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These notes are the planned contents of my lectures. Some parts could be only briefly
explained or skipped due to the lack of time or possible overlap with other lectures.
The aim of these lectures is to review the recent development on the relation between
optimal transport theory and Riemannian geometry. Ricci curvature is the key ingredient.
Optimal transport theory provides a good characterization of lower Ricci curvature bounds
without using differentiable structure. Then it can be considered as the ‘definition’ of lower
Ricci curvature bounds of metric measure spaces.

In §1, we recall the definition of the Ricci curvature of a Riemannian manifold and
the classical Bishop-Gromov volume comparison theorem. In §2, we start with Brunn-
Minkowski inequalities in (weighted) Euclidean spaces, and show that a lower weighted
Ricci curvature bound for a weighted Riemannian manifold is equivalent to some convexity
inequality of entropy, called the curvature-dimension condition. In §3, we give the precise
definition of the curvature-dimension condition for metric measure spaces, and see that
it is stable under the measured Gromov-Hausdorff convergence. §4 is devoted to some
geometric applications of the curvature-dimension condition. The final lecture will be
concerned with some of related topics summarized in §5. Although we concentrate on
rather geometric aspects, these lectures will be far from exhaustive. Interested readers
can find more references in Further Reading at the end of each section (except §5).

0 Notations

First of all, we collect some notations we use for convenience. Throughout these lectures,
(M, g) is an n-dimensional complete Riemannian manifold without boundary with n ≥ 2,
volg stands for the Riemannian volume measure of g.

A metric space is called a geodesic space if any two points x, y ∈ X can be connected
by a rectifiable curve γ : [0, 1] −→ X of length d(x, y) with γ(0) = x and γ(1) = y. Such
minimizing curves parametrized proportionally to arc length are called minimal geodesics.
Open and closed balls of center x and radius r will be denoted by B(x, r) and B(x, r). A
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metric measure space will be a triple (X, d,m) consisting of a geodesic space (X, d) and
a Borel measure m on it such that 0 < m(B(x, r)) < ∞ for all x ∈ X and 0 < r < ∞.

For a metric space (X, d), we denote by P(X) the set of Borel probability measures
on X, by P2(X) ⊂ P(X) the subset consisting of measures of finite second moment, and
by Pc(X) ⊂ P2(X) the set of compactly supported measures. Then dW

2 stands for the
L2-Wasserstein distance on P2(X).

As usual in comparison geometry, the following functions will frequently appear in our
discussions. For K ∈ R, N ∈ (1,∞) and 0 < r (< π

√
(N − 1)/K if K > 0), we define

sK,N(r) :=


√

(N − 1)/K sin(r
√

K/(N − 1)) if K > 0,

r if K = 0,√
−(N − 1)/K sinh(r

√
−K/(N − 1)) if K < 0.

In addition, for t ∈ (0, 1), we set

βt
K,N(r) :=

(
sK,N(tr)

tsK,N(r)

)N−1

, βt
K,∞(r) := eK(1−t2)r2/6.

1 Ricci curvature

Take a vector field J along a geodesic γ : [0, 1] −→ M . If J is the variational vector field
of some family of geodesics, then J is called a Jacobi field. Jacobi fields satisfy the Jacobi
equation

D2
γ̇J + R(J, γ̇)γ̇ = 0, (1.1)

where R : TM⊗TM⊗TM −→ TM is the curvature tensor determined by the Riemannian
metric g. For linearly independent tangent vectors v, w ∈ TxM ,

K(v, w) :=
〈R(w, v)v, w〉

|v|2|w|2 − 〈v, w〉2

is the sectional curvature of the 2-plane spanned by v and w. For a unit vector v ∈ TxM ,
the Ricci curvature of v is defined as the trace of K(v, ·):

Ric(v) :=
n−1∑
i=1

K(v, ei),

where {ei}n
i=1 is an orthonormal basis of TxM with en = v.

