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Chapter I

Complex Differential Calculus and Pseudoconvexity

This introductive chapter is mainly a review of the basic tools and concepts which will be employed
in the rest of the book: differential forms, currents, holomorphic and plurisubharmonic functions, holo-
morphic convexity and pseudoconvexity. Our study of holomorphic convexity is principally concentrated
here on the case of domains in C™. The more powerful machinery needed for the study of general com-
plex varieties (sheaves, positive currents, hermitian differential geometry) will be introduced in Chapters
IT to V. Although our exposition pretends to be almost self-contained, the reader is assumed to have
at least a vague familiarity with a few basic topics, such as differential calculus, measure theory and
distributions, holomorphic functions of one complex variable, .... Most of the necessary background can
be found in the books of [Rudin 1966] and [Warner 1971]; the basics of distribution theory can be found
in Chapter I of [Hormander 1963]. On the other hand, the reader who has already some knowledge of
complex analysis in several variables should probably bypass this chapter.

§ 1. Differential Calculus on Manifolds
§ 1.A. Differentiable Manifolds

The notion of manifold is a natural extension of the notion of submanifold defined
by a set of equations in R™. However, as already observed by Riemann during the
19th century, it is important to define the notion of a manifold in a flexible way, without
necessarily requiring that the underlying topological space is embedded in an affine space.
The precise formal definition was first introduced by H. Weyl in [Weyl 1913].

Let m € N and k € NU {co,w}. We denote by “6* the class of functions which are
k-times differentiable with continuous derivatives if & # w, and by C“ the class of real
analytic functions. A differentiable manifold M of real dimension m and of class 6€¥ is a
topological space (which we shall always assume Hausdorff and separable, i.e. possessing
a countable basis of the topology), equipped with an atlas of class ‘6¥ with values in R™.
An atlas of class “6F is a collection of homeomorphisms 7, : U, — Vi, a € I, called
differentiable charts, such that (Uy,)aecr is an open covering of M and V,, an open subset
of R™, and such that for all o, 8 € I the transition map

(1.1) Tag:TaOTB_I :178(Ua NUB) — 70(Us NUg)

is a ‘6" diffeomorphism from an open subset of V3 onto an open subset of V,, (see Fig. 1).
Then the components 7, (z) = (z¢, ..., x%,) are called the local coordinates on U, defined
by the chart 7, ; they are related by the transition relation 2% = 7,3 (xP).
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Tap
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Fig. I-1 Charts and transition maps

If Q € M is open and s € NU {oo,w}, 0 < s < k, we denote by C*(€2,R) the set of
functions f of class C* on (2, i.e. such that f o7, ! is of class C* on 7,(U, N ) for each

a5 if © is not open, C*(£2,R) is the set of functions which have a C'* extension to some
neighborhood of €.

A tangent vector £ at a point a € M is by definition a differential operator acting on
functions, of the type

of
COR)> frote-f= > &5(a)
1<GG<m O
in any local coordinate system (z1,...,z,,) on an open set 2 5 a. We then simply write

€ =>.§0/0x;. For every a € Q, the n-tuple (0/0z;)1<j<m is therefore a basis of the
tangent space to M at a, which we denote by Thr . The differential of a function f at a
is the linear form on T}y , defined by

dfa(§) =& - f=) &0f/0zj(a),  VEE Tasa

In particular dz;(§) = & and we may consequently write df = Y (0f/0x;)dz;. From
this, we see that (dx1,...,dx,,) is the dual basis of (0/0x1,...,0/0x,,) in the cotangent
space Ty . The disjoint unions T = U e s Tar,e and T3p = U, cps Thr.. ave called the
tangent and cotangent bundles of M.

If £ is a vector field of class C*® over 2, that is, a map x — &(x) € T, such that
£(z) =) & (x) 0/0x; has C° coefficients, and if 7 is another vector field of class C* with
s > 1, the Lie bracket [£,n)] is the vector field such that

(1.2) Enl-f=&(m-f)—n-(&f)

In coordinates, it is easy to check that

0 0 0
(1.3) =) (Ejazl; _njﬁil;> Oy

1<j,k<m
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§ 1.B. Differential Forms

A differential form u of degree p, or briefly a p-form over M, is a map u on M with
values u(x) € APTy; .. In a coordinate open set 2 C M, a differential p-form can be

written
u(zx) = Z uy(z) dey,
|I|=p
where I = (iy,...,1p,) is a multi-index with integer components, i; < ... < i, and dxj :=

dx;, A ... Adz;,. The notation |I| stands for the number of components of I, and is
read length of I. For all integers p =0,1,...,m and s € NU {oc}, s < k, we denote by
C*(M,APTy},) the space of differential p-forms of class C*, i.e. with C* coefficients u;.
Several natural operations on differential forms can be defined.

§ 1.B.1. Wedge Product. If v(z) = > vy(z)dz s is a g-form, the wedge product of u and
v is the form of degree (p + ¢) defined by

(1.4) uAov(zx) = Z ur(z)vy(z)der Ndxy.
=p,|J|=q

§ 1.B.2. Contraction by a tangent vector. A p-form u can be viewed as an antisymmetric
p-linear form on Thy. If £ = > &;0/0x; is a tangent vector, we define the contraction
¢ 1 u to be the differential form of degree p — 1 such that

(15) (éJ u)(n17'-'777p—1) :U(§,7717~-,77p—1)
for all tangent vectors ;. Then (£, u) — & I w is bilinear and we find easily
0 0 if j¢l1
— ldx; = _ e
0z o { (D" tdrp gy if j=q €l

A simple computation based on the above formula shows that contraction by a tangent
vector is a derivation, i.e.

(1.6) €1 (uAv)=(EJu)Av+ (1)U A (€ 1 v).

§ 1.B.3. Exterior derivative. This is the differential operator
d: O (M,APT};) — C5~H (M, APTITS))
defined in local coordinates by the formula
816[
(1.7) du = Z a—mkdxk/\d:vj
[I|=p, 1<k<m

Alternatively, one can define du by its action on arbitrary vector fields &y, ...,§, on M.
The formula is as follows

du(o,...,&) = D (—1Y& ul€o, ..., &, -, &)
0<ji<p

(1.7) + Y R s GG )

0<j<k<p
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The reader will easily check that (1.7) actually implies (1.7). The advantage of (1.7")
is that it does not depend on the choice of coordinates, thus du is intrinsically defined.
The two basic properties of the exterior derivative (again left to the reader) are:

(1.8) d(uAv) =duAv+ (—1)%%y A do, ( Leibnitz’ rule)
(1.9) d*> = 0.

A form w is said to be closed if du = 0 and ezact if v can be written v = dv for some
form wv.

§ 1.B.4. De Rham Cohomology Groups. Recall that a cohomological complex K*® =
EBpeZ is a collection of modules KP? over some ring, equipped with differentials, i.e., linear
maps dP : KP — KP*! such that dPt! odP = 0. The cocycle, coboundary and cohomology
modules ZP(K*®), BP(K*®) and HP(K*®) are defined respectively by

ZP(K*®) = KerdP : K — KP+1, ZP(K*®) C KP,
(1.10) BP(K*) =Imdr~': KP~' — KP,  BP(K*) C ZP(K*®) C KP,
HP(K*) = ZP(K*)/BP(K*).

Now, let M be a differentiable manifold, say of class 6°° for simplicity. The De Rham
complex of M is defined to be the complex K? = 6°° (M, APT},) of smooth differential
forms, together with the exterior derivative dP = d as differential, and K? = {0}, d? =0
for p < 0. We denote by ZP(M,R) the cocycles (closed p-forms) and by BP(M,R) the
coboundaries (exact p-forms). By convention B°(M,R) = {0}. The De Rham cohomol-
ogy group of M in degree p is

(1.11) HY (M, R) = Z°(M,R)/B?(M,R).

When no confusion with other types of cohomology groups may occur, we sometimes
denote these groups simply by HP(M,R). The symbol R is used here to stress that we are
considering real valued p-forms; of course one can introduce a similar group Hp g (M, C)
for complex valued forms, i.e. forms with values in C ® APT},. Then HJy(M,C) =
C ® HPr(M,R) is the complexification of the real De Rham cohomology group. It is
clear that H3, (M, R) can be identified with the space of locally constant functions on M,
thus
HYq (M, R) = R™(Y),

where 7(X) denotes the set of connected components of M.

Similarly, we introduce the De Rham cohomology groups with compact support
(1.12) HYp (M,R) = Z2(M,R)/B?(M,R),
associated with the De Rham complex KP = 62°(M, APT},) of smooth differential forms
with compact support.

§ 1.B.5. Pull-Back. If F : M — M’ is a differentiable map to another manifold M’,
dimg M' = m/, and if v(y) = > v (y) dy, is a differential p-form on M’, the pull-back
F*v is the differential p-form on M obtained after making the substitution y = F(z) in
v, l.e.

(1.13) Fro(z) =Y v (F(x)) dF;, A...AdF;,.
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If we have a second map G : M’ — M" and if w is a differential form on M”, then
F*(G*w) is obtained by means of the substitutions z = G(y), y = F(z), thus

(1.14) F*(G*w) = (G o F)*w.

Moreover, we always have d(F*v) = F*(dv). It follows that the pull-back F* is closed
if v is closed and exact if v is exact. Therefore F'* induces a morphism on the quotient
spaces

(1.15) F*: HY L (M',R) — HE . (M,R).

§ 1.C. Integration of Differential Forms

A manifold M is orientable if and only if there exists an atlas (7,) such that all transi-
tion maps 7,3 preserve the orientation, i.e. have positive jacobian determinants. Suppose
that M is oriented, that is, equipped with such an atlas. If u(x) = f(x1,...,2zm) dxy A
... Ndxy, is a continuous form of maximum degree m = dimg M, with compact support
in a coordinate open set {2, we set

(1.16) / u= flze,...,zm) dey .. dxy,.
M R™

By the change of variable formula, the result is independent of the choice of coordinates,
provided we consider only coordinates corresponding to the given orientation. When u
is an arbitrary form with compact support, the definition of [ 1 u is easily extended by
means of a partition of unity with respect to coordinate open sets covering Supp u. Let
F : M — M’ be a diffeomorphism between oriented manifolds and v a volume form on
M'. The change of variable formula yields

(1.17) /MF*v:i/ v

according whether F' preserves orientation or not.

We now state Stokes’ formula, which is basic in many contexts. Let K be a compact
subset of M with piecewise C'' boundary. By this, we mean that for each point a € 0K
there are coordinates (x1,...,Z,;,) on a neighborhood V of a, centered at a, such that

KﬂV:{xEV;xlgo,...,xlgO}

for some index [ > 1. Then 0K NV is a union of smooth hypersurfaces with piecewise
C' boundaries:

OKNV = U {xEV;xl<O,...,xj:O,...,xl<O}.

1<5<!

At points of 0K where z; = 0, then (z1,...,Zj,,..., %) define coordinates on 0K. We
take the orientation of K given by these coordinates or the opposite one, according to
the sign (—1)/71. For any differential form u of class C' and degree m — 1 on M, we
then have
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(1.18) Stokes’ formula. / u = / du.
oK K

The formula is easily checked by an explicit computation when u has compact support
in V@ indeed if u = Z1<j<n ujdri A...dx;...dz,, and 0;jK NV is the part of 0K NV
where x; = 0, a partial integration with respect to x; yields

—_— 6 .
/ ujdml/\...dxj...dxm:/ﬂd:vl/\...dxm,
0, KNV v 0z;

OKNV 8jKI'-]V v

1<j<m

The general case follows by a partition of unity. In particular, if v has compact support
in M, we find fM du = 0 by choosing K D Supp u.

§ 1.D. Homotopy Formula and Poincaré Lemma

Let u be a differential form on [0, 1] x M. For (¢,z) € [0,1] x M, we write
u(t,x) = Z ur(t,z)dxr + Z uy(t,z)dt Ndxy.
[I|=p |J|=p—1

We define an operator

K 2 C([0,1] % M, NPT 1y,000) — C*(M, A7)

(1.19) Ku(z)= Y (/OlﬁJ(t,x)dt)de

|J|=p—1

and say that Ku is the form obtained by integrating w along [0,1]. A computation of
the operator dK + K d shows that all terms involving partial derivatives 0u;/0xy, cancel,
hence

Kdu+ dKu = Z ( 1%(t,x)dt>d:m: Z (ur(1,2) —ur(0,2))day,

1% J0 |11=p
(1.20) Kdu+ dKu = iju—iju,

where iy : M — [0, 1] x M is the injection z — (¢, x).

(1.20) Corollary. Let F,G : M — M’ be “6°° maps. Suppose that F,G are smoothly
homotopic, i.e. that there exists a 6°° map H : [0,1] x M — M’ such that H(0,x) =
F(z) and H(1,2) = G(x). Then

F*=G*: HE (M',R) — HP (M, R).

Proof. If v is a p-form on M’, then

G*v—F*v=(Hoiy)v— (Hoiy) v =14 (H"v)—iy(H*v)
— d(KH*v) + K H*(dv)
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by (1.20) applied to u = H*v. If v is closed, then F*v and G*v differ by an exact form,
so they define the same class in Hf, (M, R). O

(1.21) Corollary. If the manifold M is contractible, i.e. if there is a smooth homotopy
H :[0,1]x M — M from a constant map F : M — {x¢} to G =1dx, then H3x (M,R) =
R and H{ g (M,R) =0 forp > 1.

Proof. F* is clearly zero in degree p > 1, while F* : H3 (M, R) =5 R is induced by the
evaluation map u — u(zo). The conclusion then follows from the equality F* = G* = Id
on cohomology groups. U

(1.22) Poincaré lemma. Let Q@ C R™ be a starshaped open set. If a form v =
S wrdrr € C5(, APTYE), p > 1, satisfies dv = 0, there exists a form u € C*(Q, AP~ITY)
such that du = v.

Proof. Let H(t,x) = tx be the homotopy between the identity map Q — € and the
constant map 2 — {0}. By the above formula

d(KH*v):G*U—F*v:{U_U(0> i p=0,
v if p>1

Vol

Hence u = KH*v is the (p — 1)-form we are looking for. An explicit computation based
on (1.19) easily gives

1

(1.23) u(z) = Z (/ P~y (tx) dt)(—l)k_lxikdxil A oodag, . Ndxg,.
[1j=p "
1<k<p

§ 2. Currents on Differentiable Manifolds

§ 2.A. Definition and Examples

Let M be a 6 differentiable manifold, m = dimg M. All the manifolds considered
in Sect. 2 will be assumed to be oriented. We first introduce a topology on the space of
differential forms C*(M, APT},). Let © C M be a coordinate open set and u a p-form on
M, written u(z) = > us(z)dzy on Q. To every compact subset L C 2 and every integer
s € N, we associate a seminorm

(2.1) pi(u) =sup max |[D%y(z)l,
zeL I|=p,|al<s

where a = (ay,...,a,) runs over N and D® = 9l®l /92" ... 9x%m is a derivation of
order |a] = a1 + -+ + . This type of multi-index, which will always be denoted
by Greek letters, should not be confused with multi-indices of the type I = (i1,...,1%p)
introduced in Sect. 1.

(2.2) Definition. We introduce as follows spaces of p-forms on manifolds.
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a) We denote by &°(M) (resp. *6F(M)) the space €°° (M, APTy,) (resp. the space C*(M, APTy,)) ]
equipped with the topology defined by all seminorms p; when s, L, Q vary (resp. when
L, Q vary).

b) If K C M is a compact subset, 9P (K) will denote the subspace of elements u € &P (M)
with support contained in K, together with the induced topology; 9P (M) will stand for
the set of all elements with compact support, i.e. DP (M) := |J DP(K).

c) The spaces of C*-forms PP (K) and PP (M) are defined similarly.

Since our manifolds are assumed to be separable, the topology of &P (M) can be defined
by means of a countable set of seminorms p$, hence &P(M) (and likewise *6P(M)) is a
Fréchet space. The topology of *PP(K) is induced by any finite set of seminorms p‘}(j
such that the compact sets K; cover K ; hence *9”(K) is a Banach space. It should be
observed however that 9P(M) is not a Fréchet space; in fact 9P (M) is dense in &P (M)
and thus non complete for the induced topology. According to [De Rham 1955] spaces
of currents are defined as the topological duals of the above spaces, in analogy with the
usual definition of distributions.

(2.3) Definition. The space of currents of dimension p (or degree m — p) on M is the
space D,(M) of linear forms T on 9P(M) such that the restriction of T to all subspaces
YPP(K), K CC M, is continuous. The degree is indicated by raising the index, hence we

set
QMP(M) =9D,,(M) := topological dual (pr(M))/.

The space *,(M) = *@'™"P(M) := (SQDP(M))/ is defined similarly and is called the

space of currents of order s on M.

In the sequel, we let (T, u) be the pairing between a current T and a test form
u € DP(M). It is clear that °%) (M) can be identified with the subspace of currents
T € 9,(M) which are continuous for the seminorm pj on 9?(K) for every compact set
K contained in a coordinate patch 2. The support of T', denoted Supp 7', is the smallest
closed subset A C M such that the restriction of T' to 9P (M \ A) is zero. The topological
dual &,(M) can be identified with the set of currents of 9,(M) with compact support:
indeed, let T' be a linear form on &P(M) such that

(T, u)| < Cmax{pi, (u)}

for some s € N, C' > 0 and a finite number of compact sets K ; it follows that SuppT' C
U K. Conversely let T' € @;(M ) with support in a compact set K. Let K; be compact
patches such that K is contained in the interior of | J K; and ¢ € 9(M) equal to 1 on K
with Suppvy C |JK;. For u € 8P(M), we define (T, u) = (T, u) ; this is independent
of 1 and the resulting 7" is clearly continuous on &P(M). The terminology used for the
dimension and degree of a current is justified by the following two examples.

(2.4) Example. Let Z C M be a closed oriented submanifold of M of dimension p and
class C! ; Z may have a boundary 0Z. The current of integration over Z, denoted [Z],
is defined by

<[Z],u):/2u, u € "GP (M).
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It is clear that [Z] is a current of order 0 on M and that Supp[Z] = Z. Its dimension is
p=dim Z.

(2.5) Example. If f is a differential form of degree ¢ on M with L] _ coefficients, we
can associate to f the current of dimension m — q :

(Tf,u) = /M fAu, uwe@mIUM).

T} is of degree ¢ and of order 0. The correspondence f —— T} is injective. In the same
way Li, . functions on R™ are identified to distributions, we will identify f with its image
Ty € %9 9(M) = O@%_q(M).

§ 2.B. Exterior Derivative and Wedge Product

§ 2.B.1. FEuxterior Derivative. Many of the operations available for differential forms can
be extended to currents by simple duality arguments. Let 7' € *%'9(M) = *%;,  (M).
The exterior derivative

dT € s+l T+ ()f) = s+1@;n_q_1
is defined by

(2.6) (dT,u) = (—1)7T, du), u e TIm=a=1(M).

The continuity of the linear form dT on $T9m~4=1( M) follows from the continuity of the

map d : STGm—1=YK) — s9pm~4(K). For all forms f € 184(M) and u € 9™ 971 (M),
Stokes’ formula implies

O:/Md(f/\u):/Mdf/\u—i-(—l)qf/\du,

thus in example (2.5) one actually has dTy = Ty as it should be. In example (2.4), an-
other application of Stokes’ formula yields [, du = [, u, therefore ([Z], du) = ([0Z], u)
and

(2.7) d[Z] = (-1)"P*9Z7)].

§ 2.B.2. Wedge Product. For T € *9'9(M) and g € *6"(M), the wedge product
T Ag eIt (M) is defined by

(2.8) (T'Ng,uy={T,gNu), uwe P T"(M).
This definition is licit because u — g A u is continuous in the C*-topology. The relation
AT Ag)=dT Ag+ (—1)%*eTT Adg

is easily verified from the definitions.
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(2.9) Proposition. Let (x1,...,%m) be a coordinate system on an open subset Q@ C M.
Every current T € *9'9(M) of degree q can be written in a unique way

T = ZT]dx] on (2,

[11=q
where T are distributions of order s on (), considered as currents of degree 0.
Proof. If the result is true, for all f € *%°(Q) we must have

(T, f dog;) = (Tr,dx; A fdwgy) = e(I,CI) (T, fdzi A ... Adzy,),

where £(I,CI) is the signature of the permutation (1,...,m) — (I,CI). Conversely, this
can be taken as a definition of the coefficient 17 :

(2.10) Ti(f) = (Tr, fdxy A ... Adxy,) == e(I,CI) (T, fdxg;), f€°D°(Q).

Then T7 is a distribution of order s and it is easy to check that T'= Y T dz;. ]

In particular, currents of order 0 on M can be considered as differential forms with
measure coefficients. In order to unify the notations concerning forms and currents, we

set
(T, u) :/ TAu
M

whenever T' € *9,(M) = *9'™~P(M) and u € *8P(M) are such that Supp T N Supp u
is compact. This convention is made so that the notation becomes compatible with the
identification of a form f to the current T%.

§ 2.C. Direct and Inverse Images

§ 2.C.1. Direct Images. Assume now that M;, My are oriented differentiable manifolds
of respective dimensions mq, ms, and that

(211) F M1 — M2

is a 6°° map. The pull-back morphism

(2.12) PP (Ms) — &P (M), ur— F*u

is continuous in the C*® topology and we have Supp F*u C F~!(Suppu), but in general
Supp F*u is not compact. If 7" € *%; (M) is such that the restriction of F' to Supp T
is proper, i.e. if SuppT N F~1(K) is compact for every compact subset K C My, then
the linear form u — (T, F*u) is well defined and continuous on *%”(Ms). There exists

therefore a unique current denoted F,T' € *%;,(Mz), called the direct image of T by F,
such that

(2.13) (F,T,u) = (T, F*u), Yu € *BP(My).

We leave the straightforward proof of the following properties to the reader.
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(2.14) Theorem. For every T € SQD;(Ml) such that Fisupp T @S proper, the direct image
F.T € *9,(Mz) is such that

) Supp F,T C F(SuppT) ;

b) d(F.T) = F.(dT) ;

c) FL(TNF*g)=(F.T)Ng, Vg¢€*61(M,R);

d) If G: My — M3 is a 6> map such that (G o F)supp1 @S proper, then

G.(F.T)=(Go F),T

(2.15) Special case. Assume that F is a submersion, i.e. that F' is surjective and that
for every x € M; the differential map do F' : Thr, o — T, pe) is surjective. Let g be

a differential form of degree ¢ on My, with L{. . coefficients, such that Fisupp 4 is proper.

We claim that F,g € %9/ (M>) is the form of degree ¢ — (m1 — mg) obtained from g

mi—q

by integration along the fibers of F', also denoted

Pow=[_ o)

Fig. I-2 Local description of a submersion as a projection.

In fact, this assertion is equivalent to the following generalized form of Fubini’s theorem:

/ g/\F*u:/ (/ 9(2)) Auly),  Vu € D™I0).
M, yeMa ~JzeF—1(y)

By using a partition of unity on M; and the constant rank theorem, the verification of
this formula is easily reduced to the case where My = A x My and F' = pr,, cf. Fig. 2.
The fibers F~!(y) ~ A have to be oriented in such a way that the orientation of M is
the product of the orientation of A and Ms. Let us write r = dim A = m; — ms and let
z = (x,y) € A X M3 be any point of M;. The above formula becomes

/A><M29(x7y)/\u(y) :/y€M2 (LeAg(w,y)) Auly),
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where the direct image of ¢ is computed from g = Y g7 s(z,y)dxr A dyy, |I| + |J]| = ¢,
by the formula

(2.16) Fig(y) = /GA 9(z,y)

-z (L

|J|=q—r

g(l,...,r),](*r? y) dxl ARERWA de)dyJ

In this situation, we see that F,g has L] _ coefficients on M if g is L] . on Mj, and that
the map g — Flg is continuous in the C'* topology.

(2.17) Remark. If F': M; — M, is a diffeomorphism, then we have F,g = +(F~1)*g
according whether F' preserves the orientation or not. In fact formula (1.17) gives

(F.g,u) :/Mlg/\F*u:i/MQ(F_l)*(g/\F*u) :i/ (F~H*g Aw.

Mo

§ 2.C.2. Inverse Images. Assume that F': My — M5 is a submersion. As a consequence
of the continuity statement after (2.16), one can always define the inverse image F*T €
50/ 9(My) of a current T' € *9'9(My) by

(F*T,u) = (T, Fyu), u € *PTT™"2(My).
Then dim F*T = dim T + m; — mo and Th. 2.14 yields the formulas:
(2.18) d(F*T) = F*(dT), F*(T'Ng)=F"TNF*g, Vg¢&*9*(Ms).

Take in particular T = [Z], where Z is an oriented C*-submanifold of M,. Then F~1(2)
is a submanifold of M; and has a natural orientation given by the isomorphism

Tty o/ Tr—1(2),0 — Tty F(a) /T2, 7 ()
induced by d,F' at every point x € Z. We claim that
(2.19) F*[Z) = [F~}(Z)).
Indeed, we have to check that [, Fou = fF,l(Z) u for every u € 9*(M;). By using a

partition of unity on M;, we may again assume M; = A X My and F = pr,. The above
equality can be written

/ Fou(y) = / u(z, y).
yeZ (z,y)€EAXZ

This follows precisely from (2.16) and Fubini’s theorem.
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§ 2.C.3. Weak Topology. The weak topology on QD;D(M) is the topology defined by the
collection of seminorms 7' +—— |(T), f)| for all f € @PP(M). With respect to the weak
topology, all the operations

(2.20) T—dl, T+~—~TANg, T+—FT, T+ F"T

defined above are continuous. A set B C %,,(M) is bounded for the weak topology (weakly
bounded for short) if and only if (7', f) is bounded when T runs over B, for every fixed
f €9P(M). The standard Banach-Alaoglu theorem implies that every weakly bounded
closed subset B C %;,(M) is weakly compact.

§ 2.D. Tensor Products, Homotopies and Poincaré Lemma

§ 2.D.1. Tensor Products. If S, T are currents on manifolds M, M’ there exists a
unique current on M x M’, denoted S ® T and defined in a way analogous to the tensor
product of distributions, such that for all u € 9*(M) and v € 9*(M’)

(2.21) (S ® T, priu A pryv) = (—1)%8 T8 (5 u) (T, v).

One verifies easily that d(S®T)=dS®T + (-1)%855 @ dT.

§ 2.D.2. Homotopy Formula. Assume that H : [0,1] x My — My is a “6°° homotopy
from F(z) = H(0,z) to G(x) = H(1,z) and that T € 9,(M;) is a current such that
Hyjo,1]xsupp T 18 proper. If [0,1] is considered as the current of degree 0 on R associated
to its characteristic function, we find d[0, 1] = d9 — 91, thus

d(H.([0,1]®T)) =H, (6 ®T — 61 @ T +[0,1] ® dT)
=FT -G, T+ H.(0,1]®dT).

Therefore we obtain the homotopy formula
(2.22) F,T -G, T =d(H,([0,1]®T)) — H.([0,1] ® dT).

When T is closed, i.e. dT" = 0, we see that F,T and G,T are cohomologous on M, i.e.
they differ by an exact current dS.

§ 2.D.3. Regularization of Currents. Let p € 6°°(R™) be a function with support in
B(0,1), such that p(z) depends only on |z| = (3 |z;]?)'/2, p > 0 and [g,, p(z)dz = 1.
We associate to p the family of functions (p.) such that

1

(2.23) pele) = = (2

), Supp p: C B(0,¢), / pe(x)dr = 1.

m

e
We shall refer to this construction by saying that (p.) is a family of smoothing kernels.
For every current 7' =Y Tj dz; on an open subset 2 C R, the family of smooth forms

T xpe = Z (Tr * pe) dzy,
1

defined on Q. = {x € R™ ; d(x,0Q) > ¢}, converges weakly to T as € tends to 0.
Indeed, (T x pe, f) = (T, pe x f) and p. * f converges to f in PP()) with respect to all

seminorms piy.
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§ 2.D.4. Poincaré Lemma for Currents. Let T € *9'1(Q) be a closed current on an
open set 2 C R™. We first show that 7" is cohomologous to a smooth form. In fact, let
Y € 6°°(R™) be a cut-off function such that Suppy C Q, 0 <9 < 1 and |dy| < 1 on €.
For any vector v € B(0,1) we set

Fy(z) =2+ 9¢(z)v.

Since z + 1(x)v is a contraction, F), is a diffeomorphism of R™ which leaves 0 invariant
pointwise, so F,(2) = Q. This diffeomorphism is homotopic to the identity through the
homotopy H,(t,x) = Fy,(z) : [0,1] x Q2 — Q which is proper for every v. Formula (2.22)
implies

(Fu )T =T = d((Hv>*([Oa 1® T))

After averaging with a smoothing kernel p.(v) we get © — T = dS where

O = /B(Oﬁ)(Fv)*TPs(U) dv, S= /13(0,5)(Hv>*([07 1@ T) p.(v) dv.

Then S is a current of the same order s as 7" and © is smooth. Indeed, for u € 9P (Q2)
we have
(O,u) = (T,ue) where u.(x)= / Fru(x) pe(v) dv ;
B(0,¢e)
we can make a change of variable z = F,(z) < v = ¢(x)"!(z — ) in the last integral
and perform derivatives on p. to see that each seminorm pk (u.) is controlled by the sup

norm of u. Thus © and all its derivatives are currents of order 0, so © is smooth. Now
we have d© = 0 and by the usual Poincaré lemma (1.22) applied to © we obtain

(2.24) Theorem. Let Q2 C R™ be a starshaped open subset and T' € P 1(Q) a current
of degree ¢ > 1 and order s such that dT = 0. There exists a current S € %' 1-1(Q) of
degree ¢ — 1 and order < s such that dS =T on Q. U

§ 3. Holomorphic Functions and Complex Manifolds
§ 3.A. Cauchy Formula in One Variable

We start by recalling a few elementary facts in one complex variable theory. Let
) C C be an open set and let z = x 4 iy be the complex variable, where z,y € R. If f is
a function of class C'' on €, we have

_ O g O, 0 O
df_@xdx+8ydy_ 8zd2+82dz

with the usual notations

0 o .0 0 o .0
(3.1) 5 =305 15y) ==ala tiay)

The function f is holomorphic on 2 if df is C-linear, that is, 0f/0z = 0.
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(3.2) Cauchy formula. Let K C C be a compact set with piecewise C' boundary 0K .
Then for every f € C1(K,C)

f(w):L (2) dz—/l(%gd)\(z), we K°

21 Jo 2 —w z—w) 0Z

where d\(z) = $dz A dz = dx A\ dy is the Lebesque measure on C.

Proof. Assume for simplicity w = 0. As the function z — 1/z is locally integrable at
z =0, we get

1 1 i
/ L9 nz) = Tim LOF L N as
K T2 0Z e=0 J g D(0,e) TZ OZ 2
1 d
= lim d[—, £(2) —Z}
e—0 K\D(O,E) 271-1 z

1 1 d
= — f(z)%—lim—,/ fz)—Z
21 Jox z =027 Jap(o,e) z

by Stokes’ formula. The last integral is equal to % fo% f(ce?) df and converges to f(0)
as € tends to 0. O

When f is holomorphic on €2, we get the usual Cauchy formula

1
(3.3) f =5z 2 EZZU dz, weK°,

from which many basic properties of holomorphic functions can be derived: power and
Laurent series expansions, Cauchy residue formula, ... Another interesting consequence
is:

(3.4) Corollary. The Li . function E(z) = 1/mz is a fundamental solution of the
operator 0/0z on C, i.e. OE/0Z = 6y (Dirac measure at 0). As a consequence, if v is a
distribution with compact support in C, then the convolution u = (1/mz)*v is a solution
of the equation Ou/0z = v.

Proof. Apply (3.2) with w = 0, f € 9(C) and K D Supp f, so that f = 0 on the
boundary 0K and f(0) = (1/7z, —0f/0Z). O

(3.5) Remark. It should be observed that this formula cannot be used to solve the
equation Ju/0Z = v when Suppwv is not compact; moreover, if Suppv is compact, a
solution u with compact support need not always exist. Indeed, we have a necessary
condition

(v,2") = —(u, 02" /0z) =0

for all integers n > 0. Conversely, when the necessary condition (v, z™) = 0 is satisfied,
the canonical solution u = (1/7z) x v has compact support: this is easily seen by means
of the power series expansion (w — 2)~! = > 2"w™""1, if we suppose that Suppuv is
contained in the disk |z| < R and that |w| > R.
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§ 3.B. Holomorphic Functions of Several Variables

Let Q C C™ be an open set. A function f : {2 — C is said to be holomorphic if f is con-
tinuous and separately holomorphic with respect to each variable, i.e. z; — f(...,2;,...)
is holomorphic when zi,...,2;-1, 2j41,..., 2, are fixed. The set of holomorphic func-
tions on (2 is a ring and will be denoted G(£2). We first extend the Cauchy formula to the
case of polydisks. The open polydisk D(zo, R) of center (29,1, ..., 20,»,) and (multi)radius
R = (Ry,,...,R,) is defined as the product of the disks of center zy ; and radius R; > 0
in each factor C :

(36) D(Zo, R) = D(Zo’l,Rl) X ... X D(Zo’n, Rn) c C".

The distinguished boundary of D(zy, R) is by definition the product of the boundary
circles

(37) F(Z(), R) = F(Zo’l, Rl) X ... X F(Zo’n, Rn>
It is important to observe that the distinguished boundary is smaller than the topological
boundary 0D(z0, R) = ;{2 € D(20, R); |25 — 20| = R;} when n > 2. By induction on

n, we easily get the

(3.8) Cauchy formula on polydisks. If D(z, R) is a closed polydisk contained in
and f € 6(Q), then for all w € D(zy, R) we have

1 f(z1, 0y 2n)
flw) = _ /F(ZO’R) ( dzy ...dzy,. O

(27i)™ 21— wy) ... (2n —wy)

The expansion (z; — w;)™' = Y (w; — 20,;) (2 — 20,;) %', a; € N, 1 < j < n,
shows that f can be expanded as a convergent power series f(w) = > cyn Ga(w — 20)”

over the polydisk D(zp, R), with the standard notations z* = 27" ... 20", al = a1!... !
and with
1 o 2Zn)dzy .. dzy, (@)
(3.9) Qg = —— / f (21, ,12 ) dzy 2 __ f (ZO).
(27T1)n F(Z(),R) (Zl _ 20’1)O¢1+ e (Zn — Zo’n)an‘F al

As a consequence, f is holomorphic over € if and only if f is C-analytic. Arguments
similar to the one variable case easily yield the

(3.10) Analytic continuation theorem. If Q is connected and if there exists a point
20 € Q such that f(%)(z) = 0 for all o« € N™, then f =0 on Q. O

Another consequence of (3.9) is the Cauchy inequality

al —
(3.11) [F G0l < 75 swp |l Dlzo,R) C 9,
F(Zo,R)

From this, it follows that every bounded holomorphic function on C™ is constant (Li-
ouville’s theorem), and more generally, every holomorphic function F' on C" such that
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|F(2)| < A(1 + |2|)® with suitable constants A, B > 0 is in fact a polynomial of total
degree < B.

We endow G(2) with the topology of uniform convergence on compact sets K CC €2,
that is, the topology induced by C°(£2,C). Then 6(1) is closed in C°(£2, C). The Cauchy
inequalities (3.11) show that all derivations D% are continuous operators on G(f2) and
that any sequence f; € 6(2) that is uniformly bounded on all compact sets K CC € is
locally equicontinuous. By Ascoli’s theorem, we obtain

(3.12) Montel’s theorem. Ewvery locally uniformly bounded sequence (f;) in O(Q2) has
a convergent subsequence (fj(,))-

In other words, bounded subsets of the Fréchet space G(£2) are relatively compact (a
Fréchet space possessing this property is called a Montel space).

§ 3.C. Differential Calculus on Complex Analytic Manifolds

A complex analytic manifold X of dimension dim¢ X = n is a differentiable manifold
equipped with a holomorphic atlas (7,) with values in C™ ; this means by definition that
the transition maps 7,3 are holomorphic. The tangent spaces T'x , then have a natural
complex vector space structure, given by the coordinate isomorphisms

dre(z) : Tx » — C", Uy 2z

the induced complex structure on Tx , is indeed independent of a since the differentials
dtop are C-linear isomorphisms. We denote by T% the underlying real tangent space
and by J € End(T%) the almost complex structure, i.e. the operator of multiplication
by i = /—1. If (z1,..., 2,) are complex analytic coordinates on an open subset Q C X
and z, = xy + iyg, then (x1,91,...,%n,yn) define real coordinates on 2, and Tg?m
admits (0/0z1, 0/0y1, ..., 0/0xy,, 0/0y,) as a basis; the almost complex structure
is given by J(0/0xy) = 0/0yk, J(0/0yr) = —0/0x. The complexified tangent space
CoTxy = Cer Ty = Tk ®iT% splits into conjugate complex subspaces which are the
eigenspaces of the complexified endomorphism Id ® J associated to the eigenvalues i and
—i. These subspaces have respective bases

o 1,0 ) o 1,0 9
1 — == —i— — =5la— tig— 1<k <
(3.13) 92 2(6$k layk>’ 9z 2<8xk+18yk)’ ksn

and are denoted T1°X (holomorphic vectors or vectors of type (1,0)) and T'X (an-
tiholomorphic vectors or vectors of type (0,1)). The subspaces T*YX and T%'X are
canonically isomorphic to the complex tangent space Tx (with complex structure J) and
its conjugate Tx (with conjugate complex structure —.J), via the C-linear embeddings

Tx— Ty’ CCoTx, Tx— Ty' CC®Tx
g 2(E—1JE), € — (e +iJe).

We thus have a canonical decomposition C® Ty = T)l(’0 EBT)O(’1 ~ Tx ®Tx, and by duality
a decomposition

Homg(Tx; C) ~ Home(C® Tx;C) ~ T% & Tk
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where T% is the space of C-linear forms and T the space of conjugate C-linear forms.
With these notations, (dr,dys) is a basis of Homg(Tk X, C), (dz;) a basis of T%, (dz;)
a basis of T, and the differential of a function f € C'(Q, C) can be written

of of
(3.14) df = Zaxkdk—i—— Z dk+a—2kdzk

The function f is holomorphic on €2 if and only if df is C-linear, i.e. if and only if f
satisfies the Cauchy-Riemann equations 0f/0zZr = 0 on Q, 1 < k < n. We still denote
here by G(X) the algebra of holomorphic functions on X.

Now, we study the basic rules of complex differential calculus. The complexified
exterior algebra C @g A%(T%)* = A%(C ® Tx)* is given by

A (CoTx) =AM (TxoTx) = @ ATk, 0<k<2n
p+q=k

where the exterior products are taken over C, and where the components AP9T% are

defined by
(3.15) APITY = APTY @ NIT%.

A complex differential form u on X is said to be of bidegree or type (p, q) if its value at
every point lies in the component AP9T% ; we shall denote by C*(92, AP9T% ) the space
of differential forms of bidegree (p, q) and class C*® on any open subset Q of X. If Qis a
coordinate open set, such a form can be written

U(Z) = Z ULJ(Z) dZ[/\d?J, Uy, J ECS(Q,C).
[ I|=p,|J|=q
This writing is usually much more convenient than the expression in terms of the real
basis (dzr Adys)|r|+|)=k Which is not compatible with the splitting of AFTEX inits (p, q)
components. Formula (3.14) shows that the exterior derivative d splits into d = d’ + d”,
where

d' s 6% (X, APITY) — 6°°(X, APTHaTy),
"G (X, AT ) — 6 (X, APITITY),

duy g —
o ;
(3.16") d'u= E E B2 dzi Ndzp Ndzy,
1,0 1<k<n
Ourj _
i 1/ o )
(3.16") d"u = E E = dzy Ndzp NdZ .
1,0 1<k<n.

The identity d? = (d’ + d”)? = 0 is equivalent to
(3.17) d?=0, dd"+d'd=0d?*=0,

since these three operators send (p, ¢)-forms in (p+2,¢q), (p+1,¢+1) and (p, ¢+2)-forms,
respectively. In particular, the operator d” defines for each p = 0,1,...,n a complex,
called the Dolbeault complex

€ (X, APOTE) 25 oo s (X, APITE) L 60X, APIITY)
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and corresponding Dolbeault cohomology groups

Ker d" P-4
Imd’pa—1’

(3.18) HP(X,C) =

with the convention that the image of d” is zero for ¢ = 0. The cohomology group
HPY(X,C) consists of (p,0)-forms u = Zm:p us(z) dzr such that duy/0z; = 0 for all
I, k,i.e. such that all coefficients u; are holomorphic. Such a form is called a holomorphic
p-form on X.

Let F' : X; — X5 be a holomorphic map between complex manifolds. The pull-
back F*u of a (p,q)-form u of bidegree (p,q) on Xo is again homogeneous of bidegree
(p, q), because the components Fj, of F' in any coordinate chart are holomorphic, hence
F*dz;, = dF}, is C-linear. In particular, the equality dF*u = F*du implies

(3.19) dF*u=Fdu, d'Fu=Fdu.

Note that these commutation relations are no longer true for a non holomorphic change
of variable. As in the case of the De Rham cohomology groups, we get a pull-back
morphism

F*: HP(X,,C) — HP9(X4,C).

The rules of complex differential calculus can be easily extended to currents. We use the
following notation.

(3.20) Definition. There are decompositions

P o (x,c), 9Xx.C=PH 9,

p+q=k p+q=Fk

The space 9, ,(X,C) is called the space of currents of bidimension (p,q) and bidegree
(n—p,n—q) on X, and is also denoted 9'"~P"~9(X,C).

§ 3.D. Newton and Bochner-Martinelli Kernels

The Newton kernel is the elementary solution of the usual Laplace operator A =
>-0%/0z7 in R™. We first recall a construction of the Newton kernel.

Let d\ = dx;...dx,, be the Lebesgue measure on R™. We denote by B(a,r) the
euclidean open ball of center a and radius r in R™ and by S(a,r) = 0B(a,r) the corre-
sponding sphere. Finally, we set «,,, = Vol (B(O, 1)) and 0,,_1 = ma,, so that

(3.21) Vol (B(a,r)) = apr™,  Area(S(a,r)) = O™ L

The second equality 2jfollovvs from the first by derivation. An explicit computation of
the integral [, e~1*I"d\(z) in polar coordinates shows that a,, = 7™/2/(m/2)! where
! =T'(x 4+ 1) is the Euler Gamma function. The Newton kernel is then given by:

1
N(z) = — log || it m=2,
(3.22) 2 ,
N(z)=————z|*™™ if 2.
(@) = ~ gy e it m



26 Chapter I. Complex Differential Calculus and Pseudoconvexity

The function N(z) is locally integrable on R™ and satisfies AN = ¢g. When m = 2,
this follows from Cor. 3.4 and the fact that A = 49?/020z. When m # 2, this can be
checked by computing the weak limit

lim A(|z]? + 52)1_m/2 = lim m(2 — m)e2(|jz|> + 82)—1—m/2
e—0 e—0

=m(2—m) L, oo

with I, = [ (|2|2+1)727™/2dX\(2). The last equality is easily seen by performing the
change of variable y = ez in the integral

[Py f@yan@) = [ (P + 1) e ),

m

where f is an arbitrary test function. Using polar coordinates, we find that I,,, = op,—1/m
and our formula follows.

The Bochner-Martinelli kernel is the (n,n — 1)-differential form on C™ with Lj
coefficients defined by

JZjdz A dz NdEUA L dE L N dZ,
|Z|2n

(323)  kpm(2)=cu Y (-1)

1<j<n

)

cn, = (— ”(n—l)/ZM
n=(-1) G

(3.24) Lemma. d"kgy = dp on C™.

Proof. Since the Lebesgue measure on C" is

i i\n n(n—1)
Az = N\ %dzj/\dzj:(%> (1) 2 der A...dzn AdZ1 A .. .dZy,

1<j<n
we find
n—1)! 0 [z
d//ijM = — s £<|Z|;n>d/\(2)
1<G<n Y
1 0? 1
= dA
n(n —1)as, 1<gz<n 02;0%; <|z|2”—2) (2)
= AN (z)d\(z) = dp. O

We let Kpy(z,(¢) be the pull-back of kgy; by the map 7 : C* x C* — C™, (2,() —
z — (. Then Formula (2.19) implies

(325) d//KBM = 7T*(50 = [A],

where [A] denotes the current of integration on the diagonal A C C™ x C".
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(3.26) Koppelman formula. Let Q C C* be a bounded open set with piecewise C*
boundary. Then for every (p,q)-form v of class Ct on Q we have

o) = [ K0 Av(©
! [ KO M0 + [ KGO Ad0(0)
Q

Q

on , where K&y (z, () denotes the component of Kgm(z, () of type (p,q) in z and (n —
p,n—q—1)in (.

Proof. Given w € 9"~ P"~1(2), we consider the integral

/ Kpm(z,¢) Av(Q) ANw(z).
o0 x)

It is well defined since Kpgy has no singularities on 9€2 x Supp v CC 992 x €. Since w(z)
vanishes on 9f) the integral can be extended as well to O(Q2xQ). As Kgnm(z, ()Av(¢)Aw(z)
is of total bidegree (2n,2n — 1), its differential d’ vanishes. Hence Stokes’ formula yields

[ Kol nv@ A = [ @ (K0 Av() A )
002 x Q2

QxQ
= /QXQ d//KBM(Z,C) Av(C) Nw(z) — Kgf/{(z,c) A d//U(C) Aw(z)
_ (—1)p—|—q K]g’l\g[_l(zac> /\U(g) /\d"w(z).
QxQ
By (3.25) we have
/Md“KBM@,g)M(ko(z) -/ Ao Az = JREIE

Denoting ( , ) the pairing between currents and test forms on €2, the above equality is
thus equivalent to

( KBM(Z,C)AU(C)aw(Z»:<U(Z)—LKSﬁ(Zaﬁ)Ad"U(C),w(Z)>

o0

~ (-1 [ KB .0 A ol0)d ()
Q
which is itself equivalent to the Koppelman formula by integrating d”v by parts. U

(3.27) Corollary. Let v € *9P1(C") be a form of class C* with compact support such
that d’v =0, ¢ > 1. Then the (p,q — 1)-form

q—1
u(z) = g Kgn (2,0 A o(Q)
is a C* solution of the equation d’'u = v. Moreover, if (p,q) = (0,1) andn > 2 then u has
compact support, thus the Dolbeault cohomology group with compact support HY1(C™, C)
vanishes for n > 2.



28 Chapter I. Complex Differential Calculus and Pseudoconvexity

Proof. Apply the Koppelman formula on a sufficiently large ball Q = B(0, R) containing
Suppv. Then the formula immediately gives d’u = v. Observe that the coefficients of
Kpum(z,¢) are O(]z — ¢~ V), hence |u(2)] = O(]z|~3"~V) at infinity. If ¢ = 1, then
u is holomorphic on C" \ B(0, R). Now, this complement is a union of complex lines
when n > 2, hence v = 0 on C"™ \. B(0, R) by Liouville’s theorem. O

(3.28) Hartogs extension theorem. Let 2 be an open set in C", n > 2, and let
K C Q be a compact subset such that Q . K is connected. Then every holomorphic
function f € 6(2\ K) extends into a function f € G(Q).

Proof. Let ¢ € 9(€2) be a cut-off function equal to 1 on a neighborhood of K. Set
fo= (0 —=v)f € 6°(Q), defined as 0 on K. Then v = d" fy = — fd"+) can be extended
by 0 outside 2, and can thus be seen as a smooth (0, 1)-form with compact support in C”,
such that d”v = 0. By Cor. 3.27, there is a smooth function u with compact support in
C™ such that d’u =v. Then f = fy —u € G(2). Now u is holomorphic outside Supp ¥,
so v vanishes on the unbounded component G of C" ~\ Supp. The boundary 0G is
contained in d Suppy C QN K, so f = (1 —1)f — u coincides with f on the non empty
open set QNG C 2~ K. Therefore f:: f on the connected open set 2 \ K. ]

A refined version of the Hartogs extension theorem due to Bochner will be given in
Exercise 8.13. It shows that f need only be given as a C! function on 01, satisfying the
tangential Cauchy-Riemann equations (a so-called CR-function). Then f extends as a

holomorphic function f € 6(Q) N C%(Q), provided that O is connected.
§ 3.E. The Dolbeault-Grothendieck Lemma

We are now in a position to prove the Dolbeault-Grothendieck lemma [Dolbeault
1953], which is the analogue for d” of the Poincaré lemma. The proof given below makes
use of the Bochner-Martinelli kernel. Many other proofs can be given, e.g. by using a
reduction to the one dimensional case in combination with the Cauchy formula (3.2), see
Exercise 8.5 or [Héormander 1966].

(3.29) Dolbeault-Grothendieck lemma. Let 2 be a neighborhood of 0 in C" and
v e &P, C), [resp. v € P PQ,C)|, such that d"v =0, where 1 < s < oo.

a) If ¢ = 0, then v(z) = > _,vi(2)dzr is a holomorphic p-form, i.e. a form whose
coefficients are holomorphic functions.

b) If ¢ > 1, there exists a neighborhood w C Q of 0 and a form u in *&P4~(w, C) [resp.
a current u € *9P'P 1w, C)] such that d"u = v on w.

Proof. We assume that € is a ball B(0,r) C C™ and take for simplicity » > 1 (possibly
after a dilation of coordinates). We then set w = B(0,1). Let ¢ € 9(Q2) be a cut-off
function equal to 1 on w. The Koppelman formula (3.26) applied to the form v on Q
gives

b((z) = d" / KI5 (2, Q) A (¢ / K& (5,0) A d"$(C) Av(C).
This formula is valid even when v is a current, because we may regularize v as v * p. and
take the limit. We introduce on C™ x C™ x C™ the kernel

K(zw,()=ca Y SdC ) A(dz —d) A N (dwy, — dC,).

=1 ((z=¢) - (w=Q)m k k#j
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By construction, Kpu(z,() is the result of the substitution w = z in K(z,w,(), i
Kpy = h*K where h(z,() = (2,%,(). We denote by KP? the component of K of
bidegree (p,0) in z, (¢,0) in w and (n —p,n —q — 1) in . Then K§ = h*KP? and we
find

v=d"ug+g*v; onw,

where g(z) = (z,%) and
9= [ KEE 60 A (O,
new) = [ K21 w0,0) A d"(0) A u(o)

By definition of KP%(z,w, (), v; is holomorphic on the open set
U={(z,w) Ewxw; V¥ ¢w, Re(z = ¢) - (w—¢) >0},

which contains the “conjugate-diagonal” points (z,%Z) as well as the points (z,0) and
(0,w) in w x w. Moreover U clearly has convex slices ({z} x C*")NU and (C" x {w})NU.
In particular U is starshaped with respect to w, i.e.

(z,w) e U = (z,tw) € U, Vte][0,1].

As uy is of type (p,0) in z and (g, 0) in w, we get d/(g*v1) = g*dywv1 = 0, hence d,,v7 = 0.
For ¢ = 0 we have KBy = = 0, thus ug = 0, and v; does not depend on w, thus v is
holomorphic on w. For q = 1, we can use the homotopy formula (1.23) with respect to w
(considering z as a parameter) to get a holomorphic form uq(z, w) of type (p,0) in z and
(¢ —1,0) in w, such that dy,uq(z,w) = v1(z,w). Then we get d’g*u; = g*d,u1 = g*vs,
hence

v=d"(uy+g*u1) onw.

Finally, the coefficients of ug are obtained as linear combinations of convolutions of the
coefficients of 1v with L{. _ functions of the form Cj|§|_2”. Hence uy is of class C*® (resp.
is a current of order s), if v is. O

(3.30) Corollary. The operator d"’ is hypoelliptic in bidegree (p,0), i.e. if a current
fed'PV(X,C) satisfies d’ f € &P1(X,C), then f € 8P°(X,C).

Proof. The result is local, so we may assume that X = ) is a neighborhood of 0 in C".
The (p, 1)-form v = d" f € &1(X, C) satisfies d"v = 0, hence there exists u € §7°(Q2, C)
such that d”’u = d”f. Then f — u is holomorphic and f = (f —u) +u € 79(Q,C). O

§ 4. Subharmonic Functions

A harmonic (resp. subharmonic) function on an open subset of R™ is essentially a
function (or distribution) w such that Au = 0 (resp. Au > 0). A fundamental example
of subharmonic function is given by the Newton kernel N, which is actually harmonic on
R™~{0}. Subharmonic functions are an essential tool of harmonic analysis and potential
theory. Before giving their precise definition and properties, we derive a basic integral
formula involving the Green kernel of the Laplace operator on the ball.
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§4.A. Construction of the Green Kernel
The Green kernel Gq(x,y) of a smoothly bounded domain 2 CC R™ is the solution
of the following Dirichlet boundary problem for the Laplace operator A on €):

(4.1) Definition. The Green kernel of a smoothly bounded domain Q@ CC R™ is a
function Gq(z,y) : Q@ x Q — [—o0, 0] with the following properties:

a) Go(r,y) is 6> on Q x O\ Diag, (Diagy = diagonal) ;

o

C

d

) Gal(z,y

) Ga(z,y) = Galy, z) ;

) Ga(z,y) <0 on Qx Q and Ga(z,y) =0 on 90 x Q;
) A

:Ga(z,y) =06, on Q for every fized y € Q.

It can be shown that G always exists and is unique. The uniqueness is an easy
consequence of the maximum principle (see Th. 4.14 below). In the case where Q2 =
B(0,r) is a ball (the only case we are going to deal with), the existence can be shown
through explicit calculations. In fact the Green kernel G,.(z,y) of B(0,r) is

B |yl r’ =
(4.2) Gr(m,y)—N(x—y)—N(T(x—Wy>>, x,y € B(0,r).

A substitution of the explicit value of N(x) yields:

Golz,y) = —1 v =yl if 2, otherwi
(z,y) = —1o if m =2, otherwise
P a0 o)+ L P
-1 2—-m 2 L o) 9\1-m/2
Gr(z,y) = m(\x —yP 7" = (1 = 2(z,y) + r—glw\ lyl?) )

(4.3) Theorem. The above defined function G, satisfies all four properties (4.1 a—d) on
Q= B(0,r), thus G, is the Green kernel of B(0,r).

Proof. The first three properties are immediately verified on the formulas, because
2 Loy 2 2 4 1 2
P = 2(a,y) + lal g2 = |~y + 5 (7~ [o?) (2~ of?).

For property d), observe that r2y/|y|? ¢ B(0,r) whenever y € B(0,7) \ {0}. The second
Newton kernel in the right hand side of (4.1) is thus harmonic in  on B(0, ), and

AGr(x,y) = AgN(x —y) =46, on B(0,r). O

§ 4.B. Green-Riesz Representation Formula and Dirichlet Problem

§ 4.B.1. Green-Riesz Formula. For all smooth functions u,v on a smoothly bounded
domain €2 CC R™, we have

ov ou
(4.4) L(uAv—vAu)dA-/é)ﬁ(ua—va)da
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where 0/0v is the derivative along the outward normal unit vector v of 92 and do the
euclidean area measure. Indeed

(=17 Moy A Ada A A do o0 = v; do,

for the wedge product of (v, dx) with the left hand side is v; dA\. Therefore

m

> (—1yi- 166; dzy A Ndz; A A dp,.
J

—da—z 6.T] dea—

Jj=1 Jj=1

Formula (4.4) is then an easy consequence of Stokes’ theorem. Observe that (4.4) is still
valid if v is a distribution with singular support relatively compact in §2. For 2 = B(0,r),
u € C?*(B(0,7),R) and v(y) = G,(z,y), we get the Green-Riesz representation formula:

(45  u(x) = /B o B o) D)+ / u(y) Pz, y) do(y)

S(0,r)

where P.(z,y) = 0G,(x,y)/0v(y), (z,y) € B(0,r) x S(0,r). The function P,(z,y) is
called the Poisson kernel. 1t is smooth and satisfies A, P.(x,y) = 0 on B(0,7) by (4.1 d).
A simple computation left to the reader yields:

1 r?—|z)?

(4.6) P.(z,y) =

Om—1T |',1j - y‘m .

Formula (4.5) for u = 1 shows that fS(O " P.(z,y)do(y) = 1. When z in B(0,7) tends
to xg € 5(0,7), we see that P,.(x,y) converges uniformly to 0 on every compact subset

of S(0,7) ~ {zo} ; it follows that the measure P,(z,y) do(y) converges weakly to d,, on
S(0,r).

§ 4.B.2. Solution of the Dirichlet Problem. For any bounded measurable function v on
S(a,r) we define

(4.7) P, [v](z) = /S( )v(y) P.(x —a,y—a)do(y), x¢€ B(a,r).

If u € C°(B(a,r),R)NC?(B(a,r),R) is harmonic, i.e. Au = 0 on B(a,r), then (4.5) gives
u = P, [u] on B(a,r), i.e. the Poisson kernel reproduces harmonic functions. Suppose
now that v € C°(S(a,r),R) is given. Then P,(z — a,y — a) do(y) converges weakly to
dz, When z tends to xg € S(a,r), so P, ,[v](x) converges to v(zg). It follows that the
function u defined by
u=P,,v] on B(a,r),
{ u="v on S(a,r)

is continuous on B(a,r) and harmonic on B(a,r) ; thus u is the solution of the Dirichlet
problem with boundary values v.

§ 4.C. Definition and Basic Properties of Subharmonic Functions
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§ 4.C.1. Definition. Mean Value Inequalities. If u is a Borel function on B(a,r) which
is bounded above or below, we consider the mean values of u over the ball or sphere:

1
(4.8) up(usa,r) = m/ u(x) dA(x),
amT B(a,r)
1
18 ar) = | do ().
(18) pstuiar) = oy [ e dota)

As d)\ = dr do these mean values are related by

1
Uy, 7™

(4.9) pp(usa,r) = / O 1t ps(usa,t)dt
0

1
= m/ t™ g (usa,rt) dt.
0

Now, apply formula (4.5) with z = 0. We get P.(0,y) = 1/0,,_1r™ ! and G,.(0,y) =

(ly~™ = 772 = m)om 1 = —(1/om 1) [ 1", thus

1

Om—1

/ Au(y) Gr(0,y) dA\(y) = — / ' trf: Au(y) dA(y)
B(0,r) 0 ly|<t

1 ™
:——/ wp(Au;0,t)tdt
m Jo

thanks to the Fubini formula. By translating S(0,7) to S(a,r), (4.5) implies the Gauss
formula

1 T
(4.10) ug(u;a,r):u(a)—l—a/ pp(Ausa,t)tdt.
0

Let  be an open subset of R™ and u € C?*(,R). If a € Q and Au(a) > 0 (resp.
Au(a) < 0), Formula (4.10) shows that pg(u;a,r) > u(a) (resp. ps(u;a,r) < u(a)) for
r small enough. In particular, u is harmonic (i.e. Au = 0) if and only if u satisfies the

mean value equality o
ps(u;a,r)=wu(a), VB(a,r)C Q.

Now, observe that if (p.) is a family of radially symmetric smoothing kernels associated
with p(x) = p(|z|) and if u is a Borel locally bounded function, an easy computation
yields

uxpe(a) = /B(O,l) u(a + ex) p(x) dA

1
(4.11) = am_1/ ps(usa,et)pt) t™ 1 dt.
0

Thus, if u is a Borel locally bounded function satisfying the mean value equality on (2,
(4.11) shows that u x p. = u on ), in particular v must be smooth. Similarly, if we
replace the mean value equality by an inequality, the relevant regularity property to be
required for u is just semicontinuity.
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(4.12) Theorem and definition. Let u : 2 — [—00, +00] be an upper semicontinuous
function. The following various forms of mean value inequalities are equivalent:

a) u(x) < P,[ul(z), VB(a,r)CQ, Vaxe Bla,r);
b) u(a) < ps (u;a,r), VB(a,r)CQ;
c) u(a) < pp(usa,r), VB(a,r)CQ;

d) for every a € Q, there exists a sequence (r,) decreasing to 0 such that

u(a) < pp(usa,ry) Vv

e) for every a € Q), there exists a sequence (r,) decreasing to 0 such that
u(a) < ps(uja,r,) V.

A function u satisfying one of the above properties is said to be subharmonic on 2. The
set of subharmonic functions will be denoted by Sh(€).

By (4.10) we see that a function u € C?(Q, R) is subharmonic if and only if Au > 0 :
in fact pg(u; a,r) < u(a) for r small if Au(a) < 0. It is also clear on the definitions that
every (locally) convex function on € is subharmonic.

Proof. We have obvious implications
a) = b) = c¢) = d) = e),

the second and last ones by (4.10) and the fact that pug(u;a,r,) < ps(u;a,t) for at
least one ¢ € |0,7,[. In order to prove e) = a), we first need a suitable version of the
maximum principle.

(4.13) Lemma. Letu : Q — [—o0, +00[ be an upper semicontinuous function satisfying
property 4.12 e). If u attains its supremum at a point xg € 2, then wu is constant on the
connected component of xg in €.

Proof. We may assume that () is connected. Let
W={zeQ; ulx) <u(zxy)}.

W is open by the upper semicontinuity, and distinct from € since z¢o ¢ W. We want to
show that W = (). Otherwise W has a non empty connected component Wy, and W
has a boundary point a € Q. We have a € Q ~\ W, thus u(a) = u(zp). By assumption
4.12¢), we get u(a) < ps(u;a,r,) for some sequence r, — 0. For r, small enough, W
intersects Q\ B(a,r,) and B(a,r,) ; as Wy is connected, we also have S(a,r,) Wy # 0.
Since u < u(xo) on the sphere S(a,r,) and u < u(xg) on its open subset S(a,r,) N Wy,
we get u(a) < ps(u;a,r) <u(zg), a contradiction. O
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(4.14) Maximum principle. If u is subharmonic in 2 (in the sense that u satisfies
the weakest property 4.12¢)), then

supu = limsup u(z),
Q 032—-00U{c}

and sup i u = supyy u(z) for every compact subset K C ).

Proof. We have of course imsup,_, g {o0} #(2) < supg u. If the inequality is strict, this
means that the supremum is achieved on some compact subset L C ). Thus, by the
upper semicontinuity, there is xg € L such that supg v = sup; v = u(zp). Lemma 4.13
shows that w is constant on the connected component €2y of x( in €2, hence

supu = u(zg) = limsup  wu(z) < limsup wu(z),
Q Qp32—0QU{c0} Q3z—900QU{oco0}

contradiction. The statement involving a compact subset K is obtained by applying the
first statement to Q' = K°. O

Proof of (4.12) e) = a). Let u be an upper semicontinuous function satisfying 4.12 e)
and B(a,r) C  an arbitrary closed ball. One can find a decreasing sequence of con-
tinuous functions v, € C° (S(a,r),R) such that limvy = u. Set hy = P, [vg] €
C°(B(a,r),R). As hy, is harmonic on B(a,r), the function u — hy, satisfies 4.12 e) on
B(a,r). Furthermore imsup,_,¢c g4, w(2) — hi(z) < u(§) — vk(§) < 0, s0 u —hy <0
on B(a,r) by Th. 4.14. By monotone convergence, we find u < P, ,[u] on B(a,r) when
k tends to +o0. O

§ 4.C.2. Basic Properties. Here is a short list of the most basic properties.

(4.15) Theorem. For any decreasing sequence (uy) of subharmonic functions, the limit
u = lim uy, s subharmonic.

Proof. A decreasing limit of upper semicontinuous functions is again upper semicontin-
uous, and the mean value inequalities 4.12 remain valid for u by Lebesgue’s monotone
convergence theorem. O

(4.16) Theorem. Let uy,...,u, € Sh(Q2) and x : RP — R be a convex function such
that x(t1,...,t,) is non decreasing in each t;. If x is extended by continuity into a
function [—oo, +oo[P— [—o0, +00[, then

x(u1,...,up) € Sh(Q).
In particular wy + - - + up, max{uy,...,upy}, log(e*t 4+ --- +e*r) € Sh().

Proof. Every convex function is continuous, hence x(u1, ..., u,) is upper semicontinuous.
One can write

Xx(t) = sup A;(t)
il
where A;(t) = a1t1+- - -+ apt, + b is the family of affine functions that define supporting
hyperplanes of the graph of x. As x(t1,...,t,) is non-decreasing in each t;, we have
aj = 0, thus

Z a;u;(x) +b< uB(Zajuj —|—b;x,r) < uB(X(ul,...,up);x,r)

1<y<p
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for every ball B(z,r) C €. If one takes the supremum of this inequality over all the
A;’s, it follows that x(ui,...,u,) satisfies the mean value inequality 4.12 c). In the last

example, the function x(t1,...,t,) = log(e’* + - - + e'?) is convex because
d%x o —x 2 t; —2x t;)2
Do map Gibk=e ) e —e (Y geh)
1<Gik<p 7R
and (Y &je )2 < (X £7 el ) €X by the Cauchy-Schwarz inequality. O

(4.17) Theorem. If) is connected and u € Sh(Q), then either u = —oco oru € Li ().

loc

Proof. Note that a subharmonic function is always locally bounded above. Let W be the
set of points = € () such that u is integrable in a neighborhood of x. Then W is open
by definition and u > —oo almost everywhere on W. If € W, one can choose a € W
such that |a — z| < r = 3d(z,CQ) and u(a) > —co. Then B(a,r) is a neighborhood of
z, B(a,r) C Q and pp(u;a,r) > u(a) > —oo. Therefore x € W, W is also closed. We
must have W = Q or W = () ; in the last case u = —oo by the mean value inequality. [

(4.18) Theorem. Let u € Sh(Q2) be such that u Z —oo on each connected component of
Q. Then

a) r — ps(usa,r), ¥ — pp(u;a,r) are non decreasing functions in the interval
]07d(a7 CQ)[z and uB(U;CL,T) < MS(U;CL,T).

b) For any family (ps) of smoothing kernels, ux p. € Sh(£2:) N 6°°(Q,R), the family
(u* p:) is mon decreasing in € and lim._,o u x p. = u.

Proof. We first verify statements a) and b) when v € C?(Q,R). Then Au > 0 and
ws(u;a,r)is non decreasing in virtue of (4.10). By (4.9), we find that ug(u;a,r) is also
non decreasing and that pup(u;a,r) < ps(u;a,r). Furthermore, Formula (4.11) shows
that € — u * p-(a) is non decreasing (provided that p. is radially symmetric).

In the general case, we first observe that property 4.12 c) is equivalent to the inequality
u<Luxp,. on Q. Vr>0,

where ., is the probability measure of uniform density on B(0, 7). This inequality implies
Uk pe S UK Pe* (i 0N (24)e = Qpy e, thus u* p. € 6°°(Q.,R) is subharmonic on Q.. It
follows that ux p. x p,, is non decreasing in 7 ; by symmetry, it is also non decreasing in ¢,
and so is uxp. = lim,_,o uxp:*xp,. We have uxp. > u by (4.19) and lim sup,_,, u*p: < u
by the upper semicontinuity. Hence lim._,gu x p. = u. Property a) for u follows now
from its validity for u x p. and from the monotone convergence theorem. O

(4.19) Corollary. If u € Sh(?) is such that u # —oo on each connected component of
Q, then Au computed in the sense of distribution theory is a positive measure.

Indeed A(u* p:) = 0 as a function, and A(u  pe) converges weakly to Au in 9’ ().
Corollary 4.19 has a converse, but the correct statement is slightly more involved than
for the direct property:
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(4.20) Theorem. If v € 9'(Q) is such that Av is a positive measure, there exists a
unique function u € Sh(§2) locally integrable such that v is the distribution associated to
u.

We must point out that v need not coincide everywhere with v, even when v is a
locally integrable upper semicontinuous function: for example, if v is the characteristic
function of a compact subset K C €2 of measure 0, the subharmonic representant of v is
u = 0.

Proof. Set v. = v *x p. € 6°(Q,R). Then Av. = (Av) x p. = 0, thus v. € Sh(£.).
Arguments similar to those in the proof of Th. 4.18 show that (v.) is non decreasing
in . Then v := lim. o v. € Sh(Q2) by Th. 4.15. Since v, converges weakly to v, the
monotone convergence theorem shows that

(v, f) = lim vgfd)\:/ufd)\, Vfeapa ), f=0,
e—0 Q Q

which concludes the existence part. The uniqueness of u is clear from the fact that u

must satisfy v = limu % p. = lim v * p.. O

The most natural topology on the space Sh(2) of subharmonic functions is the topo-
logy induced by the vector space topology of L () (Fréchet topology of convergence
in L' norm on every compact subset of Q).

(4.21) Proposition. The convex cone Sh(Q) N Li (Q) is closed in Li

1be(€2), and it has
the property that every bounded subset is relatively compact.

Proof. Let (u;) be a sequence in Sh(Q2) N L (Q). If u; — win L () then Au; — Au
in the weak topology of distributions, hence Au > 0 and u can be represented by a
subharmonic function thanks to Th. 4.20. Now, suppose that ||u;||z1(x) is uniformly
bounded for every compact subset K of Q. Let p; = Au; > 0. If ¢ € D(Q) is a test

function equal to 1 on a neighborhood w of K and such that 0 < ¢ <1 on 2, we find
() < [ 0w dr= [ Avusdn < Clus e
Q Q

where K’ = Supp ¢, hence the sequence of measures (y;) is uniformly bounded in mass
on every compact subset of (). By weak compactness, there is a subsequence (1, ) which
converges weakly to a positive measure p on Q. We claim that f x (1, ) converges to
f*(p) in LL (R™) for every function f € L{ (R™). In fact, this is clear if f € €>(R™),
and in general we use an approximation of f by a smooth function g together with the

estimate

ICf = 9) % W)l cay < I = Dllorarrnm, (K, VACCR™

to get the conclusion. We apply this when f = N is the Newton kernel. Then h; =
u; — N * (tp;) is harmonic on w and bounded in L'(w). As h; = h; % p. for any
smoothing kernel p., we see that all derivatives D*h; = h;x(D%p.) are in fact uniformly
locally bounded in w. Hence, after extracting a new subsequence, we may suppose that
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h;, converges uniformly to a limit A on w. Then u;, = h;, + N x (¥u1;,) converges to
u=nh+ Nx%(u)in L (w), as desired. O

loc
We conclude this subsection by stating a generalized version of the Green-Riesz for-
mula.

(4.22) Proposition. Let u € Sh(Q) N L}

loc

(Q) and B(0,7) C Q.

a) The Green-Riesz formula still holds true for such an w, namely, for every x € B(0,r)

u(z) = /B o DU G )+ [S o 1) Pl 9) do).

b) (Harnack inequality)
If u>0 on B(0,r), then for all x € B(0,r)

r™m=2(r + |z|) 0.1
0<u@) < [ ut) Pl y) doly) < T (s,

If u <0 on B(0,7), then for all x € B(0,r)

rm 2 (r — J2))

WMS(U;O,T) <0.

u() < [S o u) P 9) doly) <

Proof. We know that a) holds true if u is of class C2. In general, we replace u by u * p.
and take the limit. We only have to check that

/ 1k pey) Colasy) @) = Tim | jly) Gyl y) dA)
B(0,r) =0/ B(0,r)

for the positive measure y = Au. Let us denote by C:’w(y) the function such that

~ G,(z,y) ifx € B(0,r)
Gw(g/):{o Y ted BN,

Then

/B o R Gl ) X) = / () Galy) AN(9)

— /m 11(y) G * pe(y) dA(y).

