕ||H1/2(D1)||ϕ||H̃−1/2(D1) + ||u||2L2(V )

)
.

A combination with (5.31), and insertion of u = SDϕ, yields the existence of a constant C such that, for

arbitrary ϕ ∈ H̃−1/2(D1) (extended by 0 outside D1)

(5.33) ||ϕ||H̃−1/2(D1) = ||ϕ||H−1/2(∂D) ≤ C
(
||S1ϕ||H1/2(D1) + ||SDϕ||L2(V )

)
.

Since the mapping H−1/2(∂D) 3 ϕ 7→ SDϕ ∈ H1(V ) is continuous and the injection H1(V ) → L2(V )
is compact, an application of Peetre’s Lemma B.1 to (5.33) reveals that S1 has finite dimensional kernel

Ker(S1) ⊂ H̃−1/2(D1), and closed range Ran(S1) ⊂ H1/2(D1). Finally, since S1 is self-adjoint, it follows that

Ker(S1) = Ran(S1)⊥, and so Ran(S1) = Ker(S1)⊥ .

In summary S1 is a Fredholm operator with index 0.

In order to prove that S1 is invertible, it thus suffices to prove that it is injective on H̃−1/2(D1). To

this end, let ϕ ∈ H̃−1/2(D1) be such that S1ϕ = 0 on D1. We assume first that ϕ has mean 0, that is
〈ϕ, 1〉 =

∫
∂D

ϕ ds = 0. Then, the associated single layer potential SDϕ : R2 → R satisfies the decay property

(5.34) |SDϕ(x)| = O
(

1

|x|

)
as |x| → ∞;

see (2.9). From the same integration by parts which led to (5.32) (and which can now be carried out without
introducing a cut-off function χ because of the decay property (5.34)), we obtain

(5.35) 〈S1ϕ,ϕ〉 = 0 = −
∫
R2

|∇(SDϕ)|2 dx,

and so SDϕ = 0 on R2. As a result,

ϕ =
∂(SDϕ)+

∂n
− ∂(SDϕ)−

∂n
= 0 on ∂D,

as desired. Finally, let us consider the general case where S1ϕ = 0 but 〈ϕ, 1〉 does not necessarily vanish.

From Proposition C.1, the function ϕc ∈ H̃−1/2(D1) defined by:

ϕc(x1) =
1

π
√

1− x2
1

is such that:

〈ϕc, 1〉 = 1, and S1ϕc =
log 2

2π
on D1.

Hence, the element ϕ0 ∈ H̃−1/2(D1) defined by:

ϕ0 = ϕ− 〈ϕ, 1〉ϕc,
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satisfies the following properties:

〈ϕ0, 1〉 = 0 and S1ϕ0 = −〈ϕ, 1〉S1ϕc = − log 2

2π
〈ϕ, 1〉,

so that 〈S1ϕ0, ϕ0〉 = 0. The same calculation as in (5.35) reveals that ϕ0 = 0, and so ϕ = 〈ϕ, 1〉ϕc.
Eventually, since S1ϕ = 0, we obtain 〈ϕ, 1〉 = 0, so that ϕ = 0, as desired.

Proof of (ii). Both formulas (5.19) and (5.20) follow from simple calculations. �

Remark 5.2. A significantly simpler proof of Theorem 5.1 can be given, under the additional assumption
that the boundary ∂Ω is completely flat in a fixed neighborhood U of the ωε (i.e. ∂Ω∩U = ∂H ∩U) and that
the conductivity γ is constant in such a neighborhood.

5.2. Adaptation to the three-dimensional case

We proceed with the three-dimensional version of the general problem described at the beginning of this
section: the background and perturbed potentials u0 and uε are still characterized by the equations (5.2),
and we look for the asymptotic expansion of uε as the size ε of the subset ωε ⊂ ∂Ω, defined by (5.1), vanishes.

The counterpart of Theorem 5.1 is the following. Since the proof is quite similar in most aspects, we only
elaborate on the differences.

Theorem 5.2. The following asymptotic expansion holds at any point x ∈ Ω, x /∈ Σ ∪ {0}:
uε(x) = u0(x)− 4εγ(0)u0(0)N(x, 0) + o(ε) .

Proof. As in the two-dimensional case, we introduce the transported functions v0 := u0 ◦T and vε := uε ◦T .
These are characterized as the unique H1(O) solutions to the problems in (5.5), which feature the smooth
matrix field A ∈ C∞(R3,R3×3) and source term g ∈ C∞(R3) defined as in (5.6). We also introduce the error
rε := uε − u0 ∈ H1(Ω) and its transformed version sε := vε − v0 ∈ H1(O). The proof of the theorem again
proceeds in four steps.

Step 1. We construct a representation formula for uε in terms of the values of rε inside ωε. Arguing as in
the first step of the proof of Theorem 5.1, we prove that, for any point x ∈ Ω

uε(x) = u0(x) +

∫
ωε

γ(y)
∂rε
∂ny

(y)N(x, y) ds(y) ,

an identity which also holds for x ∈ ∂Ω in the sense of traces in H1/2(∂Ω). Performing a change of variables
based on the diffeomorphism T we arrive at

(5.36) uε(x) = u0(x) +

∫
D1

ϕε(z)N(x, T (εz)) ds(z) ,

where the rescaled density ϕε is given by

ϕε(z) = ε2(A∇sε · n)(εz) ∈ H̃−1/2(D1) .

Step 2. We characterize ϕε as the solution to an integral equation. To this end, again, we rely on a variant of
the representation formula (5.36) adapted to the function vε, and obtained with the use of a special function
y 7→ LA(x)(x, y) which satisfies, for given x ∈ H

(5.37)

{
−divy(A(x)∇yLA(x)(x, y)) = δy=x in H,
A(x)∇yLA(x)(x, y) · n(y) = 0 on ∂H.

The construction of such a function is accomplished exactly as in the two-dimensional case; see (5.9) and
Lemma 5.1. The same calculations as in Step 2 of the proof of Theorem 5.1 then yield, for a.e. x ∈ Dε

−v0(x) = −
∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇sε(y) dy

+

∫
ΓD

(A∇sε · n)(y) LA(x)(x, y) ds(y) +

∫
Dε

(A∇sε · n)(y) LA(x)(x, y) ds(y) ,(5.38)
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which, after rescaling, reads

−v0(εx) = −
∫
∂O\U

A(εx)∇yLA(εx)(εx, y) · n(y)sε(y) ds(y)+

∫
O

(A(εx)−A(y))∇yLA(εx)(εx, y) · ∇sε(y) dy

+

∫
ΓD

(A∇sε · n)(y) LA(εx)(εx, y) ds(y) +

∫
D1

ϕε(z) LA(εx)(εx, εz) ds(z) ,

for a.e. x ∈ D1. This can be recast in the form of an integral equation

(5.39) Tεϕε = −u0(0) + ηε ,

where the operator Tε : H̃−1/2(D1)→ H1/2(D1) is defined by

Tεϕ(x) =

∫
D1

ϕ(z) LA(εx)(εx, εz) ds(z) ,

and ηε ∈ H1/2(D1) denotes the remainder

(5.40) ηε(x) = u0(0)− v0(εx) +

∫
∂O\U

A(εx)∇yLA(εx)(εx, y) · n(y)sε(y) ds(y)

−
∫
O

(A(εx)−A(y))∇yLA(εx)(εx, y) · ∇sε(y) dy −
∫

ΓD

(A∇sε · n)(y) LA(εx)(εx, y) ds(y) .

Step 3. We analyze the integral equation (5.39) to obtain information about the asymptotic behavior of
ϕε. To this end, we rely on the following two lemmata, which are the exact counterparts of Lemma 5.2 and
Lemma 5.3 in the present 3d situation; their proofs are outlined at the end of this section.

Lemma 5.5. The remainder term ηε ∈ H1/2(D1), defined in (5.40), satisfies

(5.41) ηε
ε→0−−−→ 0 weakly in H1/2(D1) .

Lemma 5.6. The following asymptotic expansion holds

(5.42) sup
ϕ∈H̃−1/2(D1)

||ϕ||
H̃−1/2(D1)

≤1

ε

∣∣∣∣∣∣∣∣Tεϕ− 2

εγ(0)
S1ϕ

∣∣∣∣∣∣∣∣
H1/2(D1)

ε→0−−−→ 0 ,

where the operator S1 : H̃−1/2(D1)→ H1/2(D1) is defined by

(5.43) S1ϕ(x) =
1

4π

∫
D1

1

|x− y|ϕ(y) ds(y), x ∈ D1 .

Using this result in combination with the integral equation (5.39), we see that the function ϕε ∈ H̃−1/2(D1)
satisfies the integral equation

(5.44) S1ϕε +Rεϕε = −ε
2
γ(0)u0(0) +

εγ(0)

2
ηε ,

where Rε : H̃−1/2(D1)→ H1/2(D1) is a sequence of operators whose norms converge to 0 and the sequence
ηε converges to 0 weakly in H1/2(D1). The study of this approximate version of our integral equation (5.39)
relies on the following lemma, whose proof is also postponed.

Lemma 5.7. The operator S1 : H̃−1/2(D1)→ H1/2(D1) is invertible.

It then follows from (5.44), Lemma 5.7, and the use of a Neumann series, that the function ϕε ∈ H̃−1/2(D1)
satisfies:

ϕε = −ε
2
γ(0)u0(0)S−11 + εη̃ε ,

where η̃ε is a sequence converging to 0 weakly inH1/2(D1), and S−1
1 1 is the equilibrium distribution associated

with the operator S1, which is explicitly given by (C.1) in Proposition C.1 of the appendix. In particular,
we infer from (C.2) that

(5.45) 〈ϕε, 1〉 = −4εγ(0)u0(0) + o (ε) ,
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which is the needed information about ϕε for the next step.

Step 4. We pass to the limit in the representation formula (5.36), which is valid for any point x ∈ Ω,
x /∈ Σ ∪ {0}. Arguing as in the final step of the proof of Theorem 5.1, we obtain

uε(x) = u0(x) +

∫
D1

ϕε(z)N(x, 0) ds(z) + o(ε) ,

and the result follows from (5.45). �

We now provide a few details about the missing ingredients in the above proof.

Proof of Lemma 5.5. As in the proof of Lemma 5.2, we denote the four terms in the right-hand side of (5.40)
by Iiε(x), i = 1, . . . , 4. The exact same arguments as in the two-dimensional case show that I1

ε , I2
ε and I4

ε

converge to 0 strongly in H1/2(D1), and we focus on the treatment of the last term

(5.46) I3
ε (x) := −

∫
O

(A(εx)−A(y))∇yLA(εx)(εx, y) · ∇sε(y) dy .

