
NOTES ON COSECTION LOCALIZED VIRTUAL CYCLES

JUN LI

Abstract. We briefly describe the construction of cosection localized vir-

tual cycles; we present two recent applications of this construction: the GW-

invariants of stable morphisms with fields.

Recently, aimed at understanding Lee-Parker’s work on Gromov-Witten invari-
ants of surfaces [LP], jointly with Kiem we constructed a new class of virtual cycles:
the cosection localized virtual cycles [KL2]. Given a Deligne-Mumford stack M,
suppose it has a perfect obstruction theory and its obstruction sheaf ObM admits
a cosection (a homomorphism to OM)

σ : ObM −→ OM;

let M(σ) be the loci where σ is non-surjective; then we constructed a localized
virtual cycle of M supported on M(σ):

[M]vir
loc ∈ A∗M(σ).

This construction has two significant applications. Given a cosection σ, in case
the degeneracy loci M(σ) is proper, the resulting localized virtual cycle [M]vir

loc

is properly supported, and its degree defines a Gromov-Witten type invariants of
non-proper moduli space M.

As an application, in a joint work with Chang [CL], we use cosection localized
virtual cycle to construct the Gromov-Witten invariants of the moduli of stable mor-
phisms to P4 with fields. The significance of these invariants are that they coincide
up to signs with the Gromov-Witten invariants of quintic Calabi-Yau threefolds
[CL]. Our work generalizes the Guffin-Sharpe-Witten model to all genus.

The cosection localization technique can be used to construct reduced virtual cy-
cles by modifying the obstruction theory. The first example is the reduced Gromov-
Witten invariants of polarized K3 surfaces, introduced by Okunkov-Pandharipande
[OP], also see [MPT].

We expect that this will have mANY applications to studying virtual cycles of
moduli spaces.

1. Cosection localized virtual cycles

The cosection localized virtual cycles take the following form. Let p : M → S
be a representable morphism from a DM-stackM to a smooth Artin stack S, both
locally of finite type, that has a perfect relative obstruction theory

E −→ LM/S .

Here E is a derive object on M locally quasi-isomorphic to a two-term complex of
locally free sheaves placed at [−1, 0], and LM/S is the cotangent complex ofM→ S
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(cf. [BF]). We define the relative obstruction sheaf of M→ S be the cohomology
sheaf

(1.1) ObM/S = H1(E∨);

we define its (absolute) obstruction sheaf be the cokernel

ObM = coker{p∗Ω∨S −→ ObM/S},

where the arrow in the bracket is the composite

p∗Ω∨S −→ p∗L∨S −→ L∨M/S [1] −→ E∨[1] −→ H1(E∨) = ObM/S ,

where the first arrow uses that S is smooth; the second arrow is from the distin-
guished triangle p∗LS → LM → LM/S →.

Definition 1.1. We define a meromorphic cosection of ObM be a homomophism
σ : ObM|U → OU defined on an open subset U ⊂ M. We call σ a cosection if
U =M.

For a meromorphic cosection, we define its degeneracy loci be

M(σ) = {x ∈ U | σ|x : ObM|x → k(x) is zero} ∪ (M− U).

Theorem 1.2 (Cosection localized virtual cycles [KL2]). Let p : M → S with
perfect relative obstruction theory be as stated. Suppose ObM admits a meromorphic
cosection with degeneracy lociM(σ). ThenM has a cosection localized virtual cycle
in the Chow group of M(σ):

[M]vir
σ ∈ A∗M(σ).

In case the cosection σ is understood, we often use the subscript “loc” to replace
σ; i.e. we write [M]vir

loc instead of [M]vir
σ .

The cosection localized virtual cycle is a lift of the ordinary virtual cycle [M]vir ∈
A∗M.

Theorem 1.3 (Comparison [KL2]). Let ι : M(σ) → M be the inclusion, then
under push-froward,

ι∗[M]vir
σ = [M]vir ∈ A∗M.

We comment that when M(σ) is proper but M is not, we can use [M]vir
σ to

substitute [M]vir to define the Gromov-Witten type invariants of the stack M.

