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STABILITY FOR QUANTITATIVE PHOTOACOUSTIC
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Abstract. This paper is concerned with the stability issue in determining the
absorption and the diffusion coefficients in quantitative photoacoustic imag-
ing. We establish a global conditionnal Hölder stability inequality from the
knowledge of two internal data obtained from optical waves, generated by two
point sources in a region where the optical coefficients are known.
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1. Introduction

Throughout this text n ≥ 3 is a fixed integer. If 0 < β ≤ 1 we denote by
C0,β(Rn) the vector space of bounded continuous functions f on R

n satisfying

[f ]β = sup

{ |f(x) − f(y)|
|x− y|β ; x, y ∈ R

n, x 6= y

}
< ∞.

C0,β(Rn) is then a Banach space when it is endowed with its natural norm

‖f‖C0,β(Rn) = ‖f‖L∞(Rn) + [f ]β.

The authors were supported by the grant ANR-17-CE40-0029 of the French National Research
Agency ANR (project MultiOnde).
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Define C1,β(Rn) as the vector space of functions f from C0,β(Rn) so that ∂jf ∈
C0,β(Rn), 1 ≤ j ≤ n. The vector space C1,β(Rn) equipped with the norm

‖f‖C1,β(Rn) = ‖f‖C0,β(Rn) +
n∑

j=1

‖∂jf‖C0,β(Rn)

is a Banach space.
The data in this paper consists in ξ1, ξ2 ∈ R

n, Ω ⋐ R
n \ {ξ1, ξ2} of class C1,1,

0 < α < 1, 0 < θ < α, λ > 1 and κ > 1. For notational convenience the set of data
will denoted by D. That is

D = (n, ξ1, ξ2,Ω, α, θ, λ, κ).

Denote by D(λ, κ) the set of couples (a, b) ∈ C1,1(Rn) × C0,1(Rn) satisfying

λ−1 ≤ a and ‖a‖C1,1(Rn) ≤ λ,(1.1)

κ−1 ≤ b and ‖b‖C0,1(Rn) ≤ κ,(1.2)

Define further the elliptic operator La,b acting as follows

(1.3) La,bu(x) = −div(a(x)∇u(x)) + b(x)u(x).

We show in Section 2 that if (a, b) ∈ D(λ, κ) then the operator La,b admits a unique
fundamental solution Ga,b satisfying, where ξ ∈ R

n,

Ga,b(·, ξ) ∈ C2,α
loc (Rn \ {ξ}), La,bGa,b(·, ξ) = 0 in R

n \ {ξ},
and, for any f ∈ C∞

0 (Rn),

u =

ˆ

Rn

Ga,b(·, ξ)f(ξ)dξ

belongs to H2(Rn) and it is the unique solution of La,bu = f .
We deal in the present work with the problem of reconstructing (a, b) ∈ D(λ, κ)

from energies generated by two point sources located at ξ1 and ξ2. Precisely, if
uj(a, b) = Ga,b(·, ξj), j = 1, 2, we want to determine (a, b) from the internal mea-
surements

vj(a, b) = buj(a, b) in Ω, j = 1, 2.

This inverse problem is related to photoacoustic tomography (PAI) where opti-
cal energy absorption causes thermoelastic expansion of the tissue, which in turn
generates a pressure wave [21]. This acoustic signal is measured by transducers dis-
tributed on the boundary of the sample and it is used for imaging optical properties
of the sample. The internal data v1(a, b) and v2(a, b) are obtained by performing a
first step consisting in a linear initial to boundary inverse problem for the acoustic
wave equation. Therefore the inverse problem that arises from this first inversion
is to determine the diffusion coefficient a and the absorption coefficient b from the
internal data v1(a, b) and v2(a, b) that are proportional to the local absorbed op-
tical energy inside the sample. This inverse problem is known in the literature as
quantitative photoacoustic tomography [1, 4, 2, 3, 8, 7, 19].

Photoacoustic imaging provides in theory images of optical contrasts and ultra-
sound resolution [21]. Indeed, the resolution is mainly due to the small wavelength
of acoustic waves, while the contrast is somehow related to the sensitivity of optical
waves to absorption and scattering properties of the medium in the diffusive regime.

Assuming that the optical waves are generated by two point sources δξi , i = 1, 2,
we aim to derive a stability estimate for the recovery of the optical coefficients from
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internal data. We point out that taking the optical wave generated by a point
source outside the sample seems to be more realistic than assuming a boundary
condition.

In the statement of Theorem 1.1 below C = C(D) > 0 and 0 < γ = γ(D) < 1
are constants.

Theorem 1.1. For any (a, b), (ã, b̃) ∈ D(λ, κ) satisfying (a, b) = (ã, b̃) on Γ, we
have

‖a− ã‖C1,α(Ω) + ‖b− b̃‖C0,α(Ω) ≤ C
(

‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)γ

.

The rest of this text is organized as follows. In section 2 we construct a fun-
damental solution and give its regularity induced by that of the coefficients of the
operator under consideration. We also establish in this section a lower bound of the
local L2-norm of the gradient of the quotient of two fundamental solutions near one
of the point sources. This is the key point for establishing our stability inequality.
This last result is then used in Section 3 to obtain a uniform polynomial lower
bound of the local L2-norm of the gradient in a given region. This polynomial
lower bound is obtained in two steps. In the first step we derive, via a three-ball
inequality for the gradient, a uniform lower bound of negative exponential type.
We use then in the second step an argument based on the so-called frequency func-
tion in order to improve this lower bound. In the last section we prove our main
theorem following the known method consisting in reducing the original problem
to the stability of an inverse conductivity problem.

2. Fundamental solutions

2.1. Constructing fundamental solutions. In this subsection we construct a
fundamental solution of divergence form elliptic operators. Since our construction
relies on heat kernel estimates, we first recall some known results.

Consider the parabolic operator Pa,b acting as follows

Pa,bu(x, t) = −La,bu(x, t) − ∂tu(x, t)

and set

Q = {(x, t, ξ, τ) ∈ R
n × R × R

n × R; τ < t}.
Recall that a fundamental solution of the operator Pa,b is a function Ea,b ∈

C2,1(Q) verifying Pa,bE = 0 in Q and, for every f ∈ C∞
0 (Rn),

lim
t↓τ

ˆ

Rn

Ea,b(x, t, ξ, τ)f(ξ)dξ = f(x), x ∈ R
n.

The classical results in the monographs by A. Friedman [12], O. A. Ladyzenskaja,
V. A. Solonnikov and N.N Ural’ceva [18] show that Pa,b admits a non negative
fundamental solution when (a, b) ∈ D(λ, κ).

It is worth mentioning that if a = c, for some constant c > 0, and b = 0 then the
fundamental solution Ec,0 is explicitly given by

Ec,0(x, t, ξ, τ) =
1

[4πc(t− τ)]n/2
e− |x−ξ|2

4c(t−τ) , (x, t, ξ, τ) ∈ Q.
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Examining carefully the proof of the two-sided Gaussian bounds in [11], we see
that these bounds remain valid whenever a ∈ C1,1(Rn) satisfies

(2.1) λ−1 ≤ a and ‖a‖C1,1(Rn) ≤ λ.

More precisely we have the following theorem in which

Ec(x, t) =
c

tn/2
e− |x|2

ct , x ∈ R
n, t > 0, c > 0.

Theorem 2.1. There exists a constant c = c(n, λ) > 1 so that, for any a ∈
C1,1(Rn) satisfying (2.1), we have

(2.2) Ec−1(x − ξ, t− τ) ≤ Ea,0(x, t; ξ, τ) ≤ Ec(x− ξ, t− τ),

for all (x, t, ξ, τ) ∈ Q.

The relationship between Ec and Ec,0 is given by the formula

(2.3) Ec(x− ξ, t− τ) =
(πc)n/2−1

π
Ec/4,0(x, t, ξ, τ), (x, t, ξ, τ) ∈ Q.

The following comparaison principle will be useful in the sequel.

Lemma 2.1. Let (a, b1), (a, b2) ∈ D(λ, κ) so that b1 ≤ b2. Then Ea,b2 ≤ Ea,b1 .

Proof. Pick 0 ≤ f ∈ C∞
0 (Rn). Let u be the solution of the initial value problem

Pa,b1u(x, t) = 0 ∈ R
n × {t > τ}, u(x, τ) = f.

We have

(2.4) u(x, t) =

ˆ

Rn

Ea,b1 (x, t; ξ, τ)f(ξ)dξ ≥ 0.

On the other hand, as Pa,b1u(x, t) = 0 can be rewritten as

Pa,b2u(x, t) = [b1(x) − b2(x)]u(x, t),

we obtain

u(x, t) =

ˆ

Rn

Ea,b2(x, t; ξ, τ)f(ξ)dξ(2.5)

−
ˆ t

τ

ˆ

Rn

Ea,b2 (x, t; ξ, s)[b1(ξ) − b2(ξ)]u(ξ, s)dξds.

Combining (2.4) and (2.5), we get
ˆ

Rn

Ea,b2 (x, t; ξ, τ)f(ξ)dξ ≤
ˆ

Rn

Ea,b1(x, t; ξ, τ)f(ξ)dξ,

which yields in a straightforward manner the expected inequality. �

Consider, for (a, b) ∈ D(λ, κ), the unbounded operator Aa,b : L2(Rn) → L2(Rn)
defined

Aa,b = −La,b, D(Aa,b) = H2(Rn).

It is well known that Aa,b generates an analytic semigroup etAa,b . Therefore in
light of [6, Theorem 4 on page 30, Theorem 18 on page 44 and the proof in the
beginning of Section 1.4.2 on page 35] ka,b(t, x; ξ), the Schwarz kernel of etAa,b , is
Hölder continuous with respect to x and ξ, satisfies

(2.6) |ka,b(t, x, ξ)| ≤ e−δtEc(x− ξ, t− τ)
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and, for |h| ≤
√
t+ |x− ξ|,

|ka,b(t, x+ h, ξ) − ka,b(t, x, ξ)| ≤ e−δt

( |h|√
t+ |x− ξ|

)η

Ec(x− ξ, t− τ),(2.7)

|ka,b(t, x, ξ + h) − ka,b(t, x, ξ)| ≤ e−δt

( |h|√
t+ |x− ξ|

)η

Ec(x− ξ, t− τ),(2.8)

where c = c(n, λ, κ) > 0 and δ = δ(n, λ, κ) > 0 and η > 0 are constants.
From the uniqueness of solutions of the Cauchy problem

(2.9) u′(t) = Aa,bu(t), t > 0, u(0) = f ∈ C∞
0 (Rn)

we deduce in a straightforward manner that ka,b(t, x; ξ) = Ea,b(x, t; ξ, 0).
Prior to giving the construction of the fundamental solution for the variable

coefficients operators, we state a result for operators with constant coefficients.
This result is proved in Appendix A.