However G, is continuous on R™ . {z} and subharmonic in a neighborhood of z, hence
éw * pe converges uniformly to C:’w on every compact subset of R”™ ~ {z}, and con-
verges pointwise monotonically in a neighborhood of z. The desired equality follows by
the monotone convergence theorem. Finally, b) is a consequence of a), for the integral
involving Awu is nonpositive and

1 72— al) L Gl 1),

< Pr(z,y) <
e et S @)

Om_1r™™ L (r — |x|)m1

by (4.6) combined with the obvious inequality (r — |z|)™ < |z — y|™ < (r+ |z|)™. O
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§ 4.C.3. Upper Envelopes and Choquet’s Lemma. Let Q@ C R™ and let (uq)acr be a
family of upper semicontinuous functions Q@ — [—00,+oo[. We assume that (u,) is
locally uniformly bounded above. Then the upper envelope

U = SUP Ug,

need not be upper semicontinuous, so we consider its upper semicontinuous regulariza-
tion:
u*(z) = lim sup u > u(z).
e—0 B(Z,E)

It is easy to check that u* is the smallest upper semicontinuous function which is > wu.
Our goal is to show that u* can be computed with a countable subfamily of (u,). Let
B(zj,¢j) be a countable basis of the topology of €. For each j, let (z;;) be a sequence
of points in B(z;,¢;) such that

supu(zjr) = sup u,
k B(Zj,fij)

and for each pair (4, k), let a(yj, k,1) be a sequence of indices a € I such that u(z;,) =
sup, Ua(j,k,l)(zjk)- Set
v = SUD Ua(jk,l)-
Jikl

Then v < uw and v* < ¢v*. On the other hand

sup v = sup v(2jx) = Sup Ua(j k1) (2jk) = supu(z;x) = sup u.
B(z,¢5) k kil k B(zj,¢5)

As every ball B(z,¢) is a union of balls B(z;,¢;), we easily conclude that v* > u*, hence
v* = u*. Therefore:

(4.23) Choquet’s lemma. Every family (uq) has a countable subfamily (vj) = (ua(j))
such that its upper envelope v satisfies v < u < u* = v*. U

(4.24) Proposition. If all u, are subharmonic, the upper regularization u* is subhar-
monic and equal almost everywhere to u.

Proof. By Choquet’s lemma we may assume that (u,) is countable. Then u = sup u, is a
Borel function. As each u,, satisfies the mean value inequality on every ball B(z,7) C €,
we get

u(z) = supun(z) < sup pup(ua; 2,7) < pup(u; z,7).

The right-hand side is a continuous function of z, so we infer

u'(z) < pplu; z,7) < pp(u”; z,r)
and u* is subharmonic. By the upper semicontinuity of u* and the above inequality we
find u*(z) = lim, 0 up(u; z,7), thus u* = u almost everywhere by Lebesgue’s lemma.

n
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§ 5. Plurisubharmonic Functions

§ 5.A. Definition and Basic Properties

Plurisubharmonic functions have been introduced independently by [Lelong 1942] and
[Oka 1942] for the study of holomorphic convexity. They are the complex counterparts
of subharmonic functions.

(5.1) Definition. A function u: Q — [—o00, +00| defined on an open subset Q C C" is
said to be plurisubharmonic if

a) u is upper semicontinuous ;
b) for every complex line L C C™, uyonr, is subharmonic on QN L.

The set of plurisubharmonic functions on ) is denoted by Psh(€2).

An equivalent way of stating property b) is: for all a € Q, & € C", |¢| < d(a,[),
then

1
(5.2) u(a) < 5

2m
/ u(a + € &) df.
0
An integration of (5.2) over £ € S(0,r) yields u(a) < ps(u;a,r), therefore
(5.3) Psh(€) C Sh(Q).

The following results have already been proved for subharmonic functions and are easy
to extend to the case of plurisubharmonic functions:

(5.4) Theorem. For any decreasing sequence of plurisubharmonic functions uy €
Psh(?), the limit w = limuy, is plurisubharmonic on Q.

(5.5) Theorem. Let u € Psh(Q) be such that u Z —oo on every connected component
of Q. If (pe) is a family of smoothing kernels, then u* pe is 6°° and plurisubharmonic
on Qc, the family (u* pe) is non decreasing in € and lim._,o u* pe = u.

(5.6) Theorem. Let uq,...,u, € Psh(Q2) and x : RP — R be a convex function such

that x(t1,...,t,) is non decreasing in each t;. Then x(u1,...,up) is plurisubharmonic on
Q. In particular ui+---+upy, max{u,...,uy}, log(e" +---+¢€") are plurisubharmonic
on €.

(5.7) Theorem. Let {u,} C Psh(Q) be locally uniformly bounded from above and
U = sup u,. Then the reqularized upper envelope u* is plurisubharmonic and is equal to
u almost everywhere.

Proof. By Choquet’s lemma, we may assume that (u,) is countable. Then u is a Borel
function which clearly satisfies (5.2), and thus u % p. also satisfies (5.2). Hence u *
pe is plurisubharmonic. By Proposition 4.24, u* = u almost everywhere and u* is
subharmonic, so

w* =limu* * p. = limu * p.
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is plurisubharmonic. ]

If u € C?(Q, R), the subharmonicity of restrictions of u to complex lines, C > w
u(a +wf), a € Q, £ € C", is equivalent to

0? 0%u
>

1<,k <n

Therefore, u is plurisubharmonic on Q if and only if >° 8%u/92,;0zk(a) &€, is a semiposi-
tive hermitian form at every point a € ). This equivalence is still true for arbitrary
plurisubharmonic functions, under the following form:

(5.8) Theorem. If u € Psh(Q), u # —oo on every connected component of 2, then for
all € € C"
Pu - ,
Hu(®):= ), =& €9 ()

02;0Z
1<j,h<n © A7k

is a positive measure. Conversely, if v € D' (Q) is such that Hv(§) is a positive measure
for every £ € C", there exists a unique function u € Psh(QQ) locally integrable on 2 such
that v 1s the distribution associated to u.

Proof. If u € Psh(Q), then Hu(§) = weak lim H(u p:)(§) = 0. Conversely, Hv > 0
implies H(v* p:) = (Hv) % pe = 0, thus v x p. € Psh(Q), and also Av > 0, hence (v * p¢)
is non decreasing in € and u = lim._,g v * p. € Psh(€Q) by Th. 5.4. O
(5.9) Proposition. The convex cone Psh(Q2) N L

loc
the property that every bounded subset is relatively compact.

() is closed in L

loc

(Q), and it has

§ 5.B. Relations with Holomorphic Functions

In order to get a better geometric insight, we assume more generally that u is a C?
function on a complex n-dimensional manifold X. The complex Hessian of u at a point
a € X is the hermitian form on T'x defined by

0%u
(510) H'LLa == W(a) de & dzk
1< hsn TFIOE

If F: X — Y is a holomorphic mapping and if v € C%(Y,R), we have d'd’(vo F) =
F*d'd"v. In equivalent notations, a direct calculation gives for all £ € T'x ,

0%v(F(a)) OF;(a W
H(voF),(&) = Z 8zgg;(m>) ng(J >§7 F@Z;E )fk:HUF(a)(F/(a).f).

Jk,lLm

In particular Hu, does not depend on the choice of coordinates (z1,...,2,) on X, and
Hv, > 0 on Y implies H(vo F), > 0 on X. Therefore, the notion of plurisubharmonic
function makes sense on any complex manifold.

(5.11) Theorem. If F: X — Y is a holomorphic map and v € Psh(Y), thenvo F €
Psh(X).
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Proof. 1t is enough to prove the result when X = Q; € C" and X = Qy C C? are
open subsets . The conclusion is already known when v is of class C?, and it can be
extended to an arbitrary upper semicontinuous function v by using Th. 5.4 and the fact
that v = limv * p.. O

(5.12) Example. By (3.22) we see that log|z| is subharmonic on C, thus log|f| €
Psh(X) for every holomorphic function f € 6(X). More generally

log (| fu]** + -+ +|fg|**) € Psh(X)
for every f; € 6(X) and a; > 0 (apply Th. 5.6 with u; = a; log|f;| ).

8§ 5.C. Convexity Properties

The close analogy of plurisubharmonicity with the concept of convexity strongly sug-
gests that there are deeper connections between these notions. We describe here a few
elementary facts illustrating this philosophy. Another interesting connection between
plurisubharmonicity and convexity will be seen in § 7.B (Kiselman’s minimum princi-

ple).

(5.13) Theorem. If Q = w + iw’ where w, w' are open subsets of R™, and if u(z) is a
plurisubharmonic function on  that depends only on © = Re z, then w 3 x — u(x) is
convet.

Proof. This is clear when u € C?(Q, R), for 0*u/0z;0z), = i 0?u/0x ;0. In the general
case, write u = limu * p. and observe that u * p-(z) depends only on x. O

(5.14) Corollary. If u is a plurisubharmonic function in the open polydisk D(a, R) =
[I[D(aj, R;) C C", then

1 27 . .
wws ry, . ry) = 5w / u(ay +ref L a, -I—rnele”)dﬁl ...db,,
2m)" Jo
m(u; r1,...,mn) = sup w(z1,...,2n), ;<R
z€D(a,r)
are convez functions of (logry,...,logr,) that are non decreasing in each variable.

Proof. That p is non decreasing follows from the subharmonicity of u along every coor-
dinate axis. Now, it is easy to verify that the functions

- 17 . ,
(21,0, 2n) = (2%)”/ u(ay + €% ... a, + e el dy ... db,,
0
ffz(zl,...,zn):‘Su‘glu(al—I—ezlwl,...,an-l—eZ”wn)
wj|<

are upper semicontinuous, satisfy the mean value inequality, and depend only on Re z; €
10,log R;[. Therefore 1 and M are convex. Cor. 5.14 follows from the equalities

w(us; ry,...,rn) = p(logry, ... logry,),
m(u; ri,...,r) =m(logry, ..., logry,). O
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§ 5.D. Pluriharmonic Functions
Pluriharmonic functions are the counterpart of harmonic functions in the case of

functions of complex variables:

(5.15) Definition. A function u is said to be pluriharmonic if u and —u are plurisub-
harmonic.

A pluriharmonic function is harmonic (in particular smooth) in any C-analytic coor-
dinate system, and is characterized by the condition Hu = 0, i.e. d'd”"u = 0 or

0*u/02;0Z, =0 for all j, k.
If f e 6(X), it follows that the functions Re f, Im f are pluriharmonic. Conversely:

(5.16) Theorem. If the De Rham cohomology group Hpg (X, R) is zero, every pluri-
harmonic function uw on X can be written uw = Re f where f is a holomorphic function
on X.

Proof. By hypothesis Hip (X,R) =0, u € 6>°(X) and d(d'u) = d’d'u = 0, hence there

exists g € €°°(X) such that dg = d’u. Then dg is of type (1,0), i.e. g € 6(X) and
d(u—2Reg) =d(u—g—7) = (d'u—dg)+ (d"u—dg) =0.

Therefore u = Re(2g + C'), where C' is a locally constant function. u

§ 5.E. Global Regularization of Plurisubharmonic Functions

We now study a very efficient regularization and patching procedure for continuous
plurisubharmonic functions, essentially due to [Richberg 1968]. The main idea is con-
tained in the following lemma:

(5.17) Lemma. Let u, € Psh(£,) where Q, CC X is a locally finite open covering
of X. Assume that for every index 8

limsup ug(¢) < max{uq(2)}

C—z Qa3z
at all points z € 0Qg. Then the function

u(z) = Inax Ua(2)
[e7

18 plurisubharmonic on X.

Proof. Fix zy € X. Then the indices 8 such that zy € 9Qg or zy ¢ ﬁg do not contribute
to the maximum in a neighborhood of z5. Hence there is a a finite set I of indices «
such that €, > zp and a neighborhood V' C (,c; Q6 on which u(z) = maxaer ua(2).
Therefore u is plurisubharmonic on V. U

The above patching procedure produces functions which are in general only continu-
ous. When smooth functions are needed, one has to use a regularized max function. Let
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0 € €>°(R,R) be a nonnegative function with support in [—1, 1] such that [, 6(h) dh =1
and [, h(h) dh = 0.

(5.18) Lemma. For arbitrary n = (m,...,np) € ]0,+00[P, the function
My(ty, ..., tp) = | max{ti+hy,....tp+hy} [[ 0(h;/n;)dhy...dh,
o 1<j<n
possesses the following properties:

a) My(t1,...,t,) is non decreasing in all variables, smooth and convexr on R™ ;
b) max{ti,...,tp} < My(t1,...,t,) <max{t; +m,...,tp +Mp} ;
C) Mn(th .. .,tp) =M

» - (771,...,7;;,...,7710)(
if tj +ny < maxpzi{ty — Nk} ;

~

tlyes by s tp)

d) M, (ti +a,...,tp+a)=M,(t1,...,tp) +a, Va e R ;

e) if ui,...,up are plurisubharmonic and satisfy H(u;).(§) = v.(§) where z — 7, is a
continuous hermitian form on Tx, then u = My(u1,...,up) s plurisubharmonic and
satisfies Hu, (&) = v, (€).

Proof. The change of variables h; — h; — t; shows that M, is smooth. All properties
are immediate consequences of the definition, except perhaps e). That M, (u1,...,up) is

plurisubharmonic follows from a) and Th. 5.6. Fix a point zy and ¢ > 0. All functions

w’(2) = u;(2) = 7z (2 — 20) + €|z — 20|? are plurisubharmonic near z. It follows that

Mn(ullv . 7“;;) =u-— 720(2 - ZO) + 6‘2 - ZO|2
is also plurisubharmonic near zy. Since € > 0 was arbitrary, e) follows. U

(5.19) Corollary. Let u, € 6°(Q,) NPsh(Q,) where Q, CC X is a locally finite open
covering of X. Assume that ug(z) < max{us(z)} at every point z € 0Qz, when o runs
over the indices such that Q. 3 z. Choose a family (n.,) of positive numbers so small that
ug(z) +ng < maxq, 5.{ua(2) —na} for all B and z € 0Ng. Then the function defined by

u(z) = M) (ua(2))  for a such that Q4 > 2
18 smooth and plurisubharmonic on X. O

(5.20) Definition. A function u € Psh(X) is said to be strictly plurisubharmonic if
u € Ll (X) and if for every point xo € X there exists a neighborhood Q2 of zo and ¢ > 0

such that u(z) — c|z|? is plurisubharmonic on €, i.e. > (0*u/02;0Zk)&;E, = cl€)? (as
distributions on Q) for all £ € C™.

(5.21) Theorem ([Richberg 1968]). Let u € Psh(X) be a continuous function which is
strictly plurisubharmonic on an open subset Q) C X, with Hu > v for some continuous
positive hermitian form v on Q. For any continuous function A € C°(), X > 0, there
exists a plurisubharmonic function u in CY(X) N 6°°(Q) such that u < U< u+ A on Q
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and u = u on X \Q, which is strictly plurisubharmonic on Q and satisfies Hu > (1—\)~.
In particular, w can be chosen strictly plurisubharmonic on X if u has the same property.

Proof. Let (2,) be a locally finite open covering of € by relatively compact open balls
contained in coordinate patches of X. Choose concentric balls Q) C Q C Q,, of respec-
tive radii 77/ < r!, < r, and center z = 0 in the given coordinates z = (z1,..., z,) near

Q,, such that Q7 still cover Q. We set
Ua(2) = u* pe, (2) + 0a(r? — 2)) on Q.

For £ < €4,0 and 4 < 4,0 small enough, we have u, < u + A/2 and Huy > (1 — A)y
on €),. Set

N = 5o¢ Inin{rla2 - T:JiQ? (Ti - Tf)/Q}

Choose first d, < dq,0 such that n, < minﬁa A/2, and then e, < €4,0 so small that

U< Uk pe, < U+ 1, on Qy. As 5,(r'"? — |2]?) is < —2n, on 98, and > 71, on Q. we

(o3
1!

[eR)

have u, < U — 1o on 08, and uy > u + 1, on Q
Corollary 5.19 is satisfied. We define

- Ju on X N\,
v= M,y (uq) on €

so that the condition required in

By construction, u is smooth on 2 and satisfies u < u < u+ A, Hu > (1 — A)7 thanks to
5.18 (b,e). In order to see that u is plurisubharmonic on X, observe that @ is the uniform
limit of u, with

Uy = Max {u, My, oy (ur .. ua)} on U Qs
1<B<La

and U, = u on the complement. O

§ 5.F. Polar and Pluripolar Sets.

Polar and pluripolar sets are sets of —oo poles of subharmonic and plurisubharmonic
functions. Although these functions possess a large amount of flexibility, pluripolar sets
have some properties which remind their loose relationship with holomorphic functions.

(5.22) Definition. A set A C Q C R™ (resp. A C X, dimcX = n) is said to be polar
(resp. pluripolar) if for every point x € Q) there exist a connected neighborhood W of = and
u € Sh(W) (resp. u € Psh(W)), u # —oo, such that ANW C {x e W ; u(x) = —o0}.

Theorem 4.17 implies that a polar or pluripolar set is of zero Lebesgue measure. Now,
we prove a simple extension theorem.

(5.23) Theorem. Let A C § be a closed polar set and v € Sh(2 . A) such that v is
bounded above in a neighborhood of every point of A. Then v has a unique extension
v € Sh(Q2).

Proof. The uniqueness is clear because A has zero Lebesgue measure. On the other hand,
every point of A has a neighborhood W such that

ANW Cc{x e W ; u(x) = —oc0}, ué€Sh(W), u# —oc.
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After shrinking W and subtracting a constant to u, we may assume u < 0. Then for
every € > 0 the function v. = v + eu € Sh(W ~ A) can be extended as an upper
semicontinuous on W by setting v. = —oo on A N W. Moreover, v. satisfies the mean
value inequality v-(a) < ps(ve;a,r)if a € W~ A, r < d(a, AUCW), and also clearly
if a € A, r < d(a,CW). Therefore v. € Sh(W) and ¥ = (supv.)* € Sh(W). Clearly v

coincides with v on W N A. A similar proof gives:

(5.24) Theorem. Let A be a closed pluripolar set in a complex analytic manifold X .
Then every function v € Psh(X N\ A) that is locally bounded above near A extends uniquely
into a function v € Psh(X). O

(5.25) Corollary. Let A C X be a closed pluripolar set. Every holomorphic function
f € 6(X N A) that is locally bounded near A extends to a holomorphic function f € G(X).

Proof. Apply Th. 5.24 to =Re f and +Im f. It follows that Re f and Im f have pluri-
harmonic extensions to X, in particular f extends to f € 6°°(X). By density of X \ A,

d'f=0on X. O

(5.26) Corollary. Let A C Q (resp. A C X) be a closed (pluri)polar set. If Q (resp. X)
is connected, then Q ~ A (resp. X \ A) is connected.

Proof. If @~ A (resp. X \ A) is a disjoint union ©; U5 of non empty open subsets, the
function defined by f = 0 on Q;, f = 1 on 5 would have a harmonic (resp. holomorphic)
extension through A, a contradiction. U

§ 6. Domains of Holomorphy and Stein Manifolds
8§ 6.A. Domains of Holomorphy in C™. Examples

Loosely speaking, a domain of holomorphy is an open subset 2 in C™ such that there
is no part of 92 across which all functions f € G(£2) can be extended. More precisely:

(6.1) Definition. Let Q2 C C™ be an open subset. 2 is said to be a domain of holomorphy
if for every connected open set U C C™ which meets 02 and every connected component
V of UNK there exists f € O(Q) such that f1v has no holomorphic extension to U.

Under the hypotheses made on U, we have () # 9V NU C 9. In order to show that
) is a domain of holomorphy, it is thus sufficient to find for every zy € 92 a function
f € 6(Q) which is unbounded near z.

(6.2) Examples. Every open subset {2 C C is a domain of holomorphy (for any zy € 012,
f(2) = (z—20) ! cannot be extended at zy ). In C", every conver open subset is a domain
of holomorphy: if Re(z — zg, &) = 0 is a supporting hyperplane of 92 at z, the function
f(2) = ({z — 20,&0)) ! is holomorphic on € but cannot be extended at 2.

(6.3) Hartogs figure. Assume that n > 2. Let w C C"~! be a connected open set and

w’ C w an open subset. Consider the open sets in C™ :

9 = ((D(R)~D(r)) xw) U (D(R) x ') (Hartogs figure),
Q=D(R) xw (filled Hartogs figure).
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where 0 < r < R and D(r) C C denotes the open disk of center 0 and radius r in C.

(Cn—l
_ ,,5 ,,,,,,,,,,,,,,,,
B 1 e
S .
\—./;"72/
w (€1, 2") |
|
w’{ Q0 |
i .
0 Z1 C
R T

Fig. I-3 Hartogs figure

Then every function f € 6() can be extended to € = w x D(R) by means of the Cauchy
formula:

~ 1 2 ~
f(zl,z’):%/“ %d{l, z €, max{|z]|,r} <p<R.
1l=p

In fact f € G(D(R) xw) and f = f on D(R) xw’, so we must have f = f on €2 since € is
connected. It follows that €2 is not a domain of holomorphy. Let us quote two interesting
consequences of this example.

(6.4) Corollary (Riemann’s extension theorem). Let X be a complex analytic manifold,
and S a closed submanifold of codimension > 2. Then every f € OG(X \ S) extends
holomorphically to X .

Proof. This is a local result. We may choose coordinates (z1,...,2,) and a polydisk
D(R)™ in the corresponding chart such that SN D(R)™ is given by equations z; = ... =
zp =0, p =codim S > 2. Then, denoting w = D(R)" ! and ' =w~ {20 =... =2, =

0}, the complement D(R)™ ~\. S can be written as the Hartogs figure
D(R)" S = ((D(R) ~ {0}) x w) U (D(R) x w').

It follows that f can be extended to Q = D(R)™. O

§ 6.B. Holomorphic Convexity and Pseudoconvexity

Let X be a complex manifold. We first introduce the notion of holomorphic hull of a
compact set K C X. This can be seen somehow as the complex analogue of the notion
of (affine) convex hull for a compact set in a real vector space. It is shown that domains
of holomorphy in C" are characterized a property of holomorphic convexity. Finally, we
prove that holomorphic convexity implies pseudoconvexity — a complex analogue of the
geometric notion of convexity.
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(6.5) Definition. Let X be a complex manifold and let K be a compact subset of X.
Then the holomorphic hull of K in X is defined to be

K =Ko = {2 € X [f(2)| <sup /], ¥ € 6(X)}.

(6.6) Elementary properties.

a)

K is a closed subset of X containing K. Moreover we have

sup |f| =sup[f], V[ e 6(X),
7 K

hence K = K.

If h: X — Y is a holomorphic map and K C X is a compact set, then h([?@(x)) -

h([?)@(y). In particular, if X C Y, then I?@(X) C IA(@(y) N X. This is immediate from
the definition.

K contains the union of K with all relatively compact connected components of X \ K

(thus K “fills the holes” of K). In fact, for every connected component U of X \ K
we have OU C 0K, hence if U is compact the maximum principle yields

sup|f| = sup [ f| <sup|f|, for all f € 6(X).
T ouU K

More generally, suppose that there is a holomorphic map A : U — X defined on a
relatively compact open set U in a complex manifold S, such that h extends as a
continuous map h : U — X and h(0U) C K. Then h(U) C K. Indeed, for f € 6(X),
the maximum principle again yields

sup |f o h| =sup|foh| <sup|f].
T oU K

This is especially useful when U is the unit disk in C.

Suppose that X = 2 C C" is an open set. By taking f(2) = exp(A(z)) where A is an
arbitrary affine function, we see that K 6(0) 1s contained in the intersection of all affine
half-spaces contalmng K. Hence K 6(0) 1s contained in the affine convex hull Kaff As
a consequence K 6(0) is always bounded and K 6(cn) 1s a compact set. However, when

Q) is arbitrary, Kg(q) is not always compact; for example, in case Q = C"~ {0}, n > 2,
then G(2) = G(C™) and the holomorphic hull of K = 5(0,1) is the non compact set
K=8B (0,1) ~ {0}.

(6.7) Definition. A complex manifold X is said to be holomorphically convex if the

holomorphic hull K¢ x) of every compact set K C X is compact.

(6.8) Remark. A complex manifold X is holomorphically convez if and only if there
1s an exhausting sequence of holomorphically compact subsets K, C X, i.e. compact sets
such that

X=|JK,, K, =K, K}D>K, ..
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Indeed, if X is holomorphically convex, we may define K, inductively by Ky = () and
K, = (K] ULy)g(X), where K/ is a neighborhood of K,, and L, a sequence of compact

sets of X such that X = |JL,. The converse is obvious: if such a sequence (K, ) exists,

then every compact subset K C X is contained in some K, hence K Cc K, = K, is
compact. U

We now concentrate on domains of holomorphy in C™. We denote by d and B(z,7)
the distance and the open balls associated to an arbitrary norm on C", and we set for
simplicity B = B(0,1).

(6.9) Proposition. If Q) is a domain of holomorphy and K C Q is a compact subset,
then d(K,0Q) = d(K,CQ) and K is compact.

Proof. Let f € 6(). Given r < d(K,CQ), we denote by M the supremum of |f| on the
compact subset K + rB C €. Then for every z € K and ¢ € B, the function

(6.10) Cot— f(z41t€) = Zlek

is analytic in the disk |t| < r and bounded by M. The Cauchy inequalities imply
IDFf(2)(6)F| < ME!r=, Vze K, VY¢eB.

As the left hand side is an analytic fuction of z in (2, the inequality must also hold for
z € K, £ € B. Every f € 6(Q) can thus be extended to any ball B(z,r), 2 € K, by
means of the power series (6.10). Hence B(z,7) must be contained in 2, and this shows
that d(K,CQ) > r. As r < d(K, Q) was arbitrary, we get d(K CQ) > d(K CQ) and the
converse inequality is clear, so d(K CQ) = d(K,(). As K is bounded and closed in €,
this shows that K is compact. 0

(6.11) Theorem. Let Q be an open subset of C™. The following properties are equiva-
lent:

a) Q is a domain of holomorphy;
b) Q is holomorphically convex;

c) For every countable subset {z;}jen C 2 without accumulation points in 2 and every
sequence of complex numbers (a;), there exists an interpolation function F € 0()
such that F(z;) = a;.

d) There exists a function F € OG() which is unbounded on any neighborhood of any
point of 0S).

Proof. d) = a) is obvious and a) = b) is a consequence of Prop. 6.9.

c) = d). If Q@ = C” there is nothing to prove. Otherwise, select a dense sequence ((;) in
09 and take z; € Q such that d(z;,(;) < 277. Then the interpolation function F € 6(f2)
such that F(z;) = j satisfies d).
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b) = ¢). Let K, C Q be an exhausting sequence of holomorphically convex compact
sets as in Remark 6.8. Let v(j) be the unique index v such that z; € K, ;)41 ~ Ky ().
By the definition of a holomorphic hull, we can find a function g; € 6(2) such that

sup |g;| < lgj(z;)|.

v(d)

After multiplying g; by a constant, we may assume that g;(z;) = 1. Let P; € Clzy,..., 2,
be a polynomial equal to 1 at z; and to 0 at 2, 2z1,...,2;—1. We set

+oo
F = Z)\jpjg;nj,
7=0

where \; € C and m; € N are chosen inductively such that

Nj=a;— > MePu(z)gr(z)™,
0<k<j

|Aijg;nj| <277 on K,y ;

once \; has been chosen, the second condition holds as soon as m; is large enough. Since
{#;} has no accumulation point in Q, the sequence v(j) tends to +oo, hence the series
converges uniformly on compact sets. U

We now show that a holomorphically convex manifold must satisfy some more geo-
metric convexity condition, known as pseudoconvexity, which is most easily described in
terms of the existence of plurisubharmonic exhaustion functions.

(6.12) Definition. A function ¢ : X — [—00,+00[ on a topological space X is said
to be an exhaustion if all sublevel sets X. := {z € X ; ¥(z) < ¢}, ¢ € R, are relatively
compact. Equivalently, 1 is an exhaustion if and only if 1 tends to +oo relatively to the
filter of complements X ~~ K of compact subsets of X.

A function ¢ on an open set 2 C R™ is thus an exhaustion if and only if ¢ (z) — +o0
as x — 0 or x — oo. It is easy to check, cf. Exercise 8.8, that a connected open
set 2 C R™ is convex if and only if 2 has a locally convex exhaustion function. Since
plurisubharmonic functions appear as the natural generalization of convex functions in
complex analysis, we are led to the following definition.

(6.13) Definition. Let X be a complex n-dimensional manifold. Then X is said to be

a) weakly pseudoconvex if there exists a smooth plurisubharmonic exhaustion function

W € Psh(X) N €=(X);

b) strongly pseudoconvex if there exists a smooth strictly plurisubharmonic exhaustion
function ¥ € Psh(X) N 6°°(X), i.e. H1 is positive definite at every point.

(6.14) Theorem. Every holomorphically convexr manifold X is weakly pseudoconver.

Proof. Let (K,) be an exhausting sequence of holomorphically convex compact sets as
in Remark 6.8. For every point a € L, := K, 12\ K, one can select g, 4 € 6G(2) such
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that supg |gu.a| < 1 and |g,4(a)] > 1. Then |g, 4(2)| > 1 in a neighborhood of a ; by
the Borel-Lebesgue lemma, one can find finitely many functions (g,,4)qcz, such that

v 1 f L,, y 1 f K,.
max {[g,.a(2)[} > 1 for z€ Ly, max{lg.a(2)]} <1 for z¢

For a sufficiently large exponent p(v) we get

Z |gy’a‘2p(u) > v oon Ll/7 Z ‘gu,a

a€l, acl,

W) =D lgva(2) P

veENael,

2p(¥) < 277 on K,.

It follows that the series

converges uniformly to a real analytic function ¥ € Psh(X) (see Exercise 8.11). By
construction ¥ (z) > v for z € L,,, hence 9 is an exhaustion. O

(6.15) Example. The converse to Theorem 6.14 does not hold. In fact let X =
C2/T be the quotient of C? by the free abelian group of rank 2 generated by the affine
automorphisms

g1(z,w) = (2 +1,e%w),  go(z,w) = (2 +1,€%2w), 61, 6, €R.

Since I' acts properly discontinuously on C2, the quotient has a structure of a complex
(non compact) 2-dimensional manifold. The function w + |w|? is -invariant, hence it
induces a function ¥ ((z,w)~) = |w|? on X which is in fact a plurisubharmonic exhaustion
function. Therefore X is weakly pseudoconvex. On the other hand, any holomorphic
function f € 6G(X) corresponds to a [-invariant holomorphic function f(z,w) on C2.

Then z — f(z,w) is bounded for w fixed, because f(z,w) lies in the image of the
compact set K x D(0,|w|), K = unit square in C. By Liouville’s theorem, f(z,w)
does not depend on z. Hence functions f € G(X) are in one-to-one correspondence with
holomorphic functions f(w) on C such that f(ewi w) = f(w) By looking at the Taylor
expansion at the origin, we conclude that f must be a constant if 6; ¢ Q or 6; ¢ Q (if
01,05 € Q and m is the least common denominator of 61, 6>, then fis a power series of
the form >~ apw™F). From this, it follows easily that X is holomorphically convex if and

only if 91, 0, € Q

§ 6.C. Stein Manifolds

The class of holomorphically convex manifolds contains two types of manifolds of a
rather different nature:

e domains of holomorphy X =Q Cc C";
e compact complex manifolds.

In the first case we have a lot of holomorphic functions, in fact the functions in G(£2)
separate any pair of points of 2. On the other hand, if X is compact and connected, the
sets Psh(X) and G(X) consist of constant functions merely (by the maximum principle).
It is therefore desirable to introduce a clear distinction between these two subclasses. For
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this purpose, [Stein 1951] introduced the class of manifolds which are now called Stein
manifolds.

(6.16) Definition. A complex manifold X is said to be a Stein manifold if

a) X is holomorphically convex;

b) 6(X) locally separates points in X, i.e. every point x € X has a neighborhood V' such
that for any y € V.~ {z} there exists f € 6(X) with f(y) # f(x).

The second condition is automatic if X = €2 is an open subset of C". Hence an open
set (2 C C™ is Stein if and only if ) is a domain of holomorphy.

(6.17) Lemma. If a complex manifold X satisfies the axiom (6.16 b) of local separation,
there exists a smooth nonnegative strictly plurisubharmonic function u € Psh(X).

Proof. Fix xy € X. We first show that there exists a smooth nonnegative function
ug € Psh(X) which is strictly plurisubharmonic on a neighborhood of xg. Let (z1,..., 2z,)
be local analytic coordinates centered at xo, and if necessary, replace z; by Az; so that
the closed unit ball B = {>" |2;|> < 1} is contained in the neighborhood V' 3 g on which
(6.16 b) holds. Then, for every point y € 9B, there exists a holomorphic function f €
0(X) such that f(y) # f(xo). Replacing f with A\(f — f(x0)), we can achieve f(z¢) =0
and |f(y)| > 1. By compactness of 9B, we find finitely many functions f1,..., fxy € 6(X)
such that vg = >~ | f;|? satisfies vo(zo) = 0, while vg > 1 on dB. Now, we set

" (Z)_{vo(z) on X \ B,
07 Mo{wo(2), (J2|2 +1)/3} on B.

where M, are the regularized max functions defined in 5.18. Then ug is smooth and
plurisubharmonic, coincides with vy near dB and with (]z|?> + 1)/3 on a neighbor-
hood of xzy. We can cover X by countably many neighborhoods (V}),>1, for which
we have a smooth plurisubharmonic functions w; € Psh(X) such that u; is strictly
plurisubharmonic on V;. Then select a sequence €; > 0 converging to 0 so fast that
u = Y eju; € 6°(X). The function v is nonnegative and strictly plurisubharmonic
everywhere on X. O

(6.18) Theorem. FEvery Stein manifold is strongly pseudoconvex.

Proof. By Th. 6.14, there is a smooth exhaustion function ¢ € Psh(X). If u >0 is
strictly plurisubharmonic, then ¢’ = 1 4w is a strictly plurisubharmonic exhaustion. [J

The converse problem to know whether every strongly pseudoconvex manifold is ac-
tually a Stein manifold is known as the Levi problem, and was raised by [Levi 1910] in
the case of domains €2 C C™. In that case, the problem has been solved in the affirma-
tive independently by [Oka 1953|, [Norguet 1954] and [Bremermann 1954]. The general
solution of the Levi problem has been obtained by [Grauert 1958]. Our proof will rely
on the theory of L? estimates for d”’, which will be available only in Chapter VIIL.
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Fig. I-4 Hartogs figure with excrescence

(6.19) Remark. It will be shown later that Stein manifolds always have enough holo-
morphic functions to separate finitely many points, and one can even interpolate given
values of a function and its derivatives of some fixed order at any discrete set of points.
In particular, we might have replaced condition (6.16 b) by the stronger requirement that
0O(X) separates any pair of points. On the other hand, there are examples of manifolds
satisfying the local separation condition (6.16 b), but not global separation. A simple
example is obtained by attaching an excrescence inside a Hartogs figure, in such a way
that the resulting map 7 : X — D = D(0,1)? is not one-to-one (see Figure I-4 above);
then G(X) coincides with 7*6(D).

§ 6.D. Heredity Properties

Holomorphic convexity and pseudoconvexity are preserved under quite a number of
natural constructions. The main heredity properties can be summarized in the following
Proposition.

(6.20) Proposition. Let 6 denote the class of holomorphically convex (resp. of Stein,
or weakly pseudoconvez, strongly pseudoconvex manifolds).

a) If X, Y € 6, then X xY € 6.
b) If X € 6 and S is a closed complex submanifold of X, then S € 6.

c) If (Sj)igj<n is a collection of (not necessarily closed) submanifolds of a complex
manifold X such that S = (\S; is a submanifold of X, and if S; € 6 for all j, then
S e 6.

d) If F: X =Y is a holomorphic map and S C X, S" CY are (not necessarily closed)
submanifolds in the class 6, then SN F~1(S") is in 6, as long as it is a submanifold
of X.

e) If X is a weakly (resp. strongly) pseudoconver manifold and u is a smooth plurisub-
harmonic function on X, then the open set Q = u~1(] — o0, c[ is weakly (resp. strongly)
pseudoconver. In particular the sublevel sets

Xe = ¢_1(] — 00, CD
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of a (strictly) plurisubharmonic exhaustion function are weakly (resp. strongly) pseu-
doconver.

Proof. All properties are more or less immediate to check, so we only give the main facts.

a) For K C X, L C Y compact, we have (K X L)%\(XxY) = I/(\’@(X) X k@(y), and if ¢,
¢ are plurisubharmonic exhaustions of X, Y, then ¢(x)+ ¢ (y) is a plurisubharmonic
exhaustion of X x Y.

b) For a compact set K C S, we have I?@(S) C l?@(x) NS, and if ¢ € Psh(X) is an
exhaustion, then ¢ [ S € Psh(.S) is an exhaustion (since S is closed).

c) (1S is a closed submanifold in []S; (equal to its intersection with the diagonal of
XM,
d) For a compact set K C SN F~1(S’), we have

Kosnr-i(sn) C Kogs) N FH(F(K) ggsn)),

and if o, 1 are plurisubharmonic exhaustions of S, S’, then p+oF' is a plurisubharmonic
exhaustion of SN F~1(9").

e) p(z) :=9(2)+1/(c—u(z)) is a (strictly) plurisubharmonic exhaustion function on €.
U

§ 7. Pseudoconvex Open Sets in C"

8§ 7.A. Geometric Characterizations of Pseudoconvex Open Sets

We first discuss some characterizations of pseudoconvex open sets in C". We will
need the following elementary criterion for plurisubharmonicity.

(7.1) Criterion. Let v : Q) — [~00,+00[ be an upper semicontinuous function. Then
v 18 plurisubharmonic if and only if for every closed disk A = zo+ D(1)n C Q and every
polynomial P € C[t] such that v(zo + tn) < Re P(t) for |t| =1, then v(zp) < Re P(0).

Proof. The condition is necessary because t — v(zg + tn) — Re P(t) is subharmonic in a
neighborhood of D(1), so it satisfies the maximum principle on D(1) by Th. 4.14. Let us
prove now the sufficiency. The upper semicontinuity of v implies v = lim,, _, | o, v, on 0A
where (v,) is a strictly decreasing sequence of continuous functions on 9A. As trigono-
metric polynomials are dense in C°(S!,R), we may assume v, (zo + €%n) = Re P, (el?),
P, € C[t]. Then v(zp + tn) < Re P, (t) for |[t| = 1, and the hypothesis implies

1 27 . 1 27 .
< P, - P, i6 - 5 i6 )
o(z0) < Re P (0) = - /O Re P(e)dd = 5 [ vueo + ')t

Taking the limit when v tends to +o0o shows that v satisfies the mean value inequality
(5.2). O

For any z € Q and £ € C™", we denote by

5a(z,8) =sup{r>0; 24+ D(r)¢{ C Q}
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the distance from z to 02 in the complex direction &.

(7.2) Theorem. Let Q C C™ be an open subset. The following properties are equivalent:

a) Q is strongly pseudoconvex (according to Def. 6.13 b);
b

Q is weakly pseudoconvex;

)
)
c) Q has a plurisubharmonic exhaustion function 1.
d) —logda(z,&) is plurisubharmonic on Q x C" ;

)

e) —logd(z,0Q) is plurisubharmonic on Q.

If one of these properties hold, ) is said to be a pseudoconvex open set.

Proof. The implications a) = b) == c) are obvious. For the implication c¢) = d), we
use Criterion 7.1. Consider a disk A = (z0,&p) + D(1) (7, @) in 2 x C™ and a polynomial
P € CJt] such that

—logda(z0 +tn,& +ta) < Re P(t) for |t] = 1.

We have to verify that the inequality also holds when |t| < 1. Consider the holomorphic
mapping h : C2 — C" defined by

h(t,w) = zo + tn + we PO (& + ta).
By hypothesis

h(D(1) x {0}) = pry(A) C Q,
h(0D(1) x D(1)) C Q (since [e" 7| < dg on OA),

and the desired conclusion is that h(D(1) x D(1)) C Q. Let J be the set of radii r > 0

such that 2(D(1) x D(r)) C Q. Then J is an open interval [0,R[, R > 0. If R < 1, we
get a contradiction as follows. Let 1) € Psh(Q2) be an exhaustion function and

K =h(0D(1) x D(R)) CC Q, c¢=supe.
K

As 1o h is plurisubharmonic on a neighborhood of D(1) x D(R), the maximum principle
applied with respect to ¢t implies

Yoh(t,w) <c on D(1)x D(R),

hence h(D(1) x D(R)) C Q. cC Q and h(D(1) x D(R+¢)) C Q for some € > 0, a

contradiction.

d) = e). The function —logd(z,() is continuous on ) and satisfies the mean value
inequality because

—logd(z,09) = sup (—logda(z,€)).
£eB
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e) = a). It is clear that
u(2) = |2)* + max{logd(z,CQ)~!, 0}

is a continuous strictly plurisubharmonic exhaustion function. Richberg’s theorem 5.21
implies that there exists ) € 6°°(Q2) strictly plurisubharmonic such that u < ¢ < u+ 1.
Then 1 is the required exhaustion function. U

(7.3) Proposition.

a) Let Q@ C C™ and Q' C CP be pseudoconvex. Then Q2 x Q' is pseudoconvex. For every
holomorphic map F : Q@ — CP the inverse image F~1(Q)) is pseudoconvez.

b) If (2a)acr is a family of pseudoconvexr open subsets of C™, the interior of the inter-

section Q@ = ((Nper Qa)o s pseudoconver.
c) If (©)jen is a non decreasing sequence of pseudoconvex open subsets of C", then
Q = U,en Yy is pseudoconver.

Proof. a) Let ¢, be smooth plurisubharmonic exhaustions of Q,€Q’. Then (z,w) —
©(2) + ¥ (w) is an exhaustion of Q x Q' and z — ¢(2) + ¥ (F(z)) is an exhaustion of
F=HQ).

b) We have —log d(z,CQ) = sup,; —logd(z, (£, ), so this function is plurisubharmonic.

¢) The limit —logd(z,00Q) = lim| ; ,, . —logd(z,[€;) is plurisubharmonic, hence €2 is
pseudoconvex. This result cannot be generalized to strongly pseudoconvex manifolds:
J.E. Fornaess in [Fornaess 1977] has constructed an increasing sequence of 2-dimensional
Stein (even affine algebraic) manifolds X, whose union is not Stein; see Exercise 8.16. [

(7.4) Examples.
a) An analytic polyhedron in C™ is an open subset of the form
P={zeC";|fi(2)| <1, 1<j< N}

where (f;)1<j<n is a family of analytic functions on C". By 7.3 a), every analytic
polyhedron is pseudoconvex.

b) Let w C C*~! be pseudoconvex and let u : w — [—00, +00[ be an upper semicontin-
uous function. Then the Hartogs domain

Q= {(21,2) € Cxw;log|z1| +u(z') <0}

is pseudoconvex if and and only if u is plurisubharmonic. To see that the plurisubhar-
monicity of u is necessary, observe that

u(z") = —log da ((0, 2), (1,0)).

Conversely, assume that v is plurisubharmonic and continuous. If ¢ is a plurisubharmonic

exhaustion of w, then
(') + log|z| + u(z))]
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is an exhaustion of 2. This is no longer true if u is not continuous, but in this case we
may apply Property 7.3 ¢) to conclude that

Q. = {(z1,7'); d(2',0w) > e, log|z1| + u*p.(2') <0}, Q= UQE
are pseudoconvex.

c) An open set Q2 C C" is called a tube of base w if 2 = w + iR™ for some open subset
w C R™. Then of course —logd(z,0Q2) = —log(x,Cw) depends only on the real part
x = Rez. By Th. 5.13, this function is plurisubharmonic if and only if it is locally
convex in x. Therefore (2 if pseudoconvex if and only if every connected component of w
Is convex.

d) An open set Q C C" is called a Reinhardt domain if (e!%12,... €% 2,) is in Q for
every z = (z1,...,2,) € Q and 64,...,6, € R™. For such a domain, we consider the
logarithmic indicatriz

w* =" NR" with Q* ={CeC"; (e*,...,e) € Q}.

It is clear that Q* is a tube of base w*. Therefore every connected component of w*
must be convex if 2 is pseudoconvex. The converse is not true: © = C™ ~\ {0} is not
pseudoconvex for n > 2 although w* = R"™ is convex. However, the Reinhardt open set

Q° = {(21,...,zn) € (C~{0})"; (log|z1], .- .,log|za|) € w*} cQ

is easily seen to be pseudoconvex if w* is convex: if y is a convex exhaustion of w*, then
Y(z) = x(log|z1],...,log|z,|) is a plurisubharmonic exhaustion of 2°®. Similarly, if w*
is convex and such that x € w* = y € w* for y; < z;, we can take x increasing in all
variables and tending to +00 on dw™, hence the set

Q={(z1,...,2,) €C"; || < €% for some z € w*}

is a pseudoconvex Reinhardt open set containing 0. U

§ 7.B. Kiselman’s Minimum Principle

We already know that a maximum of plurisubharmonic functions is plurisubharmonic.
However, if v is a plurisubharmonic function on X x C”, the partial minimum function
on X defined by u(¢) = inf,cq v(¢, 2) need not be plurisubharmonic. A simple coun-
terexample in C x C is given by

v(G,2) = |2 + 2Re(2C) = [e + C1* = [¢1%, u(¢) = —[¢f

It follows that the image F'(2) of a pseudoconvex open set {2 by a holomorphic map F'
need not be pseudoconvex. In fact, if

Q= {(t,¢,2) € C; log|t| + v(¢,2) < 0}

and if ' C C? is the image of Q by the projection map (¢,¢, z) — (¢,(), then Q' =
{(t,¢) € C?; log|t| + u(¢) < 0} is not pseudoconvex. However, the minimum property
holds true when v((, z) depends only on Rez :
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(7.5) Theorem ([Kiselman 1978]). Let 2 C CP x C" be a pseudoconvex open set such
that each slice
Q ={2€C"; ((,2) €}, (e,

is a convex tube we + iR™, we C R™. For every plurisubharmonic function v(¢, z) on €}
that does not depend on Im z, the function

u(¢) = inf wv((,2)

ZEQC
is plurisubharmonic or locally = —oo on Q' = prea ().

Proof. The hypothesis implies that v((,z) is convex in * = Rez. In addition, we
first assume that v is smooth, plurisubharmonic in (¢, z), strictly convex in z and
lim, ., {ooyuow, V(¢ x) = +oo for every ¢ € €. Then x — v(¢, ) has a unique min-
imum point * = ¢({), solution of the equations dv/0z;(x,() = 0. As the matrix
(0?v/0z;0xy) is positive definite, the implicit function theorem shows that g is smooth.
Now, if C 5 w +—— (o + wa, a € C", |w| < 1 is a complex disk A contained in €2, there
exists a holomorphic function f on the unit disk, smooth up to the boundary, whose real
part solves the Dirichlet problem

Re f(e) = g(Co + €a).

Since v({p + wa, f(w)) is subharmonic in w, we get the mean value inequality

M@Jm»<3iéﬂw@+é%J@%M0—i— o(C,9(0))do.

2 - 2 A

The last equality holds because Re f = g on 0A and v((, z) = v((, Re z) by hypothesis.
As u(Co) < v(Co, f(0)) and u(¢) = v((,9(C)), we see that u satisfies the mean value
inequality, thus u is plurisubharmonic.

Now, this result can be extended to arbitrary functions v as follows: let ¥((,2) > 0
be a continuous plurisubharmonic function on §2 which is independent of Im 2z and is an
exhaustion of 2N (C? x R™), e.g.

(¢, 2) = max{[¢]* + | Rez[*, ~ log a(¢, 2)}.

There is slowly increasing sequence C; — 400 such that each function ¢; = (C; — ¢ %

P1/j )~! is an “exhaustion” of a pseudoconvex open set 2; CC 2 whose slices are convex
tubes and such that d(£2;,0Q) > 2/;j. Then

lﬂadzvﬂwﬂad+?RWP+%K&)

is a decreasing sequence of plurisubharmonic functions on §2; satisfying our previous
conditions. As v = limv;, we see that u = limu; is plurisubharmonic. U

(7.6) Corollary. Let 2 C CP x C" be a pseudoconvex open set such that all slices Q¢,
¢ € CP, are convex tubes in C™. Then the projection Q' of Q on CP is pseudoconvex.

Proof. Take v € Psh(£2) equal to the function v defined in the proof of Th. 7.5. Then u
is a plurisubharmonic exhaustion of €. O
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§ 7.C. Levi Form of the Boundary

For an arbitrary domain in C™, we first show that pseudoconvexity is a local property
of the boundary.

(7.7) Theorem. Let Q C C™ be an open subset such that every point zo € 02 has a
neighborhood V' such that Q2 NV is pseudoconvex. Then ) is pseudoconvex.

Proof. As d(z,0Q) coincides with d(z,0(2NV)) in a neighborhood of z, we see that
there exists a neighborhood U of 9§ such that —logd(z,CQ) is plurisubharmonic on
QN U. Choose a convex increasing function y such that

x(r) > sup —logd(z,0Q), Vvr>0.
(Q~U)NB(0,r)

Then the function
¥ (z) = max {x(|z|), —log d(z, CQ)}

coincides with x(|z|) in a neighborhood of Q@ \U. Therefore ¢ € Psh(Q2), and ® is clearly
an exhaustion. O

Now, we give a geometric characterization of the pseudoconvexity property when 92
is of class C2. Let p € C?(Q) be a defining function of €, i.e. a function such that

(7.9) p<0on  p=0 and dp#0 on IN.

The holomorphic tangent space to OS2 is by definition the largest complex subspace which
is contained in the tangent space T to the boundary:

(7.9) "Toa = Toa N JThg.
It is easy to see that "Thq ., is the complex hyperplane of vectors £ € C™ such that
dp
d’ €= — & =0.
1<y<n
The Levi form on "Tyq is defined at every point z € 9§ by

1 ?p - b
7.10 Loq - (€) = — &€k € "Toq,--

The Levi form does not depend on the particular choice of p, as can be seen from the
following intrinsic computation of Lgq (we still denote by Lgq the associated sesquilinear
form).

(7.11) Lemma. Let &, be Ot vector fields on OS2 with values in "Tyq. Then

<[€777]7 JV> - 4ImLBQ(€7n>

where v is the outward normal unit vector to 92, [, | the Lie bracket of vector fields and
(, ) the hermitian inner product.
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Proof. Extend first £, n as vector fields in a neighborhood of 92 and set

é’-Zﬁga 5 (6 —i1J8), n—anG_ SO0+ i),
As &, J€&,n, Jn are tangent to 02, we get on OS2 :

0%p o, Op &5 dp
2 2 G g e Tk

0=2¢"(n".p)+n".(.p) =

1<5,k<n

Since [€, 7] is also tangent to OS2, we have Re([¢, n],v) = 0, hence (J[¢, n],v) is real and

1 2
0], Jv)y = —{(J[E, n],v) = — = ———Re (J[¢, 0.
(6110 =~ ) = =g (TIEs ) =~ o Re (T 0)
because J[¢',n'] =i[¢’,n'] and its conjugate J[¢", 1] are tangent to 9Q2. We find now
3% 85‘ 9
" o _5)
T =) G5 oz %oz, 07,
(‘m Op - 0§ Op _ Fp
Re (JIg',n"].p) = Im Zgﬂ 0z az Tz, 9 T 2 2 g, ST
(16, Tv) = 5 T Zaz 5z &k = 4Tm Loa (&), O

(7.12) Theorem. An open subset Q C C" with C? boundary is pseudoconvez if and
only if the Levi form Lyq is semipositive at every point of 0S).

Proof. Set §(z) = d(z,0Q), z € Q. Then p = —d is C? near 02 and satisfies (7.9). If Q
is pseudoconvex, the plurisubharmonicity of —log(—p) means that for all z €  near 02
and all £ € C™ one has

> (LT L e sy

02;0% 2 0z;
1<, k<n 4 jY%k

Hence Y (0%p/02;0%1)&;€, = 0if - (9p/02;)&; = 0, and an easy argument shows that
this is also true at the limit on 0f2.

Conversely, if €2 is not pseudoconvex, Th. 7.2 and 7.7 show that — log d is not plurisub-
harmonic in any neighborhood of 0€2. Hence there exists £ € C™ such that

2

(6(38_ log d(z —l—t§)> 7 0

CcC =

for some z in the neighborhood of 9 where § € C?. By Taylor’s formula, we have
log d(z + t€) = log §(2) + Re(at + bt?) + c[t|* + o(|t|?)
with a,b € C. Now, choose zg € 02 such that §(z) = |z — 20| and set

h(t) = z + t€ + e (29 — 2),  teC.
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Then we get h(0) = zp and

(z+t&) —d0(2) }eaHbtzl

(2) e+ | (11772 — 1) > 6(z) ¢|t]?/3

when || is sufficiently small. Since §(h(0)) = §(zp) = 0, we obtain at t =0 :
57 (1) = 2 5o 5 0) =0

0? %5
YO 6(h(t)) =

hence h/(0) € "Thq ., and Lag ., (h'(0)) < 0. O

(7.13) Definition. The boundary 0X2 is said to be weakly (resp. strongly) pseudoconvez
if Loq is semipositive (resp. positive definite) on 02. The boundary is said to be Levi
ﬂat Zf LaQ =0.

(7.14) Remark. Lemma 7.11 shows that 02 is Levi flat if and only if the subbundle
"Toa C Thq is integrable (i.e. stable under the Lie bracket). Assume that O is of
class 6F, k > 2. Then "Tyq is of class C*~1. By Frobenius’ theorem, the integrability
condition implies that "Tjsq is the tangent bundle to a “6* foliation of 92 whose leaves
have real dimension 2n — 2. But the leaves themselves must be complex analytic since
"Tha is a complex vector space (cf. Lemma 7.15 below). Therefore 99 is Levi flat if and
only if it is foliated by complex analytic hypersurfaces.

(7.15) Lemma. LetY be a C'-submanifold of a complex analytic manifold X . If the
tangent space Ty 5 is a complex subspace of T'x , at every point x € Y, then'Y is complex
analytic.

Proof. Let g € Y. Select holomorphic coordinates (z1, ..., z,) on X centered at x( such
that Ty, is spanned by 9/0z1, . ..,0/0%,. Then there exists a neighborhood U = U’ xU"
of zy such that Y NU is a graph

2 =n(z"), 2 =(2,...,2) €U, 2" =(2ps1,.--,2n)

with h € CY(U’) and dh(0) = 0. The differential of h at 2’ is the composite of the
projection of CP x {0} on Ty, (. p(.r)) along {0} x C"7P and of the second projection
C™ — C™P. Hence dh(z') is C-linear at every point and h is holomorphic. U

§ 8. Exercises

§ 8.1. Let Q C C" be an open set such that
z€Q, NeC, N<1= Xz

Show that  is a union of polydisks of center 0 (with arbitrary linear changes of coordinates) and infer
that the space of polynomials C[z1, ..., zpn] is dense in G(2) for the topology of uniform convergence on
compact subsets and in 6(Q) N C°(Q) for the topology of uniform convergence on Q.

Hint: consider the Taylor expansion of a function f € 0(2) at the origin, writing it as a series of
homogeneous polynomials. To deal with the case of Q, first apply a dilation to f.
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§ 8.2. Let B C C™ be the unit euclidean ball, S = 9B and f € 6(B) N CY(B). Our goal is to check
the following Cauchy formula:

! R
fw) = /S do(2).

0on—1 (1 —(w,2))"

a) By means of a unitary transformation and Exercise 8.1, reduce the question to the case when
w = (w1,0,...,0) and f(z) is a monomial z%.

b) Show that the integral [5 29z d\(z) vanishes unless a = (k,0,...,0). Compute the value of the
remaining integral by the Fubini theorem, as well as the integrals [ 292k do(z2).

¢) Prove the formula by a suitable power series expansion.

§ 8.3. AcurrentT € 9;,(M) is said to be normal if both T and dT are of order zero, i.e. have measure
coeflicients.

a) If T is normal and has support contained in a C' submanifold Y C M, show that there exists a
normal current © on Y such that T' = 5,0, where j : Y — M is the inclusion.
Hint: if x1 = ... = x4 = 0 are equations of Y in a coordinate system (x1,...,%n), observe that
z;T = x;dT =0 for 1 < j < ¢q and infer that dz1 A ... A dxq can be factorized in all terms of 7.

b) What happens if p > dimY ?
¢) Are a) and b) valid when the normality assumption is dropped ?

§ 8.4. LetT = Z1gjgn T;dz; be a closed current of bidegree (0, 1) with compact support in C™ such
that d”’T = 0.

a) Show that the partial convolution S = (1/721) *1 T is a solution of the equation d”/S =T.

b) Let K = Supp7. If n > 2, show that S has support in the compact set K equal to the union of K
and of all bounded components of C™ \ K.
Hint: observe that S is holomorphic on C™ \ K and that S vanishes for |z2| + ... + |zn| large.

8§ 8.5. Alternative proof of the Dolbeault-Grothendieck lemma. Let v = ZllequdEJ, q =1,
be a smooth form of bidegree (0,q) on a polydisk Q@ = D(0, R) C C", such that d’v = 0, and let
w = D(0,7r) CC w. Let k be the smallest integer such that the monomials dz; appearing in v only
involve dz1, ..., dzy. Prove by induction on k that the equation d”’u = v can be solved on w.

Hint: set v = f A dzy + g where f, g only involve dz1, ..., dzZx_1. Then consider v — d”’F where

F= S R B = 0G0 ().

[J|=q—1

where %, denotes the partial convolution with respect to zx, 1¥(z) is a cut-off function equal to 1 on
D(0,r, +¢) and f = Z|J|:q—1 frdzy.

§ 8.6. Construct locally bounded non continuous subharmonic functions on C.
Hint: consider e* where u(z) = 3,277 log|z — 1/j].

§ 8.7. Let w be an open subset of R”, n > 2, and u a subharmonic function which is not locally —oco.

a) For every open set w CC 2, show that there is a positive measure p with support in @ and a harmonic
function h on w such that u = N x y + h on w.

b) Use this representation to prove the following properties: u € Lfoc for all p < n/(n — 2) and
Ou/dzj € LY forall p <n/(n—1).

§ 8.8. Show that a connected open set Q2 C R” is convex if and only if 2 has a locally convex

exhaustion function .

Hint: to show the sufficiency, take a path v : [0, 1] — Q joining two arbitrary points a,b € Q and consider

the restriction of ¢ to [a, v(t0)] N where tg is the supremum of all ¢ such that [a,v(u)] C Q for u € [0, ¢].
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8§ 8.9. Let ri,re €]1,+oo[. Consider the compact set
K ={lz1] <71, 22| <1}U{|z1] <1, |22| <72} C C2
Show that the holomorphic hull of K in C? is

K ={lz1] <1, |z2] vz, 2]/ 19871 2]/ 10872 el
Hint: to show that K is contained in this set, consider all holomorphic monomials f(z1,22) = 27 252.
To show the converse inclusion, apply the maximum principle to the domain |z1| < 71, |22] < r2 on
suitably chosen Riemann surfaces 27! 25? =
§ 8.10. Compute the rank of the Levi form of the ellipsoid |21|% + |23|* + |23]® < 1 at every point of
the boundary.

§ 8.11. Let X be a complex manifold and let u(z) = 2jeN |fj1%, fj € 6(X), be a series converging
uniformly on every compact subset of X. Prove that the limit is real analytic and that the series remains
uniformly convergent by taking derivatives term by term. _

Hint: since the problem is local, take X = B(0,r), a ball in C™. Let g;(z) = g;(Z) be the conjugate
function of f; and let U(z, w) = ZjeN fi(2)gj(w) on X x X. Using the Cauchy-Schwarz inequality, show
that this series of holomorphic functions is uniformly convergent on every compact subset of X x X.

§ 8.12. Let Q C C” be a bounded open set with C? boundary.

a) Let a € 0Q be a given point. Let e, be the outward normal vector to Thn 4, (e1,...,en—1) an
orthonormal basis of "T,(99Q) in which the Levi form is diagonal and (z1,...,2,) the associated
linear coordinates centered at a. Show that there is a neighborhood V of a such that 9Q NV is
the graph Re z, = —¢(21,...,2n_1,Im 2y,) of a function ¢ such that ¢(z) = O(|z|?) and the matrix
0%¢/02;0%(0), 1 < j,k < n — 1 is diagonal.

b) Show that there exist local analytic coordinates w1 = z1,...,Wn—1 = 2Zn—1, Wn = 2zn + chkzjzk
on a neighborhood V' of a = 0 such that

NV =V n{Rewn + »_ Nlwjl®> +o(lw®) <0}, A; €R
1<isn

and that \,, can be assigned to any given value by a suitable choice of the coordinates.
Hint: Consider the Taylor expansion of order 2 of the defining function p(z) = (Re zn + ¢(2))(1 +
Re Y c;jz;j) where c; € C are chosen in a suitable way.

¢) Prove that 0 is strongly pseudoconvex at a if and only if there is a neighborhood U of a and a
biholomorphism ® of U onto some open set of C™ such that ®(Q NU) is strongly convex.

d) Assume that the Levi form of 9 is not semipositive. Show that all holomorphic functions f € 0(f)
extend to some (fixed) neighborhood of a.
Hint: assume for example A1 < 0. For € > 0 small, show that 2 contains the Hartogs figure

{e/2 < |w1] < &} x {Jwj| < e2}1<jcn X {Jwn| < 3%, Rewn, < 3} U

{Jw1] < €} x {Jw;] < e2}1<jen X {Jwn| < 32, Rewn, < —e?}.

§ 8.13. Let Q C C™ be a bounded open set with C? boundary and p € C?(92, R) such that p < 0 on
Q, p=0and dp # 0 on 9. Let f € C1(99Q,C) be a function satisfying the tangential Cauchy-Riemann
equations

1
§-f=0, VE€ " Toa, €= (+1J8)
a) Let fo be a C! extension of f to Q. Show that d”’fo A d”’p =0 on 9 and infer that v = lgd" fo is
a d'’-closed current on C™.

b) Show that the solution u of d’u = v provided by Cor. 3.27 is continuous and that f admits an
extension f € 6(Q) N C%(Q) if 9 is connected.
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§ 8.14. Let Q C C" be a bounded pseudoconvex domain with C2 boundary and let §(z) = d(z, ()
be the euclidean distance to the boundary.

a) Use the plurisubharmonicity of — log d to prove the following fact: for every £ > 0 there is a constant
C: > 0 such that
~HOL() | |45,

2
5@ e P20

for £ € C™ and z near 0.
b) Set 1 (z) = —logd(z) + K|z|2. Show that for K large and « small the function

p(z) = —exp (= au(2)) = — (e ¥ 75(2)) "

is plurisubharmonic.

c) Prove the existence of a plurisubharmonic exhaustion function u : @ — [—1,0[ of class C? such that
|u(z)| has the same order of magnitude as 6(z)® when z tends to 9.
Hint: consult [Diederich-Fornaess 1976].

§ 8.15. Let Q = w +iR™ be a connected tube in C™ of base w.

a) Assume first that n = 2. Let T C R2 be the triangle 1 > 0, 2 > 0, 21 + z2 < 1, and assume that
the two edges [0, 1] x {0} and {0} x [0, 1] are contained in w. Show that every holomorphic function
f € 6(Q) extends to a neighborhood of T 4+ iR2.
Hint: let 7 : C> — R? be the projection on the real part and M. the intersection of 7~ 1((1 +¢)T)
with the Riemann surface z1 + z2 — %(z% + 22) = 1 (a non degenerate affine conic). Show that M.
is compact and that

m(OMe) C ([0,1+¢€] x {0}) U ({0} x [0,1 +¢]) C w,
w([0,1] - M) DT

for ¢ small. Use the Cauchy formula along OM. (in some parametrization of the conic) to obtain an
extension of f to [0, 1] - M + iR™.

b) In general, show that every f € 6(Q) extends to the convex hull Q.
Hint: given a,b € w, consider a polygonal line joining a and b and apply a) inductively to obtain an
extension along [a, b] + iR"™.

§ 8.16. For each integer v > 1, consider the algebraic variety

X ={Ewecut=p @)} = ] -1/,

1<k<y

and the map j, : Xu — X, 41 such that

oz w, t) = (z w, t<z— erl)).

a) Show that X, is a Stein manifold, and that j, is an embedding of X, onto an open subset of X, ;.

b) Define X = lim(X,,j,), and let 7, : X, — C2 be the projection to the first two coordinates. Since
Ty41 O Ju = Tw, there exists a holomorphic map 7 : X — C2, © = lim7,. Show that

(CQ\W(X):{(Z,O) €C?;z2#1/v, VveEN, v > 1},

and especially, that (0,0) ¢ 7(X).

¢) Consider the compact set
K= Wﬁl({(z,w) €C?; |2| <1, |w| = 1})

By looking at points of the forms (1/v,w,0), |w| = 1, show that #—1(1/v,1/v) € I?@(X). Conclude
from this that X is not holomorphically convex (this example is due to [Fornaess 1977]).
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§ 8.17. Let X be a complex manifold, and let 7 : X > Xbea holomorphic unramified covering of X
(X and X are assumed to be connected).

a)

b)

Q)

Let g be a complete riemannian metric on X, and let d be the geodesic distance on X associated
to g = m*g (see VIII-2.3 for definitions). Show that g is complete and that §o(x) := d(x,zo) is a
continuous exhaustion function on X, for any given point xg € X.

Let (Uy) be a locally finite covering of X by open balls contained in coordinate open sets, such
that all intersections U, N Ug are diffeomorphic to convex open sets (see Lemma IV-6.9). Let 6,
be a partition of unity subordinate to the covering (Us), and let d., be the convolution of g with
a regularizing kernel p._, on each piece of 7~ !(U,) which is mapped biholomorphically onto Ul.
Finally, set § = > (0 0m)de,, . Show that if (e4) is a collection of sufficiently small positive numbers,

then § is a smooth exhaustion function on X.

Using the fact that &g is 1-Lipschitz with respect to d, show that derivatives 8¥16(z)/8z" of a given
order with respect to coordinates in U, are uniformly bounded in all components of 71 (U, ), at
least when z lies in the compact subset Suppfs. Conclude from this that there exists a positive
hermitian form with continuous coefficients on X such that H§ > —7*~v on X.

If X is strongly pseudoconvex, show that X is also strongly pseudoconvex.
Hint: let ¢ be a smooth strictly plurisubharmonic exhaustion function on X. Show that there exists
a smooth convex increasing function x : R — R such that § 4+ x o ¢ is strictly plurisubharmonic.
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Coherent Sheaves and Analytic Spaces

The chapter starts with rather general and abstract concepts concerning sheaves and ringed spaces.
Introduced in the decade 1950-1960 by Leray, Cartan, Serre and Grothendieck, sheaves and ringed
spaces have since been recognized as the adequate tools to handle algebraic varieties and analytic spaces
in a unified framework. We then concentrate ourselves on the theory of complex analytic functions.
The second section is devoted to a proof of the Weierstrass preparation theorem, which is nothing but
a division algorithm for holomorphic functions. It is used to derive algebraic properties of the ring
0y, of germs of holomorphic functions in C™. Coherent analytic sheaves are then introduced and the
fundamental coherence theorem of Oka is proved. Basic properties of analytic sets are investigated
in detail: local parametrization theorem, Hilbert’s Nullstellensatz, coherence of the ideal sheaf of an
analytic set, analyticity of the singular set. The formalism of complex spaces is then developed and
gives a natural setting for the proof of more global properties (decomposition into global irreducible
components, maximum principle). After a few definitions concerning cycles, divisors and meromorphic
functions, we investigate the important notion of normal space and establish the Oka normalization
theorem. Next, the Remmert-Stein extension theorem and the Remmert proper mapping theorem on
images of analytic sets are proved by means of semi-continuity results on the rank of morphisms. As an
application, we give a proof of Chow’s theorem asserting that every analytic subset of P™ is algebraic.
Finally, the concept of analytic scheme with nilpotent elements is introduced as a generalization of
complex spaces, and we discuss the concepts of bimeromorphic maps, modifications and blowing-up.

§ 1. Presheaves and Sheaves

§ 1.A. Main Definitions.

Sheaves have become a very important tool in analytic or algebraic geometry as
well as in algebraic topology. They are especially useful when one wants to relate global
properties of an object to its local properties (the latter being usually easier to establish).
We first introduce the axioms of presheaves and sheaves in full generality and give some
basic examples.

(1.1) Definition. Let X be a topological space. A presheaf d on X consists of the
following data:

a) a collection of non empty sets A(U) associated with every open set U C X,

b) a collection of maps py v : A(V) — «A(U) defined whenever U C V and satisfying
the transitivity property

c) puyvopyw =puw for UCV CW, puu =Idy  for every U.

The set A(U) is called the set of sections of the presheaf A over U.
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Most often, the presheaf ¢ is supposed to carry an additional algebraic structure.
For instance:

(1.2) Definition. A presheaf 9 is said to be a presheaf of abelian groups (resp. rings, R-
modules, algebras) if all sets A(U) are abelian groups (resp. rings, R-modules, algebras)
and if the maps py,v are morphisms of these algebraic structures. In this case, we always
assume that <4(0) = {0}.

(1.3) Example. If we assign to each open set U C X the set 6(U) of all real valued
continuous functions on U and let pyy be the obvious restriction morphism “€(V) —
“6(U), then “6 is a presheaf of rings on X . Similarly if X is differentiable (resp. complex
analytic) manifold, there are well defined presheaves of rings “6* of functions of class “6*
(resp. 0) of holomorphic functions) on X. Because of these examples, the maps py vy in
Def. 1.1 are often viewed intuitively as “restriction homomorphisms”, although the sets
A(U) are not necessarily sets of functions defined over U. For the simplicity of notation
we often just write py v (f) = fiv whenever f € A(V), V D U. O

For the above presheaves 6, “6*, 0, the properties of functions under consideration
are purely local. As a consequence, these presheaves satisfy the following additional
gluing azioms, where (U,) and U = |JU,, are arbitrary open subsets of X :

(1.4 If Fy € A(Us) are such that py,nu,,v. (Fa) = pu.nvs,us (Fp)
for all a, 3, there exists F' € «(U) such that py_ v(F) = Fy;

(1.4 If F,GedU) and py, v(F) = pu, v(G) for all o, then F = G;

in other words, local sections over the sets U, can be glued together if they coincide in
the intersections and the resulting section on U is uniquely defined. Not all presheaves
satisfy (1.4") and (1.4"):

(1.5) Example. Let E be an arbitrary set with a distinguished element 0 (e.g. an abelian
group, a R-module, ...). The constant presheaf Ex on X is defined to be Ex(U) = FE
for all ) # U C X and Ex(0) = {0}, with restriction maps pyyv = Idg if 0 # U C V and
pu,vy = 01if U = (. Then axiom (1.4’) is not satisfied if U is the union of two disjoint
open sets U1, Us and E contains a non zero element.

(1.6) Definition. A presheaf 9 is said to be a sheaf if it satisfies the gluing axioms
(1.4") and (1.4").

If o, 9% are presheaves of abelian groups (or of some other algebraic structure) on
the same space X, a presheaf morphism ¢ : o — 9B is a collection of morphisms py :
AU) — %B(U) commuting with the restriction morphisms, i.e. such that for each pair
U C V there is a commutative diagram

A(v) 2V p(v)
P%,vl lﬂ%,v
AUy 2Y% B(U).
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We say that o is a subpresheaf of %8 in the case where ¢y : d(U) C B(U) is the inclusion
morphism; the commutation property then means that p?}’v(d(V)) C A(U) for all U,
V, and that p§ |, coincides with p%’v’v on A(V). If o is a subpresheaf of a presheaf % of
abelian groups, there is a presheaf quotient ¢ = B/ defined by 6(U) = B(U)/4(U).
In a similar way, one defines the presheaf kernel (resp. presheaf image, presheaf cokernel)
of a presheaf morphism ¢ : § — % to be the presheaves

U — Ker ¢y, Uw— Imoyy, U — Cokerpy.