The sectional curvature K naturally controls the behavior of (especially, the second
order derivative of) the distance along geodesics. For instance, the lower bound K ≥ k for
k ∈ R is equivalent to that every geodesic triangle in M is ‘thicker’ than the triangle with
the same side lengths in the two-dimesional space form of constant sectional curvature
k. This triangle comparison condition makes sense also in metric spaces. Such spaces
are called Alexandrov spaces, and deeply investigated from the geometric and analytic
viewpoints.
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Since it is taking the trace, the Ricci curvature has less information and controls only
the behavior of the measure m = volg. Along a unit speed geodesic γ : [0, l] −→ M ,
consider Jacobi fields {Ji}n−1

i=1 along γ given by

Ji(t) := D(expγ(0))tγ̇(0)(tei) ∈ Tγ(t)M

using an orthonormal basis {ei}n
i=1 with en = γ̇(0). Define (n−1)× (n−1) matrix-valued

functions

A := (〈Ji, Jj〉), U :=
1

2
A′A−1, R := (〈R(Ji, γ̇)γ̇, Jj〉).

Then U is symmetric and satisfies the (matrix) Riccati equation

U ′ + U2 + RA−1 = 0. (1.2)

Taking the trace yields
(trU)′ + tr(U2) + Ric(γ̇) = 0

which with tr(U2) ≥ (trU)2/(n − 1) shows

(trU)′ +
(trU)2

n − 1
+ Ric(γ̇) ≤ 0. (1.3)

This estimate implies (a version of) the Bishop comparison theorem

d2

dt2

[
(detA)1/2(n−1)

]
≤ −Ric(γ̇)

n − 1
(detA)1/2(n−1). (1.4)

Now we assume Ric ≥ K and by integrating (1.4) find the Bishop-Gromov volume com-
parison theorem

m(B(x,R))

m(B(x, r))
≤

∫ R

0
sK,n(t)n−1 dt∫ r

0
sK,n(t)n−1 dt

(1.5)

for any x ∈ M and 0 < r < R (≤ π
√

(n − 1)/K if K > 0).
The Bishop and Bishop-Gromov comparison theorems give us a nice intuition how

spaces with lower Ricci curvature bounds look like. Although bounding Ricci curvature
from below is essential in many analytic applications, how to characterize such spaces
without using differentiable structure had been a long standing important problem. An
answer to this question is the topic of §2.

Further reading See [Ch] for comparison theorems in Riemannian geometry. Basic
references of Alexandrov spaces are [BGP], [OtS] and [BBI]. A property corresponding to
the Bishop comparison theorem (1.4) was proposed as lower Ricci curvature bounds for
metric measure spaces by Cheeger and Colding [CC] (as well as Gromov [Gr]), and used
to study the limit spaces of Riemannian manifolds with uniform lower Ricci curvature
bounds. However, its systematic investigation has not been done until [Oh1] and [St4]
(see also [KS1] and [St1] for related antecedents).
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2 The curvature-dimension condition

The classical Brunn-Minkowski inequality in the Euclidean space Rn asserts the concavity
of the n-th root of the Lebesgue measure:

mL

(
(1 − t)A + tB

)1/n ≥ (1 − t)mL(A)1/n + tmL(B)1/n (2.1)

for t ∈ [0, 1] and measurable sets A,B ⊂ Rn, where

(1 − t)A + tB := {(1 − t)x + ty |x ∈ A, y ∈ B}.

We can prove (2.1) using optimal transport between uniform distributions on A and B,
the key ingredient is the inequality of arithmetic and geometric means[

det
(
(1 − t)In + tA

)]1/n ≥ (1 − t) + t(detA)1/n

for an n×n symmetric matrix A. More careful argument shows that a weighted Euclidean
space (Rn,m = e−ψmL) for some ψ ∈ C∞(Rn) satisfies a generalization of the Brunn-
Minkowski inequality

m
(
(1 − t)A + tB

)1/N ≥ (1 − t)m(A)1/N + tm(B)1/N (2.2)

for N ∈ (n,∞) if (and only if)

Hess ψ(v, v) − 〈grad ψ, v〉2

N − n
≥ 0 (2.3)

holds for all (unit) vectors v ∈ TRn.
A quantity corresponding to (2.3) is called the weighted Ricci curvature in the theory

of weighted Riemannian manifolds (M, g,m = e−ψ volg) with ψ ∈ C∞(M):

