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Generalities on Diophantine approximation

Dirichlet’s Theorem on the approximation of irrational numbers by
rational numbers. Almost sure converse; some results in metric theory.

Liouville’s Theorem on the approximation of algebraic numbers by
rational number. Liouville’s minoration of non-zero polynomial values at
algebraic points.

First constructions of transcendental numbers.

Continued fractions.



Transcendance of values of exp and log

Generalities of Hermite-Padé approximants, i.e. of analogues of
continued fractions for power series.

Hermite proof of the transcendance of e

Generalisations : Hermite-Lindemann and Lindemann-Weierstrass
Theorem on transcendence and algebraic independence of values of exp.

Application to the transcendence of π and values of log. Some
geometrical applications, like the Mazurkiewicz-Sierpinski Theorem
(paradoxical decomposition of the plane using isometries).



Values of polylogarithms
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Nesterenko’s linear independence criterion; the saddle point method.

Irrationality of ζ(3) =
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n3 : Beukers’ proof and Gutnik-Nesterenko’s

proof.

Irrationality of infinitely values ζ(2k + 1) =
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n2k+1 (k ∈ N≥1) and
another proof of the transcendance of π.

Explicit irrationality measures of numbers like log(2), ζ(3), π. For
instance, for all p, q ∈ Z, q ≥ 1.∣∣∣∣π − p
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The Gel’fond-Schneider Theorem

Sketch of the proof the transcendence of eπ (Gel’fond)

Siegel’s lemma and inexplicit transcendence construction

Proof of Hilbert 7th problem: Transcendence of αβ with α, β algebraic,
α 6= 0, 1 and β irrational: Gel’fond’s proof and Schneider’s proof.

Generalization: the Schneider-Lang criterion.

Application to elliptic functions and modular forms.



E -functions and G -functions

• E -functions: generalization of exp(z) =
∑∞

n=0
zn

n! and Bessel’s functions

Siegel-Shidlovskii Theorem on values of E -function. Shidlovskii’s lemma.

• G -functions: generalization of log(1− z) =
∑∞
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n and
polylogarithms.

Chudnovskii’s Theorem of values of G -functions. André zero lemma.

Chudnovskii’s Theorem: G -operators are fuchsian. Katz Theorem:
exponents of G -operators are rational.

André’s Theorem on the structure of E -operators. Applications to values
of E -functions.



Prerequisites :

A basic course in Complex Analysis

Basic properties of number fields, Galois theory.

Linear differential equations with polynomials coefficients.