The direct sum & @ % of presheaves of abelian groups #, % is the presheaf U — A (U) @
%B(U), the tensor product 4 ® % of presheaves of R-modules is U — A(U) @g B(U), etc

(1.7) Remark. The reader should take care of the fact that the presheaf quotient of
a sheaf by a subsheaf is not necessarily a sheaf. To give a specific example, let X = S*
be the unit circle in R2, let € be the sheaf of continuous complex valued functions and
% the subsheaf of integral valued continuous functions (i.e. locally constant functions to
Z). The exponential map

© = exp(2mie) : 6 — €*

is a morphism from 6 to the sheaf “6* of invertible continuous functions, and the kernel
of ¢ is precisely %. However ¢y is surjective for all U # X but maps 6(X) onto the
multiplicative subgroup of continuous functions of 6*(X) of degree 0. Therefore the
quotient presheaf 6/% is not isomorphic with “6*, although their groups of sections
are the same for all U # X. Since 6* is a sheaf, we see that 6/% does not satisfy
property (1.4). O

In order to overcome the difficulty appearing in Example 1.7, it is necessary to intro-
duce a suitable process by which we can produce a sheaf from a presheaf. For this, it is
convenient to introduce a slightly modified viewpoint for sheaves.

(1.8) Definition. If & is a presheaf, we define the set Ay of germs of A at a point
x € X to be the abstract inductive limit

ﬂm == ll_IIl> (ﬂ(U),pUJ/).
Uszx

More explicitely, d, is the set of equivalence classes of elements in the disjoint union
s, 4(U) taken over all open neighborhoods U of x, with two elements Fy € (Uy),
Fy € A(Us) being equivalent, Fy ~ Fy, if and only if there is a neighborhood V- C Uy, Uy
such that Fiyy = Fayy, i.e., pyu, (F1) = pvu,(F2). The germ of an element F € A(U)
at a point x € U will be denoted by F,.

Let ¢ be an arbitrary presheaf. The disjoint union o = I giw can be equipped

with a natural topology as follows: for every F' € o(U), we set

rxeX

QF’U:{FQ;;LL’EU}

and choose the {2r 7 to be a basis of the topology of :Qvi; note that this family is stable
by intersection: Qpy N Qg v = Qg w where W is the (open) set of points x € UNV at
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which F, = G, and H = pw,y(F). The obvious projection map 7 : o — X which sends
A, to {z} is then a local homeomorphism (it is actually a homeomorphism from Qg ¢
onto U). This leads in a natural way to the following definition:

(1.9) Definition. Let X and & be topological spaces (not necessarily Hausdorff), and
let m: S — X be a mapping such that

a) ™ maps & onto X ;

b) 7 is a local homeomorphism, that is, every point in & has an open neighborhood which
is mapped homeomorphically by ™ onto an open subset of X.

Then & is called a sheaf-space on X and w is called the projection of ¥ on X. If x € X,
then S, = m~1(x) is called the stalk of ¥ at x.

If Y is a subset of X, we denote by I'(Y, ¥) the set of sections of & on Y, i.e. the set
of continuous functions F': Y — & such that m o F' = Idy. It is clear that the presheaf
defined by the collection of sets &'(U) := I'(U, &) for all open sets U C X together with
the restriction maps py,y satisfies axioms (1.4’) and (1.4”), hence & is a sheaf. The set
of germs of &' at z is in one-to-one correspondence with the stalk ¥, = 7~ !(x), thanks
to the local homeomorphism assumption 1.9 b). This shows that one can associate in a
natural way a sheaf &' to every sheaf-space &, and that the sheaf-space (¥')™ can be
considered to be identical to the original sheaf-space &. Since the assignment & — &’
from sheaf-spaces to sheaves is an equivalence of categories, we will usually omit the
prime sign in the notation of ' and thus use the same symbols for a sheaf-space and its
associated sheaf of sections; in a corresponding way, we write I'(U, ¥) = $#(U) when U
is an open set.

Conversely, given a presheaf ¢f on X, we have an associated sheaf-space o and an
obvious presheaf morphism

(1.10) AU) — d'(U) =T (U, ), F+—sF=U>3xzw F,).

This morphism is clearly injective if and only if o« satisfies axiom (1.4”), and it is not
difficult to see that (1.4") and (1.4"”) together imply surjectivity. Therefore A — A’ is
an isomorphism if and only if ¢ is a sheaf. According to the equivalence of categories
between sheaves and sheaf-spaces mentioned above, we will use from now on the same
symbol o for the sheaf-space and its associated sheaf ¢’; one says that ¢ is the sheaf
associated with the presheaf d. If o itself is a sheaf, we will again identify &/ and #, but
we will of course keep the notational difference for a presheaf @ which is not a sheaf.

(1.11) Example. The sheaf associated to the constant presheaf of stalk E over X is
the sheaf of locally constant functions X — E. This sheaf will be denoted merely by Ex
or F if there is no risk of confusion with the corresponding presheaf. In Example 1.7,
we have % = Zx and the sheaf (6/Zx )~ associated with the quotient presheaf “€/Zyx is
isomorphic to 6* via the exponential map. O

In the sequel, we usually work in the category of sheaves rather than in the category
of presheaves themselves. For instance, the quotient % /¢ of a sheaf %8 by a subsheaf o
generally refers to the sheaf associated with the quotient presheaf: its stalks are equal
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to B, /9., but a section G' of %/« over an open set U need not necessarily come from
a global section of B(U); what can be only said is that there is a covering (U,) of U
and local sections Fy, € %B(U,) representing Gy, such that (Fg — F,)v,nv, belongs to
AUy NUg). A sheaf morphism ¢ : o — 9B is said to be injective (resp. surjective) if
the germ morphism ¢, : ¢, — %, is injective (resp. surjective) for every x € X. Let us
note again that a surjective sheaf morphism ¢ does not necessarily give rise to surjective

morphisms g : AU) — B(U).
§ 1.B. Direct and Inverse Images of Sheaves

Let X, Y be topological spaces and let f : X — Y be a continuous map. If & is a
presheaf on X, the direct image f,9 is the presheaf on Y defined by

(1.12) fed(U) = (f71(U))

for all open sets U C Y. When o is a sheaf, it is clear that f,s also satisfies axioms
(1.4") and (1.4”), thus f.o is a sheaf. Its stalks are given by

(1.13) (fast)y = lim sd(f~(V))

|5

<
<

B

where V' runs over all open neighborhoods of y € Y.

Now, let % be a sheaf on Y, viewed as a sheaf-space with projection map 7 : % — Y.
We define the inverse image f~1% by

(1.14) "B =B xy X ={(s,2) eBxX; 7(s) = f(z)}

with the topology induced by the product topology on % x X. It is then easy to see
that the projection ' = pry : f719% — X is a local homeomorphism, therefore f~19 is
a sheaf on X. By construction, the stalks of f~1% are

(1.15) (f7'B)2 = B,

and the sections o € f~'9%(U) can be considered as continuous mappings s: U — %
such that m o o = f. In particular, any section s € %8(V) on an open set V C Y has a
pull-back

(1.16) ffs=sof € f_l%(f_l(V)).
There are always natural sheaf morphisms
(1.17) flfed — o, B — ff '

defined as follows. A germ in (f~'f.d), = (f+4) ¢(z) is defined by a local section
s € (fud)(V) = d(f~1(V)) for some neighborhood V of f(x); this section can be
mapped to the germ s, € ¢f,. In the opposite direction, the pull-back f*s of a section
s € B(V) can be seen by (1.16) as a section of f, f~1%(V). It is not difficult to see that
these natural morphisms are not isomorphisms in general. For instance, if f is a finite

covering map with ¢ sheets and if we take ¢ = Fx, 8 = FEy to be constant sheaves,
then f,Ex ~ EY and f~'Ey = Fx, thus f~!f,Ex ~ E% and f,f 'Ey ~ E{.
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§ 1.C. Ringed Spaces

Many natural geometric structures considered in analytic or algebraic geometry can
be described in a convenient way as topological spaces equipped with a suitable “struc-
ture sheaf” which, most often, is a sheaf of commutative rings. For instance, a lot of
properties of ‘6 differentiable (resp. real analytic, complex analytic) manifolds can be
described in terms of their sheaf of rings 6% of differentiable functions (resp. 6% of
real analytic functions, Gx of holomorphic functions). We first recall a few standard

definitions concerning rings, referring to textbooks on algebra for more details (see e.g.
[Lang 1965]).

(1.18) Some definitions and conventions about rings. All our rings R are supposed
implicitly to have a unit element 1g (if R = {0}, we agree that 1r =0gr), and a ring
morphism R — R’ is supposed to map 1r to 1r/. In the subsequent definitions, we
assume that all rings under consideration are commutative.

a) An ideal I C R is said to be prime if xy € I implies x € I ory € I, i.e., if the
quotient ring R/I is entire.

b) An ideal I C R is said to be maximal if I # R and there are no ideals J such that
I C J C R (equivalently, if the quotient ring R/I is a field).

c) The ring R is said to be a local ring if R has a unique maximal ideal m (equivalently,
if R has an ideal m such that all elements of R~ m are invertible). Its residual field
is defined to be the quotient field R/m.

d) The ring R is said to be Noetherian if every ideal I C R is finitely generated (equiva-
lently, if every increasing sequence of ideals Iy C Iy C ... is stationary).

e) The radical VT of an ideal I is the set of all elements x € R such that some power
™, m € N*, lies in in I. Then /T is again an ideal of R.

f) The nilradical N(R) = /{0} is the ideal of nilpotent elements of R. The ring R is
said to be reduced if N(R) = {0}. Otherwise, its reduction is defined to be the reduced
ring R/N(R).

We now introduce the general notion of a ringed space.

(1.19) Definition. A ringed space is a pair (X,%R x) consisting of a topological space
X and of a sheaf of rings Rx on X, called the structure sheaf. A morphism

F: (X, %x)— (Y, Ry)
of ringed spaces is a pair (f, F*) where f : X — Y is a continuous map and

F* f_lgf,y%gﬂx, Fr %Y,f(x)%%X,m

x

a homomorphism of sheaves of rings on X, called the comorphism of F'.

If Fr: (X, %x) - (Y,%y) and G : (Y,Ry) — (Z,%z) are morphisms of ringed
spaces, the composite G o F' is the pair consisting of the map go f : X — Z and of the
comorphism (G o F)* = F*o f~1G*:

(1.20) Frof-iar : flg=im, L5 gy Dgy,
Fa: o G’}(w) : %Z,gof(w) EE— %Y,f(w) — QRX’QC.
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We say of course that F' is an isomorphism of ringed spaces if there exists G such that
GoF =Idx and F oG = 1dy.

If (X,%x) is a ringed space, the nilradical of % x defines an ideal subsheaf ANy
of Rx, and the identity map Idx : X — X together with the ring homomorphism
Rx — Rx/Nx defines a ringed space morphism

(1.21) (X, Rx/Nx) = (X, Rx)

called the reduction morphism. Quite often, the letter X by itself is used to denote the
ringed space (X, % x ) ; we then denote by X;eq = (X, %R x/Nx) its reduction. The ringed
space X 1is said to be reduced if Nx = 0, in which case the reduction morphism X,eq — X
is an isomorphism. In all examples considered later on in this book, the structure sheaf
R x will be a sheaf of local rings over some field k. The relevant definition is as follows.

(1.22) Definition.

a) A local ringed space is a ringed space (X,Rx) such that all stalks Rx , are local
rings. The maximal ideal of R x , will be denoted by mx . A morphism F = (f, F*) :
(X, %x) = (Y,Ry) of local ringed spaces is a morphism of ringed spaces such that
Fy(my ¢)) C mx, at any point x € X (i.e., Fy is a “local” homomorphism of
Tings).

b) A local ringed space over a field k is a local ringed space (X, R x) such that all rings
R x5 are local k-algebras with residual field R x ;/mx » ~ k. A morphism F between
such spaces 1s supposed to have its comorphism defined by local k-homomorphisms
F;( : %y’f(w) — QRX@.

If (X, x) is a local ringed space over k, we can associate to each section s € R x (U)
a function

5:U =k, r—=35(r) ek =Rxp/Mx 4,

and we get a sheaf morphism %x — R x onto a subsheaf of rings R x of the sheaf of
functions from X to k. We clearly have a factorization

E‘RX — E‘RX/LNX —)@X,

and thus a corresponding factorization of ringed space morphisms (with Idx as the
underlying set theoretic map)

Xst—red — Xred — X

where Xgi-red = (X, Rx) is called the strong reduction of (X, R x). It is easy to see that
Xst-red 18 actually a reduced local ringed space over k. We say that X is strongly reduced
if Rx — R x is an isomorphism, that is, if R x can be identified with a subsheaf of
the sheaf of functions X — k (in our applications to the theory of algebraic or analytic
schemes, the concepts of reduction and strong reduction will actually be the same; in
general, these notions differ, see Exercise 77.77). It is important to observe that reduction
(resp. strong reduction) is a fonctorial process:
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if F=(f,F"):(X,%x) — (Y,%y) is a morphism of ringed spaces (resp. of local ringed
spaces over k), there are natural reductions

Fred - (fa Frt;d) : Xred — Ked7 Fr*ed : E}RY,f(ar:)/J\/Y,f(ar:) — %X,w/J\{X,wa
Fst—red - (f: f*> : Xst—red — szt—reda f* : @Y,f(w) — @X,xa Sk so f

where f* is the usual pull-back comorphism associated with f. Therefore, if (X, R x)
and (Y,Ry) are strongly reduced, the morphism F' is completely determined by the
underlying set-theoretic map f. Our first basic examples of (strongly reduced) ringed
spaces are the various types of manifolds already defined in Chapter I. The language of
ringed spaces provides an equivalent but more elegant and more intrinsic definition.

(1.23) Definition. Let X be a Hausdorff separable topological space. One can define
the category of “6F, k € N U {oo,w}, differentiable manifolds (resp. complex analytic
manifolds) to be the category of reduced local ringed spaces (X, R x) over R (resp. over C),
such that every point x € X has a neighborhood U on which the restriction (U, R x ) is
isomorphic to a ringed space (2, 65) where Q C R™ is an open set and 6 is the sheaf
of 6% differentiable functions (resp. (Q, 6q), where Q C C" is an open subset, and Og is
the sheaf of holomorphic functions on ).

We say that the ringed spaces (€2, 6%) and (£, Oq) are the models of the category
of differentiable (resp. complex analytic) manifolds, and that a general object (X, x)
in the category is locally isomorphic to one of the given model spaces. It is easy to see
that the corresponding ringed spaces morphisms are nothing but the usual concepts of
differentiable and holomorphic maps.

§ 1.D. Algebraic Varieties over a Field

As a second illustration of the notion of ringed space, we present here a brief intro-
duction to the formalism of algebraic varieties, referring to [Hartshorne 1977] or [EGA
1967] for a much more detailed exposition. Our hope is that the reader who already has
some background of analytic or algebraic geometry will find some hints of the strong
interconnections between both theories. Beginners are invited to skip this section and
proceed directly to the theory of complex analytic sheaves in §,2. All rings or algebras
occurring in this section are supposed to be commutative rings with unit.

§ 1.D.1. Affine Algebraic Sets. Let k be an algebraically closed field of any characteristic.
An affine algebraic set is a subset X C kv of the affine space kv defined by an arbitrary
collection S C k[T1,...,Tn]| of polynomials, that is,

X=V(S)={(z1,...,2n) €KV ; P(z1,...,2ny) =0, VP € S}.

Of course, if J C k[Ty,...,Tn] is the ideal generated by S, then V(S) = V(J). As
k[T, ..., Tn] is Noetherian, J is generated by finitely many elements (P, ..., P,,), thus
X =V{P,...,P,}) is always defined by finitely many equations. Conversely, for any
subset Y C kY, we consider the ideal I(Y) of k[T, ..., Tx], defined by

I(Y)={PecklT\,...,Ty]; P(z) =0, V2 € Y}.

Of course, if Y C k¥ is an algebraic set, we have V(I(Y)) = Y. In the opposite direction,
we have the following fundamental result.
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(1.24) Hilbert’s Nullstellensatz (see [Lang 1965]). If J C k[Ty,...,Tn] is an ideal,
then I(V(J)) =+/J.

If X = V(J) C k" is an affine algebraic set, we define the (reduced) ring 6(X) of
algebraic functions on X to be the set of all functions X — k which are restrictions of
polynomials, i.e.,

(1.25) G(X)=k[T1,...,Tn]/I(X) = k[Ty,...,Tn]/VJ.

This is clearly a reduced k-algebra. An (algebraic) morphism of affine algebraic sets
X=V(J)CckN, Y =V(J) ckN isamap f:Y — X which is the restriction of a
polynomial map kY tok™. We then get a k-algebra homomomorphism

ff:06(X)— 06(Y), s+ so f,
called the comorphism of f. In this way, we have defined a contravariant fonctor
(1.26) X — 0(X), fef

from the category of affine algebraic sets to the category of finitely generated reduced
k-algebras.

We are going to show the existence of a natural fonctor going in the opposite direction.
In fact, let us start with an arbitrary finitely generated algebra A (not necessarily reduced
at this moment). For any choice of generators (¢1,...,gn) of A we get a surjective
morphism of the polynomial ring k[T7, ..., TxN] onto A,

]{J[Tl,...,TN]—)A, Tj ’_>gj7

and thus A ~ k[Ty,...,Txn]/J with the ideal J being the kernel of this morphism. It is
well-known that every maximal ideal m of A has codimension 1 in A (see [Lang 1965]), so
that m gives rise to a k-algebra homomorphism A — A/m = k. We thus get a bijection

Hom,je (A, k) — Spm(A), u— Keru

between the set of k-algebra homomorphisms and the set Spm(A) of maximal ideals
of A. In fact, if A = k[T1,...,Tn]/J, an element ¢ € Homyg(A, k) is completely
determined by the values z; = ¢(T; mod J), and the corresponding algebra homomor-
phism k[T},...,Tn] — k, P — P(z1,...,zn) can be factorized mod J if and only if
z=(21,...,2n) € kN satisfies the equations

P(z1,...,2n) =0, VP e J.
We infer from this that
Spm(A) ~ V(J) = {(21,...,28) €,V P(21,...,25) =0, VP € J}

can be identified with the affine algebraic set V(J) C k~. If we are given an algebra
homomorphism ® : A — B of finitely generated k-algebras we get a corresponding map
Spm(®) : Spm(B) — Spm(A) described either as

Spm(B) — Spm(A4), m~ & '(m) or

Hom,o (B, k) — Homuie (A, k), v~ vod.
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If B =k[T},...,T4/]/J and Spm(B) = V(J') C kN, it is easy to see that Spm(®) :
Spm(B) — Spm(A) is the restriction of the polynomial map

kN S kN, w— f(w) = (Pi(w),..., Py(w)),

where P; € k[T7,...,T}/| are polynomials such that P; = ®(7;) modJ" in B. We have
in this way defined a contravariant fonctor

(1.27) A+ Spm(A), ® — Spm(P)

from the category of finitely generated k-algebras to the category of affine algebraic sets.

Since A = k[T1,...,Tn]/J and its reduction A/N(A) = k[T1,...,Tx]/V/J give rise
to the same algebraic set

V(J) = Spm(A) = Spm(A/N(A)) = V(VJ),

we see that the category of affine algebraic sets is actually equivalent to the subcategory
of reduced finitely generated k-algebras.

(1.28) Example. The simplest example of an affine algebraic set is the affine space
ij = Spm(k[Tla s 7TN]>7

in particular Spm(k) = k° is just one point. We agree that Spm({0}) = () (observe that
V(J) =0 when J is the unit ideal in k[T}, ..., Tx]).

§ 1.D.2. Zariski Topology and Affine Algebraic Schemes. Let A be a finitely generated
algebra and X = Spm(A). To each ideal a C A we associate the zero variety V(a) C X
which consists of all elements m € X = Spm(A) such that m D a; if

A~ k[Ty,...,Ty]/J and X ~V(J)cC kY,

then V' (a) can be identified with the zero variety V' (J,) C X of the inverse image J, of
ain k[T1,...,Tn]. For any family (a,) of ideals in A we have

VO aa)=(V(aa),  V(a)UV(az) = V(aas),

hence there exists a unique topology on X such that the closed sets consist precisely of
all algebraic subsets (V(a))qca of X. This topology is called the Zariski topology. The
Zariski topology is almost never Hausdorff (for example, if X = k is the affine line, the
open sets are () and complements of finite sets, thus any two nonempty open sets have
nonempty intersection). However, X is a Noetherian space, that is, a topological space
in which every decreasing sequence of closed sets is stationary; an equivalent definition
is to require that every open set is quasi-compact (from any open covering of an open
set, one can extract a finite covering).

We now come to the concept of affine open subsets. For s € A, the open set D(s) =
X N\ V(s) can be given the structure of an affine algebraic variety. In fact, if A =
k[Ty,...,Tn]/J and s is represented by a polynomial in k[T1, ..., Tx], the localized ring
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A[1/s] can be written as A[1/s] = k[T1, ..., TN, Tn+1]/Js where Jg = J[Tn41]+(sTN41—
1), thus
V(J) ={(z,w) e V(J) x k; s(z)w =1} ~ V(I)~ s (0)

and D(s) can be identified with Spm(A[1/s]). We have D(s1) N D(s2) = D(s152), and
the sets (D(s))sca are easily seen to be a basis of the Zariski topology on X. The open
sets D(s) are called affine open sets. Since the open sets D(s) containing a given point
x € X form a basis of neighborhoods, one can define a sheaf space O x such that the ring
of germs Ox . is the inductive limit
Oxo = lim A[l/s] = {fractions p/q; p,q € A, q(x) # 0}.
D(s)>z

This is a local ring with maximal ideal

myx. = {p/q;p,q € A, p(x) =0, q(x) # 0},

and residual field Ox ,/mx , = k. In this way, we get a ringed space (X, Ox) over k. It
is easy to see that I'(X, Ox) coincides with the finitely generated k-algebra A. In fact,
from the definition of Ox, a global section is obtained by gluing together local sections
p;/s; on affine open sets D(s;) with |JD(s;) = X, 1 < j < m. This means that the ideal
a=(s1,...,8mn) C A has an empty zero variety V' (a), thus a = A and there are elements
uj; € A with ) u;s; = 1. The compatibility condition p;/s; = pr/si implies that these
elements are induced by

Y wpi/ Y Jugs; =Y uip; € A,

as desired. More generally, since the open sets D(s) are affine, we get
I'(D(s), 6x) = A[1/s].

It is easy to see that the ringed space (X, Gx) is reduced if and only if A itself is reduced;
in this case, X is even strongly reduced as Hilbert’s Nullstellensatz shows. Otherwise,
the reduction X,eq can obtained from the reduced algebra A,.q = A/N(A).

Ringed spaces (X, Ox) as above are called affine algebraic schemes over k (although
substantially different from the usual definition, our definition can be shown to be equiv-
alent in this special situation; compare with [Hartshorne 1977]); see also Exercise 77.77).
The category of affine algebraic schemes is equivalent to the category of finitely generated
k-algebras (with the arrows reversed).

§ 1.D.3. Algebraic Schemes. Algebraic schemes over k are defined to be ringed spaces
over k which are locally isomorphic to affine algebraic schemes, modulo an ad hoc sepa-
ration condition.

(1.29) Definition. An algebraic scheme over k is a local ringed space (X, Ox) over k
such that

a) X has a finite covering by open sets Uy such that (U,, Ox v, ) is isomorphic as a
ringed space to an affine algebraic scheme (Spm(Aa), Ospm(a.,))-
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b) X satisfies the algebraic separation axiom, namely the diagonal Ax of X x X is closed
for the Zariski topology.

A morphism of algebraic schemes is just a morphism of the underlying local ringed spaces.
An (abstract) algebraic variety is the same as a reduced algebraic scheme.

In the above definition, some words of explanation are needed for b), since the product
X x Y of algebraic schemes over k is not the ringed space theoretic product, i.e., the
product topological space equipped with the structure sheaf prj0x ® pr;0y. Instead,
we define the product of two affine algebraic schemes X = Spm(A) and Y = Spm(B) to
be X x Y = Spm(A ®; B), equipped with the Zariski topology and the structural sheaf
associated with A ®; B. Notice that the Zariski topology on X x Y is not the product
topology of the Zariski topologies on X, Y, as the example k? = k x k shows; also, the
rational function 1/(1 — z1 — 22) € Oy2 (0,0) is not in Oy 0 @ Opo. In general, if X, Y
are written as X = JU, and Y = |JVp with affine open sets U,, V3, we define X x Y
to be the union of all open affine charts U, x V3 with their associated structure sheaves
of affine algebraic varieties, the open sets of X x Y being all unions of open sets in the
various charts U, x V3. The separation axiom b) is introduced for the sake of excluding
pathological examples such as an affine line £I1{0’} with the origin changed into a double
point.

§ 1.D.4. Subschemes. If (X,0x) is an affine algebraic scheme and A = I'(X, Ox) is
the associated algebra, we say that (Y, Oy) is a subscheme of (X, Ox) if there is an ideal
a of A such that Y < X is the morphism defined by the algebra morphism A — A/a
as its comorphism. As Spm(A/a) — Spm(A) has for image the set V(a) of maximal
ideals m of A containing a, we see that Y = V(a) as a set; let us introduce the ideal
subsheaf § = aOx C Ox. Since the structural sheaf Oy is obtained by taken localizations
A/a[l/s], it is easy to see that Oy coincides with the quotient sheaf Ox /¢ restricted
to Y. Since a has finitely many generators, the ideal sheaf ¢ islocally finitely generated
(see § 2 below). This leads to the following definition.

(1.30) Definition. If (X, Ox) is an algebraic scheme, a (closed) subscheme is an alge-
braic scheme (Y, Oy) such that 'Y is a Zariski closed subset of X, and there is a locally
finitely generated ideal subsheaf § C Ox such thatY =V (§) and Oy = (Ox/$)v.

If (Y,0y), (Z,0z) are subschemes of (X, Ox) defined by ideal subsheaves ¢, ¢’ C
O x, there are corresponding subschemes Y N Z and Y U Z defined as ringed spaces

YNZ0x/($+ $)), (YUZ,0x/99).

§ 1.D.5. Projective Algebraic Varieties. A very important subcategory of the cate-
gory of algebraic varieties is provided by projective algebraic varieties. Let IP’{CV be the
projective N-space, that is, the set kN1 < {0}/k* of equivalence classes of (N + 1)-
tuples (zq,...,2zn) € kN¥TE {0} under the equivalence relation given by (zo,...,2zn) ~
Azo0,...,2n), A € k*. The corresponding element of P& will be denoted [zp : 21 : ... :
zn]. Tt is clear that P%, can be covered by the (N + 1) affine charts U,, 0 < a < N, such
that
Uso={[20:21:...: 28] EP} z4 #0}.
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The set U, can be identified with the affine N-space kv by the map

20 <1 Za—1 Ra4+1 ZN
U, — kY, [20:21:...:2N]»—><— — 2 ot —)

T T T
With this identification, G(U,,) is the algebra of homogeneous rational functions of degree
0 in zg, ..., 2y which have just a power of z, in their denominator. It is easy to see that
the structure sheaves Opy_, and @Uﬁ coincide in the intersections U, N Ug; they can
be glued together to define an algebraic variety structure (P, Gpn), such that Opn [
consists of all homogeneous rational functions p/q of degree 0 (i.e., deg p = degq), such
that ¢(z) # 0.

(1.30) Definition. An algebraic scheme or variety (X, Ox) is said to be projective if it
is isomorphic to a closed subscheme of some projective space (Py, Opn).

We now indicate a standard way of constructing projective schemes. Let S be a
collection of homogeneous polynomials P; € k[zo, ..., 2zn], of degree d; € N. We define
an associated projective algebraic set

V(S)={lz0:...:2n] EP}; P(2) =0, VP € S}.

Let J be the homogeneous ideal of k|zo, ..., zn] generated by S (recall that an ideal J is
said to be homogeneous if J = @ J,, is the direct sum of its homogeneous components,
or equivalently, if J is generated by homogeneous elements). We have an associated
graded algebra

B =klz,....2n]/J =@ Bm,  Bm =kl20, ..., 2N]m/Im

such that B is generated by B; and By, is a finite dimensional vector space over k for
each k. This is enough to construct the desired scheme structure on V(J) := NV (Jpn),
as we see in the next subsection.

§ 1.D.6. Projective Scheme Associated with a Graded Algebra. Let us start with a
reduced graded k-algebra
B=P Bn

meN

such that B is generated by By and B; as an algebra, and By, By are finite dimensional
vector spaces over k (it then follows that B is finitely generated and that all B,, are
finite dimensional vector spaces). Given s € B,,, m > 0, we define a k-algebra A to be
the ring of all fractions of homogeneous degree 0 with a power of s as their denominator,
ie.,

(1.31) A, = {p/sd;peBdm, dEN}.

Since A; is generated by %B{” over By, A, is a finitely generated algebra. We define
Us = Spm(Ag) to be the associated affine algebraic variety. For s € B,, and s’ € By,
we clearly have algebra homomorphisms

As — A88'7 As’ — ASS’?
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since A,y is the algebra of all 0-homogeneous fractions with powers of s and s’ in the
denominator. As A is the same as the localized ring As[s™ /s"™], we see that Uss can
be identified with an affine open set in Uy, and we thus get canonical injections

Uss’ — US7 Uss’ — Us’~

(1.32) Definition. If B = @,, .y Bm is a reduced graded algebra generated by its finite
dimensional vector subspaces By and By, we associate an algebraic scheme (X,0x) =
Proj(B) as follows. To each finitely generated algebra As = {p/sd; p € Bam, d € N} we
associate an affine algebraic variety Us = Spm(Ag). We let X be the union of all open
charts Us with the identifications UsNUg = Uy ; then the collection (Us) is a basis of the
topology of X, and Ox is the unique sheaf of local k-algebras such that I'(Us, Ox) = Ag
for each Us.

The following proposition shows that only finitely many open charts are actually
needed to describe X (as required in Def. 1.29 a)).

(1.33) Lemma. If sg,...,sn is a basis of By, then Proj(B) = |J Us..

Proof. In fact, if € X is contained in a chart Ug for some s € B,,, then Uy =
Spm(A;) # 0, and therefore Ay # {0}. As A is generated by 1Bj", we can find a
fraction f = sj, ...s;, /s representing an element f € O(Uy) such that f(x) # 0. Then
z € U~ f71(0), and Ug . f71(0) = Spm(A,[1/f]) = UsNU,, N...NUs, . In particular

z e U, O

Si1°
(1.34) Example. One can consider the projective space IP’{CV to be the algebraic scheme

PN = Proj(k[Ty, ..., Tn]).

The Proj construction is fonctorial in the following sense: if we have a graded ho-
momorphism ® : B — B’ (i.e. an algebra homomorphism such that ®(B,,) C Bj,, then
there are corresponding morphisms A; — Aib(s)’ U(’I)(S) — U, and we thus find a scheme
morphism

F : Proj(B’) — Proj(B).

Also, since p/s? = ps'/s?*! the algebras A, depend only on components B, of large
degree, and we have A; = A, . It follows easily that there is a canonical isomorphism

Proj(B) ~ Proj (@Blm).

Similarly, we may if we wish change a finite number of components B,, without af-
fecting Proj(B). In particular, we may alway assume that By = k1p. By selecting
finitely many generators gg,...,gn in B, we then find a surjective graded homomor-
phism k[T, ..., Tn] — B, thus B ~ k[Tp,...,Tn]/J for some graded ideal J C B.
The algebra homomorphism &[Ty, ..., Tny] — B therefore yields a scheme embedding
Proj(B) — PY onto V(J).
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We will not pursue further the study of algebraic varieties from this point of view ;
in fact we are mostly interested in the case k = C, and algebraic varieties over C are a
special case of the more general concept of complex analytic space.

§ 2. The Local Ring of Germs of Analytic Functions

8§ 2.A. The Weierstrass Preparation Theorem

Our first goal is to establish a basic factorization and division theorem for analytic
functions of several variables, which is essentially due to Weierstrass. We follow here a
simple proof given by C.L. Siegel, based on a clever use of the Cauchy formula. Let g
be a holomorphic function defined on a neighborhood of 0 in C™, g # 0. There exists a
dense set of vectors v € C™ \ {0} such that the function C > t — ¢(tv) is not identically
zero. In fact the Taylor series of g at the origin can be written

—+o00
1
g(tv) =Y~ 5P ()
k=0

where ¢(¥) is a homogeneous polynomial of degree k on C"™ and g(*0) # 0 for some index
ko. Thus it suffices to select v such that g(¥o)(v) £ 0. After a change of coordinates, we

may assume that v = (0,...,0,1). Let s be the vanishing order of z, — ¢(0,...,0, z,)
at z, = 0. There exists r, > 0 such that ¢(0,...,0,2,) # 0 when 0 < |z,| < r,. By
continuity of g and compactness of the circle |z,| = r,, there exists ' > 0 and € > 0
such that

g(7,zn) #0 for 2 e C"t || <, rp—e< || < Fe

For every integer k£ € N, let us consider the integral

1 1 dg
Sk(2') = — 29 (2, 2 de,
k(Z) 2mi |zn|=Tn g(zlazn) 8Zn( ' >Zn ©

Then Sy, is holomorphic in a neighborhood of |z/| < /. Rouché’s theorem shows that
So(2’) is the number of roots z, of g(z’, z,,) = 0 in the disk |z,| < r,, thus by continuity
So(2') must be a constant s. Let us denote by wq(2),...,ws(2") these roots, counted
with multiplicity. By definition of r,, we have w;(0) = ... = ws(0) = 0, and by the
choice of 1/, € we have |w;(2')| < r, — ¢ for |2’| < r’. The Cauchy residue formula yields

Sk(Z') = ij(z’)k.

Newton’s formula shows that the elementary symmetric function cx(2’) of degree k in
wy(2'), ..., ws(2") is a polynomial in S1(z'),..., Sk(2"). Hence c(z’) is holomorphic in a
neighborhood of |2’| < 7’. Let us set

P(Zz,) =25 — cl(z’)zﬁb_l + o+ (=1)%cs(2)) = H (zn — wj(z')).
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For |2/| < 7/, the quotient f = g/P (resp. f = P/g) is holomorphic in z, on the disk
|zn| < 7y + €, because g and P have the same zeros with the same multiplicities, and
f(%', z,) is holomorphic in 2’ for r, — e < |z,| < 1y, + €. Therefore

o £ ) duo
f(2'2n) = = —_—
(Z ‘ ) /wn|—rn+€

2mi Wy, — Zn

is holomorphic in z on a neighborhood of the closed polydisk A(r',r,,) = {|2/] < r'} x
{|zn| < rn}. Thus ¢g/P is invertible and we obtain:

(2.1) Weierstrass preparation theorem. Let g be holomorphic on a neighborhood of
0 in C", such that (0, z,,) /25 has a not zero finite limit at z, = 0. With the above choice
of ' and ry,, one can write g(z) = u(z)P(Z,z,) where u is an invertible holomorphic
function in a neighborhood of the polydisk A(r',r,), and P is a Weierstrass polynomial
in zp, that is, a polynomial of the form

P, 2,) =25 +a1(2)2" 4 4 as(2),  an(0) =0,
with holomorphic coefficients ay(2') on a neighborhood of |2'| < r' in C*~1.

(2.2) Remark. If g vanishes at order m at 0 and v € C™ \ {0} is selected such that
g™ (v) # 0, then s = m and P must also vanish at order m at 0. In that case, the
coefficients ay(z’) are such that ax(2’) = O(|2'|*), 1 < k < s.

(2.3) Weierstrass division theorem. FEvery bounded holomorphic function f on A =
A(r',;ry,) can be represented in the form

(2.4) f(z) = g(2)a(2) + R(Z', zn),
where ¢ and R are analytic in A, R(Z', z,) is a polynomial of degree < s — 1 in z,, and

(2.5) Sup|q| Csup|f| Sup|R| Csup|f|

for some constant C > 0 independent of f. The representation (2.4) is unique.

Proof (Siegel). Tt is sufficient to prove the result when g(z) = P(Z/, z,,) is a Weierstrass
polynomial.

Let us first prove the uniqueness. If f = Pq; + Ry = Pqs + Ro, then
P(g2 —q1) + (R2 — Ry) = 0.

It follows that the s roots z,, of P(z’,e) = 0 are zeros of Ry — R;. Since deg, (Ro— R1) <
s — 1, we must have Ry — Ry =0, thus ¢ — ¢; = 0.

In order to prove the existence of (¢, R), we set

1 ', wn
q(?, z,) = lim —/ (& wn) dw,, z€A;
|wn |=r,—¢ P(

e—0+ 27i 2! wp ) (Wn, — 2n)
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observe that the integral does not depend on ¢ when ¢ < r,, — |2,/ is small enough. Then
q is holomorphic on A. The function R = f — Pq is also holomorphic on A and

1 f(Z wy) P2, w,) — P(2, z,)
/wnzrn—s |: I

R(z) = lim — (wn —2) n-

e—0+ 27i

The expression in brackets has the form
[(wp, = 25) + > aj () (w7 = 2579)] /(wn — 2n)
j=1

hence is a polynomial in z, of degree < s — 1 with coefficients that are holomorphic
functions of z’. Thus we have the asserted decomposition f = Pq+ R and

sup |R| < Cysup | f]
A A

where C; depends on bounds for the a;(z') and on p = min|P(2’, z,)| on the compact
set {|2'| < '} x {|zn| = r»n}. By the maximum principle applied to ¢ = (f — R)/P on
each disk {2’} x {|zp| < rn — €}, we easily get

sup |q| < p~ (1 + C1)sup|f]. O
A A

§ 2.B. Algebraic Properties of the Ring 0,

We give here important applications of the Weierstrass preparation theorem to the
study of the ring of germs of holomorphic functions in C™.

(2.6) Notation. We let 0,, be the ring of germs of holomorphic functions on C" at 0.
Alternatively, 0,, can be identified with the ring C{z1,...,zn} of convergent power series
M 21,y Zp.

(2.7) Theorem. The ring 0,, is Noetherian, i.e. every ideal . of 0, is finitely generated.

Proof. By induction on n. For n = 1, G,, is principal: every ideal . # {0} is generated
by z°, where s is the minimum of the vanishing orders at 0 of the non zero elements of
$. Let n > 2 and ¥ C 0, .F # {0}. After a change of variables, we may assume that .¥
contains a Weierstrass polynomial P(z’, z,). For every f € .¥, the Weierstrass division
theorem yields

f(z) = P(Z,2,)q9(2) + R(Z', 2n), R(Z,2,)= i cr(2) 28,
k=0

and we have R € .9. Let us consider the set J( of coefficients (co,...,cs_1) in 62°,
corresponding to the polynomials R(2’,z,) which belong to .. Then A is a 6,_-
submodule of 6%° . By the induction hypothesis 6,,_; is Noetherian; furthermore, every
submodule of a finitely generated module over a Noetherian ring is finitely generated
([Lang 1965], Chapter VI). Therefore /U is finitely generated, and .¥ is generated by P
and by polynomials Ry, ..., Ry associated with a finite set of generators of /. U
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Before going further, we need two lemmas which relate the algebraic properties of 0,,
to those of the polynomial ring 6,,_1[z,].

(2.8) Lemma. Let P, F € 0,_1[z,] where P is a Weierstrass polynomial. If P divides
F in G, then P divides F in G, _1[zy].

Proof. Assume that F(Z,z,) = P(2', zn)h(2), h € G,,. The standard division algorithm
of F by P in G,,_1[z,] yields
F=PQ+R, Q,Re 0, 1[z,], deg R < deg P.

The uniqueness part of Th. 2.3 implies h(z) = Q(#, z,) and R = 0. O

(2.9) Lemma. Let P(%,z,) be a Weierstrass polynomial.

a) If P =P, ... Py with P; € 0,,_1[zy], then, up to invertible elements of 0,,_1, all P;
are Weierstrass polynomials.

b) P(%/, z,) is irreducible in O, if and only if it is irreducible in G, _1[z,].

Proof. a) Assume that P = P;...Py with polynomials P; € 0,_1[z,] of respective
degrees s, ZlgjgN s; = s. The product of the leading coefficients of P,..., Py in
0,1 is equal to 1; after normalizing these polynomials, we may assume that Py,..., Py
are unitary and s; > 0 for all j. Then

P(0,z,) =z, = P1(0,2y,) ... Pn(0, z),

n

hence P;(0, z,) = z,’ and therefore P; is a Weierstrass polynomial.

b) Set s = deg P and P(0, z,,) = z5. Assume that P is reducible in 0,,, with P(2/, z,,) =
91(2)g2(z) for non invertible elements ¢1,g92 € 0,. Then ¢;(0,z,) and ¢2(0, z,) have
vanishing orders s1, s5 > 0 with s; + so = s, and

g; =ujP;, deg P;=s;, j=1,2,

where P; is a Weierstrass polynomial and u; € 0,, is invertible. Therefore P P> = uP
for an invertible germ u € @,,. Lemma 2.8 shows that P divides Py P5 in 0,,_1[z,] ; since
Py, P, are unitary and s = s1 + $3, we get P = Py Py, hence P is reducible in 6, _1[z,].
The converse implication is obvious from a). U

(2.10) Theorem. 0,, is a factorial ring, i.e. 0, is entire and:

a) every non zero germ f € 0, admits a factorization f = fi1...fn in irreducible
elements;

b) the factorization is unique up to invertible elements.

Proof. The existence part a) follows from Lemma 2.9 if we take f to be a Weierstrass
polynomial and f = f;... fy be a decomposition of maximal length N into polynomials
of positive degree. In order to prove the uniqueness, it is sufficient to verify the following
statement:
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blf g is an irreducible element that divides a product fifa, then g divides either fi or
fa.

By Th. 2.1, we may assume that f;, f2, g are Weierstrass polynomials in z,. Then g is
irreducible and divides fi f2 in 6,,_1[z,] thanks to Lemmas 2.8 and 2.9 b). By induction
on n, we may assume that 6, _; is factorial. The standard Gauss lemma ([Lang 1965],
Chapter V) says that the polynomial ring A[T] is factorial if the ring A is factorial. Hence
0pn—1zn] is factorial by induction and thus g must divide f; or fa in 6,,_1[z,]. O

(2.11) Theorem. If f, g € 0,, are relatively prime, then the germs f., g, at every point
z € C™ near 0 are again relatively prime.

Proof. One may assume that f = P, g = () are Weierstrass polynomials. Let us recall
that unitary polynomials P, Q € A[X] (4 = a factorial ring) are relatively prime if and
only if their resultant R € ¢ is non zero. Then the resultant R(z’) € 0,,_1 of P(Z,z,)
and Q(2’, z,,) has a non zero germ at 0. Therefore the germ R.. at points 2/ € C"~! near
0 is also non zero. O

§ 3. Coherent Sheaves

§ 3.1. Locally Free Sheaves and Vector Bundles

Section 9 will greatly develope this philosophy. Before introducing the more general
notion of a coherent sheaf, we discuss the notion of locally free sheaves over a sheaf a
ring. All rings occurring in the sequel are supposed to be commutative with unit (the non
commutative case is also of considerable interest, e.g. in view of the theory of 9-modules,
but this subject is beyond the scope of the present book).

(3.1) Definition. Let & be a sheaf of rings on a topological space X and let & a sheaf
of modules over ¢ (or briefly a sd-module). Then & is said to be locally free of rank r
over A, if & is locally isomorphic to A% on a neighborhood of every point, i.e. for every
xo € X one can find a neighborhood Q0 and sections Fi,...,F, € $(Q) such that the
sheaf homomorphism

F:gﬂ%{—)?rg, Sﬂ?ra(wl,...,wr)l—> Z ijj,l-ESPx
1<y<r

s an 1somorphism.

By definition, if & is locally free, there is a covering (U, )acr by open sets on which
& admits free generators F1, ... F" € $(U,). Because the generators can be uniquely
expressed in terms of any other system of independent generators, there is for each pair
(ar, B) a r x r matrix

Gop = (GL5)1<jhar, Gl € d(Us NUp),
such that

ng Z FO{foﬁ on U,NUg.

1<gsr
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In other words, we have a commutative diagram

F.
ey o
Av. v, — Lanuy

Gos] ]

©®
erJamUﬁ ? nyaﬂUﬂ

It follows easily from the equality G.p = F,; ! o F that the transition matrices Gop are

«
invertible matrices satisfying the transition relation

(3.2) Gow = Gagva on U,nN Ug N U7

for all indices a, 8,7 € I. In particular G, = Id on U, and G;é = Ggo on Uy NUB.

Conversely, if we are given a system of invertible r x r matrices G, with coefficients
in A4(U, N Up) satisfying the transition relation (3.2), we can define a locally free sheaf
S of rank r over o by taking ¥ ~ A®" over each U,, the identification over U, N Ug
being given by the isomorphism G,s. A section H of & over an open set {2 C X can
just be seen as a collection of sections H, = (H},..., H") of A4%®7(QNU,) satisfying the
transition relations H, = GogHg over QN U, NUg.

The notion of locally free sheaf is closely related to another essential notion of dif-
ferential geometry, namely the notion of vector bundle (resp. topological, differentiable,
holomorphic . .., vector bundle). To describe the relation between these notions, we as-
sume that the sheaf of rings & is a subsheaf of the sheaf 6k of continous functions on
X with values in the field K = R or K = C, containing the sheaf of locally constant
functions X — K. Then, for each x € X, there is an evaluation map

A, = K, w — w(z)

whose kernel is a maximal ideal m,, of &, and &, /m, = K. Let ¥ be a locally free sheaf
of rank r over 4. To each x € X, we can associate a K-vector space E, = ¥, /m,¥,:
since ¥ ~ A", we have E, ~ (d,/m,)®" = K. The set E =[], .y E, is equipped

with a natural projection
m:E— X, € B, —»m():=x,

and the fibers E, = 7~ !(z) have a structure of r-dimensional K-vector space: such
a structure F is called a K-vector bundle of rank r over X. Every section s € S(U)
gives rise to a section of E over U by setting s(z) = s, mod m,. We obtain a function
(still denoted by the same symbol) s : U — E such that s(z) € E, for every x € U, i.e.
mos = Idy. It is clear that #(U) can be considered as a ¢f(U)-submodule of the K-vector
space of functions U — F mapping a point x € U to an element in the fiber E,. Thus we
get a subsheaf of the sheaf of E-valued sections, which is in a natural way a gd-module
isomorphic to &. This subsheaf will be denoted by ¢(E) and will be called the sheaf of
d-sections of E. If we are given a K-vector bundle E over X and a subsheaf & = «(F)
of the sheaf of all sections of E which is in a natural way a locally free #{-module of
rank 7, we say that E (or more precisely the pair (E,#(F))) is a d-vector bundle of
rank r over X.
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(3.3) Example. In case ¢ = “6x x is the sheaf of all K-valued continuous functions
on X, we say that E is a topological vector bundle over X. When X is a manifold and
A = 6% i, we say that E is a CP-differentiable vector bundle; finally, when X is complex
analyticiand 9 = Ox, we say that F is a holomorphic vector bundle.

Let us introduce still a little more notation. Since #(F) is a locally free sheaf of rank
r over any open set U, in a suitable covering of X, a choice of generators (F1, ... FT)
for d(E)y, yields corresponding generators (el (x),...,e" (x)) of the fibers E, over K.
Such a system of generators is called a @-admissible frame of E over U,. There is a
corresponding isomorphism

(34) Ga : E[U = 7T_1<Ua) — U, X K"

(e

which to each & € E, associates the pair (z,(&},...,¢%)) € Uy x K™ composed of

and of the components (€)1« <, of £ in the basis (e} (z),...,e"(z)) of E,. The bundle
F is said to be trivial if it is of the form X x K", which is the same as saying that
A(FE) = AP, For this reason, the isomorphisms 6, are called trivializations of E over U,,.

The corresponding transition automorphisms are

Oap = 0o 005" : (UsNUp) x K" — (U NUs) x K7,
Oap(r,8) = (2, 9ap(x) - ), (2,§) € (UaNUp) x K,

where (gag) € GL,(d)(Uy NUg) are the transition matrices already described (except
that they are just seen as matrices with coefficients in K rather than with coefficients in
a sheaf). Conversely, if we are given a collection of matrices g,5 = (gikﬁ) € GL, () (Uy N
Up) satisfying the transition relation

Yoy = GapYpy on U, NUgNUy,

we can define a ¥-vector bundle

p= (J] 0w xx)/ ~

by gluing the charts U, x K" via the identification (z4,&s) ~ (z8,&g) if and only if
o =28 =2 € UyNUg and &, = gap(z) - &p.

(3.5) Example. When X is a real differentiable manifold, an interesting example of
real vector bundle is the tangent bundle T ; if 7, : U, — R™ is a collection of coordinate
charts on X, then 0, = 7 x d1, : Txy, — Uy X R™ define trivializations of T'x and the
transition matrices are given by go5(z) = dras(z”) where 7,5 = TaOTg Yand 28 = 75(x).
The dual T% of Tx is called the cotangent bundle of X. If X is complex analytic, then
T'x has the structure of a holomorphic vector bundle.

We now briefly discuss the concept of sheaf and bundle morphisms. If & and &’
are sheaves of d-modules over a topological space X, then by a morphism ¢ : ¥ — &’
we just mean a o-linear sheaf morphism. If ¥ = ¢(F) and &' = «(E’) are locally
free sheaves, this is the same as a ¢-linear bundle morphism, that is, a fiber preserving
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K-linear morphism ¢(x) : E, — FE. such that the matrix representing ¢ in any local
d-admissible frames of E and E’ has coefficients in .

(3.6) Proposition. Suppose that d is a sheaf of local rings, i.e. that a section of o
is invertible in o if and only if it never takes the zero value in K. Let ¢ : ¥ — F' be
a A-morphism of locally free d-modules of rank r, v'. If the rank of the v’ x r matriz
o(z) € My (K) is constant for all x € X, then Ker ¢ and Im ¢ are locally free subsheaves
of &, I respectively, and Cokerp = ' /Tm ¢ is locally free.

Proof. This is just a consequence of elementary linear algebra, once we know that non
zero determinants with coefficients in &4 can be inverted. U

Note that all three sheaves 6x , (Gg( k> Ox are sheaves of local rings, so Prop. 3.6
applies to these cases. However, even if we work in the holomorphic category (4 = Ox),
a difficulty immediately appears that the kernel or cokernel of an arbitrary morphism of
locally free sheaves is in general not locally free.

(3.7) Examples.

a) Take X = C, let ¥ = 9 = 0O be the trivial sheaf, and let ¢ : 6 — 6 be the morphism
u(z) — zu(z). It is immediately seen that ¢ is injective as a sheaf morphism (6
being an entire ring), and that Cokery is the skyscraper sheaf Cy of stalk C at z = 0,
having zero stalks at all other points z # 0. Thus Cokery is not a locally free sheaf,
although ¢ is everywhere injective (note however that the corresponding morphism
vo: E— F (2,8 (2,2 of trivial rank 1 vector bundles E = E' = C x C is not
injective on the zero fiber Ep).

b) Take X = C3, ¥ = 693, &' = 0 and

¢: 0% 0, (u1,u2,us) = Z zjuj (21, 22, 23).
1< <3

Since ¢ yields a surjective bundle morphism on C3 . {0}, one easily sees that Ker ¢
is locally free of rank 2 over C3 \ {0}. However, by looking at the Taylor expansion
of the u;’s at 0, it is not difficult to check that Ker ¢ is the G-submodule of G%?
generated by the three sections (—z3, 21,0), (—23,0, 21) and (0, z3, —22), and that any
two of these three sections cannot generate the O-stalk (Ker ¢)o. Hence Ker ¢ is not
locally free.

Since the category of locally free G-modules is not stable by taking kernels or cok-
ernels, one is led to introduce a more general category which will be stable under these
operations. This leads to the notion of coherent sheaves.

§ 3.2. Notion of Coherence

The notion of coherence again deals with sheaves of modules over a sheaf of rings.
It is a semi-local property which says roughly that the sheaf of modules locally has a
finite presentation in terms of generators and relations. We describe here some general
properties of this notion, before concentrating ourselves on the case of coherent Ox-
modules.
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(3.8) Definition. Let o be a sheaf of rings on a topological space X and & a sheaf of
modules over & (or briefly a AA-module). Then & is said to be locally finitely generated
if for every point xy € X one can find a neighborhood Q and sections Fi, ..., F, € S(Q)
such that for every x € Q) the stalk &, is generated by the germs Fy 5,...,F, , as an
A, -module.

(3.9) Lemma. Let & be a locally finitely generated sheaf of sd-modules on X and
Gi,...,Gn sections in S(U) such that Gy z,,...,GN g, generate Sy, at xg € U. Then
Giz,...,GNg generate &y for x near .

Proof. Take Fi,...,F, as in Def. 3.8. As Gi,...,Gn generate ¥, one can find a
neighborhood Q' C Q of zp and Hj, € #A(Q') such that F; = ) H;,Gy on . Thus
Gix,...,GNo generate &, for all z € (V. O

§ 3.2.1. Definition of Coherent Sheaves. If U is an open subset of X, we denote by &y
the restriction of & to U, i.e. the union of all stalks &, for x € U. If Fy,..., F, € (U),
the kernel of the sheaf homomorphism F : 91?(}1 — v defined by

(3.10) AP 5 (g ..., g1 — Z GPFj €Sy, x€U

1<i<q
is a subsheaf & (F},..., F,) of 91?(}1, called the sheaf of relations between Fi,. .., Fy.

(3.11) Definition. A sheaf & of d-modules on X is said to be coherent if:
a) & is locally finitely generated ;

b) for any open subset U of X and any Fi,...,F, € S (U), the sheaf of relations
R(Fr,...,Fy) is locally finitely generated.

Assumption a) means that every point x € X has a neighborhood €2 such that there
is a surjective sheaf morphism F' : 54%1 — J1q, and assumption b) implies that the
kernel of F' is locally finitely generated. Thus, after shrinking 2, we see that & admits
over () a finite presentation under the form of an exact sequence

(3.12) At L dil s Sg — 0,

where G is given by a ¢ x p matrix (G,i) of sections of (€2) whose columns (Gj1), ...,
(Gjp) are generators of R(F1,..., Fy).

It is clear that every locally finitely generated subsheaf of a coherent sheaf is coherent.

From this we easily infer:

(3.13) Theorem. Let ¢ : F — 4 be a d-morphism of coherent sheaves. Then Im ¢
and ker ¢ are coherent.

Proof. Clearly Im ¢ is a locally finitely generated subsheaf of ¥, so it is coherent. Let
xo € X, let Fy,...,F, € F(Q) be generators of ¥ on a neighborhood 2 of z(, and
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G1,...,G, € ()P be generators of R(¢(F1),...,¢(F,)) on a neighborhood ' C Q
of xg. Then ker ¢ is generated over €’ by the sections

q
H;=> G'Foe F(Q), 1<j<r O
k=1

(3.14) Theorem. Let 0 — F — & — 4 — 0 be an exact sequence of A-modules.
If two of the sheaves F, %, % are coherent, then all three are coherent.

Proof. If ¥ and 9 are coherent, then ¥ = ker(¥ — 4) is coherent by Th. 3.13. If
S and F are coherent, then ¥ is locally finitely generated; to prove the coherence, let
Gi,...,G4 € 4(U) and zp € U. Then there is a neighborhood Q of zy and sections
Gi,..., éq € () which are mapped to Gi,...,G, on Q. After shrinking €, we may
assume also that ¥, is generated by sections F1,..., F, € #(Q). Then R(Gq,...,G,)
is the projection on the last g-components of R (F1,..., F), Gi,..., éq) C «@P*4, which
is finitely generated near xy by the coherence of &. Hence % (G1,...,G,) is finitely
generated near xy and % is coherent.

Finally, assume that & and %4 are coherent. Let ¢ € X be any point, let F1,..., F}, €
F(Q) and Gy, ...,G, € 4(Q2) be generators of F, 4 on a neighborhood 2 of zy. There
is a neighborhood € of z( such that Gi,...,G, admit liftings G1,. ..,Gq e F().
Then (Fy, ..., Fy, Gi,..., éq) generate #jq/, so & is locally finitely generated. Now, let
S1,...,S, be arbitrary sections in #(U) and Sy, ..., S, their images in 4(U). For any
xo € U, the sheaf of relations & (S1, . .., S,) is generated by sections Py, ..., Ps € «(Q)%9
on a small neighborhood € of z¢. Set P; = (Pf)1<k<q- Then H; = leSl +...+ ijSq,
1 < j < s, are mapped to 0 in %4 so they can be seen as sections of F. The coherence of %
shows that % (Hj, ..., Hs) has generators Q1,...,Q: € 4(2')® on a small neighborhood
Q' C Qof xo. Then R(S1,...,5,) is generated over Q' by R; = > QVP, € A(Y),
1 <7 <t,and & is coherent. O

(3.15) Corollary. If F and % are coherent subsheaves of a coherent analytic sheaf ¥,
the intersection F N4 is a coherent sheaf.

Proof. Indeed, the intersection sheaf & N % is the kernel of the composite morphism
F— S — F/%, and ¥/% is coherent. O

§ 3.2.2. Coherent Sheaf of Rings. A sheaf of rings o is said to be coherent if it is
coherent as a module over itself. By Def. 3.11, this means that for any open set U C X
and any sections F; € o(U), the sheaf of relations R(F1,..., Fy) is finitely generated.
The above results then imply that all free modules ?®P are coherent. As a consequence:

(3.16) Theorem. If < is a coherent sheaf of rings, any locally finitely generated subsheaf
of A®P is coherent. In particular, if & is a coherent si-module and Fy, ..., F, € S(U),
the sheaf of relations R(F1, ..., F;) C 4% is also coherent.

Let & be a coherent sheaf of modules over a coherent sheaf of ring «. By an iteration
of construction (3.12), we see that for every integer m > 0 and every point € X there
is a neighborhood €2 of x on which there is an exact sequence of sheaves

(3.17) ey DT B T i T g 0,
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where F} is given by a p;_; X p; matrix of sections in #/(€2).
§ 3.3. Analytic Sheaves and the Oka Theorem

Many properties of holomorphic functions which will be considered in this book can
be expressed in terms of sheaves. Among them, analytic sheaves play a central role. The
Oka theorem [Oka 1950] asserting the coherence of the sheaf of holomorphic functions
can be seen as a far-reaching deepening of the noetherian property seen in Sect. 1. The
theory of analytic sheaves could not be presented without it.

(3.18) Definition. Let M be a n-dimensional complex analytic manifold and let Gy be
the sheaf of germs of analytic functions on M. An analytic sheaf over M is by definition
a sheaf & of modules over Op,.

(3.19) Coherence theorem of Oka. The sheaf of rings Oy is coherent for any complex
manifold M .

Let Fy,...,F, € 6(U). Since Oy, is Noetherian, we already know that every stalk
R(Fr,...,Fy)z C @%ﬁx is finitely generated, but the important new fact expressed by
the theorem is that the sheaf of relations is locally finitely generated, namely that the
“same” generators can be chosen to generate each stalk in a neighborhood of a given
point.

Proof. By induction on n = dim¢ M. For n = 0, the stalks Oy, are equal to C and the
result is trivial. Assume now that n > 1 and that the result has already been proved in
dimension n — 1. Let U be an open set of M and Fi,...,F, € Oy (U). To show that
R(Fi,...,Fy) is locally finitely generated, we may assume that U = A = A’ x A, is a
polydisk in C™ centered at xy = 0 ; after a change of coordinates and multiplication of
Fi, ..., F, by invertible functions, we may also suppose that Fi,..., F;, are Weierstrass
polynomials in z, with coefficients in G(A’). We need a lemma.

(3.20) Lemma. Ifz = (z/,z,) € A, the Oa z-module R(F,...,F,), is generated by
those of its elements whose components are germs of analytic polynomials in Oar u[2n]
with a degree in z, at most equal to p, the maximum of the degrees of Fi, ..., Fy.

Proof. Assume for example that Fj is of the maximum degree pu. By the Weierstrass
preparation Th. 1.1 and Lemma 1.9 applied at x, we can write F,, = f’f” where
I f" € Oar |z, [/ is a Weierstrass polynomial in z, — z,, and f”(z) # 0. Let u/
and p/" denote the degrees of f’ and f” with respect to z,, so p’ + p” = u. Now, take
(g%,...,99) € R(FY,...,F,),. The Weierstrass division theorem gives

gj:qumtj—I—rj, j=1,...,q—1,

where t/ € Oa, and 17 € Gas 4[2,] is a polynomial of degree < p/. For j = ¢, define
rd=g?+ Elgqu_1 thj’;p- We can write

(3.21) (gh - gD = D t(0,...,Fy.. 0, =Fj)p + (r',...,19)
1<5<gq

where Fj, is in the j-th position in the g-tuples of the summation. Since these g-tuples
are in R(Fy,. .., F,)., we have (r',...,r9) € R(Fy,..., F,),, thus

Z i+ ff"rt=0.

1<j<g—1
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As the sum is a polynomial in z, of degree < u + y/, it follows from Lemma 1.9 that
f"r? is a polynomial in z, of degree < u. Now we have

(rl, o rd) = 1/f”(f”r1, o [

where f”r7 is of degree < p' + p” = p. In combination with (3.21) this proves the
lemma. U

Proof of Theorem 8.19 (end).. If g = (g',...,9%) is one of the polynomials
of R(F1,...,F,), described in Lemma 3.20, we can write

g = g uwF2E D wIR € Opr .
0<ksp

The condition for (g',...,¢9) to belong to R(Fi,..., F,), therefore consists of 2u + 1
linear conditions for the germ u = (u/*) with coefficients in G(A’). By the induction
hypothesis, Gas is coherent and Th. 3.16 shows that the corresponding modules of re-
lations are generated over Gas ., for ' in a neighborhood €' of 0, by finitely many
(g x p)-tuples Uy, ..., Uy € O(Q)%*. By Lemma 3.20, R(F,..., Fy), is generated at
every point x € 2 = Q' x A,, by the germs of the corresponding polynomials

Gi(2) (Z U; (z)zn>1<j<q, e, 1<I<N. 0

OSksp

(3.22) Strong Noetherian property. Let & be a coherent analytic sheaf on a complex
manifold M and let 1 C Fo C ... be an increasing sequence of coherent subsheaves
of F. Then the sequence (Fy) is stationary on every compact subset of M.

Proof. Since F is locally a quotient of a free module @%q, we can pull back the sequence
to @%ﬁ and thus suppose ¥ = 0); (by easy reductions similar to those in the proof of
Th. 3.14). Suppose M connected and Fy, # {0} for some index ko (otherwise, there is
nothing to prove). By the analytic continuation theorem, we easily see that Fy, , # {0}
for every x € M. We can thus find a non zero Weierstrass polynomial P € % (V),
deg, P(2',2,) = p, in a coordinate neighborhood V' = A’ x A,, of any point € M. A
division by P shows that for £ > kg and = € V, all stalks F, , are generated by P, and
by polynomials of degree < p in z, with coefficients in Oa/ .. Therefore, we can apply
induction on n to the coherent Ga/-module

F =N {Q € Oar[zn]; deg @ < ,u}

and its increasing sequence of coherent subsheaves ¥ = F, N F'. O

§ 4. Complex Analytic Sets. Local Properties

§4.1. Definition. Irreducible Components

A complex analytic set is a set which can be defined locally by finitely many holo-
morphic equations; such a set has in general singular points, because no assumption is
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made on the differentials of the equations. We are interested both in the description of
the singularities and in the study of algebraic properties of holomorphic functions on an-
alytic sets. For a more detailed study than ours, we refer to H. Cartan’s seminar [Cartan
1950], to the books of [Gunning-Rossi 1965], [Narasimhan 1966] or the recent book by
[Grauert-Remmert 1984].

(4.1) Definition. Let M be a complex analytic manifold. A subset A C M 1is said to
be an analytic subset of M if A is closed and if for every point o € A there exist a
neighborhood U of x¢ and holomorphic functions g1,..., g, in 6(U) such that

ANU={z€U; q1(2) = ... =gn(z) = 0}.

Then ¢1,...,gn are said to be (local) equations of A in U.

It is easy to see that a finite union or intersection of analytic sets is analytic: if (g}),
! 1

(9%) are equations of A’, A” in the open set U, then the family of all products (gjg;)
and the family (g;) U (g;) define equations of A"U A” and A’ N A” respectively.

(4.2) Remark. Assume that M is connected. The analytic continuation theorem shows
that either A = M or A has no interior point. In the latter case, each piece ANU = g~1(0)
is the set of points where the function log|g|? = log(|g1]?> + - - - + |gn|?) € Psh(U) takes
the value —oo, hence A is pluripolar. In particular M \ A is connected and every function
f € 6(M ~ A) that is locally bounded near A can be extended to a function f € G(M).

O

We focus now our attention on local properties of analytic sets. By definition, a germ
of set at a point € M is an equivalence class of elements in the power set 2 (M),
with A ~ B if there is an open neighborhood V of x such that ANV = BNV. The
germ of a subset A C M at z will be denoted by (A,x). We most often consider the
case when A C M is a analytic set in a neighborhood U of x, and in this case we
denote by .94, the ideal of germs f € Opr, which vanish on (A,x). Conversely, if
9 =(g1,-..,9n) is an ideal of Gy, we denote by (V(§),z) the germ at z of the zero
variety V(¥) = {z € U ; ¢1(2) = ... = gn(z) = 0}, where U is a neighborhood of x
such that g; € O6(U). It is easy to check that the germ (V(cJ),z) does not depend on
the choice of generators. Moreover, it is clear that

(4.3") for every ideal ¢ in the ring Oy ,, Iv(9)e 2 F
(4.3") for every germ of analytic set (A, x), (V(Fa,2),2) = (A, ).

(4.4) Definition. A germ (A, x) is said to be irreducible if it has no decomposition
(A, x) = (A1, x) U (Ag, ) with analytic sets (A, x) # (A,z), j =1,2.

(4.5) Proposition. A germ (A, x) is irreducible if and only if $4 5 is a prime ideal of
the ring Opy 4.

Proof. Let us recall that an ideal ¢ is said to be prime if fg € ¢ implies f € ¢
or g € §. Assume that (A,x) is irreducible and that fg € $4,. As we can write
(A,z) = (A1,2) U (Ag,2) with A; = AN f710) and A2 = AN g~ 1(0), we must have
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for example (A1,z) = (A, x) ; thus f € $4,, and P4, is prime. Conversely, if (A4, z) =
(A1, 2) U (A, x) with (4;,z) # (A, x), there exist f € $a, 2, g € P4, such that
f,9¢ 94, However fg € $4 ,, thus 4 , is not prime. O

(4.6) Theorem. Every decreasing sequence of germs of analytic sets (Ag,x) is station-
ary.

Proof. In fact, the corresponding sequence of ideals #, = .$4, , is increasing, thus
$r = $i, for k > ko large enough by the Noetherian property of O ,.. Hence
(Ag,z) = (V($x),z) is constant for k > ko. This result has the following straight-
forward consequence: O

(4.7) Theorem. Every analytic germ (A, x) has a finite decomposition
(A7 CL’) = (Ak, x)

1<k<N

where the germs (Aj, x) are irreducible and (A, x) ¢ (Ax,x) for j # k. The decomposi-
tion is unique apart from the ordering.

Proof. If (A, z) can be split in several components, we split repeatedly each component
as long as one of them is reducible. The process must stop by Th. 4.6, whence the
existence. For the uniqueness, assume that (A,z) = [J(A],x), 1 <1 < N’, is another
decomposition. Since (Ax,z) = J,(Ar N A}, x), we must have (Ay,x) = (Ar N A}, z) for
some | = I(k), i.e. (Ag, ) C (A}, x), and likewise (A}, ) C (A, x) for some j. Hence
j=kand (A}, v) = (Ax, ). O

§4.2. Local Structure of a Germ of Analytic Set

We are going to describe the local structure of a germ, both from the holomorphic
and topological points of view. By the above decomposition theorem, we may restrict
ourselves to the case of irreducible germs Let ¢ be a prime ideal of 6,, = Oc» o and let
A =V(9¥) be its zero variety. We set ¥, = $ NC{z1,..., 2} for each k=0,1,...,n.

(4.8) Proposition. There exist an integer d, a basis (e1,...,e,) of C" and associated
coordinates (21, ...,2z,) with the following properties: $q = {0} and for every integer
k=d+1,...,n there is a Weierstrass polynomial P, € §;, of the form
(49) Pk(z’, Zk) = sz + Z CLng(Z/) sz_j, aj’k(z’) € @k—h

1<y<se
where a;(z') = O(|2'7). Moreover, the basis (e1,...,e,) can be chosen arbitrarily close
to any preassigned basis (€Y, ...,e2).

Proof. By induction on n. If § = ¢, = {0}, then d = n and there is nothing to prove.
Otherwise, select a non zero element g, € ¢ and a vector e, such that C > w —
gn(wey) has minimum vanishing order s,. This choice excludes at most the algebraic

set gﬁfn)(v) = 0, so e, can be taken arbitrarily close to €?. Let (Z1,...,2,_1,2,) be
the coordinates associated to the basis (e,...,eY ;. e,). After multiplication by an

invertible element, we may assume that g,, is a Weierstrass polynomial

s s 2\ ~Sn—J
Pz =20+ Y aja()#0, ajn € Gu,
IENA
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and a; (%) = O(|Z]?) by Remark 2.2. If ¢, 1 = $NC{z} = {0} then d =n — 1 and
the construction is finished. Otherwise we apply the induction hypothesis to the ideal

$n—1 C B,_q in order to find a new basis (e1, ..., e,—1) of Vect(e}, ..., el _;), associated
coordinates (z1,...,2,—1) and Weierstrass polynomials P, € ¥, d+ 1<k <n—1, as
stated in the lemma. O

(4.10) Lemma. If w € C is a root of w? + ajw?=t + -+ +aq = 0, a; € C, then
lw| < 2max |a;|*/7.

Proof. Otherwise |w| > 2|a;|'/7 for all j = 1,...,d and the given equation —1 = a; /w +
o4 ag/w? implies 1 < 271 4 -+ - + 279 a contradiction. U

(4.11) Corollary. Set 2’ = (21,...,24), 2" = (2431, -, 2n), and let A" in C*, A" in
C"= 4 be polydisks of center 0 and radii ',r"" > 0. Then the germ (A, 0) is contained in
a cone |2"| < Cl2'|, C = constant, and the restriction of the projection map C* — C9,
(2, 2") — 2/

T AN(A" x A”) — A’

is proper if v’ is small enough and v’ < r"/C.

Proof. The polynomials Py (21, ..., 2k—1; 2k) vanish on (A, 0). By Lemma 4.10 and (4.9),
every point z € A sufficiently close to 0 satisfies

|z < Cr(lza] 4 -+ |zk-1]), d+1<Ek<n,
thus |2”| < C|z’| and the Corollary follows. O
Since $q = {0}, we have an injective ring morphism
(4.12) Oqg =C{z1,...,24} — 0,/ §.

(4.13) Proposition. 0,/ ¢ is a finite integral extension of Oq.

Proof. Let f € 0,. A division by P, yields f = P,q, + R, with a remainder R,, €
Orn—1[2n], deg, R, < s,. Further divisions of the coefficients of R, by P, 1, P,_2 etc
... yield

Rpy1 = Prae + Ry, Ry € Oplzig1, ..., 20,

where deg, Ry < s; for 7 > k. Hence

(4.14) f=Rq+ Z Prqp. = R4 mod (Pd—l—h ceey Pn) C f
d+1<k<n
and 0,/ ¢ is finitely generated as an Gg-module by the family of monomials zf;f{l 2o

with a; < s;.

