Diffusion dans les schémas de Feistel généralisés

Gaël Thomas1
Travail en collaboration avec Thierry P. Berger1 et Marine Minier2

1XLIM (UMR CNRS 7252), Université de Limoges
123 avenue Albert Thomas, 87060 Limoges Cedex - France

2Université de Lyon, INRIA
INSA-Lyon, CITI, F-69621, Villeurbanne

JC2 2014-03-27
The Original Feistel Structure

- Designed by Horst Feistel at IBM in the 1970’s
- Used in DES, Camellia, Simon,…
- Build $2n$-bit permutation from n-bit to n-bit (Feistel) functions
- Similar encryption and decryption up to round keys order
Generalized Feistel Networks

- Introduced by Zheng, Matsumoto, and Imai at CRYPTO‘89
- Splits the message into \(k \geq 2 \) \(n \)-bit-long blocks

\[x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \]

\[y_0 \ y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ y_6 \ y_7 \]

- Permutation layer: usually the cyclic shift
- Different flavors of GFNs according to the non-linear layer
Generalized Feistel Networks

- Introduced by Zheng, Matsumoto, and Imai at CRYPTO‘89
- Splits the message into \(k \geq 2 \) \(n \)-bit-long blocks

\[
\begin{array}{cccccccc}
X_0 & X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 \\
\downarrow & F & \oplus & F & \oplus & F & \oplus & F \\
Y_0 & Y_1 & Y_2 & Y_3 & Y_4 & Y_5 & Y_6 & Y_7
\end{array}
\]

- Permutation layer : usually the cyclic shift
- Different flavors of GFNs according to the non-linear layer
- Pro: Simpler Feistel functions (fitted for small scale implementation)
- Con: "diffusion" between blocks gets poorer as \(k \) grows
The Generalized Feistel Flavors

Type-1 (CAST-256, Lesamnta)

Type-2 (RC6, CLEFIA)

Type-3

Source Heavy (RC2, SHA-1)

Target Heavy (MARS)

Nyberg’s
Full Diffusion Delay

- Introduced by Suzaki and Minematsu at FSE‘10
- Minimum number of rounds d^+ for every inputs to influence every outputs
- Depends solely on the structure of the network, not on the Feistel functions used
- d^-: similarly defined when performing decryption
- We consider encryption and decryption important, thus we look at:
 $$d = \max(d^+, d^-).$$
Full Diffusion Delay of Generalized Feistel Networks

Type-1 (CAST-256, Lesamnta)
\[d = (k - 1)^2 + 1 \]

Type-2 (RC6, CLEFIA)
\[d = k \]

Type-3
\[d = k \]

Source Heavy (RC2, SHA-1)
\[d = k \]

Target Heavy (MARS)
\[d = k \]

Nyberg’s
\[d = k \]
An Improvement of Type-2

- Proposed by Suzaki and Minematsu at FSE‘10
- Idea: Replace the cyclic shift of the permutation layer by any block-wise permutation
- Includes Nyberg’s GFNs
- Full diffusion delay d goes from k to $2\log_2 k$ for optimum permutations
Improve Type-1, Type-3, Source-Heavy and Target-Heavy?

- Studied by Yanagihara and Iwata at IEICE Trans. 2013
- Same idea as Suzaki and Minematsu: allow any block permutation \mathcal{P}
- Source Heavy and Target-Heavy cannot be improved
- Full diffusion delay of Type-1 drops from $(k - 1)^2 + 1$ to $k(k + 2)/2 - 2$
- No general construction for Type-3 but found permutations with $d \leq 4$ for $k \leq 8$
Graph and Matrix Representations

- d^+ smallest distance such that for all vertices couple (u, v) there exists a path of length d^+ going from u to v
Graph and Matrix Representations

\[\mathbf{M} = \begin{pmatrix} F & 1 \\ 1 & F \\ F & 1 \\ 1 & F \\ 1 & 1 \\ F & 1 \end{pmatrix} \]

- \(d^+ \) smallest distance such that for all vertices couple \((u, v)\) there exists a path of length \(d^+ \) going from \(u \) to \(v \)
- \(\mathbf{M} \) : adjacency matrix of the graph associated to the GFN
- \(\Rightarrow d^+ \) : smallest integer such that \(\mathbf{M}^{d^+} \) has no zero coefficient
Graph and Matrix Representations

\[M = \begin{pmatrix} F & 1 \\ 1 & F \\ F & 1 \\ 1 & F & 1 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \quad F = \begin{pmatrix} \frac{1}{F} & 1 & 1 \\ F & 1 & 1 \\ 1 & F & 1 \end{pmatrix} \]