Like the ordinary virtual cycle, the localized virtual cycles remain constant in
family in naturally arisen situations. Let

(1.2)

M −−−−→ M̃y y
0 τ−−−−→ T

be a Cartesian square of DM stacks over S, where 0 ∈ T is a pointed smooth
curve; let p̃ : M̃ → S be the projection, representable, extending the p : M → S
stated before. Suppose there is a perfect relative obstruction theory F → LM̃/S
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compatible to E → LM/S , given by a homomorphism of distinguished triangles in
D(M):

(1.3)

F |M
g−−−−→ E −−−−→ OM[1] +1−−−−→y y y

LM̃/S |M
h−−−−→ LM/S −−−−→ LM/M̃

+1−−−−→ .

As before, we denote by ObM̃/S = h1((F )∨) the relative obstruction sheaf and
define its (absolute) obstruction sheaf like (1.1), thus we have the exact sequence

(1.4) OM −→ ObM −→ ObM̃|M −→ 0.

We suppose there is an open Ũ ⊂ M̃ and a homomorphism

σ̃ : ObM̃|Ũ −→ OŨ .

We let U = Ũ ×M̃M; let σ : ObM|U → OU be the composition of ObM → ObM̃|M
with σ̃|U , and we let M̃(σ̃) be the loci where either σ̃ is undefined or not surjective.
Note that M(σ) = M̃ ×T 0.

Let
τ ! : A∗M̃(σ̃) −→ A∗M(σ)

be the Gysin map associated to the square (1.2).

Theorem 1.4 (Defromation invariance [KL2]). Let the notation be as stated; let

[M̃]vir
loc ∈ A∗M̃(σ̃) and [M]vir

loc ∈ A∗M(σ)

be the cosection localized virtual cycles. Then [M]vir
loc = τ ![M̃]vir

loc.

The construction of the cosection localized virtual cycles stems from a reduction
of virtual normal cone ofM. Following [BF], given the perfect relative obstruction
theory E → LM/S , we obtain a virtual normal cone in the bundle stack

C ⊂ h1/h0(E∨)

on M; letting s be the zero section of h1/h0(E∨), and letting s! be the Gysin map
by intersecting with the zero section [Kre], we obtain the virtual cycle

[M]vir = s![C] ∈ A∗M.

Now assume we have a cosection σ : ObM|U → OU . It produces a cosection
reduced bundle stack

 : h1/h0(E∨))(σ) ⊂ h1/h0(E∨)

defined as follows. Let U0 = M −M(σ) be the locus where σ is defined and
surjective; let E∨σ ∈ D(U0) be defined by the distinguished triangle

E∨σ −→ E∨|U0

σ̄−→OU0 [−1] −→,

where σ̄ is the composite E∨|U0 → H1(E∨)[−1]|U0 → OU0 [−1]. We define

h1/h0(E∨)(σ) =
(
h1/h0(E∨σ )

⋃
h1/h0(E∨)×MM(σ)

)
red
.

Here the subscript “red” stands for taking the reduced stack structure.
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Proposition 1.5 (Cone reduction [KL2]). Let the situation be as in Theorem 1.2.
Then there is a cycle [Cσ] ∈ Z∗h1/h0(E∨)(σ) so that

∗[Cσ] = [C] ∈ Z∗h1/h0(E∨).

The other ingredient for constructing the cosection localized virtual cycles is the
localized Gysin map, constructed by Kiem and the author [KL2].

The localized Gysin map of a vector bundle with a meromorphic cosection is
constructed as follows. Let

π : V −→M
be a rank r vector bundle over a DM stack M, and let σ : V |U → OU , U ⊂ M
open, be a meromorphic cosection. We letM(σ) be the degeneracy loci of σ, which
is where either σ is undefined or not surjective. Let

V (σ) =
(
V |M(σ)

⋃
ker
{
σ : V |M−M(σ) → OM−M(σ)

})
red
,

which is closed in V . Let sV be the zero section of V . The localized Gysin map to
be constructed is a homomorphism

s!
V,σ : AdV (σ)→ Ad−rM(σ)

that has the usual properties of the Gysin map, and coincides with s!
V when com-

posed with the tautological Ad−rM(σ)→ Ad−rM.
The localized Gysin map is defined at the cycle level, after picking their proper

representatives.

Definition 1.6. Let ρ : X →M be a morphism from a quasi-projective variety X
to M such that ρ(X) ∩ U 6= ∅. We call ρ a σ-regularizing morphism if ρ is proper,
its restriction to a dense open X0 ⊂ X, ρ|X0 : X0 → ρ(X0), is étale, and ρ∗(σ)
extends to a surjective homomorphism

σ̃ : Ṽ := ρ∗V → OX(D)

for a Cartier divisor D ⊂ X.