From the explicit expression for the function LA(εx) supplied by Lemma 5.1 and Remark 5.1, a simple
calculation yields, for x ∈ D1

∇yLA(εx)(εx, y) =
−1

2π
√

det(A(εx))

M2(εx)(y − εx)

|M(εx)(y − εx)|3 .

Hence, using the Cauchy-Schwarz inequality and a switch to polar coordinates, we obtain

|I3
ε (x)| ≤ C

∫
O

1

|εx− y| |∇sε(y)| dy

≤ C

(∫
O

1

|εx− y|2 dy

)1/2

||sε||H1(O)

≤ C||sε||H1(O) .

Invoking Lemma 3.2 ( Remark 3.1) about the asymptotic behavior of sε together with the estimate (2.15),
we conclude that

|I3
ε (x)| ε→0−−−→ 0 uniformly in x ∈ D1 ,

and in particular,

(5.47) ||I3
ε ||L2(D1) → 0 .

Let us now consider the H1/2(D1) convergence of I3
ε . To this end, we return to the formula Section 5.2,

which we rewrite

I3
ε

(x
ε

)
= −sε(x)−

∫
∂O\U

A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y) +

∫
ΓD

(A∇sε · n)(y) LA(x)(x, y) ds(y)

+

∫
Γ̂N

(A∇sε · n)(y) LA(x)(x, y) ds(y), x ∈ Dε .

This identity, and the mapping properties of the integral operator with kernel LA(x)(x, y) stated in Theo-
rem D.1 readily imply that ∣∣∣I3

ε

( ·
ε

)∣∣∣
H1/2(Dε)

≤ C||sε||H1(O) .

After a change of variables in the semi-norm | · |H1/2(Dε), the above estimate yields

ε
1
2 |I3

ε |H1/2(D1) ≤ C||sε||H1(O) ,

and since ||sε||H1(O) ≤ Cε
1
2 as a consequence of Lemma 3.2 ( Remark 3.1) and (2.15), it follows that the

function I3
ε is bounded in H1/2(D1). Hence, up to a subsequence, it converges to a limit weakly in H1/2(D1),

which is necessarily 0 by virtue of (5.47). Finally, by uniqueness of the weak limit (that is, regardless of the
chosen subsequence for the weak H1/2(D1) convergence of I3

ε ), the whole sequence I3
ε converges to 0 weakly

in H1/2(D1), which completes the proof. �

We next turn to the proof of the approximation Lemma 5.6.
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Proof of Lemma 5.6. Let D ⊂ R3 be a smooth bounded domain whose boundary contains D1. The kernel
LA(εx)(εx, εy) of the operator Tε reads, for x, y ∈ D1, x 6= y

LA(εx)(εx, εy) =
1

2πε
√
|detA(εx)|

1

|M(εx)(x− y)| ,

see (5.10). Let us now recall from (5.6) that the matrix field A(εx) tends to γ(0)I in Ck(V ) for any integer
k ≥ 0 and any open, relatively compact neighborhood V of 0 in R3. Tε may be decomposed as

Tεϕ =
2

εγ(0)
S1ϕ+ TKεϕ ,

where TKε is defined as the integral operator with kernel Kε(x, x− y), and Kε denotes the following homo-
geneous kernel of class −1, in the sense of Definition D.1,

Kε(x, z) :=
1

2πε
√

det(A(εx))

1

|M(εx)z| −
1

2πεγ(0)|z| .

According to Theorem D.1, this operator maps H−1/2(∂D) into H1/2(∂D). For any integer k ≥ 0, we
furthermore have

sup
|α|≤k
|β|≤k

sup
x∈Rd

sup
|z|=1

∣∣∣∣ ∂α∂xα ∂β

∂zβ
Kε(x, z)

∣∣∣∣ ε→0−−−→ 0 .

Here we have, again, “cut off” Kε outside a sufficiently large compact set. In light of Theorem D.1, this
limiting behaviour implies that TKε converges to 0 as an operator from H−1/2(∂D) into H1/2(∂D), and so

as an operator from H̃−1/2(D1) into H1/2(D1), which is the desired result. �

Sketch of proof of Lemma 5.7. The proof is very similar to that of Lemma 5.4, and we only point out the
differences. Repeating mutatis mutandis the argument presented in the two-dimensional case, one sees that
the operator S1 is still Fredholm with index 0, and so, it suffices to prove that it is injective. To achieve this,

let φ ∈ H̃−1/2(D1) be a density such that S1φ = 0, and let u = SDφ ∈ H1
loc(R3) be the associated potential.

Because of the decay properties at infinity (2.8) of the single layer potential in three space dimensions (which
hold even if 〈ϕ, 1〉 6= 0), an integration by parts similar to that which led to (5.32), reveals that

0 = 〈S1φ, φ〉 = −
∫
R3

|∇u|2 dx .

Hence u is constant on R3. Since |u(x)| → 0 as |x| → ∞, it follows that u vanishes identically, and so does

φ = −
(
∂u
∂n

+ − ∂u
∂n

−)
. This shows the injectivity (and thus the bijectivity) of S1. �

6. An explicit asymptotic formula for the case of substituting Neumann conditions

This section exemplifies the general physical setting of Section 4: we consider a smooth, bounded domain
Ω in Rd, whose boundary is made of two disjoint, open Lipschitz subregions ΓD, ΓN : ∂Ω = ΓD ∪ ΓN . Σ
denotes the interface between ΓD and ΓN . The geometric setting is exactly as in Section 5, only with the
roles of ΓD and ΓN interchanged. The vanishing subset ωε ⊂ ΓD is of the same nature as in (5.1): it is the
image of the planar disk Dε with radius ε around 0 by the smooth diffeomorphism T that maps the domain

O (whose boundary is flat in a fixed neighborhood U of 0) onto Ω. We also denote Γ̂D = T−1(ΓD) and we
assume for convenience that T coincides with the identity mapping far from 0, so that T−1(ΓN ) = ΓN . The
background potential and the perturbed potential, u0 and uε, respectively, are the solutions to the equations

(6.1)


−div(γ∇u0) = f in Ω,

u0 = 0 on ΓD,

γ ∂u0

∂n = 0 on ΓN ,
and


−div(γ∇uε) = f in Ω,

uε = 0 on ΓD \ ωε,
γ ∂uε∂n = 0 on ΓN ∪ ωε.

Our aim is to derive a precise first order asymptotic expansion of uε when ε→ 0. In order to emphasize the
similarity of this study with that conducted in Section 5, we use the same notation whenever possible. Our
main result is the following.
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Theorem 6.1. Let d = 2 or 3 and let x ∈ Ω, x /∈ Σ ∪ {0}. One has the asymptotic expansion

uε(x) = u0(x) + adε
dγ(0)

∂u0

∂n
(0)

∂N

∂ny
(x, 0) + o(εd) ,

where the constant ad is given by

ad =

{
π
2 if d = 2,
1
3 if d = 3.

Sketch of the proof. As in the proof of (5.3), we proceed in four steps, introducing the difference rε :=
uε − u0 ∈ H1(Ω).

Step 1. We construct a representation formula for uε which only involves the values of rε inside ωε, and the
fundamental solution N(x, y) to the background equation in (6.1).

To this end, let x ∈ Ω be arbitrary; using the definition of N(x, y) and integrating by parts twice, we
obtain

uε(x) = −
∫

Ω

divy(γ(y)∇yN(x, y))uε(y) dy

= −
∫
∂Ω

γ(y)
∂N

∂ny
(x, y)uε(y) ds(y) +

∫
Ω

γ(y)∇yN(x, y) · ∇uε(y) dy

= −
∫
ωε

γ(y)
∂N

∂ny
(x, y)uε(y) ds(y) +

∫
Ω

f(y)N(x, y) dy ,

where the last line follows from the facts that

γ(y)
∂N

∂n
(x, y) = γ(y)

∂uε
∂n

(y) = 0 for y ∈ ΓN , N(x, y) = 0 for y ∈ ΓD and uε(y) = 0 for y ∈ ΓD \ ωε .
Using that uε = uε − u0 = rε on ωε in the previous equation, we get for x ∈ Ω

(6.2) uε(x) = u0(x)−
∫
ωε

γ(y)
∂N

∂ny
(x, y)rε(y) ds(y) .

The above identity also holds for x ∈ Ω, x /∈ Σ ∪ {0} provided ε is small enough, since all the quantities
involved are smooth in a neighborhood of such points.

Next, we introduce the transformed potentials v0 := u0 ◦ T and vε := uε ◦ T on the domain O. A change
of variables in the variational formulations for (6.1) reveals that v0 and vε are the unique H1(O) solutions
to the equations

(6.3)


−div(A∇v0) = g in O,

v0 = 0 on Γ̂D,
(A∇v0) · n = 0 on ΓN ,

and


−div(A∇vε) = g in O,

uε = 0 on Γ̂D \ Dε,
(A∇vε) · n = 0 on ΓN ∪ Dε,

where g ∈ C∞(Rd) and A ∈ C∞(Rd,Rd×d) are the smooth function and the matrix field defined by

(6.4) g = |det(∇T (y))|f(T (y)), and A(y) = |det(∇T (y))|γ(T (y))∇T (y)−1(∇T (y)t)−1 .

Changing variables in the integral featured in (6.2) and rescaling, we arrive at

(6.5) uε(x) = u0(x)−
∫
D1

γ(T (εy))
∂N

∂ny
(x, T (εy))ϕε(y) ds(y) ,

where we have introduced the function sε := rε ◦ T , and the quantity ϕε ∈ H̃1/2(D1) defined by

(6.6) ϕε(y) = εd−1sε(εy) .

This is the desired representation formula.

Step 2. We characterize ϕε as the solution to an integral equation. This arises from a representation formula
for uε which differs slightly from (6.5): it is obtained by repeating the derivation of Step 1, except that a
different, explicit fundamental solution LA(x)(x, y) is used in place of N(x, y). For any symmetric, positive
definite matrix A, and any x ∈ H, let LA(x, y) be a solution to the following boundary value problem posed
on the lower half-space H

(6.7)

{
−divy(A∇yLA(x, y)) = δy=x in H,

LA(x, y) = 0 on ∂H.
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An explicit formula for one such function is provided by the next lemma, whose proof is completely analogous
to that of Lemma 5.1 and is therefore omitted.

Lemma 6.1. Let A be a symmetric, positive definite d× d matrix, and let M := A−1/2. Let G(x, y) be the
fundamental solution of the operator −∆ in free space, cf. (2.3). The function LA(x, y) defined by

(6.8) LA(x, y) = |detM |
(
G(Mx,My)−G(Mx,My − 2yd

M−1ed
|M−1ed|2

)
, x 6= y ,

satisfies (6.7).