Lemma 2.2. Let µ > 0 and ν > 0 be two constants. Then the fundamental solution
for the operator −µ∆ + ν is given by Gµ,ν(x, ξ) = Gµ,ν(x− ξ), x, ξ ∈ R

n, with

Gµ,ν(x) = (2πµ)−n/2(
√
νµ/|x|)n/2−1Kn/2−1(

√
ν|x|/√µ), x ∈ R

n.

Here Kn/2−1 is the usual modified Bessel function of second kind. Moreover the
following two-sided inequality holds

(2.10) C−1 e
−√

ν|x|/√
µ

|x|n−2
≤ Gµ,ν(x) ≤ C

e−√
ν|x|/(2

√
µ)

|x|n−2
, x ∈ R

n,

for some constant C = C(n, µ, ν) > 1.

The main result of this section is the following theorem.

Theorem 2.2. Let (a, b) ∈ D(λ, κ). Then there exists a unique function Ga,b

satisfying Ga,b(·, ξ) ∈ C(Rn \ {ξ}), ξ ∈ R
n, Ga,b(x, ·) ∈ C(Rn \ {x}), x ∈ R

n, and
(i) La,bGa,b(·, ξ) = 0 in D ′(Rn \ {ξ}), ξ ∈ R

n,
(ii) for any f ∈ C∞

0 (Rn),

u(x) =

ˆ

Rn

Ga,b(x, ξ)f(ξ)dξ

belongs to H2(Rn) and it is the unique solution of La,bu = f ,
(iii) there exist two constants c = c(n, λ) > 1 and C = C(n, λ, κ) > 1 so that

C−1 e
−2

√
cκ|x−ξ|

|x− ξ|n−2
≤ Ga,b(x, ξ) ≤ C

e
− |x−ξ|√

cκ

|x− ξ|n−2
.(2.11)

Proof. Pick s ≥ 1 arbitrary. Applying Hölder inequality, we find
ˆ

Rn

ka,b(t, x, ξ)|f(ξ)|dξ ≤ ‖ka,b(t, x, ·)‖Ls(Rn)‖f‖Ls′(Rn),

where s′ is the conjugate exponent of s.
But, according to (2.6)

‖ka,b(t, x, ·)‖s
Ls(Rn) ≤

( c

tn/2

)s
ˆ

Rn

e− s|x−ξ|2

ct dξ.
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Next, making a change of variable ξ = (
√
ct/s)η + x, we get

‖ka,b(t, x, ·)‖s
Ls(Rn) ≤

( c

tn/2

)s
(
ct

s

)n/2 ˆ

Rn

e−|η|2

dη.

Hence

‖ka,b(t, x, ·)‖Ls(Rn) ≤ tn(1/s−1)/2Cs,

with

Cs = c
(c
s

)n/2
(
ˆ

Rn

e−c|η|2

dη

)1/s

.

We get, by choosing 1 ≤ s ≤ n
n−2 < s̃,

ˆ +∞

0

ˆ

Rn

ka,b(t, x, ξ)|f(ξ)|dξdt

=

ˆ 1

0

ˆ

Rn

ka,b(t, x, ξ)|f(ξ)|dξdt +

ˆ +∞

1

ˆ

Rn

ka,b(t, x, ξ)|f(ξ)|dξdt

≤ Cs‖f‖Ls′(Rn)

ˆ 1

0

t
n
2 (1/s−1)dt+ Cs̃‖f‖Ls̃′(Rn)

ˆ +∞

1

t
n
2 (1/s̃−1)dt.

In light of Fubini’s theorem we obtain

(2.12)

ˆ +∞

0

ˆ

Rn

ka,b(t, x, ξ)f(ξ)dξdt =

ˆ

Rn

(
ˆ +∞

0

ka,b(t, x, ξ)dt

)
f(ξ)dξ.

Define Ga,b as follows

Ga,b(x, ξ) =

ˆ +∞

0

ka,b(t, x, ξ)dt.

Then (2.12) takes the form

(2.13)

ˆ +∞

0

ˆ

Rn

ka,b(t, x, ξ)f(ξ)dξdt =

ˆ

Rn

Ga,b(x, ξ)f(ξ)dξ.

Noting that Aa,b is invertible, we obtain

−A−1
a,bf(x) =

(
ˆ +∞

0

etAa,bfdt

)
(x)

=

ˆ +∞

0

ˆ

Rn

ka,b(t, x, ξ)f(ξ)dξdt, x ∈ R
n.

This and (2.13) entail

−A−1
a,bf(x) =

ˆ

Rn

Ga,b(x, ξ)f(ξ)dξ, x ∈ R
n.

In other words, u defined by

u(x) =

ˆ

Rn

Ga,b(x, ξ)f(ξ)dξ, x ∈ R
n,

belongs to H2(Rn) and satisfies La,bu = f .

Noting that, for x 6= ξ,
ˆ +∞

0

1

tn/2
e− |x−ξ|2

ct dt =

(
cn/2−1

ˆ +∞

0

τn/2−2e−τdτ

)
1

|x− ξ|n−2
,
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we get in light of (2.7)

|Ga,b(x+ h, ξ) −Ga,b(x, ξ)| ≤ C

|x− ξ|n+2+η
|h|η, x 6= ξ, |h| ≤ |x− ξ|,

where C = C(n, λ, κ) is a constant. In particular,Ga,b(·, ξ) ∈ C(Rn\{ξ}). Similarly,
using (2.8) instead of (2.7), we obtain Ga,b(x, ·) ∈ C(Rn \ {x}). More specifically
we have

(2.14) |Ga,b(x, ξ + h) −Ga,b(x, ξ)| ≤ C

|x− ξ|n+2+η
|h|η, x 6= ξ, |h| ≤ |x− ξ|.

Take ξ ∈ R
n and ω ⋐ R

n \ ξ, and pick g ∈ C∞
0 (ω). Then set

wa,b(y) =

ˆ

ω

Ga,b(x, y)g(x)dx, y ∈ B(ξ, dist(ξ, ω)/2).

It follows from (2.14) that, for y ∈ B(ξ, dist(ξ, ω)) and |h| < dist(y, ω), we have

|wa,b(y + h) − wa,b(y)| ≤ C

dist(y, ω)n+2+η
|h|η.

Therefore wa,b ∈ C(B(ξ, dist(ξ, ω)/2).
Let M(Rn) be the space of bounded measures on R

n. Pick a sequence (fn) of
a positive functions of C∞

0 (Rn) converging in M(Rn) to δξ and let un = −A−1
a,bfn.

In consequence, according to Fubini’s theorem, we have
ˆ

ω

un(x)g(x)dx =

ˆ

ω

ˆ

Rn

Ga,b(x, y)g(x)fn(y)dy

=

ˆ

Rn

wa,b(y)fn(y)dy −→ wa,b(ξ) =

ˆ

ω

Ga,b(x, ξ)g(x)dx,

where we used that suppfn ⊂ B(ξ, dist(ξ, ω)/2), provided that n is sufficiently
large. That is we proved that un converges to Ga,b(·, ξ) weakly in L2

loc(R
n \ {ξ})

(think to the fact that C∞
0 (ω) is dense in L2(ω)).

Now, as La,bun = fn, we find La,bGa,b(·, ξ) = 0 in R
n \ {ξ} in the distributional

sense.
We note that the uniqueness of Ga,b follows from that of u.
As κ−1 ≤ b ≤ κ we deduce from Lemma 2.1 that

Ea,κ(x, t, ξ, 0) ≤ Ea,b(x, t, ξ, 0) ≤ Ea,κ−1(x, t, ξ, 0).

But a simple change of variable shows that

(2.15) Ea,κ−1 (x, t, ξ, 0) = e−κ−1tEa,0(x, t, ξ, 0)

and

(2.16) Ea,κ(x, t, ξ, 0) = e−κtEa,0(x, t, ξ, 0).

Therefore, from Theorem 2.1 and identity (2.3), there exists a constant c =
c(n, λ) > 1 so that

e−κt (πc−1)n/2−1

π
Ec−1/4,0(x, t, ξ, 0) ≤ Ea,b(x, t, ξ, 0)

≤ e−κ−1t (πc)n/2−1

π
Ec/4,0(x, t, ξ, 0),
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which, combined with identities (2.15) and (2.16), gives

(πc−1)n/2−1

π
Ec−1/4,κ(x, t, ξ, 0) ≤ Ea,b(x, t, ξ, 0)

≤ (πc)n/2−1

π
Ec/4,κ−1(x, t, ξ, 0).

From the uniqueness of Ga,b, we obtain by integrating over (0,+∞) each member
of the above inequalities

(πc−1)n/2−1

π
Gc−1/4,κ(x, ξ) ≤ Ga,b(x, ξ) ≤ (πc)n/2−1

π
Gc/4,κ−1 (x, ξ).

These two-sided inequalities together with (2.10) yield in a straightforward manner
(2.11). �

The function Ga,b given by the previous theorem is usually called a fundamental
solution of the operator La,b.

2.2. Regularity of fundamental solutions. Let ξ ∈ R
n and O ⋐ O′

⋐ R
n \ {ξ}

with O′ of class C1,1. As Ga,b(·, ξ) ∈ C(∂O′), we get from [15, Theorem 6.18, page
106] (interior Hölder regularity) that Ga,b(·, ξ) belongs to C2,α(O).