For the ρ given, we denote by ρ̃ : Ṽ → V is the projection; G̃ := ker{σ̃} ⊂ Ṽ ;
|D| ⊂ X is the support of D, and ρ(σ) : |D| → M(σ) is the ρ restricted to |D|.
Basic Construction: Let [B] ∈ ZdV (σ) be a cycle represented by a closed integral
substack B ⊂ V (σ). In case B ⊂ V |M(σ), we define

s!
V,σ([B]) = s!

V |M(σ)
([B]) ∈ Ad−rM(σ).

Otherwise, we pick a variety X and a σ-regularizing ρ : X →M such that π(B) =
ρ(X), there is a closed integral B̃ ⊂ G̃ so that ρ̃∗([B̃]) = k · [B] ∈ ZdV for some
k ∈ Z. We define

(1.5) s!
V,σ([B])ρ,B̃ = k−1 · ρ(σ)∗([D] · s!

G̃
([B̃])) ∈ Ad−rM(σ).

Here [D]· : A∗X → A∗−1|D| is the intersection with the divisor D.

Definition-Proposition 1.7 (Localized Gysin map [KL2]). Let the notation be
as in the basic construction. Then for each closed integral B ⊂ V (σ) not contained
in V |M(σ), we can find a pair (ρ, B̃) so that s!

V,σ([B])ρ,B̃ is defined by the Basic
construction. Furthermore the resulting cycle class s!

V,σ([B])ρ,B̃ ∈ Ad−rM(σ) is
independent of the choice of (ρ, B̃).



NOTES ON COSECTION LOCALIZED VIRTUAL CYCLES2 5

Construction of cosection localized virtual cycle. We prove Proposition 1.5. We let
E = h1/h0(E∨); let [A] ∈ Z∗E be an irreducible cycle; let π : E → M be the
projection, and let MA be the closure of the image π(A) ⊂ M. Applying Chow’s
Lemma [?, Cor. 16.6.1], we can find a quasi-projective variety X, a proper and
surjective morphism ρ : X → MA such that for a Zariski dense open X0 ⊂ X,
ρ|X0 : X0 → MA is étale. Since X is quasi-projective, we can find a complex of
locally free sheaves F = [F0 → F1] of OX -modules that is quasi-isomorphic to ρ∗E.
By abuse of notation, we view F1 as a vector bundle over X. The tautological
morphism

γ : F1 −→ h1/h0(F ) = h1/h0(ρ∗E) = ρ∗E
is flat. Since ρ|X0 : X0 →MA is étale, the induced

γ|X0 : F1 ×X X0 −→ E|MA
= h1/h0(E)×MMA

is flat.

Definition 1.8. A proper representative of an irreducible [A] ∈ Z∗E consists of
(ρ, F1) just constructed and a cycle AX =

∑
imi[Ai] ∈ Z∗F1, where Ai are closed

and integral in F1 and mi ∈ Z, such that
∑
imi[Ai ×X X0] = (γ|X0)∗(A), and

Ai = Ai ×X X0 for all i.

Let (ρ,X, F1) with
∑
imiAi be a proper representative of [A]. Let σX : F1|ρ−1U →

Oρ−1U be the composite of F1|ρ−1U → ρ∗ObM/S |ρ−1U with ρ∗σ. Automatically
[Ai] ∈ Z∗F1(σX). We let ρ(σ) : X(σX) → M(σ) be the restricton of ρ to
X(σX) = X \ ρ−1U .

We define
s!
E,σ([A]) = m−1

X ρ(σ)∗(s!
F1,σX ([AX ])),

where mX is the degree of ρ : X → MA. We extend it to s!
E,σ : Z∗E → A∗M(σ)

by linearity.
It was verified in [KL2] that this construction is independent of the choice of

proper-representatives of cycles, and it preserves rational equivalence; thus descends
to

s!
E,σ : A∗E(σ) −→ A∗M(σ),

called the localized Gysin map �

Remark. Initially, the class [M]vir
loc is constructed as a class in the homology group

of M(σ). It is shown to lie in the Chow group after we constructed the localized
Gysin map in algebraic geometry. Using the localized Gysin map, we show that
all tools developed for studying virtual cycles remain valid for cosection localized
virtual cycles.