For a point x ∈ O, we obtain from two successive integrations by parts

vε(x) = −
∫
O

divy(A(x)∇yLA(x)(x, y))vε(y) dy

= −
∫
∂O

A(x)∇yLA(x)(x, y) · n(y)vε(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇vε(y) dy

+

∫
∂O

(A∇vε · n)(y) LA(x)(x, y) ds(y) +

∫
O
g(y)LA(x)(x, y) dy .

The same calculation based on the function v0, instead of vε, yields

v0(x) = −
∫
∂O

A(x)∇yLA(x)(x, y) · n(y)v0(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇v0(y) dy

+

∫
∂O

(A∇v0 · n)(y) LA(x)(x, y) ds(y) +

∫
O
g(y)LA(x)(x, y) dy .

Forming the difference between these identities, and using the boundary conditions for v0 and vε we obtain

(6.9) sε(x) = −
∫

ΓN

A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y) +

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇sε(y) dy

+

∫
∂O\U

(A∇sε · n)(y) LA(x)(x, y) ds(y)−
∫
Dε
A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y).

We now wish to take the trace of a co-normal derivative of the above identity on Dε. This is possible owing
to the next lemma, whose proof is postponed to the end of this section.

Lemma 6.2. Let us define the operator Mε : H̃1/2(Dε)→ H1(O) by

Mεϕ(x) =

∫
Dε
A(x)∇yLA(x)(x, y) · n(y)ϕ(y) ds(y) .

There exists a constant C, depending only on the matrix field A(x) and the domain O such that, for all

ϕ ∈ H̃1/2(Dε),
||Mεϕ||H1(O) + ||divx(A(x)∇x(Mεϕ))||L2(O) ≤ C||ϕ||H̃1/2(Dε) .

Using this lemma we obtain the following identity between elements of H−1/2(Dε):

−A(x)∇v0(x) · n(x) = −
∫

ΓN

A(x)∇x
(
A(x)∇yLA(x)(x, y) · n(y)

)
· n(x) sε(y) ds(y)

+A(x)∇
(∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇sε(y) dy

)
· n(x)(6.10)

+

∫
∂O\U

(A∇sε · n)(y)A(x)∇x(LA(x)(x, y)) · n(x) ds(y)

−
∫
Dε

(
A(x)∇x

(
A(x)∇yLA(x)(x, y) · n(y)

)
· n(x)

)
sε(y) ds(y) .

We rewrite the latter as

(6.11) −A(x)∇v0(x) · n(x) = R1
ε(x) +A(x)∇Kε(x) · n(x) +R2

ε(x)−
∫
Dε
P (x, y) sε(y) ds(y) ,
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where we have defined the following quantities on Dε

(6.12) R1
ε(x) := −

∫
ΓN

A(x)∇x
(
A(x)∇yLA(x)(x, y) · n(y)

)
· n(x) sε(y) ds(y) ,

Kε(x) :=

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇sε(y) dy ,

R2
ε(x) :=

∫
∂O\U

(A∇sε · n)(y)A(x)∇x(LA(x)(x, y)) · n(x) ds(y) ,

and the kernel

(6.13) P (x, y) := A(x)∇x(A(x)∇yLA(x)(x, y) · n(y)) · n(x) , x, y ∈ Dε .

Rescaling (6.11), we finally arrive at the following integral equation on D1

(6.14) Tεϕε = γ(0)
∂u0

∂n
(0) + ηε,

where the unknown ϕε ∈ H̃1/2(D1) is the quantity introduced in (6.6), the operator Tε : H̃1/2(D1) →
H−1/2(D1) is defined by

(6.15) Tεϕ(x) =

∫
D1

ϕ(z) P (εx, εz) ds(z) ,

and the remainder ηε ∈ H−1/2(D1) is given by

(6.16) ηε(x) =
(

(A∇v0 · n)(εx)− γ(0)
∂u0

∂n
(0)
)

+R1
ε(εx) +R2

ε(εx) + (A∇Kε · n)(εx) .

Step 3. We study the integral equation (6.14) to obtain information about the limiting behavior of ϕε as
ε→ 0. To this end, we estimate the remainder ηε and we approximate the operator Tε; this is possible due
to the following lemmata, whose proofs are detailed at the end of this section.

Lemma 6.3. The remainder term ηε ∈ H−1/2(D1) defined in (6.16) satisfies

(6.17) ηε
ε→0−−−→ 0 weakly in H−1/2(D1) .

Lemma 6.4. The operator Tε in (6.15) satisfies the following expansion

(6.18) sup
ϕ∈H̃1/2(D1)

||ϕ||
H̃1/2(D1)

≤1

εd
∣∣∣∣∣∣∣∣Tεϕ− 2γ(0)

εd
R1ϕ

∣∣∣∣∣∣∣∣
H−1/2(D1)

ε→0−−−→ 0 ,

where the hypersingular operator R1 : H̃1/2(D1)→ H−1/2(D1) is defined by

(6.19) R1ϕ(x) =


1

2π

∫
D1

1

|x− y|2ϕ(y) ds(y) if d = 2 ,

1

4π

∫
D1

1

|x− y|3ϕ(y) ds(y) if d = 3 ,

and the above integrals are understood as finite parts; see Section 2.2.

Inserting the approximation (6.18) in the integral equation (6.14), the function ϕε ∈ H̃1/2(D1) satisfies:

(6.20) R1ϕε +Rεϕε =
εd

2

∂u0

∂n
(0) + εdη̃ε ,

for some sequence η̃ε ∈ H−1/2(D1) which converges weakly to 0, and some operators Rε : H̃1/2(D1) →
H−1/2(D1), which converge to zero in the operator norm. This integral equation can now be solved owing
to the next lemma, whose proof is also postponed to the end of this section.

Lemma 6.5. The operator R1 : H̃1/2(D1)→ H−1/2(D1) defined in (6.19) is invertible.
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Using this result together with Neumann series to invert the integral equation (6.20), we obtain the
existence of a constant C > 0 such that

(6.21) ||ϕε||H̃1/2(D1) ≤ Cεd,

as well as the following asymptotic expansion

(6.22) 〈ϕε, 1〉 =
εd

2

∂u0

∂n
(0)〈R−1

1 1, 1〉+ o(εd) ,

where the explicit expression for the constant 〈R−1
1 1, 1〉 is given by Proposition C.1 (ii), (iv).

Step 4. We pass to the limit in the representation formula (6.5) for uε. Arguing as in the proof of Theorem 5.1,
that is, combining a Taylor expansion of the function z 7→ γ(T (εz)) ∂N∂ny (x, T (εz)) with the estimate (6.21),

we obtain:

uε(x) = u0(x)−
(∫

D1

ϕε(z) ds(z)

)
γ(0)

∂N

∂ny
(x, 0) + o(εd) ,

= u0(x)− εd

2
〈R−1

1 1, 1〉γ(0)
∂u0

∂n
(0)

∂N

∂ny
(x, 0) + o(εd) ,

where the second line follows from (6.22). The explicit expressions for the constant 〈R−1
1 1, 1〉 in 2d and 3d

provided in Proposition C.1 (ii), (iv) lead to the statement of the Theorem. �

We conclude this section with the missing arguments in the above proof.

Proof of Lemma 6.2. The intuition behind the technical argument below is the following: if Mεϕ was the
double layer potential associated with the operator u 7→ divy(A(y)∇yu) (see Section 2.2), the quantity
div(A∇(Mεϕ)) would vanish exactly on O. Unfortunately, this is not the case since (x, y) 7→ LA(x)(x, y) is
not the fundamental solution of this operator. However, the following calculations show that Mεϕ is “not too
far” from this double layer potential, so that the terms of highest-order derivatives vanish in the expression
of div(A∇(Mεϕ)), and the lower-order terms can be controlled.

Before starting, let us introduce some notations. For the sake of clarity, we denote by L(A, x, y) := LA(x, y)
the function defined in Lemma 6.1. The corresponding partial derivatives with respect to the entries ajk
(j, k = 1, . . . d) of the matrix A, and with respect to the components xi, yi of x and y (i,= 1, . . . , d) are
denoted by ∂L

∂ajk
, ∂L
∂xi

, ∂L
∂yi

. Throughout the proof, r(ϕ) ∈ L2(O) stands for a remainder term, which may

vary from one line to the other, but which consistently satisfies the following estimate

||r(ϕ)||L2(O) ≤ C||ϕ||H̃1/2(De) .

At first, using the expression for L(A(x), x, y) given in Lemma 6.1, we calculate

(6.23) A(x)∇yL(A(x), x, y) · n(y) =


−1

π
√

detA(x)

(y−x)·n(y)
|M(x)(y−x)|2 if d = 2,

−1

2π
√

detA(x)

(y−x)·n(y)
|M(x)(y−x)|3 if d = 3,

x ∈ Rd, y ∈ Dε, x 6= y .

Recalling from Section 2.1 the definition of the space H̃1/2(Dε), and notably the fact that the associated
norm is ||u||H̃1/2(Dε) = ||u||H1/2(∂O), Theorem D.2 then implies that Mεϕ ∈ H1(O) and that there exists a

constant C > 0 independent of ε such that

||Mεϕ||H1(O) ≤ C||ϕ||H̃1/2(Dε) .

We now proceed to prove the estimate

(6.24) ||divx(A(x)∇x(Mεϕ))||L2(O) ≤ C||ϕ||H̃1/2(Dε) .

For an arbitrary point x ∈ O, the definition of Mεϕ boils down to:

Mεϕ(x) =

d∑
i,j=1

aij(x)

∫
Dε

∂L

∂yj
(A(x), x, y)ni(y)ϕ(y) ds(y) .
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Since ni(y) = 0 on Dε for i = 1, . . . , d − 1, and since the matrix field A(x) is smooth and the function
y 7→ L(A(x), x, y) satisfies homogeneous Dirichlet boundary conditions on ∂H, the above expression actually
simplifies into

Mεϕ(x) = add(x)

∫
Dε

∂L

∂yd
(A(x), x, y)ϕ(y) ds(y) .

Taking derivatives, we now get, for x ∈ O, and i = 1, . . . , d ,

(6.25)

∂

∂xi
(Mεϕ)(x) =

∂add
∂xi

(x)

∫
Dε

∂L

∂yd
(A(x), x, y)ϕ(y) ds(y)

+add(x)
∂

∂xi

(∫
Dε

∂L

∂yd
(A(x), x, y)ϕ(y) ds(y)

)
=: Vi(ϕ)(x) +Wi(ϕ)(x) ,

with obvious notations. We infer from this expression that

(6.26) divx(A(x)∇x(Mεϕ)) = div(A(x)V (ϕ)) + div(A(x)W (ϕ)).

