Contrôle continu 2

09 décembre 2014

Exercice 1. Soit $v = (v_1, \dots, v_d) \in \mathbb{R}^d$ un vecteur donné et soit $t \in \mathbb{R}$.

- (a) (2 points) Donnez la définition de $H^s(\mathbb{R}^d)$ pour $s \geq 0$ et demontrez que si $u \in H^s(\mathbb{R}^d)$, alors la fonction $u_t(x) = u(x tv)$ est dans $H^s(\mathbb{R}^d)$ et $||u||_{H^s} = ||u_t||_{H^s}$.
- (b) (2 points) Soit $\rho \in L^1(\mathbb{R}^d)$ une fonction donnée. Démontrez que si $u \in H^s(\mathbb{R}^d)$, alors aussi la convolution $u * \rho \in H^s(\mathbb{R}^d)$ et $||u * \rho||_{H^s} \le ||\rho||_{L^1} ||u||_{H^s}$.
- (c) (4 points) Soit $\mathcal{T}: C([-\delta, \delta], H^s(\mathbb{R}^d)) \to C([-\delta, \delta], H^s(\mathbb{R}^d))$ l'opérateur qui à chaque fonction continue $u: [-\delta, \delta] \to H^s(\mathbb{R}^d)$ associe la fonction $\mathcal{T}u \in C([-\delta, \delta], H^s(\mathbb{R}^d))$ définie par

 $(\mathcal{T}u)(t) = T(t)[u(0)] + \int_0^t T(t-s)[u(s)*\rho] ds,$

où pour chaque $\varphi \in H^s(\mathbb{R}^d)$ on a $T(t)[\varphi](x) = \varphi(x - tv)$. Démontrez que pour chaque $u \in H^s(\mathbb{R}^d)$ il existe une constante $\delta > 0$ telle que \mathcal{T} est une contraction stricte dans

$$C([-\delta, \delta], \mathcal{B}_r(\underline{u})) = \left\{ u \in C([-\delta, \delta], H^s(\mathbb{R}^d)) : u(0) = \underline{u}, \|u(t) - u(0)\|_{H^s} \le r, \forall t \in [-\delta, \delta] \right\}.$$

- (d) (3 points) Démontrez que si $s \geq 1$ et $\varphi \in H^s(\mathbb{R}^d)$, alors la fonction $f : \mathbb{R} \to H^{s-1}(\mathbb{R}^d)$ donnée par $f(t) = T(t)\varphi$ est dérivable sur \mathbb{R} et en plus $f \in C^1(\mathbb{R}, H^{s-1}(\mathbb{R}^d))$.
- (e) (3 points) Soit $u \in C([-\delta, \delta], H^s(\mathbb{R}^d))$. Pour $t \in]-\delta, \delta[$ calculez (en le justifiant) la dérivée de la fonction

 $] - \delta, \delta[\ni t \mapsto \int_0^t T(t - s)[u(s) * \rho] ds \in H^{s-1}(\mathbb{R}^d).$

(f) (1 point) Démontrez que si $s \ge 1$ et $\varphi \in H^s$, alors il existe une fonction $u \in C([-\delta, \delta]; H^s(\mathbb{R}^d)) \cap C^1(]-\delta, \delta[, H^{s-1}(\mathbb{R}^d))$ telle que

$$\begin{cases} \partial_t u + v \cdot \nabla u = u * \rho, \\ u(0) = \underline{u}. \end{cases}$$

Exercice 2. Soient $f \in L^2(\mathbb{R}^d)$, $\rho \in L^1(\mathbb{R}^d)$ une fonction paire et $\eta = \rho * \rho$.

- (a) (2 points) Démontrez que si $(u_n)_{n\in\mathbb{N}}\subset L^2(\mathbb{R}^d)$ est une suite qui converge faiblement dans $L^2(\mathbb{R}^d)$ vers $u\in L^2(\mathbb{R}^d)$, alors aussi la suite $u_n*\rho$ converge faiblement dans $L^2(\mathbb{R}^d)$ vers $u*\rho$.
- (b) (4 points) Démontrez qu'il existe une fonction $u \in H^1(\mathbb{R}^d)$ qui minimise la fonctionnelle $J: H^1(\mathbb{R}^d) \to \mathbb{R}$ donnée par

$$J(u) = \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u|^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^d} u^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^d} |u * \rho|^2 \, dx - \int_{\mathbb{R}^d} u f \, dx.$$

(c) (2 points) Démontrez que si $u \in H^1(\mathbb{R}^d)$ minimise la fonctionnelle J, alors u est solution faible de l'équation

$$-\Delta u + u + \eta * u = f.$$