As ¢ is prime, 0,/ ¢ is an entire ring. We denote by f the class of any germ
fe0,in 0,/ ¥, by M and M4 the quotient fields of 0,/ ¢ and O respectively. Then
My = MglZiy1, ..., 2] is a finite algebraic extension of My. Let g = [M a:M4) be its
degree and let oy, ..., 0, be the embeddings of M 4 over M, in an algebraic closure Ma.
Let us recall that a factorial ring is integrally closed in its quotient field ([Lang 1965],
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Chapter IX). Hence every element of (4 which is integral over G, lies in fact in G4. By
the primitive element theorem, there exists a linear form u(z") = cgi12441 + -+ + Cnzn,

¢, € C, such that M4 = Mq[u] ; in fact, u is of degree ¢ if and only if 014, . . ., o,u are all
distinct, and this excludes at most a finite number of vector subspaces in the space C"~¢
of coefficients (cq41,...,¢n). As u € 0,/ ¢ is integral over the integrally closed ring Oy,

the unitary irreducible polynomial W,, of @ over ., has coefficients in Oy :

Wy (2';T)=T9 + Z aj(zl,...,zd)Tq_j, a; € 0.

1<i<q

W, must be a Weierstrass polynomial, otherwise there would exist a factorization W,, =
W'Q in G4]T] with a Weierstrass polynomial W’ of degree degW’ < ¢ = deg @ and
Q(0) # 0, hence W'(@) = 0, a contradiction. In the same way, we see that Zgi1,..., 2,
have irreducible equations Wi (2 ; Z) = 0 where W, € G4[T] is a Weierstrass polynomial
of degree =deg 2, < q, d+ 1< k < n.

(4.15) Lemma. Let 6(2') € G4 be the discriminant of W, (2 ;T). For every element g
of M a which is integral over O4 (or equivalently over 0,/ §) we have 6g € Oqla].

Proof. We have 6(z) =[], (ot — o;u)* 20, and g € M4 = My[u] can be written

g= Z bjﬂj, bj € My,

0<i<g—1
where by, ..., bs—1 are the solutions of the linear system opg = > b;(0x@)’ ; the determi-
nant (of Van der Monde type) is 6'/2. Tt follows that db; € My are polynomials in o9

and o, thus 6b; is integral over O4. As Oq4 is integrally closed, we must have db; € Oy,
hence dg € Og4[a]. O

In particular, there exist unique polynomials Bgyy1, ..., B, € 04[T] with deg By, <
q — 1, such that

(4.16) §(2")z = Bp(2';u(2"))  (mod ¥).
Then we have
(4.17) §(2" )W (2" Br(2'; T)/6(2")) € ideal W, (z"; T) G4[T] ;

indeed, the left-hand side is a polynomial in 04[] and admits T = @ as a root in G,,/ ¢
since By(2'; @)/0(2") = 2, and Wy (2'; Zx) = 0.

(4.18) Lemma. Consider the ideal
G= (Wl ;u(2")) , 8(")ar = Bi(+'su(z"))) <

and set m = max{q,(n — d)(q — 1)}. For every germ f € O,, there exists a unique
polynomial R € O4[T], degr R < q — 1, such that

0(z")" f(2) = R(z"5u(z"))  (mod 4).
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Moreover f € § implies R =0, hence 6™ § C 4.

Proof. By (4.17) and a substitution of zx, we find §(2")IWy(2"; zx) € 9. The analogue
of formula (4.14) with W}, in place of Py yields

f - Rd + Z qukv Rd S @d[zd—Fl? .. '7Zn]7

d+1<k<n
with deg, Rq < deg Wy < ¢, thus 6™ f = 0™ Rq mod 9. We may therefore replace f by
R4 and assume that f € G4[z441,- - ., 2,] is a polynomial of total degree < (n—d)(¢—1) <

m. A substitution of z; by Bg(z";u(z"))/d(Z") yields G € 64[T] such that
§(2)™f(2) = G(Z';u(z"))  mod (8(z")zx — Br(z";u(z"))).

Finally, a division G = W, Q + R gives the required polynomial R € G4[T]. The last
statement is clear: if f € ¢ satisfies 6" (2')f(2) = R(z;u(2")) mod 4 for degr R < ¢,
then R(z";u) =0, and as @ € 0,,/ ¢ is of degree g, we must have R = 0. The uniqueness
of R is proved similarly. O

(4.19) Local parametrization theorem. Let ¢ be a prime ideal of 0, and let A =
V(Y¥). Assume that the coordinates

(Z/;Z//) = (Zl,...,Zd;Zd+1,...,Zn)

are chosen as above. Then the ring 0,/ § is a finite integral extension of Oq ; let g be the
degree of the extension and let 6(2") € G4 be the discriminant of the irreducible polynomial
of a primitive element w(z") = >, _  crzr. If A', A" are polydisks of sufficiently small
radii v, r" and if v < r"/C with C large, the projection map m: AN (A" x A”) — A/
is a ramified covering with q sheets, whose ramification locus is contained in S = {2z’ €
A';6(2") = 0}. This means that:

a) the open subset Ag = AN ((A'\.S) x A") is a smooth d-dimensional manifold, dense
in AN (A" x A”) ;

b) m: Ag — A’ S is a covering ;
c) the fibers m1(2') have exactly q elements if 2’ ¢ S and at most q if 2’ € S.

Moreover, Ag is a connected covering of A" .S, and AN (A" x A”) is contained in a
cone |2 < C|2'| (see Fig. 1).

2 e ChP

—_

A//

0
\
\
\
\
\
\
\
\
\
A}
S

A/ 2 e CP

Fig. ITI-1 Ramified covering from A to A’ C CP.
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Proof. After a linear change in the coordinates zq11, . . ., 2, we may assume u(z") = z441,
so Wy, = Wyy1 and Bgy1(2';T) = §(2")T. By Lemma 4.18, we have

G = (Warr(2, 2a01) s 8 )2k = Bil(2',2001)) gogsn C Fo 67 F C 4.

We can thus find a polydisk A = A’ x A” of sufficiently small radii »/,7” such that
V(g)cV(4) cV(E™g)in A AsV(F)=Aand V(§)NA =S5 x A”, this implies

ANACV(9GNAC((ANA)U(S x A").

In particular, the set Ag = AN ((A’ N S) X A”) lying above A’ S coincides with
V(4)n ((A"\S) x A”), which is the set of points z € A parametrized by the equations

(4.20) 0(z") #0,  War1(2, zat1) =0,
‘ 2z = Br(Z', 2q41)/0(2"), d+2 <k <n.

As 0(2') is the resultant of Wy11 and 0Wy41 /0T, we have
OWyi1/0T(2',2441) #0  on Ag.

The implicit function theorem shows that z41 is locally a holomorphic function of 2z’ on
Ag, and the same is true for z; = By (2, z441)/0(7'), k > d + 2. Hence Ag is a smooth
manifold, and for ' < r”//C small, the projection map 7 : Ag — A’ ~\ S is a proper
local diffeomorphism; by (4.20) the fibers 7=1(2’) have at most ¢ points corresponding to
some of the ¢ roots w of Wy, 1 (2" ;w) = 0. Since A’ S is connected (Remark 4.2), either
Ags = 0 or the map 7 is a covering of constant sheet number ¢’ < ¢. However, if w is a
root of Wy (2, w) =0 with 2/ € A’ S and if we set zq11 = w, 2z = Bi(2',w)/d(2'),
k > d + 2, relation (4.17) shows that Wy (2, 2x) = 0, in particular |z;| = O(]2'|'/9) by
Lemma 4.10. For 2z’ small enough, the ¢ points z = (z/,2") defined in this way lie in
A, thus ¢’ = ¢q. Property b) and the first parts of a) and ¢) follow. Now, we need the
following lemma.

(4.21) Lemma. If § C 0, is prime and A=V (§), then $40 = §.

It is obvious that Y40 D ¢. Now, for any f € .94, Prop. 4.13 implies that f satisfies
in 0,,/.9 an irreducible equation

fr+b1(Z) 4 4+ b,.(2) =0 (mod $).

Then b,.(2") vanishes on (A4,0) and the first part of c) gives b, = 0 on A’ ' S. Hence
b, = 0 and the irreducibility of the equation of f implies r =1, so f € ¥, as desired. [

Proof of Theorem 4.19 (end).. It only remains to prove that Ag is connected and dense
in ANA and that the fibers 771(2’), 2/ € S, have at most ¢ elements. Let Ag1,..., As N
be the connected components of Ag. Then 7 : Ag; — A’ \ S is a covering with g,
sheets, g1 + -+ + gy = q. For every point ¢’ € A’ S, there exists a neighborhood
U of ¢’ such that Ag; N7~ !(U) is a disjoint union of graphs 2" = g; x(2’) of analytic
functions g, € O(U), 1 < k < g;. If A(2”) is an arbitrary linear form in zgi1,..., 2,
and 2/ € A’ S, we set

Py;(¢:T) = 11 (T-M) = J[ (T—Xogin(z)).

{275 (#",2")€As 5} 1Sksk;
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This defines a polynomial in 7" with bounded analytic coefficients on A’ ~. S. These
coefficients have analytic extensions to A’ (Remark 4.2), thus P\ ; € G(A’)[T]. By
construction, Py (2’ ; A(2”)) vanishes identically on Ag ;. Set

Po= ][ Pu  f(2)=6(E) Pz AE") 5

1<G<N

f vanishes on Ag; U...UAgn U(S xA”) D ANA. Lemma 4.21 shows that $4 ¢ is
prime; as 6 ¢ Ja,0, we get Py (2 ;A(2”)) € Fa, for some j. This is a contradiction if
N > 2 and if X is chosen in such a way that A\ separates the ¢ points 2!/ in each fiber
n1(2]), for a sequence 2/, — 0 in A’ S. Hence N = 1, Ag is connected, and for every
A € (C"%)* we have Py(2/,A(z") € J(a,0)- By construction Py(2’,A(z")) vanishes on
Ag, so it vanishes on Ag ; hence, for every 2z’ € S, the fiber Ag N7~ 1(z’) has at most ¢
elements, otherwise selecting A\ which separates ¢ + 1 of these points would yield ¢ + 1
roots A(2”) of P\(z';T), a contradiction. Assume now that Ag is not dense in AN A for
arbitrarily small polydisks A. Then there exists a sequence A > z, = (2, 2!)) — 0 such

IZE e %

that 2}, € S and z/ is not in F, := pr’(As N7 '(z])). The continuity of the roots of
the polynomial Py (2';T) as A’ S 35 2/ — 2/, implies that the set of roots of Py(z,;T)
is A(F,,). Select A such that A(z])) & A(F),) for all v. Then Py (2),; A(z])) # 0 for every v

and Py (2 ;A\(2")) & Fa,0, a contradiction. O

At this point, it should be observed that many of the above statements completely
fail in the case of real analytic sets. In R?, for example, the prime ideal § = (z° + y?)
defines an irreducible germ of curve (A,0) and there is an injective integral extension
of rings R{z} — R{z,y}/ ¢ of degree 4; however, the projection of (A,0) on the first
factor, (z,y) — z, has not a constant sheet number near 0, and this number is not related
to the degree of the extension. Also, the prime ideal § = (2% 4 y?) has an associated
variety V' ( #) reduced to {0}, hence Y40 = (z,y) is strictly larger than ¢, in contrast
with Lemma 4.21.

Let us return to the complex situation, which is much better behaved. The result
obtained in Lemma 4.21 can then be extended to non prime ideals and we get the following
important result:

(4.22) Hilbert’s Nullstellensatz. For every ideal § C 0,

Ivigo =5

where \/y is the radical of ¢, i.e. the set of germs f € O,, such that some power fF lies
Proof. Set B = V(¢¥). If f¥ € ¢, then f* vanishes on (B,0) and f € $po. Thus
\/j C 9p,0. Conversely, it is well known that \/? is the intersection of all prime ideals
% > ¢ ([Lang 1965], Chapter VI). For such an ideal (B,0) = (V($),0) > (V(2),0),
thus $po C yv(@),o = 9 in view of Lemma 4.21. Therefore $p o C ﬂggj 9P = \/?
and the Theorem is proved. O

In other words, if a germ (B, 0) is defined by an arbitrary ideal ¢ C 0,, and if f € 0,
vanishes on (B,0), then some power f¥ lies in §.
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§ 4.3. Regular and Singular Points. Dimension

The above powerful results enable us to investigate the structure of singularities of
an analytic set. We first give a few definitions.

(4.23) Definition. Let A C M be an analytic set and v € A. We say that x € A is
a reqular point of A if AN is a C-analytic submanifold of 2 for some neighborhood €
of x. Otherwise x is said to be singular. The corresponding subsets of A will be denoted
respectively Aveg and Aging.

It is clear from the definition that A,., is an open subset of A (thus Aging is closed),
and that the connected components of A, are C-analytic submanifolds of M (non
necessarily closed).

(4.24) Proposition. If (A, x) is irreducible, there exist arbitrarily small neighborhoods
Q of x such that Aieg N2 is dense and connected in AN Q.

Proof. Take 2 = A as in Th. 4.19. Then Ag C A;eg N2 C ANKY, where Ag is connected
and dense in AN Q ; hence A, N§2 has the same properties. O

(4.25) Definition. The dimension of an irreducible germ of analytic set (A, x) is defined
by dim(A, z) = dim(Aveg, ). If (A, ) has several irreducible components (A, x), we set

dim(A, z) = max{dim(A4;,x)}, codim(A,z)=n —dim(4,z).

(4.26) Proposition. Let (B,z) C (A, x) be germs of analytic sets. If (A, x) is irreducible
and (B, x) # (A, x), then dim(B, z) < dim(A, z) and BN Q has empty interior in AN
for all sufficiently small neighborhoods Q) of x.

Proof. We may assume = =0, (4,0) C (C",0) and (B, 0) irreducible. Then %40 C $5o
are prime ideals. When we choose suitable coordinates for the ramified coverings, we
may at each step select vectors e,,e,_1,... that work simultaneously for A and B. If
dim B = dim A, the process stops for both at the same time, i.e. we get ramified coverings

T AN(A"' xA”) — A’ 7:BN(A"xA") — A’

with ramification loci S4, Sg. Then BN ((A’\ (S4USg)) x A”) is an open subset of the
manifold Ag = AN ((A’ N S4) X A”), therefore BN Ag is an analytic subset of Ag with
non empty interior. The same conclusion would hold if BN A had non empty interior in
ANA. As Ag is connected, we get BN Ag = Ag, and as BN A is closed in A we infer
BNADAs=ANA, hence (B,0) = (4,0), in contradiction with the hypothesis. [

(4.27) Example: parametrization of curves. Suppose that (A,0) is an irreducible
germ of curve (dim(A,0) = 1). If the disk A’ C C is chosen so small that S = {0}, then
Ag is a connected covering of A’ ~\ {0} with ¢ sheets. Hence, there exists a covering
isomorphism between 7 and the standard covering

CoOA(r)~{0} — A(r9) {0}, t+—t?  r?=radius of A/,
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i.e. a map v : A(r) ~ {0} — Ag such that 7w o ~(¢) = t9. This map extends into a
bijective holomorphic map v : A(r) — AN A with 7(0) = 0. This means that every
irreducible germ of curve can be parametrized by a bijective holomorphic map defined
on a disk in C (see also Exercise 10.8).

§4.4. Coherence of Ideal Sheaves

Let A be an analytic set in a complex manifold M. The sheaf of ideals 94 is the
subsheaf of G); consisting of germs of holomorphic functions on M which vanish on A.
Its stalks are the ideals .94 , already considered; note that $4 , = Op, if ¢ A If
x € A, we let 04, be the ring of germs of functions on (A, x) which can be extended as
germs of holomorphic functions on (M, z). By definition, there is a surjective morphism
On,z — 04 whose kernel is .94 ,, thus

(4.28) @A,x = @M,w/yA,w7 Vo € A,

ie. O4 = (Onrr/Fa)ra. Since $4 . = Opr, for o ¢ A, the quotient sheaf Gps/F 4 is zero
on M ~ A.

(4.29) Theorem ([Cartan 1950]). For any analytic set A C M, the sheaf of ideals 9 4
s a coherent analytic sheaf.

Proof. Tt is sufficient to prove the result when A is an analytic subset in a neighborhood
of 0 in C™. If (A,0) is not irreducible, there exists a neighborhood € such that A N
Q = A, U...U Ay where Ay are analytic sets in ) and (A, 0) is irreducible. We
have $4nq = [)Fa4,, so by Cor. 3.15 we may assume that (A4,0) is irreducible. Then
we can choose coordinates z’, z”, polydisks A’ A” and a primitive element u(z"”) =
Cdt+1%d+1 + -+ + cpzn such that Th. 4.19 is valid. Since §(2') = Hj<k(ak7l — 0;0)%, we
see that 6(2’) is in fact a polynomial in the ¢; ’s with coefficients in 04. The same is true
for the coefficients of the polynomials W,,(2';T) and By(z';T) which can be expressed
in terms of the elementary symmetric functions of the ox@’s. We suppose that A’ is
chosen small enough in order that all coefficients of these Gg4[cg41, ..., ¢y] polynomials
are in O(A’). Let d, € OG(A’) be some non zero coefficient appearing in §™ = Y §,c*.
Also, let Gy, ...,Gn € G(A’)[Z"] be the coefficients of all monomials ¢* appearing in the
expansion of the functions W, (2" ; u(z")) or 6(2")z — B (2" ;u(z")). Clearly, Gy,...,Gy
vanish on A N A. We contend that

(4.30) Iaz={f€0ma; 6af €(Grar....Gna)}.

This implies that the sheaf .9 4 is the projection on the first factor of the sheaf of relations
R(0a,G1,...,GN) C @XH, which is coherent by the Oka theorem; Theorem 4.29 then
follows.

We first prove that the inclusion 94, D {...} holds in (4.30). In fact, if §of €
(G1,zs...,GN,z), then f vanishes on A \ {d, = 0} in some neighborhood of x. Since
(ANA) N {0o =0} is dense in AN A, we conclude that f € F4,.

To prove the other inclusion $4 , C {...}, we repeat the proof of Lemma 4.18 with
a few modifications. Let x € A be a given point. At z, the irreducible polynomials
Wy (2" ;T) and Wi (2';T) of @ and 2 in Opro/ 94,0 split into

Wu(2'5T) = Wy (25T — u(2”)) Quu (23T — u(z")),
Wk(zl aT) = Wk,x(zl aT - xk) Qk,w(zl aT - .Tk),
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where Wy, (2 ;T) and Wy, ,(2"; T') are Weierstrass polynomials in 7" and Q,, »(2’,0) # 0,
Qr z(2',0) # 0. For all 2 € A/, the roots of W,,(2';T') are the values u(z") at all points
ze€ AN7T~1(2"). As A is closed, any point z € AN7w~1(z') with 2’ near 2’ has to be in a
small neighborhood of one of the points y € AN 7~ !(z'). Choose c441, ..., ¢, such that
the linear form u(z”") separates all points in the fiber AN7~1(2’). Then, for a root u(z")
of Wy o (2" ;T —u(2”)), the point z must be in a neighborhood of y = z, otherwise u(z")
would be near u(y”) # u(z”) and the Weierstrass polynomial W, ,(z';T) would have a
root away from 0, in contradiction with (4.10). Conversely, if 2 € AN 7~ 1(2') is near
z, then Qu . (2" ;u(z") — u(2”)) # 0 and u(2”) is a root of W, ,(2'; T — u(z")). From
this, we infer that every polynomial P(z";T) € Gas . [T] such that P(2';u(z”)) =0 on
(A, z) is a multiple of W, ,(z';T — u(z")), because the roots of the latter polynomial
are simple for 2’ in the dense set (A’ \ S,z). In particular deg P < deg W, , implies
P =0 and
6(2 ) Wio (25 Bi(2 5u(2"))/0(2") — o)

is a multiple of W, ,, (z’ : T—u(x”)). If we replace W,,, Wy, by Wy, 5, Wy, » respectively, the
proof of Lemma 4.18 shows that for every f € Oy, there is a polynomial R € O+ 4 [T]
of degree deg R < deg W, , such that

(=)™ f(2) = R(Z/ ; U(Z/’)) modulo the ideal
(Waa (25 u(z") = u(a")), 6(z")z — Be(25u(z")) ),

and f € 9,4, implies R = 0. Since W, , differs from W, only by an invertible element
in Opr 4, we conclude that

(D 0ac®)Fa0 = 6" Ia0 C (Gra. ., Grva).

This is true for a dense open set of coefficients c441, ..., ¢y, therefore by expressing the
coefficients 0, through interpolation of > §,c® at suitable points ¢ we infer
baFa,s C(G1g,...,GNy) forall a. O

(4.31) Theorem. Ag,g is an analytic subset of A.

Proof. The statement is local. Assume first that (A, 0) is an irreducible germ in C". Let
g1, .- -, 9N be generators of the sheaf .4 on a neighborhood 2 of 0. Set d =dim A. In a
neighborhood of every point x € A,.g M), A can be defined by holomorphic equations
u1(z) = ... = up—dq(z) = 0 such that duy,...,du,_4 are linearly independant. As
Ui, ..., Uy—q are generated by g1,...,gn, one can extract a subfamily g;,,...,g;, , that
has at least one non zero Jacobian determinant of rank n — d at x. Therefore Agjng N €2
is defined by the equations

Jg; _ =|K|=
det(a—zk),zéé—Q JC{l....N}, Kc{l,....,n}, [J|=|K|=n—d

Assume now that (A4,0) = (J(A;,0) with (A4;,0) irreducible. The germ of an analytic
set at a regular point is irreducible, thus every point which belongs simultaneously to at
least two components is singular. Hence

(Asinga 0) - U(Al,singa 0) U U(Ak N Ala 0)7
kAl
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and Aging is analytic. O

Now, we give a characterization of regular points in terms of a simple algebraic pro-
perty of the ring G4 ..

(4.32) Proposition. Let (A, x) be a germ of analytic set of dimension d and let my , C
OGa,x be the mazimal ideal of functions that vanish at x. Then myu , cannot have less
than d generators and my , has d generators if and only if x is a regular point.

Proof. If A C C" is a d-dimensional submanifold in a neighborhood of z, there are local

coordinates centered at x such that A is given by the equations z441 = ... = z, near
2 =10. Then 04, ~ 0G4 and my, is generated by z1,...,24. Conversely, assume that
my ., has s generators g1 (2),...,9s(2) in 64, = Ocn /P4 4. Letting x = 0 for simplicity,

we can write

zi= > up(2)ge(z) + fi(2),  ujp € Op, fj € Iap, 1<j<n.
1<k<s

Then we find dz; = Y ¢;1(0)dgx(0)+df;(0), so that the rank of the system of differentials
(dfj(O))1<j<n is at least equal to n — s. Assume for example that df1(0),...,df,—s(0)
are linearly independent. By the implicit function theorem, the equations fi(z) = ...

fn—s(z) = 0 define a germ of submanifold of dimension s containing (A, 0), thus s > d
and (A,0) equals this submanifold if s = d. O

(4.33) Corollary. Let A C M be an analytic set of pure dimension d and let B C A
be an analytic subset of codimension > p in A. Then, as an 04 ,-module, the ideal Ip ,
cannot be generated by less than p generators at any point x € B, and by less than p+ 1
generators at any point & € Breg N Aging-

Proof. Suppose that $p, admits s-generators (gi1,...,9s) at . By coherence of g
these germs also generate $p in a neighborhood of x, so we may assume that x is a
regular point of B. Then there are local coordinates (z1,...,2,) on M centered at x
such that (B,x) is defined by zx4y1 = ... = 2z, = 0, where k£ = dim(B,z). Then the
maximal ideal mp , = my /9B, is generated by z1,..., zx, so that my , is generated
by (z1,--y2k,91,---,9s). By Prop. 4.32, we get k + s > d, thus s > d — k > p, and we
have strict inequalities when x € Agipg. O

§ 5. Complex Spaces

Much in the same way a manifold is constructed by piecing together open patches
isomorphic to open sets in a vector space, a complex space is obtained by gluing together
open patches isomorphic to analytic subsets. The general concept of analytic morphism
(or holomorphic map between analytic sets) is first needed.

§5.1. Morphisms and Comorphisms

Let AC Q c C" and B C Q' C C? be analytic sets. A morphism from A to B is by
definition a map F': A — B such that for every x € A there is a neighborhood U of x
and a holomorphic map F' : U — CP such that Fiany = Fyanu. Equivalently, such a
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morphism can be defined as a continuous map F': A — B such that for all x € A and
g € Op p(z) we have go ' € G4 ,. The induced ring morphism

x

(5.1) Fy : Oppm)y29—r9goF c0a,
is called the comorphism of F' at point x.

8 5.1. Definition of Complex Spaces

(5.2) Definition. A complex space X is a locally compact Hausdorff space, countable
at infinity, together with a sheaf Ox of continuous functions on X, such that there exists
an open covering (Uy) of X and for each A a homeomorphism Fy : Uy — Ay onto
an analytic set Ay C 2y C C™ such that the comorphism F5 : G4, — Oxy, 15 an
isomorphism of sheaves of rings. Ox 1is called the structure sheaf of X.

A

By definition a complex space X is locally isomorphic to an analytic set, so the
concepts of holomorphic function on X, of analytic subset, of analytic morphism, etc ...

are meaningful. If X is a complex space, Th. 4.31 implies that X, is an analytic subset
of X.

(5.3) Theorem and definition. For every complex space X, the set X,ex is a dense
open subset of X, and consists of a disjoint union of connected complex manifolds X, .
Let X, be the closure of X/, in X. Then (X,) is a locally finite family of analytic subsets
of X, and X =|J X4. The sets X,, are called the global irreducible components of X .

(—1,0) (0,0)

Fig. II-2 The irreducible curve y* = z?(1 + x) in C2.

Observe that the germ at a given point of a global irreducible component can be reducible,
as shows the example of the cubic curve T' : y? = 2?(1 + ) ; the germ (T',0) has two
analytic branches y = +z+/1+ x, however I' \ {0} is easily seen to be a connected
smooth Riemann surface (the real points of 7 corresponding to —1 < x < 0 form a path
connecting the two branches). This example shows that the notion of global irreducible
component is quite different from the notion of local irreducible component introduced

in (4.4).

Proof. By definition of X,eg, the connected components X/, are (disjoint) complex man-
ifolds. Let us show that the germ of X, = Y; at any point z € X is analytic. We may
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assume that (X, z) is a germ of analytic set A in an open subset of C™. Let (4;,x),
1 <1 < N, be the irreducible components of this germ and U a neighborhood of = such
that X NU = (JA, NU. Let @ C U be a neighborhood of x such that A; s N
is connected and dense in A; N Q; (Prop. 4.24). Then A = X,g N A4; N equals
(Al reg N Q) N Uk# Apreg N N Ay, However, Aj eq N N A is an analytic subset
of Ajreg MYy, distinct from A; req M €Y, otherwise A; ;ep M € would be contained in Ay,
thus (A;,z) C (Ag,x) by density. Remark 4.2 implies that A] is connected and dense
in Aj yeg N €Y, hence in A; N €Y. Set Q = (€2 and let (X4 )aes be the family of global
components which meet € (i.e. such that X, NQ # 0). As X, NQ = A4, NQ,
each X/, a € J, meets at least one set A}, and as A] C X,eg is connected, we have in
fact A C X/,. It follows that there exists a partition (Ly)aecs of {1,..., N} such that
XoNQ=Ujer. A/NQ, a € J. Hence J is finite, card J < N, and

X.n@=X,n0=J4na= ] 4na
€L, €L,

is analytic for all a € J. O

(5.4) Corollary. If A, B are analytic subsets in a complex space X, then the closure
A N B is an analytic subset, consisting of the union of all global irreducible components
Ay of A which are not contained in B.

Proof. Let C = [J Ay be the union of these components. Since (A,) is locally finite,
C is analytic. Clearly AN B = C ~ B = |JA\ ~ B. The regular part A} of each
Ay is a connected manifold and A} N B is a proper analytic subset (otherwise A\ C B
would imply Ay C B). Thus A} \ (4} N B) is dense in A, which is dense in A}, so
ANB=JA,=C. O

(5.5) Theorem. For any family (Ay) of analytic sets in a complex space X, the inter-
section A = () Ay is an analytic subset of X. Moreover, the intersection is stationary on
every compact subset of X .

Proof. 1t is sufficient to prove the last statement, namely that every point x € X has a
neighborhood 2 such that A N2 is already obtained as a finite intersection. However,
since Ox . is Noetherian, the family of germs of finite intersections has a minimum
element (B,z), B = (A),, 1 <j < N. Let B be the union of the global irreducible
components B, of B which contain the point z ; clearly (B,z) = (B,z). For any set Ay
in the family, the minimality of B implies (B, z) C (Ax,x). Let B/, be the regular part of
any global irreducible component B, of B. Then B!, N A, is a closed analytic subset of
B!, containing a non empty open subset (the intersection of B!, with some neighborhood
of ), so we must have B/, N Ay = BY,. Hence B, = E; C A, for all B, C B and all 4,,
thus B ¢ A = () Ay. We infer

(B,z) = (B.z) € (A,2) C (B,a),
and the proof is complete. U

As a consequence of these general results, it is not difficult to show that a com-
plex space always admits a (locally finite) stratification such that the strata are smooth
manifolds.
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(5.6) Proposition. Let X be a complex space. Then there is a locally stationary in-
creasing sequence of analytic subsets Yy, C X, k € N, such that Yy is a discrete set and
such that Yy ~ Yr_1 is a smooth k-dimensional complex manifold for k > 1. Such a
sequence is called a stratification of X, and the sets Yy, \ Yi_1 are called the strata (the
strata may of course be empty for some indices k < dim X).

Proof. Let & be the family of irreducible analytic subsets Z C X which can be obtained
through a finite sequence of steps of the following types:

a) Z is an irreducible component of X ;

b) Z is an irreducible component of the singular set Z/. _ of some member Z' € F;

sing

¢) Z is an irreducible component of some finite intersection of sets Z; € F.

Since X has locally finite dimension and since steps b) or ¢) decrease the dimension of
our sets Z, it is clear that % is a locally finite family of analytic sets in X. Let Yj be the
union of all sets Z € F of dimension < k. It is easily seen that |JY; = X and that the
irreducible components of (Y%)sing are contained in Yj_; (these components are either
intersections of components Z; C Y}, or parts of the singular set of some component
Z C Yy, so there are in either case obtained by step b) or c¢) above). Hence Y}, \ Yi_4
is a smooth manifold and it is of course k-dimensional, because the components of Y} of
dimension < k are also contained in Y;_; by definition.

(5.7) Theorem. Let X be an irreducible complex space. Then every non constant
holomorphic function f on X defines an open map f: X — C.

Proof. We show that the image f(2) of any neighborhood Q2 of x € X contains a neigh-
borhood of f(x). Let (X;, x) be an irreducible component of the germ (X, x) (embedded
in C") and A = A’ x A” C Q a polydisk such that the projection 7: X; NA — A’ is a
ramified covering. The function f is non constant on the dense open manifold X,es, so
we may select a complex line L C A’ through 0, not contained in the ramification locus
of 7, such that f is non constant on the one dimensional germ 7~(L). Therefore we can

find a germ of curve
(C,0) 3 t—s 4(t) € (X, )

such that f o~ is non constant. This implies that the image of every neighborhood of
0 € C by f o~ already contains a neighborhood of f(z). O

(5.8) Corollary. If X is a compact irreducible analytic space, then every holomorphic
function f € 6(X) is constant.

In fact, if f € 6G(X) was non constant, f(X) would be compact and also open in C
by Th. 5.7, a contradiction. This result implies immediately the following consequence.

(5.9) Theorem. Let X be a complex space such that the global holomorphic functions
in O(X) separate the points of X. Then every compact analytic subset A of X is finite.

Proof. A has a finite number of irreducible components A, which are also compact.
Every function f € 6G(X) is constant on Ay, so Ay must be reduced to a single point. [
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8 5.2. Coherent Sheaves over Complex Spaces

Let X be a complex space and Oy its structure sheaf. Locally, X can be identified
to an analytic set A in an open set 2 C C", and we have Ox = 0q/%4. Thus Ox
is coherent over the sheaf of rings Oq. It follows immediately that Ox is coherent over
itself. Let & be a 6 x-module. If & denotes the extension of & 14 to Q obtained by setting
SP =0forx € Q~ A, then S is a Oq-module, and it is easily seen that &} 4 is coherent
over Ox4 if and only if < is coherent over Oq. If Y is an analytic subset of X, then Y
is locally given by an analytic subset B of A and the sheaf of ideals of Y in Ox is the
quotient $y = Fp/F4 ; hence Jy is coherent. Let us mention the following important
property of supports.

(5.10) Theorem. If & is a coherent Ox-module, the support of ¥, defined as Supp ¥ =
{z € X; &y # 0} is an analytic subset of X.

Proof. The result is local, thus after extending & by 0, we may as well assume that X is
an open subset 2 C C™. By (3.12), there is an exact sequence of sheaves

0P <081 L 9y —0

in a neighborhood U of any point. If G : 69?7 — 629 is surjective it is clear that the
linear map G(x) : CP» — C? must be surjective; conversely, if G(z) is surjective, there
is a g-dimensional subspace F C CP on which the restriction of G(x) is a bijection onto
CY ; then Gg : Oy ®c E — @gq is bijective near x and G is surjective. The support
of ¥ is thus equal to the set of points € U such that all minors of G(x) of order ¢
vanish. U

§ 6. Analytic Cycles and Meromorphic Functions

§6.1. Complete Intersections

Our goal is to study in more details the dimension of a subspace given by a set of
equations. The following proposition is our starting point.

(6.1) Proposition. Let X be a complex space of pure dimension p and A an analytic
subset of X with codimyx A > 2. Then every function f € G(X \ A) is locally bounded
near A.

Proof. The statement is local on X, so we may assume that X is an irreducible germ
of analytic set in (C™,0). Let (Ag,0) be the irreducible components of (A,0). By a
reasoning analogous to that of Prop. 4.26, we can choose coordinates (z1,...,z,) on C"
such that all projections

Tz (21,...,2p), p=dimX,
T2+ (21,...,2p,), Dr=dimAy,

define ramified coverings 7 : X N A — A’ m, : Ay N A — A}. By construction
7w(Ag) C A’ is contained in the set By defined by some Weierstrass polynomials in the
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variables zp, +1,...,%p and codimas By, = p — p, = 2. Let S be the ramification locus of
7 and B = |J Bi. We have 1(ANA) C B. For 2/ € A’ < (SU B), we let

ok(2") = elementary symmetric function of degree k in f(2', z)),

where (2, 2!]) are the ¢ points of X projecting on z’. Then o} is holomorphic on A’ ~\
(SU B) and locally bounded near every point of S\ B, thus o extends holomorphically
to A’ . B by Remark 4.2. Since codim B > 2, o} extends to A’ by Cor. 1.4.5. Now, f
satisfies f7 — o1 f971 +... 4+ (—1)%, = 0, thus f is locally bounded on X N A. O

(6.2) Theorem. Let X be an irreducible complex space and f € O(X), f # 0. Then
f71(0) is empty or of pure dimension dim X — 1.

Proof. Let A = f~1(0). By Prop. 4.26, we know that dim A < dim X — 1. If A had an
irreducible branch A; of dimension < dim X — 2, then in virtue of Prop. 6.1 the function
1/f would be bounded in a neighborhood of A; ~ Uk# Ay, a contradiction. u

(6.3) Corollary. If fi,..., fp are holomorphic functions on an irreducible complex space
X, then all irreducible components of f{(0)N...N fp_l(()) have codimension > p. U

(6.4) Definition. Let X be a complex space of pure dimension n and A an analytic
subset of X of pure dimension. Then A is said to be a local (set theoretic) complete
intersection in X if every point of A has a neighborhood ) such that

ANQ={ze€Q; fi(zx)=...= fp(zr) =0}
with exactly p = codim A functions f; € O(€2).

(6.5) Remark. As a converse to Th. 6.2, one may ask whether every hypersurface A
in X is locally defined by a single equation f = 0. In general the answer is negative.
A simple counterexample for dim X = 3 is obtained with the singular quadric X =
{2120 + 2324 = 0} C C* and the plane A = {2; = 23 = 0} C X. Then A cannot be
defined by a single equation f = 0 near the origin, otherwise the plane B = {z5 = z4 = 0}
would be such that

f~10)NnB=AnNB = {0},

in contradiction with Th. 6.2 (also, by Exercise 10.11, we would get the inequality
codimy AN B < 2). However, the answer is positive when X is a manifold:
(6.6) Theorem. Let M be a complex manifold with dimc M = n, let (A, x) be an ana-

lytic germ of pure dimensionn—1 and let A;, 1 < j < N, be its irreducible components.

a) The ideal of (A, x) is a principal ideal $4 , = (g) where g is a product of irreducible
germs g; such that $4; . = (g5)-

b) For every f € Opr. such that f~1(0) C (A, z), there is a unique decomposition
[ =ugi" ...gn"~ where u is an invertible germ and m; is the order of vanishing of
[ at any point z € Aj reg ™ Uk# Ag.

Proof. a) In a suitable local coordinate system centered at x, the projection 7 : C* —
C"~! realizes all A; as ramified coverings

T:A;NA — A C C™ !, ramification locus = S; C A
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The function
g5 (2 zn) = H (zn —wy), 2 €A'\S;

weA;NT—1(2")

extends into a holomorphic function in Oa/[z,] and is irreducible at z. Set g = [[g; €
4z For any f € F4,, the Weierstrass division theorem yields f = gQ + R with
R € 0,_1]z,] and deg R < deg g. As R(Z, z,) vanishes when z, is equal to w,, for each
point w € AN7~!(2’), R has exactly deg g roots when 2’ € A’ \ (|JS; ulUm(A;NAg)),
so R =0. Hence $4, = (g9) and similarly $4, , = (g;). Since $4; is coherent, g; is also
a generator of 4, . for z near x and we infer that g; has order 1 at any regular point
z € Aj,reg~

b) As Oy is factorial, any f € Opr, can be written f =w gy ... gy~ where u is either

invertible or a product of irreducible elements distinct from the g;’s. In the latter case
the hypersurface u~1(0) cannot be contained in (4, x), otherwise it would be a union of
some of the components A; and u would be divisible by some g;. This proves b). U

(6.7) Definition. Let X be an complex space of pure dimension n.

a) An analytic q-cycle Z on X is a formal linear combination Y \jA; where (A;) is
a locally finite family of irreducible analytic sets of dimension q in X and \; € Z.
The support of Z is |Z| = Uxﬁéo Aj. The group of all g-cycles on X is denoted
Cycl!(X). Effective g-cycles are elements of the subset Cycl (X) of cycles such that
all coefficients \; are > 0 ; rational, real cycles are cycles with coefficients A\; € Q, R.

b) An analytic (n — 1)-cycle is called a (Weil) divisor, and we set

Div(X) = Cycl" ' (X).

c) Assume that dim Xgne < n — 2. If f € O(X) does not vanish identically on any
irreducible component of X, we associate to f a divisor

div(f) =) ~m;A; € Divy(X)

in the following way: the components A; are the irreducible components of f~1(0)
and the coefficient m; is the vanishing order of f at every reqular point in X;eg N
Ajreg N Uk# Ay. It is clear that we have

div(fg) = div(f) + div(g).

d) A Cartier divisor is a divisor D =) \;A; that is equal locally to a Z-linear combi-
nation of divisors of the form div(f).

It is easy to check that the collection of abelian groups Cycl?(U) over all open sets
U C X, together with the obvious restriction morphisms, satisfies axioms (1.4) of sheaves;
observe however that the restriction of an irreducible component A; to a smaller open
set may subdivide in several components. Hence we obtain sheaves of abelian groups
Cycl? and Div = Cycl” ™! on X. The stalk Cycl? is the free abelian group generated by
the set of irreducible germs of ¢g-dimensional analytic sets at the point . These sheaves
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carry a natural partial ordering determined by the subsheaf of positive elements Cycl .
We define the sup and inf of two analytic cycles Z = > \;A;, Z' =% p;A; by

(6.8) sup{Z, 2"} = _sup{Aj,u;} Ay, inf{Z, 2} = inf{);, u} Ay

it is clear that these operations are compatible with restrictions, i.e. they are defined as
sheaf operations.

(6.9) Remark. When X is a manifold, Th. 6.6 shows that every effective Z-divisor is
locally the divisor of a holomorphic function; thus, for manifolds, the concepts of Weil
and Cartier divisors coincide. This is not always the case in general: in Example 6.5,
one can show that A is not a Cartier divisor (exercise 10.7).

§ 6.2. Divisors and Meromorphic Functions

Let X be a complex space. For z € X, let M x , be the ring of quotients of Ox ., i.e.
the set of formal quotients g/h, g,h € Ox 5, where h is not a zero divisor in O ,, with
the identification g/h = ¢’ /h’ if gh’ = g’"h. We consider the disjoint union

(6.10) Mx = T] Mx.q

reX

with the topology in which the open sets open sets are unions of sets of the type
{Gx/H,; x € V} C Mx where V is open in X and G,H € Ox(V). Then AMx is
a sheaf over X, and the sections of M x over an open set U are called meromorphic
functions on U. By definition, these sections can be represented locally as quotients of
holomorphic functions, but there need not exist such a global representation on U.

A point z € X is called a pole of a meromorphic function f on X if f, ¢ Ox ,.
Clearly, the set Py of poles of f is a closed subset of X with empty interior: if f = g/h
on U, then h # 0 on any irreducible component and Py NU C h™'(0). For z ¢ Py,
one can speak of the value f(x). If the restriction of f to Xice . Py does not vanish
identically on any irreducible component of (X, x), then 1/f is a meromorphic function
in a neighborhood of z ; the set of poles of 1/ f will be denoted Z¢ and called the zero set
of f. If f vanishes on some connected open subset of X,¢,\ Py, then f vanishes identically
(outside Py) on the global irreducible component X, containing this set; we agree that
these components X, are contained in Z;. For every point x in the complement of
Zf N Py, we have either f, € Ox , or (1/f), € Ox 5, thus f defines a holomorphic map
XN (ZfnPs) — CU{oo} = P! with values in the projective line. In general, no value
(finite or infinite) can be assigned to f at a point © € Zy N Py, as shows the example of
the function f(z) = 2z2/21 in C2. The set Z; N Py is called the indeterminacy set of f.

(6.11) Theorem. For every meromorphic function f on X, the sets Py, Zy and the
indeterminacy set Zy N Py are analytic subsets.

Proof. Let ¢, be the ideal of germs u € Ox , such that uf, € Ox ,. Let us write f = g/h
on a small open set U. Then §;y appears as the projection on the first factor of the
sheaf of relations & (g, h) C Oy x Oy, so ¢ is a coherent sheaf of ideals. Now

Pr={r€X; §,=0x,}=Supp Ox/ ¥,
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thus Py is analytic by Th. 5.10. Similarly, the projection of % (g, h) on the second factor
defines a sheaf of ideals ¢’ such that Zy = Supp Ox/ ' O

When X has pure dimension n and dim Xgns < n — 2, Def. 6.7 ¢) can be extended
to meromorphic functions: if f = g/h locally, we set

(6.12) div(f) = div(g) — div(h).

By 6.7 c¢), we immediately see that this definition does not depend on the choice of the
local representant g/h. Furthermore, Cartier divisors are precisely those divisors which
are associated locally to meromorphic functions.

Assume from now on that M is a connected n-dimensional complex manifold. Then,
for every point x € M, the ring Oy, ~ 0,, is factorial. This property makes the study
of meromorphic functions much easier.

(6.13) Theorem. Let f be a non zero meromorphic function on a manifold M, with
dimc M =n. Then the sets Zy, Py are purely (n—1)-dimensional, and the indeterminacy
set Zy N Py is purely (n — 2)-dimensional.

Proof. For every point a € M, the germ f, can be written g,/h, where gq, hq € O
are relatively prime holomorphic germs. By Th. 1.12, the germs g, h, are still relatively
prime for x in a neighborhood U of a. Thus the ideal § associated to f coincides with
(h) on U, and we have

PN U = Supp Gy/(h) =h~(0), Z;nU =g '(0).

Th. 6.2 implies our contentions: if gy and h,, are the irreducible components of g, i, then
ZynPr=Ugy'(0)N h;1(0) is (n — 2)-dimensional. As we will see in the next section,
Th. 6.13 does not hold on an arbitrary complex space. O

Let (A;), resp. (Bj), be the global irreducible components of Z¢, resp. Pr. In a
neighborhood V; of the (n — 1)-dimensional analytic set

A=A~ (Pru | Ar)
k#j
f is holomorphic and V N f~1(0) = A% As A L, is connected, we must have div(f}v;) =
mj A’ for some constant multiplicity m; equal to the vanishing order of f along A} ...
Similarly, 1/ f is holomorphic in a neighborhood W; of

Bj=B;~ (Zsu | Br)
Kt
and we have div(f}v) = —p; B} where p; is the vanishing order of 1/f along B’ ... At
a point x € M the germs A;, and B;, may subdivide in irreducible local components
Ajrz and Bj .. If g;» and hj; \ are local generators of the corresponding ideals, we
may a priori write

fe =ug/h where QIHQ;?,("X, hzl_[h?,j,’\A
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and where u is invertible. Then necessarily m; x» = m; and p; x = p; for all A, and we
see that the global divisor of f on M is

Let us denote by J* the multiplicative sheaf of germs of non zero meromorphic functions,
and by G* the sheaf of germs of invertible holomorphic functions. Then we have an exact
sequence of sheaves

(6.15) 1— 0" — * 2% Div —s 0.

Indeed, the surjectivity of div is a consequence of Th. 6.6. Moreover, any meromorphic
function that has a positive divisor must be holomorphic by the fact that 0, is factorial.
Hence a meromorphic function f with div(f) = 0 is an invertible holomorphic function.

§ 7. Normal Spaces and Normalization

§ 7.1. Weakly Holomorphic Functions

The goal of this section is to show that the singularities of X can be studied by en-
larging the structure sheaf 0 x into a sheaf O x of so-called weakly holomorphic functions.

(7.1) Definition. Let X be a complex space. A weakly holomorphic function f on X
is a holomorphic function on X,es such that every point of Xgng has a neighborhood V

for which f is bounded on X.eg NV. We denote by @X’x the ring of germs of weakly
holomorphic functions over neighborhoods of x and Ox the associated sheaf.

Clearly, Ox . is a ring containing Ox . If (X, x) are the irreducible components of
(X, x), there is a fundamental system of neighborhoods V' of x such that X,e, NV is a
disjoint union of connected open sets

Xjneg NV N | Xk N Xjreg NV
K

which are dense in X ;¢ N'V. Therefore any bounded holomorphic function on X, NV
extends to each component X; e NV and we see that

@X,x - @ @Xj,x-

The first important fact is that weakly holomorphic functions are always meromorphic
and possess “universal denominators”.

(7.2) Theorem. For every point x € X, there is a neighborhood V of v and h € Gx (V)
such that h=1(0) is nowhere dense in V and hy(éx,y C Ox,y for ally € V ; such a
function h is called a universal denominator on V. In particular Ox is contained in the
ring Mx of meromorphic functions.

Proof. First assume that (X, z) is irreducible and that we have a ramified covering
m: X NA — A’ with ramification locus S. We claim that the discriminant §(z’) of a
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primitive element u(z") = cq112441 + -+ + ¢p2pn 1S a universal denominator on X N A.
To see this, we imitate the proof of Lemma 4.15. Let f € @ny, y € X NA. Then we
solve the equation

f2)= > b )uz"y

0<i<q

in a neighborhood of y. For 2/ € A’ \ S, let us denote by (2/,2”), 1 < a < g, the points
in the fiber X N7~1(2’). Among these, only ¢’ are close to y, where ¢’ is the sum of the
sheet numbers of the irreducible components of (X,y) by the projection w. The other
points (2/,2/), say ¢’ < a < g, are in neighborhoods of the points of 7= 1(y’) \ {y}. We
take (b;(z")) to be the solution of the linear system

Z bj(Z/)U(Zg)j — {f(zla ZZ) for 1 <a< q/,

for ¢ < a<n.
0<j<q 0 T<as

The solutions b;(2') are holomorphic on A’\ S near y'. Since the determinant is 6(2')'/2,

we see that 6b; is bounded, thus db; € Oa/, and 0, f € Ox 4.

Now, assume that (X,z) C (C",0) has irreducible components (X;,z). We can find
for each j a neighborhood €; of 0 in C™ and a function ¢; € 0,,(€2;) which is a universal
denominator on X; N §2;. After adding to J; a function which is identically zero on
(X, x) and non zero on (X, x), k # j, we may assume that 5;1(0) N X N €2 is nowhere
dense in X3 NQ for all j and & and some small @ C ((€;. Then § =[] J; is a universal
denominator on each component X; N 2. For some possibly smaller 2, select a function
vj € 0,(Q) such that v; vanishes identically on J;_,; X;N€2 and vj_l(()) is nowhere dense
in X; N, and set h = 0 Y v,. For any germ f € Ox,, y € X N, there is a germ
gj € Gq, with 6f = g; on (X;,y). We have h = dv; on X; N, so h~1(0) is nowhere
dense in X N and

hf =vj0f =v;9; = kagk on each (Xj,y).
Since Y vigi € Oq , we get h@X’y C Ox,y. O

(7.3) Theorem. If (X,z) is irreducible, Gx , is the integral closure of Ox. . in its
quotient field M x 5. Moreover, every germ f € Ox 5 admits a limit

li .
Xreggg—)x f(Z)

Observe that Ox , is an entire ring, so the ring of quotients M x , is actually a
field. A simple illustration of the theorem is obtained with the irreducible germ of curve
X : 23 = 23 in (C?,0). Then X can be parametrized by z; = t?, 2o = 3, t € C, and
OGxo0 = C{z1,22}/(23 — 23) = C{t?,#3} consists of all convergent series Y a,t" with
a; = 0. The function z9/2z; = t is weakly holomorphic on X and satisfies the integral
equation t> — z; = 0. Here we have Gx o = C{t}.

Proof. a) Let f = g/h be an element in M x , satisfying an integral equation

fm-l—alfm_l—i—...—l—am:O, ar € Ox 4.
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Set A = h~1(0). Then f is holomorphic on X \ A near z, and Lemma 4.10 shows that f
is bounded on a neighborhood of z. By Remark 4.2, f can be extended as a holomorphic
function on X, in a neighborhood of z, thus f € Ox ..

b) Let f € @X’x and let 7 : X N A — A’ be a ramified covering in a neighborhood of z,
with ramification locus S. As in the proof of Th. 6.1, f satisfies an equation

fl=ofT 4 4 (1), =0, o} € O(A");

indeed the elementary symmetric functions o (2") are holomorphic on A’ \ S and boun-
ded, so they extend holomorphically to A’. Hence Ox , is integral over Ox , and we
already know that Ox , C Mx 5.

c) Finally, the cluster set [y,5, f(Xieg NV) is connected, because there is a fundamental
system of neighborhoods V' of x such that X,¢; NV is connected, and any intersection of
a decreasing sequence of compact connected sets is connected. However the limit set is
contained in the finite set of roots of equation b) at point ' € A’ so it must be reduced
to one element. O

§ 7.2. Normal Spaces

Normal spaces are spaces for which all weakly holomorphic functions are actually
holomorphic. These spaces will be seen later to have “simpler” singularities than general
analytic spaces.

(7.4) Definition. A complex space X is said to be normal at a point x if (X,x) is
irreducible and Ox , = Ox ., that is, Ox , is integrally closed in its field of quotients.
The set of normal (resp. non-normal) points will be denoted Xporm (resp. Xnn). The
space X itself is said to be normal if X is normal at every point.

Observe that any regular point x is normal: in fact Ox , ~ 0,, is then factorial, hence
integrally closed. Therefore X, ., C Xging.

(7.5) Theorem. The non-normal set Xy, is an analytic subset of X. In particular,
Xiorm %S open in X.

Proof. We give here a beautifully simple proof due to [Grauert and Remmert 1984]. Let
h be a universal denominator on a neighborhood V of a given point and let .$ = \/hOx
be the sheaf of ideals of h~1(0) by Hilbert’s Nullstellensatz. Finally, let F = homg(.%, %)
be the sheaf of 0 x-endomorphisms of .¥. Since .% is coherent, so is & (cf. Exercise 10.7).
Clearly, the homotheties of .¢ give an injection Ox C % over V. We claim that there
is a natural injection & C Ox. In fact, any endomorphism of .¢ yields by restriction a
homomorphism hGx — Ox, and by Ox-linearity such a homomorphism is obtained by
multiplication by an element in h~'6Gx. Thus F C h~'6Gx C JM x. Since each stalk .9, is
a finite Ox z-module containing non-zero divisors, it follows that that any meromorphic
germ f such that f.$, C .¥, is integral over Ox , ([Lang 1965], Chapter IX, § 1), hence

F, C @X,w. Thus we have inclusions Gx C ¥ C OGx. Now, we assert that

Xn—an:{x€V§gw%@X,x}:g/@X-
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This will imply the theorem by 5.10. To prove the equality, we first observe that ¥, #
Ox  implies @X@ # Ox 4, thus x € X,,. Conversely, assume that = is non normal,
that is, @X’x # Ox . Let k be the smallest integer such that f’;@){,x C Ox, ; such
an integer exists since ﬂiéx,x - h@xw C Ox  for [ large. Then there is an element
w € J’;_léxw such that w ¢ Ox ,. We have w¥, C Ox, , ; moreover, as w is locally
bounded near Xging, any germ wg in w.%9, satisfies limw(z)g(z) = 0 when z € X,¢, tends
to a point of the zero variety h=1(0) of .¥,. Hence w¥, C 9., i.e. w € F,, but w ¢ Ox ,,
so Fy # Ox 4. O

(7.6) Theorem. If x € X is a normal point, then (Xging, ) has codimension at least 2
in (X, z).

Proof. We suppose that ¥ = Xgine has codimension 1 in a neighborhood of z and try
to get a contradiction. By restriction to a smaller neighborhood, we may assume that
X itself is normal and irreducible (since Xyorm is open), dim X = n, that ¥ has pure
dimension n — 1 and that the ideal sheaf 95, has global generators (g1, ...,gx). Then
xcy gj_l(()) ; both sets have pure dimension n — 1 and thus singular sets of dimension

< n—2. Hence there is a point a € ¥ that is regular on ¥ and on J gj_l(()), in particular

there is a neighborhood V' of a such that g; '(0)NV = ... =g, ' (0)NV =NV is
a smooth (n — 1)-dimensional manifold. Since codimx ¥ = 1 and a is a singular point
of X, 95 , cannot have less than 2 generators in Ox , by Cor. 4.33. Take (g1,...,q1),
[ > 2, to be a minimal subset of generators. Then f = g2/g1 cannot belong to Ox ,,
but f is holomorphic on V ~ ¥. We may assume that there is a sequence a, € V \ X
converging to a such that f(a,) remains bounded (otherwise reverse g; and go and pass
to a subsequence). Since g; 1(0) NV = ¥ NV, Hilbert’s Nullstellensatz gives an integer
m such that $%'  C g10x,q, hence .95, C Ox .. We take m to be the smallest integer
such that the latter inclusion holds. Then there is a product ¢g¢ = gi" ...g;"" with
la| = m — 1 such that fg* ¢ Ox, but fg“g; € Ox, for each j. Since the sequence
f(ay) is bounded we conclude that fg®g; vanishes at a. The zero set of this function
has dimension n — 1 and is contained in ng_l(O) NV = XNV so it must contain the
germ (3,a). Hence fg%g; € Is o and fg“I5.q C Inq. As Ix, is a finitely generated
Ox q-module, this implies fg* € @X,a = Ox,q, a contradiction. O

(7.7) Corollary. A complex curve is normal if and only if it is reqular.

(7.8) Corollary. Let X be a normal complex space and 'Y an analytic subset of X such
that dim(Y, z) < dim(X, z) —2 for any x € X. Then any holomorphic function on X \Y
can be extended to a holomorphic function on X.

Proof. By Cor. 1.4.5, every holomorphic function f on X,es \ Y extends to X,ee. Since
codim X, > 2, Th. 6.1 shows that f is locally bounded near Xg;,s. Therefore f extends
to X by definition of a normal space. U

§ 7.3. The Oka Normalization Theorem

The important normalization theorem of [Oka 1950] shows that Gx can be used to
define the structure sheaf of a new analytic space X which is normal and is obtained by
“simplifying” the singular set of X. More precisely:
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(7.9) Definition. Let X be a complex space. A normalization (Y, ) of X is a normal
complex space Y together with a holomorphic map m: Y — X such that the following
conditions are satisfied.

a) m:Y — X is proper and has finite fibers;

b) if ¥ is the set of singular points of X and A = 7= 1(X), then Y \ A is dense in Y
and m:Y N A — X N X = X, 15 an analytic isomorphism.

It follows from b) that Y\ A C Y. Thus Y is obtained from X by a suitable
“modification” of its singular points. Observe that Y., may be larger than Y \ A, as is
the case in the following two examples.

(7.10) Examples.

a) Let X = Cx{0}U{0} xC be the complex curve z; 2o = 0 in C2. Then the normalization
of X is the disjoint union Y = C x {1, 2} of two copies of C, with the map 7 (t1) = (¢1,0),
m(t2) = (0,t2). The set A =7m"1(0,0) consists of exactly two points.

b) The cubic curve X : 25 = 23 is normalized by the map 7 : C — X, t — (t2,¢3).
Here 7 is a homeomorphism but 71 is not analytic at (0, 0). O

We first show that the normalization is essentially unique up to isomorphism and
postpone the proof of its existence for a while.

(7.11) Lemma. If (Y1,m) and (Ya,m2) are normalizations of X, there is a unique
analytic isomorphism ¢ : Y1 — Yo such that m1 = 7o 0 .

Proof. Let X be the set of singular points of X and A; = 7rj_1(2), j = 1,2, Let

¢ Y1 N A — Yo\ As be the analytic isomorphism 7r2_1 om. We assert that ' can
be extended into a map ¢ : Y7 — Y. In fact, let « € Ay and s = m(a) € ¥. Then
7, '(s) consists of a finite set of points y; € Y. Take disjoint neighborhoods U; of y;
such that U; is an analytic subset in an open set ; CC CV. Since 72 is proper, there
is a neighborhood V of s in X such that 7, (V) C UU; and by continuity of m1 a
neighborhood W of a such that m (W) C V. Then ¢’ = 7, ' o7 maps W ~\ A; into
U U, and can be seen as a bounded holomorphic map into CV through the embeddings
U; C Q; cC CN. Since Y; is normal, ¢’ extends to W, and the extension takes values
in [JU; which is contained in Y (shrink U; if necessary). Thus ¢’ extends into a map
¢ Y] — Y5 and similarly ¢’ ~! extends into a map 1 : Yo — Y;. By density of Y\ Aj,
we have 1) o ¢ = Idy,, p oy = Idy,. U

(7.12) Oka normalization theorem. Let X be any complex space. Then X has a
normalization (Y, ).

Proof. Because of the previous lemma, it suffices to prove that any point x € X has a
neighborhood U such that U admits a normalization; all these local normalizations will
then glue together. Hence we may suppose that X is an analytic set in an open set of
C". Moreover, if (X, x) splits into irreducible components (X;,z) and if (Yj,7;) is a
normalization of X; N U, then the disjoint union ¥ = [[Y; with 7 = [[ 7; is easily seen
to be a normalization of X N U. We may therefore assume that (X, x) is irreducible.
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Let h be a universal denominator in a neighborhood of x. Then 6 X,z 18 isomorphic to
its image h@xw C Ox 4, so it is a finitely generated Ox ,-module. Let (fi,..., fm) be a
finite set of generators of Ox . After shrinking X again, we may assume the following
two points:

e X is an analytic set in an open set 2 C C", (X, x) is irreducible and X,g is connected;

e f; is holomorphic in X,ce, can be written f; = g;/h on X with g;,h in 0,(€2) and
satisfies an integral equation P;(z; f;(z)) = 0 where Pj(z; T') is a unitary polynomial
with holomorphic coefficients on X.

Set X’ = X ~\ h™1(0). Consider the holomorphic map
F:Xeg —OQxC™,  z+— (z,fl(z),...,fm(z))

and the image Y’ = F(X’). We claim that the closure Y of Y’ in Q x C™ is an analytic
set. In fact, the set

Z={(z,w) eQAxC™; z€ X, h(z)w; = g;(2)}

is analytic and Y’ = Z ~ {h(z) = 0}, so we may apply Cor. 5.4. Observe that Y’ is
contained in the set defined by P;(z;w,;) = 0, thus so is its closure Y. The first projection
Q x C™ — Q gives a holomorphic map 7 : Y — X such that 7 o F' = Id on X', hence
also on Xyeg. If ¥ = Xing and A = 771(X), the restriction 7 : YN A — X\ X = Xreg 18
thus an analytic isomorphism and F is its inverse. Since (X, x) is irreducible, each f; has
a limit ¢; at by Th. 7.3 and the fiber 7—!(z) is reduced to the single point y = (z, £).
The other fibers 771(z) are finite because they are contained in the finite set of roots
of the equations Pj(z; w;) = 0. The same argument easily shows that 7 is proper (use
Lemma 4.10).

Next, we show that Y is normal at the point y = 7~ !(z). In fact, for any bounded
holomorphic function u on (Yieg,y) the function w o F is bounded and holomorphic
on (Xpeg,2). Hence uo F € Ox, = Oxa[fi,..., fm] and we can write u o F(z) =
Q(z; f1(2),..., fm(2)) = Qo F(2) where Q(z; w) = > aq(z)w® is a polynomial in w
with coefficients in Ox ,. Thus u coincides with @ on (Yieg,y), and as @ is holomorphic

n (X, z) x C™ > (Y,y), we conclude that u € Gy,. Therefore Oy, = Oy,
Finally, by Th. 7.5, there is a neighborhood V' C Y of y such that every point of V'

is normal. As 7 is proper, we can find a neighborhood U of x with #=1(U) C V. Then
77 Y(U) — U is the required normalization in a neighborhood of . O

The proof of Th. 7.12 shows that the fiber 7~!(z) has exactly one point y; for each ir-
reducible component (X, z) of (X, z). As a one-to-one proper map is a homeomorphism,
we get in particular:

(7.13) Corollary. If X is a locally irreducible complex space, the mormalization w :
Y — X is a homeomorphism. O

(7.14) Remark. In general, for any open set U C X, we have an isomorphism

(7.15) ™ : Ox(U) = @Y(ﬂ'_l(U)),
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whose inverse is given by the comorphism of 7= : X, — Y ; note that Gy (U) = Gy (U)
since Y is normal. Taking the direct limit over all neighborhoods U of a given point
xr € X, we get an isomorphism

(7.15) ™ Ox.p — @ Oy,y, -

y;€n1(z)

In other words, Gy is isomorphic to the direct image sheaf 7, Gy, see (1.12). We will prove
later on the deep fact that the direct image of a coherent sheaf by a proper holomorphic
map is always coherent ([Grauert 1960], see 9.7.1). Hence Gx = 7,0y is a coherent sheaf
over Ox.

§ 8. Holomorphic Mappings and Extension Theorems

§ 8.1. Rank of a Holomorphic Mapping

Our goal here is to introduce the general concept of the rank of a holomorphic map
and to relate the rank to the dimension of the fibers. As in the smooth case, the rank is
shown to satisfy semi-continuity properties.

(8.1) Lemma. Let F: X — Y be a holomorphic map from a complex space X to a
complex space Y .

a) If F' is finite, i.e. proper with finite fibers, then dim X < dimY’.
b) If F is finite and surjective, then dim X = dim Y.

Proof. a) Let x € X, (Xj,z) an irreducible component and m = dim(X;, z). If (Yx,y)
are the irreducible components of Y at y = F(z), then (X}, z) is contained in | J F~1(Y),
hence (X, x) is contained in one of the sets F~1(Y}). If p = dim(Y}, y), there is a ramified
covering 7 from some neighborhood of y in Y, onto a polydisk in A’ € CP. Replacing
X by some neighborhood of z in X; and F' by the finite map 7o Fyx, : X; — A/, we
may suppose that ¥ = A’ and that X is irreducible, dim X = m. Let r = rankdF,
be the maximum of the rank of the differential of F' on X,e¢e. Then r < min{m,p} and
the rank of dF is constant equal to r on a neighborhood U of xy. The constant rank
theorem implies that the fibers F~1(y) NU are (m — r)-dimensional submanifolds, hence
m—r=0and m=r <p.

b) We only have to show that dim X > dimY. Fix a regular point y € Y of maximal
dimension. By taking the restriction F': F~1(U) — U to a small neighborhood U of y,
we may assume that Y is an open subset of CP. If dim X < dimY, then X is a union
of analytic manifolds of dimension < dimY and Sard’s theorem implies that F'(X) has
zero Lebesgue measure in Y, a contradiction. U

(8.2) Proposition. For any holomorphic map F : X — Y, the fiber dimension
dim (F~(F(z)),z) is an upper semi-continuous function of x.

Proof. Without loss of generality, we may suppose that X is an analytic set in Q2 C C™,
that F(X) is contained in a small neighborhood of F(z) in Y which is embedded in CV,
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and that x = 0, F(z) = 0. Set A = F~1(0) and s = dim(A4,0). We can find a linear form
¢; on C" such that dim(AN¢&;1(0),0) = s—1 ; in fact we need only select a point z; # 0
on each irreducible component (A;,0) of (4,0) and take & (z;) # 0. By induction, we
can find linearly independent forms &;,...,&s on C” such that

dim (ANt (0)N...NE1(0),0) =5 —j

for all 7 = 1,...,s; in particular 0 is an isolated point in the intersection when j = s.
After a change of coordinates, we may suppose that £;(z) = z;. Fix r” so small that

the ball B’ C C"* of center 0 and radius r” satisfies A N ({0} x FH) = {0}. Then
A is disjoint from the compact set {0} x OB”, so there exists a small ball B’ C C*
of center 0 such that A N (Fl x OB") = (), i.e. F does not vanish on the compact set
K=Xn (F/ x OB"). Set ¢ = ming |F|. Then for |y| < € the fiber F~!(y) does not
intersect B x B". This implies that the projection map 7 : F~1(y)N (B’ x B") — B’
is proper. The fibers of m are then compact analytic subsets of B”, so they are finite
by 5.9. Lemma 8.1 a) implies

dim F~(y) N (B’ x B") < dim B’ = s = dim(A, 0) = dim(F~1(0),0). O

Let X be a pure dimensional complex space and F' : X — Y a holomorphic map.
For any point z € X, we define the rank of F' at x by

(8.3) pr(2) = dim(X, z) — dim (F~Y(F(2)), 2).

By the above proposition, pgr is a lower semi-continuous function on X. In particular,
if pp is maximum at some point x(, it must be constant in a neighborhood of xy. The
maximum p(F') = maxx pp is thus attained on X,y or on any dense open subset X’ C
Xreg- If X is not pure dimensional, we define p(F') = max, p(Fix,) where (X,) are
the irreducible components of X. For a map F : X — C, the constant rank theorem
implies that p(F') is equal to the maximum of the rank of the jacobian matrix dF' at
points of X,es (or of X”).

(8.4) Proposition. If F': X — Y is a holomorphic map and Z an analytic subset of
X, then p(F\z) < p(F).

Proof. Since each irreducible component of Z is contained in an irreducible component
of X, we may assume X irreducible. Let 7 : X — X be the normalization of X and
Z = 7w~ Y(Z). Since 7 is finite and surjective, the fiber of F o 7 at point x has the same
dimension than the fiber of F' at w(z) by Lemma 8.1 b). Therefore p(F om) = p(F') and
p(Fomyz) = p(Fiz), so we may assume X normal. By induction on dim X, we may
also suppose that Z has pure codimension 1 in X (every point of Z has a neighborhood
V C X such that Z NV is contained in a pure one codimensional analytic subset of V).
But then Z,¢; N X,eg is dense in Z,, because codim X, > 2. Thus we are reduced to
the case when X is a manifold and Z a submanifold, and this case is clear if we consider
the rank of the jacobian matrix. O

(8.5) Theorem. Let F: X — Y be a holomorphic map. If Y is pure dimensional and
p(F) <dimY, then F(X) has empty interior in Y .
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Proof. Taking the restriction of F to F~!(Y,eg), we may assume that Y is a manifold.
Since X is a countable union of compact sets, so is F'(X), and Baire’s theorem shows
that the result is local for X. By Prop. 8.4 and an induction on dim X, F(Xgng) has
empty interior in Y. The set Z C X,¢y of points where the jacobian matrix of F' has rank
< p(F) is an analytic subset hence, by induction again, F'(Z) has empty interior. The
constant rank theorem finally shows that every point x € X,¢; \. Z has a neighborhood V'
such that F(V) is a submanifold of dimension p(F') in Y, thus F(V') has empty interior
and Baire’s theorem completes the proof. O

(8.6) Corollary. Let F : X — Y be a surjective holomorphic map. Then dimY =
A(F).

Proof. By the remark before Prop. 8.4, there is a regular point x¢g € X such that the
jacobian matrix of F' has rank p(F'). Hence, by the constant rank theorem dimY > p(F).
Conversely, let Y, be an irreducible component of Y of dimension equal to dimY’, and
Z =F"YY,) C X. Then F(Z) =Y, and Th. 8.5 implies p(F) > p(F;z) > dimY,. O

§ 8.2. Remmert and Remmert-Stein Theorems

We are now ready to prove two important results: the extension theorem for analytic
subsets due to [Remmert and Stein 1953] and the theorem of [Remmert 1956, 1957] which
asserts that the image of a complex space under a proper holomorphic map is an analytic
set. These will be obtained by a simultaneous induction on the dimension.

(8.7) Remmert-Stein theorem. Let X be a compler space, A an analytic subset of
X and Z an analytic subset of X ~~ A. Suppose that there is an integer p > 0 such that
dim A < p, while dim(Z,x) > p for all x € Z. Then the closure Z of Z in X is an
analytic subset.

(8.8) Remmert’s proper mapping theorem. Let F': X — Y be a proper holomor-
phic map. Then F(X) is an analytic subset of Y.

Proof. We let (8.7,,,) denote statement (8.7) for dim Z < m and (8.8,,) denote statement
(8.8) for dim X < m. We proceed by induction on m in two steps:

Step 1. (8.7,,) and (8.8,,—1) imply (8.8,,).
Step 2. (8.8,,—1) implies (8.7,,).

As (8.8,,) is obvious for m = 0, our statements will then be valid for all m, i.e. for all
complex spaces of bounded dimension. However, Th. 8.7 is local on X and Th. 8.8 is
local on Y, so the general case is immediately reduced to the finite dimensional case.

Proof of step 1. The analyticity of F/(X) is a local questionin Y. Since F': F~Y(U) — U
is proper for any open set U C Y and F~1(U) cC X if U cC Y, we may suppose that
Y is embedded in an open set 2 C C" and that X only has finitely many irreducible
components X,. Then we have F'(X) = |J F(X,) and we are reduced to the case when
X is irreducible, dim X = m and Y = Q.

First assume that X is a manifold and that the rank of dF is constant. The constant
rank theorem implies that every point in X has a neighborhood V' such that F(V) is
a closed submanifold in a neighborhood W of F(z) in Y. For any point y € Y, the
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fiber F~1(y) can be covered by finitely many neighborhoods V; of points z; € F~1(y)
such that F(V}) is a closed submanifold in a neighborhood W; of y. Then there is a
neighborhood of y W C (\W; such that F~1(W) c JV;,so F(X)NW =UJF(V;)NW
is a finite union of closed submanifolds in W and F'(X) is analytic in Y.