Each function Vi(ϕ) is the multiple of a smooth function with a potential associated to the kernel ∂L
∂yd

(A(x), x, y),

y ∈ Dε. A simple calculation, similar to (6.23), reveals that the latter is (the restriction of) a homogeneous
kernel of class 0 in the sense of Definition D.1. It then follows from Theorem D.2 that

||V (ϕ)||H1(O)d ≤ C||ϕ||H1/2(∂O) = C||ϕ||H̃1/2(Dε) ,

and so

(6.27) ||div(A(x)V (ϕ))||L2(O) ≤ C||ϕ||H̃1/2(Dε) .

We then focus on the second term div(A(x)W (ϕ)) in (6.26). A straightforward calculation yields, for x ∈ O,

div(A(x)W (ϕ))(x) =

d∑
i,j=1

∂

∂xi
(aijadd)(x)

∂

∂xj

(∫
Dε

∂L

∂yd
(A(x), x, y)ϕ(y) ds(y)

)
+ add(x)

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

(∫
Dε

∂L

∂yd
(A(x), x, y)ϕ(y) ds(y)

)
= r(ϕ) + add(x)

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

(∫
Dε

∂L

∂yd
(A(x), x, y)ϕ(y) ds(y)

)
,

where we have used a similar argument to that used in the treatment of the functions Vi(ϕ) to pass from
the first line to the second. Using the chain rule to proceed, we obtain

(6.28)

div(A(x)W (ϕ)) = add(x)

d∑
i,j=1

aij(x)
∂

∂xi

(
d∑

k,l=1

∂akl
∂xj

(x)

∫
Dε

∂2L

∂akl∂yd
(A(x), x, y)ϕ(y) ds(y)

+

∫
Dε

∂2L

∂xj∂yd
(A(x), x, y)ϕ(y) ds(y)

)
+ r(ϕ)

= add(x)

d∑
i,j=1

d∑
k,l=1

aij(x)
∂2akl
∂xi∂xj

(x)

∫
Dε

∂2L

∂akl∂yd
(A(x), x, y)ϕ(y) ds(y)

+add(x)

d∑
i,j=1

d∑
k,l=1

aij(x)
∂akl
∂xj

(x)
∂

∂xi

(∫
Dε

∂2L

∂akl∂yd
(A(x), x, y)ϕ(y) ds(y)

)

+add(x)

d∑
i,j=1

d∑
k,l=1

aij(x)
∂akl
∂xi

(x)

∫
Dε

∂3L

∂akl∂xj∂yd
(A(x), x, y)ϕ(y) ds(y)

+add(x)

d∑
i,j=1

aij(x)

∫
Dε

∂3L

∂xi∂xj∂yd
(A(x), x, y)ϕ(y) ds(y) + r(ϕ),

=: add(x)
(
Z1(ϕ) + Z2(ϕ) + Z3(ϕ) + Z4(ϕ)

)
+ r(ϕ) ,

with obvious notations for Zm, m = 1, . . . , 4.
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We now remark that the function Z1(ϕ) is a linear combination of integral operators with smooth coeffi-

cients; the kernels of these operators are ∂2L
∂akl∂yd

, y ∈ Dε, and they are (restrictions of) homogeneous kernels

of class 0 in the sense of Definition D.1. Here, we use the fact that taking derivatives with respect to one of
the matrix entries akl changes neither the order, the homogeneity, nor the parity of the function involved.
It then follows from Theorem D.2 that

(6.29) ||Z1(ϕ)||H1(O) ≤ C||ϕ||H̃1/2(Dε) .

By the same token, we obtain

(6.30) ||Z2(ϕ)||L2(O) ≤ C||ϕ||H̃1/2(Dε) .

In order to estimate Z3(ϕ), we rewrite this quantity as

Z3(ϕ) =

d∑
i,j=1

d∑
k,l=1

aij(x)
∂akl
∂xi

(x)
∂

∂xj

(∫
Dε

∂2L

∂akl∂yd
(A(x), x, y)ϕ(y) ds(y)

)

−
d∑

i,j=1

d∑
k,l=1

d∑
k′,l′=1

aij(x)
∂akl
∂xi

(x)
∂ak′l′

∂xj
(x)

∫
Dε

∂3L

∂akl∂ak′l′∂yd
(A(x), x, y)ϕ(y) ds(y) ,

and arguing as above, we obtain

(6.31) ||Z3(ϕ)||L2(O) ≤ C||ϕ||H̃1/2(Dε) .

This leaves us with the task of estimating Z4(ϕ). To accomplish this, we rewrite the equation (6.7) satisfied
by L(A, x, y) as

d∑
i,j=1

aij
∂2L

∂yi∂yj
(A, x, y) = 0, x, y ∈ H, x 6= y ;

note that this holds for an arbitrary, symmetric, positive definite matrix A ∈ Rd×d, with entries aij . Due to
the symmetry property

∀x, y ∈ H, x 6= y, L(A, x, y) = L(A, y, x) ,

it follows that
d∑

i,j=1

aij
∂2L

∂xi∂xj
(A, x, y) = 0, x, y ∈ H, x 6= y .

Substituting A(x) = {aij(x)} for A and taking a derivative with respect to the yd variable, we get

d∑
i,j=1

aij(x)
∂3L

∂xi∂xj∂yd
(A(x), x, y) = 0 .

It follows that

(6.32) Z4(ϕ) = 0 .

Combining the estimates (6.29) to (6.32) with (6.26) to (6.28) we obtain the desired conclusion. �

We proceed with the proof of Lemma 6.3.

Sketch of the proof of Lemma 6.3. Let us denote by Iiε(x), i = 1, . . . , 4 the four terms in the right-hand side
of (6.16). We prove that each of these contributions tends to 0 weakly in H−1/2(D1) as ε→ 0.

At first, since v0 is smooth and (A∇v0 · n)(0) = γ(0)∂u0

∂n (0), the difference

I1
ε (x) =

(
(A∇v0 · n)(εx)− γ(0)

∂u0

∂n
(0)
)

is easily seen to converge to 0 strongly in H−1/2(D1). Furthermore, since the support of the integral

R1
ε(x) = −

∫
ΓN

A(x)∇x
(
A(x)∇yLA(x)(x, y) · n(y)

)
· n(x) sε(y) ds(y)
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is “far” from Dε, the convergence properties of sε expressed in Lemma 4.2 (Remark 4.2) and (4.3) imply that
R1
ε(x) converges to 0 uniformly for x in a fixed neighborhood of the sets Dε; in particular, I2

ε (x) = R1
ε(εx)

converges to 0 strongly in H−1/2(D1). The same argument shows that I3
ε (x) = R2

ε(εx) also converges to 0
strongly in H−1/2(D1).

This leaves us with the task of proving that I4
ε (x) = (A∇Kε ·n)(εx) converges to 0 weakly in H−1/2(D1).

Let us introduce a smooth bounded domain D ⊂ O, whose boundary contains D1. Furthermore, select D
so that D is bounded away from ΓN and ∂O \ U . Recalling the definition of H−1/2(D1) as the space of
restrictions to D1 of distributions in H−1/2(∂O) (see Section 2.1), it suffices to show that the vector-valued
function

σε(x) := (A∇Kε)(εx), x ∈ D ,

converges to 0 weakly in the Hilbert space

Hdiv(D) :=
{
σ ∈ L2(D)d, divσ ∈ L2(D)

}
.

We proceed in two steps to achieve this.

Step 1. We prove that σε is a bounded sequence in Hdiv(D). To this end, we return to (6.9), which, for
x ∈ D ⊂ O, reads

(6.33) sε(x) = −
∫

ΓN

A(x)∇yLA(x)(x, y) · n(y)sε(y) ds(y)

+

∫
∂O\U

(A∇sε · n)(y) LA(x)(x, y) ds(y) +Kε(x)−Mεsε(x),

with

Kε(x) =

∫
O

(A(x)−A(y))∇yLA(x)(x, y) · ∇sε(y) dy ,

and the quantity Mεsε is as in Lemma 6.2. It follows from Lemma 6.2 that Mεsε satisfies the following
estimate

||Mεsε(x)||H1(O) + ||div(A(x)∇(Mεsε))||L2(O) ≤ C||sε||H1/2(∂O) .

From (6.33), and the fact that D is bounded away from ΓN and ∂O\U , we now see that the function Kε(x)
satisfies the similar estimate

||Kε||H1(D) + ||div(A(x)∇Kε)||L2(D) ≤ C||sε||H1(O) .

Rescaling the above inequality (note that εD ⊂ D for ε sufficiently small) and using the estimate

||sε||H1(O) ≤ Cε
d
2 ,

which follows readily from Lemma 4.2 (Remark 4.2) and (4.3), we now obtain

ε
d
2 ||σε||L2(D)d + ε

d−2
2 ||divσε||L2(D) ≤ Cε

d
2 .

Hence, σε is a bounded sequence in Hdiv(D), and so, up to a subsequence (which we still index by ε) it
converges weakly to a limit σ∗ in this space.

Step 2. We prove that the weak limit σ∗ is 0, and this task requires separating the cases d = 2 and d = 3.
When d = 3, we observe that, by definition,

(6.34) σε(x) = A(εx)∇K̃ε(x), where K̃ε(x) :=
1

ε
Kε(εx) ,

and the same calculation as in the proof of Lemma 5.2 (see notably (5.29)) reveals that the quantity Kε(x)
satisfies

|Kε(x)| ≤ C||sε||H1(O), for all x ∈ D .

Hence, we obtain ∫
D

|Kε(εz)|2 dz ≤ Cε3,

which proves that

||K̃ε||L2(D)
ε→0−−−→ 0 .
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It follows from (6.34) and the continuity of derivatives in the sense of distributions that σ∗ = 0.

The case where d = 2 is a little more involved, and we need to estimate the quantity Kε more carefully.

The argument performed for d = 3 in this case only allows us to infer that K̃ε is a bounded sequence in

L2(D); we also know from Step 1 that its gradient is bounded in L2(D)2, and so (up to a subsequence) K̃ε

converges strongly to a function K∗ ∈ L2(D), which we need to analyze further. For any point x ∈ Rd and
positive real number h > 0, we denote by B(x, h) the open ball with radius h centered at x.