- \(d^+ \): smallest distance such that for all vertices couple \((u, v)\) there exists a path of length \(d^+\) going from \(u\) to \(v\)
- \(M \): adjacency matrix of the graph associated to the GFN
- \(\Rightarrow d^+ \): smallest integer such that \(M^{d^+} \) has no zero coefficient
- \(M \) cut into two matrices: \(P \) for the permutation layer and \(F \) for the non-linear layer: \(M = PF \).
Depth of diffusion

\[M = \begin{pmatrix}
F & 1 & \cdots & \cdots & \cdots \\
\cdot & 1 & \cdots & \cdots & \cdots \\
\cdot & \cdot & F & 1 & \cdots \\
\cdot & \cdot & \cdot & 1 & \cdots \\
\cdot & \cdot & \cdot & \cdot & F & 1
\end{pmatrix} \quad M^2 = \begin{pmatrix}
F^2 & F & 1 & \cdots & \cdots & \cdots \\
\cdot & F & 1 & \cdots & \cdots & \cdots \\
\cdot & \cdot & F & 1 & \cdots & \cdots \\
\cdot & \cdot & \cdot & F & 1 & \cdots \\
\cdot & \cdot & \cdot & \cdot & F & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & F^2 & F
\end{pmatrix} \quad \ldots
\]

- Computations done in \(\mathbb{Z}[F] \)
Depth of diffusion

\[\mathcal{M} = \begin{pmatrix} F & 1 & \cdots & \cdots & \cdots \\ . & . & . & \cdots & \cdots \\ 1 & F & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & F & \cdots \\ \cdots & \cdots & \cdots & \cdots & 1 \end{pmatrix} \quad \mathcal{M}^2 = \begin{pmatrix} F^2 & F & 1 & \cdots & \cdots \\ . & . & . & \cdots & \cdots \\ F & 1 & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & F & \cdots \\ \cdots & \cdots & \cdots & \cdots & F^2 & F \end{pmatrix} \quad \cdots \]

- Computations done in \(\mathbb{Z}[F] \)
- Degree of coefficient \((i, j)\): number of Feistel functions gone through from \(x_j\) to \(y_i\)
Depth of diffusion

\[
\mathcal{M} = \begin{pmatrix} F & 1 & \ldots & \ldots & \ldots \\ \ldots & 1 & \ldots & \ldots & \ldots \\ \ldots & \ldots & 1 & \ldots & \ldots \\ \ldots & \ldots & \ldots & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots & 1 \end{pmatrix}
\quad \mathcal{M}^2 = \begin{pmatrix} F^2 & F & 1 & \ldots & \ldots \\ \ldots & F & 1 & \ldots & \ldots \\ \ldots & \ldots & F & 1 & \ldots \\ \ldots & \ldots & \ldots & F & 1 \\ \ldots & \ldots & \ldots & \ldots & F \end{pmatrix} \quad \ldots
\]

- Computations done in \(\mathbb{Z}[F] \)

- Degree of coefficient \((i,j)\) : number of Feistel functions gone through from \(x_j\) to \(y_i\)

- Generalize diffusion delay : \(r\)-depth of diffusion \(d_r^+\)

- \(d_r^+\) : minimum number of rounds \(\ell\) such as the coefficients of \(\mathcal{M}^\ell\) are of degree at least \(r\).

- e.g. \(d_0^+ = d^+; d_1^+\) : no more linear-only dependences

- Linked with resistances to \textit{structural} attacks as impossible differentials or integral attacks
Characterizing GFN Matrices

- GFNs transforms non-invertible F functions into a permutation,
- Hence decryption mode matrix \mathcal{M}^{-1} should not have coefficients with F at denominator
- $\Rightarrow \det(\mathcal{M})$ independent of F $\Rightarrow \det(\mathcal{M}) = \pm 1$.
- Goal: Find condition on where to put the Feistel functions

![Diagram of not a Feistel network]
Graph of the non-linear layer

\[
\begin{pmatrix}
0 & F & 0 & 0 & \cdots & 0 & (0) \\
F & 0 & F & 0 & \cdots & 0 & 0 \\
0 & F & 0 & F & \cdots & 0 & 0 \\
0 & 0 & F & 0 & \cdots & 0 & (0) \\
(0) & 0 & 0 & F & \cdots & 0 & 0 \\
(0) & (0) & 0 & F & \cdots & 0 & 0 \\
(0) & (0) & (0) & F & \cdots & 0 & 0 \\
(0) & (0) & (0) & (0) & \cdots & F & 0 \\
\end{pmatrix}
\]

Graph with adjacency matrix $\mathcal{F} - \mathcal{I}$

- Shows order the Feistel functions must be evaluated for decryption
- Possible if and only if Graph is **acyclic**
- If and only if \mathcal{F} is lower triangular up to block reindexing
An interesting subfamily: Quasi-involutive GFNs

- Stronger requirement for matrix F
- Non-linear layer must be the same for encryption and decryption
- Holds when any of the following (equivalent) conditions holds:
 - A block cannot both emit and receive through a Feistel function
 - for all $0 \leq \ell \leq k - 1$, row ℓ and column ℓ cannot both have an F coefficient
 - $F^{-1} = 2I - F$ (i.e. $F^{-1} = F \mod 2$)
- Not the case for Type-3 GFN
Exhaustive Search of GFNs

- We investigated all the quasi-involutive GFNs with $k = 8$ blocks up to block reindexing equivalence.
Exhaustive Search of GFNs

- We investigated all the quasi-involutive GFNs with $k = 8$ blocks up to block reindexing equivalence.