2. Applications of cosection localized virtual cycles

Applying cosection localized virtual cycle, in many situations one can reduce
the virtual cycles to smaller subset M(σ) ⊂M. An example is the GW-invariants
of algebraic surfaces with non-trivial holomoprhic two-forms; it is an algebraic
geometric analogue of Lee-Parker’s reduction theorem of GW-invariants of surfaces
in symplectic geometry [LP].

Let X be a smooth quasi-projective variety equipped with a holomorphic two-
form θ ∈ Γ(Ω2

X). This form induces a cosection of the obstruction sheaf the moduli
space M = Mg,n(X,β) of stable morphisms to X of class β. We denote by p :



6 JUN LI

M → S the forgetful morphism to the Artin stack of genus g connected nodal
curves. We let f :C → X and π :C →M be the universal family of M; the relative
obstruction theory of M→ S is

(R•π∗f∗TX)∨ −→ LM/S

(cf. [BF]), and its relative obstruction sheaf is ObM/S = R1π∗f
∗TX .

By viewing the two-form θ as an anti-symmetric homomorphism

(2.1) θ̂ : TX −→ ΩX , (θ̂(v), v) = 0,

it defines the first arrow in the following sequence

(2.2) R1π∗f
∗TX −→ R1π∗f

∗ΩX −→ R1π∗ΩC/M −→ R1π∗ωC/M,

where the second is induced by f∗ΩX → ΩC/M, and the last by the tautologi-
cal ΩC/M → ωC/M. Because R1π∗ωC/M ∼= OM, the composite of this sequence
provides

(2.3) σrel
θ : R1π∗f

∗TX = ObM/S −→ OM.
The obstruction sheaf of M is the cokernel of p∗Ω∨S → ObM/S . Using the uni-

versal family f and that R1π∗f
∗TX = Ext1

π(f∗ΩX ,OC), we have the exact sequence

(2.4) p∗Ω∨S = Ext1π(ΩC/M,OC) −→ Ext1
π(f∗ΩX ,OC) −→ ObM −→ 0,

where the first arrow is induced by f∗ΩX → ΩC/M. In [KL2], it is verified that the
composition

Ext1π(ΩC/M,OC) −→ Ext1
π(f∗ΩX ,OC)

σrel
θ−→OM

is trivial, which implies that σrel
θ lifts to a cosection

σθ : ObM −→ OM.

The degeneracy (non-surjective) loci M(σ) of σθ can easily be described.

Definition 2.1. A stable maps u :C → X is called θ-null if the composite

u∗(θ̂) ◦ du : TCreg −→ u∗TX |Creg −→ u∗ΩX |Creg

is trivial over the regular locus Creg of C.

We have

Proposition 2.2. Any holomorphic two-form θ ∈ H0(Ω2
X) on a smooth quasi-

projective variety X induces a homomorphism σθ :ObM −→ OM of the obstruction
sheaf ObM of the moduli of stable morphisms M = Mg,n(X,β). The homomor-
phism σθ is surjective away from the set of θ-null stable maps in M.

When X is proper, the comparison Theorem (Thm. 1.3) implies that the ordi-
nary virtual cycle [M]vir = [M]vir

σ ∈ A∗M. In particular, if the class β can not be
represented by combinations of curves in θ−1(0), thenM(σθ) = ∅, thus [M]vir = 0.
This recovers the vanishing results of Lee-Parker [LP] for GW-invariants of compact
algebraic surfaces with non-trivial holomorphic two-forms.

One can also defined local GW-invariants of the surface S that is the total space
of a theta characteristic L over a smooth curve. The complete understanding of
this class of GW-invariants is conjectured to solve all GW-invariants of surfaces X
with positive h0(KX).

We now come to the examples of reduced invariants when the obstruction sheaf
has a surjective homomoprhism to a locally free sheaf. A typical example is when X
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is a K3 surface. In this case, the holomorphic two-form θ is nowhere vanishing; its
induced cosection (2.3) is surjective, and the reduced bundle stack h1/h0(E∨)(σθ)
is a codimension one sub-bundle stack of h1/h0(E∨).

