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Abstract

In this paper, we propose a new scheme for anisotropic motion by mean
curvature in Rd. The scheme consists of a phase-field approximation of the
motion, where the nonlinear diffusive terms in the corresponding anisotropic
Allen-Cahn equation are linearized in the Fourier space. In real space, this
corresponds to the convolution with a specific kernel of the form

Kφ,t(x) = F−1
[
e−4π2tφo(ξ)

]
(x).

We analyse the resulting scheme, following the work of Ishii-Pires-Souganidis
on the convergence of the Bence-Merriman-Osher algorithm for isotropic
motion by mean curvature. The main difficulty here, is that the kernel Kφ,t

is not positive and that its moments of order 2 are not in L1(Rd). Still,
we can show that in one sense the scheme is consistent with the anisotropic
mean curvature flow.

1



1 Introduction and motivation

In the last decades, a lot of attention has been devoted to the motion of interfaces,
and particularly to motion by mean curvature. Applications concern image pro-
cessing (denoising, segmentation), material sciences (motion of grain boundaries
in alloys, crystal growth), biology (modelling of vesicles and blood cells). This
paper is interested in numerical schemes for the anisotropic mean curvature flow,
that is, the “gradient flow” of an anisotropic perimeter

Pφ(Ω) =
∫
∂Ω
φ◦(n(x)) dσ (1)

where n(x) is the outer normal to ∂E at x and φ◦ is a convex, one-homogeneous
surface tension (the isotropic case corresponds to φ◦(n(x)) = |n(x)| = 1).

There is an important literature on numerical methods for the isotropic and
anisotropic curvature flows. These can be roughly classified into three categories:
Parametric methods [23, 24, 7, 8], Level set formulations [38, 36, 37, 28, 19] or
Phase field approaches [35, 17, 10, 39]. See for instance [25] for a complete review
and comparison beetween these three differents strategies.

In this work, we will consider a new scheme, proposed in [14], based on a
phase field representation. It relies on the introduction of a specific anisotropic
Laplacian (pseudo-differential) operator, which can be used both in a standard
phase-field approximation (an anisotropic Allen-Cahn equation), or in a convolu-
tion/thresholding scheme [11, 33] which can be thought as a limiting case of the
Allen-Cahn equation. The basic idea in [11] is to alternate the diffusion (with the
heat equation) and the sharpening (by thresholding) of the characteristic func-
tions of a set; [33] study a more general variant where the diffusion is replaced
with the convolution by quite general kernels.

In the phase-field approach, anisotropic flows can be tackled either by a modified
version of the Bence-Merriman-Osher algorithm [11], where the heat equation is
replaced with a nonlinear variant built upon the anisotropy φ◦ [15], or by replacing
the heat equation with the convolution with a nonnegative, nonsymmetric kernel
f as in [33]. However, in the latter case, the inverse problem of finding an
appropriate kernel f , given the anisotropy φ◦, is solved only in 2D [42]. Some
progress was done recently in relating the convolution kernel with φ◦ in [22], but
the inverse problem is still considered untractable in higher dimension. In fact,
it is not even clear that any anisotropy, even smooth, can be obtained in the
framework of [33].

The aim of this work is to study a simple construction, proposed in [14] of a kernel
f for all kind of anisotropy φ◦ in all dimension. This kernel can be seen as the
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fundamental solution of the heat equation with a particular pseudo-differential
operator which can be seen as an anisotropic Laplacian. The most interesting
feature of this approach is that the diffusion can be solved efficiently using the
Fourier Transform, as proposed in [16] for the isotropic Allen-Cahn equation
(and as can also be done for [42, 33]. A few numerical experiments with this
approach have been already shown in [14] with smooth, but also cristalline or
even non-convex anisotropies. Although the approach seems (numerically) to
perform well in all these cases, a full justification is still missing. The essential
contribution of this paper is to extend the consistency proof (see theorem (2))
of Ishii-Pires-Souganidis in the case of our specific kernel, for smooth, uniformly
elliptic anisotropies. The main issue is that in this case, the kernel does not satisfy
the assumptions which are needed in [33]. In particular, it is not even nonnegative,
so that our scheme is non-monotone and a complete proof of convergence is still
missing.

In the next section, we introduce our notation and a precise framework. We give
a short introduction to level set formulations, phase field approximations and
the Bence-Merriman-Osher algorithm in the case of the isotropic and anisotropic
mean curvature flow. Next, we introduce our anisotropic heat kernel and estab-
lish some of its properties. Our main consistency result (Theorem 2) is given
in Section 4. We show the consistency of an anisotropic Bence-Merriman-Osher
scheme built upon that kernel. The last section shows numerical evidence of the
convergence of a slightly modified scheme, which corresponds to a splitting of
the anisotropic Allen-Cahn equation (hence the thresholding is replaced with a
reaction term which only enhances the slope of the diffuse interface). Computa-
tionally, the scheme proves very efficient and very fast, even when the anisotropy
is not smooth.

In comparison with other existing methods, our approach can be easily imple-
mented: Contrarily to methods based on a parametric representations, it does
not require special care in handling topological changes or in the case of 3D com-
putations. Besides, it avoids direct discretization of the non linear anisotropic
Allen Cahn equation (e.g. by finite elements) [10, 39]. Indeed, in our approach
the non linear diffusion operator is replaced by an approximate linear operator,
whose resolution can be easily performed by Fourier transform.
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2 Preliminaries

2.1 Motion by isotropic mean curvature

The simplest case of motion by isotropic mean curvature concerns the evolution
of a set Ωt ⊂ Rd with a boundary Γt of codimension 1, whose normal velocity Vn
is proportional to its mean curvature κ

Vn(x) = κ(x), a.e. x ∈ Γt, (2)

with the convention that κ is negative if Ωt is a convex set. It at t = 0 the initial
set Ω0 is smooth, then the evolution is well-defined until some time T > 0 when
singularities may develop [2].

Viscosity solutions provide a more general framework, that defines evolution past
singularities, or evolution from non-smooth initial sets. If g is a level set function
of Ω0, i.e.,

Ω0 =
{
x ∈ Rd ; g(x) ≤ 0

}
, Γ0 =

{
x ∈ Rd ; g(x) = 0

}
,

and if u denotes the viscosity solution to the geometric evolution equationut = div
(
∇u
|∇u|

)
|∇u|

u(0, x) = g(x),

then the generalized mean curvature flow Ωt starting from Ω0 is defined by the
0-level set of u [27, 38, 20, 28]

Ωt =
{
x ∈ Rd ; u(t, x) ≤ 0

}
, ∂Γt =

{
x ∈ Rd ; u(t, x) = 0

}
.

Alternatively, one can define the motion by mean curvature as the limit of diffuse
interface approximations obtained by solving the Allen-Cahn equation

∂u

∂t
= ∆u− 1

ε2
(
W ′(u)

)
, (3)

where ε is a small parameter (that determines the width of the diffuse interface)
and where W (s) = s2(1−s)2

2 is a double well potential. This equation can be
viewed as a gradient flow for the energy

Jε(u) =
∫
Rd

(
ε

2 |∇u|
2 + 1

ε
W (u)

)
dx.
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Modica and Mortola [35, 34] have shown that Jε approximates (in the sense of
Γ- convergence) the surface energy cW J where

J(Ω) =
∫
∂Ω

1 dσ and cW =
∫ 1

0

√
2W (s) ds.

Existence, uniqueness, and a comparison principle have been established for (3)
(see for example chapters 14 and 15 in [2] and the references therein).

Let uε solve (3) with the initial condition

uε(x, 0) = q
(d(x,Ω0)

ε

)
,

where d(x,Ω) denotes the signed distance of a point x to the set Ω and where
the profile q is defined by

q = arg min
{∫

R

(1
2γ
′2 +W (γ)

)
; γ ∈ H1

loc(R), γ(−∞) = +1,

γ(+∞) = −1, γ(0) = 1
2

}
.

The set
Ωt,ε =

{
x ∈ Rd ; uε(x, t) ≥

1
2

}
,

approximates Ω(t) at the rate of convergence O(ε2|log ε|2) in the case of smooth
motion by mean curvature [17, 9].

In the case of generalized motion by mean curvature, convergence has been shown
[3, 27] provided that the interior of the set Γt remains empty (i.e. no fatting
occurs).

About numerical point of view, convergence has been established for a finite
element method in [40] and for a finite difference method in [18]. A splitting
spectral Fourier method is also been addressed in [16, 14].

The Bence-Merriman-Osher algorithm [11] is yet another approximation to mo-
tion by mean curvature. Given a closed set E ⊂ Rd, and denoting χE its charac-
teristic function, one defines

ThE =
{
x ∈ Rd ; u(x, h) ≥ 1

2

}
,
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where u solves the heat equation{
∂u
∂t (x, t) = ∆u(x, t), t > 0 x ∈ Rd

u(x, 0) = χE(x).

Setting Eh(t) = T [t/h]E, where [t/h] is the integer part of t/h, Evans [26], and
Barles and Georgelin [4] have shown that Eh(t) converges to Et, the evolution
by mean curvature from E. Remark also that this algorithm can be seen as a
splitting algorithm for the Allen-Cahn equation in the limite case ε→ 0. See also
[42] where an efficient numerical resolution is presented.