Now suppose that X is a manifold, set r = p(F') and let Z C X be the analytic subset
of points = where the rank of dF, is < r. Since dim Z < m = dim X, the hypothesis
(8.8,,—1) shows that F(Z) is analytic. We have dim F(Z) = p(F\z) < r. If F(Z) =
F(X), then F(X) is analytic. Otherwise A = F~*(F(Z)) is a proper analytic subset of
X, dF has constant rank on X N\ A C X\ Z and the morphism F': X~ A — YN\ F(Z) is
proper. Hence the image F'(X \ A) is analytic in Y\ F(Z). Since dim F(X N A) =r <m
and dim F(Z) < r, hypothesis (8.7,,) implies that F'(X) = F(X \ A) is analytic in Y.
When X is not a manifold, we apply the same reasoning with Z = X, in order to be
reduced to the case of F': X N\ A — Y \ F(Z) where X \ A is a manifold. u

Proof of step 2. Since Th. 8.7 is local on X, we may suppose that X is an open set
Q C C". Then we use induction on p to reduce the situation to the case when A is a
p-dimensional submanifold (if this case is taken for granted, the closure of Z in Q \ Aging
is analytic and we conclude by the induction hypothesis). By a local analytic change of
coordinates, we may assume that 0 € A and that A = QN L where L is a vector subspace
of C™ of dimension p. By writing Z = Up<s<m Zs where Z; is an analytic subset of
QY of pure dimension s, we may suppose that Z has pure dimension s, p < s < m.
We are going to show that Z is analytic in a neighborhood of 0.

Let &1 be a linear form on C™ which is not identically zero on L nor on any irreducible
component of Z (just pick a point z,, on each component and take £;(x,) # 0 for all v).
Then dim L N &1 (0) = p — 1 and the analytic set Z N ¢&;'(0) has pure dimension s — 1.
By induction, there exist linearly independent forms &, ..., &g such that

dimLN&HO)N...NnEH0)=p—17, 1
(8.9) dimZNn&O0)n...n&H0) =s—4, 1

By adding a suitable linear combination of &i,...,&, to each §;, p < j < s, we may
take &1 = 0 for p < j < s. After a linear change of coordinates, we may suppose that
§i(2) =2, L =CP x {0} and A =QN(CP x {0}). Let £ = (&,...,&) : C* — C® be
the projection onto the first s variables. As Z is closed in 2\ A, Z U A is closed in ).
Moreover, our construction gives (Z U A) NE1(0) = (ZNE71(0)) U {0} and the case
j = s of (8.9) shows that ZN&1(0) is a locally finite sequence in 2N ({0} x C**) . {0}.
Therefore, we can find a small ball B of center 0 in C*~* such that ZN ({0} x9B") = 0.
As {0} x OB” is compact and disjoint from the closed set Z U A, there is a small ball B’
of center 0 in C* such that (ZU A)N (Fl x OB") = (). This implies that the projection
§:(ZUA)N (B x B") — B’ is proper. Set A’ = B'N (CP x {0}).
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B’ x B”
lw

B/

Al

Fig. I1-3 Projection 7 : ZN ((B'\~ A") x B”") — B’ A’.

Then the restriction
WthZﬂ(B/XB”)\(AIXBH)—)B/\Al

is proper, and Z N (B’ x B") is analytic in (B’ x B"”) \ A, so 7 has finite fibers by
Th. 5.9. By definition of the rank we have p(m) = s. Let S; = Zgng N7 (B’ \ A’) and
S7 = w(S1) ; further, let Sy be the set of points z € ZN7~ (B’ \ (A'US])) C Zyeg such
that dm, has rank < s and S5 = 7(S2). We have dimS; < s —1 < m — 1. Hypothesis
(8.8).,,—1 implies that S] is analytic in B’ \ A" and that S} is analytic in B’ \ (A’ U S]).
By Remark 4.2, B’ (A’US;USY) is connected and every bounded holomorphic function
on this set extends to B’. As 7 is a (non ramified) covering over B’ \ (A’ U S7US}), the
sheet number is a constant q.

Let A(2) = > ;. A;j2; be a linear form on C" in the coordinates of index j > s. For
ze BPN (A USiUS)), we let 0j(2') be the elementary symmetric functions in the
q complex numbers \(z) corresponding to z € 7~ !(2’). Then these functions can be
extended as bounded holomorphic functions on B’ and we get a polynomial Py(z'; T)
such that Py(z"; A(2”)) vanishes identically on Z \ m~1(A’ U S] U S}). Since 7 is finite,
ZNr (AU S) USYL) is a union of three (non necessarily closed) analytic subsets of
dimension < s— 1, thus has empty interior in Z. It follows that the closure ZN (B’ x B")
is contained in the analytic set W C B’ x B” equal to the common zero set of all functions
Py (z’ ;A2 )) Moreover, by construction,

Z~a A USUS) =W ~a YA US US).
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As in the proof of Cor. 5.4, we easily conclude that Z N (B’ x B") is equal to the union
of all irreducible components of W that are not contained in 7~'(A" U S] U Sy). Hence
Z is analytic. O

Finally, we give two interesting applications of the Remmert-Stein theorem. We
assume here that the reader knows what is the complex projective space P™. For more
details, see Sect. 5.15.

(8.10) Chow’s theorem ([Chow 1949]). Let A be an analytic subset of the complex
projective space P". Then A is algebraic, i.e. A is the common zero set of finitely many
homogeneous polynomials P;(zg, ..., 2,), 1 <j < N.

Proof. Let w : C"1 {0} — P" be the natural projection and Z = 7~ !(A). Then
Z is an analytic subset of C"*! \ {0} which is invariant by homotheties and dim Z =
dim A + 1 > 1. The Remmert-Stein theorem implies that Z = Z U {0} is an analytic
subset of C"*1. Let fi,..., fy be holomorphic functions on a small polydisk A ¢ C**!
of center 0 such that Z N A = fj_l(()). The Taylor series at 0 gives an expansion

fi= ',::6 Pj i, where P; ), is a homogeneous polynomial of degree k. We claim that Z
coincides with the common zero W set of the polynomials P; x. In fact, we clearly have
WNA C fj_l((]) = ZNA. Conversely, for z € ZNA, the invariance of Z by homotheties

shows that f;(tz) = Y Pjx(2)t" vanishes for every complex number ¢ of modulus < 1, so
all coefficients P; 1 (z) vanish and z € WNA. By homogeneity Z = W ; since C[z, . . ., 2]
is Noetherian, W can be defined by finitely many polynomial equations. U

(8.11) E.E. Levi’s continuation theorem. Let X be a normal complex space and
A an analytic subset such that dim(A,z) < dim(X,z) — 2 for all x € A. Then every
meromorphic function on X ~\ A has a meromorphic extension to X.

Proof. We may suppose X irreducible, dim X = n. Let f be a meromorphic function on
X N A. By Th. 6.13, the pole set Py has pure dimension (n — 1), so the Remmert-Stein
theorem implies that ﬁf is analytic in X. Fix a point x € A. There is a connected
neighborhood V' of z and a non zero holomorphic function h € Gx (V) such that Py NV
has finitely many irreducible components P ; and Py NV C h=1(0). Select a point z;
in ﬁf’j N (Xsing U (ﬁf)sing UA). As z; is a regular point on X and on ﬁf, there is a
local coordinate z; ; at x; defining an equation of ﬁf’j, such that zf?]”f € Ox ., for some
integer m;. Since h vanishes along Py, we have h'™ f € Ox ,. Thus, for m = max{m;},
the pole set Py of g = h™f in V . A does not contain x;. As Py is (n — 1)-dimensional

and contained in Py NV, it is a union of irreducible components Py ; \~ A. Hence P,
must be empty and ¢ is holomorphic on V . A. By Cor. 7.8, g has an extension to a

holomorphic function § on V. Then g/h™ is the required meromorphic extension of f

onV. O

§9. Complex Analytic Schemes

Our goal is to introduce a generalization of the notion of complex space given in
Def. 5.2. A complex space is a space locally isomorphic to an analytic set A in an open
subset 2 C C", together with the sheaf of rings 04 = (Oq/$4);4. Our desire is to enrich
the structure sheaf G4 by replacing .4 with a possibly smaller ideal ¢ defining the same
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zero variety V( ¢) = A. In this way holomorphic functions are described not merely by
their values on A, but also possibly by some “transversal derivatives” along A.

§9.1. Ringed Spaces
We start by an abstract notion of ringed space on an arbitrary topological space.

(9.1) Definition. A ringed space is a pair (X,R x) consisting of a topological space X
and of a sheaf of rings Rx on X, called the structure sheaf. A morphism

F:(X,%x) — (Y,Ry)
of ringed spaces is a pair (f, F*) where f: X — Y is a continuous map and
F* f_lgﬂy — Rx, F;; : (%y)f(x) — (%X)x

a homomorphism of sheaves of rings on X, called the comorphism of F'.

IfF: (X, %x) — (Y,Ry) and G : (Y,Ry) — (Z,Rz) are morphisms of ringed
spaces, the composite G o F' is the pair consisting of the map go f : X — Z and of the
comorphism (G o F)* = F*o f~1G*:

(9.2) F* o f_lG* . f_lg_lgﬂz f_l—G*> f—lgLY L %X,
Fr OG}@) b (R2)gofa) — Ry )f@) — (Rx)a

§ 9.2. Definition of Complex Analytic Schemes

We begin by a description of what will be the local model of an analytic scheme.
Let 2 C C™ be an open subset, § C Oq a coherent sheaf of ideals and A = V( ¢)
the analytic set in 2 defined locally as the zero set of a system of generators of §. By
Hilbert’s Nullstellensatz 4.22 we have .$4 = \/j , but .94 differs in general from ¢. The
sheaf of rings Oq/ ¢ is supported on A, i.e. (0On/¥), =0 if v ¢ A. Ringed spaces of the
type (A, Oq/ ¢) will be used as the local models of analytic schemes.

(9.3) Definition. A morphism
F=(f,F"):(A 00/ f1a) — (A, 00/ J1 )

is said to be analytic if for every point x € A there exists a neighborhood W, of x in
and a holomorphic function ® : W, — Q' such that fianw, = ®ranw, and such that
the comorphism

Fy (0o /9 j@) — (0o F)x
is induced by ®* : Og () D ur— uo ® € Oq, with ®* §' C ¢.

(9.4) Example. Take Q = C" and § = (22). Then A is the hyperplane C"~! x {0},
and the sheaf Ocn/ ¢ can be identified with the sheaf of rings of functions u + z,u’,
u,u’ € Ogn-1, with the relation 22 = 0. In particular, z,, is a nilpotent element of O¢-/ ¢.

A morphism F of (A, Oc»/ ¥) into itself is induced (at least locally) by a holomorphic
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map ® = (@, ®,,) defined on a neighborhood of A in C™ with values in C", such that
®(A) C A, ie. P4 =0. We see that F is completely determined by the data

f(Z17~--7Zn—1>: 5(21,...72’”_1,0), f: C?’L—l _)Cn—l,
P
fl(z15 0 201)= %(zl,...,zn_l,()), f. crl —

which can be chosen arbitrarily.

(9.5) Definition. A complex analytic scheme is a ringed space (X, Ox) over a separable
Hausdorff topological space X, satisfying the following property: there exist an open
covering (Uy) of X and isomorphisms of ringed spaces

G)x : (U)\v @XTU)\) — (A)\a @QA/jA rA>\>

where Ay is the zero set of a coherent sheaf of ideals §x on an open subset Q0 C
CNx, such that every transition morphism Gy o G;l 1 a holomorphic isomorphism from
9.(UxNU,) C A, onto g\(UxNU,) C Ay, equipped with the respective structure sheaves

O,/ Fura,, Oay/ Fxra,-

We shall often consider the maps G as identifications and write simply Uy = A,.
A morphism F : (X,0x) — (Y, Oy) of analytic schemes obtained by gluing patches
(Ax, O,/ Ixray) and (A4, Oqr / F,, 4/ ), respectively, is a morphism F of ringed spaces

such that for each pair (X, 1), the restriction of F' from Ay N f~(A4],) C X to A}, C Y is
holomorphic in the sense of Def. 9.3.

§9.3. Nilpotent Elements and Reduced Schemes

Let (X, Ox) be an analytic scheme. The set of nilpotent elements is the sheaf of ideals
of Ox defined by

(9.6) Nx ={u € 6x;u* =0 for some k € N}.

Locally, we have Ox;4, = (0q,/ %x)14,, thus

(9.7) Nxtay = (VIn I 1axs
(9'8) (@X/‘NX)MA = <@Qx/\/%) [Ax — (@Qx/yAx)fAA =0a,.

The scheme (X, Ox) is said to be reduced if Nx = 0. The associated ringed space
(X, 0x/Nx) is reduced by construction; it is called the reduced scheme of (X, Ox). We
shall often denote the original scheme by the letter X merely, the associated reduced
scheme by Xyeq, and let Ox yeq = Ox/Nx. There is a canonical morphism X,eq — X
whose comorphism is the reduction morphism

(9.9) Ox(U) — Oxrea(U) = (Ox/ Nx)(U), VU open set in X.

By (9.8), the notion of reduced scheme is equivalent to the notion of complex space
introduced in Def. 5.2. It is easy to see that a morphism F' of reduced schemes X,Y is
completely determined by the set-theoretic map f: X — Y.
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§ 9.4. Coherent Sheaves on Analytic Schemes

If (X, Ox) is an analytic scheme, a sheaf & of 0 x-modules is said to be coherent if it
satisfies the same properties as those already stated when X is a manifold:

(9.10) ¢ is locally finitely generated over Ox ;
(9.10") for any open set U C X and any sections Gy, ...,G, € S(U), the relation
sheaf ®(G1,...,G,) C @g’?qw is locally finitely generated.

Locally, we have Ox4, = Oq, /¥, so if iy : Ay — Q) is the injection, the direct image
Ir = (ix)«(F1a,) is a module over Og, such that $\.# = 0. It is clear that ¥q, is
coherent if and only if &, is coherent as a module over Ogq, . It follows immediately that
the Oka theorem and its consequences 3.16-20 are still valid over analytic schemes.

§9.5. Subschemes

Let X be an analytic scheme and % a coherent sheaf of ideals in Gx. The image of
4 in Ox req is a coherent sheaf of ideals, and its zero set Y is clearly an analytic subset
of Xieq. We can make Y into a scheme by introducing the structure sheaf

(9.11) Oy = (0x/9)v,

and we have a scheme morphism F' : (Y, 0Gy) — (X, Ox) such that f is the inclusion
and F* : f~'6x — Oy the obvious map of Oxy onto its quotient Oy. The scheme
(Y, Oy ) will be denoted V(%4). When the analytic set Y is given, the structure sheaf of
V(%) depends of course on the choice of the equations of Y in the ideal %; in general
Oy has nilpotent elements.

§9.6. Inverse Images of Coherent Sheaves

Let F: (X,0x) — (Y, 0y) be a morphism of analytic schemes and & a coherent
sheaf over Y. The sheaf theoretic inverse image f 1%, whose stalks are (f 1), = St ()5
is a sheaf of modules over f~16y. We define the analytic inverse image F*S by

(9.12) F*S = 0x @16, [T1S, (F*F)a = Ox0 D6y ) Li(a)-

Here the tensor product is taken with respect to the comorphism F* : f~16y — Oy,
which yields a ring morphism Oy ¢y — Ox . If & is given over U C Y by a local
presentation

A
@??U ELEN @?‘{U — Py —0

where A is a (¢ x p)-matrix with coefficients in Oy (U), our definition shows that F*¥ is
a coherent sheaf over Oy, given over f~1(U) by the local presentation

T F*A @ *
(9.13) @Xﬁf_l(U) — @erf_l(U) — F*Sp-1 ) — 0.

§9.7. Products of Analytic Schemes

Let (X, 0x) and (Y, Oy) be analytic schemes, and let (Ay, Oq,/ ¥x), (B, @QL/}L)
be local models of X, Y, respectively. The product scheme (X x Y, Oxy) is obtained
by gluing the open patches

(914) (A)\ X BH , @QXXQL/(prl_le + prglf:i)@gkxgit>.
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In other words, if Ay, B,, are the subschemes of {2, QL defined by the equations g ;(x) =
0, g, x(y) = 0, where (g» ;) and (g, ;) are generators of ¢, and ¥, respectively, then

Ay x By, is equipped with the structure sheaf @QAXQL/(Q)\J' (x),gl'm(y))

Now, let & be a coherent sheaf over Oy and let &’ be a coherent sheaf over Oy . The
(analytic) external tensor product ¥ RS is defined to be

(9.15) SRS =prid Qey.y Prad’.

If we go back to the definition of the inverse image, we see that the stalks of YR Y are
given by

(915/) (yﬁy/)(m’y) = @XXY,(m,y) ®@X,m®@Y,y <y$ ®c y?lJ) )

in particular (Y ® '),y does not coincide with the sheaf theoretic tensor product &, ®
&, which is merely a module over Ox ,®0y,,,. If ¥ and " are given by local presentations

® A ® ! B ! /
@X’FU — @erU — Pyv — 0, @’;rU, = @quU, — Sy — 0,

then ¥® Y is the coherent sheaf given by

! ! (A(r)®I1d,Id ®B(y)) /
@Z))(qxe%/quxU’ @[)ngY[ny/ — (y®y/)arU, — 0.

8§ 9.8. Zariski Embedding Dimension

If x is a point of an analytic scheme (X, Ox), the Zariski embedding dimension of the
germ (X, z) is the smallest integer N such that (X, x) can be embedded in CV, i.e. such
that there exists a patch of X near x isomorphic to (A, Oq/ §) where 2 is an open subset
of CV. This dimension is denoted

(9.16) embdim(X,z) = smallest such N.

Consider the maximal ideal mx , C Ox , of functions which vanish at point z. If (X, x)
is embedded in (Q,z) = (CV,0), then my . /m% , is generated by z1,...,zxn, s0 d =
dim mX’x/mg(’x < N. Let sq, ..., 54 be germs in mq , which yield a basis of mxym/mg(’x ~
mo /(M3 , + F2). We can write

2 .
Zj = Z ciksk T u; + [, cir €C, ujemg,, f; € $u, 1<j<n.
1<k<d

Then we find dz; = ) ¢j, dsi(x) + dfj(x), so that the rank of the system of differentials
(df;(x)) is at least N — d. Assume for example that df1(z),...,dfy—_a(x) are lincarly
independant. By the implicit function theorem, the equations f; = ... = fy_q = 0
define a germ of smooth subvariety (Z,z) C (€2, ) of dimension d which contains (X, x).
We have 6z = Gq/(f1,..., fn—a) in a neighborhood of x, thus

@X:@Q/EZ@Z/O@/ where j/:j/<f1,...,f]v_d).
This shows that (X, z) can be imbedded in C%, and we get

(9.17) embdim(X, z) = dim mxix/m?;(’x.



126 Chapter II. Coherent Sheaves and Analytic Spaces

(9.18) Remark. For a given dimension n = dim(X,z), the embedding dimension
d can be arbitrarily large. Consider for example the curve I' € CV parametrized by
Cotr— (N N+ 2N Then Or is the ring of convergent series in C{t} which
have no terms ¢,t2,...,t"V =1, and mp,o/m%o admits precisely z; = tV,..., 2y = 2V 7!
as a basis. Therefore n =1 but d = N can be as large as we want.

§ 10. Bimeromorphic maps, Modifications and Blow-ups

It is a very frequent situation in analytic or algebraic geometry that two complex
spaces have isomorphic dense open subsets but are nevertheless different along some
analytic subset. These ideas are made precise by the notions of modification and bimero-
morphic map. This will also lead us to generalize the notion of meromorphic function
to maps between analytic schemes. If (X, Gx) is an analytic scheme, /# x denotes the
sheaf of meromorphic functions on X, defined at the beginning of § 6.2.

(10.1) Definition. Let (X, 0x), (Y, Oy) be analytic schemes. An analytic morphism
F: X —Y is said to be a modification if F' is proper and if there exists a nowhere dense
closed analytic subset B C'Y such that the restriction F : X N\ F~Y(B) = Y \ B is an
1somorphism.

(10.2) Definition. If F: X — Y is a modification, then the comorphism F* : f*0Oy —
Ox induces an isomorphism F* : f* My — Mx for the sheaves of meromorphic functions
on X and Y.

Proof. Let v = g/h be a section of Ay on a small open set {2 where u is actually given as
a quotient of functions g, h € Oy (£2). Then F*u = (go F)/(ho F) is a section of M x on
F~1(Q), for ho F cannot vanish identically on any open subset W of F~1(Q) (otherwise
h would vanish on the open subset F(W ~ F~1(B)) of Q \ B). Thus the extension of
the comorphism to sheaves of meromorphic functions is well defined. Our claim is that
this is an isomorphism. The injectivity of F'* is clear: F*u = 0 implies g o F' = 0, which
implies g = 0 on 2 . B and thus g = 0 on (2 because B is nowhere dense. In order to
prove surjectivity, we need only show that every section u € Ox (F~1(£2)) is in the image
of My () by F*. For this, we may shrink  into a relatively compact subset ' CC Q
and thus assume that u is bounded (here we use the properness of F' through the fact
that F~1() is relatively compact in F71(Q)). Then v = uo F~! defines a bounded
holomorphic function on €2 \ B. By Th. 7.2, it follows that v is weakly holomorphic for
the reduced structure of Y. Our claim now follows from the following Lemma. O

(10.3) Lemma. If (X, 0Ox) is an analytic scheme, then every holomorphic function v in
the complement of a nowhere dense analytic subset B C'Y which is weakly holomorphic
on Xyeq s meromorphic on X.

Proof. 1t is enough to argue with the germ of v at any point = € Y, and thus we may
suppose that (Y, Oy) = (4, 6q/.9) is embedded in CV. Because v is weakly holomorphic,
we can write v = g/h in Yeq, for some germs of holomorphic functions g, h. Let g and h

be extensions of g, h to Oq . Then there is a neighborhood U of z such that g — vhis a
nilpotent section of cOq (U ~\ B) which is in . on
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(10.4) Definition. A meromorphic map F : X --— Y is a scheme morphism F :
X N A =Y defined in the complement of a nowhere dense analytic subset A C X, such
that the closure of the graph of F in X XY is an analytic subset (for the reduced complex
space structure of X xY).

§ 11. Exercises

§ 11.1. Let o be a sheaf on a topological space X. If the sheaf space o is Hausdorff, show that o
satisfies the following unique continuation principle: any two sections s,s’ € «d(U) on a connected open
set U which coincide on some non empty open subset V' C U must coincide identically on U. Show that
the converse holds if X is Hausdorff and locally connected.

§ 11.2. Let of be a sheaf of abelian groups on X and let s € &/(X). The support of s, denoted Supp s,
is defined to be {z € X ; s(z) # 0}. Show that Supp s is a closed subset of X. The support of « is
defined to be Supp f = {x € X ; d, # 0}. Show that Supp & is not necessarily closed: if  is an open
set in X, consider the sheaf ¢ such that «/(U) is the set of continuous functions f € 6(U) which vanish
on a neighborhood of U N (X \ Q).

§ 11.3. Let o be a sheaf of rings on a topological space X and let F, 4 be sheaves of @-modules.
We define a presheaf #& = Fomy(F,9) such that F(U) is the module of all sheaf-homomorphisms
Fv — %v which are g-linear.

a) Show that Fomy(F,94) is a sheaf and that there exists a canonical homomorphism
Yo+ Homy(F,8), — homgy (Fz,Yy) for every x € X.

b) If F is locally finitely generated, then ¢, is injective, and if F has local finite presentations as in
(3.12), then ¢, is bijective.

¢) Suppose that @ is a coherent sheaf of rings and that ¥, 9 are coherent modules over &f. Then
Homy(F,94) is a coherent gf-module.
Hint: observe that the result is true if ¥ = «®P and use a local presentation of ¥ to get the
conclusion.

§ 11.4. Let f: X — Y be a continuous map of topological spaces. Given sheaves of abelian groups
s on X and 9% on Y, show that there is a natural isomorphism

homx (f~1%, o) = homy (B, fxdl).

Hint: use the natural morphisms (2.17).

§ 11.5. Show that the sheaf of polynomials over C™ is a coherent sheaf of rings (with either the
ordinary topology or the Zariski topology on C™). Extend this result to the case of regular algebraic
functions on an algebraic variety.

Hint: check that the proof of the Oka theorem still applies.

§ 11.6. Let P be a non zero polynomial on C™. If P is irreducible in C[z1, ..., zy], show that the
hypersurface H = P~1(0) is globally irreducible as an analytic set. In general, show that the irreducible
components of H are in a one-to-one correspondence with the irreducible factors of P.

Hint: for the first part, take coordinates such that P(0,...,0, z,) has degree equal to P; if H splits
in two components Hi, Ha, then P can be written as a product P; P, where the roots of P;(2/,zn)
correspond to points in Hj.

§ 11.7. Prove the following facts:

a) For every algebraic variety A of pure dimension p in C™, there are coordinates z’ = (z1,...,2p),
2" = (zp+1,-.-,%n) such that 7 : A — CP, z — 2 is proper with finite fibers, and such that A is
entirely contained in a cone

12" < C(I2'] + D).
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Hint: imitate the proof of Cor. 4.11.

b) Conversely if an analytic set A of pure dimension p in C" is contained in a cone |2”| < C(]Z/| 4+ 1),
then A is algebraic.
Hint: first apply (5.9) to conclude that the projection m : A — CP is finite. Then repeat the
arguments used in the final part of the proof of Th. 4.19.

¢) Deduce from a), b) that an algebraic set in C™ is irreducible if and only if it is irreducible as an
analytic set.

§ 11.8. Let I' : f(z,y9) = 0 be a germ of analytic curve in C? through (0,0) and let (I';,0) be
the irreducible components of (I',0). Suppose that f(0,y) # 0. Show that the roots y of f(z,y) =0
corresponding to points of I' near 0 are given by Puiseuzr expansions of the form y = g; (acl/qj), where
g; € Oc o and where g; is the sheet number of the projection I'; — C, (z,y) — =.

Hint: special case of the parametrization obtained in (4.27).

§ 11.9. The goal of this exercise is to prove the existence and the analyticity of the tangent cone to
an arbitrary analytic germ (A, 0) in C™. Suppose that A is defined by holomorphic equations f; = ... =
fv =0in a ball Q@ = B(0,r). Then the (set theoretic) tangent cone to A at 0 is the set C(A,0) of all
limits of sequences t;, 'z, with z, € A and C* 5 t, converging to 0.

a) Let E be the set of points (z,t) € Q x C* such that z € t~'A. Show that the closure E in Q x C is
analytic.
Hint: observe that E = A~ (2 x {0}) where A = {f;(tz) = 0} and apply Cor. 5.4.

b) Show that C(A,0) is a conic set and that £ N (Q x {0}) = C(4,0) x {0} and conclude. Infer from
this that C(A,0) is an algebraic subset of C".

§ 11.10. Give a new proof of Theorem 5.5 based on the coherence of ideal sheaves and on the strong
noetherian property.

§ 11.11. Let X be an analytic space and let A, B be analytic subsets of pure dimensions. Show
that codimx (AN B) < codimx A 4 codimx B if A or B is a local complete intersection, but that the
equality does not necessarily hold in general.

Hint: see Remark (6.5).

§ 11.12. TLet I be the curve in C3 parametrized by C > t — (z,y,2) = (t3,t*,¢°). Show that the
ideal sheaf 9r is generated by the polynomials zz — y2, 23 — yz and 22y — 22, and that the germ (T, 0)
is not a (sheaf theoretic) complete intersection.

Hint: T is smooth except at the origin. Let f(z,y,z) = Zaagwmayﬁ,ﬂ be a convergent power series
near 0. Show that f € 9r o if and only if all weighted homogeneous components

fr = Z aapya Y’ 2T
3a+4p+5v=k

are in .$r o. By means of suitable substitutions, reduce the proof to the case when f = f}, is homogeneous
with all non zero monomials satisfying o < 2, 8 < 1, v < 1; then check that there is at most one such
monomial in each weighted degree < 15 the product of a power of z by a homogeneous polynomial of
weighted degree < 8.
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Chapter 111

Positive Currents and Lelong Numbers

In 1957, P. Lelong introduced natural positivity concepts for currents of pure bidimension (p,p) on
complex manifolds. With every analytic subset is associated a current of integration over its set of regular
points and all such currents are positive and closed. The important closedness property is proved here
via the Skoda-El Mir extension theorem. Positive currents have become an important tool for the study
of global geometric problems as well as for questions related to local algebra and intersection theory.
We develope here a differential geometric approach to intersection theory through a detailed study of
wedge products of closed positive currents (Monge-Ampere operators). The Lelong-Poincaré equation
and the Jensen-Lelong formula are basic in this context, providing a useful tool for studying the location
and multiplicities of zeroes of entire functions on C™ or on a manifold, in relation with the growth at
infinity. Lelong numbers of closed positive currents are then introduced; these numbers can be seen as
a generalization to currents of the notion of multiplicity of a germ of analytic set at a singular point.
We prove various properties of Lelong numbers (e.g. comparison theorems, semi-continuity theorem of
Siu, transformation under holomorphic maps). As an application to Number Theory, we prove a general
Schwarz lemma in C™ and derive from it Bombieri’s theorem on algebraic values of meromorphic maps
and the famous theorems of Gelfond-Schneider and Baker on the transcendence of exponentials and
logarithms of algebraic numbers.

§ 1. Basic Concepts of Positivity

8§ 1.A. Positive and Strongly Positive Forms

Let V' be a complex vector space of dimension n and (z1, ..., z,) coordinates on V.
We denote by (0/0z1, . ..,0/0z,) the corresponding basis of V', by (dz1,...,dz,) its dual

basis in V* and consider the exterior algebra
AVE = @ APIV*, APV = APV @ ATV
We are of course especially interested in the case where V' = T, X is the tangent space
to a complex manifold X, but we want to emphasize here that our considerations only
involve linear algebra. Let us first observe that V' has a canonical orientation, given by
the (n,n)-form
T(2) =idzy NdZ1 N ... Nidzy NdZy, = 2" dzy ANdyy A ... Ndzy, A dyy,

where z; = x; + iy;. In fact, if (wq,...,w,) are other coordinates, we find

dwy A ... A dw, = det(Ow;/0z) dz1 A ... Ndzp,
7(w) = | det(Aw, /9z1,)|° 7(2).
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In particular, a complex manifold always has a canonical orientation. More generally,
natural positivity concepts for (p, p)-forms can be defined.

(1.1) Definition. A (p,p)-form v € APPV* is said to be positive if for all aj € V™,
1<j<qg=n—p, then

uNlag ANy A ... Nlog AN ay
is a positive (n,n)-form. A (q,q)-form v € AIV* is said to be strongly positive if v is a
convex combination

V= Z% log 1 Naig 1 AL Nl g N O g
where as ; € V* and s > 0.
(1.2) Example. Since ip(—l)f”(f”_l)/2 = ipz, we have the commutation rules

iy ATy AL Ay Ad, =i aAd, Ya=ag A...Aap € APOVE

ZpZ/B/\B/\Znﬁ’Y/\i:Z(p+m)2/6/\’)//\—6/\’7, \V//B c ‘/\p,O‘/“k7 \v/,.y c Am,Ov*.

Take m = g to be the complementary degree of p. Then Ay = Adz; A...Adz, for some
A€ C and i”zﬁ AYABAY=|A*(2). If we set v = a3 A... Ay, we find that ipzﬁ A B
is a positive (p,p)-form for every 8 € AP°V*; in particular, strongly positive forms are
positive. U

The sets of positive and strongly positive forms are closed convex cones, i.e. closed
and stable under convex combinations. By definition, the positive cone is dual to the
strongly positive cone via the pairing

APPV* X ATV *— C

(1.3) (u,v) — uAv/T,

that is, u € APPV™* is positive if and only if u A v > 0 for all strongly positive forms
v € AT9V*. Since the bidual of an arbitrary convex cone I is equal to its closure I, we
also obtain that v is strongly positive if and only if v Au =u A v is > 0 for all positive
forms u. Later on, we will need the following elementary lemma.

(1.4) Lemma. Let (z1,...,2,) be arbitrary coordinates on V. Then APPV* admits a
basis consisting of strongly positive forms

2
. - . - n
Bs =ifBsa ABsai N NifspABsp, 1< s< <p)

where each s 1s of the type dz; = dzy, or dz; £idz,, 1 < j,k < n.

Proof. Since one can always extract a basis from a set of generators, it is sufficient to
see that the family of forms of the above type generates APPV*. This follows from the
identities

Addz; NdzZy = (dzj +dz) A(dzj + dz,) — (dzj — dz) A(dz; — dz)
+i(dzj +idzg)A\(dzj + idzy)—i(dz; — idzg)A(dz; — idz),
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dzj, A .. Ndzj, NdZg, Ao ANdZ, =+ [\ dzj, AdzEg, O
1<s<p

(1.5) Corollary. All positive formsu are real, i.e. satisfyu = u. In terms of coordinates,
if u= i Z|I|:\J|:p ur,gdzr Ndzy, then the coefficients satisfy the hermitian symmetry
relation uy j = uy 1.

Proof. Clearly, every strongly positive (g, q¢)-form is real. By Lemma 1.4, these forms
generate over R the real elements of A29V*, so we conclude by duality that positive
(p, p)-forms are also real. O

(1.6) Criterion. A formu € APPV* is positive if and only if its restriction u;g to every
p-dimensional subspace S C 'V is a positive volume form on S.

Proof. 1f S is an arbitrary p-dimensional subspace of V' we can find linear coordinates
(21,...,2n) on V such that S = {241 = ... =z, = 0}. Then

ups = Agidzy Adzy A ... Nidzp N\ dzp
where \g is given by
u N id2p+1 AN d§p+1 A...Nidz, NdZ, = Ag 7‘(2)

If w is positive then Ag > 0 so ug is positive for every S. The converse is true because
the (n —p,n — p)-forms A i>p idz; A dz; generate all strongly positive forms when S runs
over all p-dimensional subspaces. 0

(1.7) Corollary. A formu = izj’k ujr dzj NdZy, of bidegree (1,1) is positive if and only
if & — Zujkfjgk 1s a semi-positive hermitian form on C™.

Proof. 1f S is the complex line generated by § and t +— ¢ the parametrization of S, then
urs = (Zu]kﬁjﬁk) idt A dt. [

Observe that there is a canonical one-to-one correspondence between hermitian forms
and real (1,1)-forms on V. The correspondence is given by

(1.8) h= Y hpp2)dz; @dz—u=i Y h(z)dz; Adzy,

1<j,k<n 1<j,k<n
and does not depend on the choice of coordinates: indeed, as Ejk = hyj, one finds
immediately

w(€n) =1 hjr(2) (&7 — ;&) = —2Imh(§,n), V&€ TX.

Moreover, h is > 0 as a hermitian form if and only if v > 0 as a (1, 1)-form. A diagonal-
ization of h shows that every positive (1,1)-form u € AL1V* can be written

u = Z i A5, Y€V, r=rankof u,
1gysr
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in particular, every positive (1,1)-form is strongly positive. By duality, this is also true
for (n —1,n — 1)-forms.

(1.9) Corollary. The notions of positive and strongly positive (p, p)-forms coincide for
p=0,1,n—1,n. O

(1.10) Remark. It is not difficult to see, however, that positivity and strong positivity
differ in all bidegrees (p, p) such that 2 < p < n—2. Indeed, a positive form ipzﬁ A B with
B € APOV* is strongly positive if and only if 8 is decomposable as a product 81 A...AS,.
To see this, suppose that

. 2 - . 2 p—

A=Y Ty AT,

1N

where all y; € AP°V* are decomposable. Take N minimal. The equality can be also
written as an equality of hermitian forms |3|> = 3 |v,|* if 3,7, are seen as linear forms
on APV. The hermitian form |3|? has rank one, so we must have N = 1 and 8 = A, as
desired. Note that there are many non decomposable p-forms in all degrees p such that
2<p<n—2eg (dzy Ndzg+dzz Ndzg) Ndzs N .. . Ndzpyo: if a p-form is decomposable,
the vector space of its contractions by elements of AP Wisa p-dimensional subspace
of V*; in the above example the dimension is p + 2.

(1.11) Proposition. Ifuy,...,us are positive forms, all of them strongly positive (resp.
all except perhaps one), then uy A ... A us is strongly positive (resp. positive).

Proof. Immediate consequence of Def. 1.1. Observe however that the wedge product of
two positive forms is not positive in general (otherwise we would infer that positivity
coincides with strong positivity). U

(1.12) Proposition. If & : W — V is a complex linear map and u € APPV* is
(strongly) positive, then ®*u € APPW™ is (strongly) positive.

Proof. This is clear for strong positivity, since
O*(lar Ay A ... Aoy AT,) =B ABL A ... AiB AB,

with 8; = ®*a; € W*, for all a; € V*. For u positive, we may apply Criterion 1.6: if S
is a p-dimensional subspace of W, then u;¢(g) and (®*u);s = (®15)*uja(s) are positive
when @ : S — ®(S) is an isomorphism; otherwise we get (®*u);s = 0. O

§ 1.B. Positive Currents

The duality between the positive and strongly positive cones of forms can be used to
define corresponding positivity notions for currents.

(1.13) Definition. A current T' € 9, ,(X) is said to be positive (resp. strongly positive)
if (T,u) = 0 for all test forms u € D, ,(X) that are strongly positive (resp. positive) at
each point. The set of positive (resp. strongly positive) currents of bidimension (p,p) will
be denoted

Dy (X),  resp. B (X).
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It is clear that (strong) positivity is a local property and that the sets 2% (X) C
I+ .
P,,(X) are closed convex cones with respect to the weak topology. Another way of
stating Def. 1.13 is:

T is positive (strongly positive) if and only if T Nu € 9D o(X) is a positive measure for
all strongly positive (positive) forms u € 6.°,(X).

This is so because a distribution S € 9'(X) such that S(f) > 0 for every non-negative
function f € 9(X) is a positive measure.

(1.14) Proposition. Every positive current T = i("=P)" Y. Tr,ydzr NdZy in Dt (X) is
real and of order 0, i.e. its coefficients Tt ; are complex measures and satisfy Tty =T 1
for all multi-indices |I| = |J| =n —p. Moreover Tt > 0, and the absolute values |17 |
of the measures T j satisfy the inequality

A |Trg| <20 Ny Ty, INJCMCIUJT
M

where A\, = 0 are arbitrary coefficients and A\j = erl A

Proof. Since positive forms are real, positive currents have to be real by duality. Let
us denote by K = 0I and L = CJ the ordered complementary multi-indices of I, .J in
{1,2,...,n}. The distribution 77 is a positive measure because

T[}[ T = TAipdeK /\de 2 0.
On the other hand, the proof of Lemma 1.4 yields
Trg 7= iT/\ip2d2K ANdzZp, = Z €a T Ny, Wwhere
a€(Z/AZ)P

i -Q, S T D .
Vo= /\ 7z, + i) A (dzy, T dz), e = £,

1<s<p

Now, each T' A v, is a positive measure, hence 77 ; is a complex measure and

Tr,5| T < ZT/\% ZT/\Z%

A N (8 e, +imda) A @ )

1<s<p  a.EZ/AZ

=TA N\ (ide, Adzy, +idz, AdZ,).

1<s<p

Tgle last wedge product is a sum of at most 2P terms, ezach of which is of the type
" dzpy N dZy with M| =pand M C KU L. Since T' A dzpy A dZyr = Tgpyop T and
CM >CK NCL =1INJ, we find

T7,5] < 2P Z T
M>INJ
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Now, consider a change of coordinates (z1,...,2,) = Aw = (Mwi,..., \w,) with

A,...,Ap > 0. In the new coordinates, the current 7" becomes A*T" and its coefficients
become ArA; 17, 7(Aw). Hence, the above inequality implies

AtAT T,

<20 Y Ay T

MDINJ

This inequality is still true for A\ > 0 by passing to the limit. The inequality of Prop. 1.14
follows when all coefficients A\, k ¢ TUJ, are replaced by 0, so that Ay = 0 for M ¢ TUJ.
O

(1.15) Remark. If T is of order 0, we define the mass measure of T by ||T|| = >_ |17,
(of course ||T'|| depends on the choice of coordinates). By the Radon-Nikodym theorem,
we can write 17,y = fr,s||T'|| with a Borel function fr ; such that ) |fr 7| = 1. Hence

T=|T|f, where f= i(n—p)’ ZfI’J dzr Ndz ;.

Then T is (strongly) positive if and only if the form f(z) € A""P"PT*X is (strongly)
positive at ||7’||-almost all points € X. Indeed, this condition is clearly sufficient. On
the other hand, if T" is (strongly) positive and u; is a sequence of forms with constant
coefficients in APPT*X which is dense in the set of strongly positive (positive) forms,
then T'Au; = ||T|| f Auj, so f(z) A u; has to be a positive (n, n)-form except perhaps
for z in a set N(u;) of ||T'||-measure 0. By a simple density argument, we see that f(x)
is (strongly) positive outside the ||T'||-negligible set N = [J N (u;).

As a consequence of this proof, T' is positive (strongly positive) if and only if T'A u
is a positive measure for all strongly positive (positive) forms u of bidegree (p,p) with

constant coefficients in the given coordinates (z1, ..., z,). It follows that if T" is (strongly)
positive in a coordinate patch 2, then the convolution T x p. is (strongly) positive in
Q. ={z € Q; d(x,00) > e}. O

(1.16) Corollary. If T € 9, (X) and v € C{ (X) are positive, one of them (resp.
both of them) strongly positive, then the wedge product T' A v is a positive (resp. strongly
positive) current.

This follows immediately from Remark 1.15 and Prop. 1.11 for forms. Similarly,
Prop. 1.12 on pull-backs of positive forms easily shows that positivity properties of cur-
rents are preserved under direct or inverse images by holomorphic maps.

(1.17) Proposition. Let ® : X — Y be a holomorphic map between complex analytic
manifolds.

a) If T €D, (X) and ®isupp 1 is proper, then ®.T € Dt (V).
b) If T € @;TP(Y) and if ® is a submersion with m-dimensional fibers, then ®*T €
Pt (X).

p+m,p+m

Similar properties hold for strongly positive currents. U
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§ 1.C. Basic Examples of Positive Currents

We present here two fundamental examples which will be of interest in many circum-
stances.

§ 1.18. Current Associated to a Plurisubharmonic Function. Let X be a complex
manifold and u € Psh(X) N L{. (X) a plurisubharmonic function. Then

loc
0%u
sz 0%},
n

T=idd"u=1i
1<j,k<

de A dzy,

is a positive current of bidegree (1,1). Moreover T is closed (we always mean here d-
closed, that is, dI" = 0). Assume conversely that © is a closed real (1, 1)-current on
X. Poincaré’s lemma implies that every point x¢o € X has a neighborhood €2y such
that © = dS with S € 97(Q,R). Write S = S10 + §%! where S%! = S1.0, Then
d"S = ©%2 =0, and the Dolbeault-Grothendieck lemma shows that S%! = d’’v on some
neighborhood Q2 C g, with v € 9'(Q2, C). Thus

S=d"v+d"v=dv+d",
©=dS=dd"(v-7v)=idd"u,

where v = 2Rev € 9'(, R). If © € 67%(X), the hypoellipticity of d” in bidegree (p,0)
shows that d'u is of class 6°°, so u € 6°°(f2). When O is positive, the distribution w is
a plurisubharmonic function (Th. I.3.31). We have thus proved:

(1.19) Proposition. If © € @'t (X) is a closed positive current of bidegree (1,1),

n—1l,n—1

then for every point xq € X there exists a neighborhood ) of xo and u € Psh(Q) such
that © = id'd"u. O

§ 1.20. Current of Integration on a Complex Submanifold. Let Z C X be a closed
p-dimensional complex submanifold with its canonical orientation and 7" = [Z]. Then
T € 95,(X). Indeed, every (r,s)-form of total degree r + s = 2p has zero restriction
to Z unless (r,5) = (p,p), therefore we have [Z] € 9, (X). Now, if u € D, ,(X) is a
positive test form, then u;z is a positive volume form on Z by Criterion 1.6, therefore

<[Z]7U>:/Zurz>0-

In this example the current [Z] is also closed, because d[Z] = +[0Z] = 0 by Stokes’
theorem. 0

§ 1.D. Trace Measure and Wirtinger’s Inequality

We discuss now some questions related to the concept of area on complex submani-
folds. Assume that X is equipped with a hermitian metric h, i.e. a positive definite hermi-
tian form h = ) hjrdz; ®dZy, of class €°° ; we denote by w =1) hjrdz; ANdZy, € 69 (X)
the associated positive (1, 1)-form.

(1.21) Definition. For every T € D, (X), the trace measure of T with respect to w is
the positive measure

1
_ D
O’T—Qp !T/\w.
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If (¢1,...,Cpn) is an orthonormal frame of 7% X with respect to h on an open subset
U C X, we may write

w=i 3 GAGs W="pl Y e Ak

1< <n |K|=p

T:i(”_p)2 Z TI,JCI/\ZL TLJ EQD%U),

[|=]J|=n—p

where (7 = (i, A... A G,_,. An easy computation yields

(1.22) aT::z—P( S T,,,) iCLACLA . A AC,.

[ I|=n—p

For X = C™ with the standard hermitian metric h = ) dz; ® dZ;, we get in particular

(1.22") or = 2—1’( > TM> idzy ANdZy A ... Nidz, A dZ,.

|I|=n—p

Proposition 1.14 shows that the mass measure ||T'|| = > |17 ;| of a positive current T'
is always dominated by C'opr where C' > 0 is a constant. It follows easily that the weak
topology of 9/,(X) and of 9)’(X) coincide on 9,7 (X), which is moreover a metrizable
subspace: its weak topology is in fact defined by the collection of semi-norms 7" +—
(T, f,)| where (f,) is an arbitrary dense sequence in 9,(X). By the Banach-Alaoglu
theorem, the unit ball in the dual of a Banach space is weakly compact, thus:

(1.23) Proposition. Let 6 be a positive continuous function on X. Then the set of
currents T € Dy (X) such that [ 6 T AwP < 1 is weakly compact.

Proof. Note that our set is weakly closed, since a weak limit of positive currents is
positive and [ 8 T Aw? = sup(T, §ow?) when 6 runs over all elements of (X ) such that
0<0<1. O

Now, let Z be a p-dimensional complex analytic submanifold of X. We claim that

1

[Z] A wP = Riemannian volume measure on Z.

This result is in fact a special case of the following important inequality.

(1.25) Wirtinger’s inequality. Let Y be an oriented real submanifold of class C' and
dimension 2p in X, and let dVy be the Riemannian volume form on Y associated with
the metric hyy. Set
1 0
2p—p!w’r’y =adVy, aeC’(Y).
Then |a| < 1 and the equality holds if and only if Y is a complex analytic submanifold
of X. In that case o = 1 if the orientation of Y s the canonical one, « = —1 otherwise.
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Proof. The restriction w;y is a real antisymmetric 2-form on TY. At any point z € Y,

we can thus find an oriented orthonormal R-basis (e1, ez, ..., esp) of 7.Y such that
1
— Z agesp_q Nes, on T,Y,  where
1<k<p
1
ap = §W(62k—17 ear) = —Imh(ear—1, eax)-

We have dVy = e A ... A €3, by definition of the Riemannian volume form. By taking
the p-th power of w, we get

1
2prp!

w}FTZY:ozl...ozpe{/\.../\egp:oq...ozpdVy.

Since (e ) is an orthonormal R-basis, we have Re h(egi_1,e2x) = 0, thus h(ear_1, €ar) =
—iag. As |eak—1| = |ear| = 1, we get
0 < ‘62]@ + Jegk_1|2 = 2(1 + Re h(Jegk_l, egk)) = 2(1 + C\{k).

Therefore
lag| <1, |a|=lag...qp <1

with equality if and only if ap = =£1 for all k, i.e. esx = £Jegp_1. In this case
T.Y C T,X is a complex vector subspace at every point z € Y, thus Y is complex
analytic by Lemma 1.4.23. Conversely, assume that Y is a C-analytic submanifold and

that (e1,es,...,ezp—1) is an orthonormal complex basis of T,Y . If eg; := Jegp_1, then
(é1,...,e2p) is an orthonormal R-basis corresponding to the canonical orientation and
* * 1 D % * dv |:|
Z 62]{?—1/\62]{?7 2p—p!wry—€1/\.../\62p— Y-
1<k<p

Note that in the case of the standard hermitian metric w on X = C”, the form w =
iy dzjNdz; =d (i > % dZ]-) is globally exact. Under this hypothesis, we are going to see
that C-analytic submanifolds are always minimal surfaces for the Plateau problem, which
consists in finding a compact subvariety Y of minimal area with prescribed boundary 9Y .

(1.26) Theorem. Assume that the (1,1)-form w is exact, say w = dy with v €
67°(X,R), and let Y, Z C X be (2p)-dimensional oriented compact real submanifolds
of class C with boundary. If Y = 0Z and Z is complex analytic, then

Vol(Y) > Vol(Z).

Proof. Write w = dy. Wirtinger’s inequality and Stokes’ theorem imply

p—1 p—1
vl W)/ 2pp"/ A7) 2pp"/ay“’

Vol(Z) = wp YAy = i— wp YAy. O
2pp'

2ppv w Q;Dpl
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§ 2. Closed Positive Currents

§ 2.A. The Skoda-El Mir Extension Theorem

We first prove the Skoda-El Mir extension theorem ([Skoda 1982], [El Mir 1984]),
which shows in particular that a closed positive current defined in the complement of
an analytic set E can be extended through F if (and only if) the mass of the current is
locally finite near F. El Mir simplified Skoda’s argument and showed that it is enough to
assume E complete pluripolar. We follow here the exposition of Sibony’s survey article
[Sibony 1985].

(2.1) Definition. A subset E C X is said to be complete pluripolar in X if for every
point T € X there exist a neighborhood Q of o and a function u € Psh(Q) N L ()
such that ENQ ={z € Q; u(z) = —oo}.

Note that any closed analytic subset A C X is complete pluripolar: if g1 = ... =
gy = 0 are holomorphic equations of A on an open set ) C X, we can take u =

log(lgal* + ... + lgn[?).

(2.2) Lemma. Let E C X be a closed complete pluripolar set. If xo € X and Q is a
sufficiently small neighborhood of x, there exists:

a) a function v € Psh(Q) N6 (Q \ E) such that v = —oc0 on ENQ ;

b) an increasing sequence vy, € Psh(Q2) N 6>°(Q), 0 < v < 1, converging uniformly to 1
on every compact subset of Q \ E, such that vy, =0 on a neighborhood of E N ().

Proof. Assume that g CC X is a coordinate patch of X containing xg and that ENQy =
{z € Qo ; u(z) = —0}, u € Psh(Qp). In addition, we can achieve u < 0 by shrinking Qg
and subtracting a constant to u. Select a convex increasing function x € 6°°([0, 1], R)
such that x(¢) =0 on [0,1/2] and x(1) = 1. We set

we = x(exp(u/k)).

Then 0 < up < 1, ug is plurisubharmonic on €2y, ur = 0 in a neighborhood wy of E N
and limuy, = 1 on Qg \ E. Let 2 CC {2y be a neighborhood of x, let o = d(2, CQp) and
e € )0, d0] be such that e, < d(ENQ, 2\ wg). Then

wy, := max{u; x p., } € Psh(Q) N C°(Q),
i<k

~

0 < wx < 1, wy = 0 on a neighborhood of £ N and wy is an increasing sequence
converging to 1 on QN E (note that wy, > uy). Hence, the convergence is uniform on every
compact subset of 2 \\ E by Dini’s lemma. We may therefore choose a subsequence wy,_
such that wy_(z) = 1—27° on an increasing sequence of open sets Q) with [ JQ, = Q\E.
Then

+oo
w(z) = 2P+ Y (wk, (2) = 1)
s=0

is a strictly plurisubharmonic function on €2 that is continuous on 2~ E, and w = —oo on
ENQ. Richberg’s theorem 1.3.40 applied on 2~ E produces v € Psh(Q\ E)N6>*(Q\E)
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such that w < v < w+1. If we set v = —o0 on EN2, then v is plurisubharmonic on €2 and
has the properties required in a). After subtraction of a constant, we may assume v < 0
on . Then the sequence (vy) of statement b) is obtained by letting v; = x( exp(v/k)).

O

(2.3) Theorem (El Mir). Let E C X be a closed complete pluripolar set and T €
@;TP(X N\ E) a closed positive current. Assume that T has finite mass in a neighborhood

of every point of E. Then the trivial extension T € @;TP(X) obtained by extending the
measures T7.y by 0 on E is closed on X.

Proof. The statement is local on X, so we may work on a small open set {2 such that
there exists a sequence vy € Psh(2) N 6°°(Q2) as in 2.2 b). Let 6 € €>°(]0,1]) be a
function such that € = 0 on [0,1/3], 0 =1 on [2/3,1] and 0 < § < 1. Then fo v, =0
near £ N and fowvy =1 for k large on every fixed compact subset of 2\ E. Therefore

T = limg 400 (0 0 v)T and

dT = lim TAd(Houv)

k——+oo

in the weak topology of currents. It is therefore sufficient to check that T'A d'(6 o vy,)
converges weakly to 0 in 9}, , ,(2) (note that d"T" is conjugate to d'T’, thus d"T will
also vanish).

Assume first that p = 1. Then T'A d'(6 o vi.) € % 1(2), and we have to show that
<T N d/(g o Uk),a> = <T, el(Uk)d/Uk A a> — 0, Ya € @1’0(9).

As v +— (T, iy A7) is a non-negative hermitian form on %, ¢(£2), the Cauchy-Schwarz
inequality yields

(T iB AT < (TLBAB) (T iv AT),  VB,7 € Dro(9).

Let ¢ € 9(2), 0 < ¢ < 1, be equal to 1 in a neighborhood of Supp . We find
(T, 0" (vg)d vy, A @) \2 AT, pid vy, A d"vy) (T, 0 (vg)?ia A @).

By hypothesis [, T AlaA@ < 400 and 6’(v) converges everywhere to 0 on €, thus

(T, 0'(vy,)%ia A @) converges to 0 by Lebesgue’s dominated convergence theorem. On the

other hand
id'd"vi = 2uy,id'd" vy, + 2id'vp A d"vy > 2id'vg, A d vy,

2T, pid'vy A d"vy) < (T, id'd"v}).
Asp €P(Q), vp = 0 near E and d'T = d"T = 0 on Q\ E, an integration by parts yields

(Tvid ') = (Lafidd ) < C [ 7] <40
Q\F

where C'is a bound for the coefficients of ¢. Thus (T, id vy, Ad"vy) is bounded, and the
proof is complete when p = 1.

In the general case, let B, = 1851 A 35,1 Ao NiBs p—1 A Bs’p_l be a basis of forms of
bidegree (p—1,p—1) with constant coefficients (Lemma 1.4). Then T'A B, € 975 (2N E)
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has finite mass near ' and is closed on 2\ E. Therefore d(T A Bs) = (dT) A Bs = 0 on
Q) for all s, and we conclude that dT = 0. U

(2.4) Corollary. If T € 9;!,(X) is closed, if E C X is a closed complete pluripolar set
and 1g is its characteristic function, then 1T and 1x gT are closed (and, of course,
positive).

Proof. 1f we set © = Tix g, then © has finite mass near £/ and we have Ix g1 = 0
and 1T =T — ©. O

§ 2.B. Current of Integration over an Analytic Set

Let A be a pure p-dimensional analytic subset of a complex manifold X. We would
like to generalize Example 1.20 and to define a current of integration [A] by letting

(2.5) <[A],U>Z/A v, vED,,(X).

One difficulty is of course to verify that the integral converges near Agi,g. This follows
from the following lemma, due to [Lelong 1957].

(2.6) Lemma. The current [Areg] € Dt (X N Aging) has finite mass in a neighborhood
of every point 2y € Aging-

Proof. Set T' = [A,eg] and let © 5 zy be a coordinate open set. If we write the monomials
dzg N dZy in terms of an arbitrary basis of APPT*() consisting of decomposable forms
Bs =1Bs,1 /\3371 Ao N Bsp /\Bs’p (cf. Lemma 1.4), we see that the measures 17 .7 are
linear combinations of the positive measures T' A B5. It is thus sufficient to prove that
all T' A Bs have finite mass near Aging. Without loss of generality, we may assume that
(A, 20) is irreducible. Take new coordinates w = (w1, ..., wy) such that w; = B ;(z—2¢),
1 < 7 < p. After a slight perturbation of the 3, ;, we may assume that each projection

s AN(A' x A"),  wr—w = (wy,...,wp)

defines a ramified covering of A (cf. Prop. I1.3.8 and Th. I1.3.19), and that (f;) remains a
basis of APPT*Q). Let S be the ramification locus of g and Ag = AN ((A'\S) x A”) C
Ayeg. The restriction of mg: Ag — A’ S is then a covering with finite sheet number
qs and we find

/ [Areg] A 65 = / ldwl VAN dml VAP ldwp N dmp
AT XA AregN(A' XA

:/ idwl/\dml.../\dmp:qS/ idwl/\dwl.../\dwp<—|—oo.

As A'NS

The second equality holds because Ag is the complement in A,eg N (A" x A”) of an
analytic subset (such a set is of zero Lebesgue measure in A,qg). u

(2.7) Theorem ([Lelong 1957]). For every pure p-dimensional analytic subset A C X,
the current of integration [A] € 9 (X) is a closed positive current on X.

Proof. Indeed, [Ayeg] has finite mass near Agng and [A] is the trivial extension of [Ayeg]
to X through the complete pluripolar set E = Aging. Theorem 2.7 is then a consequence
of El Mir’s theorem. O
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§ 2.C. Support Theorems and Lelong-Poincaré Equation

Let M C X be a closed C! real submanifold of X. The holomorphic tangent space at
a point x € M is

(2.8) " M =T, M N JT, M,

that is, the largest complex subspace of T, X contained in T, M. We define the Cauchy-
Riemann dimension of M at x by CRdim,M = dim¢ "7, M and say that M is a CR
submanifold of X if CRdim, M is a constant. In general, we set

(2.9) CRdim M = max CRdim,M = max dim¢ "7, M.
zeM TEM

A current O is said to be normal if © and dO are currents of order 0. For instance,
every closed positive current is normal. We are going to prove two important theorems
describing the structure of normal currents with support in C R submanifolds.

(2.10) First theorem of support. Let © € 9, ,(X) be a normal current. If Supp ©
s contained in a real submanifold M of CR dimension < p, then © = 0.

Proof. Let o € M and let g1,...,gm be real C' functions in a neighborhood € of x
such that M = {2z € Q; g1(2) =... =gm(z) =0} and dg1 A ... Adg,, # 0 on Q. Then

"M =TMNJTM = () kerdgy Nker(dgyoJ)= [ kerdg

1<k<m 1<k<m

because d' gy = 3 (dgi — i(dgx) 0 J). As dim¢ "T'M < p, the rank of the system of (1,0)-
forms (d'gx) must be > n—p at every point of M NQ. After a change of the ordering, we
may assume for example that ¢; = d'g1, (o = d'ga, ..., (n—pt1 = d'gn_p+1 are linearly
independent on 2 (shrink € if necessary). Complete ((1,...,(n—p+1) into a continuous
frame ((1,...,¢y) of T* X q and set

0= Z @]’JCI/\ZJ on (.

[|=[J|=n—p

As © and d'© have measure coefficients supported on M and g = 0 on M, we get
91O = g1 d'© = 0, thus

dg. NO=d(g©O) —grd©® =0, 1<k<m,

in particular (x A© =0 for all 1 <k <n—p+ 1. When [I| = n — p, the multi-index
CI contains at least one of the elements 1,...,n —p+ 1, hence © A {g; A (g; = 0 and
Or7=0. O

(2.11) Corollary. Let © € 9, ,(X) be a normal current. If Supp © is contained in an
analytic subset A of dimension < p, then © = 0.

Proof. As A,e is a submanifold of CRdim < p in X \ Aging, Theorem 2.9 shows that
Supp © C Aging and we conclude by induction on dim A. O
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Now, assume that M C X is a CR submanifold of class C! with CRdim M = p and
that "TM is an integrable subbundle of TM ; this means that the Lie bracket of two
vector fields in "T'M is in "I'M. The Frobenius integrability theorem then shows that
M is locally fibered by complex analytic p-dimensional submanifolds. More precisely,
in a neighborhood of every point of M, there is a submersion ¢ : M — Y onto a
real C! manifold Y such that the tangent space to each fiber Fy = o7 1(t), t € Y, is
the holomorphic tangent space "T'M ; moreover, the fibers F; are necessarily complex
analytic in view of Lemma 1.7.18. Under these assumptions, with any complex measure
1 on 'Y we associate a current © with support in M by

(2.12) @:/tey[Ft] du(t), ie. <@,u>:/tey(/ﬂ u) dpu(t)

for all u € %;, ,(X). Then clearly © € %), ,(X) is a closed current of order 0, for all fibers
[F}] have the same properties. When the fibers F; are connected, the following converse
statement holds:

(2.13) Second theorem of support. Let M C X be a CR submanifold of CR dimen-
sion p such that there is a submersion o : M — Y of class C! whose fibers Fy = o~ 1(t)
are connected and are the integral manifolds of the holomorphic tangent space "T'M.
Then any closed current © € @;’p(X) of order 0 with support in M can be written
© = [, [F]du(t) with a unique complex measure p on Y. Moreover © is (strongly)
positive if and only if the measure p is positive.

Proof. Fix a compact set K C Y and a C'! retraction p from a neighborhood V of M onto
M. By means of a partition of unity, it is easy to construct a positive form o € @gyp(V)
such that [ P 0= 1 for each fiber F; with t € K. Then the uniqueness and positivity
statements for p follow from the obvious formula

/Y F(t)du(t) = (©,(fooop)a), VfeCY), SuppfC K.

Now, let us prove the existence of y. Let xg € M. There is a small neighborhood €2 of
xo and real coordinates (1,y1,...,%p, Yp, t1,---5tq, g1, - -, Gm) such that

® z; = x;+iy;j, 1 < j < p, are holomorphic functions on (2 that define complex coordinates
on all fibers F; N .

®ty,...,t4 restricted to M N§2 are pull-backs by o : M — Y of local coordinates on an
open set U C Y such that oyq : M N Q2 — U is a trivial fiber space.

® g1 =...= gy, =0 are equations of M in €.

Then TF; = {dt; = dgy, = 0} equals "T'M = {d’g;, = 0} and the rank of (d'g1,...,d gm)
is equal to n — p at every point of M N€). After a change of the ordering we may suppose
that ¢4 = d'g1, ..., (n—p = d'gn—, are linearly independent on Q. As in Prop. 2.10, we
get (R AO =(, ANO =0for 1 <k < n—pand infer that © A {g; A (g; = 0 unless
I =J =L where L ={1,2,...,n—p}. Hence

@z@LLQ/\.../\Qn_p/\zl/\.../\cn_p on f).
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Now (1 A.. ./\Zn_p is proportional to dt{ A...dt, Ndgi N ... Ndgy, because both induce a
volume form on the quotient space T'X s/ WM. Therefore, there is a complex measure
v supported on M N €2 such that

O=vdthyN...dtyNdg1 \...Ndg,, on €.

As O is supposed to be closed, we have dv/0x; = Ov/dy; = 0. Hence v is a measure
depending only on (¢, g), with support in g = 0. We may write v = duy (t) ® dp(g) where
py is a measure on U = o(M N ) and Jy is the Dirac measure at 0. If j: M — X is
the injection, this means precisely that © = j,oc*uy on €, i.e.

GZ/tGU[Ft] duy(t)  on Q.

The uniqueness statement shows that for two open sets 21, 25 as above, the associated
measures pp, and py, coincide on o(M Ny N §y). Since the fibers F; are connected,
there is a unique measure p which coincides with all measures p. U

(2.14) Corollary. Let A be an analytic subset of X with global irreducible components
Aj of pure dimension p. Then any closed current © € 6_7);7:0()() of order 0 with support
in A is of the form © = )" \;[A;] where \; € C. Moreover, © is (strongly) positive if
and only if all coefficients A; are > 0.

Proof. The regular part M = A, is a complex submanifold of X \ A, and its
connected components are A; N A,e;. Thus, we may apply Th. 2.13 in the case where Y’
is discrete to see that © = > A;[A;] on X N\ Aging. Now dim Agine < p and the difference
O — > \j[A;] € 9, ,(X) is a closed current of order 0 with support in Aging, so this
current must vanish by Cor. 2.11. O

(2.15) Lelong-Poincaré equation. Let f € M(X) be a meromorphic function which
does not vanish identically on any connected component of X and let Y m;Z; be the
divisor of f. Then the function log |f| is locally integrable on X and satisfies the equation

i ! 31! . i .
—d'd"log|f| =) | m;[Z]]

/
n—1,n—1

in the space % (X) of currents of bidimension (n —1,n —1).

We refer to Sect. 2.6 for the definition of divisors, and especially to (2.6.14). Observe
that if f is holomorphic, then log|f| € Psh(X), the coefficients m; are positive integers
and the right hand side is a positive current in %’ (X).

n—1l,n—1

Proof. Let Z = |J Z; be the support of div(f). Observe that the sum in the right hand
side is locally finite and that d’'d” log|f| is supported on Z, since

- Jdf _df
d'log|f> =dlog(ff)=4t= == on X~ Z
frf
In a neighborhood 2 of a point a € Z; N Z,eg, we can find local coordinates (wy, ..., wy)

such that Z; N Q is given by the equation w; = 0. Then Th. 2.6.6 shows that f can
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be written f(w) = u(w)w]” with an invertible holomorphic function u on a smaller
neighborhood €' C Q. Then we have

id'd" log|f| = id'd" (log |u| + m;log |wi|) = m;id'd" log |w;]|.
For z € C, Cor. 1.3.4 implies

id'd" log || = —id”(%) = —indodz A dz = 27 [0].

If & : C* — C is the projection z — z; and H C C™ the hyperplane {z; = 0}, formula
(1.2.19) shows that

id'd" log |z1| = id'd" log |®(z)| = ®*(id'd" log |z|) = #®*([0]) = = [H],

because ® is a submersion. We get therefore 1d’'d"log|f| = m;[Z;] in '. This implies
that the Lelong-Poincaré equation is valid at least on X \ Zging. As dim Zging < n —1,
Cor. 2.11 shows that the equation holds everywhere on X. U

§ 3. Definition of Monge-Ampere Operators

Let X be a n-dimensional complex manifold. We denote by d = d’ + d” the usual
decomposition of the exterior derivative in terms of its (1,0) and (0, 1) parts, and we set

dc _ —<d/ _ d//).

27

It follows in particular that d° is a real operator, i.e. d°u = d°%, and that dd® = %d’d”. Al-
though not quite standard, the 1/2im normalization is very convenient for many purposes,
since we may then forget the factor 27 almost everywhere (e.g. in the Lelong-Poincaré
equation (2.15)). In this context, we have the following integration by part formula.

(3.1) Formula. Let Q CC X be a smoothly bounded open set in X and let f,g be forms
of class C? on 0 of pure bidegrees (p,p) and (q,q) with p+q=n—1. Then

/fAddcg—ddcng: FAdg—d°f Ag.
Q o0

Proof. By Stokes’ theorem the right hand side is the integral over (2 of
d(f Nd°g—d°fNg)=fANdd°g—dd°f Ng+ (df Nd°g+d°f Adyg).

As all forms of total degree 2n and bidegree # (n,n) are zero, we get

1
df/\dcgzﬁ(d”f/\d’g—d’f/\d”g):—dcf/\dg. O

Let uw be a plurisubharmonic function on X and let 7" be a closed positive current
of bidimension (p,p), i.e. of bidegree (n — p,n — p). Our desire is to define the wedge
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product dd®u AT even when neither v nor 1" are smooth. A priori, this product does
not make sense because dd“u and T have measure coefficients and measures cannot be
multiplied; see [Kiselman 1983] for interesting counterexamples. Assume however that
u is a locally bounded plurisubharmonic function. Then the current uT is well defined
since u is a locally bounded Borel function and T has measure coefficients. According to
[Bedford-Taylor 1982] we define

dd°u NT = dd°(uT)
where dd®( ) is taken in the sense of distribution (or current) theory.

(3.2) Proposition. The wedge product dd“u AT is again a closed positive current.

Proof. The result is local. In an open set 2 C C", we can use convolution with a
family of regularizing kernels to find a decreasing sequence of smooth plurisubharmonic
functions ux = u x py/; converging pointwise to u. Then u < uy < up and Lebesgue’s
dominated convergence theorem shows that w1 converges weakly to uT'; thus dd®(uxT')
converges weakly to dd®(uT") by the weak continuity of differentiations. However, since
ug is smooth, dd®(uiT) coincides with the product dd®up A T in its usual sense. As
T > 0 and as dd“uy, is a positive (1, 1)-form, we have dd°ux AT > 0, hence the weak limit
dd“u AT is = 0 (and obviously closed). O

Given locally bounded plurisubharmonic functions u;, ..., u,, we define inductively
dd®ui A ddus A ... ANddug AT = dd(urddug A ... A ddug NT).

By (3.2) the product is a closed positive current. In particular, when wu is a locally
bounded plurisubharmonic function, the bidegree (n,n) current (ddu)™ is well defined
and is a positive measure. If u is of class C?, a computation in local coordinates gives

0%u n! . :
S )._nld,zlAdzlA.../udznAdzn.
2j0Z ™

(dd°u)™ = det (
The expression “Monge-Ampere operator” classically refers to the non-linear partial dif-
ferential operator u — det(0%u/dz;0z)). By extension, all operators (dd®)? defined
above are also called Monge-Ampere operators.

Now, let © be a current of order 0. When K CC X is an arbitrary compact subset,
we define a mass semi-norm

el =3 [

i R
by taking a partition K = |J K; where each Fj is contained in a coordinate patch and
where ©7 ; are the corresponding measure coefficients. Up to constants, the semi-norm
||©||x does not depend on the choice of the coordinate systems involved. When K itself
is contained in a coordinate patch, we set 3 = dd°|z|? over K ; then, if © > 0, there are
constants C, Cy > 0 such that

IS ;
1,7

m@m</@Aw<@mm.
K
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We denote by L!(K), resp. by L (K), the space of integrable (resp. bounded measurable)
functions on K with respect to any smooth positive density on X.

(3.3) Chern-Levine-Nirenberg inequalities (1969). For all compact subsets K, L of
X with L C K°, there exists a constant Ck 1, = 0 such that

ldduy A .. A dd®ug ANT|L < Ck 1 [|ual|poe(x) - - - gl oo sy 1T -
Proof. By induction, it is sufficient to prove the result for ¢ = 1 and u; = u. There is a

covering of L by a family of balls B’ CC Bj C K contained in coordinate patches of X.
Let x € 9(B,) be equal to 1 on B Then

l[dd“u AT, 5 < C/_/ ddunT ABP1 < C/ xddu AT A P
g B B,
As T and f are closed, an integration by parts yields
||ddcu/\THm§; < C/ wT Addex AP~ < C'|[ul| oo i) 1T || i
B
where C’ is equal to C' multiplied by a bound for the coefficients of the smooth form
d°x A BPL. O

(3.4) Remark. With the same notations as above, any plurisubharmonic function V'
on X satisfies inequalities of the type

a) HdchHL<CK,LHVHL1(K).

b) SupV+ CKL||V||L1(K)
In fact the inequality

/ dd°V A < / xddV A B = / Vddex A B"E
LNB, B; B

j
implies a), and b) follows from the mean value inequality.

(3.5) Remark. Products of the form © = v; A ... Ay, AT with mixed (1, 1)-forms
v; = ddu; or v; = dv; A d°w; + dw; A dv; are also well defined whenever u;, v;, w; are
locally bounded plurisubharmonic functions. Moreover, for L C K°, we have

10l < Ck o||T|k H ||Uj||L°o(K) H ||Uj||Loo(K) H ||wj||L°°(K)-

To check this, we may suppose v;, w; > 0 and ||v;|| = ||w;|| = 1 in L*>*(K). Then the
inequality follows from (3.3) by the polarization identity

2(dvj A dwj + dwj A d°vj) = dd°(vj + w;)? — ddcv? - ddcw? — v;dd“w; — w;jddv;

in which all dd® operators act on plurisubharmonic functions.
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(3.6) Corollary. Let uq,...,uq be continuous (finite) plurisubharmonic functions and
let uk, ... ,ué’ be sequences of plurisubharmonic functions converging locally uniformly to
Ui, ..., uq. If Ty, is a sequence of closed positive currents converging weakly to T, then

a) ufddu A ... Addul ATy, — urddup A ... Adduqg AT weakly.

b) dd°uf A...Adduf ATy — ddCuy A ... AN ddCug AT weakly.