Proposition 2.1. There exist C = C(n, λ, κ, α) and κ = κ(α) > 2 so that, for
any ξ ∈ R

n and O ⋐ R
n \ {ξ}, we have

(2.17) ‖Ga,b(·, ξ)‖C2,α(O) ≤ CΛ(d + ̺)κ max
(
̺−(2+α), 1

)
̺−n+2.

Here ̺ = dist
(
ξ,O

)
, d = diam(O) and

Λ(h) = [1 + h(1 + h)(1 + hα)]λ, h > 0.

The proof of this proposition is based the following lemma consisting in an
adaptation of the usual interior Schauder estimates. The proof of this technical
lemma will be given in Appendix A.

Lemma 2.3. There exists two constants C = C(n, α) and κ = κ(α) > 1 with
the property that, for any bounded subset Q of R

n, δ > 0 so that Qδ = {x ∈
Q; dist(x, ∂Q) > δ} 6= ∅, w ∈ C2,α(Q) ∩ C

(
Q
)

satisfying La,bw = 0 in Q and
Q′ ⊂ Qδ, we have

(2.18) ‖w‖C2,α(Q′) ≤ C max
(
δ−(2+α), 1

)
Λ(d)κ‖w‖C(Q),

where Λ is as in Proposition 2.1 and d = diam(Q).

Proof of Proposition 2.1. We get, by applying Lemma 2.3 with Q′ = O, δ = ̺/2
and Q =

{
x ∈ R

n; dist
(
x,O

)
< ̺/2

}
,

‖Ga,b(·, ξ)‖C2,α(O) ≤ CΛ(d + ̺)κ max
(
δ−(2+α), 1

)
‖Ga,b(·, ξ)‖C(Q).

This and (2.11) yield

(2.19) ‖Ga,b(·, ξ)‖C2,α(O) ≤ CΛ(d + ̺)κ max
(
δ−(2+α), 1

)
̺−n+2e−̺/

√
cκ,

with C = C(n, λ, κ, α) and c = c(n, λ). It is then clear that (2.19) implies (2.17). �

The preceding proposition together with Lemma A.2 enable us to state the fol-
lowing corollary.
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Corollary 2.1. There exist C = C(n, λ, κ, α, θ) and κ = κ(α) > 1 so that, for any
ξ ∈ R

n and O ⋐ R
n \ {ξ}, we have

‖Ga,b(·, ξ)‖H2+θ(O)(2.20)

≤ CΛ(d + ̺)κ max
(

dn/2,dn/2+α−θ
)

max
(
̺−(2+α), 1

)
̺−n+2,

where ̺ = dist
(
ξ,O

)
, d = diam(O).

Corollary 2.2. There exist C = C(n, λ, κ, α) and c = c(n, λ, κ, α) so that, for any
ξ1, ξ2 ∈ R

n and O ⋐ R
n \ {ξ1, ξ2}, we have

(2.21)

∥∥∥∥
Ga,b(·, ξ2)

Ga,b(·, ξ1)

∥∥∥∥
C2,α(O)

≤ Cec(d+̺+)
(

1 + max
(
̺

−(2+α)
− , 1

)
̺−n+2

−

)4

,

where ̺− = min (dist (ξ1,O) , dist (ξ2,O)) and ̺+ = max (dist (ξ1,O) , dist (ξ2,O)).

Proof. In this proof C = C(n, λ, κ, α), c = c(n, λ, κ, α) and κ = κ(α) > 2 are
generic constants.

From Proposition 2.1, we have

(2.22) ‖Ga,b(·, ξj)‖C2,α(O) ≤ CΛ(d + ̺+)κ max
(
̺

−(2+α)
− , 1

)
̺−n+2

− , j = 1, 2.

Let C0 ≥ 1 end c0 ≥ 1 be the constants in (2.11) and fix 0 < δ0 ≤ 1. Then the
first inequality in (2.11) gives

1

Ga,b(·, ξ1)
≤ C0 (d + ̺+)n−2 e2

√
c0κ(d+̺+).

This inequality together with Lemma A.1 in Appendix A yield

(2.23)

∥∥∥∥
1

Ga,b(·, ξ1)

∥∥∥∥
C2,α(O)

≤ Cec(d+̺+)
(

1 + ‖Ga,b(·, ξ1)‖C2,α(O)

)3

.

Then in light of (2.22) and (2.23), we get from the interpolation inequality in
[15, Lemma 6.35, page 135]

∥∥∥∥
Ga,b(·, ξ2)

Ga,b(·, ξ1)

∥∥∥∥
C2,α(O)

≤ KOCe
cd

(
1 + (1 + d)κ max

(
̺

−(2+α)
− , 1

)
̺−n+2

−

)4

,

for some constant KO, and hence
∥∥∥∥
Ga,b(·, ξ2)

Ga,b(·, ξ1)

∥∥∥∥
C2,α(O)

≤ KOCe
c(d+̺+)

(
1 + max

(
̺

−(2+α)
− , 1

)
̺−n+2

−

)4

.

The expected inequality follows by noting that KO can be dominated by a universal
constant multiplied by |B|, for some ball B of radius 2d so that O ⋐ B. The reason
in that the interpolation constant for an arbitrary ball of radius R is equal to Rn

multiplied by the interpolation constant of the unit ball. �

This corollary combined with Lemma A.2 yields the following result.

Corollary 2.3. There exist C = C(n, λ, κ, α, θ) and c = c(n, λ, κ, α, θ) so that, for
any ξ1, ξ2 ∈ R

n and O ⋐ R
n \ {ξ1, ξ2}, we have

(2.24)

∥∥∥∥
Ga,b(·, ξ2)

Ga,b(·, ξ1)

∥∥∥∥
H2+θ(O)

≤ Cec(d+̺+)
(

1 + max
(
̺

−(2+α)
− , 1

)
̺−n+2

−

)4

.

Here ̺± is the same as in Corollary 2.2.
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2.3. Gradient estimate of the quotient of two fundamental solutions.

Lemma 2.4. There exist x∗ ∈ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2}, C = (n, λ, κ, |ξ1 − ξ2|) > 0
and ρ = ρ(n, λ, κ, |ξ1 − ξ2|) > 0 so that B(x∗, ρ) ⊂ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2} and

C ≤
∥∥∥∥∇
(
Ga,b(·, ξ2)

Ga,b(·, ξ1)

)∥∥∥∥
L2(B(x∗,ρ))

.

Proof. We set for notational convenience w = Ga,b(·, ξ2)/Ga,b(·, ξ1). In light of
Theorem 2.2, we obtain by straightforward computations the following two-sided
inequality

(2.25)
C−1

|x− ξ2|n−2
≤ w(x) ≤ C

|x− ξ2|n−2
, x ∈ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2}.

Here and until the rest of this proof C = C(n, λ, κ, |ξ1 − ξ2|) is a generic constant.
Set t̃ = |ξ1 − ξ2|/4 and define

ϕ(t, θ) = w(ξ2 + tθ), (t, θ) ∈ (0, t̃] × S
n−1.

According to Proposition 2.1, ϕ ∈ C2,α
loc ((0, t̃] × S

n−1) and hence

ϕ(t̃, θ) − ϕ(t, θ) =

ˆ t̃

t

∇w(ξ2 + sθ) · θds,

which in turn gives

|ϕ(t̃, θ) − ϕ(t, θ)|2 ≤ (t̃− t)

ˆ t̃

t

|∇w(ξ2 + sθ)|2 ds

≤ t̃

ˆ t̃

t

|∇w(ξ2 + sθ)|2 ds

≤ t̃

ˆ t̃

t

sn−1

tn−1
|∇w(ξ2 + sθ)|2 ds, (t, θ) ∈ (0, t̃] × S

n−1.

Whence, where t ∈ (0, t̃],

(2.26) tn−1

ˆ

Sn−1

|ϕ(t̃, θ) − ϕ(t, θ)|2dθ ≤ t̃

ˆ

Ct

|∇w(x)|2 dx.

Here

Ct =
{
x ∈ R

n : t < |x− ξ2| < t̃
}
.

On the other hand inequalities (2.25) imply, where (t, θ) ∈ (0, t̃] × S
n−1,

C−1

tn−2
≤ ϕ(t, θ) ≤ C

tn−2
.

Let us then choose t0 ≤ t̃ sufficiently small in such a way that

C−1

tn−2
− C

t̃n−2
> 0, t ∈ (0, t0].

Therefore

(2.27)

(
C−1

tn−2
− C

t̃n−2

)2

≤ |ϕ(t̃, θ) − ϕ(t, θ)|2

if (t, θ) ∈ (0, t0] × S
n−1.
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We then obtain by combining inequalities (2.26) and (2.27)

|Sn−1|
(
C−1

tn−2
− C

t̃n−2

)2

≤ t̃

ˆ

Ct

|∇w(x)|2 dx, t ∈ (0, t0].

We have in particular

C ≤
ˆ

Ct0

|∇w(x)|2 dx.

Let ρ = t0/4. Then it is straightforward to check that, for any x ∈ Ct0 ,

B(x, ρ) ⊂ {y ∈ R
n; 3t0/4 ≤ |y − ξ2| ≤ 5t̃/4} ⊂ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2}.

Since Ct0 is compact, we find a positive integer N = N(λ, κ, |ξ1 − ξ2|) and

xj ∈ Ct0 , j = 1, · · · , N , so that

Ct0 ⊂
N⋃

j=1

B(xj , ρ).

Hence

C ≤
ˆ

∪N
j=1

B(xj,ρ)

|∇w(x)|2 dx.

Pick then x∗ ∈ {xj , 1 ≤ j ≤ N} in such a way that

ˆ

B(x∗,ρ)

|∇w(x)|2 dx = max
1≤j≤N

ˆ

B(xj ,ρ)

|∇w(x)|2 dx.

Therefore

C ≤
ˆ

B(x∗,ρ)

|∇w(x)|2 dx.

This finishes the proof. �

3. Uniform lower bound for the gradient

Let O be a Lipschitz bounded domain of Rn and σ ∈ C0,1(O) satisfying

κ
−1 ≤ σ and ‖σ‖C0,1(O) ≤ κ,(3.1)

for some fixed constant κ > 1.
In this section we prove a polynomial lower bound of the local L2-norm of the

gradient of solutions of

Lσu = div(σ∇u) = 0 in O.