2.2 Motion by anisotropic mean curvature

We use the framework of the Finsler geometry as described in [10]. Let φ : Rd →
[0,+∞[ denote a strictly convex function in C2(Rd\{0})), which is 1-homogeneous
and bounded, i.e., {

φ(tξ) = |t|φ(ξ) ξ ∈ Rd, t ∈ R,
λ|ξ| ≤ φ(ξ) ≤ Λ|ξ| ξ ∈ Rd,

for two positive constants 0 < λ ≤ Λ < +∞. We assume that its dual function
φo : RN → [0,+∞[, defined by

φo(ξ∗) = sup {ξ∗.ξ ; φ(ξ) ≤ 1}

is also in C2(RN \{0})). Given a smooth set E and a smooth function u : Rd → R
such that ∂E =

{
x ∈ Rd ; u(x) = 0

}
, we define

• the Cahn-Hoffman vector field nφ = φoξ(∇u).

• the φ-curvature κφ = div(nφ).

We say that E(t) is the evolution from E by φ-curvature, if at each time t, the
normal velocity Vn is given by

Vn = −κφnφ.

As in the case of isotropic flows, one can define motion by φ-curvature using a
level set formulation, i.e., following the level lines of the solution to the anisotropic
evolution equation

ut = φo(∇u) φoξξ(∇u) : ∇2u. (4)
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Existence, uniqueness and a comparison principle have been established in [21,
19, 6, 5].

The anisotropic surface energy

J(Ω) =
∫
∂Ω
φo(n) dσ.

can be approximated by the Ginzburg-Landau-like energy

Jε,φ(u) =
∫
Rd

(
ε

2φ
o(∇u)2 + 1

ε
W (u)

)
dx,

and its gradient flow leads to the anisotropic Allen–Cahn equation [1]
∂u

∂t
= ∆φu−

1
ε2
W ′(u). (5)

The operator ∆φ := div
(
φoξ(∇u)φo(∇u)

)
is called the anisotropic Laplacian.

This equation can be numerically solved by a semi finite elements method (see
[39] for instance) but the complexity of this algorithm is much greater than in
the isotropic case because it needs a resolution of a new linear system at each
iteration in time.

The Bence-Merriman-Osher algorithm has also been extended to anisotropic mo-
tion by mean curvature. One generalization was proposed by Chambolle and No-
vaga [15] as follows: Given a closed set E, let Th(E) =

{
x ∈ Rd ; u(x, h) ≥ 1

2

}
,

where u(x, t) is the solution to
∂u

∂t
(x, t) = ∆φu(x, t), t > 0 x ∈ Rd

u(x, 0) = χE(x).
(6)

Define then Eh(t) = T
[t/h]
h E. The convergence of Eh(t) to the generalized

anisotropic mean curvature flow from E is established in [15]. The result holds for
very general anisotropic surface tensions and even in the cristalline case. However,
as for the phase field formulation, because of the strongly nonlinear character of
∆φ, the numerical resolution of (6) is much harder and not also efficient than in
the isotropic case.

Another generalization of the Bence-Merriman-Osher algorithm has been studied
by Ishii, Pires and Souganidis [33]. The main idea is to represent the solution
u of (6) as the convolution of χE with a geometric kernel. More precisely, Let
f : Rd → R be a function which satisfies the following conditions
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(A1) Positivity and symmetry :

f(x) ≥ 0, f(−x) = f(x), and
∫
Rd
f(x)dx = 1

(A2) Boundedness of the moments :∫
Rd
|x|2f(x)dx < +∞,

0 <
∫
p⊥

(1 + |x|2)f(x)dHd−1 <∞, for all p ∈ Sd−1.

(A3) Smoothness :

p→
∫
p⊥
f(x)dHd−1 and p→

∫
p⊥
xixjf(x)dHd−1 are continous on Sd−1.

Here p⊥ denotes the orthogonal complement of the vector p, i.e,
p⊥ =

{
x ∈ Rd ; 〈x , p〉 = 0

}
.

Given E ⊂ Rd, define ThE =
{
x ∈ Rd ; u(x, h) ≥ 1

2

}
, where

u(x, h) =
∫
Rd
K̃h(y)χE(y − x) dy,

with the kernel
K̃t(x) = 1

td/2
f(
√
tx), x ∈ Rd.

They showed [33] that T [t/h]
h E converges to the set E(t) obtained from E as the

generalized motion by anisotropic mean curvature via the geometric evolution
equation

ut = F (D2u,Du)
where

F (X, p) =
(∫

p⊥
f(x)dHd−1(x)

)−1 (
−1

2

∫
p⊥
〈Xx , x〉 f(x)dHd−1(x)

)
.

This algorithm appears to be more efficient than the last one (with the non linear
operator ∆φ), but raises a natural question: Given an anisotropy φo, can one find
a kernel f , so that the generalized front ∂E(t) defined by the associated evolution
equation evolves by φ-mean curvature ? This problem has been addressed by
Ruuth and Merriman [43] in dimension 2. They propose a class of kernels and
study the corresponding numerical schemes, which prove very efficient. However,
their approach cannot be generalized to higher dimensions. In contrast, our
algorithm is not specific to the dimension 2.
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2.3 A new algorithm for motion by anisotropic mean curvature

In this work, our objective is to extend Ishii-Pires-Souganidis’ analysis to study
the following algorithm. Starting from a bounded closed set E ⊂ Rd, we define
an operator ThE by

ThE =
{
x ∈ Rd ; u(x, h) ≥ 1

2

}
, (7)

where u solves the following parabolic equation:{
∂u
∂t (x, t) = ∆̃φu(x, t), t > 0 x ∈ Rd

u(x, 0) = χE(x).
(8)

Denoting by F(u) the Fourier transform of a function u,

F(u)(ξ) =
∫
Rd
u(x)e−2πix·ξ dx,

the operator ∆̃φ is defined by

∆̃φu = F−1
(
−4π2φo(ξ)2F(u)(ξ)

)
.

and can be seen as a linearization of ∆φ in the Fourier space. The solution u of
(8) can be expressed as a convolution product of the characteristic function of E
and of the anisitropic kernel

Kφ,t(x) = F−1
(
e−4π2tφo(ξ)2) (x).

However, this kernel (more precisely Kφ,t=1) does not satisfy the hypotheses (A1)
and (A2) above: Kφ,1 is not positive and x→

∫
Rd |x|2Kφ(x) is not in L1(R). But

we will show that the associated Hamiltonian flow is

F (X, p) =
(∫

p⊥
KφdHd−1

)−1 (1
2

∫
p⊥
< Xx, x > Kφ(x)dHd−1

)
= φo(p)φoξξ(p) : X,

which establishes a link between Kφ and φ-anisotropic mean curvature flow.

3 The operator ∆̃φ and properties of the anisotropic
kernel Kφ

Let φ = φ(ξ) denote a strictly convex smooth Finsler metric and let φo denote its
dual (see [10]). We assume that that φo is a 1-homogenous, symmetric function
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in C∞(Rd \ {0}) that satisfies

λ|ξ| ≤ φo(ξ) ≤ Λ|ξ|. (9)

In particular, it follows that for any ξ ∈ Rd and t ∈ R,
φo(tξ) = |t|φo(ξ)
φoξ(tξ) = t

|t|φ
o
ξ(ξ)

φoξ(ξ).ξ = φo(ξ).

The associated anisotropic mean curvature is defined as the anisotropic Laplacian
operator

4φu = div
(
φo(∇u)φoξ(∇u)

)
, ∀u ∈ H2(Ω)

A direct computation shows that for any ξ ∈ Rd,{
4φ [cos(2πξ.x)] = −4π2φo(ξ)2 cos(2πξ.x)
4φ [sin(2πξ.x)] = −4π2φo(ξ)2 sin(2πξ.x),

i.e., that plane waves are eigenfunctions of the anisotropic Laplacian (albeit non-
linear). We define 4̃φ : H2(Rd)→ L2(Rd) by

4̃φu = F−1
[
−4π2φo(ξ)2F [u](ξ)

]
,

Given an initial condition u0 ∈ L2(Rd), we study the solution u of,{
ut(t, x) = 4̃φu(t, x),
u(0, x) = u0

The function u can also be expressed as the convolution product u = Kφ,t ∗ u0,
where the anisotropic heat kernel Kφ,t is defined by

Kφ,t = F−1
[
e−4π2tφo(ξ)2]

.

We also set Kφ = Kφ,1. In the rest of this section, we establish some properties
of this operator.

Proposition 1 (Regularity of K̂φ).
The function K̂φ : ξ → e−4π2φo(ξ)2 is in W d+1,1(Rd), and Dd+2K̂φ is a function.

10



Proof. First, we notice that

DK̂φ(ξ) = −8π2φoξ(ξ)φo(ξ)e−4π2φo(ξ)2
,

and

D2K̂φ(ξ) = 64π4φo(ξ)2
(
φoξ(ξ)⊗ φoξ(ξ)

)
e−4π2φo(ξ)2

−8π2
(
φo(ξ)φoξξ(ξ) + φoξ(ξ)⊗ φoξ(ξ)

)
e−4π2φo(ξ)2

.

We note that φoξ is discontinuous at ξ = 0. Nevertheless, we next prove that the
d− 1th derivative of D2K̂φ belongs to L1(Rd)d2 . Assume that f = Dn+2K̂φ is an
integrable function on Rd for some integer n < d. The homogeneity of φo shows
the existence of a constant Cn such that

|Dn+2K̂φ| ≤ Cn
1
|ξ|n

e−λ|ξ|
2
, for all ξ ∈ Rd \ {0}.