- We consider three parameters:
 - the full diffusion delay d,
 - the number of Feistel functions (per round) s,
 - the total cost, i.e. the number of Feistel functions required for full diffusion, $c = d \times s$.

Diffusion dans les schémas de Feistels généralisés
Gaël Thomas
JC2 2014-03-27
14/18
Exhaustive Search of GFNs

- We investigated all the quasi-involutive GFNs with $k = 8$ blocks up to block reindexing equivalence.

- We consider three parameters:
 - the full diffusion delay d,
 - the number of Feistel functions (per round) s,
 - the total cost, i.e. the number of Feistel functions required for full diffusion, $c = d \times s$.

- No GFN with cost $c < 24$. GFN with cost $c = 24$ includes the Type-2 of Suzaki and Minematsu ($s = 4$, $d = 6$)

- Minimum number s of Feistel functions per round required to have a full diffusion in d rounds and corresponding total cost c:

<table>
<thead>
<tr>
<th>d</th>
<th>1, 2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>∞</td>
<td>16</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>∞</td>
<td>48</td>
<td>28</td>
<td>30</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>24</td>
</tr>
</tbody>
</table>
How to Further Increase Diffusion?

Generalize the permutation layer P beyond block-permutation. We propose: a GFN-like linear mapping G with identity as round-function, i.e. $G = PL$ with P is a block-wise permutation matrix, L is similar to F but with I instead of F, called the linear layer.

Extended Generalized Feistel Networks: $M = PLF$ L and F have common structure \rightarrow regrouped into matrix $N = LF$

Matrix N has two formal parameters: F: non-linear functions \rightarrow cryptographic security I: idendity functions \rightarrow quick diffusion

x_0 y_0 x_1 y_1 x_2 y_2 x_3 y_3 round-function layer F linear layer L permutation layer P M = \[
\begin{bmatrix}
I & F & 1 & F \\
I & 1 & F & 1 \\
1 & I & 1 & I \\
1 & 1 & I & 1
\end{bmatrix}
\]

P = \[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

L = \[
\begin{bmatrix}
1 & 1 & I & 1 \\
1 & I & 1 & I
\end{bmatrix}
\]

F = \[
\begin{bmatrix}
1 & 1 & F & 1 \\
1 & 1 & F & 1
\end{bmatrix}
\]
How to Further Increase Diffusion?

- Generalize the permutation layer \mathcal{P} beyond block-permutation
How to Further Increase Diffusion?

- Generalize the permutation layer \mathcal{P} beyond block-permutation
- We propose: a GFN-like linear mapping \mathcal{G} with identity as round-function, i.e. $\mathcal{G} = \mathcal{P} \mathcal{L}$ with
 - \mathcal{P} is a block-wise permutation matrix
 - \mathcal{L} is similar to \mathcal{F} but with I instead of F, called the linear layer

\[
\begin{align*}
\mathcal{P} &= \begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} \\
\mathcal{L} &= \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix} \\
\mathcal{F} &= \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}
\end{align*}
\]
How to Further Increase Diffusion?

- Generalize the permutation layer \mathcal{P} beyond block-permutation
- We propose: a GFN-like linear mapping \mathcal{G} with identity as round-function, i.e. $\mathcal{G} = \mathcal{P}\mathcal{L}$ with
 - \mathcal{P} is a block-wise permutation matrix
 - \mathcal{L} is similar to \mathcal{F} but with I instead of F, called the linear layer
- Extended Generalized Feistel Networks: $\mathcal{M} = \mathcal{P}\mathcal{L}\mathcal{F}$

\[
\begin{align*}
\mathcal{P} &= \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & F & 1 & 1 \\ F & 1 & 1 & 1 \end{pmatrix} \\
\mathcal{L} &= \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & F & 1 & 1 \\ F & 1 & 1 & 1 \end{pmatrix} \\
\mathcal{F} &= \begin{pmatrix} 1 & F & 1 & 1 \\ 1 & F & 1 & 1 \\ 1 & F & 1 & 1 \\ 1 & F & 1 & 1 \end{pmatrix}
\end{align*}
\]
How to Further Increase Diffusion?