In a first step we establish, via a three-ball inequality for the gradient, a uniform
lower bound of negative exponential type. We use then in a second step an argument
based on the so-called frequency function in order to improve this lower bound.
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3.1. Preliminary lower bound. We need hereafter the following three-ball in-
equality for the gradient.

Theorem 3.1. Let 0 < k < ℓ < m be real. There exist two constants C =
C(n,κ, k, ℓ,m) > 0 and 0 < γ = γ(n,κ, k, ℓ,m) < 1 so that, for any v ∈ H1(O)
satisfying Lσv = 0, y ∈ O and 0 < r < dist(y, ∂O)/m, we have

C‖∇v‖L2(B(y,ℓr)) ≤ ‖∇v‖γ
L2(B(y,kr))‖∇v‖1−γ

L2(B(y,mr)).

A proof of this theorem can be found in [9] or [10].
Define the geometric distance dD

g on the bounded domain D of Rn by

dD
g (x, y) = inf {ℓ(ψ); ψ : [0, 1] → D Lipschitz path joining x to y} ,

where

ℓ(ψ) =

ˆ 1

0

|ψ̇(t)|dt
is the length of ψ.

Note that according to Rademacher’s theorem any Lipschitz continuous function
ψ : [0, 1] → D is almost everywhere differentiable with |ψ̇(t)| ≤ k a.e. t ∈ [0, 1],
where k is the Lipschitz constant of ψ.

Lemma 3.1. Let D be a bounded Lipschitz domain of Rn. Then dD
g ∈ L∞(D×D)

and there exists a constant cD > 0 so that

|x− y| ≤ dD
g (x, y) ≤ cD|x− y|, x, y ∈ D.(3.2)

We refer to [20, Lemma A3] for a proof.
In this subsection we use the following notations

Oδ = {x ∈ O; dist(x, ∂O) > δ}
and

χ(O) = sup{δ > 0; Oδ 6= ∅}.
Define

S (O, x0,M, η, δ) =
{
u ∈ H1(O); Lσu = 0 in O,(3.3)

‖∇u‖L2(O) ≤ M, ‖∇u‖L2(B(x0,δ)) ≥ η
}
,

with δ ∈ (0, χ(O)/3), x0 ∈ O3δ, η > 0 and M ≥ 1 satisfying η < M .

Lemma 3.2. There exist two constants c = c(n,κ) ≥ 1 and 0 < γ = γ(n,κ) < 1
so that, for any u ∈ S (O, x0,M, η, δ) and x ∈ O3δ, we have

(3.4) e−[ln(cM/η)/γ]e[2n| ln γ|]c|x−x0|/δ ≤ ‖∇u‖L2(B(x,δ)),

with c = cO is as in Lemma 3.1.

Proof. Pick u ∈ S (O, x0,M, η, δ). Let x ∈ O3δ and ψ : [0, 1] → O be a Lipschitz
path joining x = ψ(0) to x0 = ψ(1), so that ℓ(ψ) ≤ 2dg(x0, x). Here and henceforth,
for simplicity convenience, we use dg(x0, x) instead of dO

g (x0, x).
Let t0 = 0 and tk+1 = inf{t ∈ [tk, 1]; ψ(t) 6∈ B(ψ(tk), δ)}, k ≥ 0. We claim

that there exists an integer N ≥ 1 verifying ψ(1) ∈ B(ψ(tN ), δ). If not, we would
have ψ(1) 6∈ B(ψ(tk), δ) for any k ≥ 0. As the sequence (tk) is non decreasing
and bounded from above by 1, it converges to t̂ ≤ 1. In particular, there exists an
integer k0 ≥ 1 so that ψ(tk) ∈ B

(
ψ(t̂), δ/2

)
, k ≥ k0. But this contradicts the fact

that |ψ(tk+1) − ψ(tk)| ≥ δ, k ≥ 0.
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Let us check that N ≤ N0 where N0 = N0(n, |x − x0|, c, δ). Pick 1 ≤ j ≤ n so
that

max
1≤i≤n

|ψi(tk+1) − ψi(tk)| = |ψj(tk+1) − ψj(tk)| ,

where ψi is the ith component of ψ. Then

δ ≤ n |ψj(tk+1) − ψj(tk)| = n

∣∣∣∣
ˆ tk+1

tk

ψ̇j(t)dt

∣∣∣∣ ≤ n

ˆ tk+1

tk

|ψ̇(t)|dt.

Consequently, where tN+1 = 1,

(N + 1)δ ≤ n

N∑

k=0

ˆ tk+1

tk

|ψ̇(t)|dt = nℓ(ψ) ≤ 2ndg(x0, x) ≤ 2nc|x− x0|.

Therefore

N ≤ N0 =

[
2nc|x− x0|

δ

]
.

Let y0 = x and yk = ψ(tk), 1 ≤ k ≤ N . If |z − yk+1| < δ, then |z − yk| ≤
|z − yk+1| + |yk+1 − yk| < 2δ. In other words B(yk+1, δ) ⊂ B(yk, 2δ).

We get from Theorem 3.1

(3.5) ‖∇u‖L2(B(yj ,2δ)) ≤ C‖∇u‖1−γ
L2(B(yj ,3δ))‖∇u‖γ

L2(B(yj,δ)), 0 ≤ j ≤ N,

for some constants C = C(n,κ) > 0 and 0 < γ = γ(n,κ) < 1.
Set Ij = ‖∇u‖L2(B(yj,δ)), 0 ≤ j ≤ N and IN+1 = ‖∇u‖L2(B(x0,δ)). Since

B(yj+1, δ) ⊂ B(yj , 2δ), 1 ≤ j ≤ N − 1, estimate (3.5) implies

(3.6) Ij+1 ≤ CM1−γIγ
j , 0 ≤ j ≤ N.

Let C1 = C1+γ+...+γN+1

and β = γN+1. Then by a simple induction argument
estimate (3.6) yields

(3.7) IN+1 ≤ C1M
1−βIβ

0 .

Without loss of generality, we assume in the sequel that C ≥ 1 in (3.6). Using
that N ≤ N0, we have

β ≥ β0 = sN0+1,

C1 ≤ C
1

1−s ,
(
I0

M

)β

≤
(
I0

M

)β0

.

These estimates in (3.7) give

IN+1

M
≤ C

1
1−γ

(
I0

M

)γN0+1

,

from which we deduce that

‖∇u‖L2(B(x0,δ)) ≤ C
1

1−γ M1−γN0+1‖∇u‖γN0+1

L2(B(x,δ)).

But M ≥ 1. Whence

η ≤ ‖∇u‖L2(B(x0,δ)) ≤ C
1

1−γ M‖∇u‖γN0+1

L2(B(x,δ)).

The expected inequality follows readily from this last estimate. �
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3.2. An estimate for the frequency function. Some tools in the present section
are borrowed from [13, 14, 17]. Let u ∈ H1(O) and σ ∈ C0,1(O) satisfying the
bounds (3.1). We recall that the usual frequency function, relative to the operator
Lσ, associated to u is defined by

N(u)(x0, r) =
rD(u)(x0, r)

H(u)(x0, r)
,

provided that B(x0, r) ⋐ O, with

D(u)(x0, r) =

ˆ

B(x0,r)

σ(x)|∇u(x)|2dx,

H(u)(x0, r) =

ˆ

∂B(x0,r)

σ(x)u2(x)dS(x).

Define also

K(u)(x0, r) =

ˆ

B(x,r)

σ(x)u(x)2dx.

Prior to studying the properties of the frequency function, we prove some pre-
liminary results.

Fix u ∈ H2(O) so that Lσu = 0 in O and, for simplicity convenience, we drop
in the sequel the dependence on u of N , D, H and K.

Lemma 3.3. For x0 ∈ Oδ and 0 < r < δ, we have

∂rH(x0, r) =
n− 1

r
H(x0, r) + H̃(x0, r) + 2D(x0, r),(3.8)

∂rD(x0, r) =
n− 2

r
D(x0, r) + D̃(x0, r) + 2Ĥ(x0, r).(3.9)

Here

H̃(x0, r) =

ˆ

∂B(x0,r)

u2∇σ(x) · ν(x)dS(x),

Ĥ(x0, r) =

ˆ

∂B(x0,r)

σ(x)(∂νu(x))2dS(x),

D̃(x0, r) =

ˆ

B(x0,r)

|∇u(x)|2∇σ(x) · (x − x0)dx.

Proof. Pick x0 ∈ Oδ and 0 < r < δ. A simple change of variable yields

H(x0, r) =

ˆ

B(0,1)

σ(x0 + ry)u2(x0 + ry)rn−1dS(y).
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Hence

∂rH(x0, r) =
n− 1

r
H(x0, r) +

ˆ

B(0,1)

∇(σu2)(x0 + ry) · yrn−1dS(y)

=
n− 1

r
H(x0, r) +

ˆ

B(0,1)

u2∇σ(x0 + ry) · yrn−1dS(y)

+

ˆ

∂B(0,1)

σ∇(u2)(x0 + ry) · yrn−1dS(y)

=
n− 1

r
H(x0, r) +

ˆ

∂B(x0,r)

u2∇σ(x) · ν(x)dS(x)

+

ˆ

∂B(x0,r)

σ(x)∇(u2)(x) · ν(x)dS(x)

=
n− 1

r
H(x0, r) + H̃(x0, r) +

ˆ

∂B(x0,r)

σ∇(u2)(x) · ν(x)dS(x).

Identity (3.8) will follow if we prove

2D(x0, r) =

ˆ

∂B(x0,r)

σ∇(u2)(x) · ν(x)dS(x).

To this end, we observe that div(σ∇u) = 0 implies

div(σ∇(u2)) = 2udiv(σ∇u) + 2σ|∇u|2 = 2σ|∇u|2.

We then get by applying the divergence theorem

2D(x0, r) =

ˆ

B(x0,r)

div(σ(x)∇(u2)(x))dx(3.10)

=

ˆ

∂B(x0,r)

σ(x)∇(u2)(x) · ν(x)dS(x).

By a change of variable we have

D(x0, r) =

ˆ r

0

ˆ

∂B(0,1)

σ(x0 + ty)|∇u(x0 + ty)|2tn−1dS(y)dt.