Since f is smooth away from ξ = 0, the distributional derivative of f is the sum
of a function and of possibly a Dirac mass at ξ = 0 :

Df = {∇f}+ c δ,

where c is a constant and ∇f denotes the pointwise derivative of f . Let ϕ ∈
D(Rd)dn+2 and let ε > 0. Then

〈Df , ϕ〉 = −〈f , divϕ〉 = −
∫
Rd
f.divϕdx

= −
∫
Rd\B(0,ε)

f.divϕdx−
∫
B(0,ε)

f.divϕdx

=
∫
Rd\B(0,ε)

∇f.ϕdx−
∫
∂B(0,ε)

f.(ϕ.~n)dσ −
∫
B(0,ε)

f.divϕdx,

Since we assumed that f ∈ L1(Rd)dn+2 , the last integral above tends to 0, as
ε→ 0. Moreover as n < d, we have∣∣∣∣∣

∫
∂B(0,ε)

f ϕ.~ndσ

∣∣∣∣∣ ≤ ‖ϕ‖L∞
∫
∂B(0,ε)

Cn
1
|ξ|n

e−λ|ξ|
2
dσ

≤ ‖ϕ‖L∞Cn
∫
∂B(0,ε)

ε−ndσ ≤ Cn‖ϕ‖L∞εd−1−n,

so that
lim
ε→0

∣∣∣∣∣
∫
∂B(0,ε)

f ϕ.~ndσ

∣∣∣∣∣ = 0.

It follows that c = 0, which concludes the proof.
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Proposition 2 (Decay properties of Kφ).
Let s ∈ [0, 1[. There exists a constant Cφo,s, which only depends on the anisotropy
φo and on s, such that

|Kφ(x)| ≤ Cφo,s
1 + |x|d+1+s , ∀x ∈ Rd. (10)

Remark 1. The case s = 0 is easy: According to proposition 1, the function
4

d+1
2 K̂φ(ξ) is in L1(Rd). The continuity of the Fourier transform from L1 to

L∞ shows that

‖(1 + |x|d+1)Kφ‖L∞ ≤ C‖K̂φ(ξ) +4
d+1

2 K̂φ(ξ)‖L1(Rd),

and since K̂φ(ξ) = e−4π2φo(ξ)2,

|Kφ(x)| ≤ Cφo,0
1 + |x|d+1 , ∀x ∈ Rd.

The proof uses properties of interpolation spaces [12]. Consider X, Y two Banach
spaces, and for u ∈ X + Y and t ∈ R+, let

k(t, u) = inf
u=u0+u1

{‖u0‖X + t‖u1‖Y } .

For s ∈ [0, 1] and p ≥ 1, the interpolation space [X,Y ]s,p beetween X and Y is
defined by

[X,Y ]s,p =
{
u ∈ X + Y ; t−sK(t, u) ∈ Lp

(1
t

)}
.

In particular, given a strictly positive function h : Rd → R, consider the weighted
space L∞h defined by

L∞h (Rd) =
{
u ∈ L∞(Rd) ; sup

x∈Rd
{h(x)u(x)} <∞

}
.

One can interpolate between L∞ and L∞h according to the following lemma.

Lemma 1. Let h be a strictly positive function Rd → R, and let s ∈]0, 1[. Then

[L∞(Rd), L∞h (Rd)]s,∞ = L∞hs(Rd)

Proof. 1) Assume that u ∈ L∞hs(Rd). There exists a constant C such that for a.e.
x ∈ Rd,

|u(x)| ≤ C

h(x)s . (11)

To estimate k(t, u) = infu=u0+u1

{
‖u0‖L∞ + t‖u1‖L∞

h

}
, we note that
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• If t ≥ 1, the choice u0 = u and u1 = 0, shows that K(t, u) ≤ ‖u‖L∞ .

• If t < 1, we consider the set A =
{
x ∈ Rd ; |u(x)|h(x) ≤ ts−1

}
, and we

choose u0 = χAc u and u1 = χA u, so that ‖u1‖L∞
h
≤ ts−1. Moreover, we

remark that for all x ∈ Ac, |u(x)|h(x) ≥ ts−1 so that, in view of (11)

|u0(x)| ≤ Ch(x)−s ≤ C|u0(x)|sts(1−s),

and thus k(t, u) ≤ (C + 1)ts.

In summary, these estimates show that

K(t, u) ≤
{
‖u‖L∞ if t ≥ 1
(C + 1)ts if t < 1,

which proves that u ∈ [L∞, L∞h ]s,∞.
2) Conversely, we consider u ∈ [L∞, L∞h ]s,∞. For all t > 0, there exists a decom-
position u = u0,t + u1,t such that

|u0,t|L∞ + t|u1,t|L∞
h
≤ Cts.

It follows that for all t > 0, we have

h(x)s|u(x)| ≤ |h(x)s |u0,t(x) + u1,t(x)| ≤ C
(
h(x)sts + h(x)s−1ts−1

)
.

Choosing t = h(x)−1 in the above inequality shows that for all x ∈ Rd,
h(x)s |u(x)| ≤ 2C, which concludes the proof.

We use the following properties of interpolation spaces:

(P1) if T is continous from X → X̃ and from Y → Ỹ , then T is continous from
[X,Y ]s,p to [X̃, Ỹ ]s,p.

(P2) if p < p′, then [X,Y ]s,p ⊂ [X,Y ]s,p′ for any 0 < s < 1 and p ≥ 1.

(P3) [L∞(Rd), L∞(1+|x|)(Rd)]s,∞ = L∞(1+|x|)s(Rd) for any 0 < s < 1.

In the following, we consider the case where T is the Fourier transform, X =
L1(Rd), Y = L∞(Rd), X̃ = W 1,1(Rd) and Ỹ = L∞(1+|x|)(Rd).
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Proof of Proposition 2. We claim that it suffices to show that for any 0 < s < 1

u(ξ) := 4
d+1

2 K̂φ(ξ) ∈ [X,Y ]s,1. (12)

Indeed, the inclusion [X,Y ]s,1 ⊂ [X,Y ]s,∞ implies then that u ∈ [X,Y ]s,∞, so
that in view of (P1) and (P3) we obtain

û ∈ [X̃, Ỹ ]s,∞ = [L∞(Rd), L∞(1+|x|)(Rd)]s,∞ = L∞(1+|x|)s(Rd),

and consequently

|(1 + |x|s)û(x)| = |(1 + |x|d+1)Kφ(x)(1 + |x|)s| ≤ Cφo,s, for all x ∈ Rd.

It follows that for some constant Cφo,s

|Kφ(x)| ≤ Cφo,s
1 + |x|d+1+s , for all x ∈ Rd.

We now prove (12). The homogeneity of φo shows that for some c1 > 0 and
c2 > 0, and for ξ ∈ Rd \ {0},

|u(ξ)| ≤ c1
|ξ|d−1 e

−λ|ξ|2 and |∇u(ξ)| ≤ c2
|ξ|d

e−λ|ξ|
2
,

which shows that u ∈ X = L1(Rd). However, u may not belong to Y = L∞(Rd).
We now estimate k(u, t), for t ∈ R+. If t ≥ 1, we set u0 = u, u1 = 0, so that

k(t, u) ≤ ‖u‖X , ∀t ≥ 1. (13)

If t < 1, consider the function ρt(ξ) defined by

ρt(ξ) =


0 if |x| ≤ t
1 if |x| > 2t
sin
(
π
2
|ξ|−t
t

)
otherwise.

We choose u0 = (1− ρt)u and u1 = ρtu and check that

|u0|L1(Rd) ≤
∫
B(0,2t)

|u(ξ)|dξ ≤
∫
B(0,2t)

C

|ξ|d−1dξ ≤ 2C|Sd|t.

Moreover,

‖∇u1‖L1(Rd) ≤ ‖∇ρtu+ ρt∇u‖L1(Rd)

≤
∫
Rd\B(0,t)

|∇ρt|u(ξ)dξ +
∫
Rd\B(0,t)

|∇u(ξ)|dξ

≤ π

2t

∫
B(0,2t)\B(0,t)

C

|ξ|d−1 e
−λ|ξ|2dξ +

∫
Rd\B(0,t)

C

|ξ|d
e−λ|ξ|

2
dξ.
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First, we have

π

2t

∫
B(0,2t)\B(0,t)

C

|ξ|d−1 e
−λ|ξ|2dξ ≤ Cπ

2t |S
d|
∫ 2t

t
dr ≤ |S

d|Cπ
2 .

Second,∫
Rd\B(0,t)

C

|ξ|d
e−λ|ξ|

2
dξ ≤

∫
B(0,1)\B(0,t)

C

|ξ|d
e−λ|ξ|

2
dξ +

∫
Rd\B(0,1)

C

|ξ|d
e−λ|ξ|

2
dξ

≤ C|Sd|
∫ 1

t

1
r
dr + C|Sd|

∫ ∞
1

e−λr
2
dr

≤ C|Sd|
(
| ln(t)|+ 1√

λ

√
π

2

)
,

so that

‖u1‖Y ≤ C

[
|Sd|

(
π

2 + 1√
λ

√
π

2 + | ln(t)|
)]

.

Consequently, this decomposition of u shows that

k(u, t) ≤ C(1 + | ln(t)|)t, ∀t < 1, (14)

for some constant C > 0. In summary,

k(u, t) ≤
{
‖u‖X if t ≥ 1
C(1 + | ln(t)|)t if t < 1,

and therefore we obtain

‖t−s k(t, u)‖1L1(1/t) =
∫
R+
|k(t, u)t−s|1

t
dt

≤
∫ 1

0

(C0 + C1| ln(t)|)
ts

dt+
∫ ∞

1

‖u‖1X
t1+s dt < +∞,

which proves that u ∈ [X,Y ]s,1 as claimed.