Proof. We observe that b) is an immediate consequence of a) by the weak continuity of
dd®. By using induction on g, it is enough to prove result a) when ¢ = 1. If (u*) converges
locally uniformly to a finite continuous plurisubharmonic function u, we introduce local
regularizations u. = u * p. and write

uF Ty — ul = (u® — )T + (v — u) T + ue (T — T).

As the sequence T}, is weakly convergent, it is locally uniformly bounded in mass, thus
|(u? — )Tyl |k < |JuF = ul| o) || Th||x converges to 0 on every compact set K. The
same argument shows that ||(v — u.)Tk||x can be made arbitrarily small by choosing ¢
small enough. Finally u. is smooth, so u.(Ty — T) converges weakly to 0. U

Now, we prove a deeper monotone continuity theorem due to [Bedford-Taylor 1982]
according to which the continuity and uniform convergence assumptions can be dropped
if each sequence (ué€ ) is decreasing and T} is a constant sequence.

(3.7) Theorem. Let uy,...,uq be locally bounded plurisubharmonic functions and let
T ,ulg be decreasing sequences of plurisubharmonic functions converging pointwise to
Ut,...,uq. Then

a) ufddu§ A ... Adduf AT — urddug A ... Adduqg AT weakly.

b) dd“uf A ... A ddculg ANT — dd°uy A ... ANddug NT weakly.

Proof. Again by induction, observing that a) = b) and that a) is obvious for ¢ = 1
thanks to Lebesgue’s bounded convergence theorem. To proceed with the induction step,
we first have to make some slight modifications of our functions u; and uf

As the sequence (u?’) is decreasing and as u; is locally bounded, the family (U;?)keN
is locally uniformly bounded. The results are local, so we can work on a Stein open set
Q) cC X with strongly pseudoconvex boundary. We use the following notations:

(3.8)  let 1) be a strongly plurisubharmonic function of class 6> near Q with ¥ < 0 on
Q and ¥ =0, dyp # 0 on 01;

(3.8")  weset Qs ={z€Q;¢Y(z) <=6} for all 6 > 0.
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ITT-1 Construction of vf

After addition of a constant we can assume that —M < uf < —1 near Q. Let us denote
k

by (u?’s), e € ]0,e0], an increasing family of regularizations converging to uj ase — 0

and such that —M < u?’s < —1lon . Set A= M/§ with 6 > 0 small and replace uf
by vF = max{Ay, us} and u?’s by vf’e = maxg{Azp,u?’E} where max. = max x p. is a

regularized max function.

Then vf coincides with u? on 5 since Ay < —Ad = —M on (s, and vf is equal to
At on the corona Q\ Q5,5 Without loss of generality, we can therefore assume that all
u"f (and similarly all u?’e) coincide with A on a fixed neighborhood of 9€2. We need a
lemma.

(3.9) Lemma. Let fx be a decreasing sequence of upper semi-continuous functions
converging to f on some separable locally compact space X and py a sequence of positive
measures converging weakly to p on X. Then every weak limit v of fru satisfies v < fu.

Indeed if (gp) is a decreasing sequence of continuous functions converging to fy, for
some ko, then frur < fiopr < gpp for k > ko, thus v < gpp as k — +o00. The monotone
convergence theorem then gives v < fy,p as p = +oo and v < fu as kg — +o0. U

Proof of Theorem 3.7 (end).. Assume that a) has been proved for ¢ — 1. Then
S*¥ =dduS A ... Adduf AT — S = ddus A ... Adduq AT.

By 3.3 the sequence (u¥S*) has locally bounded mass, hence is relatively compact for
the weak topology. In order to prove a), we only have to show that every weak limit O
of u¥S* is equal to u1S. Let (m,m) be the bidimension of S and let v be an arbitrary
smooth and strongly positive form of bidegree (m,m). Then the positive measures S¥ A~y
converge weakly to S A v and Lemma 3.9 shows that © A v < u1S A, hence © < uyS.
To get the equality, we set 8 = dd°y) > 0 and show that [, u1SAB™ < [OAB™, ie.

/ urddug A ... Addug AT A B™ < liminf/ ufddeul A ... Addul AT A B™.
Q Q

k—+oo
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As u; <ub < u]f’el for every €1 > 0, we get
/QulddCUQ Ao ANddug NT N B™
< / ul S ddéuy A ... A ddCug NT A B™
Q
= / dd°uf = Augdd®us A .. A ddCug AT A B
Q

after an integration by parts (there is no boundary term because u]f’e

on 012). Repeating this argument with s, ..., u,, we obtain

! and uo both vanish

/ urddug A ... ANddug NT N B™
Q
< / ddeuly™ AL A ddoug i AugT A BT
Q

< / up Tt ddeul T AL A ddCuk s AT A B
Q

Now let ¢, = 0,...,e1 — 0 in this order. We have weak convergence at each step and
u’f’sl = (0 on the boundary; therefore the integral in the last line converges and we get
the desired inequality

/ulddCUQA...AddcquTAﬁmg/u’fddcu’gA...Addcu’;ATAﬁm. O
Q Q

(3.10) Corollary. The product dduy A ... A dd°uqg AT is symmetric with respect to

ULy.nyUg-

Proof. Observe that the definition was unsymmetric. The result is true when uy, ..., u,
are smooth and follows in general from Th. 3.7 applied to the sequences u? = Uj * P1/k,
I<j<q O

(3.11) Proposition. Let K, L be compact subsets of X such that L C K°. For any
plurisubharmonic functions V,uq,...,uq on X such that uy,...,u, are locally bounded,
there 1s an inequality

HVddcul /\.../\ddcuq||L < CK,L ||V||L1(K)||U1HL<>0(K)...||Uq||Loo(K).

Proof. We may assume that L is contained in a strongly pseudoconvex open set 2 = {1 <
0} C K (otherwise we cover L by small balls contained in K). A suitable normalization
gives —2 < uj; < —1 on K ; then we can modify u; on Q\ L so that u; = Ay on Q\ Qs
with a fixed constant A and § > 0 such that L C Q5. Let x > 0 be a smooth function
equal to — on {25 with compact support in 2. If we take ||V||p1(x) = 1, we see that
V. is uniformly bounded on €5 by 3.4 b); after subtraction of a fixed constant we can
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assume V' < 0 on 5. First suppose ¢ <n — 1. As u; = Ay on Q\ Q5, we find
/ —Vdd®ui A ... Addug A"
Qs

= / Vdduy A ... Addug A BT A Ay — Aq/ V " Addey
Q Q\Qs

= / X ddV Adduy A ... Addug A BT — Aq/ V " A ddoy.
Q Q\Qs

The first integral of the last line is uniformly bounded thanks to 3.3 and 3.4 a), and the
second one is bounded by ||V||z1(q) < constant. Inequality 3.11 follows for ¢ < n —1. If
q = n, we can work instead on X x C and consider V,u,...,u, as functions on X x C
independent of the extra variable in C. O

§ 4. Case of Unbounded Plurisubharmonic Functions

We would like to define dd“u; A ... Add“uq AT also in some cases when uy, ..., u, are
not bounded below everywhere, especially when the u; have logarithmic poles. Consider
first the case ¢ = 1 and let u be a plurisubharmonic function on X. The pole set of
u is by definition P(u) = u~1(—o0). We define the unbounded locus L(u) to be the
set of points z € X such that w is unbounded in every neighborhood of z. Clearly
L(u) is closed and we have L(u) D P(u) but in general these sets are different: in fact,

w(z) = Y k2log(|z — 1/k| + e~*") is everywhere finite in C but L(u) = {0}.

(4.1) Proposition. We make two additional assumptions:
a) T has non zero bidimension (p,p) (i.e. degree of T < 2n ).

b) X is covered by a family of Stein open sets Q@ CC X whose boundaries 02 do not
intersect L(u) N Supp T'.

Then the current uT' has locally finite mass in X.

For any current T, hypothesis 4.1 b) is clearly satisfied when w has a discrete un-
bounded locus L(u); an interesting example is u = log |F'| where F' = (F1,..., Fy) are
holomorphic functions having a discrete set of common zeros. Observe that the current
uT need not have locally finite mass when 7" has degree 2n (i.e. T'is a measure); example:
T = §p and u(z) = log|z| in C™. The result also fails when the sets € are not assumed
to be Stein; example: X = blow-up of C" at 0, T'= [E] = current of integration on the
exceptional divisor and u(z) = log|z| (see § 7.12 for the definition of blow-ups).

Proof. By shrinking ) slightly, we may assume that ) has a smooth strongly pseu-
doconvex boundary. Let 1 be a defining function of € as in (3.8). By subtracting a
constant to u, we may assume u < —& on Q. We fix § so small that Q ~ Qg does not
intersect L(u) N Supp T and we select a neighborhood w of (2 \ 25) N Supp 7" such that
wN L(u) = 0. Then we define

us(2) = {max{u(z)w‘lw(z’)} on w,
s max{u(z), s} on Q5 = {¢ < —6}.
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By construction u > —M on w for some constant M > 0. We fix A > M/ and take
s< —M, so
max{u(z), AY(z)} = max{u(z),s} =u(z) on wnNQs

and our deﬁnitiog of uy is coherent. Observe that u, is defined on w U €5, which is a
neighborhood of 2 N Supp T'. Now, us = Ay on w N (2 \ €. /4), hence Stokes’ theorem
implies

/ ddus AT A (ddCy)P~t — / Add“yp AT A (ddap)P~!
QO Q

= /Q dd®[(us — AY)T A (dd°y)P~'] =0

because the current [...] has a compact support contained in Q. /A~ Since ug and ¢ both
vanish on 0, an integration by parts gives

/ usT A (ddip)P = / Yddus AT A (ddp)P~!
Q Q
> |1l / T A ddeus A (ddg)P™!
Q
_ _||¢HL00(Q)A/QT/\ (ddCep)P.

Finally, take A = M/§, let s tend to —oco and use the inequality v > —M on w. We
obtain

/uT/\ (dd°y)P > —M/ T A (dd“yP)? + lim usT A (dd°y)P
Q

w s=—00 Jo
> (M + [l oo sy M/3) /Q T A (dd“)P.

The last integral is finite. This concludes the proof. U

(4.2) Remark. If Q is smooth and strongly pseudoconvex, the above proof shows in

fact that o
11y < S lull e ey 1 17l

when L(u)NSupp T C Q5. In fact, if u is continuous and if w is chosen sufficiently small,
the constant M can be taken arbitrarily close to ||u|; (@~05)nSupp 7). Moreover, the
maximum principle implies

||U’+||L°°(§ﬂSupp T) = Hu-‘rHLOO(BQﬂSupp T)>
so we can achieve that u < —e on a neighborhood of Q N Supp 7 by subtracting

||UHL°°((§\Q(;)QSupp ) T2 [Proof of maximum principle: if u(zg) > 0 at zp € QNSupp T
and u < 0 near 922 N Supp T', then

/ u T A (dd)P = / Ydduy AT A (dd)P~ <0,
Q Q
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a contradiction]. O

(4.3) Corollary. Let uy,...,u, be plurisubharmonic functions on X such that X is
covered by Stein open sets Q with 9Q N L(u;) NSupp T = 0. We use again induction to
define

dduy ANddug A ... Nddug NT = dd°(urddug ... Addug NT).

Then, if uf,. ..,u’; are decreasing sequences of plurisubharmonic functions converging

pointwise to uy, ..., uq, ¢ < p, properties (3.7a,b) hold.

L(uy) 2~

ITI-2 Modified construction of vf

Proof. Same proof as for Th. 3.7, with the following minor modification: the max
procedure vf = max{ué‘-’, At} is applied only on a neighborhood w of Supp 7'M (2 \ Q)

with 0 > 0 small, and uf is left unchanged near Supp 7' N Qs. Observe that the integration
by part process requires the functions u;“ and u?’s to be defined only near QNSupp 7. O

(4.4) Proposition. Let 2 CC X be a Stein open subset. If V is a plurisubharmonic
function on X and uq,...,uq, 1 < g <n—1, are plurisubharmonic functions such that
QN L(uj;) =0, then Vdd®uy A ... A dd°uq has locally finite mass in Q.

Proof. Same proof as for 3.11, when 6 > 0 is taken so small that Q5 O L(u;) for all
I<j<gq O

Finally, we show that Monge-Ampere operators can also be defined in the case of
plurisubharmonic functions with non compact pole sets, provided that the mutual inter-
sections of the pole sets are of sufficiently small Hausdorff dimension with respect to the
dimension p of T

(4.5) Theorem. Let uy,...,uq be plurisubharmonic functions on X. The currents
urdd®us A ... ANdd°ug AT and dduy A ... Add°uqg AT are well defined and have locally
finite mass in X as soon as ¢ < p and

Hop—2m+1(L(uj,) N ... N L(uj, ) NSupp T) =0

for all choices of indices j1 < ... < jm in{1,...,q}.
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The proof is an easy induction on ¢, thanks to the following improved version of the
Chern-Levine-Nirenberg inequalities.

(4.6) Proposition. Let A;,..., A; C X be closed sets such that
362p_2m+1 (Ajl N...N Ajm N Supp T) =0

for all choices of 1 < ... < jm in{l,...,q}. Then for all compact sets K, L of X with
L C K°, there exist neighborhoods V; of K N A; and a constant C = C(K, L, A;) such
that the conditions u; < 0 on K and L(u;) C A; imply

a) ||U1ddCU2 VAN ddcuq N T||L < C||u1||L°°(K\V1) Ce ||uq||L°°(K\Vq)||T||K
b) [[ddeus A ... Addoug AT < Cllur|| oo (v - - - gl |1 (v T 1

Proof. We need only show that every point 2y € K° has a neighborhood L such that a),
b) hold. Hence it is enough to work in a coordinate open set. We may thus assume that
X C C" is open, and after a regularization process u; = limu; xp. for j =¢q, ¢—1,...,1
in this order, that uy,...,u, are smooth. We proceed by induction on ¢ in two steps:

Step 1. (bg—1) = (by),
Step 2. (ag—1) and (by) = (ag),
where (bg) is the trivial statement ||T'||;, < ||T||x and (ag) is void. Observe that we have

(ag) => (ar) and (by) = (by) for £ < ¢ < p by taking up1(2) = ... =uy(z) = |2]?. We
need the following elementary fact.

(4.7) Lemma. Let F' C C" be a closed set such that #as11(F) = 0 for some integer
0 < s <n. Then for almost all choices of unitary coordinates (z1,...,z,) = (', 2") with
2= (z1,...,25), 2" = (2541, -, 2n) and almost all radii of balls B" = B(0,r") C C"~*,
the set {0} x OB" does not intersect F.

Proof. The unitary group U(n) has real dimension n2. There is a proper submersion
®:U(n) x (C"°~{0}) — C"~ {0}, (g,2") —> g(0,2"),

whose fibers have real dimension N = n? — 2s. It follows that the inverse image ®*(F)
has zero Hausdorff measure #n 2541 = #,211. The set of pairs (g,7") € U(n) x R
such that g({0} x OB") intersects F is precisely the image of ®~(F) in U(n) x R by
the Lipschitz map (g, 2”) — (g, |2”|). Hence this set has zero #,2 1-measure. O

Proof of step 1.. Take zo = 0 € K°. Suppose first 0 € A1 N...N A, and set F' =
Airn...NA;NSupp T. Since #sp_24+1(F) = 0, Lemma 4.7 implies that there are

coordinates z' = (z1,...,2s), 2" = (2s41,---,2n) With s = p — ¢ and a ball B such
that F N ({0} x 9B”) = 0 and {0} x B ¢ K°. By compactness of K, we can find

neighborhoods W; of KN A; and a ball B = B(0,r") C C* such that B xB" c K° and
(4.8) Win...Nn W, N Supp Tﬂ(E'x (Eu\(l—é)B”)> —

for 6 > 0 small. If 0 ¢ A; for some j, we choose instead W} to be a small neighborhood
of 0 such that W; C (E/ X (1—9)B")\ A, ; property (4.8) is then automatically satisfied.
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Let x; > 0 be a function with compact support in W;, equal to 1 near K N A; if A; 50
(resp. equal to 1 near 0 if A; Z 0) and let x(2’) > 0 be a function equal to 1 on 1/2 B’
with compact support in B’. Then

/ dd(x1u1) A+ .. A dd®(xqug) AT A X(2') (dd°) 2 P)° =
B’'x B’

because the integrand is dd¢ exact and has compact support in B’ x B” thanks to (4.8).
If we expand all factors dd®(x;u;), we find a term

X1 - XgX(2)dduy A oo AN ddug AT =0

which coincides with dd“ui A. . .Add°uy AT on a small neighborhood of 0 where x; = x = 1.
The other terms involve

dx; N dCUj + du; A chj + Ujdchj

for at least one index j. However dx; and ddcxj vanish on some neighborhood V’
of KN A; and therefore u; is bounded on B xB ~ V’ We then apply the mductlon
hypothesm (bg—1) to the current

O = dduy A ... Addeuj A ... A\ddug AT

and the usual Chern-Levine-Nirenberg inequality to the product of © with the mixed
term dx; A du; + du; A d°x;. Remark 3.5 can be applied because x; is smooth and is

therefore a difference X( ) ( ) of locally bounded plurisubharmonic functions in C™. Let
K’ be a compact nelghborhood of B x B” Wlth K’ ja K*°, and let V; be a neighborhood
of KN A; with V; C V/. Then with L' := (B x B’ ) ~ VJ’ (K’ V) we obtain

||(de/\chj + d’LLj/\chj) A ®||§/><§” = ||(de/\dCUj + de/\chj> INCIIY
< Chlluglpoe (v 11Ol vy
1011k, <181k < Calluallporeavay - Hugll - Il oo (e I T

Now, we may slightly move the unitary basis in C™ and get coordinate systems z" =

(21", ..., z) with the same properties as above, such that the forms

|
(dd®|z™|?)* = iidz{" ANAZP A ANTdZD ANdZD, 1< m <N
7TS
define a basis of A**(C™)*. Tt follows that all measures
ddui N\ ... ANddug NT NidzT" NdzZ{" N ..o AN1dz]" AN dz]

satisfy estimate (b,) on a small neighborhood L of 0.

Proof of Step 2.. We argue in a similar way with the integrals
/ x1u1ddS(xaua) A ... dd¢(xqug) AT A x(2)(dd®|2'|?)% A dd®|zss1]?
B’xB"

_ / 21 [2dde () A« .. dd*(xquug) AT A x(2)(ddC]2[2)°.
B’ x B
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We already know by (b,) and Remark 3.5 that all terms in the right hand integral
admit the desired bound. For ¢ = 1, this shows that (b;) = (a;). Except for
X1---XgX (") urddua A ... Add®ug AT, all terms in the left hand integral involve deriva-
tives of x;. By construction, the support of these derivatives is disjoint from A;, thus
we only have to obtain a bound for

/UldchQ/\.../\ddcuq/\T/\Oé
L

when L = B(xg, ) is disjoint from A; for some j > 2, say LN Ay = (), and « is a constant
positive form of type (p — ¢,p — q). Then B(zg,r +¢) C K° \ V3 for some £ > 0 and
some neighborhood V5 of K N A,. By the max construction used e.g. in Prop. 4.1, we can
replace uz by a plurisubharmonic function @y equal to ug in L and to A(|z—xo|?>—1?)—M
in B(zo,r +€) \ B(zo,r +¢/2), with M = ||ua|| (5 v,) and A = M/er. Let x >0 be
a smooth function equal to 1 on B(xg,r + £/2) with support in B(zg, ). Then

/ ulddc(xilg) /\dch3/\.../\ddcuq/\T/\Oé
B(zg,r+¢)

= / Xuadd“u; Add“uz A\ ... ANddug AT A o
B(zg,r+¢)

<0(1)

[ut|| Lo (Vi) - - - gl Loo (e v 1T

where the last estimate is obtained by the induction hypothesis (by_1) applied to ddu; A
dduz A ... ANdd°uqs NT. By construction

dd®(xuz) = x dd“us + (smooth terms involving dy)

coincides with dd“ug in L, and (a,—1) implies the required estimate for the other terms
in the left hand integral. U

(4.9) Proposition. With the assumptions of Th. 4.5, the analogue of the monotone
convergence Theorem 3.7 (a,b) holds.

Proof. By the arguments already used in the proof of Th. 3.7 (e.g. by Lemma 3.9), it is
enough to show that

/ X1---Xqui Adduz A ... ANddug AT N o
/XB//

<liminf/ X1...Xqu’fddcug/\.../\ddcu’;/\T/\a
B/><B//

k—+oo

where o = x(2')(dd¢|2'|?)® is closed. Here the functions x;, x are chosen as in the proof
of Step 1 in 4.7, especially their product has compact support in B’ x B” and x; = x =1
in a neighborhood of the given point zg. We argue by induction on ¢ and also on the
number m of functions (u;);>1 which are unbounded near xy. If u; is bounded near z,

we take W' CC W[ CC Wj to be small balls of center z¢ on which u; is bounded and

we modify the sequence u? on the corona W, \ WJ{’ so as to make it constant and equal

to a smooth function A|z — x|?> + B on the smaller corona W; \ W, In that case, we
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take x; equal to 1 near W; and Supp x; C Wj. For every £ =1,...,q, we are going to
check that

lim inf/ xiuldde(xaub) A
B'xB"

k——+oo

dd®(xo—1uf_1) A dd®(xeue) A dd(xes1wert) - - dd(xqug) AT A

< hmmf/ 1u1ddc( 2u2) N .
/7 B//

k—+oo

dd®(xo_1uf_1) A dd®(xeuf) A dd(xes1terr) - - dd(xqug) AT A a.

In order to do this, we integrate by parts yiufdd®(xeue) into yeuedd®(x1u}) for £ >

and we use the inequality u, < ug Of course, the derivatives dx;, d°x;, dd°x; produce
terms which are no longer positive and we have to take care of these. However, Supp dy;
is dlsJomt from the unbounded locus of u; when u; is unbounded, and contained in
W; ~ W when u; is bounded. The number m of unbounded functions is therefore
replaced by m — 1 in the first case, whereas in the second case u? = u; is constant and
smooth on Supp dx;, so ¢ can be replaced by ¢ — 1. By induction on g +m (and thanks
to the polarization technique 3.5), the limit of the terms involving derivatives of y; is
equal on both sides to the corresponding terms obtained by suppressing all indices k.

Hence these terms do not give any contribution in the inequalities. U

We finally quote the following simple consequences of Th. 4.5 when T is arbitrary
and g = 1, resp. when T' = 1 has bidegree (0,0) and ¢ is arbitrary.

(4.10) Corollary. Let T be a closed positive current of bidimension (p,p) and let u be
a plurisubharmonic function on X such that L(u) N Supp T is contained in an analytic
set of dimension at most p— 1. Then uT and dd°u AT are well defined and have locally
finite mass in X. O

(4.11) Corollary. Let uy,...,uq be plurisubharmonic functions on X such that L(u;)
is contained in an analytic set A; C X for every j. Then ddu; A ... A dd°uq is well
defined as soon as Aj, N...NA; has codimension at least m for all choices of indices
J1<...<jmin{l,... q}. O

In the particular case when u; = log|f;| for some non zero holomorphic function f;
on X, we see that the intersection product of the associated zero divisors [Z;] = ddu;
is well defined as soon as the supports |Z;| satisfy codim|Z;,|N...N|Z;, | = m for
every m. Similarly, when T" = [A] is an analytic p-cycle, Cor. 4.10 shows that [Z] A [4]
is well defined for every divisor Z such that dim |Z| N|A| = p — 1. These observations
easily imply the following

(4.12) Proposition. Suppose that the divisors Z; satisfy the above codimension con-
dition and let (Ck)r>1 be the irreducible components of the point set intersection |Z1| N
..N|Zy|. Then there exist integers my > 0 such that

(Z A A [Zg) =) my[Crl.

The integer my, is called the multiplicity of intersection of Zi,...,Z, along the compo-
nent Cl.
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Proof. The wedge product has bidegree (¢, ¢) and support in C' = | J C}, where codim C' =
q, so it must be a sum as above with my € Ry. We check by induction on ¢ that my, is
a positive integer. If we denote by A some irreducible component of |Z;| N ... N |Z,_1],
we need only check that [A] A [Z,] is an integral analytic cycle of codimension ¢ with
positive coefficients on each component Cj of the intersection. However [A] A [Z,] =
dd°(log|f,| [A]). First suppose that no component of A N f'(0) is contained in the
singular part Aging. Then the Lelong-Poincaré equation applied on A,., shows that
dd°(log | fq| [A]) = > mi[Ck] on X \ Aging, Wwhere my, is the vanishing order of f, along
Cr in Ayeg. Since C' N Aging has codimension ¢ + 1 at least, the equality must hold on
X. In general, we replace f, by f, — € so that the divisor of f;, — ¢ has no component
contained in Agng. Then dd®(log|f, — €| [A]) is an integral codimension ¢ cycle with
positive multiplicities on each component of AN f~ 1(e) and we conclude by letting e
tend to zero. g

§ 5. Generalized Lelong Numbers

The concepts we are going to study mostly concern the behaviour of currents or
plurisubharmonic functions in a neighborhood of a point at which we have for instance
a logarithmic pole. Since the interesting applications are local, we assume from now on
(unless otherwise stated) that X is a Stein manifold, i.e. that X has a strictly plurisubhar-
monic exhaustion function. Let ¢ : X — [—00, +00] be a continuous plurisubharmonic
function (in general ¢ may have —oo poles, our continuity assumption means that e is
continuous). The sets

(5.1) S(r)={z e X; p(x) =r},
(5.1 Blr) = {x € X: plx) <1}
(5.17) B(ry={x € X; p(x) <r}

will be called pseudo-spheres and pseudo-balls associated with ¢. Note that B(r) is not
necessarily equal to the closure of B(r), but this is often true in concrete situations. The
most simple example we have in mind is the case of the function ¢(z) = log|z — a| on an
open subset X C C"; in this case B(r) is the euclidean ball of center a and radius e”;
moreover, the forms

1 . .
(5.2) Sddoe® = —d'd"|2)?, dd°p = ~d'd"log|z — a

2 27 m
can be interpreted respectively as the flat hermitian metric on C™ and as the pull-back
over C" of the Fubini-Study metric of P*~!, translated by a.

(5.3) Definition. We say that ¢ is semi-exhaustive if there exists a real number R such
that B(R) cC X. Similarly, ¢ is said to be semi-exhaustive on a closed subset A C X if
there exists R such that AN B(R) CC X.

We are interested especially in the set of poles S(—o0) = {¢ = —oo} and in the
behaviour of ¢ near S(—o0). Let T" be a closed positive current of bidimension (p,p) on
X. Assume that ¢ is semi-exhaustive on Supp 7" and that B(R) N Supp 7' CC X. Then
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P = S(—00)NSuppT is compact and the results of §2 show that the measure T'A (dd®p)P
is well defined. Following [Demailly 1982b, 1987a], we introduce:

(5.4) Definition. If ¢ is semi-ezhaustive on Supp T and if R is such that B(R) N
Supp T CC X, we set for all r € | — oo, R|

(T, ,7) = /B Ty

r——00

v(T,p) = /S( )T/\ (dd°p)? = lim v(T,¢,r).

The number v(T, @) will be called the (generalized) Lelong number of T with respect to
the weight .

If we had not required T'A (dd°p)P to be defined pointwise on ¢! (—o00), the assump-
tion that X is Stein could have been dropped: in fact, the integral over B(r) always
makes sense if we define

v(T,p,r) = /B( )T/\ (dd® max{p, s})p with s < r.

Stokes’ formula shows that the right hand integral is actually independent of s. The
example given after (4.1) shows however that T'A (dd°p)P need not exist on ¢~ !(—o0) if
¢ 1(—00) contains an exceptional compact analytic subset. We leave the reader consider
by himself this more general situation and extend our statements by the max{y, s}
technique. Observe that r — v(T, p,r) is always an increasing function of r. Before
giving examples, we need a formula.

(5.5) Formula. For any convex increasing function x : R — R we have
/ T A (ddx o @) = X'(r = 0)" u(T, ¢,7)
B(r)

where x'(r — 0) denotes the left derivative of x at r.

Proof. Let x. be the convex function equal to x on [r — &, +00[ and to a linear function
of slope x/'(r —e—0) on | —oo,r —¢]. We get dd(x-o0¢) = X'(r—e—0)ddp on B(r —¢)
and Stokes’ theorem implies

/ T A (dd°x o p)P = / T A (dd°xe o )P
B(r) B(r)

> / T N (ddcxs o (p)p
B(r—e)
=xX'(r—e—0)Pu(T,p,r—¢).

Similarly, taking X. equal to y on | — 0o, — €] and linear on [r — ¢, r|, we obtain

/ T A (dd°x o )P < / T A (dd°Xz 0 )P = X'(r —e = 0)Pu(T, ¢, 7).
B(r—e) B(r)
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The expected formula follows when ¢ tends to 0. O

We get in particular fB(T) T A (dd°e*#)P = (2e®")Pu(T, ¢, r), whence the formula
—2pr 1 e 20\P
(5.6) v(T,p,r) =€ P T N (—dd e “’) :
Br) N2

Now, assume that X is an open subset of C" and that ¢(z) = log|z — a| for some
a € X. Formula (5.6) gives

v(T, p,logr) = r_Qp/ T A (id’d”|z|2>p.

|z—a|<r

The positive measure o = I%T A (sd'd"|z?)P = 27P Y Ty 1.i"%dz1 A ... A dZ, is called
the trace measure of T. We get

or (B(a, r))

(5.7) U(Tp,logr) = T

and v (T, ) is the limit of this ratio as » — 0. This limit is called the (ordinary) Lelong
number of T at point a and is denoted v(T, a). This was precisely the original definition
of Lelong, see [Lelong 1968]. Let us mention a simple but important consequence.

(5.8) Consequence. The ratio o (B(a,r))/r?" is an increasing function of r. More-
over, for every compact subset K C X and every ro < d(K,0X) we have

UT(B<CL,7‘)) < Cr?  for a€ K and r < 1o,

where C' = o (K +§(0,r0))/r§p.

All these results are particularly interesting when 7" = [A] is the current of integration
over an analytic subset A C X of pure dimension p. Then o (B(a,r)) is the euclidean
area of AN B(a,r), while 7Pr??/p! is the area of a ball of radius r in a p-dimensional
subspace of C™. Thus v(T, ¢,logr) is the ratio of these areas and the Lelong number
v(T,a) is the limit ratio.

(5.9) Remark. It is immediate to check that

_JO0 for z¢ A,
v([A],z) = { 1 when x € A is a regular point.

We will see later that v([A], z) is always an integer (Thie’s theorem 8.7).

(5.10) Remark. When X = C", p(z) =log|z —a| and A = X (i.e. T'= 1), we obtain
in particular fB(a T)(ddc log|z —a|)™ =1 for all . This implies

(dd°log|z — a|)" = d4.
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This fundamental formula can be viewed as a higher dimensional analogue of the usual
formula Alog|z — a| = 27d, in C. O

We next prove a result which shows in particular that the Lelong numbers of a closed
positive current are zero except on a very small set.

(5.11) Proposition. IfT is a closed positive current of bidimension (p,p), then for each
c> 0 the set E. = {x € X; v(T,x) > c} is a closed set of locally finite ¥, Hausdorff
measure in X .

Proof. By (5.7), we infer v(T,a) = lim,,or(B(a,r))p!/7Pr?’. The function a
or(B(a,r)) is clearly upper semicontinuous. Hence the decreasing limit v(T,a) as r
decreases to 0 is also upper semicontinuous in a. This implies that E. is closed. Now,
let K be a compact subset in X and let {a;}1<j<n, N = N(g), be a maximal collection
of points in E.N K such that |a; — ay| > 2¢ for j # k. The balls B(a;,2¢) cover E. N K,
whereas the balls B(aj,¢) are disjoint. If K, . is the set of points which are at distance
<eof E.NK, we get

or(Kee) =Y or(Blaj,e)) > N(e) en?e /pl,
since v(T, a;) > c. By the definition of Hausdorff measure, we infer

.. . 2p
< .
Hop(E.NK) < llIgl_)l(I)lf E (diam B(a;, 2¢))

Finally, we conclude this section by proving two simple semi-continuity results for
Lelong numbers.

(5.12) Proposition. Let T}, be a sequence of closed positive currents of bidimension
(p,p) converging weakly to a limit T. Suppose that there is a closed set A such that
Supp T, C A for all k and such that ¢ is semi-exhaustive on A with AN B(R) cC X.
Then for all v < R we have

/ T A (dd°p)P < lim inf/ Ti A (dd°p)P
B(r) B(r)

k—+o00

< limsup /_ Ti A (dd°p)? < / T A (ddp)P.

k—+oo JB(r) B(r)

When r tends to —oo, we find in particular

lim sup v(Tk, ) < v(T, ¢).

k——+oo

Proof. Let us prove for instance the third inequality. Let ¢, be a sequence of smooth
plurisubharmonic approximations of ¢ with ¢ < py < p+ 1/l on {r —e < v < r+¢€}.

We set _( )
e on B(r),
ve = {max{% (1+)(pe = 1/0) =72} on X ~ B(r).
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This definition is coherent since 1)y = ¢ near S(r), and we have
Y= (1+¢)(pe—1/0) —re near S(r+e/2)

as soon as / is large enough, i.e. (1+¢)/f < €?/2. Let x. be a cut-off function equal to
1 in B(r + ¢/2) with support in B(r + ¢). Then

/_ T A (ddccp)p < / T A (ddclbg)p

B(r) B(r+e/2)

= (1 + €)p/ T A (ddc(pg)p
B(r+e/2)

< (14 5)”/ XeTi A (ddpp)P.
B(r+e)

As x:(dd®p.)P is smooth with compact support and as T} converges weakly to T, we
infer

lim sup/ T A (ddp)P < (14 €)p/ XTI A (ddCpg)P.

k—+oco JB(r) B(r+e)
We then let ¢ tend to +o0o and e tend to 0 to get the desired inequality. The first
inequality is obtained in a similar way, we define ¢, so that ¢ = ¢ on X \ B(r) and
Yy = max{(1l — &)(pe — 1/€) + re} on B(r), and we take x. = 1 on B(r — &) with
Supp xe C B(r —&/2). Then for ¢ large

/ T A (ddc<p>p > / T A (ddclbg)p
B(r) B(r—e/2)
= (1 - 5);0/ Xelk N (ddcg05>p. [
B(r—e/2)

(5.13) Proposition. Let ¢ be a (non necessarily monotone) sequence of continuous
plurisubharmonic functions such that e¥* converges uniformly to e¥ on every compact
subset of X. Suppose that {p < R} NSupp T CC X. Then for r < R we have

lim sup

/ T A (ddpp)P < / T A (ddp)P.
k—+oo J{pp<rin{e<R}

{p<r}

In particular limsup,_, , o v(T, i) < v(T, ).

When we take ¢(z) = log|z — ax| with ap — a, Prop. 5.13 implies the upper
semicontinuity of a — (7T, a) which was already noticed in the proof of Prop. 5.11.

Proof. Our assumption is equivalent to saying that max{yg,t} converges locally uni-
formly to max{¢, t} for every t. Then Cor. 3.6 shows that T'A(dd® max{¢s,t})P converges
weakly to T' A (dd®max{¢p,t})P. If x. is a cut-off function equal to 1 on {¢ < r +¢/2}
with support in {¢ < r + ¢}, we get

lim XeT' A (dd® max{py, t})P = / XeT' A (dd® max{¢p, t})P.
X X

k—+oo
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For k large, we have {¢r < r}N{p < R} C {¢ < r+¢/2}, thus when ¢ tends to 0 we
infer

lim sup

/ T A (dd° max{pg,t})P < / T A (dd° max{p,t})P.
k—+oo J{ppr<rin{p<R}

{e<r}

When we choose ¢t < r, this is equivalent to the first inequality in statement (5.13). O

§ 6. The Jensen-Lelong Formula

We assume in this section that X is Stein, that ¢ is semi-exhaustive on X and
that B(R) cC X. We set for simplicity ¢-, = max{¢,r}. For every r € | — oo, R],
the measures dd®(¢s,)" are well defined. By Cor. 3.6, the map r — (ddps,)" is
continuous on | — oo, R[ with respect to the weak topology. As (dd®p=,)" = (dd°p)™ on
X\ B(r) and as ¢, = r, (dd°p=,)" = 0 on B(r), the left continuity implies (ddp-,)" >
Ix\p(r)(dd°p)". Here 14 denotes the characteristic function of any subset A C X.
According to the definition introduced in [Demailly 1985a], the collection of Monge-
Ampeére measures associated with ¢ is the family of positive measures p, such that

(6.1) pr = (ddp5,)" — Ix\ gy (dd @)™, 1 €]—o00,R[.

The measure p,. is supported on S(r) and r — .. is weakly continuous on the left by the
bounded convergence theorem. Stokes’ formula shows that [, (s) (ddps, )™ —(ddp)™ =0

for s > r, hence the total mass p,(S(r)) = p.(B(s)) is equal to the difference between
the masses of (dd°p)" and lx\ () (dd°p)" over B(s), i.e.

(6.2) ne(S0) = [ e

(6.3) Example. When (dd°p)™ = 0 on X \ ¢~ !(—00), formula (6.1) can be simplified
into g, = (dd®p,)™. This is so for p(z) = log|z|. In this case, the invariance of ¢ under
unitary transformations implies that .. is also invariant. As the total mass of u,. is equal
to 1 by 5.10 and (6.2), we see that p, is the invariant measure of mass 1 on the euclidean
sphere of radius e".

(6.4) Proposition. Assume that ¢ is smooth near S(r) and that dp # 0 on S(r), i.e.
r is a non critical value. Then S(r) = 0B(r) is a smooth oriented real hypersurface and
the measure i, is given by the (2n — 1)-volume form (dd®p)" 1 A d°p g

Proof. Write max{t,r} = limy_, o xx(t) where y is a decreasing sequence of smooth
convex functions with xx(¢) =r for t <r —1/k, xx(t) =t for t > r 4+ 1/k. Theorem 3.6
shows that (dd®xy o @)™ converges weakly to (ddps,)™. Let h be a smooth function h
with compact support near S(r). Let us apply Stokes’ theorem with S(r) considered as
the boundary of X \ B(r):

/ h(dd°ps,)" = lim h(dd®xy o p)"
X

— lim —dh A (dd°xr 0 @)t AdS(xk 0 @)
k—+oo X
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= lim Xk (@)™ dh A (ddp)" ™ A dSp

= / —dh A (ddp)" 1 A dp
X\B(r)

= / h(dd®p)" ™t Ndp + / h (dd®p)" ™ A ddCp.
S(r) X\B(r)

Near S(r) we thus have an equality of measures

(dd®psr)™ = (dd°0)" ' ANd°prs(r) + Lx\ B(r) (dd)™. O

(6.5) Jensen-Lelong formula. Let V' be any plurisubharmonic function on X. Then
V' is p,-integrable for every r € | — oo, R[ and

(V) —/ V(dd®p)" :/ v(dd°V, @, t) dt.
B(r)

— 00

Proof. Proposition 3.11 shows that V' is integrable with respect to the measure (dd°p-,.)",
hence V is p,.-integrable. By definition

v(ddV, p,t) = / dd°V A (dd°p)"
p(z)<t
and the Fubini theorem gives

/ v(ddV, p,t) dt = / / dd°V (2) A (ddCo(2))" L dt
p(z)<t<r

— 00

(6.6) = /B( )(r — ©)dd°V A (ddp)" .

We first show that Formula 6.5 is true when ¢ and V' are smooth. As both members
of the formula are left continuous with respect to r and as almost all values of ¢ are
non critical by Sard’s theorem, we may assume r non critical. Formula 3.1 applied with
f=(r—¢)(dd°p)"~! and g = V shows that integral (6.6) is equal to

/ V(ddccp)”_l/\dccp—/ V(ddcgo)”:uT(V)—/ V (dd°p)™.
S(r) B(r) B(r)

Formula 6.5 is thus proved when ¢ and V' are smooth. If V is smooth and ¢ merely
continuous and finite, one can write ¢ = limy, where ¢ is a decreasing sequence
of smooth plurisubharmonic functions (because X is Stein). Then dd°V A (dd‘py)™ 1
converges weakly to dd°V A(dd®p)" ! and (6.6) converges, since I g, (r—) is continuous
with compact support on X. The left hand side of Formula 6.5 also converges because
the definition of u, implies

(V) — / Vi) = /X V ((ddipp )" — (dd°pi)")
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and we can apply again weak convergence on a neighborhood of B(r). If ¢ takes —oo
values, replace ¢ by ¢ _j where k — +o00. Then p, (V') is unchanged, fB(T) V(ddos )"
converges to [ B(r) V(dd®p)™ and the right hand side of Formula 6.5 is replaced by
fik v(dd°V,p,t)dt. Finally, for V arbitrary, write V' = lim | V} with a sequence of

smooth functions Vj. Then ddVj A (ddp)™ ™! converges weakly to dd°V A (ddp)" ! by
Prop. 4.4, so the integral (6.6) converges to the expected limit and the same is true for
the left hand side of 6.5 by the monotone convergence theorem. O

For r < ro < R, the Jensen-Lelong formula implies
6.7) e (V) =, (V) + [ Vede) = [ vddVp.0
B(ro)\B(r) 7o

(6.8) Corollary. Assume that (dd°p)™ =0 on X\ S(—o0). Thenr — p. (V) is a convex
increasing function of r and the lelong number v(dd°V, ) is given by

(ddV,0) = tim )

r——oo T
Proof. By (6.7) we have

wr (V) = pry (V) + /T v(dd°V, ¢, t) dt.

To

As v(dd°V, ¢, t) is increasing and nonnegative, it follows that r —— p,.(V') is convex and
increasing. The formula for v(dd°V, ¢) = lim;_, _ o, v(dd°V, ¢, ) is then obvious. O

(6.9) Example. Let X be an open subset of C" equipped with the semi-exhaustive
function ¢(z) = log|z — al, a € X. Then (dd¢p)" = 0, and the Jensen-Lelong formula
becomes

(V) = Via) + / Cdd°V, 1) dt.

— 0o

As p, is the mean value measure on the sphere S(a,e”), we make the change of variables
r — logr, t — logt and obtain the more familiar formula

(6.9a) w(V,S(a,r)) =V(a)+ /OT v(dd°V, a,t) %

where v(dd°V, a,t) = v(dd°V, ¢,logt) is given by (5.7):

1 1
9b dd°V, a,t) = oV
(6.9Db) v(dd°V, a,t) w—lt?n—?/(n—l)!/Bw,t) 2

In this setting, Cor. 6.8 implies

V.S SUPg (g V
(6.9¢) v(dd°V,a) = lim M — lim Ps(a,r) ‘

r—0 log r 50 log r
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To prove the last equality, we may assume V < 0 after subtraction of a constant. In-
equality > follows from the obvious estimate p(V, S(a,r)) < supg(,, V', while inequality
< follows from the standard Harnack estimate
—€
(6.9d) sup V< —— u(V,S(a,r)
S(a,er) h (1 +€)2n ! ( )

when ¢ is small (this estimate follows easily from the Green-Riesz representation formula
1.4.6 and 1.4.7). As supg(a,,) V = Supp(,,y V, Formula (6.9¢) can also be rewritten
v(dd°V,a) = liminf,_,, V(z)/log|z —al. Since supg(, .y V is a convex (increasing) func-
tion of logr, we infer that

(6.9¢) V(z) < vlog|z —al + O(1)

with v = v(dd°V, a), and v(dd°V, a) is the largest constant v which satisfies this inequa-
lity. Thus v(dd°V,a) =~ is equivalent to V' having a logarithmic pole of coefficient .

§ 6.10. Special case. Take in particular V' = log|f| where f is a holomorphic function
on X. The Lelong-Poincaré formula shows that ddlog|f| is equal to the zero divisor
(Z¢] = >_mj[H;], where H; are the irreducible components of f~!(0) and m; is the
multiplicity of f on H;. The trace %Alog |f| is then the euclidean area measure of
Zy (with corresponding multiplicities m;). By Formula (6.9c), we see that the Lelong
number v([Z¢], a) is equal to the vanishing order ord,(f), that is, the smallest integer m
such that D f(a) # 0 for some multiindex a with |a| = m. In dimension n = 1, we have
>=Alog f =3 m;d,,. Then (6.9a) is the usual Jensen formula

T

dt r
(1o 71.5(0.7)) = Tog £0)] = [ (0 = S m lox -
j
where v(t) is the number of zeros a; in the disk D(0,t), counted with multiplicities m;.

(6.11) Example. Take ¢(z) = logmax |z;|* where \; > 0. Then B(r) is the polydisk

of radii (e"™/*, ..., e"/*). If some coordinate z;j is non zero, say 21, we can write p(z) as
A1 log |z1| plus some function depending only on the (n — 1) variables z;/ z{\ /2 Hence

(dd®p)™ =0 on C™ \ {0}. It will be shown later that
(6.11a) (dd°p)™ = A1 ... Ay do.

We now determine the measures p,.. At any point z where not all terms |z; |% are equal,
the smallest one can be omitted without changing ¢ in a neighborhood of z. Thus ¢
depends only on (n — 1)-variables and (ddp>,)" = 0, u, = 0 near z. It follows that pu,
is supported by the distinguished boundary |z;| = €/* of the polydisk B(r). As ¢ is
invariant by all rotations z; — elfi zj, the measure p, is also invariant and we see that
iy is a constant multiple of db, ...d#,. By formula (6.2) and (6.11a) we get

(6.11b) e = A1 Ay (20)77d0 . . . d6,.

In particular, the Lelong number v(dd®V, ¢) is given by

< Ap ; 9\ dfy...do,
V<dch,g0): lim %/9 V(eT/A1+1917.“,er/)\n-i-l@n)i.

r——00 jG[O,QTK'] (27T)n
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These numbers have been introduced and studied by [Kiselman 1986]. We call them

directional Lelong numbers with coefficients (A1, ..., \,). For an arbitrary current 7', we
define
(6.11c¢) v(T,z,\) = v(T,log max |z; — z;|™).

The above formula for v(dd°V,¢) combined with the analogue of Harnack’s inequality
(6.9d) for polydisks gives

ce A - o\ d0y...doO,
v(ddV,z, \) = lim A An /V(rlp‘le‘el, cee r1/>‘”e‘9") L Tn
r—0 logr (2m)"
A Ay 1/X1 16 1/ i6
(6.11d) = lim ———— sup V(r/"te .. /e,
r—0 logr g, .0,

§ 7. Comparison Theorems for Lelong Numbers

Let T be a closed positive current of bidimension (p, p) on a Stein manifold X equipped
with a semi-exhaustive plurisubharmonic weight ¢. We first show that the Lelong num-
bers v(T, ) only depend on the asymptotic behaviour of ¢ near the polar set S(—o0).
In a precise way:

(7.1) First comparison theorem. Let ¢, : X — [—00, +00[ be continuous plurisub-
harmonic functions. We assume that p,1) are semi-exhaustive on Supp 1" and that

P()

(:=limsup ——= < +oo as x € Supp T and ¢(r) — —o0.

¢(x)
Then v(T, ) < LPu(T, @), and the equality holds if £ =lim/p.

Proof. Definition 6.4 shows immediately that v(T,Ap) = Nv(T, ) for every scalar
A > 0. It is thus sufficient to verify the inequality v(T, 1) < v(T, ¢) under the hypothesis
limsup /¢ < 1. For all ¢ > 0, consider the plurisubharmonic function

u. = max(y — ¢, p).

Let R, and Ry be such that B,(R,) N Supp T and By (Ry,) N Supp T be relatively
compact in X. Let » < R, and a < r be fixed. For ¢ > 0 large enough, we have u. = ¢
on ¢~ !([a,r]) and Stokes’ formula gives

v(T,¢,r) = v(T,uc,r) 2 v(T, uc).

The hypothesis limsup /¢ < 1 implies on the other hand that there exists ty < 0 such
that u. =1 — ¢ on {u, < to} N Supp T'. We infer

v(T,u.) =v(T, ¢ —c) =v(T,v),

hence v(T,1) < v(T,p). The equality case is obtained by reversing the roles of ¢ and 1)
and observing that lim ¢/v = 1/I. O
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Assume in particular that z* = (2F,..., 2F), k = 1,2, are coordinate systems centered

rn
at a point z € X and let

1/2
ou(2) = log |2F| = log(|2h[2 + ... + 2K [2) /2.

We have lim,_,, p2(2)/p1(2) = 1, hence v(T, v1) = v(T, p2) by Th. 7.1.

(7.2) Corollary. The usual Lelong numbers v(T,x) are independent of the choice of
local coordinates. U

This result had been originally proved by [Siu 1974] with a much more delicate proof.
Another interesting consequence is:

(7.3) Corollary. On an open subset of C™, the Lelong numbers and Kiselman numbers
are related by
v(T,x) = I/(T,x, (1,..., 1))

Proof. By definition, the Lelong number v(7T,z) is associated with the weight ¢(z) =
log |z —z| and the Kiselman number v (T, z, (1,..., 1)) to the weight 1(z) = log max |z; —
xj|. It is clear that lim,_,, ¥ (2)/¢(2) = 1, whence the conclusion. O

Another consequence of Th. 7.1 is that v(T,z,\) is an increasing function of each
variable ;. Moreover, if A\ < ... < A,, we get the inequalities

Nv(T,z) < v(T,z,\) < Mpp(T, @)

These inequalities will be improved in section 7 (see Cor. 9.16). For the moment, we just
prove the following special case.

(7.4) Corollary. For all A\y,..., A, > 0 we have

(ddlog max |z;]%)" = (ddclog Z \zj\kf> = A1 ...\ 0p.

1<j<n
EVAS 1<j<’l’L

Proof. In fact, our measures vanish on C™ \ {0} by the arguments explained in exam-
ple 6.11. Hence they are equal to ¢ dy for some constant ¢ > 0 which is simply the Lelong
number of the bidimension (n,n)-current 7" = [X] = 1 with the corresponding weight.
The comparison theorem shows that the first equality holds and that

(ddclog Z |zj|>‘j)n:€_"<ddclog Z \zj\”j>n

1<j<n 1<j<n

for all £ > 0. By taking ¢ large and approximating ¢\; with 2[¢\;/2], we may assume
that A\; = 2s; is an even integer. Then formula (5.6) gives

/Z |251%%9 <72 (ddc logz |Zj|28j)n = /Z 1251259 <2 (ddcz |Zj|23j>n

= 31...snr_2”/ 2”<id'd"|w|2) =A1... A\
Z‘wj‘2<7'2 2
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by using the s; ...s,-sheeted change of variables w; = z;j. U

Now, we assume that T' = [A] is the current of integration over an analytic set
A C X of pure dimension p. The above comparison theorem will enable us to give a
simple proof of P. Thie’s main result [Thie 1967]: the Lelong number v([A],z) can be
interpreted as the multiplicity of the analytic set A at point x. Our starting point is the
following consequence of Th. I1.3.19 applied simultaneously to all irreducible components
of (A, z).

(7.5) Lemma. For a generic choice of local coordinates 2/ = (z1,...,%p) and
2" = (2pt1,-.-,2n) on (X,x), the germ (A, x) is contained in a cone |2"| < C|2'|. If
B’ C CP is a ball of center 0 and radius ' small, and B" C C"P is the ball of center 0

and radius " = Cr’, then the projection
pr: AN(B'x B") — B’
is a ramified covering with finite sheet number m. O

We use these properties to compute the Lelong number of [A] at point . When z € A
tends to x, the functions

p(z) = log|z| = log(|'|* + |2"]*)'/2,  ¢(2) = log|2'|.
are equivalent. As ¢, 1) are semi-exhaustive on A, Th. 7.1 implies

v([A],z) = v([A], @) = v([A], ).

Let us apply formula (5.6) to ¢ : for every t < r’ we get

VUALqﬂJogt)=:t_%i/‘ [A] A (%dd%?¢>p

{¢<logt}
1 P
:t_zp/ (—pr*ddc\z'|2>
ANl <t} V2
1 P
:mt_Zp/ (5aa712'12)" = m,
crnflz|<t} 2

hence v([A],4) = m. Here, we have used the fact that pr is an étale covering with m
sheets over the complement of the ramification locus S C B’, and the fact that S is of
zero Lebesgue measure in B’. We have thus obtained simultaneously the following two
results:

(7.6) Theorem and Definition. Let A be an analytic set of dimension p in a complex
manifold X of dimension n. For a generic choice of local coordinates 2’ = (21, ..., 2p),
2" = (%p+1,...,2n) near a point x € A such that the germ (A, x) is contained in a
cone 2| < C|7'|, the sheet number m of the projection (A, z) — (CP,0) onto the first p
coordinates is independent of the choice of 2, 2. This number m is called the multiplicity

of A at x.

(7.7) Theorem ([Thie 1967]). One has v([A], x) = m. O
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There is another interesting version of the comparison theorem which compares the
Lelong numbers of two currents obtained as intersection products (in that case, we take
the same weight for both).

(7.8) Second comparison theorem. Let uq,...,u, and vy, ..., v, be plurisubharmonic
functions such that each q-tuple satisfies the hypotheses of Th. 4.5 with respect to T.
Suppose moreover that u; = —oo on Supp T'N @ 1(—o0) and that

v;(2)
u;(z)

¢ := lim sup <400 when z €& Supp T~ uj_l(—oo), o(z) = —o0.

Then

v(ddvi Ao N Nddvg AT, ) < Uy Lgv(dd®ur Ao ANddug AT, ).

Proof. By homogeneity in each factor v;, it is enough to prove the inequality with
constants ¢; = 1 under the hypothesis limsupv;/u; < 1. We set

wj,. = max{v; — ¢, u;}.

Our assumption implies that w; . coincides with v; —c on a neighborhood Supp T'N{y <
ro} of Supp T'N {p < —o0}, thus

v(dd vy A ... ANddvg AT, @) = v(dd°wi e A ... Nddwg e AT, @)

for every c. Now, fix r < R,. Proposition 4.9 shows that the current dd®w; . A ... A
dd“wg AT converges weakly to dd“ui A.. . Add°uy AT when c tends to +o0o0. By Prop. 5.12
we get

limsup v(dd“wic A ... Nddwgc AT, p) < v(ddur A...ANddug AT, ). O

c——+00

(7.9) Corollary. If dd“ui A ... A\ dd°uq AT is well defined, then at every point x € X
we have

v(ddur A ... Add®ug AT, z) > v(dd®ur, z) ... v(ddug, z) v(T, x).

Proof. Apply (7.8) with ¢(z) = vi(2) = ... = vy(2) = log|z — z| and observe that
¢; = limsupv;/u; = 1/v(ddu;, x) (there is nothing to prove if v(ddu;, x) = 0). O

Finally, we present an interesting stability property of Lelong numbers due to
[Siu 1974]: almost all slices of a closed positive current 7" along linear subspaces passing
through a given point have the same Lelong number as T'. Before giving a proof of this,
we need a useful formula known as Crofton’s formula.

(7.10) Lemma. Let a be a closed positive (p,p)-form on C™ ~ {0} which is invariant
under the unitary group U(n). Then « has the form

o= (ddcx(log |z|))p
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where x is a conver increasing function. Moreover « is invariant by homotheties if and
only if x is an affine function, i.e. a = X\ (dd°log |z|)P.

Proof. A radial convolution a.(z) = [, p(t/€) a(e’z) dt produces a smooth form with
the same properties as a and lim._.ga. = a. Hence we can suppose that « is smooth
on C" \ {0}. At a point z = (0,...,0,2,), the (p,p)-form a(z) € A”?(C")* must be
invariant by U(n—1) acting on the first (n—1) coordinates. We claim that the subspace of
U(n —1)-invariants in A?’?(C")* is generated by (dd¢|z|?)P and (dd°|z|?)P~! Aidz, AdZ,.
In fact, a form 8 = > By ydz;r A dz; is invariant by U(1)"~! C U(n — 1) if and only if
Br,; =0 for I # J, and invariant by the permutation group &,_; C U(n—1) if and only
if all coefficients S, (resp. Byn,gn) with I,J C {1,...,n — 1} are equal. Hence

B=X>" dzf/\d21+u( 3 dzJAdzJ) Adzy A dZ,.
[I|=p |J|=p—1

This proves our claim. As d|z|? A d°|z|? = 1|z,|?dz, A dZ, at (0,...,0,2,), we conclude
that
a(z) = f(2)(dd[2[*)" + g(2)(dd°|2|*)P~F Adl2]* A d?2?

for some smooth functions f,g on C™ \ {0}. The U(n)-invariance of o shows that f and
g are radial functions. We may rewrite the last formula as

a(z) = u(log |z|)(dd°log |z|)P + v(log |z|) (dd€ log \z\)p_l A dlog|z| A d€log|z|.

Here (dd°log |z|)P is a positive (p, p)-form coming from P"~1, hence it has zero contraction
in the radial direction, while the contraction of the form (dd®log|z|)?~t A dlog|z| A
d®log |z| by the radial vector field is (dd°log|z|)P~!. This shows easily that a(z) > 0 if
and only if u,v > 0. Next, the closedness condition da = 0 gives v’ — v = 0. Thus u is
increasing and we define a convex increasing function y by x’ = «'/?. Then v = v’ =

pX/p— 1 X// and

alz) = (ddcx(log |z|))p.

If «v is invariant by homotheties, the functions v and v must be constant, thus v = 0 and
a = \(dd°log|z|)P. O

(7.11) Corollary (Crofton’s formula). Let dv be the unique U (n)-invariant measure of
mass 1 on the Grassmannian G(p,n) of p-dimensional subspaces in C™. Then

/ [S] dv(S) = (dd° log |2))"~P.
SeG(p,n)

Proof. The left hand integral is a closed positive bidegree (n — p,n — p) current which is
invariant by U(n) and by homotheties. By Lemma 7.10, this current must coincide with
the form A(dd®log|z|)"~P for some A > 0. The coefficient \ is the Lelong number at 0.
As v([S],0) =1 for every S, we get A = fG(p,n) dv(S) = 1. O

We now recall a few basic facts of slicing theory; see [Federer 1969] for details. Let
o : M — M’ be a submersion of smooth differentiable manifolds and let © be a locally
flat current on M, that is a current which can be written locally as © = U + dV where
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U, V have locally integrable coefficients. It can be shown that every current © such
that both © and d© have measure coefficients is locally flat; in particular, closed positive
currents are locally flats. Then, for almost every ' € M’, there is a well defined slice
O,, which is the current on the fiber o~ (2’) defined by

O, = Urgfl(xf) + dvrgf1($/).

The restrictions of U, V' to the fibers exist for almost all 2’ by the Fubini theorem. It is
easy to show by a regularization ©. = © x p. that the slices of a closed positive current
are again closed and positive: in fact U, ,» and V_ ,» converge to U, and Vs in Llloc7 thus
O, 5 converges weakly to O, for almost every z’. This kind of slicing can be referred
to as parallel slicing (if we think of o as being a projection map). The kind of slicing we
need (where the slices are taken over linear subspaces passing through a given point) is

of a slightly different nature and is called concurrent slicing.

The possibility of concurrent slicing is proved as follows. Let 1" be a closed positive
current of bidimension (p, p) in the ball B(0, R) C C™. Let

Y ={(z,5) €C"xG(¢g,n); z €S}

be the total space of the tautological rank ¢ vector bundle over the Grassmannian G(q,n),
equipped with the obvious projections

c:Y —G(gn), w:Y—C".

We set Yp = 7 1(B(0,R)) and Y5 = 7 1(B(0,R) \ {0}). The restriction my of =
to Y} is a submersion onto B(0, R) \ {0}, so we have a well defined pull-back 73T
over Yi. We would like to extend it as a pull-back 7*T" over Yg, so as to define slices
Tis = (7*T)5-1(s) ; of course, these slices can be non zero only if the dimension of S is
at least equal to the degree of T', i.e. if ¢ > n — p. We first claim that 737 has locally
finite mass near the zero section 7=1(0) of . In fact let wg be a unitary invariant Kihler
metric over G(q,n) and let 8 = dd®|z|? in C". Then we get a Kihler metric on Y defined
by wy = c*wg +7*8. If N = (¢ — 1)(n — q) is the dimension of the fibers of 7, the
projection formula 7, (u A 7*v) = (m,u) A v gives

N
mwﬁ“’: Z < ij)ﬁk/\w*(a*wgﬂ)_k).

1<k<p
Here W*(U*wg te _k) is a unitary and homothety invariant (p—k, p—k) closed positive form
on C" \ {0}, so W*(U*wgﬂ)_k) is proportional to (ddlog|z|)?~*. With some constants

A > 0, we thus get

/Y ol Awy =Y Ak/B T A B A (dd®log|z|)P*
iy 0<k<p (0,r)~{0}

= 3 A2 B2 / T ABP < +oo.
0<k<p B(0,7)~{0}

The Skoda-El Mir theorem 2.3 shows that the trivial extension 771" of m3T is a closed
positive current on Yg. Of course, the zero section 7~1(0) might also carry some extra
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mass of the desired current 7*7T. Since 7~ !(0) has codimension ¢, this extra mass cannot
exist when ¢ > n —p = codim7*7T" and we simply set 77" = 7w§T". On the other hand, if
qg=mn—p, we set

(7.12) 7T = 75T + v(T,0) [x1(0)].

We can now apply parallel slicing with respect to o : Yz — G(q,n), which is a submersion:
for almost all S € G(g,n), there is a well defined slice T}s = (7*T')},-1(g). These slices
coincide with the usual restrictions of T to S if T" is smooth.

(7.13) Theorem ([Siu 1974]). For almost all S € G(q,n) with ¢ = n — p, the slice T\s
satisfies v(T}s,0) = v(T,0).

Proof. If ¢ = n — p, the slice Ts consists of some positive measure with support in
S~ {0} plus a Dirac measure v(T,0)dy coming from the slice of v(7T',0)[r~1(0)]. The
equality v(T}s,0) = v(T',0) thus follows directly from (7.12).

In the general case ¢ > n — p, it is clearly sufficient to prove the following two
properties:

a) v(T,0,r)= / v(Tys,0,7)dv(S) for all r €10, R[;
SeG(q,n)

b) v(T}s,0) > v(T,0) for almost all S.

In fact, a) implies that v(T,0) is the average of all Lelong numbers v(T}g,0) and the
conjunction with b) implies that these numbers must be equal to v(7T,0) for almost all S.
In order to prove a) and b), we can suppose without loss of generality that 7" is smooth
on B(0, R) ~ {0}. Otherwise, we perform a small convolution with respect to the action
of G1,(C) on C™:

T. = / pe(9) 9°T dv(g)
g€Gl, (C)

where (p:) is a regularizing family with support in an e-neighborhood of the unit element
of Gl,(C). Then T is smooth in B(0, (1 — ¢)R) \ {0} and converges weakly to T
Moreover, we have v(1;,0) = v(T,0) by (7.2) and v(T}s,0) > limsup,_,o v(1¢,s,0) by
(5.12), thus a), b) are preserved in the limit. If 7" is smooth on B(0, R) \ {0}, the slice
Ts is defined for all S and is simply the restriction of 7" to S \ {0} (carrying no mass
at the origin).

a) Here we may even assume that 7" is smooth at 0 by performing an ordinary convolution.
As Tyg has bidegree (n — p,n — p), we have

v(Tys,0,7) = /

TAaL P = / T AS] Ak
SNB(0,r) B(0,r)

where ag = dd°log|w| and w = (w1,...,w,) are orthonormal coordinates on S. We
simply have to check that

/ [S] A a%F 7™ du(S) = (dd®log |2|)P.
SeG(gq,n)
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However, both sides are unitary and homothety invariant (p, p)-forms with Lelong number
1 at the origin, so they must coincide by Lemma 7.11.

b) We prove the inequality when S = C? x {0}. By the comparison theorem 7.1, for
every r > 0 and € > 0 we have

(7.14) / T A2 > v(T,0) where
B(0,r)

1
Ve = gdd°log(elar* + ... +elzg|” + zgia|* + . 4 [2nf).

We claim that the current 2 converges weakly to

—n 1. . ptq—n
[S] A 2T = [S] A (idd log(|z1]? + ... + |zq|2>)

as € tends to 0. In fact, the Lelong number of 72 at 0 is 1, hence by homogeneity
| aralpyr = ety
B(0,r)

for all e,7 > 0. Therefore the family (v?) is relatively compact in the weak topology.
Since g = lim 7, is smooth on C™ \ .S and depends only on n — ¢ variables (n — g < p),
we have lim~? = 5 = 0 on C" \ S. This shows that every weak limit of (7?) has support
in S. Each of these is the direct image by inclusion of a unitary and homothety invariant
(p+q—n,p+q—n)-form on S with Lelong number equal to 1 at 0. Therefore we must
have

lim 57 = (is). (a3 "") = [S] A a7,

and our claim is proved (of course, this can also be checked by direct elementary calcu-
lations). By taking the limsup in (7.14) we obtain

T AS)A Q™" > u(T,0)

B(0,r)

(Tis. 0.0 +0) = |

(the singularity of 7" at 0 does not create any difficulty because we can modify T" by a
dd‘-exact form near 0 to make it smooth everywhere). Property b) follows when r tends
to 0. U

§ 8. Siu’s Semicontinuity Theorem

Let X, Y be complex manifolds of dimension n, m such that X is Stein. Let ¢ :
X XY — [—o00, +00[ be a continuous plurisubharmonic function. We assume that ¢ is
semi-exhaustive with respect to Supp 7', i.e. that for every compact subset L C Y there
exists R = R(L) < 0 such that

(8.1) {(z,y) € Supp T' X L; p(z,y) < R} cC X x Y.

Let T be a closed positive current of bidimension (p,p) on X. For every point y € Y,
the function ¢, () := ¢(x,y) is semi-exhaustive on Supp 7'; one can therefore associate
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with y a generalized Lelong number v(T,¢,). Proposition 5.13 implies that the map
y — v(T,p,) is upper semi-continuous, hence the upperlevel sets

(8.2) E.=E.(T,p)={yeY;v(T,p,) >c}, c>0

are closed. Under mild additional hypotheses, we are going to show that the sets E. are
in fact analytic subsets of Y, following [Demailly 1987a].

(8.3) Definition. We say that a function f(x,y) is locally Hélder continuous with
respect toy on X XY if every point of X XY has a neighborhood §2 on which

|f(x,y1) - f(m,y2)| < M|y1 - y2|’7

for all (z,11) € Q, (x,y2) € Q, with some constants M > 0, v € |0,1], and suitable
coordinates on Y .

(8.4) Theorem ([Demailly 1987al]). Let T' be a closed positive current on X and let
p: X XY — [—00, 40|

be a continuous plurisubharmonic function. Assume that ¢ is semi-exhaustive on Supp T
and that e?@Y) s locally Hélder continuous with respect to y on X x Y. Then the
upperlevel sets

E (T, o) ={y € Y;u(T,p,) > c}

are analytic subsets of Y.

This theorem can be rephrased by saying that y — v(T', ¢,) is upper semi-conti-
nuous with respect to the analytic Zariski topology. As a special case, we get the following
important result of [Siu 1974]:

(8.5) Corollary. If T is a closed positive current of bidimension (p,p) on a complex
manifold X, the upperlevel sets E.(T) = {x € X;v(T,x) > c} of the usual Lelong
numbers are analytic subsets of dimension < p.

Proof. The result is local, so we may assume that X C C™ is an open subset. Theorem 8.4
with Y = X and ¢(z,y) = log |z — y| shows that E.(T) is analytic. Moreover, Prop. 5.11
implies dim E.(T) < p. O

(8.6) Generalization. Theorem 8.4 can be applied more generally to weight functions
of the type

p(z,y) = maxlog(Z\ kxy\““)

where Fj ), are holomorphic functions on X xY and where ; ;, are positive real constants;
in this case e¥ is Holder continuous of exponent v = min{\; 1, 1} and ¢ is semi-exhaustive
with respect to the whole space X as soon as the projection pr, : ﬂFJ_,j(O) — Y is
proper and finite.

For example, when ¢(z,y) = logmax |z; — yj|§‘ on an open subset X of C" | we see
that the upperlevel sets for Kiselman’s numbers v (7T, z, A) are analytic in X (a result first
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proved in [Kiselman 1986]. More generally, set 15 (2) = logmax |z;|* and ¢(x,y,g) =
¥x(g(z—y)) where z,y € C" and g € GI(C™). Then v(T, ¢y 4) is the Kiselman number of
T at y when the coordinates have been rotated by g. It is clear that ¢ is plurisubharmonic
in (x,y, g) and semi-exhaustive with respect to z, and that e? is locally Holder continuous
with respect to (y, g). Thus the upperlevel sets

E.={(y,9) € X x GI(C"); v(T, ‘Py,g) > c}

are analytic in X x GI(C™). However this result is not meaningful on a manifold, because
it is not invariant under coordinate changes. One can obtain an invariant version as
follows. Let X be a manifold and let J*Gx be the bundle of k-jets of holomorphic
functions on X. We consider the bundle Sj over X whose fiber Sy, is the set of n-tuples
of k-jets u = (u1,...,u,) € (J¥Ox,)" such that u;(y) = 0 and dus A ... A duy,(y) # 0.
Let (z;) be local coordinates on an open set 2 C X. Modulo O(|z — y[**1), we can write

ui(z2) = Y aja(z—y)"

1<] o<k

with det(a; (o,....1,...,0)) # 0. The numbers ((y;), (a;,o)) define a coordinate system on
the total space of Sy q. For (z, (y,u)) € X x S, we introduce the function

A.
o(x,y,u) = log max |uj(:v)|>‘f = log max’ Z aj.o(r—y)° ’
1<|al<k

which has all properties required by Th. 8.4 on a neighborhood of the diagonal x = y, i.e.
a neighborhood of X x x Si in X x S. For k large, we claim that Kiselman’s directional
Lelong numbers

V(T y,u, A) == v(T, @y u)

with respect to the coordinate system (u;) at y do not depend on the selection of the
jet representives and are therefore canonically defined on Sj. In fact, a change of u; by
O(|]z — y[F*t1) adds O(|z — y|F*+ D) to e¥, and we have ¥ > O(|z — y|™**). Hence
by (7.1) it is enough to take k + 1 > max \;/ min A;. Theorem 8.4 then shows that the
upperlevel sets E.(T, ) are analytic in Sk. O

Proof of the Semicontinuity Theorem 8.4. As the result is local on Y, we may assume
without loss of generality that Y is a ball in C™. After addition of a constant to , we
may also assume that there exists a compact subset K C X such that

{(z,y) € X xY;p(x,y) <0} C K x Y.