In this case, instead of obtaining [M]vir = 0, which gives no new information to
the GW-invariants of surfaces, we can use the (lifted) cycle [Cσ] ∈ Z∗h1/h0(E∨)(σθ)
(cf. Prop. 1.5), and the zero section sσ of h1/h0(E∨)(σθ) to define reduced virtual
cycle

[M]vir
red = s!

σ[Cσ] ∈ A∗M.

This gives the reduced GW-invariants of K3 surfaces, which was first introduced by
Okunkov-Pandharipande [OP], and also used extensively by Maulik-Pandharipande-
Thomas [MPT].

3. Gromov-Witten invariants of stable morphisms with fields

The most recent application of the cosection localized virtual cycle is the math-
ematical treatment and generalization of Witten’s Gauged-Linear-Sigma model for
all genus: the GW-invariants of stable morphisms with fields.

We begin withe the moduli spaces. Given non-negative integer g and positive d,
we form the moduli Mg(P4, d)p of genus g degree d stable morphisms to P4 with
p-fields:

Mg(P4, d)p = {[u,C, p]
∣∣ [u,C] ∈Mg(P4, d), p ∈ Γ(C, u∗OP4(−5)⊗ ωC) }/ ∼ .

A standard argument shows that this is a Deligne-Mumford stack; forgetting the
fields, the induced morphism

Mg(P4, d)p −→Mg(P4, d)

has fiber H0(u∗OP4(−5) ⊗ ωC) over [u,C] ∈ Mg(P4, d). When g is positive,
Mg(P4, d)p is not proper.

The moduli spaceMg(P4, d)p has a perfect obstruction theory, thus has a virtual
class. However, its usual GW type invariant is ill defined since Mg(P4, d)p is not
proper. To overcome its non-properness, we construct a cosection of its obstruction
sheaf:

σw : ObMg(P4,d)p −→ OMg(P4,d)p ;

the choice of σw depends on the choice of a degree five homogeneous polynomial,
like w = x5

1 + . . . + x5
5. The non-surjective loci (called the degeneracy loci) of the

cosection σw is
Mg(Q, d) ⊂Mg(P4, d)p,

where ,Q = (x5
1 + . . .+ x5

5 = 0) ⊂ P4. Note that Mg(Q, d) is proper.
Applying cosection localized virtual class construction (Theorem 1.2), we obtain

a localized virtual cycle

[Mg(P4, d)p]vir
σ ∈ A0Mg(Q, d).

We define the Gromov-Witten invariant of Mg(P4, d)p be

Ng(d)pP4 = deg[Mg(P4, d)p]vir
σ .

The miracle of this invariant is the following equivalence result:
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Theorem 3.1 (Chang-Li [CL]). For g ≥ 0 and d > 0, the Gromov-Witten invariant
of Mg(P4, d)p coincides with the Gromov-Witten invariant Ng(d)Q of the quintic
Q up to a sign:

Ng(d)pP4 = (−1)5d+1−gNg(d)Q.

When g = 0, this is derived in Guffin-Sharpe [GS] using path-integral. This
identity also is the Kontsevich’s formula on g = 0 Gromov-Witten invariants of
quintics. If one views the localized virtual cycle of Mg(P4, d)p as “Euler class of
bundles”, this theorem is a substitute of the “hyperplane property” of the Gromov-
Witten invariants of quintics in high genus.

This construction is an algebro-geometric construction of Guffin-Sharpe-Witten
model for all genus. The moduli of stable morphisms with p-fields is the algebro-
geometric substitute of the phase space of all smooth maps with smooth fields. The
cosection localized virtual cycle is the analogue of Witten’s perturbed equation.
Theorem 3.1 shows that the Gromov-Witten invariants of the algebro-geometric
Guffin-Sharpe-Witten model of all genus coincide up to signs with the Gromov-
Witten invariants of quintic threefolds.

This construction applies to global complete intersection Calabi-Yau threefolds of
toric varieties. This techniques can be applied to the moduli of stable quotients (cf.
[MOP]) to obtain all genus invariants of massive theory of (KP4 ,w); one can also
apply it to the linear Landau-Gingzberg model to obtain an alternative algebro-
geometric construction of Fan-Jarvis-Ruan-Witten invariants. In the later case,
using the analytic interpretation of resulting invariants are equal to those defined
using perturbed the Witten equations [FJRW].
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