Corollary 1. For any s ∈ [0, 1[ and p ∈ Sd,

|x|1+sKφ ∈ L1(Rd), (Kφ)|p⊥ ∈ L
1(Rd−1), (x⊗ xKφ)|p⊥ ∈ L

1(Rd−1).
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Proposition 3 (Decay of averages of Kφ on spheres).
The integral

I(R) =
∫
∂B(0,R)

KφdHd−1,

is stricly positive, and decays rapidly as

Rd−1|Sd−1|
(4π)d/2Λd

e−
R2
4Λ2 ≤ I(R) ≤ Rd−1|Sd−1|

(4π)d/2λd
e−

R2
4λ2

where λ and Λ are bounds for φo as in (9).

Proof. Since the measure µ := δ∂B(0,R) has finite mass, its Fourier transform is
the continuous and bounded function

µ̂(ξ) =
∫
Rd
e−2πix·ξdµ =

∫
∂B(0,R)

e−2πix·ξ.

As µ is radially symmetric, µ̂ can be expressed in the form

µ̂(ξ) = Rd−1J(R|ξ|),

where J is a function R+ → R. It follows that

I(R) =
〈
δ∂B(0,R) , Kφ

〉
=
〈
Rd−1J(R|ξ|) , e−4π2φo(ξ)2〉

= Rd−1
∫
Sd−1

∫ +∞

0
rd−1J(Rr)e−4π2φo(θ)2r2

drdHd−1. (15)

We use the particular case when φo(ξ) is isotropic, i.e., φo(ξ) = |ξ| to estimate the
previous integral. In this case,Kφ = 1

(4π)d/2 e
−x

2
4 is the heat kernel, and by a direct

calculation we see that the corresponding integral is I(R) =< δB(0,R),Kφ >=
Rd−1|Sd−1|

(4π)d/2 e−
R2
4 . Comparing this expression to (15) and using the radial symmetry

of Kφ shows that ∫ +∞

0
rd−1J(Rr)e−4π2r2

dr = 1
(4π)d/2

e−
R2
4 ,

or, after a change of variable, that∫ +∞

0
rJ(Rr)e−4π2φo(θ)2r2

dr = 1
(4π)d/2φo(θ)d

e
− R2

4φo(θ)2 . (16)

Returning to a general kernel Kφ, we deduce from (15) and (16) that

I(R) = Rd−1

(4π)d/2
∫
Sd−1

1
φo(θ)d e

− R2
4φo(θ)2 dHd−1,

which in view of (9) concludes the proof.
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Proposition 4 (Positivity on hyperplanes).
For all p ∈ Sd−1, the integral

∫
p⊥ KφdHd−1 is well defined, and satisfies∫

p⊥
KφdHd−1 = 1

2
√
πφo(p) .

In particular, we have

1
2
√
πΛ ≤

∫
p⊥
KφdHd−1 ≤ 1

2
√
πλ
.

Proof. Let p ∈ Sd−1. We already know from Corollary 1 that
∫
p⊥ KφdHd−1 is

well defined. Consider for µ > 0, the approximating functions fµ, defined by{
fµ(x) = Kφ(x)e−π|x|2/µ2

,

f̂µ(ξ) = e−4π2φo(ξ)2 ∗ 1
µ2 e
−πµ2|ξ|2 .

The function fµ belongs to the Schwartz space S(Rd). Moreover, f̂µ → K̂φ in
W d−1,1(Rd), and the trace trace theorem [32] shows that one also has

lim
µ→∞

∫
R
f̂µ(sp)ds =

∫
R
K̂φ(sp)ds. (17)

On the other hand, it follows from the Lebesgue dominated convergence theorem
and from (10) that

lim
µ→∞

∫
p⊥
fµdHd−1 =

∫
p⊥
KφdHd−1. (18)

As fµ ∈ S(Rd), we infer that∫
p⊥
fµdHd−1 =

〈
δp⊥ , fµ

〉
= 〈δp , F [fµ]〉 =

∫
R
f̂µ(sp)ds.

so that (17) and (18) yield∫
p⊥
KφdHd−1 =

∫
R
K̂φ(sp) ds =

∫
R
e−4π2s2φo(p)2

ds

=
∫
R
e−π(2

√
πφo(p)s)2

ds = 1
2
√
πφo(p) ,

which concludes the proof.
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Proposition 5 (Moments of order 2).
Let p ∈ Sd−1. Then 1

2
∫
p⊥ x⊗ xKφdHd−1 is well defined and satisfies

1
2

∫
p⊥
x⊗ xKφdHd−1 = φoξξ(p)

1
2
√
π
.

Proof. Corollary 1 states that the integral
∫
p⊥ |x|2KφdHd−1 is well defined. Re-

calling the sequence fµ used in the previous proposition, we observe that D2f̂µ →
D2K̂φ in W d−1,1(Rd), so that the trace theorem implies

lim
µ→∞

∫
R
D2f̂µ(sp)ds =

∫
R
D2K̂φ(sp)ds. (19)

From proposition 2 and the Lebesgue dominated convergence, we obtain

lim
µ→∞

∫
p⊥
x⊗ x fµ(x) dHd−1 →

∫
p⊥
x⊗ x Kφ(x) dHd−1. (20)

Moreover, we have∫
p⊥
x⊗ xfµ(x)dHd−1 =

〈
δp⊥ , x⊗ xfµ

〉
= − 1

4π2

〈
δp , D

2f̂µ
〉

= − 1
4π2

∫
R
D2f̂µ(sp)ds,

so that in view of (19)∫
p⊥
x⊗ xKφ(x)dHd−1 = − 1

4π2

∫
R
D2K̂φ(sp)ds.

We next estimate the above right-hand side by a direct calculation:

− 1
4π2

∫
R
D2K̂φ(sp) ds =

[
2φo(p)φoξξ(p) + 2φoξ(p)⊗ φoξ(p)

] ∫
R
e−4π2s2φo(p)2

ds

−
[
2φoξ(p)⊗ φoξ(p)

] ∫
R

8π2s2φo(p)2e−4π2s2φo(p)2
ds.

Further, we see by integration by parts that∫
R

8π2s2φo(p)2e−4π2s2φo(p)2
ds =

∫
R

{
4π22sφo(p)2e−4π2s2φo(p)2} {s} ds

=
∫
R
e−4π2s2φo(p)2

ds = 1
2
√
πφo(p) ,
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and we conclude that
1
2

∫
p⊥
x⊗ xKφ(x)dHd−1 = φoξξ(p)

1
2
√
π
.

Corollary 2 (The operator F (X, p)).
Given X ∈ Rd×d and p ∈ Sd−1, let

F (X, p) =
(∫

p⊥
Kφ(x)dHd−1

)−1 (1
2

∫
p⊥
< Xx, x > Kφ(x)dHd−1

)
. (21)

This operator is elliptic and satisfies

F (X, p) = φo(p)φoξξ(p) : X. (22)

Proof. Equation (22) is a direct consequence of propositions 4 and 5, while the
ellipticity of F follows from the convexity of φo.

Remark 2. In the next section, we introduce an algorithm for motion by anisotropic
mean curvature, and show its consistency with an evolution equation of the form
ut = −F (D2u,

∇u
|∇u|

) where F is defined by (21). The expression (22) shows that
this operator is precisely the one corresponding to motion by anisotropic mean
curvature (see [10]).

Proposition 6 (Positivity of order moment s). Let V be a subspace of Rd of
dimension 1 ≤ m ≤ d, and let 0 < s < 2. Then∫

V
|x|sKφdHm > 0.

Proof. We first consider the case m = d and V = Rd. we consider the finite part
Pf

(
1

|x|d+s
)
as a temperate distribution, defined for ϕ ∈ S(Rd) by〈
Pf

( 1
|x|d+s

)
, ϕ

〉
= lim

ε→0

{∫
Rd\B(0,ε)

ϕ(x)− ϕ(0)
|x|d+s dx

}
.

This function happens to be the Fourier transform of the distribution |x|s. More
precisely,

F [|x|s] = Cs,dPf

( 1
|2πξ|d+s

)
, with Cs,d = 2s+dπd/2 Γ((s+ d)/2)

Γ(−s/2) , (23)
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(see for instance [31], Γ denotes the Gamma function). We can thus write∫
Rd
|x|sKφ dx = 〈|x|s , Kφ〉 =

〈
Cs,dPf

( 1
|2πξ|d+s

)
, e−4π2φo(ξ)2

〉
(24)

= Cs,d lim
ε→0

∫
Rd\B(0,ε)

e−4π2φo(ξ)2 − 1
|2πξ|d+s > 0, (25)

a stricly positive quantity, in view of the sign of Cs,d.

Suppose now that m < d and consider the subspace V = Vect{e1, . . . , em}.
We write x = (x′, x′′), ξ = (ξ′, ξprime′), with x′, ξ′ ∈ V . A straightforward
computation shows that∫

V
|x′|sKφ dHm =

〈
|x′|s , Kφ(x′, 0)

〉
D′(Rm),D(Rm)

=
〈
Hd−mx{ξ′′=0} ⊗ |x

′|s , Kφ(x′, x′′)
〉
D′(Rd),D(Rd)

=
〈
Cs,mPf

( 1
|2πξ′|m+s

)
, h(ξ′)

〉
D′(Rm),D(Rm)

,

where the function h : Rm → R is defined by

h(ξ′) =
∫
Rd−m

e−4π2φo((ξ′,ξ′′))2
dξ′′.

The next lemma states that h is C1 and maximal at ξ′ = 0, which in view of (23)
and of the sign of Cs,m concludes the proof.

Lemma 2. The function h : Rm → R, defined by

h(ξ′) =
∫
Rd−m

e−4π2φo((ξ′,ξ′′)2
dξ′′

is C1, with fast decay as |ξ′| → ∞, and is maximal at ξ′ = 0.