Hence

∂rD(x0, r) =

ˆ

∂B(0,1)

σ(x0 + ry)|∇u(x0 + ty)|2rn−1dS(y)

=

ˆ

∂B(x0,r)

σ(x)|∇u(x)|2dS(x)

=
1

r

ˆ

∂B(x0,r)

σ(x)|∇u(x)|2(x− x0) · ν(x)dS(x).

An application of the divergence theorem then gives

∂rD(x0, r) =
1

r

ˆ

B(x0,r)

div(σ(x)|∇u(x)|2(x− x0))dx.
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Therefore

∂rD(x0, r) =
1

r

ˆ

B(x0,r)

|∇u(x)|2div(σ(x)(x − x0))dx

+
1

r

ˆ

B(x0,r)

σ(x)(x − x0) · ∇(|∇u(x)|2)dx

implying

∂rD(x0, r) =
n

r
D(x0, r) +

1

r
D̃(x0, r)(3.11)

+
1

r

ˆ

B(x0,r)

σ(x)(x − x0) · ∇(|∇u(x)|2)dx.

On the other hand,
ˆ

B(x0,r)

σ(x)(xj − x0,j)∂j(∂iu(x))2dx

= 2

ˆ

B(x0,r)

σ(x)(xj − x0,j)∂2
iju∂iu(x)dx

= −2

ˆ

B(x0,r)

∂i [∂iu(x)σ(x)(xj − x0,j)] ∂ju(x)dx

+ 2

ˆ

∂B(x0,r)

σ(x)∂iu(x)(xj − x0,j)∂ju(x)νi(x)dS(x)

= −2

ˆ

B(x0,r)

∂2
iiu(x)σ(x)(xj − x0,j)∂ju(x)dx

− 2

ˆ

B(x0,r)

∂iu(x)∂ju(x)∂i [σ(x)(xj − x0,j)] dx

+ 2

ˆ

∂B(x0,r)

σ(x)∂iu(x)(xj − x0,j)∂ju(x)νi(x)dS(x).

Thus, taking into account that σ∆u = −∇σ · ∇u,
ˆ

B(x0,r)

σ(x)(x − x0) · ∇(|∇u(x)|2)dx = −2

ˆ

B(x0,r)

σ(x)|∇u(x)|2dx

+ 2r

ˆ

∂B(x0,r)

σ(x)(∂νu(x))2dS(x).

This identity in (3.11) yields

∂rD(x0, r) =
n− 2

r
D(x0, r) +

1

r
D̃(x0, r) + 2Ĥ(x0, r).

That is we proved (3.9). �

Lemma 3.4. We have

K(x0, r) ≤ δneδκ2

n
H(x0, r), x0 ∈ Oδ, 0 < r < δ.

Proof. Since

H(x0, r) =
1

r

ˆ

∂B(x0,r)

σ(x)u2(x)(x − x0) · ν(x)dS(x),
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we find by applying the divergence theorem

(3.12) H(x0, r) =
1

r

ˆ

B(x0,r)

div
(
σ(x)u2(x)(x − x0)

)
dx.

Hence

H ′(x0, r) = −1

r
H(x0, r) +

1

r

ˆ

∂B(x0,r)

div
(
σ(x)u2(x)(x − x0)

)
dS(x)

=
n− 1

r
H(r) +

ˆ

∂B(x0,r)

∂νσ(x)u2(x)dS(x)

+ 2

ˆ

∂B(x0,r)

σ(x)∂νu(x)u(x)dS(x).

But
ˆ

∂B(x0,r)

σ(x)∂νu(x)u(x)dS(x)

=

ˆ

B(x0,r)

div(σ(x)∇u(x))u +

ˆ

B(x0,r)

σ(x)|∇u|2dx

=

ˆ

B(x0,r)

σ(x)|∇u(x)|2dx = D(x0, r).

Therefore

H ′(x0, r) =
n− 1

r
H(x0, r) + 2D(x0, r) +

ˆ

∂B(x0,r)

∂νσ(x)u2(x)dS(x)

≥
ˆ

∂B(x0,r)

∂νσ(x)u2(x)dS(x)

≥
ˆ

∂B(x0,r)

∂νσ(x)

σ(x)
σ(x)u2(x)dS(x) ≥ −κ

2H(x0, r),

where we used that H(x0, r) ≥ 0 and D(x0, r) ≥ 0.

Consequently r → erκ2

H(x0, r) is non decreasing and then
ˆ r

0

H(x0, t)t
n−1dt ≤

ˆ r

0

etκ2

H(x0, t)t
n−1dt

≤
ˆ r

0

erκ2

H(x0, r)t
n−1dt ≤ rn

n
erκ2

H(x0, r).

As

K(x0, r) =

ˆ r

0

H(x0, t)t
n−1dt,

we end up getting

K(x0, t) ≤ δneδκ2

n
H(x0, r).

This completes the proof. �

Now straightforward computations yield, for x0 ∈ Oδ and 0 < r < δ,

(3.13)
∂rN(x0, r)

N(x0, r)
=

1

r
+
∂rD(x0, r)

D(x0, r)
− ∂rH(x0, r)

H(x0, r)
.
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Lemma 3.5. For x0 ∈ Oδ and 0 < r < δ, we have

N(x0, r) ≤ eµδN(x0, δ),

with µ = κ
2 (1 + χ(O)).

Proof. We have from formulas (3.8) and (3.9) and identity (3.13)

∂rN(x0, r)

N(x0, r)
=
D̃(x0, r)

D(x0, r)
− H̃(x0, r)

H(x0, r)
+ 2

Ĥ(x0, r)

D(x0, r)
− 2

D(x0, r)

H(x0, r)
(3.14)

=
D̃(x0, r)

D(x0, r)
− H̃(x0, r)

H(x0, r)
+ 2

Ĥ(x0, r)H(x0, r) −D(x0, r)
2

D(x0, r)H(x0, r)
.

But from (3.10) we have

D(x0, r) =

ˆ

∂B(x0,r)

σ(x)u(x)∂νu(x)dS(x).

Then we find by applying Cauchy-Schwarz’s inequality

D(x0, r)
2 ≤

(
ˆ

∂B(x0,r)

σ(x)u2(x)dS(x)

)(
ˆ

∂B(x0,r)

σ(x)(∂νu)2(x)dS(x)

)
.

That is

(3.15) D2(x0, r) ≤ H(x0, r)Ĥ(x0, r).

This and (3.14) lead

(3.16)
∂rN(x0, r)

N(x0, r)
≥ D̃(x0, r)

D(x0, r)
− H̃(x0, r)

H(x0, r)
.

On the other hand

(3.17)
∣∣H̃(x0, r)

∣∣ ≤ κ‖∇a‖∞H(x0, r) ≤ κ
2H(x0, r),

and similarly

(3.18)
∣∣D̃(x0, r)

∣∣ ≤ κ
2δD(x0, r).

In light of (3.16), (3.17) and (3.18), we derive

∂rN(x0, r)

N(x0, r)
≥ −µ,

that is to say

∂r(eµrN(x0, r)) ≥ 0.

Consequently

N(x0, r) ≤ eµ(δ−r)N(x0, δ) ≤ eµδN(x0, δ),

as expected. �
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3.3. Polynomial lower bound.

Lemma 3.6. There exist two constants c = c(n,κ) > 0 and 0 < γ = γ(n,κ) < 1
so that if

C0(h) = Mec(1+d)δ+[2 ln(cM/η)/γ]e[6n| ln γ|c]h

, h > 0,

then

‖N(u)(x, ·)‖L∞(0,δ) ≤ C0(|x − x0|/δ),
for any u ∈ S (O, x0,M, η, δ/3), where c = cO is as in Lemma 3.1.

Proof. Pick x ∈ Oδ. Then from Lemma 3.2

‖∇u‖L2(B(x,δ/3)) ≥ e−[ln(cM/η)/γ]e[6n| ln γ|]c|x−x0|/δ

,

for some constant c = c(n,κ) and 0 < γ = γ(n,κ)) < 1.
On the other hand, we establish in a quite classical manner the following Cac-

cioppoli’s inequality

‖∇u‖2
L2(B(x,δ/3)) ≤ ̟κ

2(1 + d)

δ2
‖u‖2

L2(B(x,δ)),

where ̟ is a universal constant. Therefore

(3.19) ‖u‖2
L2(B(x,δ)) ≥ C̃0(|x− x0|/δ),

where

(3.20) C̃0(h) =
δ2

̟κ2(1 + d)
e−[2 ln(cM/η)/γ]e[6n| ln γ|c]h

, h > 0.

Since K(u)(x, δ) ≥ κ
−1‖u‖2

L2(B(x,δ)), we find

(3.21) K(u)(x, δ) ≥ δ2

̟κ3(1 + d)
e−[2 ln(cM/η)/γ]e[6n| ln γ|]c|x−x0|/δ

.

In light of Lemma 3.4, we derive from (3.21)

(3.22) H(u)(x, δ) ≥ δ−n+2e−κ
2δ

n̟κ3(1 + d)
e−[2 ln(cM/η)/γ]e[6n| ln γ|]c|x−x0|/δ

.