We observe that, for x, y ∈ Dε,

|Kε(x)−Kε(y)| = 1

π

∣∣∣∣∣
∫
O

(
(A(x)−A(z))

1√
det(A(x))

M2(x)(x− z)
|M(x)(z − x)|2 · ∇sε(z)

−(A(y)−A(z))
1√

det(A(y))

M2(y)(y − z)
|M(y)(z − y)|2 · ∇sε(z)

)
dz

∣∣∣∣∣ .
Denoting by h := |x− y| we get, since B(y, h) ⊂ B(x, 2h) ⊂ B(y, 4h),

|Kε(x)−Kε(y)| ≤ 1

π

∫
B(x,2h)∩O

∣∣∣∣∣(A(x)−A(z))
1√

det(A(x))

M2(x)(x− z)
|M(x)(z − x)|2 · ∇sε(z)

∣∣∣∣∣ dz

+
1

π

∫
B(y,4h)∩O

∣∣∣∣∣(A(y)−A(z))
1√

det(A(y))

M2(y)(y − z)
|M(y)(z − y)|2 · ∇sε(z)

∣∣∣∣∣ dz

+
1

π

∫
O\B(x,2h)

∣∣((A(x)−A(z))∇zLA(x)(x, z)− (A(y)−A(z))∇zLA(y)(y, z)
)
· ∇sε(z)

∣∣ dz

=: J1 + J2 + J3,

with obvious notations. Due to the smoothness of the matrix field A

|J1| ≤ C
∫
B(x,2h)∩O

|∇sε(z)| dz ≤ Ch||∇sε||L2(O)d ,

and a similar estimate holds for J2. When it comes to J3, we remark that for z /∈ B(x, 2h)

2h ≤ |x− z|, h ≤ |y − z|, and
1

2
|x− z| ≤ |y − z| ≤ 3

2
|x− z| .

We now decompose

(
(A(x)−A(z))∇zLA(x)(x, z)− (A(y)−A(z))∇zLA(y)(y, z)

)
= b1 + b2 ,

where

b1 = (A(x)−A(y))∇zLA(x)(x, z) and b2 = (A(y)−A(z))
(
∇zLA(x)(x, z)−∇zLA(y)(y, z)

)
.

A simple calculation yields that

|b1| ≤
Ch

|x− z| ,
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and regarding b2, we calculate

|b2| ≤ C|z − y|
∣∣∇zLA(x)(x, z)−∇zLA(y)(y, z)

∣∣
= C|z − x|

∣∣∣∣∣ 1√
det(A(x))

M2(x)(x− z)
|M(x)(z − x)|2 −

1√
det(A(y))

M2(y)(y − z)
|M(y)(z − y)|2

∣∣∣∣∣
≤ C|z − x|

∣∣∣∣∣ 1√
det(A(x))

− 1√
det(A(y))

∣∣∣∣∣
∣∣∣∣ M2(x)(x− z)
|M(x)(z − x)|2

∣∣∣∣
+C|z − x|

∣∣∣∣ M2(x)(x− z)
|M(x)(z − x)|2 −

M2(y)(y − z)
|M(y)(z − y)|2

∣∣∣∣
≤ Ch+ C

|z − x|
|M(x)(z − x)|2

∣∣M2(x)(x− z)−M2(y)(y − z)
∣∣

+C|z − x||M2(y)(y − z)|
∣∣∣∣ 1

|M(x)(z − x)|2 −
1

|M(y)(z − y)|2
∣∣∣∣

≤ Ch+ C
|z − x|

|M(x)(z − x)|2
∣∣M2(y)(x− y)

∣∣+ C|z − x|2
∣∣∣∣ 1

|M(x)(z − x)|2 −
1

|M(y)(z − y)|2
∣∣∣∣

≤ Ch+
Ch

|z − x| + C
1

|z − x|2
∣∣|M(x)(z − x)|2 − |M(y)(z − y)|2

∣∣
≤ Ch+

Ch

|z − x| + C
1

|z − x| ||M(x)(z − x)| − |M(y)(z − y)|| ≤ Ch+
Ch

|z − x| .

Summarizing, we now have

|J3| ≤ Ch
∫
O\B(x,2h)

(
1

|z − x| + 1

)
|∇sε| dz ,

and so

|J3| ≤ Ch

(∫
O\B(x,2h)

1

|z − x|2 dz

) 1
2

||∇sε||L2(O)2

≤ Ch

(∫ M

2h

dr

r

) 1
2

||∇sε||L2(O)2

≤ Ch| log h| 12 ||∇sε||L2(O)2 .

With x and y replaced by εx and εy, for x, y ∈ D, we now conclude

|Kε(εx)−Kε(εy)| ≤ Cε|x− y|
∣∣ log |εx− εy|

∣∣1/2 ||∇sε||L2(O)2 ,

and so

|K̃ε(x)− K̃ε(y)|2 ≤ C|x− y|2(| log ε|+
∣∣ log |x− y|

∣∣ ) ||∇sε||2L2(O)2

≤ Cε2
(
|x− y|2| log ε|+ |x− y|2

∣∣ log |x− y|
∣∣) ,

where we have used again Lemma 4.2 (Remark 4.2) and (4.3) to estimate ||∇sε||2L2(O)2 . Integrating the

terms in the previous inequality and passing to the limit as ε→ 0, we obtain∫
D

∫
D

|K∗(x)−K∗(y)|2 dxdy = lim
ε→0

∫
D

∫
D

|K̃ε(x)− K̃ε(y)|2 dxdy = 0 ,

which proves that K∗ is a constant function over D. This completes the proof of the fact that σ∗ = 0, for
d = 2.

�

Proof of Lemma 6.4. We only provide the proof in the two-dimensional case, the three-dimensional proof
being very similar.

Using the definition of the fundamental solution LA(x, y) given by Lemma 6.1, we get, for arbitrary y ∈ Dε
and x ∈ H, x 6= y,

A(x)∇yLA(x)(x, y) · n(y) = − 1

π
√

detA(x)

y2 − x2

|M(x)(y − x)|2 .

43



Hence, a straightforward calculation yields the following expression of the kernel P (εx, εy) of the operator
Tε, defined in (6.13)

P (εx, εy) =
1

π
√

detA(εx)

A(εx)e2 · e2

|M(εx)(εy − εx)|2 = ε−2 A(εx)e2 · e2

π
√

detA(εx)|M(εx)e1 · e1|2
1

|y − x|2 , x, y ∈ D1, x 6= y ,

and this immediately leads to

Tεϕ(x)− 2γ(0)

ε2
R1ϕ(x) = ε−2

(
2A(εx)e2 · e2√

detA(εx)|M(εx)e1 · e1|2
− 2γ(0)

)
R1ϕ(x) .

Since the matrix fields A(x) and M(x) are smooth, with values A(0) = γ(0)I and M(0) = γ(0)−1/2I at
x = 0, we have that ∣∣∣∣∣

∣∣∣∣∣ 2A(εx)e2 · e2√
detA(εx)|M(εx)e1 · e1|2

− 2γ(0)

∣∣∣∣∣
∣∣∣∣∣
C1(D1)

≤ Cε ;

in order to verify Lemma 6.4 it thus suffices to show that the operator

R1ϕ(x) =
1

2π

∫
D1

1

|x− y|2ϕ(y) ds(y)

(interpreted in terms of finite parts) is a bounded operator from H̃1/2(D1) into H−1/2(D1). For this purpose
we can, unfortunately, not directly use the results from Appendix D, since the hypersingular kernel of
the above operator does not fit within that framework. To remedy this, we rely on a classical trick for
hypersingular operators of the form R1, using an alternate representation in terms of a homogeneous kernel
operator, and a surface differentiation operator (see e.g. [39], §1.2). More precisely, we observe that

1

|x− y|2 = − ∂

∂y1

(
y1 − x1

|x− y|2
)

for x, y ∈ D1, x 6= y,

due to the fact that |x−y| = |x1−y1| when x, y ∈ D1. It follows that, for an arbitrary density ϕ ∈ H̃1/2(D1),

R1ϕ =
1

2π

∫
D1

y1 − x1

|x− y|2
∂ϕ

∂y1
(y) ds(y) ,

where the right hand side represents a Cauchy principal value. The kernel y1−x1

|x−y|2 fits within the framework

of Appendix D, and it gives rise to an operator of class 0, i.e., a bounded operator from H̃−1/2(D1) into

H−1/2(D1). Since the operator ϕ→ ∂ϕ
∂y1

is bounded from H̃1/2(D1) to H̃−1/2(D1), we conclude that R1 is a

bounded operator from H̃1/2(D1) into H−1/2(D1), as needed. �

Proof of Lemma 6.5. As in the proof of Lemma 5.4 we introduce a smooth bounded domain D ⊂ Rd, whose
boundary contains the set D1, and a bounded Lipschitz domain V with D b V . We first prove that R1 is a

Fredholm operator with index 0. To achieve this, let ϕ be an arbitrary element in H̃1/2(D1) (extended by
0 to all of ∂D) and set u = DDϕ ∈ H1

loc(Rd \ ∂D). Using the jump relations (2.7), and then integrating by
parts on all of Rd (which is possible because of the decay properties (2.10)) we obtain

(6.35)
〈R1ϕ,ϕ〉 =

∫
∂D

∂u

∂n
(u+ − u−) ds

= −
∫
Rd\∂D

|∇u|2 dx .

Since

||ϕ||H̃1/2(D1) = ||(u+ − u−)||H1/2(∂D) ≤ C
(
‖∇u‖L2(Rd\∂D) + ‖u‖L2(V )

)
,

it follows from (6.35) that

||ϕ||H̃1/2(D1) ≤ C
(
‖R1ϕ‖H−1/2(D1) + ‖DDϕ‖L2(V )

)
.
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It now follows as in the proof of Lemma 5.4 that R1 is Fredholm with index 0. Hence, we are left to show

that R1 is injective. But if R1ϕ = 0 for some ϕ ∈ H̃1/2(D1), the previous calculation with u = DDϕ yields

〈R1ϕ,ϕ〉 = −
∫
Rd\∂D

|∇u|2 dx = 0,

so that u is constant on D and on Rd \D. Since u → 0 as |x| → ∞, the value of this constant on Rd \D
must be 0. Since ϕ = u+ − u− vanishes on ∂D \ D1, the value of this constant inside D is also 0; hence,
u = 0 and φ = u+ − u− = 0, which completes the proof. �

7. Conclusion and future Directions

In this article, we have analyzed the asymptotic behavior of the solution to an elliptic partial differential
equation posed on a domain Ω ⊂ Rd when the accompanying boundary conditions change type on a van-
ishing subset ωε of the boundary ∂Ω. More precisely, in the model context of the conductivity equation
complemented with mixed homogeneous Dirichlet and Neumann boundary conditions on the respective re-
gions ΓD,ΓN ⊂ ∂Ω, we have derived a general representation formula for the asymptotic structure of the
potential uε when the homogeneous Neumann boundary condition is replaced with a homogeneous Dirich-
let boundary condition on an arbitrary “small” subset ωε ⊂ ΓN (and vice-versa, when the homogeneous
Dirichlet condition is replaced with a homogeneous Neumann condition on ωε ⊂ ΓD). Furthermore, in the
particular situation where ωε is a vanishing surfacic ball, we have given precise, explicit asymptotic formulas
for uε. The present findings suggest various directions for further investigations.