RicN(v) := Ric(v) + Hess ψ(v, v) − 〈grad ψ, v〉2

N − n
(2.4)

for unit tangent vectors v ∈ TM . The infinite dimensional case (N = ∞) amounts to the
Bakry-Émery tensor

Ric∞(v) := Ric(v) + Hess ψ(v, v). (2.5)

We also define Ricn(v) := Ric(v) if 〈grad ψ, v〉 = 0, and Ricn(v) := −∞ otherwise. Recall
that the Bishop-Gromov volume comparison (1.5) with Ric ≥ 0 yields

m(B(x,R))

m(B(x, r))
≤

(
R

r

)n

which can be regarded as the Brunn-Minkowski inequality between {x} and B(x,R) with
t = r/R. Therefore it is natural to expect that lower Ricci curvature bounds relate to some
interpolation inequalities like the Brunn-Minkowski inequality. The curvature-dimension
condition CD(K,N) is actually a generalization of the Brunn-Minkowski inequality to
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pairs of (not necessarily uniformly distributed) probability measures. The precise defini-
tion of CD(K,N) will be given in §3, here we see that the core inequality of CD(K,N) is
equivalent to RicN ≥ K for weighted Riemannian manifolds.

Given N ∈ [n,∞) and absolutely continuous probability measure µ = ρm ∈ P(M),
we define the Rényi entropy as

SN(µ) := −
∫

M

ρ1−1/N dm. (2.6)

We also define the relative entropy by

Ent(µ) :=

∫
M

ρ log ρ dm. (2.7)

Theorem 2.1 A weighted Riemannian manifold (M, g,m = e−ψ volg) satisfies RicN ≥ K
for some K ∈ R and N ∈ [n,∞) if and only if any pair of absolutely continuous probability
measures µ0 = ρ0m, µ1 = ρ1m ∈ Pc(M) satisfies

SN(µt) ≤ −(1 − t)

∫
M×M

β1−t
K,N

(
d(x, y)

)1/N
ρ0(x)−1/N dπ(x, y)

− t

∫
M×M

βt
K,N

(
d(x, y)

)1/N
ρ1(y)−1/N dπ(x, y), (2.8)

where (µt)t∈[0,1] is the unique minimal geodesic from µ0 to µ1 in the L2-Wasserstein space
(P2(M), dW

2 ), and π is the unique optimal coupling of µ0 and µ1.
Similarly, Ric∞ ≥ K is equivalent to

Ent(µt) ≤ (1 − t) Ent(µ0) + t Ent(µ1) −
K

2
(1 − t)tdW

2 (µ0, µ1). (2.9)

A very rough sketch of the proof is as follows. For RicN ≥ K ⇒ (2.8), we consider
optimal transport maps (Ft)t∈[0,1] with (Ft)]µ0 = µt, and show that its Jacobian Jt(x) :=
‖(DFt)x‖ satisfies the inequality

Jt(x)1/N ≥ (1 − t)β1−t
K,N

(
d(x,F1(x))

)1/N
+ tβt

K,N

(
d(x,F1(x))

)1/N
J1(x)1/N . (2.10)

Then (2.8) is obtained by integration. The key inequality (2.10) can be thought of as
an infinitesimal version of the Brunn-Minkowski inequality, and is shown via calcula-
tions somewhat similar to §1. We remark that the optimal transport is performed along
geodesics (composition of the gradient vector field of some twice differentiable function
and the exponential map), so that its variational vector fields are Jacobi fields. The con-
verse (2.8) ⇒ RicN ≥ K is obtained by applying (2.8) to uniform distributions on balls
(i.e., generalized Brunn-Minkowski inequalities in Theorem 4.1 below).