In light of Lemma 3.5, we get

N(x, r) ≤ δκeκ
2(1+d)δ ‖∇u‖L2(O)

H(u)(x, δ)
, 0 < r < δ,

This inequality and (3.22) give, where c = c(n,κ) is a constant,

N(x, r) ≤ Mec(1+d)δ+[2 ln(cM/η)/γ]e[6n| ln γ|]c|x−x0|/δ

, 0 < r < δ,

which is the expected inequality. �

Proposition 3.1. Let C0 be as in Lemma 3.6, C̃0 as in (3.20) and set

C1(h) = C0(h) + n− 1, h > 0,(3.23)

C̃2(h) = δ−n+1e−κ
2δC̃0(h), h > 0.(3.24)

If u ∈ S (O, x0,M, η, δ/3) then

C̃2(|x − x0|/δ)
(r
δ

)C0(|x−x0|/δ)+n−1

≤ ‖u‖2
L2(B(x,r)), x ∈ Oδ, 0 < r < δ.
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Proof. Observing that, where H = H(u),

∂r

(
ln
H(x, r)

rn−1

)
=
∂rH(x, r)

H(x, r)
− n− 1

r
,

we get from Lemma 3.6, (3.8) and the fact that |H̃(x, r)| ≤ κ
2H(x, r),

∂r

(
ln
H(x, r)

rn−1

)
≤ κ

2 +
N(x, r)

r
≤ κ

2 +
C0(|x− x0|/δ)

r
, 0 < r < δ,

Thus
ˆ sδ

sr

∂t

(
ln
H(x, t)

tn−1

)
dt = ln

H(x, sδ)rn−1

H(x, sr)δn−1
≤ κ

2(δ − r)s+ C0(|x − x0|/δ) ln
δ

r
,

for 0 < s < 1 and 0 < r < δ.
Hence

H(x, sδ) ≤ eκ
2δ

(
δ

r

)C0(|x−x0|/δ)+n−1

H(x, sr),

and then

‖u‖2
L2(B(x,δ)) = δn−1

ˆ 1

0

H(x, sδ)sn−1ds

≤ eκ
2δ

(
δ

r

)C0(|x−x0|/δ)+n−1

rn−1

ˆ 1

0

H(x, rs)sn−1ds

≤ δn−1eκ
2δ

(
δ

r

)C0(|x−x0|/δ)+n−1

‖u‖2
L2(B(x,r)).

Combined with (3.19) this estimate yields in a straightforward manner

δ−n+1e−κ
2δC̃0(|x− x0|/δ)

(r
δ

)C0(|x−x0|/δ)+n−1

≤ ‖u‖2
L2(B(x,r)).

This is the expected inequality. �

For a bounded domain D, we denote the first non zero eigenvalue of the Laplace-
Neumann operator on D by µ2(D). Since µ2(B(x0, r)) = µ2(B(0, 1))/r2, we get by
applying Poincaré-Wirtinger’s inequality

‖w − {w}‖2
L2(B(x,r)) ≤ 1

µ2(B(x, r))
‖∇w‖2

L2(B(x,r))(3.25)

≤ r2

µ2(B(0, 1))
‖∇w‖2

L2(B(x,r)),

for any w ∈ H1(B(x, r)), where {w} = 1
|B(x,r)|

´

B(x,r)w(x)dx.

Noting that S (O, x0,M, η, δ/3) is invariant under the transformation u → u −
{u}, we can state the following consequence of Proposition 3.1

Corollary 3.1. With the notations of Proposition 3.1, if u ∈ S (O, x0,M, η, δ/3)
then

C2(|x− x0|/δ)
(r
δ

)C1(|x−x0|/δ)

≤ ‖∇u‖2
L2(B(x,r)), x ∈ Oδ, 0 < r < δ,

with

(3.26) C2(h) = µ2(B(0, 1))δ−2C̃2(h), h > 0,

with C̃2 as in Proposition 3.1.
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It is important to remark that the argument we used to obtain Corollary 3.1 from
Proposition 3.1 is no longer valid if we substitute Lσ by Lσ plus a multiplication
operator by a function σ0.

The following consequence of the preceding corollary will be useful in the proof
of Theorem 1.1.

Lemma 3.7. Let ω ⋐ O and set δ = dist(ω, ∂O). Let u ∈ S (O, x0,M, η, δ/3) and
f ∈ C0,α(O). Then we have

(3.27) ‖f‖L∞(ω) ≤ Ĉ3‖f‖1−µ̂

C0,α(O)
‖f |∇u|2‖µ̂

L1(O),

with

µ̂ =
α

maxx∈O C1(|x− x0|/δ) + α
,

Ĉ3 = max
(

2δα(max
(

1, (Ĉ2δ
α)−1

)
,max

(
1,M2

)
(Ĉ2δ

α)−1
)
,

where Ĉ2 = maxx∈O C2(|x − x0|/δ) with C2 is as in Corollary 3.1.

Proof. By homogeneity it is enough to consider those functions f ∈ C0,α(O) satis-
fying ‖f‖C0,α(O) = 1.

Let C1 and C2 be respectively as in (3.23) and (3.26). Let u ∈ S (O, x0,M, η, δ/3)
and f ∈ C0,α(O) satisfying ‖f‖C0,α(O) = 1. Pick then x ∈ ω. From Corollary 3.1,
we have

(3.28) C2(|x− x0|/δ)
(r
δ

)C1(|x−x0|/δ)

≤ ‖∇u‖L2(B(x,r)), 0 < r < δ.

On the other hand, it is straightforward to check that

|f(x)| ≤ |f(y)| + rα, y ∈ B(x, r).

Whence

|f(x)|
ˆ

B(x,r)

|∇u(y)|2dy ≤
ˆ

B(x,r)

|f(y)||∇u(y)|2dy

+ rα

ˆ

B(x,r)

|∇u(y)|2dy.

That is we have

|f(x)|‖∇u‖2
L2(B(x,r) ≤ ‖f |∇u|2‖L1(B(x,r)) + rα‖∇u‖2

L2(B(x,r)).

Since u is non constant, ‖∇u‖2
L2(B(x,r)) 6= 0 for any 0 < r < δ by the unique

continuation property. Therefore

|f(x)| ≤ ‖f |∇u|2‖L1(B(x,r))

‖∇u‖2
L2(B(x,r))

+ rα, 0 < r < δ.

This and (3.28) entail

|f(x)| ≤ C2(|x− x0|/δ)−1

(
δ

r

)C1(|x−x0|)
‖f |∇u|2‖L1(B(x,r)) + rα, 0 < r < δ.

Hence

|f(x)| ≤ C2(|x− x0|/δ)−1

(
1

s

)C1(|x−x0|)
‖f |∇u|2‖L1(O) + δαsα, 0 < s < 1.
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In consequence

‖f‖L∞(ω) ≤ Ĉ2

(
1

s

)α̂

‖f |∇u|2‖L1(O) + δαsα, 0 < s < 1,

where α̂ = maxx∈O C1(|x − x0|/δ).
This inequality leads to the expected one using a very classical argument.

�

4. Proof Theorem 1.1

Pick (a, b), (ã, b̃) ∈ D(λ, κ) and let uj = Ga,b(·, ξj) and ũj = Gã,b̃(·, ξj), j = 1, 2.

By simple computations we can check that w = u2/u1 is the solution of the equation

div(σ∇w) = 0 in R
n \ {ξ1, ξ2},

with

σ = au2
1 =

av2
1

b2
.

Similarly, w̃ = ũ2/ũ1 is the solution of the equation

div(σ̃∇w̃) = 0 in R
n \ {ξ1, ξ2},

with

σ̃ = ãũ2
1 =

ãũ2
1

b̃2
.

We know from Lemma 2.4 that there exist x∗ ∈ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2}, η0 =
(n, λ, κ, |ξ1 − ξ2|) > 0 and ρ = ρ(n, λ, κ, |ξ1 − ξ2|) > 0 so that B(x∗, ρ) ⊂ B(ξ2, |ξ1 −
ξ2|/2) \ {ξ2} and

(4.1) η0 ≤ ‖∇w‖L2(B(x∗,ρ)).

Fix then a bounded domain Q of Rn\{ξ1, ξ2} is such a way that Ω∪B(x∗, ρ) ⋐ Q,
and set

δ = dist(Ω ∪B(x∗, ρ), ∂Q).

In the rest of this proof d = diam(Q).
According to Corollary 2.3

(4.2) ‖∇w‖L2(Q) ≤ M = Cec(d+̺+)
(

1 + max
(
̺

−(2+α)
− , 1

)
̺−n+2

−

)4

,

with C = C(n, λ, κ, α, θ) and c = c(n, λ, κ, α, θ), ̺− = min (dist (ξ1,Q) , dist (ξ2,Q))
and ̺+ = max (dist (ξ1,Q) , dist (ξ2,Q)).

Now, since

‖σ‖C0,1(Q) ≤ ‖a‖C0,1(Q)‖u1‖2
C0,1(Q)

,

we get, similarly to the end of the proof of Corollary 2.3, from [15, Lemma 6.35,
page 135]

‖σ‖C0,1(Q) ≤ C‖a‖C0,1(Q)‖u1‖2
C2,α(Q)

.

Here C = C(n, λ, κ,d, ξ1, ξ2).
This inequality together with Proposition 2.1 yield

(4.3) ‖σ‖C0,1(Q) ≤ C,

where C = C(n, λ, κ,d, ξ1, ξ2).
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On the other hand, we have from (2.11)

(4.4) C−1 min
x∈Q

e−2
√

cκ|x−ξ1|

|x− ξ1|n−2
≤ u1, in Q,

with c = c(n, λ) and C = C(n, λ, κ).
We get by combining (4.3) and (4.4) that there exists κ = κ(n, λ, κ, α,Ω, ξ1, ξ2) >

1 so that
κ

−1 ≤ σ and ‖σ‖C0,1(Q) ≤ κ.

Next, if ρ ≤ δ/3 then (4.1) implies obviously

(4.5) η0 ≤ ‖∇w‖L2(B(x0,δ/3)),

with η as in (4.1).
When ρ > δ/3 we can use the three-ball inequality in Theorem 3.1 in order to

get
C̃‖∇w‖L2(B(x∗,ρ)) ≤ ‖∇w‖s

L2(B(x0,δ/3))‖∇w‖1−s
L2(B(x∗,ρ+δ/3)),

where C̃ = C̃(n, λ, κ,Ω, ξ1, ξ2) and 0 < s = s(n, λ, κ,Ω, ξ1, ξ2) < 1. Whence

(4.6) (C̃η0)1/sM (s−1)/s ≤ ‖∇w‖L2(B(x0,δ/3)).

In light of (4.2), (4.5) and (4.6), we can infer that, for some η = η(n, λ, κ,Ω, ξ1, ξ2),
w ∈ S (Q, x∗,M, η, δ/3), where M is as in (4.2) and S (Q, x∗,M, η, δ/3) is defined
in (3.3).

Lemma 4.1. We have

(4.7) C‖(σ − σ̃)|∇w|2‖L1(Ω) ≤ ‖w − w̃‖θ/(2+θ)
L2(Ω) + ‖σ − σ̃‖L∞(Γ),

with C = C(n, λ, κ,Ω, α, θ, ξ1, ξ2) > 0.