• A natural extension of the present work is to investigate the case where the homogeneous Dirichlet
boundary condition on ΓD, or the homogeneous Neumann boundary condition on ΓN , is replaced by
yet another type of boundary condition on ωε, for instance an inhomogeneous Neumann boundary
condition, or an inhomogeneous Dirichlet boundary condition. A perhaps even more interesting set-
ting involves a Robin boundary condition, and thus consists in investigating the asymptotic behavior
of the solution to the problem

−div(γ∇uε) = f in Ω ,
uε = 0 on ΓD ,

γ ∂uε∂n = 0 on ΓN \ ωε ,
γ ∂uε∂n + kuε = 0 on ωε ,

or the solution to the problem
−div(γ∇uε) = f in Ω ,

uε = 0 on ΓD \ ωε ,
γ ∂uε∂n = 0 on ΓN ,

γ ∂uε∂n + kuε = 0 on ωε .

The understanding of this limiting process, uniformly with respect to the parameter k of the Robin
condition, would provide a key insight into the nature of the transition between the Dirichlet and
Neumann behaviors (established in this paper). In this spirit, see for instance [17, 26, 53] concerning
small volume asymptotic formulas, which are uniform with respect to the properties of the material
occupying the vanishing inclusions.

• Beyond the realm of the conductivity equation, the present study could be extended to other, more
challenging physical contexts, e.g., the system of linear elasticity – where homogeneous Dirichlet
boundary conditions account for “clamping” and homogeneous Neumann boundary conditions rep-
resent absence of traction.

• Last but not least, it would be interesting to explore the practical applications of these results. As
we have illustrated at in Remark 3.2, asymptotic formulas for the solution to “small” perturbations
of a “background” boundary value problem allow to appraise the sensitivity of a quantity of interest
(or a performance criterion) with respect to such perturbations. This idea plays into the concepts
of topological derivative [55] and “topological ligaments” [51, 24] in optimal design. In our context
it would allow us to appraise the sensitivity of a performance criterion with respect to the introduc-
tion of a new, “small” region supporting Dirichlet or Neumann boundary condition in the physical

45



boundary value problem. Such a program appears especially interesting in the context of linear
elasticity, where it would significantly complement the study in [25]; see also [59].
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Appendix A. A closer look to the quantity e(ω)

The purpose of this appendix is to analyze more in depth the quantity e(ω), defined in (4.1), and used
in Sections 4 and 6 to assess the “smallness” of a subset ω of ∂Ω, when homogeneous Dirichlet boundary
conditions are replaced by homogeneous Neumann conditions. More precisely, we construct explicit quantities
which bound e(ω), and which are not excessively conservative – quantities that do not require the solution
of any boundary value problems.

A.1. Some differential geometry facts

We shall need some basic facts from differential geometry on hypersurfaces in Rd. All of these results are
well-known, however, some are not so easily found in the literature, and for the convenience of the reader
we include their proofs in this section. We refer to classical books, such as [27, 44], for further details.

Let Ω ⊂ Rd be a smooth bounded domain. We first recall some terminology:

• The tangent plane to ∂Ω at a point x ∈ ∂Ω is the hyperplane of Rd which is orthogonal to the unit
normal vector n(x). The orthogonal projection Pxv ∈ Tx∂Ω of a vector v ∈ Rd onto Tx∂Ω is given
by

Pxv := v − (v · n(x))n(x) .

• The length of a piecewise differentiable curve γ : [a, b]→ ∂Ω is defined by

`(γ) :=

∫ b

a

|γ′(t)| dt ,

where the derivative of t 7→ γ(t) is calculated as that of an Rd-valued function. This quantity is
obviously independent of the particular parametrization chosen for γ.

• A differentiable curve γ : [a, b] → ∂Ω is called a (constant speed) geodesic segment joining the
endpoints γ(a) and γ(b) if it satisfies:

∀t ∈ (a, b), Pγ(t)(γ
′′(t)) = 0 .

• A geodesic segment γ : [a, b]→ ∂Ω is called minimizing if `(γ) ≤ `(γ̃) for any piecewise differentiable
curve γ̃(t) joining γ(a) to γ(b).

• The geodesic distance between two points x, y ∈ ∂Ω is defined by:

d∂Ω(x, y) = inf
γ:[a,b]→∂Ω

γ(a)=x, γ(b)=y

`(γ) .

• Likewise, the geodesic distance dist∂Ω(x,K) from a point x ∈ ∂Ω to a closed subset K ⊂ ∂Ω is:

dist∂Ω(x,K) = inf
y∈K

d∂Ω(x, y) .

The distance between two points x, y ∈ ∂Ω can be measured either in terms of the (extrinsic) Euclidean
distance |x − y| of Rd or by means of the (intrinsic) geodesic distance d∂Ω(x, y). It turns out that these
notions are equivalent in the present context, as stated in the next lemma.

Lemma A.1. There exists a constant c > 0 which only depends on Ω such that the following inequalities
hold:

∀x, y ∈ ∂Ω , c d∂Ω(x, y) ≤ |x− y| ≤ d∂Ω(x, y) .
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Proof. The right inequality is obvious, and we focus on the proof of the left one. To this end, we introduce
a finite open covering {Ui}i=1,...,N of the smooth, compact hypersurface ∂Ω with the following property: for

each i = 1, . . . , N , there exist a convex open subset Vi ⊂ Rd−1 and a function fi : Vi → R which is smooth
on an open neighborhood of Vi, such that (up to a relabeling of coordinates in Rd) the mapping

σi : Vi 3 (x1, . . . , xd−1) 7→ (x1, . . . , xd−1, fi(x1, . . . , xd−1)) ∈ Ui
realizes a diffeomorphism from Vi onto Ui. We also denote by δ > 0 a Lebesgue number associated to this
covering, that is

∀ω ⊂ ∂Ω, diam(ω) ≤ δ ⇒ ω ⊂ Ui for some i = 1, . . . , N ,

where the diameter diam(ω) := supx,y∈ω |x− y| is understood in the sense of the Euclidean distance.
Now considering two given points x, y ∈ ∂Ω, we distinguish two cases.

Case 1: |x− y| > δ. By introducing the quantity M := sup
p,q∈∂Ω

d∂Ω(p, q), we obtain

d∂Ω(x, y) ≤M ≤ M

δ
|x− y| .

Case 2: |x − y| ≤ δ. Then x and y belong to a common open subset Ui, and we let x̂, ŷ be the points in
Vi such that x = σi(x̂) and y = σi(ŷ). We also introduce the differentiable curve γ(t) = σi(x̂ + t(ŷ − x̂))
connecting x to y. It follows from the very definition of the geodesic distance d∂Ω(x, y) that

d∂Ω(x, y) ≤
∫ 1

0

√
γ′(t) · γ′(t) dt

=

∫ 1

0

√
∇σi(x̂+ t(ŷ − x̂))t∇σi(x̂+ t(ŷ − x̂))(ŷ − x̂) · (ŷ − x̂) dt .

For i = 1, . . . , N and ẑ ∈ Vi, we introduce the eigenvalues 1 ≤ λi1(ẑ) ≤ . . . ≤ λid−1(ẑ) of the (d− 1)× (d− 1)

matrix ∇σi(ẑ)t∇σi(ẑ), and

M := max
i=1,...,N

sup
ẑ∈Vi

λid−1(ẑ) <∞ .

The bound M depends only on the properties of the hypersurface ∂Ω. We now have

d∂Ω(x, y) ≤
√
M |x̂− ŷ| ≤

√
M |x− y| ,

as desired. �

We recall the definition and the main properties of the exponential map, expx, at a point x ∈ ∂Ω:

• The mapping expx : U → ∂Ω is defined on an open neighborhood U of 0 in the tangent plane Tx∂Ω
by the formula:

∀v ∈ U, expx(v) = γ(1, x, v),

where t 7→ γ(t, x, v) is the unique geodesic curve on ∂Ω passing through x at t = 0 with velocity v:

(A.1) γ(0, x, v) = x, and γ′(0, x, v) = v.

• For any point x ∈ ∂Ω, there exists a number rinj(x) > 0 – the injectivity radius of x – such that expx
is a diffeomorphism from the (d− 1) dimensional ball B(0, rinj(x)) ⊂ Tx∂Ω onto the geodesic ball

B∂Ω(x, rinj(p)) := {y ∈ ∂Ω, d∂Ω(x, y) < rinj(x)}
on ∂Ω. In particular, expx : B(0, rinj(x)) ⊂ Tx∂Ω→ ∂Ω is a local chart for ∂Ω around x.

• At an arbitrary point x ∈ ∂Ω, the following identity holds:

(A.2) d∂Ω(x, expx(v)) = |v|, v ∈ B(0, rinj(x)) ⊂ Tx∂Ω.

• Since ∂Ω is smooth and compact, there exists a number rinj > 0 – the injectivity radius of ∂Ω – such
that for all x ∈ ∂Ω, rinj < rinj(x).

Let us finally state a useful consequence of the change of variables formula, applied to the exponential
mapping.
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Lemma A.2. Let f ∈ L1
loc(∂Ω); then for any point x ∈ ∂Ω and r < rinj(x),∫

B∂Ω(x,r)

f(y) ds(y) =

∫
B(0,r)

f(expx(v))g(v) dv ,

where B(0, r) is the ball with center 0 and radius r in Tx∂Ω, and g is given by

g(v) :=
√

det(Mij(v)), Mij(v) :=
(

dexpx(v)(ei)
)
·
(

dexpx(v)(ej)
)
, i, j = 1 . . . , d− 1 ,

is bounded uniformly from below and above by positive constants which depend only on the properties of ∂Ω.
The tangent vectors dexpx(v)(ei) ∈ Texpx(v)∂Ω featured in these equations are given by

dexpx(v)(ei) =
d

ds
γ(1, x, v + sei)

∣∣∣∣
s=0

,

where t 7→ γ(t, x, v) is the unique geodesic passing through x at t = 0 with velocity v, see (A.1).

A.2. Derivation of “geometric” upper bounds for the quantity e(ω)

Throughout this section ω is an open Lipschitz subset of ∂Ω. ω lies strictly inside ΓD, and the setting is as
in Section 4. We start with the following result.