Proof. recalling (9), we first remark that

e−4π2φo(ξ′,ξ′′)2 ≤ e−4π2λ2|ξ|2 ≤ e−4π2λ2|ξ′|2 ,

so that the functions ξ′ → e−4π2φo(ξ′,ξ′′)2 and their derivatives are uniformly
bounded in L1(Rd−m). The C1 regularity of h is thus a consequence of the
Lebesgue theorem. The above estimate also shows that

|h(ξ′)| ≤
∫
Rd−m

e−4π2λ2(ξ2
1+ξ2

2+...+ξ2
d)dξm+1...dξd ≤

1
2λm
√
π
m e
−4π2λ2ξ′2 .
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To determine the maximal value of h, we consider the sets Aξ′,t, defined for all
ξ′ ∈ Rm and t ∈]0, 1[ by

Aξ′,t =
{
ξ′′ ∈ Rd−m ; e−4π2φo((ξ′,ξ′′))2 ≥ t

}

Figure 1:

Fix ξ′0 ∈ Rm. The set Aξ′0,t can be defined as the intersection of the hyperplane{
ξ ∈ Rd ; ξ′ = ξ′0

}
with the Frank shape

Bφo,t =
{
ξ ∈ Rd ; φo(ξ) ≤ 1

2π

√
−ln(t)

}
.

The set Bφo,t is convex since φo is convex. Moreover, from the symmetry of φo,
(φo(ξ) = φo(−ξ)), we have

|Aξ′0,t| = |A−ξ′0,t|.

Next, let

Ãξ′0,t = 1
2
(
Aξ′0,t +Aξ′0,t

)
=

{
ξ′′ ∈ Rd−m ; ∃(ξ′′1 , ξ′′2 ) ∈ Aξ′0,t ×A−ξ′0,t, ξ′′ = 1

2
(
ξ′′1 + ξ′′2

)}
.

We remark that the convexity of φo implies that Ãξ′0,t ⊂ A0,t. Indeed, let ξ′′ ∈
Ãξ′0,t,

φo
(
(0, ξ′′)

)
= φo

(1
2
(
(ξ′0, ξ′′1 ) + (−ξ′0, ξ′′2 )

))
≤ 1

2
(
φo
(
(ξ′0, ξ′′1 )

)
+ φo

(
(−ξ′0, ξ′′2 )

))
≤ 1

2π

√
−ln(t),
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so that e−4π2φo((0,ξ′′))2
≥ t, i.e. ξ′′ ∈ A0,t. Invoking the Brunn-Minkowski in-

equality, we obtain

|Ãξ′0,t|
1/(d−m) = 1

2 |Aξ
′
0,t

+A−ξ′0,t|
1/(d−m) (26)

≥ 1
2
(
|Aξ′0,t|

1/(d−m) + |A−ξ′0,t|
1/(d−m)

)
≥ |Aξ′0,t|

1/(d−m), (27)

and finally that,
|A0,t| ≥ |Ãξ′0,t| ≥ |Aξ′0,t|.

As this equality holds for any ξ′0 ∈ Rm, it follows that h is maximal at ξ′ = 0.

4 The Bence-Merriman-Osher-like algorithm

Barles and Souganidis [6] have studied the convergence of a general approximation
scheme to viscosity solutions of nonlinear second-order parabolic PDE’s of the
type

ut + F (D2u,Du) = 0. (28)

The main assumption on the function F is its ellipticity, i.e., F satisfies

∀ p ∈ Rd \ {0}, ∀X,Y ∈Md×d
s , X ≤ Y ⇐ F (X, p) ≤ F (Y, p). (29)

Let BUC(Rd) denote the space of bounded uniformly continuous functions on
Rd. Thus, Barles and Souganidis study a family of operators Gh : BUC(Rd) →
BUC(Rd) for h > 0, which satisfy, for all u, v ∈ BUC(Rd)

• Continuity

∀ c ∈ R, Gh(u+ c) = Ghu, (30)

• Monotonicity

u ≤ v ⇐ Ghu ≤ Ghv + o(h), (31)

(see remark 2.1 in [6])

• Consistency

∀ ϕ ∈ C∞(Rd),
{

limh→0 h
−1(Gh(ϕ)− ϕ)(x) ≤ −F∗(D2ϕ(x), Dϕ(x))

limh→0 h
−1(Gh(ϕ)− ϕ)(x) ≥ −F ∗(D2ϕ(x), Dϕ(x))

.(32)
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For all T > 0 and for all partitions P = {O = t0 < ... < tn = T} of [0, T ], one
can then define a sequence of fonctions uP : Rd × [0, T ]→ R by

uP (., t) =
{
Gt−ti(uP (., ti)) if t ∈ (ti, ti+1],
g if t = 0,

(33)

If additionally the following condition holds,

• Stability
there exists ω ∈ C([0,∞], [0,∞]), independent of P and depending
on g only through the modulus of continuity of g,
such that ω(0) = 0 and for all t ∈ [0, t],
‖uP (., t)− g‖L∞ ≤ ω(t),

(34)

then the following theorem holds [6] :

Theorem 1. Assume that Gh : BUC(Rd)→ BUC(Rd) satisfies (30), (31), (32),
and (34) for all T > 0, g ∈ BUC(Rd) and all partitions P of [0, T ]. Then, uP
defined in (33) converges uniformly in R× [0, T ] to the viscosity solution of (28).

This result was used by H. Ishii, G. Pires and P.E. Souganidis in [33] to study
anisotropic mean curvature flow. These authors introduce a kernel f , which
satisfies:

(H1) f(x) ≥ 0, f(−x) = f(x) for all x ∈ Rd, and
∫
Rd f(x)dx = 1

(H2)
∫
p⊥(1 + |x|2)|f(x)|dHd−1 <∞ for all p ∈ Sd−1

(H3)
{
the functions p→

∫
p⊥ f(x)dHd−1 p→

∫
p⊥ xixjf(x)dHd−1,

1 ≤ i, j ≤ d, are continuous on Sd−1

(H4)
∫
Rd |x|2|f(x)|dx <∞

(H5) For all collections {R(ρ)}0<ρ<1 ⊂ R such that R(ρ)→∞ and ρR(ρ)2 →
0 as ρ → 0, and for all functions g : Rd−1 → R of the form g(ξ) =
a+ 〈Aξ , ξ〉 where a ∈ R and where A is a symmetric matrix,

lim
ρ→0

sup
U∈O(d)

sup
0<r<ρ

∣∣∣∣∣
∫
B(0,R(ρ))

fU (ξ, rg(ξ))g(ξ)dξ −
∫
Rd−1

fU (ξ, 0)g(ξ)dξ
∣∣∣∣∣ = 0,

where O(n) denotes the group of d × d orthogonal matrices, and where
fU : Rd → R is defined for all U ∈ O(d) by fU (x) = f(U∗x).
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Theorem 1 has been applied to schemes for anisotropic mean curvature motion
(see theorem 3.3 in [33]) with Gh defined by

GhΨ(x) = sup {λ ∈ R ; Sh1lΨ≥λ(x) ≥ θh} (35)
= inf {λ ∈ R ; Sh1lΨ≥λ(x) < θh} , (36)

where

Shg(x) = h−d/2f(./
√
h) ∗ g(x) = h−d/2

∫
Rd
f(y/

√
h)g(x− y) dy, θh = 1

2 + c
√
h,

and where F (X, p) is given by

F (X, p) = −
(∫

p⊥
f(x)dHd−1(x)

)−1 (1
2

∫
p⊥
〈Xx , x〉 f(x)dHd−1(x) + c|p|

)
,

(the last term in this integral models a forcing term).

In this section, we follow the proof in [33] to show a consistency result in our
case when f is a non positive kernel and does not have moments of order two (
ie. x→ |x|2f(x) /∈ L1(Rd)). We introduce two operators G+

h and G−h defined by

G+
h Ψ(x) = sup {λ ∈ R ; Sh1lΨ≥λ(x) ≥ θh} , (37)

G−h Ψ(x) = inf {λ ∈ R ; Sh1lΨ≥λ(x) < θh} , (38)

which are not necessarly equal as our kernel is not being nonnegative. To adapt
these results to our context we modify the assumptions (H1), (H4) and (H5) as
follows

(H ′1)
∫
p⊥ f(x)dHd−1 > 0 for all p ∈ Sd−1, f(−x) = f(x) and

∫
Rd f(x)dx = 1,

(H ′4)
∫
Rd |x|2−µ|f(x)|dx <∞ for 0 < µ < 2,

(H ′5) Assume that µ ∈]0, 1/2]. Then for all collections {R(ρ)}0<ρ<1 ⊂ R such that
R(ρ)→∞ and ρR(ρ)2−µ → 0 as ρ→ 0, and for all functions g : Rd−1 → R
of the form g(ξ) = a + 〈Aξ , ξ〉 where a ∈ R and where A is a symmetric
matrix,

lim
ρ→0

sup
U∈O(d)

sup
0<r<ρ

∣∣∣∣∣
∫
B(0,R(ρ))

fU (ξ, rg(ξ))g(ξ)dξ −
∫
Rd−1

fU (ξ, 0)g(ξ)dξ
∣∣∣∣∣ = 0,

lim
ρ→0

sup
U∈O(d)

sup
0<r<ρ

∣∣∣∣∣
∫
B(0,R(ρ))

|fU (ξ, rg(ξ))| g(ξ)dξ −
∫
Rd−1

|fU (ξ, 0)| g(ξ)dξ
∣∣∣∣∣ = 0,

In this last statement, B(0, R(ρ)) denotes the (n− 1)-dimensional ball, centered
at 0 and of radius R(ρ).
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4.1 Kφ satisfies (H2, H3) and (H ′1, H ′4, H ′5)

We remark that K̂φ(ξ) = K̂φ(−ξ) and F(Kφ)(0) = 1, so that

Kφ(−x) = Kφ(x) for all x ∈ Rd, and
∫
Rd
Kφ(x)dx = 1.

