M2R Lecture Course "Diophantine approximation and values of special functions"

Tanguy Rivoal

Provisional program.

Generalities on Diophantine approximation

Dirichlet's Theorem on the approximation of irrational numbers by rational numbers. Almost sure converse; some results in metric theory.

Liouville's Theorem on the approximation of algebraic numbers by rational number. Liouville's minoration of non-zero polynomial values at algebraic points.

First constructions of transcendental numbers.

Continued fractions.

Transcendance of values of exp and log

Generalities of Hermite-Padé approximants, i.e. of analogues of continued fractions for power series.

Hermite proof of the transcendance of e

Generalisations: Hermite-Lindemann and Lindemann-Weierstrass Theorem on transcendence and algebraic independence of values of exp.

Application to the transcendence of π and values of log. Some geometrical applications, like the Mazurkiewicz-Sierpinski Theorem (paradoxical decomposition of the plane using isometries).

Values of polylogarithms $\sum_{n=1}^{\infty} \frac{z^n}{n^s}$

Nesterenko's linear independence criterion; the saddle point method.

Irrationality of $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$: Beukers' proof and Gutnik-Nesterenko's proof.

Irrationality of infinitely values $\zeta(2k+1) = \sum_{n=1}^{\infty} \frac{1}{n^{2k+1}}$ $(k \in \mathbb{N}_{\geq 1})$ and another proof of the transcendance of π .

Explicit irrationality measures of numbers like log(2), $\zeta(3)$, π . For instance, for all $p, q \in \mathbb{Z}$, $q \ge 1$.

$$\left|\pi - \frac{p}{q}\right| > \frac{1}{q^{42}}.$$

The Gel'fond-Schneider Theorem

Sketch of the proof the transcendence of e^{π} (Gel'fond)

Siegel's lemma and inexplicit transcendence construction

Proof of Hilbert 7th problem: Transcendence of α^{β} with α, β algebraic, $\alpha \neq 0, 1$ and β irrational: Gel'fond's proof and Schneider's proof.

Generalization: the Schneider-Lang criterion.

Application to elliptic functions and modular forms.

E-functions and G-functions

• E-functions: generalization of $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ and Bessel's functions

Siegel-Shidlovskii Theorem on values of E-function. Shidlovskii's lemma.

• *G*-functions: generalization of $\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}$ and polylogarithms.

Chudnovskii's Theorem of values of *G*-functions. André zero lemma.

Chudnovskii's Theorem: *G*-operators are fuchsian. Katz Theorem: exponents of *G*-operators are rational.

André's Theorem on the structure of E-operators. Applications to values of E-functions.

Prerequisites:

A basic course in Complex Analysis

Basic properties of number fields, Galois theory.

Linear differential equations with polynomials coefficients.