Lemma A.3. Let ω be an open Lipschitz subset of ΓD ⊂ ∂Ω, which is well-separated from ΓN , i.e. (1.6)
holds. There exists a constant C > 0, depending only on Ω, ΓD and dmin such that

e(ω) ≤ C
∫
ω

1

ρω(x)
ds(x)

where ρω(x) denotes the weight function defined by

∀x ∈ ω, ρω(x) :=

∫
∂Ω\ω

1

|x− y|d ds(y) .

Proof. Let us introduce the solution ζ ∈ H1(Ω) to (4.4); it follows from a simple adaptation of Lemma 4.1
and integration by parts that

(A.3) e(ω) ≤ C
∫

Ω

|∇ζ|2dx = C

∫
ω

ζ ds ,

where the constant C depends only on Ω, ΓD and dmin.
A slight generalization of the argument leading to the estimate (2.2) in Section 2.1, using that ζ vanishes

on ΓD \ ω, gives that for some constant C, depending on Ω, ΓD and dmin

(A.4)

(∫
ω

|ζ(x)|2ρω(x) ds(x)

)1/2

≤ C‖ζ‖H1/2(∂Ω) .

A combination of (A.3) and (A.4) now yields

e(ω) ≤ C

∫
ω

ζ(x) ds(x)

≤ C

(∫
ω

ρω(x)−1 ds(x)

)1/2(∫
ω

|ζ(x)|2ρω(x) ds(x)

)1/2

≤ C

(∫
ω

ρω(x)−1 ds(x)

)1/2

‖ζ‖H1/2(∂Ω)

≤ C

(∫
ω

ρω(x)−1 ds(x)

)1/2

‖ζ‖H1(Ω) .

Adapting the proof of Lemma 4.1, we may prove

‖ζ‖H1(Ω) ≤ Ce(ω)1/2 ,
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and after insertion of this into the last line of the previous estimate (and cancellation), we obtain

e(ω)1/2 ≤ C
(∫

ω

ρω(x)−1 ds(x)

)1/2

,

which is the desired conclusion. �

Let us introduce the notation

D(ω) =

∫
ω

1

ρω(x)
ds(x) .

It follows from Lemma A.3 that D(ω) is an upper bound for e(ω) (up to constants involving the chosen
domain Ω and the regions ΓD, ΓN of its boundary), which has the appealing feature that it depends solely
on the geometry of ω. We believe there are many interesting examples where D(ω) is equivalent to e(ω);
actually we have provided such an example in Section 6. For this reason we also find it useful to derive an
equivalent, but simpler, expression for the measure D(ω). The remainder of this subsection is devoted to
this task, and we start with a lemma.

Lemma A.4. Let ω be an open Lipschitz subset of ∂Ω. There exists a constant c > 0, which depends only
on ∂Ω, such that

c

∫
ω

dist∂Ω(x, ∂ω) ds(x) ≤ D(ω) .

Proof. The lemma follows immediately, by integration over ω, if we prove that, for all points x ∈ ω

(A.5) cdist∂Ω(x, ∂ω) ≤ ρω(x)−1 .

To achieve this goal, we distinguish between two cases, depending on the size of dist∂Ω(x, ∂ω) relative to the
injectivity radius rinj of ∂Ω.

Case 1: dist∂Ω(x, ∂ω) ≥ rinj. From the definition of ρω(x) and Lemma A.1, we have

ρω(x) ≤ C

∫
∂Ω\ω

ds(y)

d∂Ω(x, y)d

≤ C

dist∂Ω(x, ∂ω)d

∫
∂Ω

ds(y)

≤ C

rd−1
inj

1

dist∂Ω(x, ∂ω)

=
C

dist∂Ω(x, ∂ω)
,

where the constant C is changing from one instance to the next, but depends only on ∂Ω, and not on ω.
Hence, (A.5) holds in this case.

Case 2: dist∂Ω(x, ∂ω) < rinj. The exponential mapping expx induces a diffeomorphism from the ball

B(0,dist∂Ω(x, ∂ω)) ⊂ Tx∂Ω onto the geodesic ball B∂Ω(x,dist∂Ω(x, ∂ω)). Since B∂Ω(x, dist∂Ω(x, ∂ω)) lies
inside ω, it follows that

(A.6)

ρω(x) ≤ C

∫
∂Ω\B∂Ω(x,dist∂Ω(x,∂ω))

ds(y)

d∂Ω(x, y)d

= C

(∫
∂Ω\B∂Ω(x,rinj)

ds(y)

d∂Ω(x, y)d
+

∫
B∂Ω(x,rinj)\B∂Ω(x,dist∂Ω(x,∂ω))

ds(y)

d∂Ω(x, y)d

)
.

As in Case 1, the first integral in the above right-hand side is easily estimated by

(A.7)

∫
∂Ω\B∂Ω(x,rinj)

ds(y)

d∂Ω(x, y)d
≤ C

rdinj

≤ C

rd−1
inj

1

dist∂Ω(x, ∂ω)
=

C

dist∂Ω(x, ∂ω)
.
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As for the second integral, the exponential change of variables of Lemma A.2, followed by a change to polar
coordinates yields

(A.8)

∫
B∂Ω(x,rinj)\B∂Ω(x,dist∂Ω(x,∂ω))

ds(y)

d∂Ω(x, y)d
≤ C

∫
B(0,rinj)\B(0,dist∂Ω(x,∂ω))

du

d∂Ω(x, expx(u))d

= C

∫
B(0,rinj)\B(0,dist∂Ω(x,∂ω))

du

|u|d

≤ C

∫ rinj

dist∂Ω(x,∂ω))

td−2

td
dt

= C

(
1

dist∂Ω(x, ∂ω))
− 1

rinj

)
.

A combination of (A.6) to (A.8) leads to

ρω(x) ≤ C

dist∂Ω(x, ∂ω)
,

which is exactly (A.5), thus completing the proof of the lemma. �

The reverse inequality is more subtle, and it holds only under additional assumptions on the set ω ⊂ ∂Ω.
Let us introduce a few related definitions.

Definition A.1. Let ω ⊂ ∂Ω be an open Lipschitz subset. The set ω is called geodesically convex if for any
two points p, q ∈ ω, there exists a unique minimizing geodesic segment γ : [0, 1] → ∂Ω joining p to q, with
γ([0, 1]) ⊂ ω.

Definition A.2. Let ω ⊂ ∂Ω be a geodesically convex, open Lipschitz subset.

• For any p ∈ ∂ω, the tangent cone Cp ⊂ Tp∂Ω to ω at p is defined by

Cp :=

{
v ∈ Tp∂Ω, expp

(
t
v

|v|

)
∈ ω for some 0 < t < rinj(p)

}
∪ {0} .

• For any p ∈ ∂ω, an open half-space H ⊂ Tp∂Ω is called a supporting half-space for ω at p if Cp ⊂ H.

The following result generalizes well-known properties of convex subsets of the Euclidean space Rd, in
terms of supporting hyperplanes, to the setting of geodesically convex subsets of ∂Ω. It is a summary of the
contents of Proposition 1.8 and Lemma 1.7 in [18]; see Fig. 3 for an illustration.

Proposition A.1. Let ω ⊂ ∂Ω be a geodesically convex, open Lipschitz subset of ∂Ω, and let p ∈ ∂ω. Then,
the tangent cone Cp ⊂ Tp∂Ω to ω at p satisfies

Cp \ {0} =
⋂
Hj ,

where the intersection is taken over all the supporting half-spaces of ω at p.
In addition, if there exists q ∈ ω and a minimal geodesic segment γ : [0, 1] → ∂Ω from q to p such that

`(γ) = dist∂Ω(q, ∂ω), then Cp \ {0} is exactly the open half-space

(A.9) H = {v ∈ Tp∂Ω, v · (−γ′(1)) > 0} .
We are now in a position to establish an equivalence between D(ω) and a much simpler integral over ω.

Lemma A.5. Let ω be a geodesically convex, open Lipschitz subset of ∂Ω. Then

c

∫
ω

dist∂Ω(x, ∂ω) ds(x) ≤ D(ω) ≤ C
∫
ω

dist∂Ω(x, ∂ω) ds(x) ,

where the positive constants c and C depend only on ∂Ω.

Proof. The lower bound was already established in Lemma A.4, so it only remains to prove the upper bound.
Let x ∈ ω be given, and let p ∈ ∂ω be a point minimizing the geodesic distance from x to ∂ω:

δ := dist∂Ω(x, ∂ω) = d∂Ω(x, p) .
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Figure 3. Illustration of the various objects attached to a geodesically convex open subset
ω ⊂ ∂Ω; (on the right) the tangent cone Cp1

to the point p1; (on the left) the point q is
such that d∂Ω(p2, q) = d∂Ω(q, ∂ω), and so the half-space H ⊂ Tp2

∂Ω which is normal to the
velocity vector w = γ′(1) of the associated minimizing geodesic γ is exactly the tangent cone
to ω at p2.

Let H denote the set

H :=

{
expp

(
t
v

|v|

)
: v ∈ H and 0 < t < rinj

}
,

where H is the supporting half-space to ω at p characterized by (A.9). Due to Proposition A.1, we also
obtain the following estimate

(A.10) ρω(x) =

∫
∂Ω\ω

ds(y)

|x− y|d ≥
∫
B∂Ω(p,rinj)\H

ds(y)

|x− y|d .

Since the geodesic distance d∂Ω(x, y) between x and any point y ∈ ∂Ω is always larger than the corresponding
Euclidean distance |x− y|, we conclude that

ρω(x) ≥
∫
B∂Ω(p,rinj)\H

ds(y)

d∂Ω(x, y)d
.

Using the change of variables of Lemma A.2 based on the exponential mapping B(0, rinj) ⊂ Tp∂Ω →
B∂Ω(p, rinj) ⊂ ∂Ω, we then get

ρω(x) ≥ C
∫
{y∈B(0,rinj), y1>0}

dy

d∂Ω(x, expp(y))d
,

where y = (y1, . . . , yd−1) are the coordinates of the integration variable y in an orthonormal frame of Tp∂Ω,
with the first coordinate vector being the outer normal to H. The triangle inequality for the geodesic
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distance, and a change of variables yields

ρω(x) ≥ C

∫
{y∈B(0,rinj), y1>0}

dy

(δ + d∂Ω(p, expp(y))d

=
C

δd

∫
{y∈B(0,rinj), y1>0}

dy(
1 + 1

δd
∂Ω(p, expp(y)

)d
=

C

δ

∫
{z∈B(0,

rinj
δ ), z1>0}

dz(
1 + 1

δd
∂Ω(p, expp(δz)

)d .
Let ` > 0 be the maximum length of a geodesic segment on ∂Ω; obviously δ ≤ `, and so

(A.11)

ρω(x) ≥ C

δ

∫
{z∈B(0,

rinj
` ), z1>0}

dz(
1 + 1

δd
∂Ω(p, expp(δz)

)d
=

C

δ

∫
{z∈B(0,

rinj
` ), z1>0}

dz

(1 + |z|)d
.