Proof. Clearly, if ζ = σ − σ̃ and u = w − w̃, then

div(σ̃∇u) = div(ζ∇w).

Recall that sgn0 is the sign function defined on R by: sgn0(t) = −1 if t < 1,
sgn0(0) = 0 and sgn0(t) = 1 if t > 0. Since

div(|ζ|∇w) = ∇|ζ| · ∇w + |ζ|∆w
= sgn0(ζ)∇ζ · ∇w + sgn0(ζ)ζ∆w

= sgn0(ζ)div(ζ∇w) = sgn0(ζ)div(σ̃∇u),

we get by integrating by parts
ˆ

Ω

|ζ|∇w|2dx = −
ˆ

Ω

div(|ζ|∇w)wdx +

ˆ

Γ

|ζ|w∂νwdS(x)(4.8)

= −
ˆ

Ω

sgn0(ζ)div(σ̃∇u)wdx +

ˆ

Γ

|ζ|w∂νwdS(x).

Thus
ˆ

Ω

|ζ|∇w|2dx ≤ C
(
‖u‖H2(Ω) + ‖ζ‖L∞(Γ)

)
.

This, the following interpolation inequality

‖u‖H2(Ω) ≤ cΩ‖u‖θ/(2+θ)
L2(Ω) ‖u‖2/(2+θ)

H2+θ(Ω)

and Corollary 2.3 give (4.7). �
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We have from (3.27) in Lemma 3.7

‖σ̃ − σ‖C(Ω) ≤ Ĉ3‖σ̃ − σ‖1−µ̂

C0,α(Ω)
‖(σ − σ̃)|∇w|2‖µ̂

L1(Ω),

from which we obtain

‖σ̃ − σ‖C(Ω) ≤ Ĉ3 max
(

1, ‖σ̃ − σ‖C0,α(Ω)

)
‖(σ − σ̃)|∇w|2‖µ̂

L1(Ω).

Combined with Proposition 2.1, this inequality gives

‖σ̃ − σ‖C(Ω) ≤ C‖(σ − σ̃)|∇w|2‖µ̂
L1(Ω).

Here and henceforward, C = C(n, λ, κ,Ω, α, θ, ξ1, ξ2) > 0 is a generic constant.
Therefore, we obtain in light of Lemma 4.1

‖σ̃ − σ‖C(Ω) ≤ C
(

‖w − w̃‖θ/(2+θ)
L2(Ω) + ‖σ − σ̃‖C(Γ)

)µ̂

.

Since ã = a and b̃ = b on Γ and regarding the regularity of ui and ũi, i = 1, 2,
we finally get

‖σ̃ − σ‖C(Ω) ≤ C
(

‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ̂0

,(4.9)

with

µ̂0 =
θµ̂

2 + θ
.

The following lemma will be used in sequel.

Lemma 4.2. There exist two constants 0 < µ̂1 = µ̂1(n,Ω, λ, κ, α, θ, ξ1, ξ2) < 1 and
C = C(n,Ω, λ, κ, α, θ, ξ1, ξ2) > 0 so that

(4.10) ‖u−1
1 − ũ−1

1 ‖C2,α(Ω) ≤ C
(

‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ̂1

.

Proof. In this proof C = C(n,Ω, λ, κ, α, θ, ξ1, ξ2) > 0 is a generic constant.
It is not hard to check that

− div(σ∇u−1
1 ) = v1 in Ω,

− div(σ̃∇ũ−1
1 ) = ṽ1 in Ω.

Hence

−div(σ∇(u−1
1 − ũ−1

1 )) = (v1 − ṽ1) + div((σ − σ̃)∇ũ−1
1 ) in Ω.

By the usual Hölder a priori estimate (see [15, Theorem 6.6, page 98])

C‖u−1
1 − ũ−1

1 ‖C2,α(Ω) ≤ ‖v1 − ṽ1‖C0,α(Ω)

+ ‖div((σ − σ̃)∇ũ−1
1 )‖C0,α(Ω) + ‖u−1

1 − ũ−1
1 ‖C0,α(Γ).

Consequently

(4.11) ‖u−1
1 − ũ−1

1 ‖C2,α(Ω) ≤ C
(

‖v1 − ṽ1‖C0,α(Ω) + ‖σ − σ̃‖C1,α(Ω)

)
,

where we used that

‖u−1
1 − ũ−1

1 ‖C0,α(Γ) = ‖b(v−1
1 − ṽ−1

1 )‖C0,α(Γ).

On the other hand, since

‖σ − σ̃‖C1,1(Ω) ≤ C, ‖v1 − ṽ1‖C1,α(Ω) ≤ C
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and Ω is C1,1, we get again from the interpolation inequality in [15, Lemma 6.35,
page 135]

(4.12) ‖σ − σ̃‖C1,α(Ω) ≤ C‖σ − σ̃‖τ
C(Ω)

, ‖v1 − ṽ1‖C0,α(Ω) ≤ C‖v1 − ṽ1‖τ
C(Ω)

,

where 0 < τ = τ(Ω, α) < 1 is a constant.
Inequality (4.15) in (4.11) yields

(4.13) ‖u−1
1 − ũ−1

1 ‖C2,α(Ω) ≤ C
(

‖v1 − ṽ1‖τ
C(Ω)

+ ‖σ − σ̃‖τ
C(Ω)

)
.

On the other hand we have from (4.9)

‖σ̃ − σ‖C(Ω) ≤ C
(

‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ̂0

.(4.14)

Whence, we get in light of inequalities (4.13) and (4.14), where µ̂1 = τµ̂0,

‖u−1
1 − ũ−1

1 ‖C2,α(Ω) ≤ C
(

‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ̂1

.

This is the expected inequality. �

Also, since

‖σ − σ̃‖C1,1(Ω) ≤ C, ‖v1 − ṽ1‖C2,α(Ω) ≤ C,

we can proceed as in the preceding proof to get

(4.15) ‖σ − σ̃‖C1,α(Ω) ≤ C‖σ − σ̃‖τ
C(Ω)

, ‖v1 − ṽ1‖C1,α(Ω) ≤ C‖v1 − ṽ1‖τ
C(Ω)

,

the constant 0 < τ = τ(Ω, α) < 1.
But

a− ã = σu−2
1 − σ̃ũ1

−2 = (σ − σ̃)u−2
1 + σ̃(u−2

1 − ũ−2
1 )

= (σ − σ̃)u−2
1 + σ̃(u−1

1 + ũ−1
1 )(u−1

1 − ũ−1
1 ).

Hence

(4.16) ‖a− ã‖C1,α(Ω) ≤ C
(

‖u−1
1 − ũ−1

1 ‖C1,α(Ω) + ‖σ − σ̃‖C1,α(Ω)

)
.

This inequality together with (4.9), (4.10) and (4.15) entail

(4.17) ‖a− ã‖C1,β(Ω) ≤ C
(

‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ̂1

.

We can proceed similarly for b− b̃. Since

b− b̃ = v1u
−1
1 − ṽ1ũ

−1
1 = (v1 − ṽ1)u−1

1 + ṽ1(u−1
1 − ũ−1

1 ),

we have

(4.18) ‖b− b̃‖C0,β(Ω) ≤ C
(

‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ̂1

.

The expected inequality follows by putting together (4.17) and (4.18).
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Appendix A. Proof of technical lemmas

Proof of Lemma 2.2. In this proof C = C(n, µ, ν) > 1 is a generic constant.
For a given constant ν > 0 , it is well known that G1,ν , the fundamental solution

of the operator −∆ + ν, is given by G1,ν(x, ξ) = G1,ν(x − ξ), x, ξ ∈ R
n, with

G1,ν(x) = (2π)−n/2(
√
ν/|x|)n/2−1Kn/2−1(

√
ν|x|).

In the particular case n = 3, we have K1/2(z) =
√
π/(2z)e−z and therefore

G1,ν(x) =
e−√

ν|x|

4π|x| ,

in dimension three.
Let f ∈ C∞

0 (Rn), µ > 0, and ν > 0 be two constants, and denote by u the
solution of the equation

(−µ∆ + ν)u = f in R
n.

Then

(A.1) u(x) =

ˆ

Rn

Gµ,ν(x, ξ)f(ξ)dξ, x ∈ R
n.

We remark that v(x) = u(
√
µx), x ∈ R

n satisfies (−∆ + ν)v = f(
√
µ ·). Whence

u(
√
µx) = v(x) =

ˆ

Rn

G1,κ(x− ξ)f(
√
µξ)dξ

= µ−n/2

ˆ

Rn

G1,ν(x − ξ/
√
µ)f(ξ)dξ, x ∈ R

n.

Hence

(A.2) u(x) = µ−n/2

ˆ

Rn

G1,ν((x − ξ)/
√
µ)f(ξ)dξ, x ∈ R

n.

Comparing (A.1) and (A.2) we find

Gµ,ν(x, ξ) = µ−n/2G1,ν((x− ξ)/
√
µ), x, ξ ∈ R

n.

Consequently Gµ,ν(x, ξ) = Gµ,ν(x− ξ) with

(A.3) Gµ,ν(x) = (2πµ)−n/2(
√
νµ/|x|)n/2−1Kn/2−1(

√
ν|x|/√µ), x ∈ R

n.

By the usual asymptotic formula for modified Bessel functions of the second kind
(see for instance [5, 9.7.2, page 378]) we have, when |x| → ∞,

Kn/2−1(
√
ν|x|/√µ) =

(
π

√
µ

2
√
ν|x|

)1/2

e−√
ν|x|/√

µ (1 +O(1/|x|)) ,

where O(1/|x|) only depends on n, µ and ν.
Consequently, there exits R = R(n, µ, ν) > 0 so that

(A.4) C−1 e
−√

ν|x|/√
µ

|x|1/2
≤ Kn/2−1(

√
ν|x|/√µ) ≤ C

e−√
ν|x|/√

µ

|x|1/2
, |x| ≥ R.

Substituting if necessary R by max(R, 1), we have

(A.5)
1

|x|n/2−1
≤ 1

|x|1/2
, |x| ≥ R.
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Moreover, we have

e−√
ν|x|/√

µ

|x|1/2
=
[
|x|(n−3)/2e−√

ν|x|/(2
√

µ)
] e−√

ν|x|/(2
√

µ)

|x|n/2−1
, |x| ≥ R.