Further reading See [Le] and [Ga] for the Brunn-Minkowski inequality and related
topics. The Bakry-Émery tensor Ric∞ was introduced in [BE], and its generalization RicN

is due to Qian [Qi]. See also [Lo] for geometric and topological applications. Cordero-
Erausquin, McCann and Schmuckenschläger [CMS] first showed that Ric ≥ 0 implies
(2.9) with K = 0. Then Theorem 2.1 is due to Lott, von Renesse, Sturm and Villani
[vRS], [St2], [St3], [St4], [LV1], [LV2]. Throughout, we are indebted to Brenier [Br] and
McCann’s [Mc] fundamental result on the shape of optimal transport maps. See [AGS],
[Vi1] and [Vi2] for the basics of optimal transport theory.
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3 Stability

We shall recall the precise definition of the curvature-dimension condition for general
metric measure spaces. For simplicity, we discuss only compact spaces. Noncompact case
can be treated similarly by considering Pc(X) instead of P(X), and the pointed version
of the measured Gromov-Hausdorff convergence.

For N ∈ [1,∞), denote by DCN (displacement convex functions) the set of continuous
convex functions U : [0,∞) −→ R such that U(0) = 0 and the function ϕ(s) = sNU(s−N)
is convex on (0,∞). Similarly, define DC∞ as the set of continuous convex functions
U : [0,∞) −→ R such that U(0) = 0 and ϕ(s) = esU(e−s) is convex on R. In both cases,
it is easy to see that ϕ is nonincreasing. For µ ∈ P(X), using its Lebesgue decomposition
µ = ρm + µs into absolutely continuous and singular parts, we set

Um(µ) :=

∫
X

U(ρ) dm + lim
r→∞

U(r)

r
· µs(X).

The most important element of DCN is U(r) = Nr(1 − r−1/N) which derives the Rényi
entropy (2.6)

Um(ρm) = N − N

∫
X

ρ1−1/N dm = N
(
1 + SN(ρm)

)
.

Letting N go to infinity gives U(r) = r log r ∈ DC∞ and the relative entropy (2.7).
Now we are ready to recall the precise definition of the curvature-dimension condition

of the version due to Lott and Villani.

Definition 3.1 (The curvature-dimension condition) For K ∈ R and N ∈ (1,∞], we
say that a metric measure space (X, d,m) satisfies the curvature-dimension condition
CD(K,N) if, for any µ0 = ρ0m + µs

0, µ1 = ρ1m + µs
1 ∈ P(X), there exists a minimal

geodesic α : [0, 1] −→ P(X) from µ0 to µ1 satisfying

Um

(
α(t)

)
≤ (1 − t)

∫
X×X

β1−t
K,N

(
d(x, y)

)
U

(
ρ0(x)

β1−t
K,N(d(x, y))

)
dπx(y)dm(x)

+ t

∫
X×X

βt
K,N

(
d(x, y)

)
U

(
ρ1(y)

βt
K,N(d(x, y))

)
dπy(x)dm(y)

+ U ′(∞){(1 − t)µs
0(X) + tµs

1(X)} (3.1)

for any U ∈ DCN and t ∈ (0, 1), where π is the optimal coupling of µ0 and µ1 induced from
α, and πx and πy denote disintegrations of π by µ0 and µ1, i.e., dπ(x, y) = dπx(y)dµ0(x) =
dπy(x)dµ1(y).

If both µ0 and µ1 are absolutely continuous, then (3.1) is rewritten in a more symmetric
form as

Um

(
α(t)

)
≤ (1 − t)

∫
X×X

β1−t
K,N(d(x, y))

ρ0(x)
U

(
ρ0(x)

β1−t
K,N(d(x, y))

)
dπ(x, y)

+ t

∫
X×X

βt
K,N(d(x, y))

ρ1(y)
U

(
ρ1(y)

βt
K,N(d(x, y))

)
dπ(x, y). (3.2)
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Then choosing U(r) = Nr(1 − r−1/N) and U(r) = r log r reduces to (2.8) and (2.9),
respectively. One of the most important features of CD(K,N) is the stability under the
measured Gromov-Hausdorff convergence. This is really an important and useful property
which enables us to consider singular spaces appearing as the limit of smooth spaces of a
uniform lower Ricci curvature bound. This is a natural question since such Riemannian
manifolds form a precompact family with respect to the measured Gromov-Hausdorff
convergence (Gromov’s precompactness).