By Th. 7.1, the Lelong numbers depend only on the asymptotic behaviour of ¢ near the
(compact) polar set ¢~ (—00) N (SuppT x Y). We can add a smooth strictly plurisub-
harmonic function on X X Y to make ¢ strictly plurisuharmonic. Then Richberg’s ap-
proximation theorem for continuous plurisubharmonic functions shows that there exists
a smooth plurisubharmonic function ¢ such that ¢ < ¢ < ¢ +1. We may therefore
assume that ¢ is smooth on (X x Y)\ ¢ 71 (—0c0).

e First step: construction of a local plurisubharmonic potential.
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Our goal is to generalize the usual construction of plurisubharmonic potentials asso-
ciated with a closed positive current ([Lelong 1967], [Skoda 1972a]). We replace here the
usual kernel |z — (|72 arising from the hermitian metric of C* by a kernel depending
on the weight ¢. Let x € 6°°(R,R) be an increasing function such that x(t) = t for
t < —1 and x(t) =0 for ¢ > 0. We consider the half-plane H = {z € C; Rez < —1} and
associate with 1" the potential function V on Y x H defined by

0
(8.7 Vi) == [ T (o

For every t > Re z, Stokes’ formula gives
Tt = [ T(@) A AR,
e(z,y)<t
with @¢(z,y, 2) := max{p(z,y), Rez}. The Fubini theorem applied to (8.7) gives

V(y,2) = - T(x) A (dds@(x,y,2))" X' (t)dt

z€X,p(z,y)<t
Re z<t<0

_ / T AX(@ (. 2) (@3, 7))

For all (n — 1,n — 1)-form h of class C*° with compact support in Y x H, we get
(dd°V, hy = (V,ddh)

- /X (@) APy 2 A e ) A (. 2),

Observe that the replacement of ddg by the total differentiation dd® = ddg , , does not
modify the integrand, because the terms in dz, dZ must have total bidegree (n,n). The
current T'(z) A x(¢(z,y, 2))h(y, z) has compact support in X x Y x H. An integration
by parts can thus be performed to obtain

(dd°V, B = /X L T(@) A (o Bl 2) A (Bl 2) A 2),

On the corona {—1 < ¢(x,y) < 0} we have ¢(x,y, z) = p(x,y), whereas for p(z,y) < —1
we get ® < —1 and y o = @. As @ is plurisubharmonic, we see that ddV (y, z) is the
sum of the positive (1, 1)-form

(y,2) — T(x) A (dds, , .3(x,y, )"+
{zeX;p(z,y)<-1}
and of the (1,1)-form independent of z
Y —> T Addg ,(x o p)A(dd; )"

{zeX;-1<p(x,y)<0}

As ¢ is smooth outside ¢ ~!(—00), this last form has locally bounded coefficients. Hence
dd°V (y, z) is > 0 except perhaps for locally bounded terms. In addition, V' is continuous
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on Y x H because T'A (dd°p, )P is weakly continuous in the variables (y, z) by Th. 3.5.
We therefore obtain the following result.

(8.8) Proposition. There exists a positive plurisubharmonic function p in “€°°(Y") such
that p(y) + V(y, 2) is plurisubharmonic on'Y x H.

If we let Re z tend to —oo, we see that the function

Uo(y) = p(y) + V(y,—00) = p(y) — / V(T oy, t)X (t)dt

— 00

is locally plurisubharmonic or = —oo on Y. Furthermore, it is clear that Uy(y) = —o0
at every point y such that v(7T,¢,) > 0. If Y is connected and Uy # —oo, we already
conclude that the density set (J,., E. is pluripolar in Y.

e Second step: application of Kiselman’s minimum principle.

Let a > 0 be arbitrary. The function
Y xH> <y7 Z) L p<y) + V(y,Z) — aRez

is plurisubharmonic and independent of Im z. By Kiselman’s theorem 1.7.8, the Legendre
transform

Ua(y) = inf {p(y)+V(y,r) - ar}
is locally plurisubharmonic or = —oco on Y.
(8.9) Lemma. Let yp € Y be a given point.
a) If a > v(T,py,), then U, is bounded below on a neighborhood of yq.

b) If a < v(T, ¢y, ), then Uy(yo) = —o0.
Proof. By definition of V' (cf. (8.7)) we have

0
(8.10) Viy,r) < —v(T, gpy,r)/ X (t)dt = rv(T, gy, r) < rv(T, ).

Then clearly Uy (yo) = —o0 if a < v(T, ¢y,). On the other hand, if v(T, ¢,,) < a, there
exists to < 0 such that v(T, ¢y, t0) < a. Fix 19 < to. The semi-continuity property
(5.13) shows that there exists a neighborhood w of yo such that sup, ¢, v(T,py,70) < a.
For all y € w, we get

Viy,r) > —C—a / X ()dt = —C + a(r — o),

and this implies U, (y) > —C — ary. O

(8.11) Theorem. IfY is connected and if E. # Y, then E. is a closed complete
pluripolar subset of Y, i.e. there exists a continuous plurisubharmonic functionw : Y —
[—o00, +00| such that E, = w1 (—0).
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Proof. We first observe that the family (U,) is increasing in a, that U, = —oo on E.
for all @ < ¢ and that sup,..U,(y) > —oc0 if y € Y \ E. (apply Lemma 8.9). For any
integer k > 1, let wy, € 6°°(Y") be a plurisubharmonic regularization of U,._, /;, such that
wy = Ue_qyp on Y and wy < —2% on E.NY; where Y, = {y € Y; d(y,0Y) > 1/k}.
Then Lemma 8.9 a) shows that the family (wy) is uniformly bounded below on every
compact subset of Y\ E.. We can also choose wj, uniformly bounded above on every
compact subset of Y because U._1/, < U.. The function

+oo
_ E 2—k
w = Wi
k=1
satifies our requirements. ]

e Third step: estimation of the singularities of the potentials U,.

(8.12) Lemma. Let yg € Y be a given point, L a compact neighborhood of yo, K C X
a compact subset and ro a real number < —1 such that

{(z,y) € X x Ly p(x,y) <ro} C K x L.
Assume that e?®Y) is locally Hélder continuous in y and that

|f(x,y1) - f(m,y2)| < M|y1 - y2|’7

for all (x,y1,y2) € K xLx L. Then, for all e € ]0,1[, there exists a real number n(e) > 0
such that all y € Y with |y — yo| < n(e) satisfy

Ualy) < p(y) + (1 = (T, 04,) — a) (v10g ly — ol +1og > ).

Proof. First, we try to estimate v(7T’, p,,r) when y € L is near yo. Set

Y(x) = (1 —€)py,(z) +er —e/2 if Pyo () <7 —1
Y(x) = max(py(x), (1 —e)py, (@) +er —e/2) if r—1<py(z) <7
P(x) = py(z) if 7 <y () < 1o

and verify that this definition is coherent when |y — yg| is small enough. By hypothesis
e (@) — 0 (@) | < My — yo|.
This inequality implies

yo (%) +log (1 + M|y — yo|"e™ ™)
yo (%) +log (1 — My — yo|Te™#n @),

py(z) < ¢
py(x) 2 ¢
In particular, for ¢, (x) = r, we have (1 —¢)p,, () +er —e/2 =r —¢/2, thus

oy(x) =7 +log(l — My —yo|7e™").
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Similarly, for ¢, (z) =7 — 1, we have (1 — )y, () +er —e/2 =r —1+¢/2, thus
py(r) <7 —141log(1+ Mly —yo|7e' ™).
The definition of 1) is thus coherent as soon as M|y — yo|7el ™" < e/2 , i.e

2eM

vlog |y — yo| + log <

In this case v coincides with ¢, on a neighborhood of {¢) = r} , and with

(1 —¢)py,(z)+er—e/2

on a neighborhood of the polar set 1 ~1(—00). By Stokes’ formula applied to v(T) 1, 1),
we infer

V(T iy, ) =v(T,9,r) 2 v(T, ) = (1 = )Pu(T, @y,)-
From (8.10) we get V(y,r) < rv(T, ¢y, 1), hence

Ua(y) < p(y) +V(y,r) — ar < p(y) +r(W(T, ¢y, 7) — a),
(8.13) Ua(y) < p(y) +7((1 = )"v(T, py,) — a).

Suppose vlog |y — yo| +log(2eM /) < rq , i.e. |y — yo| < (e/2eM)'/7em/7 ; one can then
choose r = vlog |y — yo| + log(2eM/¢e), and by (8.13) this yields the inequality asserted
in Th. 8.12. [

e Fourth step: application of the Hormander-Bombieri-Skoda theorem.

The end of the proof relies on the following crucial result, which is a consequence of
the Hérmander—Bombieri Skoda theorem ([Bombieri 1970], [Skoda 1972a], [Skoda 1976));

(8.14) Proposition. Let u be a plurisubharmonic function on a complex manifold Y.
The set of points in a neighborhood of which e is not integrable is an analytic subset

of Y. O

Proof of Theorem 8.4 (end).. The main idea in what follows is due to [Kiselman 1979].
For a,b > 0, we let Z,; be the set of points in a neighborhood of which exp(—U,/b) is
not integrable. Then Z,; is analytic, and as the family (U,) is increasing in a, we have
Za’,b’ D) Za”,b” if a’ < CLH, b < b”.

Let yo € Y be a given point. If yo ¢ E., then v(T,¢,,) < c by definition of E..
Choose a such that v(T, ¢,,) < a < c. Lemma 8.9 a) implies that U, is bounded below
in a neighborhood of ¥, thus exp(—U,/b) is integrable and yo ¢ Z,; for all b > 0.

On the other hand, if yy € E. and if a < ¢, then Lemma 8.12 implies for all € > 0
that

Uda(y) < (1 —€)(c—a)ylogly — yo| + C(e)

on a neighborhood of yy. Hence exp(—U,/b) is non integrable at yo as soon as b <
(c —a)y/2m, where m = dimY. We obtain therefore

E.= ()] Zaw

a<c
b<(c—a)vy/2m
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This proves that E. is an analytic subset of Y. U

Finally, we use Cor. 8.5 to derive an important decomposition formula for currents,
which is again due to [Siu 1974]. We first begin by two simple observations.

(8.15) Lemma. If T is a closed positive current of bidimension (p,p) and A is an
irreducible analytic set in X, we set

ma = inf{v(T,x); z € A}.

Then v(T,x) = ma for all x € A~ A, where (A}) is a countable family of proper
analytic subsets of A. We say that ma is the generic Lelong number of T' along A.

Proof. By definition of m 4 and E.(T'), we have v(T,x) > my for every x € A and

v(T,z) =ma on AN U ANE(T).

ce€Q,c>may

However, for ¢ > my, the intersection AN E.(T') is a proper analytic subset of A. U

(8.16) Proposition. Let T be a closed positive current of bidimension (p,p) and let A
be an irreducible p-dimensional analytic subset of X. Then W4T = ma[A], in particular
T — ma[A] is positive.

Proof. As the question is local and as a closed positive current of bidimension (p,p)
cannot carry any mass on a (p — 1)-dimensional analytic subset, it is enough to work
in a neighborhood of a regular point xo € A. Hence, by choosing suitable coordinates,
we can suppose that X is an open set in C™ and that A is the intersection of X with a
p-dimensional linear subspace. Then, for every point a € A, the inequality v(T,a) > m4
implies
or(B(a,r)) = ma7r® /pl = maoa(B(a,r))

for all r such that B(a,r) C X. Now, set © = T — ma[A] and 8 = dd°|z|>. Our

inequality says that [ 1g(a,n© A BP > 0. If we integrate this with respect to some
positive continuous function f with compact support in A, we get [  9rONABP = 0 where

gr(z) = /A Loy (2) £(a) dA(a) = / #(a) d\(a).

a€ANB(z,r)

Here g, is continuous on C", and as r tends to 0 the function g,.(z)/(7Pr?? /p!) converges to
fon Aand to 0 on X \ A, with a global uniform bound. Hence we obtain [ 14fOABP >
0. Since this inequality is true for all continuous functions f > 0 with compact support in
A, we conclude that the measure 140 A 5P is positive. By a linear change of coordinates,
we see that "
140 A (dd° 3 lugl?) >0
1<j<n

for every basis (ui, ..., uy) of linear forms and for all coefficients A\; > 0. Take \; = ... =
Ap = 1 and let the other A\; tend to 0. Then we get

140 Aiduy Aday A ... A duy, Adi, > 0.
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This implies 140 > 0, or equivalently 147 > m[A]. By Cor. 2.4 we know that 147 is
a closed positive current, thus 147 = A[A] with XA > 0. We have just seen that A > m 4.
On the other hand, T' > 14T = AA] clearly implies m4 > . O

(8.16) Siu’s decomposition formula. If T is a closed positive current of bidimen-
sion (p,p), there is a unique decomposition of T' as a (possibly finite) weakly convergent
series

T=> N[A]+R, A >0,

j=21

where [A;] is the current of integration over an irreducible p-dimensional analytic set
A; C X and where R is a closed positive current with the property that dim E.(R) < p
for every ¢ > 0.

Proof of uniqueness.. If T has such a decomposition, the p-dimensional components of
E.(T) are (Aj)z,;>c, for v(T,x) = > \jv([A;],2) + v(R, x) is non zero only on (JA; U
UE:(R), and is equal to \; generically on A, (more precisely, v(T,x) = A; at every
regular point of A; which does not belong to any intersection A; U Ay, k # j or to
UE.(R)). In particular A; and \; are unique.

Proof of existence.. Let (A;);>1 be the countable collection of p-dimensional components
occurring in one of the sets E.(7), c € Q% , and let A\; > 0 be the generic Lelong number
of T" along A;. Then Prop. 8.16 shows by induction on N that Ry =T — ZKJ‘SN Aj[A;]
is positive. As Ry is a decreasing sequence, there must be a limit R = limy_, o, Ry in
the weak topology. Thus we have the asserted decomposition. By construction, R has
zero generic Lelong number along A;, so dim E.(R) < p for every ¢ > 0. O

It is very important to note that some components of lower dimension can actually
occur in E.(R), but they cannot be subtracted because R has bidimension (p,p). A
typical case is the case of a bidimension (n—1,n— 1) current 7" = dd°u with u =
log(| 5|7 +...|Fn|"V) and F; € 6(X). In general | E.(T') = ﬂFj_l(O) has dimension <
n — 1. In that case, an important formula due to King plays the role of (8.17). We state
it in a somewhat more general form than its original version [King 1970].

(8.18) King’s formula. Let Fy,..., Fx be holomorphic functions on a complex man-
ifold X, such that the zero variety Z = ﬂFj_l(O) has codimension > p, and set u =
log > |F;|" with arbitrary coefficients v; > 0. Let (Zy)r>1 be the irreducible components
of Z of codimension p exactly. Then there exist multiplicities A\, > 0 such that

(dd“u)? = " Me[Zi] + R,

k>1

where R is a closed positive current such that 1zR = 0 and codim E.(R) > p for every
¢ > 0. Moreover the multiplicities A\ are integers if v1,...,Yn are integers, and A\ =
Y- if 71 < ... < ynv and some partial Jacobian determinant of (Fi, ..., F,) of order
p does not vanish identically along Zy,.

Proof. Observe that (dd°u)P is well defined thanks to Cor. 4.11. The comparison theo-
rem 7.8 applied with p(2) =log|z —z|,v1 =...=vp,=u, u1 =...=up=pand T' =1
shows that the Lelong number of (dd“u)? is equal to 0 at every point of X \ Z. Hence
E.((dd‘u)P) is contained in Z and its (n—p)-dimensional components are members of the
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family (Zy). The asserted decomposition follows from Siu’s formula 8.16. We must have
17, R = 0 for all irreducible components of Z: when codim Zj;, > p this is automatically
true, and when codim Zj, = p this follows from (8.16) and the fact that codim E.(R) > p.
If det(OF;/0zk) 1< k<p # 0 at some point xg € Zy, then (Z,x0) = (Zx, o) is a smooth
germ defined by the equations Fy = ... = F}, = 0. If we denote v =log> ", [F;["7 with
v < ... < N, then u ~ v near Zj and Th. 7.8 implies v((ddu)?, x) = v((dd°v)P, z) for
all z € Z, near xy. On the other hand, if G := (F,...,Fp): X — CP, Cor. 7.4 gives

P
(dd“v)? = G* (ddc log Z |zj|7j) =71...% G0 =717 [Zk

1<y<p

near xo. This implies that the generic Lelong number of (dd“u)? along Zj, is A, = 71 ... Yp-
The integrality of A when ~1,...,vyn are integers will be proved in the next section. [J

§ 9. Transformation of Lelong Numbers by Direct Images

Let FF: X — Y be a holomorphic map between complex manifolds of respective
dimensions dim X = n, dimY = m, and let T be a closed positive current of bidimension
(p,p) on X. If Fisupp 7 is proper, the direct image F, T is defined by

(9.1) (F,T,a) = (T, F*a)

for every test form « of bidegree (p,p) on Y. This makes sense because Supp 7' N
F~1(Supp a) is compact. It is easily seen that F,T is a closed positive current of bidi-
mension (p,p) on Y.

(9.2) Example. Let T' = [A] where A is a p-dimensional irreducible analytic set in X
such that F}4 is proper. We know by Remmert’s theorem 2.7.8 that F'(A) is an analytic
set in Y. Two cases may occur. Either F},4 is generically finite and F' induces an étale
covering A\ F~1(Z) — F(A) \ Z for some nowhere dense analytic subset Z C F(A),
or Fy4 has generic fibers of positive dimension and dim F'(A) < dim A. In the first case,
let s < 400 be the covering degree. Then for every test form « of bidegree (p,p) on Y
we get

(FL[A],a) = /AF*a:/A\Fl(Z) F*a:s/F(A)\Za:s<[F(A)],a>

because Z and F~1(Z) are negligible sets. Hence F,[A] = s[F(A)]. On the other hand,
if dim F'(A) < dim A = p, the restriction of o to F'(A)ycg is zero, and therefore so is this
the restriction of F*a to Ayeg. Hence FL[A] = 0. O

Now, let ) be a continuous plurisubharmonic function on Y which is semi-exhaustive
on F'(Supp T') (this set certainly contains Supp F,.T'). Since Fisupp 7 is proper, it follows
that 1 o F' is semi-exhaustive on Supp 7', for

Supp TN{Yo F < R} = F ' (F(Supp T) N {¢ < R}).
(9.3) Proposition. If F(Supp T)N{yY < R} CC Y, we have
v(F,T,¢,r)=v(T,¢po F,r) forall r <R,
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in particular v(F,T,¢) = v(T,p o F).

Here, we do not necessarily assume that X or Y are Stein; we thus replace ¢ with
s s = max{®, s}, s < r, in the definition of v(F,T,,r) and v(T,1 o F,r).

Proof. The first equality can be written

/ F.T AN pyery (dds )P = / TN (]l{¢<r} o F)(dd“yss 0 F)P.
Y X

This follows almost immediately from the adjunction formula (9.1) when % is smooth
and when we write ly,ry = lim 1 gx for some sequence of smooth functions gi. In
general, we write 1., as a decreasing limit of smooth plurisubharmonic functions and
we apply our monotone continuity theorems (if Y is not Stein, Richberg’s theorem shows
that we can obtain a decreasing sequence of almost plurisubharmonic approximations
such that the negative part of dd® converges uniformly to 0 ; this is good enough to apply
the monotone continuity theorem; note that the integration is made on compact subsets,
thanks to the semi-exhaustivity assumption on ). U

It follows from this that understanding the transformation of Lelong numbers under
direct images is equivalent to understanding the effect of F' on the weight. We are
mostly interested in computing the ordinary Lelong numbers v(F, T, y) associated with
the weight ¥ (w) = log |w — y| in some local coordinates (ws, ..., w,,) on Y near y. Then
Prop. 9.3 gives

(9.4) v(F,T,y) =v(T,log|F —y|) with

1
log|F(z) —y| = 5log Y _|Fj(2) —y;l*, Fj=wjoF.

We are going to show that v(T,log|F — y|) is bounded below by a linear combination
of the Lelong numbers of T at points x in the fiber F~1(y), with suitable multiplicities
attached to F' at these points. These multiplicities can be seen as generalizations of the
notion of multiplicity of an analytic map introduced by [Stoll 1966].

(9.5) Definition. Let x € X and y = F(x). Suppose that the codimension of the fiber
F~Y(y) at x is > p. Then we set

pp(F,z) = v((dd®log |F — y|)?, z).

Observe that (dd€log|F — y|)P is well defined thanks to Cor. 4.10. The second com-
parison theorem 7.8 immediately shows that y,(F, x) is independent of the choice of local
coordinates on Y (and also on X, since Lelong nombers do not depend on coordinates).
By definition, p,(F, z) is the mass carried by {x} of the measure

(dd®log |F(2) — y|)P A (dd°log |z — x|)"P.

We are going to give a more geometric interpretation of this multiplicity, from which it
will follow that p,(F,x) is always a positive integer (in particular, the proof of (8.18)
will be complete).



184 Chapter III. Positive Currents and Lelong Numbers

(9.6) Example. For p = n = dim X, the assumption codim, F~!(y) > p means
that the germ of map F : (X,z) — (Y,y) is finite. Let U, be a neighborhood of x
such that U, N F~1(y) = {z}, let W, be a neighborhood of y disjoint from F(AU,)
and let V, = U, N F~1(W,). Then F : V,, — W, is proper and finite, and we have
F\[V,] = s[F(V,)] where s is the local covering degree of F': V,, — F(V,) at . Therefore

fin (F, ) :/{ } (dd°log |F — y)" = v([Va],log |F — y|) = v(F[Va],y)
= su(F(Vx),y).

In the particular case when dimY = dim X, we have (F'(V,.),y) = (Y,y), so u,(F,z) = s.
In general, it is a well known fact that the ideal generated by (Fy — y1,..., Fin — ym) in
Ox » has the same integral closure as the ideal generated by n generic linear combinations
of the generators, that is, for a generic choice of coordinates w' = (wy, ..., wy,), w”’ =
(Wpt1y-- -, wm) on (Y, y), we have |F(z) —y| < C|w’ o F(z)] (this is a simple consequence

of Lemma 7.5 applied to A = F(V,,)). Hence for p = n, the comparison theorem 7.1 gives
pn(Fyx) = pp(w' o F,z) = local covering degree of w' o F' at w,

for a generic choice of coordinates (w’,w”) on (Y,y). O

(9.7) Geometric interpretation of p,(F, x). An application of Crofton’s formula 7.11
shows, after a translation, that there is a small ball B(z,ry) on which

(dd®log |F(z) — y|)P A (ddlog |z — x|)" P =

(9.72) / (dd®1og |[F(2) — y)P A [z + S] du(S).
SeG(p,n)

For a rigorous proof of (9.7a), we replace log|F(z) — y| by the “regularized” function
+log(|F(z) — y|? + £2) and let € tend to 0 on both sides. By (4.3) (resp. by (4.10)), the
wedge product (dd¢log|F(z) — y|)? A [x 4+ S] is well defined on a small ball B(x,rg) as
soon as z + S does not intersect F~1(y) N dB(x,rq) (resp. intersects F~1(y) N B(x,rg) at
finitely many points); thanks to the assumption codim(F~!(y),z) > p, Sard’s theorem
shows that this is the case for all S outside a negligible closed subset E in G(p,n) (resp.
by Bertini, an analytic subset A in G(p,n) with A C E). Fatou’s lemma then implies
that the inequality > holds in (9.7a). To get equality, we observe that we have bounded
convergence on all complements G(p,n) \ V(E) of neighborhoods V(FE) of E. However
the mass of fV(E) [+ S]dv(S) in B(x,rg) is proportional to v(V(E)) and therefore tends
to 0 when V(FE) is small; this is sufficient to complete the proof, since Prop. 4.6 b) gives

[ fdaog(FE) —yP ) A [ e SJdu(s) < Co(V(E)
z€B(z,ro) SeV(E)

with a constant C' independent of €. By evaluating (9.7a) on {z}, we get

(9.7b) m(Foo) = | ((dd° log | Flors — 2|)7,2) du(S).
SeG(p,n)NA
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Let us choose a linear parametrization gg : C? — S depending analytically on local
coordinates of S in G(p,n). Then Theorem 8.4 with 7' = [CP] and ¢(z,S) = log|F o
gs(z) — y| shows that

v((ddlog|Fizss — 2|)P,2) = v([C"], log |F 0 gs(2) — yl)

is Zariski upper semicontinuous in S on G(p,n) ~ A. However, (9.6) shows that these
numbers are integers, so S — v((dd¢log|F},1s — z|)P,z) must be constant on a Zariski
open subset in G(p,n). By (9.7b), we obtain

(9.7¢) pp(Fyx) = pp(Frats, ) = local degree of w' o Fl,4g at x
for generic subspaces S € G(p,n) and generic coordinates w' = (wy,...,w,), W’ =
(Wps1r- - m) 01 (Y,). .

(9.8) Example. Let F': C" — C™ be defined by
F(z1,...,2n) = (275, .., 200),  s1<...< Sp.

We claim that 1, (F,0) = s;...s,. In fact, for a generic p-dimensional subspace S C C"

such that z1,..., 2, are coordinates on S and z,11,..., 2, are linear forms in 2y, ..., 2,
and for generic coordinates w' = (w1, ..., wp), w” = (wp41,...,wy,) on C", we can rear-
range w’ by linear combinations so that w; o F}g is a linear combination of (z;j, ceay Zim)
and has non zero coefficient in zj.j as a polynomial in (z;,...,2p). It is then an exercise
to show that w’ o F}g has covering degree s; ...s, at 0 [compute inductively the roots
Zn, Zn—1,.-.,%; of wjo Fig(2) = a; and use Lemma I1.3.10 to show that the s; values of
z; lie near 0 when (aq, ..., ap) are small]. O

We are now ready to prove the main result of this section, which describes the be-
haviour of Lelong numbers under proper morphisms. A similar weaker result was already
proved in [Demailly 1982b] with some other non optimal multiplicities p,(F,x).

(9.9) Theorem. Let T be a closed positive current of bidimension (p,p) on X and let
F: X —Y be an analytic map such that the restriction Fisupp T 15 proper. Let I(y) be
the set of points x € Supp T N F~1(y) such that x is equal to its connected component in
Supp TN F~1(y) and codim(F~(y),z) > p. Then we have

v(F,T,y) > Z pp(F ) v(T, x).
z€l(y)

In particular, we have v(F.T,y) 2 >_, <1, (T, z). This inequality no longer holds
if the summation is extended to all points x € Supp TN F~1(Y) and if this set contains
positive dimensional connected components: for example, if F': X — Y contracts some
exceptional subspace E in X to a point yo (e.g. if F' is a blow-up map, see § 7.12), then
T = [E] has direct image F,[E] = 0 thanks to (9.2).

Proof. We proceed in three steps.
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Step 1. Reduction to the case of a single point x in the fiber. It is sufficient to prove
the inequality when the summation is taken over an arbitrary finite subset {x1,...,zx}
of I(y). As z; is equal to its connected component in Supp 7'N F~!(y), it has a fon-
damental system of relative open-closed neighborhoods, hence there are disjoint neigh-
borhoods U; of z; such that OU; does not intersect Supp 7'N F~!(y). Then the image
F(oU; N Supp T) is a closed set which does not contain y. Let W be a neighborhood of
y disjoint from all sets F(OU; N Supp T), and let V; = U; N F~H(W). It is clear that V;
is a neighborhood of z; and that F}y, : V; — W has a proper restriction to Supp 7'NVj.
Moreover, we obviously have F,T > > i (Frvj )«T on W. Therefore, it is enough to check
the inequality v(F\T,y) = pup(F,z)v(T, z) for a single point = € I(y), in the case when
X cC™ Y c C™ are open subsets and z =y = 0.

Step 2. Reduction to the case when F' is finite. By (9.4), we have

pu— 1 ¢ p
v(F,T,0) ‘l/ng/\/T/\ (dd°log |F|)

= inf li T “log(|F NP
inf Y A (dd®log(|F| +¢l2|™))",

and the integrals are well defined as soon as OV does not intersect the set Supp TNF~1(0)
(may be after replacing log |F'| by max{log|F|, s} with s < 0). For every V and ¢, the
last integral is larger than v(G,T,0) where G is the finite morphism defined by

G:X —YxC", (21,...,20) — (F1(2),..., Fu(2),2), ..., 2.
We claim that for N large enough we have p,(F,0) = u,(G,0). In fact, x € I(y)
implies by definition codim(F~1(0),0) > p. Hence, if S = {u1 = ... = up_, = 0}
is a generic p-dimensional subspace of C", the germ of variety F~1(0) NS defined by
(F1,...,Fm,u1,...,up—p) is {0}. Hilbert’s Nullstellensatz implies that some powers
of z1,...,2, are in the ideal (Fj,uy). Therefore |F(2)| + |u(z)] > C|z|* near 0 for
some integer a independent of S (to see this, take coefficients of the ux’s as additional
variables); in particular |F'(z)| > C|z|* for z € S near 0. The comparison theorem 7.1
then shows that p,(F,0) = u,(G,0) for N > a. If we are able to prove that v(G,.T,0) >
tp(G,0)v(T,0) in case G is finite, the obvious inequality v(F,T,0) > v(G,T,0) concludes
the proof.
Step 3. Proof of the inequality v(F\T,y) > p,(F,z) v(T,z) when F is finite and F~1(y) =
x. Then ¢(z) = log |F (%) — y| has a single isolated pole at  and we have p,(F,z)
v((ddp)P, z). It is therefore sufficient to apply to following Proposition.

(9.10) Proposition. Let ¢ be a semi-exhaustive continuous plurisubharmonic function
on X with a single isolated pole at x. Then

v(T, o) 2 v(T,z)v((dd°p)P, x).

Proof. Since the question is local, we can suppose that X is the ball B(0,r) in C"
and x = 0. Set X’ = B(0,r1) with 1 < rp and ®(z,9) = ¢ o g(z) for g € G1,(C).
Then there is a small neighborhood € of the unitary group U(n) C Gl,(C) such that ®
is plurisubharmonic on X’ x Q and semi-exhaustive with respect to X’. Theorem 8.4
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implies that the map g — v(T, pog) is Zariski upper semi-continuous on 2. In particular,
we must have v(T,p o g) < v(T,¢) for all g € @\ A in the complement of a complex
analytic set A. Since Gl,(C) is the complexification of U(n), the intersection U(n) N A
must be a nowhere dense real analytic subset of U(n). Therefore, if dv is the Haar
measure of mass 1 on U(n), we have

R / VT, 0 g) dv(g)
geU(n)

(9.11) = lim dv(g) / T A (dd°p o g)P.
geU(n) B(0,r)

r—0

Since ngU(n) (dd®pog)Pdv(g) is a unitary invariant (p, p)-form on B, Lemma 7.10 implies

/ (dd°p o g)Pdu(g) = (ddx(log z]))”
geU(n)

where x is a convex increasing function. The Lelong number at 0 of the left hand side is
equal to v((ddp)P,0), and must be equal to the Lelong number of the right hand side,
which is lim;_, o X/ ()P (to see this, use either Formula (5.5) or Th. 7.8). Thanks to the
last equality, Formulas (9.11) and (5.5) imply

v(T, ) > lim T A (dd°x(log|z]))"
r—0 B(O,T)
= lim X (logr — 0)Pu(T,0,7) > v((dd°p)?,0) v(T,0). O
r—

Another interesting question is to know whether it is possible to get inequalities in
the opposite direction, i.e. to find upper bounds for v(F,T,y) in terms of the Lelong
numbers v(T,x). The example T = [['] with the curve T' : ¢t — (¢%,t*T1 ¢) in C® and
F:C3? — C?, (21, 22,23) — (21, 22), for which v(T,0) =1 and v(F,T,0) = a, shows that
this may be possible only when F' is finite. In this case, we have:

(9.12) Theorem. Let F': X — Y be a proper and finite analytic map and let T be a
closed positive current of bidimension (p,p) on X. Then

(a) v(F\T,y) < > i, () v(T', )

xz€Supp TNF—1(y)

where i, (F, x) is the multiplicity defined as follows: if H : (X, x) — (C",0) is a germ of
finite map, we set

(b) o(H,z)=inf {a>0;3C >0, |H(z)| > C|z — z|* near z},
) oG Fa)
Fz)=inf ———
(c) fip(F,x) = in 1 (G0)

where G runs over all germs of maps (Y,y) — (C™,0) such that G o F' is finite.

Proof. If F~Y(y) = {x1,...,2n}, there is a neighborhood W of y and disjoint neigh-
borhoods V; of x; such that F~'(W) = |JV;. Then F.T = Y (Fv,).T on W, so it
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is enough to consider the case when F~1(y) consists of a single point x. Therefore, we
assume that F': V — W is proper and finite, where V', W are neighborhoods of 0 in C™,
C™ and F~1(0) = {0}. Let G : (C™,0) — (C™,0) be a germ of map such that G o F
is finite. Hilbert’s Nullstellensatz shows that there exists a > 0 and C' > 0 such that
|G o F(z)| = C|z|* near 0. Then the comparison theorem 7.1 implies

V(GLF,T,0) = (T, log |G o F|) < a”v(T,log |2]) = a¥v(T,0).
On the other hand, Th. 9.9 applied to © = F,T on W gives
V(G F.T,0) > p,(G,0) v(F.T,0).

Therefore

oP
v(F,T,0) < ———v(T,0).
FROS e Y

The infimum of all possible values of « is by definition o(G o F,0), thus by taking the
infimum over G we obtain

v(FT,0) < 1, (F,0) v(T,0). O
(9.13) Example. Let F(z1,...,2,) = (27",...,25"), s1 < ... < 8y, as in 9.8. Then we
have
pp(F,0) = s1...5p, b, (F,0) = 8p—pi1---Sn.
To see this, let s be the lowest common multiple of sq,...,s, and let G(z1,...,2,) =

(zf/sl, e ZZ/S"). Clearly 11,(G,0) = (s/8p—pt1) - - - (s/sn) and o(Go F,0) = s, so we get
by definition 7i,,(F,0) < sp_pt1 .. .5, Finally, if T = [A] is the current of integration over
the p-dimensional subspace A = {21 = ... = 2z, = 0}, then F\[A] = sp,_pt1...5, [4]
because F}4 has covering degree s,_,41...5,. Theorem 9.12 shows that we must have
Sp—ptl---5n < ﬁp(F, 0), QED. If A\; < ... < )\, are positive real numbers and s; is taken
to be the integer part of kA; as k tends to +oo, Theorems 9.9 and 9.12 imply in the limit
the following:

(9.14) Corollary. For(0 < A1 < ... < \,, Kiselman’s directional Lelong numbers satisfy
the inequalities

M xpu(Thx) Sv(Toz,A) < Ap—pr1 - A v(T ). O

(9.15) Remark. It would be interesting to have a direct geometric interpretation
of 1z, (F, z). In fact, we do not even know whether i,,(F, z) is always an integer.
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§10. A Schwarz Lemma. Application to Number Theory

In this section, we show how Jensen’s formula and Lelong numbers can be used to
prove a fairly general Schwarz lemma relating growth and zeros of entire functions in C™.
In order to simplify notations, we denote by |F|, the supremum of the modulus of a
function F' on the ball of center 0 and radius r. Then, following [Demailly 1982a], we
present some applications with a more arithmetical flavour.

(10.1) Schwarz lemma. Let Py,...,Py € Clz,...,2,] be polynomials of degree 0,
such that their homogeneous parts of degree 6 do not vanish simultaneously except at 0.
Then there is a constant C > 2 such that for all entire functions F € G(C™) and all
R>r>1 we have

. R
log |Fl < log |Flr — 6" "v([Z), log | P|) log

where Zr is the zero divisor of F and P = (Py,...,Py): C"* — CN. Moreover

v([ZF)log|Pl) = ) ord(F,w) pin—1(P,w)
weP—1(0)

where ord(F,w) denotes the vanishing order of F' at w and p,—1(P,w) is the (n — 1)-
multiplicity of P at w, as defined in (9.5) and (9.7).

Proof. Our assumptions imply that P is a proper and finite map. The last inequality is
then just a formal consequence of formula (9.4) and Th. 9.9 applied to T' = [ZF]. Let @,
be the homogeneous part of degree § in P;. For z, € B(0,r), we introduce the weight
functions

o(z) =log|P(2)|, P(z) =log |Q(z — 20)].

Since Q~1(0) = {0} by hypothesis, the homogeneity of Q shows that there are constants
C4,C5 > 0 such that

(10.2) C1)2° < |Q(2)| < Calz]® on C".

The homogeneity also implies (ddy)™ = 6™ §,,. We apply the Lelong Jensen formula 6.5
to the measures juy s associated with ¢ and to V' = log |F'|. This gives

(10.3) ;wﬂ%WW%“%WMMZK_ﬁAMJ%WWWWW3

By (6.2), jy,s has total mass 6™ and has support in

{Y(2) = s} ={Q(z — z) =€’} C B(O,r+ (65/01)1/6).

Note that the inequality in the Schwarz lemma is obvious if R < Cr, so we can assume
R > Cr > 2r. We take s = §log(R/2) + log C ; then

{Y(2) =s} Cc B(0,r+ R/2) C B(0, R).
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In particular, we get py s(log |F|) < 6™ log|F|r and formula (10.3) gives

(10.4) log |F'|r — log | F'(20)| / dt/ [Zp] A (dd°y)"™
{v<t}

for any real number sy < s. The proof will be complete if we are able to compare the
integral in (10.4) to the corresponding integral with ¢ in place of ¢). The argument for
this is quite similar to the proof of the comparison theorem, if we observe that ¢ ~ ¢ at
infinity. We introduce the auxiliary function

~ Jmax{y,(1—e)p+et—c} on{y>t—2},
v (1—e)p+et—e on {y <t—2},

with a constant e to be determined later, such that (1 —¢)p+ect —e > ¢ near {¢p =t —2}
and (1 —e)p +et —e < 1p near {¢p =t}. Then Stokes’ theorem implies

/ (Z0] A (dde)" ! = / (Z0] A (ddw)"!
(w<t} (vt}

(10.5) > (11— /{ oy 2 AR > (= (2 g | P,

By (10.2) and our hypothesis |z¢| < r, the condition ¥ (z) = t implies
Q—z)l=e" = /O <z =z <0/,
|P(z ) (2 —20)| < Cs(1+[z0]) (1 + |2] +[20)° ! < Car(r +€2)°,

1} < Cyre t/5 (re —t/0 4 +1) -1 < 26_1C4T8_t/6,
Z—ZO

provided that t > §logr. Hence for 1(z) =t > so > dlog(2°Cyr), we get
< Cyre /9,

Now, we have
(1—e)p+et—e] — = (1) — ) +e(t—1— ),
so this difference is < Csre™t/% — ¢ on {¢p =t} and > —Csre?=9/% 4 c on {1p =t — 2}.
Hence it is sufficient to take e = Csre(2~9/9. This number has to be < 1, so we take
t > so = 2+ dlog(Csr). Moreover, (10.5) actually holds only if P~1(0) C {¢p <t — 2},
so by (10.2_) it is enough to take t > so > 2 + log(Ca(r + Cs)°) where Cg is such that
P~1(0) € B(0,Cs). Finally, we see that we can choose
s=0dlog R — CY, so = dlogr + Cs,

and inequalities (10.4), (10.5) together imply

log |F|r — log | F(z0)| > 5—”(/ (1 — Cgre=t/0)n-1 dt)u([ZF],log P|).
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The integral is bounded below by

élog(R/r)—C7
/ (1 — Coe ) dt > dlog(R/Cr).
Cg

This concludes the proof, by taking the infimum when zy runs over B(0,r). d

(10.6) Corollary. Let S be a finite subset of C™ and let § be the minimal degree of
algebraic hypersurfaces containing S. Then there is a constant C' = 2 such that for all
Fe0(C") and all R > r > 1 we have

21 £
OgCr

d+n(n—1)/
n!

log|F|, < log|F|r —ord(F,S)

where ord(F, S) = min,es ord(F, w).

Proof. In view of Th. 10.1, we only have to select suitable polynomials Py, ..., Py. The
vector space C[zy, ..., z,]<s of polynomials of degree < ¢ in C™ has dimension

m(d) =

(6+n—1) do+1)...(0+n—-1)

n - n!
By definition of §, the linear forms
C[Zl,...,Zn]<5—)C, P)—)P(QU), weS

vanish simultaneously only when P = 0. Hence we can find m = m(d) points wy, ...,
Wy, € S such that the linear forms P +— P(w;) define a basis of C[z1,...,2,]% 5. This
means that there is a unique polynomial P € C|zy,..., 2,]<s which takes given val-
ues P(w;) for 1 < j < m. In particular, for every multiindex o, |a| = 4, there is a
unique polynomial R, € C[z1,..., z,]<s such that R, (w;) = w$'. Then the polynomials
P,(z) = 2% — Ry(2) have degree 0, vanish at all points w; and their homogeneous parts
of maximum degree QQ,(z) = 2% do not vanish simultaneously except at 0. We simply
use the fact that p,_1(P,w;) > 1 to get

v([Zp),log|P]) > ) ord(F,w) > m(d)ord(F, S).
weP=1(0)

Theorem 10.1 then gives the desired inequality, because m(J) is a polynomial with posi-
tive coefficients and with leading terms

1 _
m(é”—l—n(n—l)/Qé” ). O

Let S be a finite subset of C™. According to [Waldschmidt 1976], we introduce
for every integer ¢ > 0 a number w;(S) equal to the minimal degree of polynomials
P € Clzy, ..., z,] which vanish at order > ¢ at every point of S. The obvious subadditivity
property

Wiy 4, (5) < wi, (S) + we, ()
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easily shows that
S) = inf L) S

t>0 ¢ t—+oo

We call wq(S) the degree of S (minimal degree of algebraic hypersurfaces containing 5)
and Q(.S5) the singular degree of S. If we apply Cor. 10.6 to a polynomial F' vanishing at
order t on S and fix r = 1, we get

d+n(n—1)/2
n!

R
log |F|r >t 10g5+10g‘F\1

with § = wy(S), in particular

wi(S) +n(n—-1)/2

deg ' >t
n!

The minimum of deg F' over all such F' is by definition w;(.S). If we divide by ¢ and take

the infimum over ¢, we get the interesting inequality

we(S) wi(S)+n(n—1)/2
n! )

(10.7)

> Q(S) >

(10.8) Remark. The constant “2F=D/2 4, (10.6) and (10.7) is optimal for n = 1,2

n!
but not for n > 3. It can be shown by means of Hérmander’s L? estimates [Waldschmidt

1978] that for every e > 0 the Schwarz lemma (10.6) holds with coefficient Q(S) — e

R
log |F|, < log|F|g — ord(F, S)(Q(S) — ¢) log o

and that Q(S) > (wu(S) +1)/(u +n — 1) for every u > 1; this last inequality is due
to [Esnault-Viehweg 1983], who used deep tools of algebraic geometry; [Azhari 1990]
reproved it recently by means of Hormander’s L? estimates. Rather simple examples
[Demailly 1982a] lead to the conjecture

wu(S)+n—1
u+n-—1

Q(S) =

for every wu > 1.
The special case u = 1 of the conjecture was first stated by [Chudnovsky 1979].

Finally, let us mention that Cor. 10.6 contains Bombieri’s theorem on algebraic values
of meromorphic maps satisfying algebraic differential equations [Bombieri 1970]. Recall
that an entire function F' € G(C™) is said to be of order < p if for every € > 0 there is a
constant C. such that |F(z)|] < C.exp(|z]|?*¢). A meromorphic function is said to be of
order < p if it can be written G/H where G, H are entire functions of order < p.

(10.9) Theorem ([Bombieri 1970]). Let Fi,..., Fy be meromorphic functions on C",
such that Fy,...,Fy, n < d < N, are algebraically independent over Q and have fi-
nite orders pi,...,pq.- Let K be a number field of degree [K : Q]. Suppose that the
ring K[f1,..., fn] is stable under all derivations d/dzy,...,d/dz,. Then the set S of
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points z € C", distinct from the poles of the F;’s, such that (Fy(z),...,Fn(z)) € KV is
contained in an algebraic hypersurface whose degree § satisfies

d+nn—1)/2 o Pt AP
n! b d—n

K : Q.

Proof. If the set S is not contained in any algebraic hypersurface of degree < §, the linear
algebra argument used in the proof of Cor. 10.6 shows that we can find m = m(¢) points
wi, ..., Wy, €5 which are not located on any algebraic hypersurface of degree < §. Let
H,y,..., H; be the denominators of Fi,..., Fy. The standard arithmetical methods of
transcendental number theory allow us to construct a sequence of entire functions in the
following way: we set

G=P(F,...,F)(H, ... .Hy)®

where P is a polynomial of degree < s in each variable with integer coefficients. The
polynomials P are chosen so that G vanishes at a very high order at each point w;. This
amounts to solving a linear system whose unknowns are the coefficients of P and whose
coefficients are polynomials in the derivatives of the F;’s (hence lying in the number field
K). Careful estimates of size and denominators and a use of the Dirichlet-Siegel box
principle lead to the following lemma, see e.g. [Waldschmidt 1978].

(10.10) Lemma. For every € > 0, there exist constants C1,Cy > 0, r > 1 and an
infinite sequence Gy of entire functions, t € T C N (depending on m and on the choice
of the points wj), such that

a) Gy vanishes at order >t at all points wy, ..., Wy ;
b) |Gl = (Crt)~* 1K,
¢) |Gilruy < C4  where R(t) = (¢4~ /logt)l/ (prtetpate),

An application of Cor. 10.6 to F' = Gy and R = R(t) gives the desired bound for the
degree 0 as t tends to 400 and e tends to 0. If dg is the largest integer which satisfies
the inequality of Th. 10.9, we get a contradiction if we take § = dy + 1. This shows that
S must be contained in an algebraic hypersurface of degree ¢ < dg. O
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Chapter IV

Sheaf Cohomology and Spectral Sequences

One of the main topics of this book is the computation of various cohomology groups arising in
algebraic geometry. The theory of sheaves provides a general framework in which many cohomology
theories can be treated in a unified way. The cohomology theory of sheaves will be constructed here
by means of Godement’s simplicial flabby resolution. However, we have emphasized the analogy with
Alexander-Spanier cochains in order to give a simple definition of the cup product. In this way, all the
basic properties of cohomology groups (long exact sequences, Mayer Vietoris exact sequence, Leray’s
theorem, relations with Cech cohomology, De Rham-Weil isomorphism theorem) can be derived in a
very elementary way from the definitions. Spectral sequences and hypercohomology groups are then
introduced, with two principal examples in view: the Leray spectral sequence and the Hodge-Frolicher
spectral sequence. The basic results concerning cohomology groups with constant or locally constant
coefficients (invariance by homotopy, Poincaré duality, Leray-Hirsch theorem) are also included, in order
to present a self-contained approach of algebraic topology.

§ 1. Basic Results of Homological Algebra

Let us first recall briefly some standard notations and results of homological algebra
that will be used systematically in the sequel. Let R be a commutative ring with unit. A
differential module (K, d) is a R-module K together with an endomorphism d: K — K,
called the differential, such that d o d = 0. The modules of cycles and of boundaries of
K are defined respectively by

(1.1) Z(K)=kerd, B(K)=Imd.

Our hypothesis dod = 0 implies B(K) C Z(K). The homology group of K is by definition
the quotient module

(1.2) H(K) = Z(K)/B(K).

A morphism of differential modules p : K — L is a R-homomorphism ¢ : K — L such
that do ¢ = pod; here we denote by the same symbol d the differentials of K and L. It
is then clear that p(Z(K)) C Z(L) and ¢(B(K)) C B(L). Therefore, we get an induced
morphism on homology groups, denoted

(1.3) H(y): H(K) — H(L).

It is easily seen that H is a functor, i.e. H(v) o ) = H(¢)) o H(p). We say that two
morphisms ¢, : K — L are homotopic if there exists a R-linear map h : K — L such
that

(1.4) doh+hod=1— .
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Then h is said to be a homotopy between ¢ and 1. For every cocycle z € Z(K), we infer
Y(z) — p(2) = dh(z), hence the maps H(p) and H(1) coincide. The module K itself is
said to be homotopic to 0 if Idx is homotopic to 0; then H(K) = 0.

(1.5) Snake lemma. Let

0—K 51 Yy m—so0

be a short exact sequence of morphisms of differential modules. Then there exists a homo-
morphism 0 : H(M) — H(K), called the connecting homomorphism, and a homology

exact sequence

H(y) H(y)

H(K) H(L)
N )

Moreover, to any commutative diagram of short exact sequences

H(M)

0O — K —L — M —0

0— K —L — M —0
1$ associated a commutative diagram of homology exact sequences

H(K) — H(L) — HM) % HE) — -

Proof. We first define the connecting homomorphism 0 : let m € Z(M) represent a given
cohomology class {m} in H(M). Then

{m} = {k} € H(K)

is the class of any element k € o ~tdyy~1(m), as obtained through the following construc-
tion:
lelL i) me M

fa L

ek o2y aiern Y 0e

The element [ is chosen to be a preimage of m by the surjective map ¢ ; as (dl) =
d(m) = 0, there exists a unique element k£ € K such that ¢(k) = dl. The element k is
actually a cocycle in Z(K') because ¢ is injective and

o(dk) = dp(k) = d(dl) =0 = dk=0.

The map 0 will be well defined if we show that the cohomology class {k} depends only
on {m} and not on the choices made for the representatives m and [. Consider another
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representative m’ = m + dmy. Let l; € L such that ¢ (l;) = my. Then [ has to be
replaced by an element I’ € L such that

(') =m+dmy = (I +dly).
It follows that I’ =1+ dl; + p(ky) for some k; € K, hence
dl' = dl + dp(k1) = @(k) + p(dk1) = p(k'),

therefore k' = k + dk, and k' has the same cohomology class as k.

Now, let us show that ker @ = Im H (¢)). If {m} is in the image of H (1), we can take
m = (1) with dl = 0, thus 9{m} = 0. Conversely, if d{m} = {k} = 0, we have k = dk;
for some k1 € K, hence dl = p(k) = dp(k1), z:=1— (k1) € Z(L) and m = (1) = ¢(z)
is in Im H (7). We leave the verification of the other equalities Im H(p) = ker H (v)),
Im 0 = ker H(p) and of the commutation statement to the reader. U

In most applications, the differential modules come with a natural Z-grading. A
homological complex is a graded differential module K, = @ gz Kq together with a
differential d of degree —1, i.e. d = @d, with d, : K, — K,_1 and d;_1 0 dy =
0. Similarly, a cohomological complex is a graded differential module K* = gez K1
with differentials d? : K¢ — K971 such that d?t! o d? = 0 (superscripts are always
used instead of subscripts in that case). The corresponding (co)cycle, (co)boundary and
(co)homology modules inherit a natural Z-grading. In the case of cohomology, say, these
modules will be denoted

Z*(K*) =@ z1(K*), B*(K*)=(PBUK"), H*(K*) =P HIK").

Unless otherwise stated, morphisms of complexes are assumed to be of degree 0, i.e. of
the form ¢® = @@ ¢? with 99 : K9 — L?. Any short exact sequence

00— K* 2o Y o

gives rise to a corresponding long exact sequence of cohomology groups

q . q ° Hq+1 3
H (¢*) H (°) (")

(1.6)  HI(K®) HI(L*) HI(M®) 2 gt (k)

and there is a similar homology long exact sequence with a connecting homomorphism 9,
of degree —1. When dealing with commutative diagrams of such sequences, the following
simple lemma is often useful; the proof consists in a straightforward diagram chasing.

(1.7) Five lemma. Consider a commutative diagram of R-modules

Al —>A2 —>A3 —)A4 —>A5

ler lee les es Les
By — By — Bg — By — B5
where the rows are exact sequences. If o and @4 are injective and py surjective, then

w3 1s injective. If po and @4 is surjective and @5 injective, then s is surjective. In
particular, p3 is an isomorphism as soon as p1, P2, P4, Ps are isomorphisms.
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§ 2. The Simplicial Flabby Resolution of a Sheaf

Let X be a topological space and let ¢4 be a sheaf of abelian groups on X (see § I1-2
for the definition). All the sheaves appearing in the sequel are assumed implicitly to
be sheaves of abelian groups, unless otherwise stated. The first useful notion is that of
resolution.

(2.1) Definition. A (cohomological) resolution of <4 is a differential complex of sheaves
(L*,d) with £1 =0, d? =0 for q < 0, such that there is an exact sequence

j d° d?
00— 50 5Pt ... 1 Sy patt

If o : A — 9B is a morphism of sheaves and (M*®,d) a resolution of B, a morphism of
resolutions p® : L* — M* is a commutative diagram

0o Jyg0 Lo o igr dgen
Ly L¢° Lot Lo Lt

j d° d?
0— B LM ' —. . — M = utt — ...

(2.2) Example. Let X be a differentiable manifold and &7 the sheaf of germs of 6> dif-
ferential forms of degree g with real values. The exterior derivative d defines a resolution
(6°,d) of the sheaf R of locally constant functions with real values. In fact Poincaré’s
lemma asserts that d is locally exact in degree ¢ > 1, and it is clear that the sections of
ker d° on connected open sets are constants. U

In the sequel, we will be interested by special resolutions in which the sheaves £¢ have
no local “rigidity”. For that purpose, we introduce flabby sheaves, which have become a
standard tool in sheaf theory since the publication of Godement’s book [Godement 1957].

(2.3) Definition. A sheaf F is called flabby if for every open subset U of X, the
restriction map F(X) — F(U) is onto, i.e. if every section of F on U can be extended
to X.

Let m: i — X be a sheaf on X. We denote by (% the sheaf of germs of sections
X — o which are not necessarily continuous. In other words, «[%(U) is the set of all
maps f : U — o such that f(z) € 4, for all z € U, or equivalently «!°/(U) = [Lcy Do
It is clear that /(% is flabby and there is a canonical injection

g — 4l0

defined as follows: to any s € ¢f,, we associate the germ s € i equal to the continuous
section y — 5(y) near x such that s(x) = s. In the sequel we merely denote 5 : y — s(y)
for simplicity. The sheaf /(% is called the canonical flabby sheaf associated to . We
define inductively

ola — (ﬂ[q—ll)[O].
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The stalk aﬁ&q] can be considered as the set of equivalence classes of maps f : X9t — o
such that f(wzo,...,z4) € 9., with two such maps identified if they coincide on a set of
the form

(2.4) ro €V, x1€V(xg), ..., xq€V(xo,...,Tq-1),

where V' is an open neighborhood of x and V(zo,...,x;) an open neighborhood of
z;, depending on xg,...,x;. This is easily seen by induction on ¢, if we identify a
map f : X9 — o to the map X — oAl x5 s f,, such that fo,(v1,...,2,) =
f(zo,x1,...,24). Similarly, Al4(U) is the set of equivalence classes of functions X+! 5
(w0, ..., 2q) > f(x0,...,24) € Ay, , with two such functions identified if they coincide
on a set of the form

(2.4") ro €U, x1€V(xg), ..., g€ V(xg,...,Tq-1).

Here, we may of course suppose V(zo,...,24-1) C ... C V(zg,21) C V(z9) C U. We
define a differential d? : o7} — gflat1] by

(2.5) (d1f)(xo, ..., Tq41) =
Z (_]—)]f(a;Oa tee 7@7 ey mq—H) + (_]‘)q+1f('r07 cee 7xq)(xq+1)-
0<y<q
The meaning of the last term is to be understood as follows: the element s = f(xo, ..., z,)
is a germ in o, , therefore s defines a continuous section z441 + s(zq41) of 4 in a
neighborhood V (x, ..., z4) of x,. In low degrees, we have the formulas
(js)(xo) = s(xp), s € dy,
(2:6) (d°f) (w0, 21) = f(a1) = f(wo)(w1), f €t

(d' f)(zo, 1, 22) = f(z1,22) — f(z0,22) + f(20, 1) (22), f € Al

(2.7) Theorem ([Godement 1957]). The complex (4!, d) is a resolution of the sheaf
o, called the simplicial flabby resolution of 4.

Proof. For s € 4, the associated continuous germ obviously satisfies s(xg)(z1) = s(x1)
for xy € V, 21 € V(x() small enough. The reader will easily infer from this that d®ocj = 0
and d?! o d? = 0. In order to verify that («[*d) is a resolution of &/, we show that the
complex

s 0y 0] L gl 2 gle)

is homotopic to zero for every point z € X. Set sdl=" = ¢, d~' = j and

ooy — oy, () = f(2) € s,

R p— hi(f)(xo,...,xq-1) = f(x,20,...,2q-1)-
A straightforward computation shows that (h?t! o d? +d? o h?)(f) = f for all ¢ € Z
and f € Qi[ﬁq]. O

If o : 4 — 9B is a sheaf morphism, it is clear that ¢ induces a morphism of resolutions

(2.8) olol glel — aplel,

For every short exact sequence ¢f — 9B — 6 of sheaves, we get a corresponding short
exact sequence of sheaf complexes

(2.9) dle) — gplel gl
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§ 3. Cohomology Groups with Values in a Sheaf

§ 3.A. Definition and Functorial Properties

If 7: d — X is a sheaf of abelian groups, the cohomology groups of ¢ on X are (in
a vague sense) algebraic invariants which describe the rigidity properties of the global
sections of «.

(3.1) Definition. For every q € Z, the q-th cohomology group of X with values in o is
HY(X,d) = Hi(A)(X)) =
= ker (d7 : g19(X) — 4P(X))/Im(d?™" : gl (X)) — otl(X))
with the convention A9 =0, d? =0, H1(X,d) = 0 when q < 0.
For any subset S C X, we denote by o;s the restriction of 4 to S, i.e. the sheaf
s = 7 1(S) equipped with the projection 7s onto S. Then we write H%(S, dg) =
H9(S, ) for simplicity. When U is open, we see that (4l%);; coincides with (o 7)19],

thus we have H1(U,d) = H1 (d['](U)). It is easy to show that every exact sequence of
sheaves 0 — 4 — L0 — £L! induces an exact sequence

(3.2) 0 — dA(X) — L°X) — LYX).
If we apply this to L9 = fl9 ¢ = 0,1, we conclude that
(3.3) HY(X, ) = A(X).

Let ¢ : «§ — 9B be a sheaf morphism; (2.8) shows that there is an induced morphism
(3.4) H9(p) : HY(X, o) — HY(X,%)

on cohomology groups. Let 0 — o — % — 6 — 0 be an exact sequence of sheaves.
Then we have an exact sequence of groups

0 — A9(Xx) — B (X)) — €0(Xx) —0

because #%(X) = [l.cx Fe. Similarly, (2.9) yields for every ¢ an exact sequence of
groups
0 — old(X) — Bl(X) — 6ld(X) — 0.

If we take (3.3) into account, the snake lemma implies:

(3.5) Theorem. To any ezxact sequence of sheaves 0 — o — B — 6 — 0 is associated
a long exact sequence of cohomology groups

0 — dX) — BX) — bX) — H X, d) — -
o — HI(X,d) — HYX,B) — HYX,6) — HY (X, o) — ---.

(3.6) Corollary. Let B — 6 be a surjective sheaf morphism and let o be its kernel. If
HYX,d) =0, then B(X) — 6(X) is surjective. O
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§ 3.B. Exact Sequence Associated to a Closed Subset
Let S be a closed subset of X and U = X ~ S. For any sheaf «/ on X, the presheaf

Qr—d(SNQ), QCX open

with the obvious restriction maps satisfies axioms (I1-2.4") and (II-2.4"), so it defines a
sheaf on X which we denote by 4. This sheaf should not be confused with the restriction
sheaf g, which is a sheaf on S. We easily find

(3.7) (AN, =d, if €8, (A4%),=0 if zcU.

Observe that these relations would completely fail if S were not closed. The restriction
morphism f ~ f;5 induces a surjective sheaf morphism o — °. We let «dy be its
kernel, so that we have the relations

From the definition, we obtain in particular
(3.9) A% (X) = d(S), y(X) = {sections of ¢(X) vanishing on S}.

Theorem 3.5 applied to the exact sequence 0 — Ay — A — % — 0 on X gives a long
exact sequence

(3.9) 0— dy(X) — d(X) — d(9) s HY(X,dy) -
Ly HUX,dy) — HIX,d) — HI(X,d5) — H(X, dy) -

§ 3.C. Mayer-Vietoris Exact Sequence

Let Uy, Us be open subsets of X and U = U; UU,y, V = Uy NU,. For any sheaf ¢4 on
X and any ¢ we have an exact sequence

0 — dlU) — gl @ dl(Uy) — (V) — 0

where the injection is given by f +— (fiu,, fiv,) and the surjection by (gi1,92) —
g21v — g11v ; the surjectivity of this map follows immediately from the fact that Al is
flabby. An application of the snake lemma yields:

(3.11) Theorem. For any sheaf A on X and any open sets Uy, Uy C X, set U = U1 UU,,
V =Uy NUs,. Then there is an exact sequence

HY U, o) — HY Uy, d) ® HY(Us, A) — HI(V, o) — H (U, A) - -- O
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§4. Acyclic Sheaves

Given a sheaf o on X, it is usually very important to decide whether the cohomology
groups H4(U, «) vanish for ¢ > 1, and if this is the case, for which type of open sets U.
Note that one cannot expect to have H°(U, «d) = 0 in general, since a sheaf always has
local sections.

(4.1) Definition. A sheaf A is said to be acyclic on an open subset U if HI(U,d) = 0
for g > 1.

§4.A. Case of Flabby Sheaves

We are going to show that flabby sheaves are acyclic. First we need the following
simple result.

(4.2) Proposition. Let ¢ be a sheaf with the following property: for every section f of
g on an open subset U C X and every point x € X, there exists a neighborhood ) of x
and a section h € A(Q) such that h = f on UNQ. Then o is flabby.

A consequence of this proposition is that flabbiness is a local property: a sheaf ¢ is
flabby on X if and only if it is flabby on a neighborhood of every point of X.

Proof. Let f € 4(U) be given. Consider the set of pairs (v, V) where v in %B(V) is an
extension of f on an open subset V' O U. This set is inductively ordered, so there exists
a maximal extension (v,V’) by Zorn’s lemma. The assumption shows that V' must be
equal to X. O

(4.3) Proposition. Let 0 — o 2B Ly G — 0 be an ezact sequence of sheaves.
If A is flabby, the sequence of groups

0 — d(U) 2 BU) L5 GU) — 0

is exact for every open set U. If A and %8 are flabby, then 6 is flabby.

Proof. Let g € 6(U) be given. Consider the set E of pairs (v, V) where V is an open
subset of U and v € (V) is such that p(v) = g on V. It is clear that E is inductively
ordered, so E has a maximal element (v, V'), and we will prove that V' = U. Otherwise,
let z € UV and let h be a section of % in a neighborhood of z such that p(h,) = g..
Then p(h) = g on a neighborhood € of z, thus p(v —h) =0 0on VN Q and v — h = j(u)
with u € A(V N Q). If 4 is flabby, u has an extension u € #(X) and we can define a
section w € PB(V U Q) such that p(w) = g by

w=v on V, w=h+j(u) on €,
contradicting the maximality of (v, V). Therefore V.= U, v € %(U) and p(v) = g on
U. The first statement is proved. If 9 is also flabby, v has an extension v € %(X) and
g = p(v) € 6(X) is an extension of g. Hence 6 is flabby. O

(4.4) Theorem. A flabby sheaf o is acyclic on all open sets U C X.
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Proof. Let %9 = ker (dq - Al — sﬂ[q“]). Then %° = 4 and we have an exact sequence
of sheaves \
0 — 97— fld Ly opatl g

because Imd9 = ker d9t! = %9+!. Proposition 4.3 implies by induction on ¢ that all
sheaves %4 are flabby, and yields exact sequences

0 — FUU) — dld(U) 25 et () — 0.
For ¢ > 1, we find therefore

ker (d : dN(U) — sl (1)) = %1(U)
=Im (dq_l : ﬂ[q_l](U) — ﬂ[q](U)),

that is, HY(U, ) = H(dAl*}(U)) = 0. O

§ 4.B. Soft Sheaves over Paracompact Spaces

We now discuss another general situation which produces acyclic sheaves. Recall
that a topological space X is said to be paracompact if X is Hausdorff and if every open
covering of X has a locally finite refinement. For instance, it is well known that every
metric space is paracompact. A paracompact space X is always normal; in particular,
for any locally finite open covering (U,) of X there exists an open covering (V,,) such
that V,, C U,. We will also need another closely related concept.

(4.5) Definition. We say that a subspace S is strongly paracompact in X if S is
Hausdorff and if the following property is satisfied: for every covering (Uy) of S by open
sets in X, there exists another such covering (V) and a neighborhood W of S such
that each set W NV g is contained in some U, and such that every point of S has a
neighborhood intersecting only finitely many sets Vg.

It is clear that a strongly paracompact subspace S is itself paracompact. Conversely,
the following result is easy to check:

(4.6) Lemma. A subspace S is strongly paracompact in X as soon as one of the following
situations occurs:

a) X is paracompact and S is closed;
b) S has a fundamental family of paracompact neighborhoods in X ;

c) S is paracompact and has a neighborhood homeomorphic to some product S x T', in
which S is embedded as a slice S x {to}. O

(4.7) Theorem. Let A be a sheaf on X and S a strongly paracompact subspace of
X. Then every section f of d on S can be extended to a section of b on some open
neighborhood Q) of A.

Proof. Let f € 4(S). For every point z € S there exists an open neighborhood U, and a
section f, € d(U,) such that f,(z) = f(z). After shrinking U,, we may assume that f,
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and f coincide on SNU,. Let (V,) be an open covering of S that is locally finite near S
and W a neighborhood of S such that W NV, C U,(4) (Def. 4.5). We let

Q={zeWnJVa; faiw (@) = fap(2), Yo, B with 2 € Vo NVg}.

Then (Q2NV,,) is an open covering of 2 and all pairs of sections fz(a) coincide in pairwise
intersections. Thus there exists a section F' of @ on {2 which is equal to f,(4) on QN V.
It remains only to show that €2 is a neighborhood of S. Let zy € S. There exists a
neighborhood U’ of zy which meets only finitely many sets Vy,,,...,V,,. After shrinking
U’, we may keep only those V,,, such that zy € Val. The sections fz(al) coincide at zg,
so they coincide on some neighborhood U” of this point. Hence W NU" C 2, so Q is a
neighborhood of S. U

(4.8) Corollary. If X is paracompact, every section f € A(S) defined on a closed set
S extends to a neighborhood €2 of S. O

(4.9) Definition. A sheaf A4 on X is said to be soft if every section f of A on a closed
set S can be extended to X, i.e. if the restriction map 4(X) — d(S) is onto for every
closed set S.

(4.10) Example. On a paracompact space, every flabby sheaf ¢ is soft: this is a
consequence of Cor. 4.8.

(4.11) Example. On a paracompact space, the Tietze-Urysohn extension theorem
shows that the sheaf “‘6x of germs of continuous functions on X is a soft sheaf of rings.
However, observe that “6x is not flabby as soon as X is not discrete.

(4.12) Example. If X is a paracompact differentiable manifold, the sheaf & x of germs
of “6°° functions on X is a soft sheaf of rings. U

Until the end of this section, we assume that X is a paracompact topological space.
We first show that softness is a local property.

(4.13) Proposition. A sheaf < is soft on X if and only if it is soft in a neighborhood
of every point x € X.

Proof. If 4 is soft on X, it is soft on any closed neighborhood of a given point. Con-
versely, let (U, )aer be a locally finite open covering of X which refine some covering by
neighborhoods on which ¢ is soft. Let (V) be a finer covering such that Vo CU,, and
f € 4(S) be a section of & on a closed subset S of X. We consider the set E of pairs
(g,J), where J C I and where g is a section over F; := S U UQGJVQ, such that g = f
on S. As the family (V) is locally finite, a section of @ over F is continuous as soon
it is continuous on S and on each V. Then (f,0)) € E and E is inductively ordered by
the relation
(¢, J)— (¢",J") it JJcJ” and ¢'=g¢" on Fy

No element (g,.J), J # I, can be maximal: the assumption shows that g ‘AT, Das an
extension to V, thus suCh a g has an extension to Fjyq) for any a ¢ J. flence E has
a maximal element (g, I) defined on F; = X. O
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(4.14) Proposition. Let 0 - ¢ — B — 6 — 0 be an exact sequence of sheaves. If
d is soft, the map B(S) — 6(S) is onto for any closed subset S of X. If A and %B are
soft, then 6 is soft.

By the above inductive method, this result can be proved in a way similar to its
analogue for flabby sheaves. We therefore obtain:

(4.15) Theorem. On a paracompact space, a soft sheaf is acyclic on all closed subsets.
O

(4.16) Definition. The support of a section f € d(X) is defined by
Supp f = {x € X; f(x) 7é0}.

Supp f is always a closed set: as ¢§ — X is a local homeomorphism, the equality
f(x) =0 implies f = 0 in a neighborhood of z.

(4.17) Theorem. Let (Uy,)acr be an open covering of X. If d is soft and f € A(X),
there exists a partition of f subordinate to (Uy,), i.e. a family of sections f, € A(X) such
that (Supp fo) is locally finite, Supp fo C Uy and > fo = f on X.

Proof. Assume first that (Uy) is locally finite. There exists an open covering (V) such
that Vi, C Us. Let (fa)acs, J C I, be a maximal family of sections f, € 4(X) such

that Supp fo CUgand ) o, fa =fon S =,c;Va IfJ#1and B €I~ J, there
exists a section fg € ¢4(X) such that

fs3=0 on X~\Ug and fng—Zfa on SUVg
aed
because (X \ Ug) US UVpg is closed and f — > fo, = 0 on (X \U,) N S. This is a
contradiction unless J = I.

In general, let (V) be a locally finite refinement of (Uy,), such that V; C U,(;, and
let (f;) be a partition of f subordinate to (V;). Then fo =3, ~1(4) f; is the required
partition of f. O

Finally, we discuss a special situation which occurs very often in practice. Let % be
a sheaf of commutative rings on X ; the rings %, are supposed to have a unit element.
Assume that & is a sheaf of modules over R. It is clear that 9/ is a ®[%-module, and
thus also a %-module. Therefore all sheaves ¢!% are R-modules and the cohomology
groups H?(U, «) have a natural structure of % (U )-module.

(4.18) Lemma. If R is soft, every sheaf s of R-modules is soft.

Proof. Every section f € ¢(S) defined on a closed set S has an extension to some open
neighborhood Q. Let ¢ € R(X) be such that ©» =1 on S and ¥ = 0 on X \ Q. Then
W f, defined as 0 on X \ 2, is an extension of f to X. O

(4.19) Corollary. Let s be a sheaf of &x-modules on a paracompact differentiable
manifold X. Then HY(X,d) =0 for all ¢ > 1.
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§ 5. Cech Cohomology
8 5.A. Definitions

In many important circumstances, cohomology groups with values in a sheaf @ can
be computed by means of the complex of Cech cochains, which is directly related to the
spaces of sections of ¢ on sufficiently fine coverings of X. This more concrete approach
was historically the first one used to define sheaf cohomology ([Leray 1950], [Cartan
1950]); however Cech cohomology does not always coincide with the “good” cohomology
on non paracompact spaces. Let U = (U, )aer be an open covering of X. For the sake
of simplicity, we denote

Uaoal...aq = Uao N UOél N...N an.

The group C?(U, ) of Cech g-cochains is the set of families

c= (caoal...aq) S H Sﬂ(Uaoal...aq)-

(ag,...,aq)€TH

The group structure on C?(%U, o) is the obvious one deduced from the addition law on
sections of 4. The Cech differential 67 : C9(U, ) — CIT1(U,d) is defined by the

formula

(51) (6qc)o¢0...aq+1 = Z <_1)] Cogo...o/z;-...aq+1 rUaoma

b
+1
0<j<q+1 !

and we set C9(U,d) =0, §2 =0 for ¢ < 0. In degrees 0 and 1, we get for example

(5.2) q=0, c=(ca); (0°C)ap=cs— CaU.ps,
(5.2") g=1, c=(cap), ((510)055,y = C8y — Cay T Caff Uap, -

Easy verifications left to the reader show that §9t! o0 §7 = 0. We get therefore a cochain
complex (C"(Oll, d), 5), called the complex of Cech cochains relative to the covering U .

(5.3) Definition. The Cech cohomology group of S relative to U is

HOU, sd) = HY(C* (U, s4)).

Formula (5.2) shows that the set of Cech 0-cocycles is the set of families (cq) €
[[4(U,) such that cg = ¢, on U, NUg. Such a family defines in a unique way a global
section f € «(X) with fyy, = co. Hence

(5.4) H(U, o) = A(X).