Since the function x → |x|(n−3)/2e−√
ν|x|/(2

√
µ) is bounded in R

n, we deduce

(A.6)
e−√

ν|x|/√
µ

|x|1/2
≤ C

e−√
ν|x|/(2

√
µ)

|x|n/2−1
, |x| ≥ R.

Using (A.5) and (A.6) in (A.4) in order to obtain

(A.7) C−1 e
−√

ν|x|/√
µ

|x|n/2−1
≤ Kn/2−1(

√
ν|x|/√µ) ≤ C

e−√
ν|x|/(2

√
µ)

|x|n/2−1
, |x| ≥ R.

We now establish a similar estimate when |x| → 0. To this end we recall that
according to formula [5, 9.6.9, page 375] we have

Kn/2−1(ρ) ∼ 1

2
Γ(n/2 − 1)

(
2

ρ

)n/2−1

as ρ → 0,

from which we deduce in a straightforward manner that there exists 0 < r ≤ R so
that

(A.8) C−1 e
−√

ν|x|/√
µ

|x|n/2−1
≤ Kn/2−1(

√
ν|x|/√µ) ≤ C

e−√
ν|x|/(2

√
ν)

|x|n/2−1
, |x| ≤ r.

The expected two sided inequality (2.10) follows by combining (A.4), (A.7) and
(A.8). �

Proof of Lemma 2.3. Let Q be an open subset of R
n, set d = diam(Q), dx =

dist(x, ∂Q) and dx,y = min(dx, dy).
We introduce the following weighted Hölder semi-norms and Hölder norms, where

σ ∈ R, 0 < γ ≤ 1, and k is non-negative integer,

[w]
(σ)
k,0;Q = [w]

(σ)
k,Q = sup

x∈Q, |β|=k

dk+σ
x |∂βw(x)|,

[w]
(σ)
k,γ;Q = sup

x,y∈Q, |β|=k

dk+γ+σ
x,y

|∂βw(y) − ∂βw(x)|
|y − x|α ,

|w|(σ)
k;Q =

k∑

j=0

[w]
(σ)
j;Q,

|w|(σ)
k,γ;Q = |w|(σ)

k;Q + [w]
(σ)
k,γ;Q.

In term of these notations, we have

|a|(0)
0,α;Q = sup

x∈Q
|a(x)| + sup

x,y∈Q
dα

x,y

|a(y) − a(x)|
|y − x|α ≤ (1 + d)λ,

|∂ja|(1)
0,α;Q = sup

x∈Q
dx|∂ja(x)| + sup

x,y∈O
d1+α

x,y

|∂ja(y) − ∂ja(x)|
|y − x|α ≤ d(1 + dα)λ,

|b|(2)
0,α;Q = sup

x∈O
d2

x|b(x)| + sup
x,y∈Q

d2+γ
x,y

|b(y) − b(x)|
|y − x|α ≤ d2(1 + dα)λ.

In consequence

(A.9) |a|(0)
0,α;Q + |∂ja|(1)

0,α;Q + |b|(2)
0,α;Q ≤ Λ(d) = [1 + (d + d2)(1 + dα)]λ.
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Following [15] we define also

[w]∗k,0;Q = [w]∗k,O = sup
x∈Q, |β|=k

dk
x|∂βw(x)|,

[w]∗k,γ;Q = sup
x,y∈Q, |β|=k

dk+α
x,y

|∂βw(y) − ∂βw(x)|
|y − x|γ ,

|w|∗k;Q =

k∑

j=0

[w]∗j;Q,

|w|∗k,γ;Q = |w|∗k;Q + [w]∗k,γ;O.

From [15, Lemma 6.32, page 130] and its proof we have the following interpo-
lation inequalities: suppose that j and k, non negative integers, and 0 ≤ β, γ ≤ 1
are so that j + β < k + γ. Then there exist C = C(n, α, β) > 0 and κ = κ(α, β) so
that, for any w ∈ Ck,α(Q) and ǫ > 0, we have

[w]∗j,β;Q ≤ Cǫ−κ|w|0;Q + ǫ[w]∗k,γ;Q,(A.10)

|w|∗j,β;Q ≤ Cǫ−κ|w|0;Q + ǫ[w]∗k,γ;Q.(A.11)

Here |w|0;Q = supx∈Q |w(x)|.
Checking carefully the proof of interior Schauder estimates in [15, Theorem 6.2,

page 90], we get, taking into account inequalities (A.9)-(A.11), the following result:
there exist a constant C = C(n) > 0 and κ = κ(α) so that, for any µ ≤ 1/2 and
w ∈ Ck,α(Q) satisfying La,bw = 0 in Q, we have

(A.12) [w]∗2,α,Q ≤ CΛ(d)
(
µ−κ|w|0;Q + µα[w]∗2,α,Q

)
.

Substituting in (A.12) C by max(C, 2α−1), we may assume that in (A.12), C =
C(n, α) ≥ 2α−1. Bearing in mind that Λ(d) > 1, we can take in (A.12), µ =
(2CΛ(d))−1/α. We find

(A.13) [w]∗2,α,Q ≤ CΛ(d)κ |w|0;Q,

for some constants C = C(n, α) > 0 and κ = κ(α) > 1.
Using again interpolation inequalities (A.10) and (A.11), we deduce that

(A.14) |w|∗2,α,Q ≤ CΛ(d)κ |w|0;Q.

Let δ > 0 be so that Qδ = {x ∈ Q; dist(x, ∂Q) > δ} is nonempty. If Q′ is an
open subset of Qδ then (A.14) yields in a straightforward manner

‖w‖C2,α(Q′) ≤ C max
(
δ−(2+α), 1

)
Λ(d)κ |w|0;Q.

This is the expected inequality. �

Lemma A.1. Let K be a compact subset of R
n and f ∈ C2,α(K) satisfying

minK |f | ≥ c− > 0. Then

(A.15) ‖1/f‖C2,α(K) ≤ Cc4
+

(
1 + ‖f‖C2,α(K)

)3
,

where c+ = max(1, c−1
− ) and C = C(diam(K)) is a constant.
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Proof. Let x, y ∈ K. Using |1/f |0;K ≤ c+ and the following identities

1

f2(y)
− 1

f2(x)
=

(
1

f(x)f2(y)
+

1

f(x)2f(y)

)
(f(x) − f(y)),

1

f3(y)
− 1

f3(x)
=

(
1

f(x)f3(y)
+

1

f2(x)f2(y)
+

1

f(x)3f(y)

)
(f(x) − f(y)),

we easily get

(A.16) [1/f j]α;K ≤ 3c4
+[f ]α;K , j = 2, 3.

Also, we have

∂if(y)∂jf(x)

f3(y)
− ∂if(y)∂jf(x)

f3(x)
=
∂if(y)

f3(y)
(∂jf(y) − ∂jf(x))

+
∂jf(x)

f3(y)
(∂if(y) − ∂if(x)) +

(
1

f3(y)
− 1

f3(x)

)
(∂if(y)∂jf(x)).

In light of (A.16), this identity yields

[∂if∂jf/f
3]α;K ≤ c4

+ ([∂if ]α;K |∂jf |0;K(A.17)

+[∂jf ]α;K |∂if |0;K + [f ]α;K |∂if |0;K |∂jf |0;K) .

On the other hand, since

∂2
ijf(y)

f2(y)
−
∂2

ijf(x)

f2(x)
=

1

f2(y)
(∂2

ijf(y) − ∂2
ijf(x)) +

(
1

f2(y)
− 1

f2(y)

)
∂2

ijf(x),

we find, by using again (A.16),

(A.18) [∂2
ijf/f

2]α;K ≤ 3c4
+

(
[∂2

ijf ]α;K + [f ]α;K |∂2
ijf |0,K

)
.

Inequalities (A.17), (A.18), the identity ∂2
ij(1/f) = 2∂if∂jf/f

3 − ∂2
ijf/f

2 and the
interpolation inequality [15, Lemma 6.35, page 135] (by proceeding as in Corollary
2.2) imply

(A.19) [∂2
ij(1/f)]α,K ≤ Cc4

+

(
1 + ‖f‖C2,α(K)

)3
,

with C = C(diam(K)) is a constant.
The other terms for 1/f appearing in the norms ‖ · ‖C2,α(K) can be estimated

similarly to the semi-norm in (A.19). Inequality (A.15) then follows. �

Lemma A.2. C2,α(O) is continuously embedded in H2+θ(O). Furthermore, there
exists C = C(n, α− θ) so that, for any w ∈ C2,α(O), we have

(A.20) ‖w‖H2+θ(O) ≤ C max
(

dn/2,dn/2+α−θ
)

‖w‖C2,α(O),

where d = diam(O).

Proof. Let w ∈ C2,α(O) and, for fixed 1 ≤ i, j ≤ n, set g = ∂2
ijw. Then

ˆ

O

ˆ

O

|g(x) − g(y)|2
|x− y|n+2θ

dxdy ≤ [g]2α;O

ˆ

O

ˆ

O

1

|x− y|n−2(α−θ)
dxdy.

In light of [10, Lemma A4, page 246], this inequality yields
ˆ

O

ˆ

O

|g(x) − g(y)|2
|x− y|n+2θ

dxdy ≤ |Sn−1||O|d2(α−θ)

2(α− θ)
[g]2α;O,
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But |O| ≤ |B(0,d)|. Hence

(A.21)

ˆ

O

ˆ

O

|g(x) − g(y)|2
|x− y|n+2θ

dxdy ≤ |Sn−1|2dn+2(α−θ)

2(α− θ)
[g]2α;O.

Using (A.21) and the inequality

‖h‖2
L2(O) ≤ |Sn−1|dn|h|0,O, h ∈ C(O),

we get from the definition of the norm of Hs-spaces in [16, formula (1.3.2.2), page
17]

‖w‖H2+θ(O) ≤ C max
(

dn/2,dn/2+α−θ
)

‖w‖C2,α(O),

for some constant C = C(n, α− θ). This is the expected inequality �
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