A sequence of metric measure spaces {(Xi, di,mi)}i∈N is said to converge to a compact
metric measure space (X, d,m) in the sense of measured Gromov-Hausdorff convergence if
there are sequences of positive numbers {εi}i∈N and Borel maps {ϕi : Xi −→ X}i∈N such
that limi→∞ εi = 0, ϕi is an εi-approximating map, and that (ϕi)]mi weakly converges to
m. Here a map ϕ : Y −→ X is said to be ε-approximating if∣∣dX

(
ϕ(y), ϕ(z)

)
− dY (y, z)

∣∣ ≤ ε

holds for all y, z ∈ Y and if B(ϕ(Y ), ε) ⊃ X. If we consider only distance structures
(Xi, di), (X, d) and remove the weak convergence condition of ϕi, then it is the Gromov-
Hausdorff convergence under which the lower sectional curvature bound in the sense of
Alexandrov had been known to be preserved.

Theorem 3.2 (Stability) If a sequence of metric measure spaces {(Xi, di,mi)}i∈N uni-
formly satisfies CD(K,N) for some K ∈ R and N ∈ (1,∞], and converges to (X, d,m)
in the sense of measured Gromov-Hausdorff convergence, then (X, d,m) also satisfies
CD(K,N).

The proof of stability goes as follows. First of all, we can restrict ourselves to mea-
sures with continuous density, for it implies by approximation the general case. Given
continuous measures µ = ρm, ν = σm ∈ P(X), we consider

µi =
ρ ◦ ϕi∫

Xi
ρ ◦ ϕi dmi

· mi, νi =
σ ◦ ϕi∫

Xi
σ ◦ ϕi dmi

· mi

and take minimal geodesics αi : [0, 1] −→ P(Xi) satisfying (3.2). Extracting a subse-
quence if necessary, αi converges to a minimal geodesic α : [0, 1] −→ P(X) from µ to
ν. Then the right-hand side of (3.2) for µi, νi converges to that for µ, ν by virtue of the
continuous densities, while the lower semi-continuity Um(α(t)) ≤ lim infi→∞ Umi

(αi(t))
holds in general. Thus we obtain (3.2) for α.

Further reading Lott and Villani called the condition as in Definition 3.1 N -Ricci cur-
vature bounded from below by K ([LV1], [LV2]). The term ‘curvature-dimension condition’
is used by Sturm ([St3], [St4]) following Bakry and Émery’s celebrated work [BE]. Sturm
independently introduced a similar condition that (3.1) holds for all absolutely contin-
uous measures and U = SN ′ for all N ′ ∈ [N,∞]. These conditions are equivalent in
non-branching spaces (see §5). Both Lott-Villani and Sturm proved the stability in their
own setting. See [Fu], [Gr] and [BBI] for the basics of (measured) Gromov-Hausdorff
convergence. See also celebrated work of Cheeger and Colding [CC] for related geomet-
ric approach toward the investigation of limit spaces of Riemannian manifolds of Ricci
curvature bounded below.
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4 Geometric applications

Metric measure spaces satisfying the curvature-dimension condition CD(K,N) enjoy many
properties common to ‘N -dimensional spaces of Ricci curvature ≥ K’. Proofs based
on optimal transport theory themselves are interesting. Here we concentrate on rather
geometric applications.

Our first application is a generalization of the Brunn-Minkowski inequality (2.1), (2.2)
to curved spaces. Given two sets A,B ⊂ X and t ∈ (0, 1), we denote by Zt(A,B) the
set of points γ(t) such that γ : [0, 1] −→ X is a minimal geodesic with γ(0) ∈ A and
γ(1) ∈ B.

Theorem 4.1 (Generalized Brunn-Minkowski inequalities) Let a metric measure space
(X, d,m) satisfy CD(K,N) and take Borel sets A,B ⊂ X with 0 < m(A),m(B) < ∞.

(i) If N < ∞, then we have

m
(
Zt(A,B)

)1/N ≥ (1 − t) inf
x∈A, y∈B

β1−t
K,N

(
d(x, y)

)1/N · m(A)1/N

+ t inf
x∈A, y∈B

βt
K,N

(
d(x, y)

)1/N · m(B)1/N

for all t ∈ (0, 1).