In the last line we have used that, according to (A.2)

d∂Ω(p, expp(δz)) = δd∂Ω(p, expp(z)) = δ|z|, as long as δz ∈ B(0, rinj) ,

together with the fact that |z| < rinj

` implies δ|z| < δ
` rinj ≤ rinj. The estimate (A.11) immediately shows

that there exists a constant c > 0 which depends only on the properties of ∂Ω (and not on the set ω) such
that

∀x ∈ ω, ρω(x) ≥ c

d∂Ω(x, ∂ω)
.

Finally, this gives

D(ω) =

∫
ω

1

ρω(x)
ds(x) ≤ C

∫
ω

d∂Ω(x, ∂ω) ds(x) ,

which is the desired upper bound. �

Remark A.1. Combining Lemma A.3 with Lemma A.5, we immediately obtain that the “capacity” e(Dε)
of the planar disk Dε with center 0 and radius ε defined in (2.14) satisfies the estimate

e(Dε) ≤ C2ε
2 if d = 2, and e(Dε) ≤ C3ε

3 if d = 3 ,

for some universal constants C2 and C3.

Appendix B. The Peetre lemma

For the convenience of the reader, we recall Peetre’s lemma, which provides a convenient sufficient condition
for an operator to be Fredholm; see for instance [56], [47] (Chap. 2, §5.2), and also [64] for the precise version
below, an interesting proof and useful application examples.

Lemma B.1. Let (E, || · ||E) be a Banach space, (F, || · ||F ) and (G, || · ||G) be normed vector spaces. Let
A : E → F and B : E → G be bounded operators satisfying the following conditions:

(i) There exists a constant C > 0 such that,

∀u ∈ E, ||u||E ≤ C
(
||Au||F + ||Bu||G

)
.

(ii) The operator B is compact.

Then, A has closed range in F and finite-dimensional kernel in E.
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Appendix C. Equilibrium distributions

In this appendix, we collect some useful results from the literature about the equilibrium distributions asso-
ciated with certain integral operators.

Proposition C.1. Let D1 ⊂ Rd be defined by D1 :=
{
x = (x1, . . . , xd−1, 0) ∈ Rd, |x| < 1

}
. Then,

(i) If d = 2, the function φ ∈ H̃−1/2(D1) defined by

∀(x, 0) ∈ D1, φ(x) =
2

log 2
√

1− x2

satisfies

− 1

2π

∫
D1

log |x− y|φ(y) dy = 1 for x ∈ D1, and

∫
D1

φ(x) dx =
2π

log 2
.

(ii) If d = 2, the function φ ∈ H̃1/2(D) defined by

∀(x, 0) ∈ D1, φ(x) = −2
√

1− x2

satisfies

1

2π
f.p.
η↓0

∫
D1\(x−η,x+η)

1

|x− y|2φ(y) dy = 1 for x ∈ D1, and

∫
D1

φ(x) dx = −π .

(iii) If d = 3, the function φ ∈ H̃−1/2(D1) defined by

(C.1) ∀(x, 0) ∈ D1, φ(x) =
4

π
√

1− |x|2

satisfies

(C.2)
1

4π

∫
D1

1

|x− y|φ(y) dy = 1 for x ∈ D1, and

∫
D1

φ(x) ds(x) = 8 .

(iv) If d = 3, the function φ ∈ H̃1/2(D1) defined by

∀x ∈ D1, φ(x) = − 1

π

√
1− |x|2

satisfies

1

4π
f.p.
η→0

∫
D1\B(x,η)

1

|x− y|3φ(y) dy = 1 for x ∈ D1, and

∫
D1

φ(x) ds(x) = −2

3
.

The two-dimensional results (i) and (ii) can be proved by means of conformal mapping techniques; see
[49], Exercises 8.15 and 8.16. The item (iii) is a fairly well-known result about the capacitance of a flat disk in
3d, and we refer to [40] Exercise 3.3, or to [22] for an elegant proof using the connection with Abel’s integral
equation. Finally, for the item (iv), we refer to the articles [42, 48]; see also [60] where these results are used
to build a series expansions for the hypersingular operator, for the purpose of operator preconditioning.

Remark C.1. Let us comment about the physical significance of the formulas in Proposition C.1. The
points (i) and (iii) are concerned with the Newtonian potential. In particular, the equilibrium distribution φ
is the charge distribution on D1 which ensures that the induced electrostatic potential is constant (equals 1)
on D1. The total charge

∫
D1
ϕ ds associated with this distribution corresponds to the Newtonian version of

the capacity of D1.
The points (ii) and (iv) are perhaps a little more unfamiliar. The function φ is the dipole distribution on

D1 which ensures that the induced electric current through D1 is constant (equals 1). The quantity
∫
D1
φ ds

is the associated total dipole charge.
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Appendix D. Some useful results about integral operators with homogeneous kernels

In this section, we collect some useful properties of integral operators whose kernels satisfy specific homo-
geneity properties. This material is taken from Chap. 4 in [52].

Definition D.1. Let m be a non negative integer; a homogeneous kernel of class −m is a function K(x, z) ∈
C∞(Rd × Rd \ {0}) which satisfies the following properties:

• For all multi-indices α, β ∈ Nd,

sup
x∈Rd

sup
|z|=1

∣∣∣∣ ∂α∂xα ∂β

∂zβ
K(x, z)

∣∣∣∣ <∞ .

• For all x ∈ Rd and all index β with |β| = m, the function z 7→ ∂β

∂zβ
K(x, z) is odd and homogeneous

of degree −(d− 1), i.e.,

∀x ∈ Rd, z ∈ Rd \ {0} , t > 0,
∂β

∂zβ
K(x,−z) = − ∂β

∂zβ
K(x, z), and

∂β

∂zβ
K(x, tz) = t−(d−1) ∂

β

∂zβ
K(x, z) .

To each homogeneous kernel, it is possible to associate an integral operator TK , acting on functions
ϕ : ∂D → R, via the formula

(D.1) TKϕ(x) =

∫
∂D

K(x, x− y)ϕ(y) dy.

The following result specifies the mapping properties of this integral operator.

Theorem D.1. Let D ⊂ Rd be a smooth bounded domain, and let K(x, z) be a homogeneous kernel of class
−m, with associated operator TK defined in (D.1). Then for each s ∈ R, the mapping TK defines a bounded
operator

TK : Hs(∂D)→ Hs+m(∂D) ,

that is, there exists a constant Cs,D,K such that

∀ϕ ∈ Hs(∂D), ||TKϕ||Hs+m(∂D) ≤ Cs,D,K ||ϕ||Hs(∂D) .

The constant Cs,D,K , that is, the operator norm of TK : Hs(∂D)→ Hs+m(∂D), depends only on s, D, and
the kernel K. It can be estimated by

(D.2) Cs,D,K ≤ Cs,D sup
|α|≤k
|β|≤k

sup
x∈∂D

sup
|z|=1

∣∣∣∣ ∂α∂xα ∂β

∂zβ
K(x, z)

∣∣∣∣ ,
where k is a non negative integer which only depends on the space dimension d, and Cs,D is a constant which
depends only on d and the domain D.

Remark D.1. The above statement is Th. 4.3.1 in [52]. In that reference, the continuity constant of the
mappings TK : Hs(∂D)→ Hs+m(∂D) is not stated explicitly, but formula (D.2) is obtained by tracking the
dependence of this constant with respect to K throughout the proof.

We finally state the following result about the potential operator induced by a homogeneous kernel of
class −m; see [23] and [29] (Lemma 21.7).

Theorem D.2. Let D ⊂ Rd be a smooth bounded domain, and let K(x, z) be a homogeneous kernel of class
−m. Then for each s ∈ R, the associated potential operator:

TKϕ(x) =

∫
∂D

K(x, x− y)ϕ(y) dy, x /∈ ∂D,

is a bounded mapping from Hs(∂D) into Hs+m+ 1
2 (D) and H

s+m+ 1
2

loc (Rd \ D). For any compact subset

L b Rd \D, there exists a constant Cs,D,K,L such that,

∀ϕ ∈ Hs(∂D), ||TKϕ||
Hs+m+ 1

2 (D)
+ ||TKϕ||

Hs+m+ 1
2 (L)

≤ Cs,D,K,L||ϕ||Hs(∂D).
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[48] P. Martin, Orthogonal polynomial solutions for pressurized elliptical cracks, The Quarterly Journal of Mechanics and

Applied Mathematics, 39 (1986), pp. 269–287.
[49] W. C. H. McLean, Strongly elliptic systems and boundary integral equations, Cambridge university press, 2000.

[50] F. Murat and L. Tartar, H-convergence, in Topics in the mathematical modelling of composite materials, Springer, 2018,

pp. 21–43.
[51] S. Nazarov and J. Sokolowski, The topological derivative of the dirichlet integral due to formation of a thin ligament,

Siberian Mathematical Journal, 45 (2004), pp. 341–355.

[52] J.-C. Nédélec, Acoustic and electromagnetic equations: integral representations for harmonic problems, vol. 144, Springer
Science & Business Media, 2001.

[53] H.-M. Nguyen and M. S. Vogelius, A representation formula for the voltage perturbations caused by diametrically small

conductivity inhomogeneities. Proof of uniform validity, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 26
(2009), pp. 2283–2315.

[54] J. Nitsche, Ein kriterium für die quasi-optimalität des ritzschen verfahrens, Numerische Mathematik, 11 (1968), pp. 346–

348.
[55] A. A. Novotny and J. Soko lowski, Topological derivatives in shape optimization, Springer Science & Business Media,

2012.

[56] J. Peetre, Another approach to elliptic boundary problems, Communications on pure and applied Mathematics, 14 (1961),
pp. 711–731.

[57] S. Pillay, M. J. Ward, A. Peirce, and T. Kolokolnikov, An asymptotic analysis of the mean first passage time for
narrow escape problems: Part I: Two-dimensional domains, Multiscale Modeling & Simulation, 8 (2010), pp. 803–835.

[58] M. Y. Planida, Asymptotics of the eigenelements of the Laplace operator when the boundary-condition type changes on

a narrow flattened strip, Mathematical Notes, 75 (2004), pp. 213–228.
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PhD thesis, Ecole Polytechnique X, 2017.

[60] P. Ramaciotti Morales, Theoretical and numerical aspects of wave propagation phenomena in complex domains and
applications to remote sensing, PhD thesis, Université Paris-Saclay (ComUE), 2016.
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