Moreover, proposition (4) shows that∫
p⊥
Kφ(x)dHd−1 ≥ 1

(4π)d/2Λd
> 0 for all p ∈ Sd−1,

so that (H ′1) is satisfied. Propositions (4) and (5) also imply that Kφ satisfies
(H2), i.e., ∫

p⊥
(1 + |x|2)|Kφ(x)|dHd−1 < ∞ for all p ∈ Sd−1. (39)

Concerning (H3), we note that

1
2

∫
p⊥
x⊗ xKφ(x)dHd−1 = 1

2
√
π
φoξξ(p),

and that ∫
p⊥
KφdHd−1 = 1

2
√
πφo(p) .

Since φo is smooth on Rd \ {0} and positive (in particular φo ≥ λ on Sd ) we see
that the functions

p→
∫
p⊥
Kφ(x)dHd−1 p→

∫
p⊥
xixjKφ(x)dHd−1, 1 ≤ i, j ≤ d,

are continuous on Sd.

We next prove that if 0 < µ < 2, then∫
Rd
|x|2−µ|f(x)|dx <∞.

Indeed, proposition 2 with s = 1− µ/2 shows that∫
Rd
|x|2−µ|f(x)| dx ≤

∫
Rd

Cφo,s|x|2−µ

1 + |x|d+1+(1−µ/2)
dx ≤

∫
Rd

C

1 + |x|d+µ/2 dx

≤ C|Sd|
∫ ∞

0

1
(1 + r1+µ/2)

dr < ∞,
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for some generic constant C.

It remains to prove (H ′5): Let 0 < µ < 1/2 and let R : R+ −→ R+ such that, as
ρ→ 0, R(ρ)→∞ and ρR(ρ)2−µ → 0. Setting fU (x) = Kφ(U∗x), we consider

∫
Rd−1

∣∣∣(fU (x̃, rg(x̃))1lB(0,R(ρ))(x̃)− fU (x̃, 0)
)
g(x̃)

∣∣∣ dx̃ ≤ ∫
B(0,R(ρ))c

|fU (x̃, 0)| |g(x̃)|dx̃

+
∫
B

(
0,R(ρ)

2−µ
2
) |(fU (x̃, rg(x̃))− fU (x̃, 0)) g(x̃)| dx̃

+
∫
B(0,R(ρ))\B

(
0,R(ρ)

2−µ
2
) |(fU (x̃, rg(x̃))− fU (x̃, 0)) g(x̃)| dx̃.(40)

From the decay assumptions on Kφ (see proposition 2) we have

|fU (x̃, rg(x̃))g(x̃)| ≤ C

1 + |x̃|d−1+s ,

where C does not depend on U and r. Then, it holds that∫
B(0,R(ρ))c

|fU (x̃, 0)g(x̃)| dx̃

≤ C

∫
B(0,R(ρ))c

1
1 + |x̃|d−1+sdx̃ ≤ C |Sd−1|

∫ ∞
R(ρ)

1
1 + |r|1+sdr

≤ C |Sd−1|R(ρ)−s,

and∫
B(0,R(ρ))\B

(
0,R(ρ)

2−µ
2
) | (fU (x̃, rg(x̃))− fU (x̃, 0)) g(x̃)| dx̃

≤ 2C
∫
B(0,R(ρ))\B

(
0,R(ρ)

2−µ
2
) 1

1 + |x̃|d−1+sdx̃ ≤ 2C |Sd−1|
∫ R(ρ)

R(ρ)
2−µ

2

1
1 + |r|1+sdr

≤ C |Sd−1|
(
R(ρ)

−(2−µ)s
2 −R(ρ)−s

)
,

and implies that the first and the third term in (40) converge to 0 uniformly
with respect to U and r as ρ → 0. Moreover, using smoothness property of Kφ

(C∞(Rd)), we have

|∇fU (x̃, rg(x̃))| |g(x̃)| ≤ C̃

1 + |x̃|d−1+s ∈ L
1(Rd−1),
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uniformly on U and r, and with r < ρ,∫
B

(
0,R(ρ)

2−µ
2
) |(fU (x̃, rg(x̃))− fU (x̃, 0)) g(x̃)| dx̃

≤ rR(ρ)2−µ
∫
B

(
0,R(ρ)

2−µ
2
) { sup

U∈O(d)
sup

0≤s≤rg(x̃)
{|∂xnfU (x̃, s)g(x̃)|}

}
dx̃

≤ CρR(ρ)2−µ,

for some generic constant C.

We conclude that

lim
ρ→0

sup
U∈O(d)

sup
0<r<ρ

∣∣∣∣∣
∫
B(0,R(ρ))

fU (x̃, rg(x̃))g(x̃) dx̃−
∫
Rd−1

fU (x̃, 0)g(x̃) dx̃
∣∣∣∣∣ = 0.

The second statement in (H ′5) is established similarly.

4.2 The consistency proof

Theorem 2. Let ϕ ∈ C2(Rd). For all z ∈ Rd and ε > 0, there exists δ > 0 such
that for all x ∈ B(z, δ) and h ∈ (0, δ], if ∇φ(x) 6= 0 we have

G−h ϕ(x) ≤ ϕ(x) + (−F (D2ϕ(z), Dϕ(z)) + ε)h
G+
h ϕ(x) ≥ ϕ(x) + (−F (D2ϕ,Dϕ(z))− ε)h.

Proof. We closely follow the argument in [33].

1. We only prove the first inequality. The other one is obtained similarly.

2. Without loss of generality, we can assume that z = 0. Let us fix a ∈ R, such
that

a > −F (D2ϕ(0), Dϕ(0)).

The inequality is proved if we can exhibit a δ > 0 such that, for all x ∈ B(0, δ)
and h ∈ (0, δ],

Sh1lϕ≥ϕ(x)+ah(x) < θh.

3. Fix δ1 > 0, such that Dϕ 6= 0 on B(0, δ1) and choose a continuous family
{U(x)}x∈B(0,δ1) ⊂ O(d), such that for all x ∈ B(0, δ1),

U(x)
(
Dϕ(x)
|Dϕ(x)|

)
= ed,

27



where ed denotes the unit vector with components (0, 0, ..., 0, 1) ∈ Rd. Note that
if x ∈ B(0, δ1), then

Sh1lϕ≥ϕ(x)+ah =
∫
Rd
fU(x)(y)1lϕ≥ϕ(x)+ah(x−

√
hU(x)∗y)dy.

4. Choosing δ smaller if necessary, (H ′1) implies the inequality

a > −F (D2ϕ,Dϕ) in B(0, δ1),

or in other words,
1
2

∫
Rd−1

〈
P ∗U(x)D2ϕ(x)U(x)∗Pξ , ξ

〉
fU(x)(ξ, 0)dξ − a

∫
Rd−1

fU(x)(ξ, 0)dξ

< −c|Dϕ(x)|, (41)

where P denotes the d× (d− 1) matrix with components Pij = δij .

5. We next fix ε > 0, and δ2 ∈ (0, δ1[, such that for all x ∈ B(0, δ2),
1
2

∫
Rd−1

〈
P ∗U(0)(D2ϕ(0) + 3ε2I)U(0)∗Pξ , ξ

〉
fU(x)(ξ, 0)dξ

−(a− ε2)
∫
Rd−1

fU(x)(ξ, 0)dξ < −(ξ + ε)|Dϕ(0)|. (42)

6. The Taylor theorem yields a γ > 0 such that for all h > 0, y ∈ Rd, and
x ∈ B(0, δ2), if

√
h|y| ≤ γ, then

ϕ(x−
√
hU(x)∗y) ≤ ϕ(x)−

√
h 〈Dϕ(x) , U(x)∗y〉

+h

2
〈
U(x)(D2ϕ(x) + ε2I)U(x)∗y , y

〉
≤ ϕ(x)−

√
h|Dϕ(x)|yd + Chy2

d

+h

2
〈
P ∗U(x)(D2ϕ(x) + 2ε2I)U(x)∗Py′ , y′

〉
,

and

ϕ(x−
√
hU(x)∗y) ≥ ϕ(x)−

√
h 〈Dϕ(x) , U(x)∗y〉

+h

2
〈
U(x)(D2ϕ(x)− ε2I)U(x)∗y , y

〉
≥ ϕ(x)−

√
h|Dϕ(x)|yd − Chy2

d

+h

2
〈
P ∗U(x)(D2ϕ(x)− 2ε2I)U(x)∗Py′ , y′

〉
,

where we write y = (y′, yd) ∈ Rd−1 × R, and where C is a positive constant.

7. Reducing γ and δ2 if necessary, the previous inequalities imply that for y ∈
B(0, γ/

√
h) and x ∈ B(0, δ2),
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• if ϕ(x−
√
hU(x)∗y) ≥ ϕ(x) + ah, then

yd ≤
√
h

|Dϕ(x)| − C
√
hyd

(
−a+ 1

2
〈
P ∗U(x)(D2ϕ(x) + 2ε2I)U(x)∗Py′ , y′

〉)

≤
√
h

|Dϕ(0)|

(
−a+ ε2 + 1

2
〈
P ∗U(0)(D2ϕ(0) + 3ε2I)U(0)∗Py′ , y′

〉)

• if

yd ≤
√
h

|Dϕ(0)|

(
−a− ε2 + 1

2
〈
P ∗U(0)(D2ϕ(0)− 3ε2I)U(0)∗Py′ , y′

〉)
,

then
ϕ(x−

√
hU(x)∗y) ≥ ϕ(x) + ah.