(ii) If N = ∞, then we have

log m
(
Zt(A,B)

)
≥ (1 − t) log m(A) + t log m(B) +

K

2
(1 − t)tdW

2

(
m|A
m(A)

,
m|B

m(B)

)2

for all t ∈ (0, 1).

These follow from (3.2) applied to SN or Entm between uniform distributions on A
and B. In the particular case of K = 0, we obtain the concavity of m1/N or log m as
in (2.1), (2.2). Under CD(K,N) with N < ∞, applying (i) to thin annuli shows the
Bishop-Gromov volume comparison (see (1.5))

m(B(x,R))

m(B(x, r))
≤

∫ R

0
sK,N(t)N−1 dt∫ r

0
sK,N(t)N−1 dt

,

where 0 < r < R (≤ π
√

(N − 1)/K if K > 0). In particular, we have the Bonnet-Myers

diameter bound diam X ≤ π
√

(N − 1)/K if K > 0.
Another interesting geometric application is the Lichnerowicz inequality. Spaces sat-

isfying CD(K,∞) with K > 0 are known to enjoy several functional inequalities, such as
the Talagrand inequality, logarithmic Sobolev inequality and global Poincaré inequality.
There are also applications in the concentration of measure phenomenon. Among these
inequalities, the global Poincaré inequality∫

X

f 2 dm ≤ 1

K

∫
X

|∇−f |2 dm

is improved under CD(K,N) with N < ∞.
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Theorem 4.2 (A generalized Lichnerowicz inequality) Suppose that a metric measure
space (X, d,m) satisfies CD(K,N) for some K > 0 and N ∈ (1,∞). Then we have∫

X

f2 dm ≤ N − 1

KN

∫
X

|∇−f |2 dm (4.1)

for any Lipschitz function f : X −→ R with
∫

X
f dm = 0.

Here |∇−f | is the generalized gradient of f defined by

|∇−f |(x) := lim inf
y→x

max{f(x) − f(y), 0}
d(x, y)

.

The proof is done via careful calculations using (3.2) for SN between m(X)−1 · m and
its perturbation (1 + εf)m(X)−1 · m for ε ∈ (−1, 1). The inequality (4.1) means that
the lowest positive eigenvalue of the Laplacian is larger than or equal to KN/(N − 1).
The constant (N − 1)/KN in (4.1) is sharp. Moreover, in Riemannian geometry, it is
known that this best constant (with N = dim M) is achieved only for spheres. For metric
measure spaces, we know only that the maximal diameter π

√
(N − 1)/K is achieved only

for spherical suspensions ([Oh2]).
Among others, a challenging problem is to show (some appropriate variant of) the

Lévy-Gromov isoperimetric inequality using optimal transport. Most known proofs appeal
to the deep existence and regularity theory of minimal surfaces, and it can not be expected
in singular spaces. For instance, let us consider the isoperimetric profile IM of a weighted
Riemannian manifold (M, g,m = e−ψ volg) with m(M) < ∞, i.e., IM(V ) is the least
perimeter of sets with volume V . Then the differential inequality

(I
N/(N−1)
M )′′ ≤ − KN

N − 1
I

1/(N−1)−1
M (4.2)

holds if RicN ≥ K. This immediately implies the corresponding Lévy-Gromov isoperi-
metric inequality

IM(t · m(M))

m(M)
≥ IK,N(t) (4.3)

for t ∈ [0, 1], where IK,N is the isoperimetric profile of the N -dimensional space form of
constant sectional curvature K/(N −1) equipped with the normalized measure (extended
to non-integer N numerically). The inequality (4.2) seems to be related to the Brunn-
Minkowski inequality, however, known proof of (4.2) is based on the variational formula
of minimal surfaces.