Now, let ¥ = (V3)ges be another open covering of X that is finer than AU ; this means
that there exists a map p : J — I such that Vg C U,(g) for every 3 € J. Then we can
define a morphism p® : C*(U,A) — C*(V, ) by

(5.5) (P7C)Bo...Bs = Cp(Bo)...0(Ba) 1Vay..5, 5
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the commutation property dp® = p®¢ is immediate. If p’ : J — I is another refinement
map such that Vs C U, (g for all 3, the morphisms p®, p'® are homotopic. To see this,
we define a map h9 : C9(U, Ad) — CI7 (¥, d) by

(h9€)go.as = D (1) ColB0).p(8)0/ (B)? (Byr) Vg, 5, s
0<j<g—1

The homotopy identity 697! o h9 + hiT1 0 §9 = p’? — p9 is easy to verify. Hence p® and
p'® induce a map depending only on U, V :

(5.6) HI(p®*) = HI(p'*) : HYU, o) — HUY, ).

Now, we want to define a direct limit H9(X, o) of the groups H%(%U, s4) by means of
the refinement mappings (5.6). In order to avoid set theoretic difficulties, the coverings
used in this definition will be considered as subsets of the power set %(X), so that the
collection of all coverings becomes actually a set.

(5.7) Definition. The Cech cohomology group H(X,sd) is the direct limit

HY(X,d) = hﬁm} HI(U, )

when U runs over the collection of all open coverings of X. FExplicitly, this means that
the elements of ﬁq(X, d) are the equivalence classes in the disjoint union of the groups
HY(U, ), with an element in HI(U,d) and another in HI("V,d) identified if their
images in HI("W,sd) coincide for some refinement ‘W of the coverings U and V.

If p: d — 9B is a sheaf morphism, we have an obvious induced morphism ¢*® :
C*(U, ) — C*(U,%B), and therefore we find a morphism

HI(p®) - HYU, ) — HI(U,B).

Let 0 > df — % — 6 — 0 be an exact sequence of sheaves. We have an exact sequence
of groups

(5.8) 0 — CUU, ) —s CUAU,B) — CUAUL, 6),

but in general the last map is not surjective, because every section in (@(Uao,...,aq) need
not have a lifting in % (Ua,,...,a,). The image of C*(U, %) in C*(°U, ‘6) will be denoted
C5, (U, 6) and called the complex of liftable cochains of € in 8. By construction, the
sequence

(5.9) 0— CY(U,sd) — CI(U,B) — CL(U,6) — 0
is exact, thus we get a corresponding long exact sequence of cohomology
(5.10) HY U, o) — HI(U,PB) — HL(U,6) — HIT' (U, A) — ---.

If o is flabby, Prop. 4.3 shows that we have Cg (U, 6) = C?(U, 6), hence H3 (U, 6) =
H(%U,6).
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(5.11) Proposition. Let o be a sheaf on X. Assume that either
a) 4 is flabby, or :
b) X is paracompact and ¢ is a sheaf of modules over a soft sheaf of rings R on X.

Then HI(U,d) = 0 for every q > 1 and every open covering U = (Uy)acr of X.

Proof. b) Let (¥4)acr be a partition of unity in %2 subordinate to U (Prop. 4.17). We
define a map h?: C4(U,A) — CI=1(U, A) by

(512> (h C aQ...0g—1 Zd)u Cl/ao Qg —1

vel

where ¥y, cyay...a,_, 18 extended by 0 on Uy,...a,_, N CU,. Tt is clear that

((5q_1hq 050 g = Z¢y Cag...aq (5qc)ua0...aq)7

vel
i.e. 99 1h 4 h9t1§9 = Id. Hence 69¢ = 0 implies 69 'hic =cif g > 1

a) First we show that the result is true for the sheaf «f[%. One can find a family of sets
L, C U, such that (L,) is a partition of X. If ¢, is the characteristic function of L,,
Formula (5.12) makes sense for any cochain ¢ € C9(U, A4%)) because 4% is a module
over the ring Z[% of germs of arbitrary functions X — Z. Hence H9(U, ) = 0 for
q = 1. We shall prove this property for all flabby sheaves by induction on q. Consider
the exact sequence

0— o — ol —6—0

where 6 = #[% /d. By the remark after (5.10), we have exact sequences

AO(X) — (X)) — HY (U, o) — H* (U, A4 =
HY(U,6) — HITY(U, of) — HIT (U, A1) =0

Then #%(X) — 6(X) is surjective by Prop. 4.3, thus H' (U, o) = 0. By 4.3 again, €
is flabby; the induction hypothesis H?(U,6) = 0 implies that HIT(U, «d) = 0. O

§ 5.B. Leray’s Theorem for Acyclic Coverings

We first show the existence of a natural morphism from Cech cohomology to ordinary
cohomology. Let U = (Uy)qecr be a covering of X. Select a map A : X — I such that
r € Uy for every x € X. To every cochain ¢ € C(U,d) we associate the section

MNc = f € 4la(X) such that
(513> f(x()a s 7xq> = C)\(xo)...)\(xq)(xq> S ‘dm’q ;

note that the right hand side is well defined as soon as

ro € X, x4 € U)\(xo), S S UA(xo)...A(xq,l)-
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A comparison of (2.5) and (5.13) immediately shows that the section of #f[4T1(X) asso-
ciated to d4c is

>, (1 Aoy M) Ay ) Tatt) = () (@0, Zqn).

0<ysg+1

In this way we get a morphism of complexes A\* : C*(U,d) — Al*I(X). There is a
corresponding morphism

(5.14) HYN®) : HI(U, o) — HI(X,d).

If V = (Vg)pes is a refinement of AU such that Vg C U,z) and x € V() for all z, 8, we
get a commutative diagram

aoeu, ) 0 faey )
HIA®) \ v HI(u®)
HY(X, of)

with A = p o u. In particular, (5.6) shows that the map H?(\®) in (5.14) does not
depend on the choice of A : if A is another choice, then H?(\*) and H?(\’®) can be both
factorized through the group HY(¥, ) with V, = Uxz) NUx(z) and p = Idx. By the
universal property of direct limits, we get an induced morphism

(5.15) HYX,d) — HIX,d).

Let 0 - o — 9% — 6 — 0 be an exact sequence of sheaves. There is a commutative
diagram

0— C*(U,d) — C*(U,B) — CH(U,6) — 0

l l l

0— dll(X) — aBlX) — €¢X) — 0

where the vertical arrows are given by the morphisms A\®*. We obtain therefore a com-
mutative diagram

HI(U, o) — HUOU,B) — HLOU,6C) — HIL(U, ) — HIT(U,PB)

6516) | ! ! ! |

HI(X,4) — HIX,B) — HI(X,6) — HIY(X,d) — HITH(X,B).
(5.17) Theorem (Leray). Assume that
HS(Uao...at78ﬂ) =0

for all indices ag,...,ap and s = 1. Then (5.14) gives an isomorphism I:Iq(%,gzi) ~
HY(X,d).

We say that the covering U is acyclic (with respect to ¢f) if the hypothesis of Th. 5.17
is satisfied. Leray’s theorem asserts that the cohomology groups of ¥/ on X can be
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computed by means of an arbitrary acyclic covering (if such a covering exists), without
using the direct limit procedure.

Proof. By induction on ¢, the result being obvious for ¢ = 0. Consider the exact sequence
0—od — B — € 0with B = o and € = % /d. As B is acyclic, the hypothesis
on @ and the long exact sequence of cohomology imply H*(Uy,..a,, 6) = 0 for s > 1,
t > 0. Moreover Cg, (U, 6) = C*(U, 6) thanks to Cor. 3.6. The induction hypothesis in
degree ¢ and diagram (5.16) give

HY(U,B) — HI(U,C€) — HIT (U, d) — 0

= = l

HY(X,B) — HI(X,6) — HIT(X,d) — 0,
hence HI+1 (U, o) — HIT'(X, o) is also an isomorphism. O

(5.18) Remark. The morphism H'(\*) : H'(U,sd) — H'(X,d) is always injective.
Indeed, we have a commutative diagram

HO(U,8) — HY(U,6) — H*(U,d) — 0

L= [ l

HY(X,8) — H°(X,6) — HYX,d) — 0,

where HY (U, 6) is the subspace of 6(X) = H°(X, 6) consisting of sections which can
be lifted in % over each U,. As a consequence, the refinement mappings

HY(p*) - HYU, ) — H(V, o)

are also injective. U

§5.C. Cech Cohomology on Paracompact Spaces

We will prove here that Cech cohomology theory coincides with the ordinary one on
paracompact spaces.

(5.19) Proposition. Assume that X is paracompact. If
0—d—%B—6—0
s an exact sequence of sheaves, there is an exact sequence
HYX, ) — HI(X,B) — HI(X,6€) — H(X, A) — -
which is the direct limit of the exact sequences (5.10) over all coverings U .
Proof. We have to show that the natural map
li_m> ﬁ%(%,(@) — h_m> HI(U, 6)

is an isomorphism. This follows easily from the following lemma, which says essentially
that every cochain in “6 becomes liftable in % after a refinement of the covering.
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(5.20) Lifting lemma. Let U = (U, )acr be an open covering of X and c € C4(U, 6).
If X is paracompact, there exists a finer covering V = (V3)pes and a refinement map
p:J — I such that pic € C5(V,6).

Proof. Since U admits a locally finite refinement, we may assume that AU itself is locally
finite. There exists an open covering "W = (W, )qer of X such that W, C U,. For every
point x € X, we can select an open neighborhood V, of  with the following properties:

a) if x € Wy, then V, C W, ;
b) if x € U, or if V; N W, # 0, then V, C U, ;
c) if z € Ung...ays then coq..a, € C1(Uq...a,, 6) admits a lifting in %B(V,).

Indeed, a) (resp. c¢)) can be achieved because x belongs to only finitely many sets W,
(resp. Uy ), and so only finitely many sections of “6 have to be lifted in %. b) can be
achieved because = has a neighborhood V. that meets only finitely many sets U, ; then
we take
VacVin () Uan () (ViNWa).
Uadzx UaZz

Choose p : X — I such that x € W, for every z. Then a) implies V, C W, so
V' = (Vi)zex is finer than U, and p defines a refinement map. If V. . # (0, we have

Vo ﬁWp(xj) D Vi, ﬂij #( for 0<j<yq,

thus Viy C Up(ay)...p(xq) Py b). Now, c) implies that the section c,(z)...p(z,) admits a
lifting in %(V,), and in particular in %(Vy,...»,). Therefore pc is liftable in %8. O

(5.21) Theorem. If X is a paracompact topological space, the canonical morphism
HY(X,d) ~ H1(X,d) is an isomorphism.

Proof. Argue by induction on ¢ as in Leray’s theorem, with the Cech cohomology exact
sequence over 9 replaced by its direct limit in (5.16). O

In the next chapters, we will be concerned only by paracompact spaces, and most
often in fact by manifolds that are either compact or countable at infinity. In these cases,
we will not distinguish H4(X, 4) and HY(X, ).

§5.D. Alternate Cech Cochains

For explicit calculations, it is sometimes useful to consider a slightly modified Cech
complex which has the advantage of producing much smaller cochain groups. If & is a
sheaf and U = (Uy)aer an open covering of X, we let ACY(U, ) C C1(U, ) be the

subgroup of alternate Cech cochains, consisting of Cech cochains ¢ = (cao,,,aq) such that
Cap...aq =0 if Q; = Oy, 2#]7
cao(o)...ao(q) - 6(0) Cap...aq

(5.22)

for any permutation o of {1,...,q} of signature (). Then the Cech differential (5.1) of
an alternate cochain is still alternate, so AC*(U, o) is a subcomplex of C*(%U, ). We
are going to show that the inclusion induces an isomorphism in cohomology:

(5.23) HY(AC* (U, sA)) ~ H(C*(U, o)) = HI(U, ).
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Select a total ordering on the index set I. For each such ordering, we can define a
projection 79 : C9(U,A) — ACI(U,A) C CI(U, ) by

c — alternate ¢ such that Cuy..a, = Cag...a, Whenever ap < ... < ayg.

As 7® is a morphism of complexes, it is enough to verify that 7® is homotopic to the
identity on C*(U,d). For a given multi-index o = (a,...,aq), which may contain
repeated indices, there is a unique permutation (m(()), cee, m(q)) of (0,...,q) such that

Un(0) S -+ < gy and m(l) <m(l+1) whenever .,y = amt1)-

For p < g, we let e(«, p) be the sign of the permutation

—_ —

(0,...,q) — (m(0),...,m(p—1),0,1,...,m(0),...,m(p—1),...,q)

if the elements (), . - -, Qm(p) are all distinct, and e(a, p) = 0 otherwise. Finally, we
set h? = 0 for ¢ < 0 and

(h1C)ag..ag1 = Z (=D)Pe(a,p) c —

Otm(()) ...am(p)aoal...ozm(o) ---Otm(p71)~~04q—1
0<p<g—1

for ¢ > 1 ; observe that the index au,,(,) is repeated twice in the right hand side. A rather
tedious calculation left to the reader shows that

(6q_1hqc + hq+16qc)a0...aq - Cao...aq - 6(0&, Q) Cam(o)...am(q) - (C - ch)ozo...aq-
An interesting consequence of the isomorphism (5.23) is the following;:

(5.24) Proposition. Let ¢ be a sheaf on a paracompact space X. If X has arbitrarily
fine open coverings or at least one acyclic open covering U = (U,) such that more than
n+ 1 distinct sets Uy, . .., Uy, have empty intersection, then H1(X,d) =0 for ¢ > n.

Proof. In fact, we have ACY(U, <) = 0 for ¢ > n. d

§ 6. The De Rham-Weil Isomorphism Theorem

In § 3 we defined cohomology groups by means of the simplicial flabby resolution.
We show here that any resolution by acyclic sheaves could have been used instead. Let
(£°,d) be a resolution of a sheaf ¢f. We assume in addition that all £? are acyclic on X,
i.e. H¥(X,%9) =0 for all ¢ > 0 and s > 1. Set %9 = kerd?. Then %° = ¢ and for every
q = 1 we get a short exact sequence

-1
0— %1t gt Cyopa g,
Theorem 3.5 yields an exact sequence

6.1)  HY(X, LY Y55 ge(x, 000y O g (X, sy o BETL(X, LY = 0,
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If s > 1, the first group is also zero and we get an isomorphism

%9 H*(X,%9) = H*TH(X,%171).
For s = 0 we have HO(X,%£971) = £971(X) and HY(X,%?) = %9(X) is the g-cocycle
group of £*(X), so the connecting map 9% gives an isomorphism

HO(L(X)) = %9(X) /a0 () 0% B (X, 900 0).

The composite map 99 1o 091971 0 %9 therefore defines an isomorphism

81,(171 8(171,1

(6.2) HI(£*(X)) gﬁ>Hl(X,2,‘£q—1) — - HY(X,%")=HY(X,d).

This isomorphism behaves functorially with respect to morphisms of resolutions. Our
assertion means that for every sheaf morphism ¢ : d — % and every morphism of
resolutions ¢® : £* — JM°®, there is a commutative diagram

H* (£*(X)) — H*(X, o)

(6.3) [H*(¢*) [H(#)
He(M*(X)) — H*(X,B).

If ‘W9 = ker(d? : M9 — MITY), the functoriality comes from the fact that we have
commutative diagrams

001 pa—l opa 0 He(X,%9) 5 He(X, %001
l@q—l lgpq—l lgpq lHS<@q) le—Fl(gpq—l)
0= Wa—t et —Wa — 0,  H5(X, W) TS qHe (X, e,

(6.4) De Rham-Weil isomorphism theorem. If (£°,d) is a resolution of < by
sheaves L1 which are acyclic on X, there is a functorial isomorphism

HY(L*(X)) — HY(X, o). 0
(6.5) Example: De Rham cohomology. Let X be a n-dimensional paracompact
differential manifold. Consider the resolution
0oR—68 Lgl»... 581 Lgatl ... 58" 50

given by the exterior derivative d acting on germs of “6°° differential g-forms (cf. Exam-
ple 2.2). The De Rham cohomology groups of X are precisely

(6.6) Hin (X, R) = HY(8%(X)).

All sheaves 67 are &x-modules, so &7 is acyclic by Cor. 4.19. Therefore, we get an
isomorphism

(6.7) HiL (X, R) = HY(X,R)
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from the De Rham cohomology onto the cohomology with values in the constant sheaf R.
Instead of using “6°° differential forms, one can consider the resolution of R given by the
exterior derivative d acting on currents:

0-R—9, Lo | — =D iﬂf?);_q_l — - =9y — 0.
The sheaves %, are also &x-modules, hence acyclic. Thanks to (6.3), the inclusion
€1 C9;,_, induces an isomorphism

(6.8) HI(8%(X)) ~ H'(D,,_,(X)),

both groups being isomorphic to H4(X,R). The isomorphism between cohomology of
differential forms and singular cohomology (another topological invariant) was first es-
tablished by [De Rham 1931]. The above proof follows essentially the method given by
[Weil 1952], in a more abstract setting. As we will see, the isomorphism (6.7) can be put
under a very explicit form in terms of Cech cohomology. We need a simple lemma.

(6.9) Lemma. Let X be a paracompact differentiable manifold. There are arbitrarily
fine open coverings U = (U,) such that all intersections Uy, ..o, are diffeomorphic to
convex sets.

Proof. Select locally finite coverings Q; cC Q; of X by open sets diffeomorphic to
concentric euclidean balls in R™. Let us denote by 7, the transition diffeomorphism from
the coordinates in Q to those in ;. For any point a € Q}, the function z — [z — af?
computed in terms of the coordinates of Q; becomes |7;,(z) — Tjr(a)|* on any patch
Qk > a. It is clear that these functions are strictly convex at a, thus there is a euclidean
ball B(a,e) C €} such that all functions are strictly convex on B(a, &) N C Q (only
a finite number of indices k is involved). Now, choose AU to be a (locally finite) covering
of X by such balls U, = B(aqa, &) with U, C Q;(a). Then the intersection Ua,...q, is

defined in Q, k = p(ap), by the equations
|7k (x) — Tk (@a,,)|? < €5,

where j = p(ay,), 0 < m < ¢g. Hence the intersection is convex in the open coordinate

chart Q,(q)- O

Let 2 be an open subset of R™ which is starshaped with respect to the origin. Then the
De Rham complex R — &°(£2) is acyclic: indeed, Poincaré’s lemma yields a homotopy
operator k7 : §1(Q) — 8771(Q) such that

1

kqfx(gl,...,gq_l):/ t7 fr (2,60, &) dE, T EQ, & €R™,
0

EOf = f(0)eR for fec&(Q).

Hence H, (2, R) = 0 for ¢ > 1. Now, consider the resolution &°* of the constant sheaf R
on X, and apply the proof of the De Rham-Weil isomorphism theorem to Cech cohomol-
ogy groups over a covering U chosen as in Lemma 6.9. Since the intersections U, .. .q.
are convex, all Cech cochains in C*(U, %) are liftable in 9=' by means of k9. Hence
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for all s = 1,...,q we have isomorphisms 9%9~% : H*(U,%9%) — Hs+t1(,%1~571)
for s > 1 and we get a resulting isomorphism

9T Moo bt o 500 HE (X, R) = HY(U,R)

We are going to compute the connecting homomorphisms 9%¢7° and their inverses ex-
plicitly.

Let ¢ in C®(U,%%7°) such that §°c = 0. As cq,..a, is d-closed, we can write ¢ =
d(k9=%c) where the cochain k9=%c € C*(U, 89757 1) is defined as the family of sections
k7 %Cap..0. € 8975 YUy, .0r.)- Then d(6°k9%¢) = 6°(dk?*c) = §°c = 0 and

917 {c} = {°k9 5} € HoH (U, %7571,

The isomorphism H{), (X, R) = H9(U,R) is thus defined as follows: to the cohomology
class {f} of a closed g-form f € 8I(X), we associate the cocycle () = (fjv.) €
C°(%Uu,%7), then the cocycle

Cop = kich — ke, € CH(U,%77T),
and by induction cocycles (cf,, .)€ C*(U,%9~*) given by

s+1 _ j —5 .5
(610> Cao...as_H - Z (_1)] kq CaO---&\j---as-‘rl on Uao...as+1‘
0yss+1
The image of {f} in H9(U,R) is the class of the g-cocycle (chy..a,) In CU(U,R).
Conversely, let (¢, ) be a 6°° partition of unity subordinate to U. Any Cech cocycle
c € C5TH(,%97571) can be written ¢ = §%y with v € C*(U, 897°~1) given by

Yag...ay = E ¢ycua0...asy

vel

(cf. Prop. 5.11 b)), thus {¢'} = (8%97°)" {c} can be represented by the cochain ¢’ =
dy € C*(U,%9%) such that

Cixo...as = Zdrlvbl/ A Cvag...as = (_1>q_s_1 Zcuao...as A dr‘vbu

vel vel

For a reason that will become apparent later, we shall in fact modify the sign of our
isomorphism 9%~ by the factor (—1)97*~'. Starting from a class {c} € HY(U,R), we
obtain inductively {b} € HO(U,%9) such that

(6.11) bao = D Cupewyrao vy A Adipy, . on U,

V0, Vg—1

corresponding to {f} € H{ (X, R) given by the explicit formula

(6.12) F= tubu, = O Cupowy Yugdibyy A Ndihy, .

Vo, Vg
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The choice of sign corresponds to (6.2) multiplied by (—1)@=1)/2,

(6.13) Example: Dolbeault cohomology groups. Let X be a C-analytic manifold
of dimension n, and let &P7 be the sheaf of germs of 6> differential forms of type (p, q)
with complex values. For every p =0, 1,...,n, the Dolbeault-Grothendieck Lemma 1-2.9
shows that (&7*,d") is a resolution of the sheaf Q% of germs of holomorphic forms of
degree p on X. The Dolbeault cohomology groups of X already considered in chapter 1
can be defined by

(6.14) HP1(X,C) = H(8"*(X)).

The sheaves &P9 are acyclic, so we get the Dolbeault isomorphism theorem, originally
proved in [Dolbeault 1953], which relates d’-cohomology and sheaf cohomology:

(6.15) HP9(X,C) = HY(X,Q%).

The case p = 0 is especially interesting:

(6.16) H%(X,C) ~ HI(X, Ox).

As in the case of De Rham cohomology, there is an inclusion ”¢ C 9;,_,,,,_, and the
complex of currents (@;, , , o,d") defines also a resolution of Q% . Hence there is an
isomorphism:

(6.17) HPY(X,C) = HI(8"*(X)) ~ HY(D,,_, ,_o(X)).

§ 7. Cohomology with Supports

As its name indicates, cohomology with supports deals with sections of sheaves having
supports in prescribed closed sets. We first introduce what is an admissible family of
supports.

(7.1) Definition. A family of supports on a topological space X is a collection ® of
closed subsets of X with the following two properties:

a) If F, F' € ®, then FUF' € &,
b) If F € ® and F' C F is closed, then F' € ®.

(7.2) Example. Let S be an arbitrary subset of X. Then the family of all closed subsets
of X contained in S is a family of supports.

(7.3) Example. The collection of all compact (non necessarily Hausdorff) subsets of X
is a family of supports, which will be denoted simply ¢ in the sequel. U

(7.4) Definition. For any sheaf A and any family of supports ® on X, de(X) will
denote the set of all sections f € A(X) such that Supp f € ®.
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It is clear that ¢ (X) is a subgroup of «(X). We can now introduce cohomology
groups with arbitrary supports.

(7.5) Definition. The cohomology groups of <4 with supports in ® are
HL(X, o) = H (45 (X)).

The cohomology groups with compact supports will be denoted HI(X, o) and the coho-
mology groups with supports in a subset S will be denoted HL(X, o).

In particular H2(X, ) = de(X). If 0 — o — B — 6 — 0 is an exact sequence,
there are corresponding exact sequences

(76) 0 — di¥dx) — sYx) — <dx) — -
H(X,d) — HI(X,B) — HIX,6) — HIT' (X, o) — ---.

When ¢ is flabby, there is an exact sequence
(7.7) 0— Agp(X) — Bo(X) — 65(X) — 0

and every g € 64(X) can be lifted to v € B¢ (X) without enlarging the support: apply
the proof of Prop. 4.3 to a maximal lifting which extends w = 0 on W = C(Supp g). It
follows that a flabby sheaf ¢ is ®-acyclic, i.e. H3(X,9d) = 0 for all ¢ > 1. Similarly,
assume that X is paracompact and that ¢ is soft, and suppose that ® has the following
additional property: every set F' € ® has a neighborhood G € ®. An adaptation of the
proofs of Prop. 4.3 and 4.13 shows that (7.7) is again exact. Therefore every soft sheaf
is also ®-acyclic in that case.

As a consequence of (7.6), any resolution £°* of ¢ by ®-acyclic sheaves provides a
canonical De Rham-Weil isomorphism

(7.8) HI(L$(X)) — HI(X, d).

(7.9) Example: De Rham cohomology with compact support. In the special case
of the De Rham resolution R — &® on a paracompact manifold, we get an isomorphism

(7.10) i (X, R) = HI(@"(X)) =+ HI(X,R),

where 97(X) is the space of smooth differential ¢g-forms with compact support in X.
These groups are called the De Rham cohomology groups of X with compact support.
When X is oriented, dim X = n, we can also consider the complex of compactly supported
currents:

0— 8 (X)L ¢

n—1

(X) = 8 (X) S 8, 1(X) — -

Note that 9*(X) and &/,_,(X) are respectively the subgroups of compactly supported
sections in &° and 9),_,, both of which are acyclic resolutions of R. Therefore the
inclusion 9*(X) C &/, _,(X) induces an isomorphism

(7.11) HI(9*(X)) ~ H1(8,_,(X)),
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both groups being isomorphic to HZ(X, R). d

Now, we concentrate our attention on cohomology groups with compact support. We
assume until the end of this section that X is a locally compact space.

(7.12) Proposition. There is an isomorphism

HI(X, o) = lim HYU,dy)
vccx

where Ay is the sheaf of sections of s vanishing on X N\ U (cf. §3).
Proof. By definition

H{(X,ol) = HI(A2(X)) = lim  H((4*)o (D))
vccx

since sections of (4[*]);/(U) can be extended by 0 on X ~ U. _However, (Al is a
resolution of Ay and (419)y is a Zl9-module, so it is acyclic on U. The De Rham-Weil
isomorphism theorem implies

H (A1) () = HO(U, shy)

and the proposition follows. The reader should take care of the fact that (s419); does
not coincide in general with (sfg;)4l. O

The cohomology groups with compact support can also be defined by means of Cech
cohomology.

(7.13) Definition. Assume that X is a separable locally compact space. If U = (Uy) is
a locally finite covering of X by relatively compact open subsets, we let C1(U, ) be the
subgroups of cochains such that only finitely many coefficients cy,...a, are non zero. The
Cech cohomology groups with compact support are defined by

HI(U, sd) = H(C2 (U, sd))

HY(X, o) = limg H(C2 (U, o1))
U

For such coverings AU, Formula (5.13) yields canonical morphisms
(7.14) HY(\®) : HI(U,d) — HI(X,d).

Now, the lifting Lemma 5.20 is valid for cochains with compact supports, and the same
proof as the one given in §5 gives an isomorphism

(7.15) HI(X,d) ~ HI(X,d).
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§ 8. Cup Product

Let % be a sheaf of commutative rings and o, % sheaves of %-modules on a space
X. We denote by o ®g % the sheaf on X defined by

(8.1) (A @aB)r =ds Qn, Ba,

with the weakest topology such that the range of any section given by #(U) ®g ) B(U)

is open in 4 ®z B for any open set U C X. Given f € d!ﬁ’] and g € 973[;”, the cup product
f~ge(dea %)Q’*q] is defined by

(8.2) fg(zo, ..., Tprq) = f(T0,. s 2p) (Xprq) @ G(Tp, .- Tpiq)-
A simple computation shows that
(83) AT — g) = (df) = g+ (=1)" f — (d’g).
In particular, f — g is a cocycle if f, g are cocycles, and we have
(f+d 7)o (g+di™ g ) =f g+ dTIHf v g+ (1P f g’ + [~ dg').
Consequently, there is a well defined % (X )-bilinear morphism
(8.4) HP(X,d) x H1(X,B) — HP" (X, d Qg B)

which maps a pair ({f},{g}) to {f — ¢}

Let 0 — B — B’ — %B” — 0 be an exact sequence of sheaves. Assume that the
sequence obtained after taking the tensor product by ¢ is also exact:

0 — AR5 B — A5 B — d @5 B — 0.
Then we obtain connecting homomorphisms

01 . HIYX,B") — HITHX,B),
07+ HYU(X,d ®5 B") — HH(X, o @5 B).

For every o € HP (X, d), " € H1(X,B") we have

(8.5) " (o~ B7) = (—1)F o (978"),
(8.5) orHI(B" ) = (078") < a,

where the second line corresponds to the tensor product of the exact sequence by ¢/ on the
right side. These formulas are deduced from (8.3) applied to a representant f € «[P!/(X)
of a and to a lifting ¢’ € B/l9(X) of a representative g” of 8" (note that dPf = 0).

(8.6) Associativity and anticommutativity. Let i : o @3 B — B Qq A be the
canonical isomorphism s @t —t® s. For all « € HP (X, ), B € H1(X,%B) we have

pa=(=1)i(a p).
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If 6 is another sheaf of R-modules and v € H" (X, 6), then

(@~ p)wy=av(8vn)

Proof. The associativity property is easily seen to hold already for all cochains
(Fog)h=fv(gh), fedl, ge®ld, nheel

The commutation property is obvious for p = ¢ = 0, and can be proved in general by
induction on p + ¢. Assume for example ¢ > 1. Consider the exact sequence

0— B —B —B"—0

where B’ = B% and %B” = B0 /9. This exact sequence splits on each stalk (but not
globally, nor even locally): a left inverse %Eﬁo] — 9B, of the inclusion is given by g — g(z).
Hence the sequence remains exact after taking the tensor product with &4. Now, as %’
is acyclic, the connecting homomorphism HY9~1(X,%"”) — HY(X,%) is onto, so there
is " € H1Y(X,%") such that 8 = 99713"”. Using (8.5'), (8.5) and the induction
hypothesis, we find

Bea= 3p+q—1( ") = 3p+q—1((_1)p(q—1) i(a~ 5”))
= (1P et o §) = (1P D (1P i 6), 0
Theorem 8.6 shows in particular that H®(X, %) is a graded associative and supercom-

mutative algebra, i.e. §— a = (=1)P?« « f for all classes a« € HP(X,R), f € HI(X,R).
If ¢ is a %R-module, then H*(X, o) is a graded H*(X, % )-module.

(8.7) Remark. The cup product can also be defined for Cech cochains. Given ¢ €
CP(U, ) and ¢’ € CI(U,%B), the cochain ¢ — ¢/ € CPT4(U, d R4 B) is defined by

(¢~ )ag.apra = Capeap @ Coyaprq O Uaguoapiy-
Straightforward calculations show that
P ) = (6Pc) — ¢ + (=1)P e~ (8%)
and that there is a commutative diagram

TP (U, ) x (U, 9B) — FPT(U, o @ %)

l l

HP (X, d)xHY(X,B) — HPTU(X,d @g B),

where the vertical arrows are the canonical morphisms H*(\®) of (5.14). Note that the
commutativity already holds in fact on cochains.

(8.8) Remark. Let ® and ¥ be families of supports on X. Then ® NV is again a family
of supports, and Formula (8.2) defines a bilinear map

(8.9) HE(X, o) x Hi(X,B) — HpL§ (X, o ©q B)
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on cohomology groups with supports. This follows immediately from the fact that
Supp(f -~ g) C Supp f N Supp g.

(8.10) Remark. Assume that X is a differentiable manifold. Then the cohomology
complex HP, (X, R) has a natural structure of supercommutative algebra given by the
wedge product of differential forms. We shall prove the following compatibility statement:

Let H1(X,R) — H{z(X,R) be the De Rham-Weil isomorphism given by Formula
(6.12). Then the cup product ¢ — ¢’ is mapped on the wedge product f' A f" of the
corresponding De Rham cohomology classes.

By remark 8.7, we may suppose that ¢, ¢’ are Cech cohomology classes of respective
degrees p, g. Formulas (6.11) and (6.12) give

flo, = D Coon vy Qg Ao Adihy,

P

VO, Vp—1
" __ 1/
= N b, ANy,
Vp,y.etyVptq

We get therefore

/ 1 / /!
f A f = Z CIJ()...I/p ch...Vp+q wVp+qd¢V0 ARERA wVp+q717

V0,.-sVpiq

which is precisely the image of ¢ « ¢’ in the De Rham cohomology. U

8 9. Inverse Images and Cartesian Products

8§ 9.A. Inverse Image of a Sheaf

Let FF : X — Y be a continuous map between topological spaces X,Y, and let
7 : A — Y be a sheaf of abelian groups. Recall that inverse image F~'dl is defined as
the sheaf-space
Fld=dxy X = {(s,2); m(s) = F(x)}

with projection 7’ = pry : F71d — X. The stalks of F~1d are given by
(9.1) (F~'sd)y = A p(a),

and the sections 0 € F~1#(U) can be considered as continuous mappings o : U — o
such that 7 o 0 = F. In particular, any section s € o(U) has a pull-back

(9.2) F*s=soF e F'd(F'(U)).
For any v € sdfgq], we define F*v € (F_lgi)gcq] by

(9.3) F*u(xg,...,xq) = v(F(20),...,F(xq)) € (F )2, = dp(a,)
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for zo € V(z), 1 € V(z9),...,24 € V(x0,...,24-1). We get in this way a morphism
of complexes F* : dl*l(Y) — (F~'«)l*}(X). On cohomology groups, we thus have an
induced morphism

(9.4) F* . HIYY,d) — HY(X,F'd).

Let 0 > 4 — %B — 6 — 0 be an exact sequence of sheaves on X. Thanks to property
(9.1), there is an exact sequence

0—F'd—sF 1l —— F1¢—0.

It is clear on the definitions that the morphism F* in (9.4) commutes with the associated
cohomology exact sequences. Also, F'* preserves the cup product, i.e. F*(a —« ) =
F*a —« F*B whenever «, 8 are cohomology classes with values in sheaves ¢, % on X.
Furthermore, if G : Y — Z is a continuous map, we have

(9.5) (GoF)* = F* o G*.

(9.6) Remark. Similar definitions can be given for Cech cohomology. If U = (Uy)acr
is an open covering of Y, then F~! = (F~Y(U,)) is an open covering of X. For
ceC1(U,4d), we set

a€El

(F*C)ap...aq = Cag...ay © F € CUF U, F ).

This definition is obviously compatible with the morphism from Cech cohomology to
ordinary cohomology.

(9.7) Remark. Let ® be a family of supports on Y. We define F~1¥ to be the family
of closed sets K C X such that F(K) is contained in some set L € W. Then (9.4) can be
generalized in the form

(9.8) F* . HL(Y,d)— HL ,,(X,F'd).

(9.9) Remark. Assume that X and Y are paracompact differentiable manifolds and
that F': X — Y is a “6°° map. If (¢4 )acs is a partition of unity subordinate to AU, then
(1o © F)aer is a partition of unity on X subordinate to F~19. Let ¢ € C9(U,R). The
differential form associated to F*c in the De Rham cohomology is

9= ooy (v, o F)d(thy, o F) A .. .Nd(ty, , o F)
Vg,...,Vq
= F*( Z CIJ()...IJq qudwyo VANA dqu71> .
Vg,...,Vq

Hence we have a commutative diagram

HEL(V,R) —HY(Y,R) —>H(Y,R)
LF* LF LF

Hie (X, R) —HI(X,R) —HI(X,R).
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§ 9.B. Cohomology Groups of a Subspace

Let ¢ be a sheaf on a topological space X, let S be a subspace of X and ig : S — X
the inclusion. Then ig' o is the restriction of «f to S, so that H9(S, o) = HY(S,ig'd) by
definition. For any two subspaces S’ C S, the inclusion of S’ in S induces a restriction
morphism

HI(S, ) — HU(S', o).

(9.10) Theorem. Let & be a sheaf on X and S a strongly paracompact subspace in X.
When ) ranges over open neighborhoods of S, we have

HY(S,) = lim  HY(Q, o).
QDS

Proof. When q = 0, the property is equivalent to Prop. 4.7. The general case follows
by induction on ¢ if we use the long cohomology exact sequences associated to the short
exact sequence

0— o — ol — ogl0l/gf —5 0

on S and on its neighborhoods 2 (note that the restriction of a flabby sheaf to S is soft
by Prop. 4.7 and the fact that every closed subspace of a strongly paracompact subspace
is strongly paracompact). U

§ 9.C. Cartesian Product

We use here the formalism of inverse images to deduce the cartesian product from
the cup product. Let R be a fixed commutative ring and «§ — X, B — Y sheaves of
R-modules. We define the external tensor product by

(9.11) ARp B = pr; A @r pry B

where pry, pry are the projections of X x Y onto X, Y respectively. The sheaf o Ry %
is thus the sheaf on X x Y whose stalks are

(9.12) (ﬂ Xpr %)(w’y) =9, Qr %y-

For all cohomology classes a € HP (X, d), B € H1(Y,%B) the cartesian product a x B €
HPTI(X x Y, ARgR B) is defined by

(9.13) a x = (pria) - (przf).

More generally, let ® and ¥ be families of supports in X and Y respectively. If & x ¥
denotes the family of all closed subsets of X x Y contained in products K x L of elements
K € &, L € U, the cartesian product defines a R-bilinear map

(9.14) HY(X, o) x HL(Y,B) — HEL9 (X x Y, d @R B).

If A’ — X, B’ — Y are sheaves of abelian groups and if o/, 3" are cohomology classes of
degree p’, ¢’ with values in &', 9’, one gets easily

(9.15) (arx B) < (o' x ) = (=1)% (a = o) x (8~ ).
Furthermore, if F: X’ — X and G : Y’ — Y are continuous maps, then
(9.16) (FxG)(axp)=(Fa) x (G*B).
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§ 10. Spectral Sequence of a Filtered Complex

8§ 10.A. Construction of the Spectral Sequence

The theory of spectral sequences consists essentially in computing the homology
groups of a differential module (K,d) by “successive approximations”, once a filtra-
tion F,(K) is given in K and the cohomology groups of the graded modules G,(K) are
known. Let us first recall some standard definitions and notations concerning filtrations.

(10.1) Definition. Let R be a commutative ring. A filtration of a R-module M is a
sequence of submodules M, C M, p € Z, also denoted M, = F,(M), such that My, C
M, for allp € Z, \JM, = M and (\ M, = {0}. The associated graded module is

G(M) = @Gp(M)a Gp(M) = Mp/Mps.
pEZL

Let (K,d) be a differential module equipped with a filtration (K),) by differential
submodules (i.e. dK, C K, for every p). For any number r € NU {oo}, we define
Zl, BY C Gp(K) = K,/ Kpy1 by

(10.2) 7P = K,Nd 'Ky, mod Kp1, Z% =K,Nd *{0} mod K1,
(10.2") B =K,NdK, ,+1 mod K,,;, BE =K,NdK mod K,i.

(10.3) Lemma. For every p and r, there are inclusions
...CBECB ,C...CBY, CcZ;, C...CcZl ,CZlC...
and the differential d induces an isomorphism
q: 7270, — BUI /B
Proof. It is clear that (ZP) decreases with r, that (BP) increases with r, and that
BY C ZF, . By definition

Z7 = (Kp N d_le-r)/(KzH—l a d_lKZH—r),
By = (Kp NdKp—ry1)/(Kpi1 NdKp_riq).

The differential d induces a morphism
Z7 — (de A Kp+r)/(de+1 N Kp+r)
whose kernel is (K, Nd='{0})/(Kp+1 Nd~*{0}) = ZZ , whence isomorphisms
d : Z2)Z0 — (Kppr NdKy) [ (Kper NdK 1),
d : 2P 27— (Kpir NdKp) [ (Kpiy NdE i1 + Kpiri1 N dEK).
The right hand side of the last arrow can be identified to BET}/BP*, for

B£+r = (Kpr NdEp11)/(Kptr1 NdKpi1),
Bf—i—i—_I = (Kpsr NdKp) [ (Kpgr1 NdE). O
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Now, for each r € N, we define a complex E} = P,;, EF with a differential d, :
EP — EPT" of degree r as follows: we set EP = ZP/BP and take

(10.4) dy © ZP/BP—s Z0/70,, Ly priT it oy gutr gt

where the first arrow is the obvious projection and the third arrow the obvious inclusion.
Since d, is induced by d, we actually have d,. o d,. = 0 ; this can also be seen directly by
the fact that Bfif C Zfi{.

(10.5) Theorem and definition. There is a canonical isomorphism E?  ~ H*(E?).

The sequence of differential complexes (Er,dy) is called the spectral sequence of the filtered
differential module (K, d).

Proof. Since d is an isomorphism in (10.4), we have
ker d, = Z%,,/BF, Imd, = BYI{/BF*.
Hence the image of d,. : E?P~" — E? is Bl /B? and

HP(EY) = (Zf+1/Bf>/(Bf+1/Bf> = Z7Z~7+1/Bf+1 = Ef+1- U

(10.6) Theorem. Consider the filtration of the homology module H(K) defined by
By (H(K) = T (H(K,) — H(K).
Then there is a canonical isomorphism

L = GP(H<K))'

Proof. Clearly F,(H(K)) = (K, Nd *{0})/(K, NdK), whereas

28, = (K, N d™{0})/(Kypir Nd™H{0}), BY = (K, NdK) /(K1 N dE),
R, = Z8,/BY, = (K, Nd " {0})/(Kpe1 N d {0} + K, N dE).

It follows that E?, ~ F,(H(K))/Fp41(H(K)). O

In most applications, the differential module K has a natural grading compatible
with the filtration. Let us consider for example the case of a cohomology complex K*® =
@, K. The filtration K3 = F,(K*) is said to be compatible with the differential
complex structure if each K} is a subcomplex of K*, i.e.

K3 -
lez

where (K:f)) is a filtration of K'. Then we define ZP-9, BP9, EP'9 to be the sets of elements
of ZP, BP, E? of total degree p + q. Therefore
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(10.7) Zpi= KPrand'KP mod KPYY, 2P =@ ZPA,
(10.7") Bri= KptendKP ! mod KPi{,  B=@Br,
(10.77) Epi=Zp1/Bp1 EP =@ ER,

and the differential d,. has bidegree (r, —7 + 1), i.e.
(10.8) d, : EP9— prroartl

For an element of pure bidegree (p, q), p is called the filtering degree, q the complementary
degree and p + q the total degree.

(10.9) Definition. A filtration (K}) of a complex K* is said to be regular if for each
degree (ll>there are indices v(l) < N(I) such that K| = K" for p < v(l) and K}, = 0 for
p> N().

If the filtration is regular, then (10.7) and (10.7’) show that

01 =704 = .. =787 for r>N(p+q+1)—p,
BPi =Bl = . =B for r>p+1—v(pt+q—1),

therefore EP7 = EP:9 for r > r¢(p, q). We say that the spectral sequence converges to its
limit term, and we write symbolically

(10.10) EPY4 = HPI(K®)

to express the following facts: there is a spectral sequence whose terms of the r-th
generation are EP-?, the sequence converges to a limit term E2:9, and E2!~P is the term
Gp(H'(K*)) in the graded module associated to some filtration of H'(K*).

(10.11) Definition. The spectral sequence is said to collapse in Ep if all terms Z}9,
By, B are constant for k > r, or equivalently if dj, = 0 in all bidegrees for k > r.

(10.12) Special case. Assume that there exists an integer r > 2 and an index ¢y such
that EP9 = 0 for ¢ # ¢qo. Then this property remains true for larger values of r, and we
must have d, = 0. It follows that the spectral sequence collapses in E and that

HZ(K') — E}ﬂ—qo,%.
Similarly, if EP9 =0 for p # po and some r > 1 then

H'(K®) = Erol=ro, O

§10.B. Computation of the First Terms

Consider an arbitrary spectral sequence. For r = 0, we have Z} = K,,/K,+1, B =
{0}, thus

(10.13) EP = K,/Kyi1 = Gp(K).
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The differential dy is induced by d on the quotients, and
(10.14) EY = H(G,(K)).
Now, there is a short exact sequence of differential modules
0 — Gpr1(K) — Kp/Kpyo — Gp(K) — 0.
We get therefore a connecting homomorphism
(10.15) EP = H(Gp(K)) L H(Gpi1(K)) = EP.

We claim that 0 coincides with the differential d; : indeed, both are induced by d. When
K* is a filtered cohomology complex, d; is the connecting homomorphism

(10.16) Ef’q — Hp+q (GP(K')) i) Hp+q+1 (Gp+1 (K')) — E{H—l,q.

§ 11. Spectral Sequence of a Double Complex

A double complex is a bigraded module K** = @ KP? together with a differential
d =d' + d" such that

(11.1) d - Kp1 K:zH—l,q7 d’ - Kpatl Kp,q+1,
and d o d = 0. In particular, d’ and d” satisfy the relations
(11.2) d*=d"”=0, dd'+d'd=0.

The simple complex associated to K** is defined by
K- @ o
p+q=l

together with the differential d. We will suppose here that both graduations of K** are
positive, i.e. KP4 =0 for p < 0 or ¢ < 0. The first filtration of K*® is defined by

(11.3) K= @ K=& k"'

i+j=l, i>p p<i<l

The graded module associated to this filtration is of course G,(K') = KP'"P and the
differential induced by d on the quotient coincides with d” because d’ takes K :é to K ;:_11
Thus we have a spectral sequence beginning by

(11.4) Ep9=KPi, dy=d", EY?=HI, (KP*).
By (10.16), d; is the connecting homomorphism associated to the short exact sequence

0 — KPThe — KP* @ KPTEe — KP* — 0
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where the differential is given by (d mod KP*2*) for the central term and by d”’ for
the two others. The definition of the connecting homomorphism in the proof of Th. 1.5
shows that

dy=0: HI (KP*) — H, (KPTH*)

is induced by d’. Consequently, we find

(115 By = H(BY) = Hy (HY, (K*).

For such a spectral sequence, several interesting additional features can be pointed
out. For all r and [, there is an injective homomorphism
0, 0,!
E.  — E;

whose image can be identified with the set of d,-cocycles in E%! ; the coboundary group
is zero because EP'9 = ( for ¢ < 0. Similarly, E.? is equal to its cocycle submodule, and
there is a surjective homomorphism

BN B ~ EYO/d, B
Furthermore, the filtration on H'(K*®) begins at p = 0 and stops at p =, i.e.
(11.6) Fy(HY(K*)) = H(K®), F,(HY(K®))=0 for p>L
Therefore, there are canonical maps

HY (K*)—» Go(H'(K*)) = EY} — EX,

(11.7) ELO—s ELO = Gy (H'(K*)) — H'(K®).

These maps are called the edge homomorphisms of the spectral sequence.

(11.8) Theorem. There is an exact sequence
0— Ey° — HY(K*) — ES' 25 E2° — H*(K*)

where the non indicated arrows are edge homomorphisms.

Proof. By 11.6, the graded module associated to H'(K*®) has only two components, and
we have an exact sequence

0— ELY — Y (K®*) — E%' — 0.

However EL? = E21 ¥ because all differentials d, starting from EL0 or abuting to E}°
must be zero for 7 > 2. Similarly, E%' = Ey'' and E2° = E3°, thus there is an exact

sequence

2

0,1 0,1 d2 ,0 2,0
0 — By — By — By — E7 — 0.

A combination of the two above exact sequences yields

0— E3° — HY(K®) — ESY 2, p20 5 B20 0.



§12. Hypercohomology Groups 229

Taking into account the injection E2° «— H?(K*®) in (11.7), we get the required exact
sequence. O

(11.9) Example. Let X be a complex manifold of dimension n. Consider the double
complex KP4 = 6> (X, C) together with the exterior derivative d = d'+d”. Then there
is a spectral sequence which starts from the Dolbeault cohomology groups

EP = HP9(X,C)

and which converges to the graded module associated to a filtration of the De Rham

cohomology groups:
EPY = H5L(X,C).

This spectral sequence is called the Hodge-Frélicher spectral sequence [Frolicher 1955].
We will study it in much more detail in chapter 6 when X is compact. U

Frequently, the spectral sequence under consideration can be obtained from two dis-
tinct double complexes and one needs to compare the final cohomology groups. The
following lemma can often be applied.

(11.10) Lemma. Let KP9 — LP? be a morphism of double complezes (i.e. a double
sequence of maps commuting with d' and d"). Then there are induced morphisms

KE;’. — LE;’., r>0

of the associated spectral sequences. If one of these morphisms is an isomorphism for
some r, then H'(K®) — H'(L®) is an isomorphism.

Proof. 1f the r-terms are isomorphic, they have the same cohomology groups, thus
gES ~ pES and g ES® ~ ES* in the limit. The lemma follows from the fact that
if a morphism of graded modules ¢ : M — M’ induces an isomorphism G¢(M) —
Go(M'), then ¢ is an isomorphism. O

§ 12. Hypercohomology Groups
Let (£°,6) be a complex of sheaves

§° 59
0— % TPl — ... P 2l

on a topological space X. We denote by #7 = #9(£L*) the g-th sheaf of cohomology
of this complex; thus #€? is a sheaf of abelian groups over X. Our goal is to define
“generalized cohomology groups” attached to £® on X, in such a way that these groups
only depend on the cohomology sheaves #?. For this, we associate to £°® the double
complex of groups

(12.1) K5 = (21)P(X)

with differential d’ = dP given by (2.5), and with d’ = (=1)?(69)PL. As (69)* .
(La)le] — (Lat1)le] is a morphism of complexes, we get the expected relation d’'d” +
d"d = 0.



230 Chapter IV. Sheaf Cohomology and Spectral Sequences

(12.2) Definition. The groups H4(K§) are called the hypercohomology groups of £°*
and are denoted HY(X,ZL*).

Clearly HO(X,%£*) = #°(X) where #° = ker 6" is the first cohomology sheaf of £°.
If p* : £L* — A"* is a morphism of sheaf complexes, there is an associated morphism of
double complexes ¢** : K3'* — K%*, hence a natural morphism

(12.3) H9(p®) : HY(X, L) — HI(X, M*).

We first list a few immediate properties of hypercohomology groups, whose proofs are
left to the reader.

(12.4) Proposition. The following properties hold:
a) If 9 =0 for q #0, then HI(X,%*) = H1(X,%Y).

b) If L*[s] denotes the complex L* shifted of s indices to the right, i.e. L°*[s]? = LI75,
then HY(X,2L%[s]) = HI*(X,<£*).

c) If 0 — £L* — M* — N* — 0 is an ezact sequence of sheaf complexes, there is a
long exact sequence

S HY(X,L0) — HY(X, M) — HI(X, N®) L5 HITH(X, L) - - 0

If £° is a sheaf complex, the spectral sequence associated to the first filtration of K¢
is given by
BY = H,(KY) = HO((29)(X),

However by (2.9) the functor o — «[Pl(X) preserves exact sequences. Therefore, we
get

(12.5) EP? = (61(2%) ™ (),
(12.5) BT = HP (X, #1(2*)),

since EY? = HY(EY?). If ¢* : £* — Al*® is a morphism, an application of Lemma
11.10 to the Es-term of the associated first spectral sequences of K3* and K° yields:

(12.6) Corollary. If ¢* : £* — JM*® is a quasi-isomorphism (this means that ¢®
induces an isomorphism H€*(L*) — H*(M*®) ), then

H' (¢®) : HY(X,%L*) — HY(X, M)

s an 1somorphism.

Now, we may reverse the roles of the indices p,q and of the differentials d’,d”. The
second filtration F,(K}) = D>, KQ_J’J is associated to a spectral sequence such that
EY? = HY (K3P) = HY, ((£P)!*1(X)), hence
(12.7) EPT = HY(X, $P),

(12.7') EDY = HY(HY(X,2%)).
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These two spectral sequences converge to limit terms which are the graded modules
associated to filtrations of H®(X,%£*) ; these filtrations are in general different. Let us
mention two interesting special cases.

e Assume first that the complex £°* is a resolution of a sheaf «, so that #° = o and
#€1 =0 for ¢ > 1. Then we find

EPY = HP(X,d), EY1=0 for ¢>1.
It follows that the first spectral sequence collapses in E3, and 10.12 implies
(12.8) HY (X, %L*) ~ H (X, d).

e Now, assume that the sheaves £? are acyclic. The second spectral sequence gives
Eg’ozﬂp(&i"(X)), EPT=0 for q>1,
(12.9) H' (X, 2£°%) ~ H' (£*(X)).
If both conditions hold, i.e. if £° is a resolution of a sheaf & by acyclic sheaves,

then (12.8) and (12.9) can be combined to obtain a new proof of the De Rham-Weil
isomorphism H'(X, ) ~ H'(£*(X)).

§ 13. Direct Images and the Leray Spectral Sequence
§ 13.A. Direct Images of a Sheaf

Let X, Y be topological spaces, F' : X — Y a continuous map and ¢ a sheaf of abelian
groups on X. Recall that the direct image F, 4 is the presheaf on Y defined for any open
set U CY by

(13.1) (Fesd)(U) = d(F~H(V)).

Axioms (II-2.4" and (II-2.4”) are clearly satisfied, thus F,4 is in fact a sheaf. The
following result is obvious:

(13.2) g is flabby = F,d is flabby.
Every sheaf morphism ¢ : ¢ — % induces a corresponding morphism
Fo : Fd— F%,

so F, is a functor on the category of sheaves on X to the category of sheaves on Y.
This functor is exact on the left: indeed, to every exact sequence 0 — A — B — 6 is
associated an exact sequence

0— Fod — F,9B — F,6,

but F,9% — F,“6 need not be onto if %4 — 6 is. All this follows immediately from
the considerations of §3. In particular, the simplicial flabby resolution (4!, d) yields a
complex of sheaves

(13.3) 0— Fdll — pgll . pogld B8 g glatt]
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(13.4) Definition. The g-th direct image of A by F is the q-th cohomology sheaf of the
sheaf complex (13.3). It is denoted

RIF, o = #9(F, A*).

As F, is exact on the left, the sequence 0 — F,d — F,d0 — F, o] is exact, thus
(13.5) RF.d = F.d.

We now compute the stalks of RYF, . As the kernel or cokernel of a sheaf morphism is
obtained stalk by stalk, we have

(RIF, o), = HI((F.sdl®),) = lim HY(F.«l*)(U)).

I

S
<

B

The very definition of F), and of sheaf cohomology groups implies
HY(Fd*NU)) = HI(d*(F~H(U))) = HI(F(U), o),

hence we find

=

(13.6) (R'F,d), = lim HY(F'(U),d),

|

-
<

B

i.e. R1F, o is the sheaf associated to the presheaf U — HY(F~1(U), ). We must stress
here that the stronger relation R1F,d(U) = H?(F~(U), #) need not be true in general.
If the fiber F~1(y) is strongly paracompact in X and if the family of open sets F~1(U) is
a fundamental family of neighborhoods of F~1(y) (this situation occurs for example if X
and Y are locally compact spaces and F' a proper map, orif F =pr; : X =Y x§ —Y
where S is compact), Th. 9.10 implies the more natural relation

(13.6) (RIF, o), = HI(F'(y), 4).

Let 0 > 4 — B — 6 — 0 be an exact sequence of sheaves on X. Apply the long
exact sequence of cohomology on every open set F'~1(U) and take the direct limit over U.
We get an exact sequence of sheaves:

(13.7) 0O — Fd — FB — F€ — RFd — -
— RIF.A — RIF.B — RIF,€ — RIT'F o — ...

§ 13.B. Leray Spectral Sequence

For any continuous map F' : X — Y, the Leray spectral sequence relates the coho-
mology groups of a sheaf @ on X and those of its direct images R7F o on Y. Consider
the two spectral sequences E?, E® associated with the complex of sheaves £* = F,«*l
on Y, as in § 12. By definition we have #9(£*) = R?F, . By (12.5") the second term
of the first spectral sequence is

EPY = HP(Y, RIF, ),



§13. Direct Images and the Leray Spectral Sequence 233

and this spectral sequence converges to the graded module associated to a filtration of
H! (Y, Fysd!®l). On the other hand, (13.2) implies that F,s4!% is flabby. Hence, the second
special case (12.9) can be applied:

HY(Y, F,d®)) ~ Y (F.4l*N(Y)) = H' («!*)(X)) = HY(X, ).
We may conclude this discussion by the following

(13.8) Theorem. For any continuous map F : X — Y and any sheaf 4 of abelian
groups on X, there exists a spectral sequence whose E3 term is

EPY = HP(Y, RIF, o),

which converges to a limit term EP:!~P equal to the graded module associated with a
filtration of H'(X,d). The edge homomorphism

HYY,F.d)—» B0 — HY(X, )

coincides with the composite morphism

* l
F#* . H\Y,Fo) 75 mUx, PRy T gl (x a)
where pp : F~1F,d — o is the canonical sheaf morphism.

Proof. Only the last statement remains to be proved. The morphism pp is defined
as follows: every element s € (F~'F,l), = (Fisd)p() is the germ of a section § €
F,d(V) = (F~(V)) on a neighborhood V of F(z). Then F~'(V) is a neighborhood
of z and we let pps be the germ of s at x.

Now, we observe that to any commutative diagram of topological spaces and contin-

uous maps is associated a commutative diagram involving the direct image sheaves and
their cohomology groups:

x Ty HY(X, o) &7 HU(Y, Food)
al = el Ta#
x Py HY(X', Gosl) EZHI(Y, FIGLd).

There is a similar commutative diagram in which F# and F’# are replaced by the
edge homomorphisms of the spectral sequences of F' and F’ : indeed there is a natural
morphism H1F/%B — F,G~9% for any sheaf % on X', so we get a morphism of sheaf
complexes

H'F(G. A — BTG o) — F (GG, o) — F al*],

hence also a morphism of the spectral sequences associated to both ends.

The special case X' =Y’ =Y, G = F, F' = H = Idy then shows that our statement
is true for F' if it is true for F’. Hence we may assume that F' is the identity map; in
this case, we need only show that the edge homomorphism of the spectral sequence of
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F,d* = ol*] is the identity map. This is an immediate consequence of the fact that we
have a quasi-isomorphism

(s 0—>d 50— -) — alel, O
(13.9) Corollary. If RIF,. o = 0 for q > 1, there is an isomorphism H' (Y, F.d) ~
HYX,d) induced by F7.

Proof. We are in the special case 10.12 with EY"? =0 for ¢ # 0, so

H'(Y,F,d) = E° ~ H'(X, o). O
(13.10) Corollary. Let F: X — Y be a proper finite-to-one map. For any sheaf ¢ on
X, we have R1F, 4 = 0 for ¢ > 1 and there is an isomorphism H' (Y, F,d) ~ H'(X, ).
Proof. By definition of higher direct images, we have

(RIF, o), = lim  HY(4!*/(F~1(1))).

=

-
W
<

If F~'(y) = {z1,...,2m}, the assumptions imply that (F~*(U)) is a fundamental system
of neighborhoods of {z1,...,x,}. Therefore

. d, for q=0,
(R1F.)y = (D Hq(dgc)):{? " for g1

1<5<m
and we conclude by Cor. 13.9. U

Corollary 13.10 can be applied in particular to the inclusion j : S — X of a closed
subspace S. Then j,4 coincides with the sheaf @ defined in §3 and we get H?(S, ) =
H9(X,A%). It is very important to observe that the property R9j,s = 0 for ¢ > 1 need
not be true if S is not closed.

§ 13.C. Topological Dimension

As a first application of the Leray spectral sequence, we are going to derive some
properties related to the concept of topological dimension.

(13.11) Definition. A non empty space X is said to be of topological dimension < n if
HY(X,d) =0 for any ¢ > n and any sheaf A on X. We let topdim X be the smallest
such integer n if it exists, and +o0o otherwise.

(13.12) Criterion. For a paracompact space X, the following conditions are equivalent:
a) topdim X < n ;
b) the sheaf %™ = ker(sdl™ — ") is soft for every sheaf o ;

c) every sheaf A admits a resolution 0 — LY — ... — L™ — 0 of length n by soft
sheaves.
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Proof. b) = c). Take L9 = oldl for ¢ < n and L" = %".

c) = a). For every sheaf ¢/, the De Rham-Weil isomorphism implies H9(X, ) =
H9(£*(X)) = 0 when ¢ > n.

a) = b). Let S be a closed set and U = X ~ S. As in Prop. 7.12, (#!*))y is an acyclic
resolution of ¢dy. Clearly ker ((d")y — (")) = %%, so the isomorphisms (6.2)
obtained in the proof of the De Rham-Weil theorem imply

HY(X,%%) ~ H" (X, dy) = 0.
By (3.10), the restriction map %™ (X) — %™(S) is onto, so %" is soft. O

(13.13) Theorem. The following properties hold:

a) If X is paracompact and if every point of X has a neighborhood of topological dimen-
ston < n, then topdim X < n.

b) If S C X, then topdim S < topdim X provided that S is closed or X metrizable.

c) If X, Y are metrizable spaces, one of them locally compact, then

topdim (X x Y') < topdim X + topdim Y.
d) If X is metrizable and locally homeomorphic to a subspace of R™, then topdim X < n.

Proof. a) Apply criterion 13.12 b) and the fact that softness is a local property (Prop.
4.12).

b) When S is closed in X, the property follows from Cor. 13.10. When X is metrizable,
any subset S is strongly paracompact. Let j : S — X be the injection and o a sheaf
on S. As o = (j.d),5, we have
Hq(S7 Sﬂ) = Hq<S7 j*gﬂ) = ll_IIl) Hq<Q7j*Sﬂ)
QDS
by Th. 9.10. We may therefore assume that S is open in X. Then every point of S has
a neighborhood which is closed in X, so we conclude by a) and the first case of b).

c) Thanks to a) and b), we may assume for example that X is compact. Let ¢ be a
sheaf on X XY and 7 : X XY — Y the second projection. Set nx = topdim X,
ny = topdimY. In virtue of (13.6"), we have Rim, el = 0 for ¢ > nx. In the Leray
spectral sequence, we obtain therefore

EYY = HP(Y,Rim,d) =0 for p>ny or ¢>nx,
thus E2!"P = 0 when | > nx + ny and we infer H'(X x Y, ) = 0.

d) The unit interval [0,1] C R is of topological dimension < 1, because [0,1] admits
arbitrarily fine coverings

(13.14) U= ([0,1] N ](—=1)/k,(a+1)/k[)

for which only consecutive open sets U,, U,+1 intersect; we may therefore apply Prop.
5.24. Hence R™ ~ 10, 1["C [0, 1]™ is of topological dimension < n by b) and c). Property
d) follows. O

0<a<k
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§ 14. Alexander-Spanier Cohomology

§ 14.A. Invariance by Homotopy

Alexander-Spanier’s theory can be viewed as the special case of sheaf cohomology
theory with constant coefficients, i.e. with values in constant sheaves.

(14.1) Definition. Let X be a topological space, R a commutative ring and M a R-
module. The constant sheaf X x M is denoted M for simplicity. The Alexander-Spanier
q-th cohomology group with values in M 1is the sheaf cohomology group HY(X, M).

In particular H(X, M) is the set of locally constant functions X — M, therefore
HO(X, M)~ MF¥ where E is the set of connected components of X. We will not repeat
here the properties of Alexander-Spanier cohomology groups that are formal consequences
of those of general sheaf theory, but we focus our attention instead on new features, such
as invariance by homotopy.

(14.2) Lemma. Let I denote the interval [0,1] of real numbers. Then HY(I, M) = M
and HY(I, M) =0 for ¢ # 0.

Proof. Let us employ alternate Cech cochains for the coverings U, defined in (13.14).
As I is paracompact, we have

H(I, M) = lim HY(U,,, M).

However, the alternate Cech complex has only two non zero components and one non

zero differential:
AC()(GUTL?M) = {(CQ)Ogagn} = Mn+17

ACl <6un7 M) = {(Ca a+1)0<a<n—1} = Mn,
d : (ca) (Cixoﬂ—l) = (Cat1 — Ca).
We see that d° is surjective, and that ker d° = {(m,m, cee, m)} =M. O

For any continuous map f : X — Y, the inverse image of the constant sheaf M on
Y is f~1M = M. We get therefore a morphism

(14.3) f*HYY,M)— HY(X, M),
which, as already mentioned in §9, is compatible with cup product.

(14.4) Proposition. For any space X, the projection w : X x I — X and the injections
ir: X — X x I, v —> (z,t) induce inverse isomorphisms

*
™

HY(X,M) —— HYX x1I,M).

i
In particular, vy does not depend on t.

Proof. As moi, = Id, we have ¢} o m* = Id, so it is sufficient to check that 7* is an
isomorphism. However (R%m, M), = HY(I, M) in virtue of (13.6"), so we get

R°7,M =M, Rin,M =0 for q#0
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and conclude by Cor. 13.9. O
(14.4) Theorem. If f,g: X — Y are homotopic maps, then

ff=9g" : H(Y,M) — HYX,M).

Proof. Let H : X x I — Y be a homotopy between f and g, with f = H oy and
g = H o1y. Proposition 14.3 implies

[f=ijoH*=ijo H* =g". O

We denote f ~ g the homotopy equivalence relation. Two spaces X,Y are said to
be homotopically equivalent (X ~ Y) if there exist continuous maps v : X — Y,
v:Y — X such that vou ~ Idx and wov ~ Idy. Then HY(X, M) ~ HY(Y, M) and
u*, v* are inverse isomorphisms.

(14.5) Example. A subspace S C X is said to be a (strong) deformation retract of X
if there exists a retraction of X onto S, i.e. a map r : X — S such that r o j = Idg
(j = inclusion of S in X)), which is a deformation of Idyx, i.e. there exists a homotopy
H: X x I — X relative to S between Idx and jor :

H(z,0) =z, H(z,1)=7r(z) on X, H(z,t)=z on SxI.

Then X and S are homotopically equivalent. In particular X is said to be contractible if
X has a deformation retraction onto a point xg. In this case

M forq=0

HY(X, M) = H({xo}, M) = {o for ¢ # 0.

(14.6) Corollary. If X is a compact differentiable manifold, the cohomology groups
HY(X, R) are finitely generated over R.

Proof. Lemma 6.9 shows that X has a finite covering 9 such that the intersections
Uay...a, are contractible. Hence AU is acyclic, H4(X, R) = H1(C*(U, R)) and each Cech
cochain space is a finitely generated (free) module. U

(14.7) Example: Cohomology Groups of Spheres. Set
St ={zeR"™ ; af+ai+... 42> =1}, n>1
We will prove by induction on n that

n M forg=0o0orq=n
14.8 HY(S™, M :{
( ) ( ) 0  otherwise.
As S™ is connected, we have H°(S™ M) = M. In order to compute the higher cohomol-
ogy groups, we apply the Mayer-Vietoris exact sequence 3.11 to the covering (U, Us)
with
U1:Sn\{(—1,0,...,0)}, UQZSn\{(l,O,...,O)}.
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Then Uy, Uy ~ R"™ are contractible, and U; N Us can be retracted by deformation on the
equator S™ N {zg = 0} ~ S™~1. Omitting M in the notations of cohomology groups, we
get exact sequences

(14.9") H(Uy) @ H°(Uy) — H°(U; NUy) — HY(S™) — 0,
(14.9") 0 — HI" YU, NUy) — HYS™) — 0, ¢q=>2.

For n =1, Uy N Us consists of two open arcs, so we have
H(U) @ H*(Us) = HY(U,NUy) = M x M,

and the first arrow in (14.9') is (mq, ms) —> (mg — my, mo — my). We infer easily that
H'(S') = M and that

HY(SY)Y=H" UyNUy) =0 for q>2.
For n > 2, Uy N Us is connected, so the first arrow in (14.9) is onto and H(S™) = 0.

The second sequence (14.9”) yields H9(S™) ~ H9~1(S™~1). An induction concludes the
proof. O

§ 14.B. Relative Cohomology Groups and Excision Theorem

Let X be a topological space and S a subspace. We denote by M 4! (X, S) the subgroup
of sections u € M9(X) such that u(wo,...,z,) = 0 when

(x0,...,2q) €89, x1€V(xg), ..., g € V(z0,...,Tq—1).

Then M!*l(X, S) is a subcomplex of M!*)(X) and we define the relative cohomology group
of the pair (X, S) with values in M as

(14.10) HY(X,S; M) = Hi(M"(X,S)).
By definition of M9 (X, S), there is an exact sequence
(14.11) 0 — M(X,8) — MU(X) — (Ms)ld(S) — 0.

The reader should take care of the fact that (M;s)l9(S) does not coincide with the
module of sections M19(S) of the sheaf M9 on X, except if S is open. The snake lemma,
shows that there is an “exact sequence of the pair”:

(14.12) HYX,S; M) — HY(X,M) — HY(S,M) - H"™(X,S; M)---.

We have in particular H°(X,S; M) = M¥, where E is the set of connected components
of X which do not meet S. More generally, for a triple (X,S,T) with X DS D T, there
is an “exact sequence of the triple”:

(14.12") 0 — M(X,8) — MY(X,T) — MI(S T) — 0,
HY(X,S;M)— HYX,T; M) — HYS,T; M) — HITYX,S; M).
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The definition of the cup product in (8.2) shows that o ~ § vanishes on S U S if «, 8
vanish on S, S’ respectively. Therefore, we obtain a bilinear map

(14.13) HP(X,S; M)x HY(X,S"; M') — HPT(X,SUS ; M & M.

If f:(X,S) — (Y,T) is a morphism of pairs, i.e. a continuous map X — Y such that
f(S) C T, there is an induced pull-back morphism

(14.14) £ HYY,T:; M) — HY(X,S; M)

which is compatible with the cup product. Two morphisms of pairs f, g are said to be
homotopic when there is a pair homotopy H : (X x I, S x I) — (Y, T). An application
of the exact sequence of the pair shows that

7™ HY(X,S; M) — HY(X xI,Sx1; M)
is an isomorphism. It follows as above that f* = ¢g* as soon as f, g are homotopic.

(14.15) Excision theorem. For subspaces T C S° of X, the restriction morphism
HY(X,S; M) — HYX \T,S\T; M) is an isomorphism.

Proof. Under our assumption, it is not difficult to check that the surjective restriction
map M(X,S) — M9(X \ T,S ~ T) is also injective, because the kernel consists of
sections u € M14(X) such that u(z,...,7,) =0 on (X \ T)9T1 U S9! and this set is
a neighborhood of the diagonal of X7*1. U

(14.16) Proposition. IfS is open or strongly paracompact in X, the relative cohomology
groups can be written in terms of cohomology groups with supports in X ~..S :

HY(X,S; M)~ HS (X,M).
In particular, if X S is relatively compact in X, we have

HY(X,S; M)~ HIi(X ~ S, M).

Proof. We have an exact sequence
(14.17) 0 — M (X)) — MII(X) — MII(S) — 0

where M)[(']\S(X) denotes sections with support in X ~ S. If S is open, then M[*(S) =

(M;s)[*1(S), hence M)[;]\S(X) = MI*(X,S) and the result follows. If S is strongly
paracompact, Prop. 4.7 and Th. 9.10 show that

=

HO(ME)(S)) = H( lim M¥(Q)) = li
QDS

H(Q, M) = HY(S, M;s).

o)
2
13}

If we consider the diagram
0 — MY o(x) — MEI(X) — ME(S)  — 0

! la s

0 — MPI(X,8) — MEI(X) — (M;s)*(S) — 0
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we see that the last two vertical arrows induce isomorphisms in cohomology. Therefore,
the first one also does. U

(14.18) Corollary. Let X,Y be locally compact spaces and f,g: X — Y proper maps.
We say that f, g are properly homotopic if they are homotopic through a proper homot