We define 
aε = (a− ε2)|Dϕ(0)|−1

aε = (a+ ε2)|Dϕ(0)|−1

Aε = |Dϕ(0)|−1P ∗U(0)
(
D2ϕ(0) + 3ε2I

)
U(0)∗P

Aε = |Dϕ(0)|−1P ∗U(0)
(
D2ϕ(0)− 3ε2I

)
U(0)∗P,

and for y′ ∈ Rd−1

gε(y′) =
(
−aε + 1

2
〈
Aεy′ , y′

〉)
gε(y′) =

(
−aε + 1

2
〈
Aεy

′ , y′
〉)
.

We also set

Vh,x =
{
y ∈ Rd ; ϕ(x−

√
hU(x)∗y) ≥ ϕ(x) + ah

}
,

and E
+
ε,h,x =

{
y ∈ Rd ; yd ≤

√
hgε(y′)

}
E−ε,h,x =

{
y ∈ Rd ; yd ≤

√
hgε(y′)

}
.

We check that for all x ∈ B(0, δ2),
(
Vh,x ∩B(0, γ/

√
h)
)
⊂

(
E+
ε,h,x ∩B(0, γ/

√
h)
)(

E−ε,h,x ∩B(0, γ/
√
h)
)
⊂

(
Vh,x ∩B(0, γ/

√
h)
)

8. The assumption (H4) yields the existence of a decreasing function ω ∈
C([0,∞), [0,∞)) such that ω(R)→ 0 as R→∞, and
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∫
B(0,R)c

|f(y)||y|2−µdy ≤ ω(R)2, for all R ≥ 0.

For each 0 < t < 1, we define the family of sets R(t) ∈ (0,∞) by
ω(R(t)) = tR(t)2−µ, (43)

which satify (H ′5). We then choose τ ∈ (0, 1) such that
R(t) ≤ γ/t, for all t ∈ (0, τ ] (44)

9. Let
ρ =
√
h, T (ρ) = Bn−1(0, R(ρ))× R ⊂ Rd.

For all h ∈]0, τ2) and for all x ∈ B(0, δ2), we estimate∫
Vh,x

fU(x)(y)dy =
∫
Rd
fU(x)(y)1lϕ≥ϕ(x)+ah(x−

√
hU∗(x)y)dy

≤
∫
Vh,x∩B(0,R(ρ))

fU(x)(y)dy +
∫
B(0,R(ρ))c

|fU(x)(y)|dy

≤
∫
E+
ε,h,x
∩B(0,R(ρ))

fU(x)(x)dx+
∫
B(0,R(ρ))c

|fU(x)(y)|dy

+
∫(
E+
ε,h,x
\E−

ε,h,x

)
∩B(0,R(ρ))

|fU(x)(y)|dy

≤
∫
E+
ε,h,x
∩T (ρ)

fU(x)(y)dy +
∫(
E+
ε,h,x
\E−

ε,h,x

)
∩T (ρ)

|fU(x)(y)|dy

+3
∫
B(0,R(ρ))c

|fU(x)(y)|dy

10. For the last integral above, we have∫
B(0,R(ρ))c

|fU(x)|(y)dy ≤ 1
R(ρ)2−µ

∫
B(0,R(ρ))c

|y|2−µ|fU(x)|(y)dy ≤ ω(R(ρ))ρ,

and moreover, since Kφ is symmetric,
1
2 =

∫
yd≤0

fU(x)(y)dy ≤
∫
T (ρ)∩{yd≤0}

fU(x)|(y)dy + ω(R(ρ))ρ.

We note that∫
T (ρ)∩E+

ε,h,x

fU(x)(y)dy =
∫
T (ρ)∩{yd≤ρgε(y′)}

fU(x)(y) dy

=
∫
T (ρ)∩{yd≤0}

fU(x)(y)dy +
∫
Bn−1(0,R(ρ))

dξ

∫ ρgε(y′)

0
fU(x)(ξ, r) dr

=
∫
T (ρ)∩{yd≤0}

fU(x)(y) dy +
∫ ρ

0
dr

∫
Bn−1(0,R(ρ))

fU(x)(ξ, rg(ξ))gε(ξ) dξ.

30



It follows from (H ′5) that as ρ→ 0,

1
ρ

{∫
T (ρ)∩E+

ε,h,x

fU(x)(y)dy −
∫
T (ρ)∩{yd≤0}

fU(x)(y)dy
}
→

∫
Rd−1

fU(x)(ξ, 0)gε(ξ)dξ,

uniformly with respect to x. Possibly reducing τ we may assume that for x ∈
B(0, δ2),

1
ρ

{∫
T (ρ)∩E+

ε,h,x

fU(x)(y)dy −
∫
T (ρ)∩{yd≤0}

fU(x)(y)dy
}
≤

∫
Rd−1

fU(x)(ξ, 0)gε(ξ)dξ + ε2.

Using same argument, we also conclude that∫
T (ρ)∩

(
E+
ε,h,x
\E−

ε,h,x

) |fU(x)(y)|dy =
{∫

T (ρ)∩{0≤yd≤ρgε(y′)}
|fU(x)(y)|dy

}

−
{∫

T (ρ)∩{0≤yd≤ρgε(y′)}
|fU(x)(y)|dy

}

≤ ρ

∫
Rd−1

|fU(x)|(ξ, 0)(gε(ξ)− gε(ξ))dξ + ρε2

≤ ρε2
(

1 +
∫
Rd−1

(
2 + 3|ξ|2

)
|fU(x)|(ξ, 0)dξ

)
≤ C0ρε

2,

where
C0 = sup

x∈B(0,δ2)

{
1 +

∫
Rd−1

(
2 + 3|ξ|2

)
|fU(x)|(ξ, 0)dξ

}
.

11. Finally, noting that from (41),∫
Rd−1

fU(x)(ξ, 0)gε(ξ)dξ ≤ −c− ε,

we get∫
Rd
f(x)1lϕ≥ϕ(x)+ah(x−

√
hz)dz ≤ 1

2 +
∫
Rd−1

fU(x)(ξ, 0)g(ξ)dξ

+ρ
(
ε2 + 4ω(R(ρ)) + C0ε

2
)

≤ 1
2 + ρ

(
−c− ε+ ε2 + 4ω(R(ρ)) + C0ε

2
)

< θh,

for ε sufficiently small.
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Even if the function φ is regular, G+
h ϕ and G−h ϕ need not be equal and continuous.

However, it is easy to check that if ϕ = 1lΩ is a characteristic function then
G+
h 1lΩ = G−h 1lΩ. The next proposition shows that if ϕ is smooth, G−h ϕ(x) =

G+
h (x)ϕ + o(h), so that one could conceivably build a Bence Merriman Osher

type scheme using either G+
h or G−h .

Proposition 7. Let ϕ ∈ C2(Rd). Let x ∈ Rd such as ∇ϕ(x) 6= 0, then

G−h ϕ(x) = G+
h ϕ(x) + o(h).

proof. Let x ∈ Rd such as ∇ϕ(x) 6= 0 and for all h > 0 let

ε(h) = G+
h ϕ(x)−G−h ϕ(x).

Introduce also gh(λ) : R→ R defined by

gh(λ) = Shχϕ≥λ(x) =
∫
Rd
Kφ,h(y)χϕ≥λ(x− y)dy.

This function may not be continuous. We claim that its jumps are bounded by
o(
√
h). Indeed, for all λ ∈ R, one can express gh(λ) as

gh(λ) =
∫
B(0,σ)

Kφ,h(y)χ{ϕ≥λ}(x− y)dy +
∫
Rd\B(0,σ)

Kφ,h(y)χ{ϕ≥λ}(x− y)dy

= g̃h(λ) +Rh(λ),

where σ is chosen sufficiently small so that |∇ϕ(y)| > 0 for all y ∈ B(x, σ). Let
0 < µ < 1, let

ω(R) =
∫
B(0,R)c

|y|2−µ|Kφ(y)|dy,

and let R(t) be defined by the equality ω(R(t)) = tR(t)2−µ. Note that (H ′4)
implies that

√
hR(h)2−µ → 0 as h→ 0, so that

√
hR(h)1−ν/2 < σ for h sufficiently

small, it follows that

|Rh(λ)| ≤
∫
Rd\B(0,

√
hR(h)1−µ/2)

|Kφ,h(y)|dy.

Moreover, changing variables, we see that∫
Rd\B(0,

√
hR(h)1−µ/2)

|Kφ,h(y)|dy ≤
∫
Rd\B(0,R(h)1−µ/2)

|Kφ(y)|dy

≤ 1
R(h)(2−µ)2/2

∫
Rd\B(0,R(h)1−µ/2)

|y|2−µ |Kφ(y)|dy

≤ ω(R(h))
R(h)(2−µ)2/2 .
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Since 0 < (2− µ)/2 < 1, it follows that

|Rh(λ)| ≤
(
ω(R(h))
R(h)2−µ

)1−µ/2
= h1−µ/2 = o(

√
h).

Further, the fact that |∇ϕ(y)| > 0 on B(x, σ) show that g̃h is continuous in λ,
which proves the claim.

Recall that {
G−h ϕ(x) = inf {s ∈ R ; Shχϕ≥s(x) < θh}
G+
h ϕ(x) = sup {s ∈ R ; Shχϕ≥s(x) ≥ θh} ,

it follows from the claim above that

Shχϕ≥G−
h
ϕ(x)(x) = θh + o(

√
h), and Shχϕ≥G+

h
ϕ(x)(x) = θh + o(

√
h),

and consequently∫
Rd
Kφ,h(y)χG−

h
ϕ(x)≤ϕ≤G−

h
ϕ(x)+ε(h)(x− y)dy = o(

√
h).