Further reading The generalized Brunn-Minkowski inequalities are established by von
Renesse and Sturm [vRS] (N = ∞) and Sturm [St4] (N < ∞). Some more related
interpolation inequalities can be found in [CMS]. They all were new even for Riemannian
manifolds. The relation between CD(K,∞) and the Talagrand, logarithmic Sobolev and
global Poincaré inequalities are studied by Otto and Villani [OV] and Lott and Villani
[LV1]. The latter duo also shows the generalized Lichnerowicz inequality ([LV2]). The
differential inequality (4.2) is due to Bayle [Ba].
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5 Related topics

If there is time, I would discuss some of the following topics.

5.1 Non-branching spaces

We say that a metric space (X, d) is non-branching if geodesics do not branch, more
precisely, if each quadruple of points z, x0, x1, x2 ∈ X with d(x0, x1) = d(x0, x2) = 2d(z, xi)
(i = 0, 1, 2) must satisfy x1 = x2. In such a space, a.e. x ∈ X has unique minimal
geodesic from x to a.e. y ∈ X. Therefore we can localize the inequality (3.1), and
then (3.1) for single U = SN implies that for all U ∈ DCN . Riemannian (or Finsler)
manifolds and Alexandrov spaces are clearly non-branching. However, as n-dimensional
Banach spaces satisfy CD(0, n), the curvature-dimension condition does not prevent the
branching phenomenon. A big open problem after Cheeger and Colding’s work is whether
any limit space of Riemannian manifolds with a uniform lower Ricci curvature bound is
non-branching or not.

5.2 Alexandrov spaces

As is briefly explained in §1, Alexandrov spaces are metric spaces whose sectional cur-
vature is bounded from below by some constant. One interesting fact is that a compact
geodesic space (X, d) is an Alexandrov space of nonnegative curvature if and only if so is
the Wasserstein space (P(X), dW

2 ) over it ([St3], [LV1]). We remark that this relation can
not be extended to positive or negative curvature bounds. Optimal transport in Alexan-
drov spaces is further studied in [Be] and [Oh3] (see also [Sa]). Since the Ricci curvature is
the trace of the sectional curvature, it is natural to expect that Alexandrov spaces satisfy
the curvature-dimension condition. Petrunin [Pe] recently asserts that it is indeed the
case.

5.3 Finsler manifolds

The equivalence between RicN ≥ K and CD(K,N) (Theorem 2.1) is extended to a general
Finsler manifold (M,F,m) with an arbitrary positive smooth measure m (Ohta [Oh4]).
Here F is only positively homogeneous, so that the associated distance function may
not be symmetric. The point is how to generalize the weighted Ricci curvature in this
setting. Together with the stability, every n-dimensional Banach (or even Minkowski)
space (Rn, ‖ · ‖) satisfies CD(0, n) for the Lebesgue measure m = mL (this was first
demonstrated by Cordero-Erausquin [Vi2, Theorem in page 908]), and CD(0,∞) for a
Gaussian measure m = e−‖·‖2/2mL. These should be compared with Cheeger and Colding’s
observation that Banach spaces can not appear as the limit space of Riemannian manifolds
with a uniform lower Ricci curvature bound. Then the situation is very different from
Alexandrov spaces, it is not known whether there is an Alexandrov space which can not be
approximated by Riemannian manifolds with a uniform lower sectional curvature bound
(when we allow collapsing).
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5.4 The measure contraction property

For k ∈ R and N ∈ (1,∞), a metric measure space is said to satisfy the measure con-
traction property MCP(K,N) if the Bishop inequality (1.4) holds in an appropriate sense
(see Ohta [Oh1] and Sturm [St4] for the precise definition). MCP(K,N) can be regarded
as the curvature-dimension condition CD(K,N) applied only for pairs of a Dirac mea-
sure and a uniform distribution on a set, and CD actually implies MCP in non-branching
spaces. It is known that Alexandrov spaces satisfy MCP (see [Oh1] and [KS2] as well).
For n-dimensional Riemannian manifolds, MCP(K,n) is equivalent to Ric ≥ K, however,
MCP(K,N) with N > n does not imply Ric ≥ K. This is one drawback of MCP. An
advantage of MCP is its simpleness. There are several facts known for MCP, but unknown
for CD, such as the propagation of MCP to product spaces and cones ([Oh2]).
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