- Generalize the permutation layer \mathcal{P} beyond block-permutation
- We propose: a GFN-like linear mapping \mathcal{G} with identity as round-function, i.e. $\mathcal{G} = \mathcal{PL}$ with
 - \mathcal{P} is a block-wise permutation matrix
 - \mathcal{L} is similar to \mathcal{F} but with I instead of F, called the linear layer

- Extended Generalized Feistel Networks: $\mathcal{M} = \mathcal{PLF}$
- \mathcal{L} and \mathcal{F} have common structure \rightarrow regrouped into matrix $\mathcal{N} = \mathcal{LF}$
- Matrix \mathcal{N} has two formal parameters:
 - F: non-linear functions \rightarrow cryptographic security
 - I: idendity functions \rightarrow quick diffusion

\[
\begin{align*}
\mathcal{M} &= \begin{pmatrix} I & F \\ I & F \end{pmatrix}, \\
\mathcal{P} &= \begin{pmatrix} 1 & F \\ I & F \end{pmatrix}, \\
\mathcal{L} &= \begin{pmatrix} 1 & I \\ I & I \end{pmatrix}, \\
\mathcal{F} &= \begin{pmatrix} 1 & I \\ I & F \end{pmatrix}
\end{align*}
\]
An Interesting Example

\[\mathcal{F} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & F & 1 \\ F & F & 1 \end{pmatrix} \]

\begin{align*}
&x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \\
&\downarrow \quad \downarrow \\
&\oplus \quad \oplus \\
\end{align*}
An Interesting Example

\[\mathcal{L} = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & \vdots \\
\vdots & \ddots & 1 \\
\vdots & \vdots & \ddots & 1 \\
1 & 1 & 1
\end{pmatrix} \]
An Interesting Example

\[N = \begin{pmatrix}
1 & 1 & 1 \\
F & 1 & \\
F & F & 1 \\
F & F & F & 1 \\
\end{pmatrix} \]

\[\begin{array}{cccccccc}
X_0 & X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 \\
\end{array} \]

Choose \(P'_1 \) and \(P'_2 \) to best resist attacks not (directly) related to \(d \).

E.g. for \(k = 16 \) and 20 rounds, minimum number of differentially/linearly active S-boxes ranges from 26 to 42 as \(P \) varies.
An Interesting Example

\[\mathcal{N} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & F & 1 \\ F & I & 1 \\ F & I & I & 1 \end{pmatrix} \]

- \(\mathcal{P} \): Swap emitters and receivers

\[\mathcal{P} = \begin{pmatrix} 0 & P_1 \\ P_2 & 0 \end{pmatrix} \]

If \(\mathcal{P} \) swaps \(k_{i-1} \) and \(k_{i+1} \) then \(d = 4 \).

Choose \(\mathcal{P}'_1 \) and \(\mathcal{P}'_2 \) to best resist attacks not (directly) related to \(d \). E.g. for \(k = 16 \) and 20 rounds, minimum number of differentially/lineally actives S-boxes ranges from 26 to 42 as \(\mathcal{P} \) varies.
An Interesting Example

\[\mathcal{N} = \begin{pmatrix} 1 & 1 & 1 \\ F & 1 \\ F & F & 1 & 1 \end{pmatrix} \]

- \(\mathcal{P} \) : Swap emitters and receivers

\[\mathcal{P} = \begin{pmatrix} 0 & P'_1 & 0 \\ 0 & \ddots & \ddots \\ 0 & 0 & 1 \end{pmatrix} \]

- If \(\mathcal{P} \) swaps \(k - 1 \) and \(\frac{k}{2} - 1 \) then \(d = 4 \).
An Interesting Example

\[\mathcal{N} = \begin{pmatrix} 1 & 1 & 1 \\ F & 1 & 1 \\ F & F & 1 & 1 \end{pmatrix} \]

- \(\mathcal{P} \): Swap emitters and receivers

\[\mathcal{P} = \begin{pmatrix} 0 & P'_1 & \cdots & 0 \\ 0 & \cdots & 1 \end{pmatrix} \]

- If \(\mathcal{P} \) swaps \(k - 1 \) and \(\frac{k}{2} - 1 \) then \(d = 4 \).
- Choose \(P'_1 \) and \(P'_2 \) to best resist attacks not (directly) related to \(d \).
- E.g. for \(k = 16 \) and 20 rounds, minimum number of differentially/linealy actives S-boxes ranges from 26 to 42 as \(\mathcal{P} \) varies.
We have:

- Matrix representation of a GFN
- used it to show some properties of GFNs (diffusion in particular)
- Introduced a new class of schemes called Extended Generalized Feistel Networks: add a diffusion layer to the GFN
- Instantiated this class into a well chosen example

Further work:

- Propose a blockcipher based on our proposals
- Further study resistance against linear/differential cryptanalysis
Thank you for your attention

Any Questions?