One can use the same argument as in the consistency proof, (in particular see
point 7) to show that asymptotically, the above integral behaves like∫
Rd
Kφ,h(y)χG−

h
ϕ(x)≤ϕ≤G−

h
ϕ(x)+ε(h)(x−y)dy = ε(h)

|∇ϕ(x)|
√
h

∫
p⊥
Kφ(x)dHd−1(x)+o(

√
h),

where, p = ∇φ(x)
|∇φ(x)| . In conclusion, as

∫
p⊥ Kφ(x)dHd−1(x) > 0, we deduce that

ε(h) = |∇ϕ(x)|∫
p⊥ Kφ(x)dHd−1(x)o(h),

which proves the proposition.

Remark 3. Our consistency result sheds light on the relationship between the
kernel Kφ and the evolution equation (4). Proving convergence of a Bence Mer-
riman Osher type algorithm in our context seems to be very difficult (if true at
all). The argument of [33] does not apply here. The main difficulty is that G±h ϕ
may not be continuous, even if ϕ is regular. Further, we can only show mono-
tonicity of the operators G±h up to o(h) for smooth functions whose gradients do
not vanish. The source of these difficulties is really the thresholding in the defi-
nition of G±h .
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5 Numerical simulations

In the previous section, we proved a consistency result for a Bence Merriman
Osher-type algorithm. Here we numerically investigate the convergence proper-
ties of a related scheme, based on a phase-field discretization. Both schemes
consist in a diffusion step followed by a correction step. In the case of the BMO
scheme, the correction is a simple thresholding, while the correction is obtained
via a reaction term for the phase field scheme. More precisely, in the second case,
given a small parameter ε > 0, we set

Gh,εϕ(x) = Th,ε(Kφ,h ∗ ϕ),

where Th,ε is defined as follows: Given λ ∈ R, Th,ε(λ) = ψ(λ) where ψ is the
solution of the ODE {

ψt = − 1
ε2W

′(ψ)
ψ(0) = λ,

and W a double well potential with wells located at ψ = 0 and ψ = 1. Note that
if ϕ = 1lΩ is a characteristic function, then

lim
ε→0

Gh,ε1lΩ = G+
h 1lΩ = G−h 1lΩ,

which shows a formal relationship in the correction step of the BMO and phase
field schemes.

The advantage of the phase field scheme, is that it produces smoother interfaces,
which avoids numerical errors due to aliasing. Moreover, we wanted to test our
method for approximating anisotropic diffusion on computations of Wulff shapes,
a problem where one has to impose a volume constraint. Such constraint is
easier to handle with a phase field scheme, where one can explicitely compute the
associated Lagrange multiplier. The next paragraph, describes the phase-field
algorithm for the operator ∆̃φ.

5.1 The ∆̃φ-phase field model and its discretisation

As an approximation to the anisotropic Allen-Cahn equation (5), we consider the
following phase-field modelut = ∆̃φu− 1

ε2W
′(u)

u(x, 0) = q
(

dist(x,∂E)
ε

) (45)

34



We also report tests, where we estimate the L1-error on anisotropic Wulff sets
(the sets which minimize the anisotropic perimeter under a volume constraint).
To impose volume conservation, we consider a conserved phase-field model, of
the formut(x, t) = ∆̃φu(x, t)− 1

ε2W
′(u(x, t)) + 1

ελ(t)
√

2W (u(x, t)),
u(x, 0) = q

(
dist(x,Ω0)

ε

)
.

(46)

The parameter

λ(t) =
∫
RdW

′(u(x, t))dx
ε
∫
Rd
√

2W (u(x, t))dx
,

can be seen as a Langange multiplier, which preserves the mass of u. See [13]
where schemes of this form have been studied for isotropic mean curvature with
a volume constraint.

We now describe the numerical method we use for solving the PDE’s (45) and
(46). Several studies of classical numerical schemes for the Allen–Cahn equation
have already been conducted in the past: see for instance, [24, 40, 16, 18, 41,
30, 29]. Here, the computational domain is the fixed box Q = [−1/2, 1/2]d ⊂
Rd, d = 2, 3. The initial datum is u0 = q(dist(x,∂Ω

ε ), where Ω0 is a smooth
bounded set strictly contained Q. We assume that during the evolution, the set
Ωε,t := {uε(x, t) ≥ 1/2} remains strictly inside Q, so that we may impose periodic
boundary conditions on ∂Q.

Our strategy consists in representing u as a Fourier series in Q, and in using a
splitting method. First, one applies the diffusion operator, which given the form
of ∆̃φ, merely amounts to a multiplication in the Fourier space. The interesting
feature of our approach is that this step is fast and very accurate. Next, the
reaction term is applied.

More precisely, uε(x, tn) at time tn = t0 + nδt is approximated by

uPε (x, tn) =
∑

max1≤i≤d |pi|≤P
uε,p(tn)e2iπp·x.

In the diffusion step, we set

uPε (x, tn + 1/2) =
∑

max1≤i≤d |pi|≤P
uε,p(tn)e−4π2δt φo(p)2

e2iπp·x.

We then integrate the reaction terms

uPε (x, tn + 1) = uPε (x, tn + 1)− δtε2W ′i,ε(uPε (x, tn + 1/2)).
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Figure 2: Wulff Set (blue) and Frank diagram (red) for the anisotropic densities
(φ1, φ

o
1), (φ2, φ

o
2) and (φ3, φ

o
3)

In practice, the first step is performed via a fast Fourier transform, with a com-
putational cost O(P d ln(P )).

The corresponding numerical scheme turns out to be stable when solving (45),
under the condition δt ≤ Mε2, where M =

[
supt∈[0,1]

{
W
′′(t)

}]−1
. Numeri-

cally, we observed that this condition is also sufficient for the conserved potential
in (46). In the simulations, we used W (s) = 1

2s
2(1− s)2.

The isotropic version of our splitting scheme has been studied in [13]. It is shown
there that this scheme converges with the same rate as phase-field approximations
based on a spatial discretization by finite differences or by finite elements. Its
advantages are greater precision, and unconditional stability.

5.2 Test of convergence in dimension 2

We consider following anisotropic densities

φo1(ξ) = ‖ξ‖`4 =
(
|ξ1|4 + |ξ2|4

) 1
4

φo2(ξ) = ‖ξ‖
`

4
3

=
(
|ξ1|

4
3 + |ξ2|

4
3
) 3

4

φo3(ξ) =
(
|ξ1|1,001 + |12ξ1 +

√
3

2 ξ2|1,001 + |12ξ1 −
√

3
2 ξ2|1,001

) 1
1,001 .

See figure (5.2) for a representation of their Wulff sets Bφi and Frank diagrams
Bφoi .
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Figure 3: Ω(t) at different times for the anisotropic densities φ1, φ2, φ3

1. Evolution from a Wulff set.
We consider the equation{

∂tu = ∆̃φu− 1
ε2W

′(u)
u(0, x) = q (dist(x,Ω0)/ε) ,

where the initial set Ω0 is a Wulff set of radius R0 = 0.25

Ω0 =
{
x ∈ R2 ; φ(x) ≤ R0

}
.

It is well known that the set Ω(t) obtained from Ω0 through evolution by anisotropic
mean curvature is a Wulff set with radius R(t) =

√
R2

0 − 2t, which decreases to
a point at the extinction time text = R2

0
2 . In these simulations, the number of

Fourier modes is P = 28, and the time step and phase-field parameter are cho-
sen to be δt = 1/P 2 and ε = 1/P . On figure (5.2) the interface Ω(t) is plotted
at different times. We observe a good agreement between the theoretical and
computed curves, in spite of the smoothening of the corners of the latter.

2.Convergence to the Wulff set

This smoothening of corners actually depends on the thickness ε of the diffuse
interface, as evidenced in the next series of tests, of evolution by anisotropic mean
curvature under a volume constraint according to (46). The initial set Ω0 is a
circle centered at 0, of the same volume as Ω∗ =

{
x ∈ Rd ; φ(x) < R0

}
. The

evolution Ωt from Ω0 is expected to converge to the Wulff set Ω∗.

Figures 5.2-a,b represent the final sets Ω∗ε obtained from the resolution of anisotropic
Allen-Cahn equation, with respective anisotropic densities φ1 and φ2, and for dif-
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Figure 4: From left to right : Ω(t) at different times with anisotropy φo1, Ω(t) at
different times with anisotropy φo2, error estimate ε → ‖1lBε

φ
− 1lBφ,R0

‖L1(Rd) in
logarithmic scale ( φo1 in red and φo2 in blue)

ferents value of ε. We observe that the smaller ε, the better the approximation
of the Wulff set. In figure 5.2-c, the L1 error

ε→ ‖1lΩ∗ − 1lΩ∗ε ‖L1(Rd),

is plotted in a logarithmic scale. This graph indicates that this error is of order
ε.

5.3 Some 3D simulations

As final illustrations, we consider the anisotropic densitiesφo4(ξ) =
√
ξ2

1 + ξ2
2 + |ξ3|

φo5(ξ) = |ξ1|+ |ξ2|+ |ξ3|

The corresponding Wulff sets and Frank diagrams are plotted in figure (5).

Figure 5: Frank diagram and Wulff set : Bφo4 , Bφ4 , Bφo5 , Bφ5
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We report in figure (6) (respectively in figure (7)) the evolution by φo4 (resp. φo5)
anisotropic mean curvature from an initial torus. The number of Fourier modes is
P = 27, the time step and diffuse interface thickness are δt = 1/P 2 and ε = 1/P .

Figure 6: φo4(ξ)-evolution from an initial torus, at different times
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